
Lecture 21 — Atomic Types
Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi
jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca

Department of Electrical and Computer EngineeringUniversity of Waterloo

ECE 252 1 / 13

Atomic Types

Image Credit: Wikipedia user JabberWok
A testament to how good humans are at blowing things up...

ECE 252 2 / 13

Atomic Types

Frequently we have a code pattern that looks something like this:
pthread_mutex_lock (lock) ;
shared_var ++ ;
pthread_mutex_unlock (lock) ;

It seems like a lot of work to lock and unlock the mutex, no?

Thinking back to the “test and set” type of instruction from earlier, wouldn’t it benice if we could do that sort of thing for something like incrementing a variable?

ECE 252 3 / 13

Hey glibc, Could You Please...

The GNU (Linux) standard C library (glibc) provides operations that areguaranteed to execute atomically, to avoid simple race conditions

Where possible, the compiler will try to turn these into uninterruptible hardwareinstructions.

Otherwise a function that has locking will be used to implement the atomicnature.

ECE 252 4 / 13

You Can’t Take It With You
These are, however, glib specific, and not necessarily available or portable.

In the C11 (2011) standard, atomic types were finally introduced as part of thelanguage specification.

In the specification, we see type as the type.

In its place you would use an int for an integer.

A valid type is one that 1, 2, 4, or 8 bytes in length (integral or pointer).

ECE 252 5 / 13

Atomic Operations

To set a value:
type __sync_lock_test_and_set (type *ptr , type value) ;

The following functions are used to swap two values, only if the old valuematches the expected (i.e., what was provided as the second argument):
bool __sync_bool_compare_and_swap (type *ptr , type oldval , type newval) ;
type __sync_val_compare_and_swap (type *ptr , type oldval , type newval) ;

ECE 252 6 / 13

Change and Return
The following functions perform the operation and return the old value:
type __sync_fetch_and_add (type *ptr , type value) ;
type __sync_fetch_and_sub (type *ptr , type value) ;
type __sync_fetch_and_or (type *ptr , type value) ;
type __sync_fetch_and_and (type *ptr , type value) ;
type __sync_fetch_and_xor (type *ptr , type value) ;
type __sync_fetch_and_nand (type *ptr , type value) ;

The following functions perform the operation and return the new value:
type __sync_add_and_fetch (type *ptr , type value) ;
type __sync_sub_and_fetch (type *ptr , type value) ;
type __sync_or_and_fetch (type *ptr , type value) ;
type __sync_and_and_fetch (type *ptr , type value) ;
type __sync_xor_and_fetch (type *ptr , type value) ;
type __sync_nand_and_fetch (type *ptr , type value) ;

ECE 252 7 / 13

Reading is... Fun?
Interestingly, for x86 there is no atomic read operation.

The (normal) read itself is atomic for 32-bit-aligned data.

This behaviour is specific to x86 and we try to avoid that.

If we do rely on this, however, we could get an out-of-date value.

If you want to really be sure you did get the latest, you can use one of the abovefunctions and add or subtract 0.

ECE 252 8 / 13

Use Tool Appropriately
s t r u c t point {

v o l a t i l e i n t x ;
v o l a t i l e i n t y ;} ;

__sync_lock_test_and_set (p1−>x , 0) ;
__sync_lock_test_and_set (p1−>y , 0) ;
/* Somewhere e l s e i n the program */
__sync_lock_test_and_set (p1−>x , 25) ;
__sync_lock_test_and_set (p1−>y , 30) ;

Does this work?

ECE 252 9 / 13

Use Tool Appropriately

Although the set of each of x and y is atomic, the operation as a whole is not.

We could see invalid states, like (25, 0) or (0, 30).

ECE 252 10 / 13

You Spin Me Right Round...

Another common technique for protecting a critical section in Linux is thespinlock.

This is a handy way to implement constant checking to acquire a lock.

Unlike semaphores where the process is blocked if it fails to acquire the lock, athread will constantly try to acquire the lock.

When would we want this behaviour?

ECE 252 11 / 13

When It’s Worth It!

It would be better to let another thread execute.

Except when the amount of time waiting on the lock might be small.

Specifically, less than it would take to block the process, switch to another, andunblock it when the value changes.

ECE 252 12 / 13

Spinlock
spin_lock (&lock)/* C r i t i c a l S e c t i o n */
spin_unlock (&lock)

In addition to the regular spinlock, there are reader-writer-spinlocks.
Like the readers-writers problem discussed earlier, the goal is to allow multiplereaders but give exclusive access to a writer.

Counter Flag Interpretation0 1 The spinlock is released and available.0 0 The spinlock has been acquired for writing.n (n > 0) 0 The spin lock has been acquired for reading by n threads.n (n > 0) 1 Invalid state.

ECE 252 13 / 13

