ECE 252: Systems Programming and Concurrency Spring 2024

Lecture 23 — The Byzantine Generals Problem
Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi

Istanbul was Constantinople

Byzantium was an ancient Greek city, rebuilt by Constantine the Great under the name of Constantinople. It is
now modern day Turkey. The word Byzantine refers to things relating to the empire based there, but in English
has also come to mean a thing that is excessively complicated. But it’s the last “extra” meaning that we want
to talk about: characterized by deviousness. The Byzantine Empire was characterized by deviousness, alright: it
was a place where generals and leaders would vie for power in underhanded ways, backstabbing and sabotaging
others when they thought it was to their advantage. I guess it was very Game of Thrones, now that I think of it.

Where this crosses over into the realm of programming is in dealing with the unreliable nature of systems. It’s
not that we think that somewhere out there one of the processes in the system is malicious and trying to make
the system fail... although that could happen... but our normal expectation is that the systems interacting may be
faulty or have errors or bugs, not necessarily malicious intent.

However we get here, though, we still need a way to deal with the fact that not everyone agrees and sometimes
messages get mixed up. And that is a communication problem, yes, but also a coordination problem as well. And
if you've tried to get a group of five people to agree on where to go to lunch you may have found it unexpectedly
difficult... now imagine that one person is (unintentionally or otherwise) trying to sabotage the planning so
organizing lunch will fail.

The generic form of the Byzantine Generals problem looks something like this. There is a General who is giving
the orders. There are also n Lieutenants who each are commanding a group of the Empire’s troops. The individual
troops just do what they’re told so there’s no further concern for their actions. The lieutenants can communicate
with one another through messages, and they get their orders from the general. All of the lieutenants have to
work together for their plan to be a success, otherwise there is chaos.

No problem, you might imagine. The general tells the lieutenants what to do and they do it! And if one of the
lieutenants does the wrong thing, that lieutenant is a traitor. But it’s not so simple, because the general can be
disloyal too. Horrible Bosses: Byzantium!

Suppose you are a disloyal general. Your Emperor has commanded you to attack, but you want the attack to fail,
but also seem like it’s not your fault. What do you do? You can issue different orders to different lieutenants, they
will be all confused and uncoordinated, and oh gee darn, I guess the attack didn’t go as planned! And you can
blame the lieutenants who are now dead for going too early, or something, because it’s not like they can defend
themselves now...

So aloyal general sends the same message to all lieutenants and a disloyal one sends different messages to different
lieutenants. It’s key to remember that “loyal” really means “functioning” and “disloyal” means “faulty” [HZMG15]].
It’s fun to make it seem like human actors are doing things for their own evil-villainy-related reasons, but it is
just computer interaction that may not have actual malicious intent. It’s also worth noting that being in one state
or the other is not permanent: a functioning unit can be damaged, a malfunctioning one can be repaired, or a
problem can be transient (i.e., some electromagnetic interference flipped a bit here or there) and resolve itself
with no further action.

One of the key decisions is about how much disloyalty your system can tolerate. Given enough bad actors, things
will go wrong. If everyone is disloyal, utter chaos will result. But is it enough to tolerate one disloyal participant?
Two? The line will have to be drawn somewhere... But at the very least we don’t want to let one disloyal individual
ruin things for everyone, even if that disloyal individual is the boss.

Should I Stay or Should I Go Now?

In the examples that we will discuss there are two kinds of command: attack and retreat. In a real system the
options don’t have to be quite so binary (we could give any orders) but for the purpose of demonstration and
coming to grips with this problem we’ll use the binary example. Attack or retreat.

It is possible that our system produces a tie (no matter how many participants or possible actions we have). This
usually necessitates a default action be selected. So if we cannot come to a decision, we take the default choice.
Usually we say that the default choice is to retreat.

Consider the diagram below where we have a disloyal general, and two loyal lieutenants. In our examples in this
section we’ll use G for generals, L for lieutenants, and we’ll make disloyal participants red and loyal ones grey.

Attack Retreat

O,

What are lieutenants to do? In the imperfect world of Byzantium the lieutenants can try to figure out if they’re
about to be mismanaged to literal death by communicating with one another. If they are all on the same page
then they can do what they’re supposed to do; if they’re not, then they will fall back on the default option.

Unfortunately, though, letting the lieutenants communicate is not a complete solution. Because lieutenants can
lie, even if the general doesn’t.

Attack Attack

@ Retreat .

In general if there are d disloyal participants, we will need there to be more than 3d participants for the loyal
lieutenants to agree on what to do. If the general is loyal, then at least 2d loyal lieutenants are needed to obey
the orders; if the general is disloyal then 2d + 1 loyal lieutenants are needed so they can come up with a course of
action [HZMG15].

Let’s imagine that there is at most one disloyal participant. If that’s the case then all lieutenants should compare
notes and decide on the majority course of action. Each lieutenant compiles a little table (or array or vector,
whatever) of the data received and then decide on what the majority cause of action is. It might be simpler to just
count the total number of votes, but it would make it harder to figure out later who the traitor is (if there is one).

What if we can have two disloyal participants? Each lieutenant sending its messages and using a majority-wins
vote isn’t necessarily going to work here. It can happen that the general is disloyal and one of the lieutenants
is a collaborator. Consider this scenario below from [HZMGI15]] where the general is disloyal and sends mixed
instructions. What can the collaborating lieutenant do to make sure that the other lieutenants don’t come to an
agreement?

OAORON NONONO

The lieutenants all send one another their instructions. Each of the loyal lieutenants sends its received command
and received the honest answer from three other lieutenants. The score is 3 attack and 3 retreat. The disloyal
lieutenant sends one message to half the other participants, and a different message to the other half.

Retreat

Attack Retreat

Now we're in trouble because half the participants think the majority action is attack and half the participants think
the majority action is retreat. Summing up what we heard is not sufficient. Lieutenants should also talk about
what they heard from one another. After the general issues instructions, each lieutenant should then communicate
with every other to hear what the general said to them. Then by reviewing this information, they can decide what
to do.

Consider a simple example where the general is loyal and we have two traitorous lieutenants with a total of seven
participants. The general issued an order to attack.

Attack Attack

OJORORON N

So each lieutenant constructs the following vector. We’re not sure if the general is a traitor, but we’ll take notes
from every other participant, and see what they report. The general form is as follows, where v, is the forwarded
order we received from lieutenant x:

General | L1 | L2 | L3 | L4 | L5 | L6
? U1 Vo U3 Vg Vs Ve

So if we are lieutenant 1, we complete the table as below. The value for L1 is what we received from the general,
but we get the remaining values from the other lieutenants.

General | L1 | L2 | L3 | L4 | L5 | L6
? A |A|A |A|R |R

Then the lieutenants just compare notes on this subject as well! They send to one another their vectors and
assemble them into a table. Whatever lieutenant x received in the first round forms row x of the table, and
the other rows are added from this second round of communication. In the table each value v; ; is interpreted as
“Lieutenant ¢ says that Lieutenant j reports the general said v”. The entries on the diagonal are redundant because
of course each lieutenant agrees with itself:

General | L1 L2 L3 |14 |15 | L6

V1,1 | V1,2 | V1,3 | V14 | V15 | V16
V21 | V22 | U23 | V24 | V25 | V256
V3,1 | V32 | U33 | U4 | U355 | U3e
Vg1 | V42 | V43 | V44 | V45 | VU4
Us1 | Us2 | Us3 | Us4a | Uss | Use
V6,1 | V6,2 | V6,3 | V6,4 | V6,5 | V6,6

NI I I NI NI o

Those “redundant” entries (the ones on the diagonal) need to be removed from the table. From the point of view
of lieutenant 1, let’s imagine the table looks like this (filling in for the sake of the example that L5 and L6 always
say retreat).

General | L1 | L2 | L3 | L4 | L5 | L6
? A |A |A |R |R
? A A |A |R |R
? A | A A |R |R
? A |A |A R | R
? R |[R |[R |R R
? R |R |[R |R |[R

One the thing we can do, however, is fill in the first column: lieutenant 1 does not care what other people THINK
they said; so the whole column can be replaced with what was actually said:

General | L1 |12 | L3 | L4 | L5 | L6
? A |A |A |R |R
? A A |A |R |R
? A | A A |R |R
? A |A |A R | R
? A |R |R |R R
? A |R |R |R |R

Then we'll try to figure out the majority vote for each j in the table. So sum up each column:

General | L1 | L2 | L3 | L4 | L5 | L6
? A A A A R R

And we have four lieutenants who think the general said attack and two who think the general said retreat. The
majority wins and the attack proceeds. Onward to victory, brothers and sisters!

If there was one less loyal lieutenant, though, we could have a tie here which would result in picking the default
value. If the general ordered something other than the default value (e.g., default is retreat and the order was
attack) the general will not be happy about this...

You may have figured out that since disloyal participants can lie at any step of the equation, we can’t rely on their
data at all. That’s true! In the examples in the course we know that two participants are traitors and I've said they

are L5 and L6. Therefore we could replace whatever they say with a question mark in the able rather than any
particular answer, because they are liars. In real life though, some message is received — attack or retreat — and
it’s only later we could identify which participants are the traitors.

Let’s go back to the example of having eight participants: one general and seven lieutenants. So if we are lieutenant
1, we complete the table as below. The value for L1 is what we received from the general, but we get the remaining
values from the other lieutenants.

General | L1 |12 | L3 | L4 | L5 |16 | L7
? A |A|A|A|R |R |R

However, if we are lieutenant 7 our vector looks like this instead:

General | L1 |12 | L3 | L4 | L5 | L6 | L7
? A |A|A|R |R |R |R

From the point of view of lieutenant 1 the table is formed then as follows:

General | L1 | L2 | L3 | L4 | L5 | L6 | L7
? A A A R R R
? A A |A |R |R |R
? A A A R R R
? ? ? ? ? ? ?
? A A A R R R
? A |A|A |R |R R
? A A A R R R

The fourth row is shown as all question marks. Why? Lieutenant 4 is the traitor and could also lie about what the
other lieutenants said. Then replace the first column.

General | L1 | L2 | L3 | L4 | L5 | L6 | L7
? A A A R R R
? A A |A |R |R |R
? A A A R R R
? A |2 ? ? ? ?
? A A A R R R
? A |A|A |R |R R
? A A A R R R

Sum up each column:

General | L1 | L2 | L3 | L4 | L5 | L6 | L7
? A |A |A |? R |R | R

Each of the lieutenants figures out that we have a draw and we then choose the default choice. Well, that’s grim,
but it makes sense: the general issued contradictory orders and the collaborating lieutenant did the same. But
now instead of half the lieutenants charging in and dying while the others hang back and watch, everyone takes
the same action, even if it’s not the one that helps the Empire the most.

If three disloyal participants can exist in the system there’s another round of data exchange that needs to take
place. Each lieutenant sends the table formed in the second round to all other lieutenants. The more disloyalty
there could be in the system, the more rounds the process will go on. As you may have identified, for n participants
the communication grows at n? (well, actually worst case dn? [HZMG15])) and even worse than that, as the number
of participants and rounds increases, the amount of data to be sent also increases. For this reason it is somewhat
impractical to tolerate a large number of disloyal participants.

That is, however, still a design decision...

Part of the difficulty comes from the fact that lieutenants can lie about what the general said. In the time of
Byzantium, wax seals were used (hot wax is poured and then a stamp or ring was used to make an imprint on it).
In modern times messages can be signed using public-key cryptography. Then participants can check whether the
received message was genuine. An order that does not appear genuine can be disregarded, reducing the ability of
disloyal lieutenants to cause confusion.

The Byzantine Generals Problem has applicability in all kinds of systems, from space flight to cryptocurrency.
Whenever we have multiple “agents” of some sort that come to their own conclusions about what to do, we can
face this issue. As long as we know this, we can design our system with this in mind, because pretending it’s not
going to happen is not a real solution...

References

[HZMG15] Douglas Wilhelm Harder, Jeff Zarnett, Vajih Montaghami, and Allyson Giannikouris. A Practical In-
troduction to Real-Time Systems for Undergraduate Engineering. 2015. Online; version 0.15.08.17.

