
Lecture 24 — Concurrency in File Systems
Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi
jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca

Department of Electrical and Computer EngineeringUniversity of Waterloo

ECE 252 1 / 38

Concurrency in File Systems

We need to peel back the interface a bit and have at least a high-levelunderstanding of their implementation.

File can be of arbitrary size (although in a particular file system there may be alimit).

They have to be allocated on disk according to some strategy.

ECE 252 2 / 38

Contiguous Allocation

Contiguous: a file occupies a set of contiguous blocks on disk.

So a file is allocated, starting at block b and is n blocks in size, the file takes upblocks b, b+ 1, b+ 2, ..., b+ (n− 1).

This is advantageous, because if we want to access block b on disk, accessingb+ 1 requires no head movement, so seek time is nonexistent to minimal.

ECE 252 3 / 38

Contiguous Allocation

All that we need to maintain are b and n: the start location and length of the file.

Both sequential and direct access are very easy: the first block of a file is at b.

To access a block i at some offset into the file, it’s at the base address b plus i.

Checking if the access is valid is also an easy operation: if i < n then it is valid.

ECE 252 4 / 38

Contiguous Allocation

ECE 252 5 / 38

Contiguous Allocation

If we need a memory block of size N:(1) can we find a contiguous block of N or greater to meet that allocation?(2) if there is more than one block, which one do we choose?

ECE 252 6 / 38

Contiguous Allocation
Another problem: how much space is a file going to take?

If it is just a copy-paste operation, the copy is the same size as the original.

When a user opens a new document, how big will it be?

If we allocate too little space, we may be able to tack on space at the end, or thatblock may be allocated, forcing us to move the file and reallocate it.

If the value we choose is too large, then significant space will be wasted for smallfiles (and many files tend to be relatively small).

ECE 252 7 / 38

Linked Allocation

Linked allocation is a solution to the problems of contiguous allocation.

Instead of a file being all in consecutive blocks, we maintain a linked list of theblocks, and the blocks themselves may be located anywhere on the disk.

The directory listing just has a pointer to the first and last blocks (head and tail ofthe linked list).

ECE 252 8 / 38

Linked Allocation

If a new file is created, it will be created with size zero and the head and tailpointers are null.

When a new block is needed, it can come from anywhere and will just be addedto the linked list.

Thus, compaction and relocation are not really an issue.

Unfortunately, however, accessing block i of a file is no longer as simple ascomputing an offset from the first block; it requires following i pointers (a pain).

ECE 252 9 / 38

Linked Allocation

ECE 252 10 / 38

Linked Allocation

A possible solution to the problem of following so many pointers (and theoverhead of maintaining so many) is to group up the blocks into clusters.

A cluster is comprised of, say, four blocks.

Then we waste less memory maintaining pointers and it improves disk accessesbecause there is less seeking back and forth to various disk locations.

ECE 252 11 / 38

Indexed Allocation

If we stuck to pure linked allocation, we still have the problem that accessingsome part in the middle of the file is a pain.

We have to follow and retrieve a lot of pointers to the different blocks.

The idea of indexed allocation is to take all the pointers and put them into onelocation: an index block.

ECE 252 12 / 38

Indexed Allocation

So, the first block of the file contains a whole bunch of pointers.

To get to block i, just go to index i of the index block and we can get the locationof block imuch more efficiently than we could in linked allocation.

All pointers to blocks start as null, and when we add a new block, add itscorresponding entry into the index block.

ECE 252 13 / 38

Indexed Allocation

ECE 252 14 / 38

Block Size

Like many of the other systems we have examined, there is a need to make adecision about the size of a block.

If a file needs only 1-2 blocks, one whole block is allocated for the pointers whichcontains only 1-2 entries.

That suggests we want the index to be small, but what if we need more pointersthan fit into one block? There are a few mechanisms for this.

ECE 252 15 / 38

Block Size

What if we need more pointers than fit into one block?

1 Linked Scheme
2 Multilevel Index
3 Combined Scheme

ECE 252 16 / 38

UNIX inodes
A visual representation of an inode.

ECE 252 17 / 38

UNIX inodes

ECE 252 18 / 38

Partial Locking

Previously: flock() to lock a file, and this locks the entire file.

Using fcntl, we can lock only a part of a file.

This is referred to as record locking.

ECE 252 19 / 38

Partial Locking

Locking just a part of the file allows for more concurrency!
i n t fcntl (i n t file_descriptor , i n t command , . . . /* s t r u c t f l o c k * f l o c k p t r */)

We need to provide one struct flock and a command.

ECE 252 20 / 38

Struct Flock
The struct flock has the following definition:
s t r u c t flock {

sho r t l_type ; /* F_RDLCK , F_WRLCK , or F_UNLCK */
sho r t l_whence ; /* SEEK_SET , SEEK_CUR , or SEEK_END */
off_t l_start ; /* o f f s e t i n by tes , r e l a t i v e to l_whence */
off_t l_len ; /* l eng th , i n b y t e s ; 0 means l o c k to EOF */
pid_t l_pid ; /* r e t u r n ed wi th F_GETLK */} ;

About l_type: the types of lock are read and write.
Compatibility matrix: reads are compatible with reads; writes with nothing.
To unlock, use F_UNLCK.
This is vulnerable to deadlock...

ECE 252 21 / 38

Struct Flock
The struct flock has the following definition:
s t r u c t flock {

sho r t l_type ; /* F_RDLCK , F_WRLCK , or F_UNLCK */
sho r t l_whence ; /* SEEK_SET , SEEK_CUR , or SEEK_END */
off_t l_start ; /* o f f s e t i n by tes , r e l a t i v e to l_whence */
off_t l_len ; /* l eng th , i n b y t e s ; 0 means l o c k to EOF */
pid_t l_pid ; /* r e t u r n ed wi th F_GETLK */} ;

l_whence: where does the offset begin?

It is possible for a locked region to extend past the end of the file.

ECE 252 22 / 38

Das war ein Befehl!

For command, our choices are:

F_GETLK

F_SETLK

F_SETLKW

ECE 252 23 / 38

Unlocking and Combining Locks

When unlocking a region, just as for locking, you can specify what part of the fileyou would like to unlock.

Partial unlocking is unusual, but why not?

The system will combine or split locks as appropriate,

ECE 252 24 / 38

Lock Usage Example
i n t write_lock_file (i n t fd) {

s t r u c t flock fl ;
fl . l_type = F_WRLOCK ;
fl . l_start = 0;
fl . l_whence = SEEK_SET ;
fl . l_len = 0;
r e tu rn fcntl (fd , F_SETLK , &fl) ;}

i n t unlock_file (i n t fd) {
s t r u c t flock fl ;
fl . l_type = F_UNLCK ;
fl . l_start = 0;
fl . l_whence = SEEK_SET ;
fl . l_len = 0;
r e tu rn fcntl (fd , F_SETLK , &fl) ;}

ECE 252 25 / 38

Knock Knock
Checking if a given part of a file is locked:
i n t fd = open (" example . t x t " , O_RDONLY) ;
s t r u c t flock lock ;
lock . l_type = F_RDLOCK ;
lock . l_start = 1024 ;
lock . l_whence = SEEK_SET ;
lock . l_len = 256 ;
fcntl (fd , F_GETLK , &lock) ;
i f (lock . l_type == F_UNLCK) {/* Lock i s un l o cked ; we may proceed */} e l s e i f (lock . l_type = F_WRLOCK) {/* F i l e i s w r i t e l o c k ed by a d i f f e r e n t p r o c e s s */
printf (" F i l e l o c ked by p ro ce s s ID %d . \ n " , lock . l_pid) ;
r e tu rn − 1 ;}

ECE 252 26 / 38

Orders, Captain?

Checking on things with F_GETLK is really for information purposes only.

“Read the value and then whatever operation you’d like to do next” is not atomic.

Instead, use the command F_SETLK and actually try to set the lock.

If -1 is returned then locking was not successful.

Or, if the plan is to wait, use F_SETLKW as one would expect.

ECE 252 27 / 38

Immutability is for Cowards

fcntl changes some values of the struct lock!

If you wanted to re-use it you need to make sure to reset it as appropriate.

You can use the same struct lock later to unlock the thing that you locked,just do so carefully.

ECE 252 28 / 38

SPLITTERS!

Sometimes the name you want is taken...
lockf: a simplified way of locking a file.
While fcntl is more flexible, sometimes all we need is the simple version.

ECE 252 29 / 38

Locking, Simplified
i n t lockf (i n t file_descriptor , i n t command , off_t length) ;

The command options can be:
F_LOCK

F_TLOCK

F_ULOCK

F_TEST

The length is an offset, and is based off the current position in the file.
If zero is provided then it locks the whole file.

ECE 252 30 / 38

Close up for the Day

The file is automatically unlocked when the file descriptor is closed.

And, on some systems lockf just calls fcntl but on some others they usedifferent mechanisms.

So don’t mix and match.

If you lock a file with one function, unlock it with the matching one.

ECE 252 31 / 38

There are Rules

It is noteworthy that both kinds of lock are “advisory” only.

It only is really effective if everyone involved in accessing the shared resourcefollows the proper protocol and checks if access is permitted or not.

Mandatory locks do exist, but are hard to use and are not recommended.

The notes link to why you shouldn’t!

ECE 252 32 / 38

I am become Lock

We can use the very existence of a file as a way of controlling concurrency.

For example, git places a file index.lock in a particular directory to indicatethat an operation is in progress.

Thus two different git clients do not operate on the same repository at thesame time.

ECE 252 33 / 38

Open Sesame?

If we want to check, we just try to open() the file, but unless we are careful thiscan lead to a problem if two processes want to create the file.

If they both call open, they both might succeed. To get around this, we need touse the flags parameter

ECE 252 34 / 38

File Operations
i n t open (cons t char *filename , i n t flags) ;
i n t rename (cons t char *old_filename , cons t char *new_filename) ;
i n t remove (cons t char *filename) ;

When opening a file the following flags may be used for the flags parameter(and can be combined with bitwise OR, the | operator):
Value Meaning
O_RDONLY Open the file read-only
O_WRONLY Open the file write-only
O_RDWR Open the file for both reading and writing
O_APPEND Append information to the end of the file
O_TRUNC Initially clear all data from the file
O_CREAT Create the file
O_EXCL If used with O_CREAT, the caller MUST create the file; if the file exists it will fail

ECE 252 35 / 38

Lock-File Behaviour
Team-up open and rename to get lock-like behaviour between differentprograms that share nothing except a common file system.

The open call should be used to create the lock file, and fail if the file alreadyexists.

If we want we can use remove to delete the lock file if we want to let the nextprocess try, but there’s an alternative option: rename.

The rename function is also atomic!

To lock: change the name; to unlock, change it back!

ECE 252 36 / 38

Using a File as a Lock
i n c l u de < s t d i o . h>
i n c l u de < s t d l i b . h>
i n c l u de < f c n t l . h>
i n c l u de < un i s t d . h>
i n c l u de < s y s / s t a t . h>
i n c l u de < s y s / t ype s . h>
i n c l u de < pthread . h>
de f i ne NUM_THREADS 10
i n t lock_fd ;
i n t shared = 0;
vo id * run (vo id * arg) {

i n t * id = (i n t *) arg ;
whi le (rename (" f i l e . l o c k " , " f i l e . l o c ked ") == −1) {

printf (" Thread %d wa i t i n g . \ n " , *id) ;}
printf (" Thread %d i n c r i t i c a l s e c t i o n . \ n " , *id) ;
printf (" Shared incremented from %d" , shared) ;
shared ++ ;
printf (" to %d . \ n " , shared) ;
rename (" f i l e . l o c ked " , " f i l e . l o c k ") ; /* Unlock */
free (arg) ;
pthread_exit (NULL) ;}

ECE 252 37 / 38

Using a File as a Lock
i n t main (i n t argc , char ** argv) {
lock_fd = open (" f i l e . l o c k " , O_CREAT | O_EXCL) ;
i f (lock_fd == −1) {
printf (" F i l e c r e a t i o n f a i l e d . \ n ") ;
r e tu rn − 1 ;}

pthread_t threads [NUM_THREADS] ;
f o r (i n t i = 0; i < NUM_THREADS ; i ++) {

i n t * id = malloc (s i z e o f (i n t)) ;*id = i ;
pthread_create (&threads [i] , NULL , run , id) ;}

f o r (i n t i = 0; i < NUM_THREADS ; i ++) {
pthread_join (threads [i] , NULL) ;}

close (lock_fd) ;
remove (" f i l e . l o c k ") ;
r e tu rn 0;}

ECE 252 38 / 38

