
Lecture 17 — Deadlock
Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi
jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca

Department of Electrical and Computer EngineeringUniversity of Waterloo

ECE 252 1 / 44

Deadlock!

Hmm... no... not quite...
ECE 252 2 / 44

Okay, This Time It’s Deadlock!

No? Whoops.
ECE 252 3 / 44

This One Really Is Deadlock!

ECE 252 4 / 44

Skeptical Dog Says:

Really. He’s an Image Comics character. He first appeared in 1992.
I think he’s an off-brand Wolverine.
I don’t know either.

ECE 252 5 / 44

The Dining Philosophers Problem

The dining philosophers problem was also proposed by Dijkstra in 1965.

The problem can have n philosophers, but problem is typically described as 5.

These five smart individuals spend their lives thinking, but every so often, theyneed to eat. They share a table, each having their own chair.

In the centre of the table is a bowl of rice, & it is laid with 5 single chopsticks.

ECE 252 6 / 44

The Dining Philosophers Problem

The dining philosophers problem was also proposed by Dijkstra in 1965.

The problem can have n philosophers politicians, but problem is typicallydescribed as 5.

These five smart individuals spend their lives thinking lying, but every so often,they need to eat. They share a table, each having their own chair.

In the centre of the table is a bowl of rice, & it is laid with 5 single chopsticks.

ECE 252 7 / 44

The Dining Philosophers Problem

ECE 252 8 / 44

Dinner Time

When politicians wish to eat, they sit down at their designated chair, andattempts to pick up the two chopsticks that are nearest.

Politicians are polite and therefore do not grab a chopstick out of the hands of acolleague.

When a politician has both chopsticks, they may eat rice, and when they arefinished, they puts down the chopsticks and goes back to lying.

ECE 252 9 / 44

Dining with Semaphores
Suppose then that semaphores are the method for managing things.
Because only one person can be in possession of a chopstick at a time, eachchopstick may be represented by a binary semaphore.
When politicians sit down, they attempt to acquire the left chopstick, then theright, eat, and put the chopsticks down.
This works fine, until all politicians sit down at the same time. Each grabs thechopstick to their left.
None of them are able to acquire the chopstick to their right (because someonehas already picked it up).
None of the politicians can eat; they are all stuck. Deadlock.

ECE 252 10 / 44

Deadlock at the Dinner Table

This example makes it more clear why we call a situation where a thread nevergets to run “starvation”.
If a politician is never able to get both chopsticks, they won’t eat.
Though I am not an expert on biology, I have it on good authority that peoplewho do not eat anything end up eventually starving to death.
Specially politicians.

ECE 252 11 / 44

Saving the Philosophers

One thing that would guarantee that this problem does not occur is to protectthe table with a binary semaphore.

This would allow exactly one politician at a time to eat, but at the very least,deadlock and starvation would be avoided.

Although this works, it is a suboptimal solution.

There are five seats and five chopsticks. Yet only one person is eating at a time.

ECE 252 12 / 44

No, the Pigeons are not for Eating

What if we limit the number of politicians at the table concurrently to four?

The pigeonhole principle applies here: if there are k pigeonholes and more thank pigeons, at least one pigeonhole must have at least two pigeons.

Thus, at least one of the four politicians can get two chopsticks.

Implementation is easy: a general semaphore with a max and initial value of 4.

ECE 252 13 / 44

Invite a Leftie

The problem above occurs because every politician tries to pick up the leftchopstick first.
If some of them try to pick up the left and some pick up the right first, thendeadlock will not happen.
This problem is a great basis to launch into a discussion about deadlock...

ECE 252 14 / 44

Deadlock

An informal definition of deadlock: all processes being “stuck”.

A more formal definition: “the permanent blocking of a set of processes thateither compete for system resources or communicate with each other”.

It may be possible for all processes to be stuck temporarily, because one iswaiting for some event (e.g., a read from disk).

This situation will resolve itself and is not deadlock.

ECE 252 15 / 44

Deadlock

A set of processes is truly deadlocked when each process in the set is blocked onsome event that can only be triggered by another blocked process in the set.

In this case it is permanent, because none of the events can take place.

A deadlock involves some conflicting needs for resources by two or moreprocesses.

ECE 252 16 / 44

A Traffic Deadlock

ECE 252 17 / 44

A Traffic Deadlock

Whichever vehicle arrives at the stop sign first has the right of way.

If two vehicles arrive at the same time, a vehicle yields the right of way to thevehicle on its right.

Okay, as long as 3 or fewer vehicles come to the stop sign at the same time.

If all four vehicles arrive at the same time, we have the potential for a problem.

ECE 252 18 / 44

A Traffic Deadlock

It is not a deadlock yet, because none of the processes are stuck yet.

If all the drivers believe they should go first, we get the situation on the right, andwe actually do have deadlock.

This is very much like the dining philosophers problem; deadlock occurs ifeveryone tries to do the same thing at the same time.

ECE 252 19 / 44

Deadlocks

Of course, for deadlock to occur, we do not have to have symmetric processestrying to do the same thing at the same time.

Given two semaphores, a and b, and two processes, we can have the followingcode that will sometimes, but not always lead to deadlock.

If thread P locks a and then there is a process switch, and b is locked by Q, boththreads will be stuck.

Each has one resource the other needs, but they are both blocked.

ECE 252 20 / 44

Deadlock of P and Q

It’s not always this easy to see:
Thread P

1. wait(a)
2. wait(b)
3. [critical section]
4. signal(a)
5. signal(b)

Thread Q

1. wait(b)
2. wait(a)
3. [critical section]
4. signal(b)
5. signal(a)

ECE 252 21 / 44

Reusable and Consumable Resources

We can generally classify a resource as either reusable or consumable.

A reusable resource can be used by one process at a time, and is not depleted.

A process may lock the resource, make use of it, then release it such that otherprocesses may acquire it.

Processors, memory, files, semaphores are all examples of reusable resources.

ECE 252 22 / 44

Reusable and Consumable Resources

A consumable resource is one that is created and destroyed upon consumption.

If the user presses the “Z” key on the keyboard, this generates an interrupt andproduces the “Z” character in a buffer.

A process that takes input will then consume that character (e.g., it goes into the
vi editor window) and it is unavailable to other processes.

ECE 252 23 / 44

Conditions for Deadlock

When a disaster happens, it is typically a result of a chain of things going wrong.

If any one of those things did not happen, the disaster would be averted.

This is referred to as “breaking the chain”.

ECE 252 24 / 44

Conditions for Deadlock

There are four conditions for deadlock:

1 Mutual Exclusion
2 Hold-and-Wait
3 No Preemption
4 Circular-Wait

If the first three conditions are true, deadlock is possible, but deadlock will onlyhappen if the fourth condition is fulfilled.

ECE 252 25 / 44

Resource Allocation Graph

ECE 252 26 / 44

Resource Allocation Graph
If there are no cycles in the graph, no process in the system is deadlocked.If a cycle exists, then some processmay be deadlocked:

ECE 252 27 / 44

Resource Allocation Graph
But the presence of a cycle is not necessarily certain that there is a deadlock.

ECE 252 28 / 44

Dealing with Deadlock

There are four basic approaches to dealing with deadlock.

1 Ignore it.
2 Deadlock prevention.
3 Deadlock avoidance.
4 Deadlock detection.

ECE 252 29 / 44

Also Called the Ostrich Algorithm

ECE 252 30 / 44

Ignoring Deadlock

This option is certainly convenient for operating system designers!

They simply pretend that deadlock can never happen.

Or if it does happen, it is the application developers’ fault.

It doesn’t seem right, but... Microsoft Windows takes this approach.

ECE 252 31 / 44

Deadlock Prevention

This approach is a way of preventing a deadlock from being possible.

The first three conditions for deadlock (mutual exclusion, hold and wait, and nopreemption) are all necessary for deadlock to be possible.

If we eliminate one of these three pillars, deadlock is not possible and it isprevented from happening.

But can you remove the need for it in your program?

ECE 252 32 / 44

Knocking Down Mutual Exclusion

Mutual Exclusion cannot, generally speaking, be disallowed.

The purpose of mutual exclusion is: prevent errors like inconsistent state/crashes.

Getting rid of mutual exclusion to rule out the possibility of deadlock is a curethat is worse than the disease.

It is therefore not acceptable as a solution.

ECE 252 33 / 44

Knocking Down Hold-and-Wait

To prevent the hold-and-wait condition, we must guarantee that when a processrequests a resource, it does not have any other resource.

This does not mean that things can be requested only one at a time.

One plausible solution: request all resources at the beginning of the program.

If the program needs R1, R2, and R3 at some point, all three must be requestedright at the beginning and held throughout the program.

ECE 252 34 / 44

Knocking Down Hold-and-Wait

A process has to know in advance all of the resources that it will need.

Remember that a file is a resource.

A simple text editor can be used by the user to open an arbitrary file.

How do we know in advance which will be requested?

ECE 252 35 / 44

Knocking Down Hold-and-Wait

This also has performance implications: a process cannot start until it has all theresources it will ever need, even if it will not need them until much later.

Thus, processes might spend a lot of time waiting before starting.

In theory, a process might never start if one or more of the resources it needs isalways in use (so this is vulnerable to starvation).

ECE 252 36 / 44

Knocking Down Hold-and-Wait
What if a process must release all its currently-held resources before it can getany new ones?

The process has R1 and R2 and wants to get R3.First release R1 and R2 before it can request all three.

A resource that cannot be easily released is memory.Released memory may be collected and reassigned by the operating system.

Therefore we cannot release all resources.

We cannot rule out deadlock; we can only make it less likely to occur.

ECE 252 37 / 44

Try Locking All Resources

Another idea that might work is for a process attempts to lock a group ofresources at once.
If it does not get everything it needs, it releases the locks it got and tries again.
Thus, a process does not wait while holding resources.
If politicians pick up a chopstick but are unable to acquire a second, they putdown the chopstick they have picked up and try again.

ECE 252 38 / 44

Try Locking All Resources
This is not applicable to our current model for semaphores.

There is no way to know the value of the semaphore and the operating systemwill block a process on a wait if some other thread is in the critical region.

After the process is blocked on the semaphore, a second process will run, andthe first process does not get the opportunity to release the resources it holds.

There are systems that have nonblocking requests & mutual exclusion.

Then the program is responsible for checking if any of the requests returned
false and releasing any resources where the request returned true.

ECE 252 39 / 44

Try This

Fortunately, we know of some routines that do just this: the trylock functionsthat were mentioned earlier but not expanded upon:
i n t pthread_mutex_trylock (pthread_mutex_t * mutex)

It returns an integer, and it’s extremely important to check and see if the returncode is 0.

That is the only way to know if the lock was acquired.

ECE 252 40 / 44

Have You Tried Trying?
It should be possible to reason about this solution and demonstrate that:(1) a politician can only eat if they have both chopsticks, and(2) deadlock does not occur.
i n t locked_both = 0;
whi le (locked_both == 0) {

i n t locked1 = pthread_mutex_trylock (chopstick1) ;
i n t locked2 = pthread_mutex_trylock (chopstick2) ;
i f (locked1 ! = 0 && locked2 == 0) {
pthread_mutex_unlock (chopstick2) ;} e l s e i f (locked1 == 0 && locked2 ! = 0) {
pthread_mutex_unlock (chopstick1) ;} e l s e i f (locked1 ! = 0 && locked2 ! = 0) {/* Do no th i ng */} e l s e {
locked_both = 1 ;}}

eat () ;
pthread_mutex_unlock (chopstick1) ;
pthread_mutex_unlock (chopstick2) ;

ECE 252 41 / 44

Try, Try Again

There does exist a “try” function for the semaphore as well:
int sem_trywait (sem_t * sem) ;

If we would have been blocked at the call to sem_trywait, it returns -1 and
errno is set to EAGAIN.

ECE 252 42 / 44

Knocking Down No Preemption
Preemption: forcible removal of resources from a process.
Suppose a process P1 holds R1 and R2 and wants to get R3, but R3 is unavailable.
P1 will be blocked by the operating system.
If P2 requests R1 and R2, the resources R1 and R2 are taken away from P1.
The resources are added to the list of things that P1 is waiting for.
In the meantime, P2 can use them and continue.
P1 will be unblocked when all three resources are once again available for it.

ECE 252 43 / 44

Allowing Preemption

For preemption to work, however, the resource must be a resource of a typewhere the state can be saved and restored (e.g., the CPU with its registers).

This isn’t really something we can do as program designers.

This is not applicable to all resources; if a printer is in use by P1 it cannot bepreempted and given to P2, otherwise the printout will be a jumble.

Thus, preemption is also not sufficient to prevent deadlock from ever transpiring,it once again only makes it less likely.

ECE 252 44 / 44

