
Lecture 20 — Advanced Concurrency Problems
Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi
jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca

Department of Electrical and Computer EngineeringUniversity of Waterloo

ECE 252 1 / 44



Get A Pizza This!

Image Credit: Valerio Capello
ECE 252 2 / 44



The Pizza Makers Problem

Let’s consider a more advanced concurrency problem.

It’s also called the “Cigarette Smokers Problem”.

But smoking is bad for you.

Pizza, while not exactly health food, is amazing. Delicious, delicious pizza.

ECE 252 3 / 44



Iron Chef: Pizza

A new show to be hosted by some famous TV chef personality is being pitched,and you’re going to write a simulation of it.
A pizza requires three ingredients: dough, sauce, and cheese.

ECE 252 4 / 44



This Could Be a Real Show

Each contestant has an unlimited supply of one ingredient.

Contestant A has an unlimited supply of dough, Contestant B has an unlimitedsupply of sauce, and Contestant C has an unlimited supply of cheese.

Each contestant needs to get the two ingredients they do not have and then canmake a pizza.

They will continue to (try to) make pizza in a loop until time is up.

ECE 252 5 / 44



Start the Show!
At the beginning of the episode, the host places two different randomingredients out.

Contestants can signal the host to ask for more ingredients, but they should notdo so unless they actually need some.

Each time the host is woken up (signalled), he again places two different randomingredients out.

When an ingredient is placed on the table, the host posts on the associatedsemaphore.

ECE 252 6 / 44



Is this Relevant?

In this scenario, there are resources provided by some external system and thecontestants are processes that want resources.

But we shouldn’t be wasteful: resources should only be requested when they areneeded and processes should take only what they need.

Applications should only wake up if they can do something useful.

ECE 252 7 / 44



How Hard Do You Want It To Be?

There are some restrictions, though, and they could make the problem eitherimpossible or trivial.

In the impossible version, you can’t modify what the host does (which is sensible,because you don’t control the other system).

But you also cannot use conditional (if) statements, which is pretty ridiculous.

ECE 252 8 / 44



All Too Easy
In the trivial version, the host tells which contestants whose turn it is.
It requires the host system to know too much about the contestants.
The interesting version has just the restriction that we can’t control the hostbehaviour.

And he is a TV chef personality, after all, they do wacky things.
ECE 252 9 / 44



Let’s Make Some Pizza!

All semaphores start at 0, except for host which starts as 1 (so the host will runthe first time). Does this work?
Contestant A

wait ( sauce )
get_sauce ( )
wait ( cheese )
get_cheese ( )
make_pizza ( )
post ( host )

Contestant B

wait ( dough )
get_dough ( )
wait ( cheese )
get_cheese ( )
make_pizza ( )
post ( host )

Contestant C

wait ( sauce )
get_sauce ( )
wait ( dough )
get_dough ( )
make_pizza ( )
post ( host )

ECE 252 10 / 44



Him Again!

No. Deadlock can easily occur.

Suppose the host puts out sauce and dough.

If contestant B takes the dough and contestant A takes the sauce, then both ofthem are blocked and nobody can proceed and nobody gets pizza.

ECE 252 11 / 44



This Isn’t What I Ordered...

Part of the problem here is that a contestant doesn’t have a good way to assesswhat the ingredients are before going up there.

And once there, if it finds that the ingredients match someone else’s needs, wedon’t call that contestant over.

That would be clever, but to make this work we would need a way to “check”what ingredients are there and semaphores don’t let us do that.

Can we work with what we have?

ECE 252 12 / 44



We Need a Sidekick!

Imagine now that each contestant gets a helper.
The job of the helper is to, well, help their contestant to make pizza by figuringout whose turn it is.

ECE 252 13 / 44



Boolean Variables

For this there are boolean variables dough_present, sauce_present, and
cheese_present

They are all initialized to false.

They are protected by a semaphore (called mutex).

The helpers update that variable, and based on the information available, signalwhich contestant should come up to the table and take ingredients.

ECE 252 14 / 44



Working with a Sidekick
Each contestant now has a semaphore (such as contestantA for contestant A)which the helpers will post on.
Contestants are still responsible for telling the host to put out more ingredients.
Helper 1

wait ( sauce )
wait ( mutex )
if dough_present

dough_present = false ;
post ( contestantC )

else if cheese_present
cheese_present = false ;
post ( contestantA )

else
sauce_present = true ;

end if
post ( mutex )

Helper 2

wait ( dough )
wait ( mutex )
if sauce_present

sauce_present = false ;
post ( contestantC )

else if cheese_present
cheese_present = false ;
post ( contestantB )

else
dough_present = true ;

end if
post ( mutex )

Helper 3

wait ( cheese )
wait ( mutex )
if dough_present

dough_present = false ;
post ( contestantB )

else if sauce_present
sauce_present = false ;
post ( contestantA )

else
cheese_present = true ;

end if
post ( mutex )

ECE 252 15 / 44



Analyzing the Helper
So let’s analyze Helper 1.

In this case, the helper is woken up when sauce is placed on the table.

It then locks the mutex so that it can manipulate the shared variables of whatingredients are present.

Now we decide what to do here.

Obviously, each of the other helpers will signal the appropriate contestant basedon its assessment of the state of the ingredients.

ECE 252 16 / 44



Working with a Sidekick
Contestant A

wait ( contestantA )
get_sauce ( )
get_cheese ( )
make_pizza ( )
post ( host )

Contestant B

wait ( contestantB )
get_dough ( )
get_cheese ( )
make_pizza ( )
post ( host )

Contestant C

wait ( contestantC )
get_sauce ( )
get_dough ( )
make_pizza ( )
post ( host )

The contestant code is pretty much trivial now: wait until a helper signals, thengo take your ingredients and make a pizza.

Once the pizza is in the oven, indicate that you are ready for more ingredients.

ECE 252 17 / 44



Rule Change

The generalized version of the problem is what happens when the host puts outingredients periodically, without a need to be signalled to ask for more.

How do we modify the solution to deal with that?

If there is no longer a need for the contestants to signal that they want moreresources, post( host ) in the contestant code has to be removed.

But what about the helpers?

ECE 252 18 / 44



How Many Dough?

Instead of boolean variables to indicate the presence or absence of an ingredientwhat we need instead is an integer counter to know how many there are.

They are: num_dough, num_sauce, and num_cheese, and they all start as zero.

ECE 252 19 / 44



Updated Sidekick Code
Helper 1

wait ( sauce )
wait ( mutex )
if num_dough > 0

num_dough−−
post ( contestantC )

else if num_cheese > 0
num_cheese−−
post ( contestantA )

else
num_sauce++

end if
post ( mutex )

Helper 2

wait ( dough )
wait ( mutex )
if num_sauce > 0

num_sauce−−
post ( contestantC )

else if num_cheese > 0
num_cheese−−
post ( contestantB )

else
num_dough++

end if
post ( mutex )

Helper 3

wait ( cheese )
wait ( mutex )
if num_dough > 0

num_dough−−
post ( contestantB )

else if num_sauce > 0
num_sauce−−
post ( contestantA )

else
num_cheese++

end if
post ( mutex )

This pattern is referred to as the “scoreboard”.
As threads go about their actions, they take a look at the current state (thescoreboard) and decide how to act based on that.

ECE 252 20 / 44



Barber of Seville

ECE 252 21 / 44



The Sleepy Barbershop Problem

Consider the “Sleepy Barbershop Problem”, originally proposed by Dijkstra.

A barbershop is a place where customers get their hair cut.

A barbershop consists of a waiting area with n seats, and a barber chair.

ECE 252 22 / 44



Barbershop Behaviour

If there are no customers to be served, the barber goes to sleep.

If a customer enters the barbershop and all seats are occupied, then thecustomer leaves the shop.

If the barber is busy, but seats are available, then the customer sits in one of thefree seats.

If the barber is asleep, the customer wakes up the barber.

ECE 252 23 / 44



Wake Up!
Customer threads should call get_hair_cut() when it is their turn.

If the shop is full, the customer should return (exit/leave).

The barber thread will call cut_hair.

The barber can cut only one person’s hair at a time, so there should be exactlyone thread calling get_hair_cut() concurrently.

You can assume that external forces cause customers to appear and the barber tokeep working.

ECE 252 24 / 44



Scoreboard Pattern Again

We need an integer counter for customers waiting called customers that startsat 0.

We will also have a mutex for controlling access to customers called mutex (itobviously starts at 1).

Finally, two semaphores, customer and chair that both start at 0.

Let’s write down some outline of the barber and customer code...

ECE 252 25 / 44



Barbershop Solution
Customer

wait ( mutex )
if customers == n+1

post ( mutex )
return

end if
customers++
post ( mutex )
post ( customer )
wait ( chair )
get_hair_cut ( )
wait ( mutex )
customers−−
post ( mutex )

Barber

while true
wait ( customer )
post ( chair )
cut_hair ( )

end while

Is there a risk of deadlock?
Starvation?

ECE 252 26 / 44



I WANT TO SPEAK TO A MANAGER

We can maybe say that customers who give up in frustration are disappointed.
Is that better than making them wait forever?
This is actually a good lesson for services in general.

ECE 252 27 / 44



SCIENCE!!!

ECE 252 28 / 44



I have a bad feeling about this...

ECE 252 29 / 44



Lord Vader, you may start your landing...

The rebels want to evacuate the base with transports; transports are escorted bya pair of X-Wing fighters.

Transports have no hope of surviving if they are not escorted, so the fightersmust stay with their assigned transport.

Only one group of fighters and transports can launch at a time.

In this problem, a pair of fighters is a single unit.

ECE 252 30 / 44



Wait for it...
If a transport is ready, but fighters are not, the transport has to wait for the nextfighters.

If the fighters are ready but the transport is not, then the fighters have to wait forthe next transport.

When the fighters and transport are ready, they can both use the launch()function and they are off!

The transport is the slower one to launch, so the next group should not proceeduntil the transport has finished the launch() process.

ECE 252 31 / 44



Leave No-One Behind!

Assume there are an appropriate number of fighters and transports so thatnobody is left behind.

The setup and creation of each kind of thread is something we will assume ishandled externally.

ECE 252 32 / 44



Get Ready

We will need:

1 integer counter for the number of ready fighters, called fighters.
1 integer counter for the number of ready transports, called transports.
5 semaphores: mutex, fighter_queue, transport_queue,
fighter_launched, and transport_launched.

ECE 252 33 / 44



Echo Base...
Initialization: mutex = 1, fighter_queue = 0, transport_queue = 0,
fighter_launched = 0, and transport_launched = 0.
Fighters

wait( mutex )
if transports > 0
transports--
post( transport_queue )

else
fighters++
post( mutex )
wait( fighter_queue )

end if
launch()
post( fighter_launched )
wait( transport_launched )

Transport

wait( mutex )
if fighters > 0
fighters--
post( fighter_queue )

else
transports++
post( mutex )
wait( transport_queue )

end if
launch()
post( transport_launched )
wait( fighter_launched )
post( mutex )

Is there a risk of deadlock here? How about starvation?
ECE 252 34 / 44



“Good, our first catch of the day...”

ECE 252 35 / 44



Science!
There are two kinds of thread, oxygen() and hydrogen().
As you will recall from basic chemistry, water, H2O, requires two hydrogenmodules and one oxygen module.
To assemble the desired molecule (water) a group rendezvous pattern is neededto make each thread wait until all ingredients are present in the correct amounts.
As each thread passes the barrier, it should call the function bond() whichmakes the water.
Our solution must function so that all threads for one molecule invoke bond()before any of the threads from the next molecule do.

ECE 252 36 / 44



Water is Life

In the example, we’ll assume the oxygen and hydrogen threads are created andstarted correctly and in the correct proportions.

The code for the creation of those two types of threads is not shown.

The reusable barrier from earlier has also been converted into C code.

The oxygen queue and hydrogen queue start as “locked”.

ECE 252 37 / 44



Water is Life
i n t oxygen ;
i n t hydrogen ;
pthread_mutex_t barrier_mutex ;
sem_t turnstile ;
i n t barrier_count ;
i n t barrier_N ;
sem_t bond ;
sem_t oxygen_queue ;
sem_t hydrogen_queue ;

ECE 252 38 / 44



Water is Life
vo id barrier_enter ( ) {

pthread_mutex_lock ( &barrier_mutex ) ;
barrier_count ++ ;
i f ( barrier_count == barrier_N ) {
sem_post ( &turnstile ) ;}

pthread_mutex_unlock ( &barrier_mutex ) ;
sem_wait ( &turnstile ) ;
sem_post ( &turnstile ) ;}

vo id barrier_exit ( ) {
pthread_mutex_lock ( &barrier_mutex ) ;
barrier_count − − ;
i f ( barrier_count == 0 ) {
sem_wait ( &turnstile ) ;}

pthread_mutex_unlock ( &barrier_mutex ) ;}

ECE 252 39 / 44



Water is Life
vo id * oxygen ( vo id * ignore ) {

sem_wait ( &bond ) ;
oxygen ++ ;
i f ( hydrogen >= 2 ) {
sem_post ( &hydrogen_queue ) ;
sem_post ( &hydrogen_queue ) ;
hydrogen −= 2 ;
sem_post ( &oxygen_queue ) ;
oxygen − − ;} e l s e {
sem_post ( &bond ) ;}

sem_wait ( &oxygen_queue ) ;
bond ( ) ;
barrier_enter ( ) ;
barrier_exit ( ) ;
sem_post ( &bond ) ;
pthread_exit ( NULL )}

ECE 252 40 / 44



Water is Life
vo id * hydrogen ( vo id * ignore ) {

sem_wait ( &bond ) ;
hydrogen ++ ;
i f ( hydrogen >= 2 && oxygen >= 1 )
sem_post ( &hydrogen_queue ) ;
sem_post ( &hydrogen_queue ) ;
hydrogen −= 2 ;
sem_post ( &oxygen_queue ) ;
oxygen − − ;} e l s e {
sem_post ( &bond ) ;}

sem_wait ( &hydrogen_queue ) ;
bond ( ) ;
barrier_enter ( ) ;
barrier_exit ( ) ;
pthread_exit ( NULL )}

ECE 252 41 / 44



Analyzing the Solution

It is a little strange that the hydrogen threads don’t post on bond.

Isn’t this a problem?

ECE 252 42 / 44



Posting Bond?

It turns out no, because the oxygen threads post on it unconditionally.

When a thread arrives but the water molecule cannot be formed, whether it isoxygen or hydrogen, a post on bond takes place.

Whoever waited on bond does not matter, as long as one of the threads thatwent into the water molecule posts on it before leaving.

As the chemical composition of water has one oxygen, the job is assigned to thismolecule.

ECE 252 43 / 44



The World is Big

These are by no means all the concurrency problems in the world.

But for now we will leave it here, before we get into really obscure problems...

ECE 252 44 / 44


