
Lecture 18 — Deadlock Avoidance

Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi
jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca

Department of Electrical and Computer Engineering
University of Waterloo

ECE 252 1 / 32

Deadlock Avoidance

We were attempting to rule deadlock out categorically by eliminating one of the
three preconditions for deadlock to be possible.

If successful, then we can be sure that deadlock does not occur.

Unfortunately, eliminating the pillars came with some conditions and the best we
could accomplish was merely making deadlock less likely.

Thus, we are forced to live with a system where a deadlock is possible.

ECE 252 2 / 32

Deadlock Avoidance

Deadlock being possible is not the same thing as deadlock being inevitable.

We can take steps to avoid it if there is a danger of it actually happening.

The basic strategy is: do not allow a cycle in the resource allocation graph.

ECE 252 3 / 32

Deadlocked Diners

In the dining philosophers problem: limit the number of concurrently-eating
philosophers to four, even though the table has five seats.

With only four philosophers and five chopsticks, there were insufficient requests
to complete a cycle.

This solution is suitable, but not necessarily generalizable to all situations.

ECE 252 4 / 32

Ordaaaah! Ordah!

ECE 252 5 / 32

Ordering of Resources

Impose ordering on resource requests. Recall this example:

Thread P

1. wait(a)
2. wait(b)
3. [critical section]
4. signal(a)
5. signal(b)

Thread Q

1. wait(b)
2. wait(a)
3. [critical section]
4. signal(b)
5. signal(a)

Deadlock would not take place if both threads requested these two resources in
the same order, whether a then b or b then a.

ECE 252 6 / 32

Ordering of Resources

Let’s generalize and formalize this principle.

The set of all resources in the system is R = {R0, R1, R2, ...Rm}.

We assign to each resource Rk a unique integer value. Let us define this function
as f(Ri), that maps a resource to an integer value.

This integer value is used to compare two resources: if a process has been
assigned resource Ri, that process may request Rj only if f(Rj) > f(Ri).

ECE 252 7 / 32

Ordering of Resources

Note that this is a strictly greater-than relationship.

If the process needs more than one of Ri then the request for all of these must be
made at once (in a single request).

To get Ri when already in possession of a resource Rj where f(Rj) > f(Ri), the
process must release any resources Rk where f(Rk) ≥ f(Ri).

If these two protocols are followed, then a circular-wait condition cannot hold.

ECE 252 8 / 32

The Proof is the Proof

Assume a circular wait is present.

Let the set of processes in the circular wait be {P0, P1, ...Pn} and the set of
resources be {R0, R1, ...Rn}.

The cycle is formed as: Pi waits for resource Ri and that resource is held by Pi+1.

The exception is the case of Pn, which waits for resource Rn that is held by P0.

Since Process Pi+1 holds resource Ri while requesting Ri+1, this means
f(Ri) < f(Ri+1) for all i.

But this means that f(R0) < f(R1) < ... < f(Rn) < f(R0).

It cannot be the case that f(R0) < f(R0): a contradiction.

ECE 252 9 / 32

Ordering of Resources

Back to the philosophers: we assign each chopstick a number from 0 to 4.

Each philosopher must then request them in ascending order.

The first philosopher requests 0, on her left, and then 1, on her right.

The second requests chopstick 1 and then chopstick 2.

This continues until the last philosopher who would previously have requested
chopstick 4 and then 0, but under the new rules, this is forbidden.

This philosopher must instead request 0 on his right, and then 4, on his left.

This last philosopher will be blocked when trying to acquire chopstick 0 and it
means chopstick 4 will be available for the second-to-last philosopher.

Thus, deadlock is avoided.

ECE 252 10 / 32

Ordering Resources

In development this is usually enforced just by coding convention and code
review.

If you say that mutexes must always be acquired in alphabetical order (or their
order in some file), if everyone sticks to that there will be no issue.

But may not be as easy as that in a real-world scenario...

ECE 252 11 / 32

Stay Alert, Stay Safe

ECE 252 12 / 32

Stay Alert, Stay Safe

Alternative: each process will need to give the operating system some additional
information about what resources might be requested.

Processes need to say in advance of execution what is the maximum number of
resources of each type they might conceivably need.

Perhaps process A needs the tape drive first, then the printer, and process B
needs the printer and then the tape drive.

With this knowledge, the system can make more intelligent decisions about
when to run a process or make it wait, to avoid getting into a deadlock.

ECE 252 13 / 32

Safe States

We say a state is safe if there is some scheduling order in which every process can
run to completion.

Even if all of them suddenly request their maximum resources immediately.

Hence why we needed to know in advance the maximum resources that could be
required by the process.

ECE 252 14 / 32

Safe Sequences

More formally, there must exist a safe sequence.

A sequence of processes< P1, P2, ...Pn is a safe sequence in the current
allocation state if:

For each Pi the resource requests that Pi can still make can be satisfied by the
currently available resources plus resources held by Pj where j < i.

If a resource Pi needs is not currently available, Pi can wait until all Pj have
finished and releases its resources.

When Pi terminates, Pi+1 can obtain its needed resources and continue.

ECE 252 15 / 32

Safe/Unsafe

Any state that is not safe is considered unsafe.

If the system is in a safe state, then there is no deadlock.

Being in an unsafe state does not mean that there is a deadlock, but it means a
deadlock is possible.

The analysis we do is the worst case scenario: every process immediately
requests the maximum resources it could ever use.

Perhaps the processes do not make those requests in reality.

ECE 252 16 / 32

Safe/Unsafe

ECE 252 17 / 32

Safe State Example

There are three processes A, B, and C.

Assume there is only one resource, and a maximum of 10 instances exist.

Suppose A has 3 resources but may request up to 9.
B has 2 and may request up to 4.
C has 2 and may request up to 7.

There are 3 resources currently free.

ECE 252 18 / 32

Being Safe

For a state to be safe, we need one path that allows all processes to complete.

Multiple solutions may exist, and there may be paths that lead to deadlock.

ECE 252 19 / 32

Crossing the Line

Suppose, however, A requests and gets another resource.

In that case, the initial condition has changed so that A has 4 resources and there
are 2 free resources.

Or, in the diagram below, the state changes from (a) to (b).

ECE 252 20 / 32

Evaluating the New Initial State

Trying to find a way for all processes to complete is not possible.

Thus, this state is unsafe.

This does not mean that deadlock is present or certain.

The analysis is worst-case.

ECE 252 21 / 32

I Dare Say, Holmes...

Image Credit: Sherlock Holmes: Game of Shadows.

ECE 252 22 / 32

Resource-Allocation-Graph Algorithm

The fourth condition for deadlock is modelled, typically as being a resource
allocation graph with a cycle in it.

Idea: let us use that idea to avoid deadlock by having the operating system
maintain a resource allocation graph.

This works if there is only one instance of each resource and still requires that all
the resources that a process will require must be declared in advance.

This condition does not have to be strictly adhered to if the system allows
additional requests only when no requests have yet been granted.

ECE 252 23 / 32

Resource-Allocation-Graph

The model for resource allocation graphs earlier had two kinds of edges:

One representing requests (a process requests a resource); and One representing
allocation (a resource currently belongs to a process).

We will require a new type of edge in the graph: a claim edge.

When the process actually makes the request for the resource, a claim edge is
converted to a request edge.

Upon release the assignment edge reverts to a claim edge.

ECE 252 24 / 32

Resource Allocation Graph

A resource request will only be granted if converting the request edge to an
assignment edge will not result in a cycle in the graph.

If no cycle is found, then allocation of the resource will not move the system into
an unsafe state.

If a cycle is found, the request should not be granted, as it risks a deadlock.

ECE 252 25 / 32

The Banker’s Algorithm

The previous algorithm is applicable only if all resource requests are known in
advance and there is only one instance of each resource.

The banker’s algorithm is general: it allows for resources with multiple instances.

ECE 252 26 / 32

The Banker’s Algorithm

It received this name because it is hypothetically an algorithm that a small town
banker might follow.

It’s not “run up huge debts and then cry until the government bails you out...”

He or she is trying to prevent allocating the cash on hand in such away that he or
she could no longer satisfy customers.

ECE 252 27 / 32

The Banker’s Algorithm

The analysis we did earlier to determine if a state is safe or unsafe, is the
foundation of the banker’s algorithm.

Granting the request from process Amoved the system safe to unsafe.

The operating system, when it receives a resource request, will evaluate the new
state to see if it would transition the system to an unsafe state.

ECE 252 28 / 32

The Banker’s Algorithm

If so, the request will be denied or A will be blocked until the request can be
fulfilled without putting the system in an unsafe state.

Holding to this condition means deadlock will be avoided.

The banker’s algorithm can accommodate multiple resources.

ECE 252 29 / 32

Checking if a State is Safe

1 Look for a row in the matrix, r, where the unmet resource needs are less
than or equal to the available resources in A.
If no such row exists, the system state is unsafe.

2 Assume the process from r gets all the resources it needs. Mark that process
as terminated and put all its resources into A, the available pool.

3 Repeat steps 1 and 2 until either:
(i) all processes are marked terminated and the initial state was safe; or
(ii) no process remains whose needs can be met; initial state is unsafe.

If more than one process may be chosen in step 1, it does not matter which.

The pool of available resources will either stay the same or get larger.

ECE 252 30 / 32

The Banker’s Algorithm

Determine if granting a resource makes the system unsafe: what-if calculation.

Assume the resource granted; do the safe state calculation given that new state.

If the result is that the state is unsafe, the request should be deferred or denied.

ECE 252 31 / 32

The Banker’s Algorithm: Useless?

As great as the banker’s algorithm is in theory, in practice it is utterly useless.

Processes rarely know in advance what their maximum resource needs will be.

The number of processes is not fixed, but varies with users’ wishes.

Finally, a resource that was thought to be available can suddenly vanish.

Thus in practice, the banker’s algorithm can almost never be used.

ECE 252 32 / 32

Summary of Avoidance

Avoidance techniques may be useful in preventing a deadlock from occurring
without having to preempt resources or forbidding hold-and-wait conditions.

Unfortunately, it requires a fixed number of known resources to allocate.

It also requires foreknowledge about what resources a process might need.

Finally, because it deals with the worst case, it reduces system performance in
the name of safety.

ECE 252 33 / 32

