
Lecture 25 —More Concurrency in File Systems
Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi
jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca

Department of Electrical and Computer EngineeringUniversity of Waterloo

ECE 252 1 / 36

Copy-Modify-Merge
Thus far when we talk about modification of shared data we follow a model thatcould be described as “Lock-Modify-Unlock”.
But you’ve also used git or some other version control system (svn) that uses adifferent model: Copy-Modify-Merge.

Example: you and your lab partner work on something together...
ECE 252 2 / 36

Transaction

A transaction is a grouping of operations that belong together and should betreated as an indivisible unit.

Bad things can happen when an intermediate state of a multiple-step operationbecomes inadvertently visible.

Most of the examples looked at things like x++;

In the copy-modify-merge scenario, people can make their changes separatelyand then we try to put them all together.

ECE 252 3 / 36

Plan your Moves

A transaction has a begin transaction statement, then the operations to takeplace in the transaction, and finally an end transaction statement.

Execution looks something like writing down the transaction into a log, doing theoperations in the transaction.

When the last one is complete, if all went well, marking the transaction assuccessful.

ECE 252 4 / 36

I have a cunning plan...

ECE 252 5 / 36

Copy-Modify-Merge

In the case of version control, if there are merge conflicts then we are notifiedthat the merge cannot take place until conflicts are resolved.

But in file systems, the last write wins.

ECE 252 6 / 36

You have N unread notifications...
I’m an inbox-zero kind of person so this picture hurts:

Image credit: Dhvanesh Adhiya

ECE 252 7 / 36

Notify Me

Another way that we can use the file system (in Linux only!) for synchronizationor concurrency control is through the use of inotify.

Using this API, you can register your program as being interested in the events.

You say you want to watch a file or directory, and when an event occurs, thenyour program is informed

ECE 252 8 / 36

OVERWATCH!
The steps are:

1 Use an initialization function to create the management structure (and get afile descriptor back to refer to it).
2 Then you tell the kernel what files you are interested in by adding them tothe structure (you can also remove them).
3 To collect an event, use read on the file descriptor. Each call returns one ormore event structures.
4 If you’re done, close the file descriptor representing the managementstructure, which conveniently cleans everything up for you.

The mechanism is not recursive.

ECE 252 9 / 36

Notification API: Initialization

The API calls:
i n t inotify_init () ; /* Re tu rn s f i l e d e s c r i p t o r r e f e r r i n g to the s t r u c t */

Initialization doesn’t require any arguments, so that’s quite convenient.

ECE 252 10 / 36

Notification API: Add
The API calls:
i n t inotify_add_watch (i n t fd , cons t char * pathname , uint32_t mask) ;

Adding an item to the watch takes as an argument the inotify structure to add itto, the name of the file to add, and a mask.
You must have at least read permission on the file to be able to watch it.
The mask is how we specify details about the events that we are interested in.
We have to save the return value of the add function if we want to use theremove function.

ECE 252 11 / 36

Notification API: Remove

The API calls:
i n t inotify_rm_watch (i n t fd , uint32_t wd) ;

Remove takes as an argument what was returned from add.

When we’re completely done, just call close on the file descriptor representingthe inotify.

ECE 252 12 / 36

TV has so many channels...
There are about 23 different events that you can watch for using the bit mask.

Bit Value Description
IN_ACCESS File accessed (e.g., read, execute)
IN_ATTRIB Metadata changed, such as permissions
IN_CLOSE_WRITE File opened for writing was closed
IN_CLOSE_NOWRITE File not opened for writing was closed
IN_CREATE File or directory created in watched directory
IN_DELETE File or directory deleted from watched directory
IN_DELETE_SELF Watched file or directory deleted
IN_MODIFY File modified (write, for example)
IN_OPEN File opened
IN_ALL_EVENTS Watch for all of the above (and a few more)

ECE 252 13 / 36

Well, Now What?
Imagine we have set up some files that we would like to watch.
When ready for such an event, use read on the file descriptor for the inotify.
If an event occurred, you get back a structure inotify_event.
s t r u c t inotify_event {

i n t wd ; /* Watch d e s c r i p t o r */
uint32_t mask ; /* Mask d e s c r i b i n g even t */
uint32_t cookie ; /* Unique coo k i e a s s o c i a t i n g r e l a t e d even t s (f o r rename (2)) */
uint32_t len ; /* S i z e o f name f i e l d */
char name [] ; /* Op t i o na l n u l l − t e rm ina t ed name */} ;

Weird: the size of an inotify event is thus the structure size plus the length of thearray, i.e.: sizeof(struct inotify_event) + len.
ECE 252 14 / 36

Das ist Nicht Gut

Usually when we do a read we need to know how many bytes we’d like to read.

If we’re reading a struct, we know the size of the struct, but now it depends onthe length of the data you get back.

Your standard clairvoyance problem.

One approach is to just make the buffer really big...

ECE 252 15 / 36

Consult an Expert?

ECE 252 16 / 36

If you don’t know, ask!

ioctl can tell you what you want to know!

ioctl(fd, FIONREAD, &numbytes) updates numbytes with the numberof bytes currently available to read from the inotify instance.

If multiple events occurred you can get multiple structures back (if your buffer isbig enough).

ECE 252 17 / 36

Example of using inotify
cons t char filename [] = " f i l e . l o c k " ;
i n t main (i n t argc , char ** argv) {

i n t lockFD ;
bool our_turn = false ;
whi le (! our_turn) {

lockFD = open (filename , O_CREAT | O_EXCL) ;
i f (lockFD == −1) {
printf (" The l o c k f i l e e x i s t s and p ro ce s s %l d w i l l wa i t i t s t u rn . . . \ n " ,
getpid ()) ;
i n t notifyFD = inotify_init () ;
uint32_t watched = inotify_add_watch (notifyFD , filename , IN_DELETE_SELF) ;
/* Read the f i l e d e s c r i p t o r f o r the n o t i f y −− we get b l o c ked hereu n t i l t h e r e ’ s an even t t ha t we want */

i n t buffer_size = s i z e o f (s t r u c t inotify_event) + strlen (filename) + 1 ;
char * event_buffer = malloc (buffer_size) ;
printf (" Setup complete , w a i t i n g f o r event . . . \ n ") ;
read (notifyFD , event_buffer , buffer_size) ;

ECE 252 18 / 36

Example of using inotify
s t r u c t inotify_event* event = (s t r u c t inotify_event *) event_buffer ;/* Here we can l ook and see what a r r i v e d and de c i d e what to do .I n t h i s example , we ’ r e on l y watch ing one f i l e and one typeo f event , so we don ’ t need to make any d e c i s i o n s now */
printf (" Event oc cu r r ed ! \ n ") ;
free (event_buffer) ;
inotify_rm_watch (lockFD , watched) ;
close (notifyFD) ;} e l s e {
char * pid = malloc (32) ;
memset (pid , 0 , 32) ;
i n t bytes_of_pid = sprintf (pid , "%l d " , getpid ()) ;
write (lockFD , pid , bytes_of_pid) ;
free (pid) ;
close (lockFD) ;
our_turn = true ;}}

printf (" P r o ce s s %l d i s i n the area p ro t e c t ed by f i l e l o c k . \ n " , getpid ()) ;
remove (filename) ;
r e tu rn 0;}

ECE 252 19 / 36

Consistency Checking and Journalling
Unfortunately, an error, crash, or power failure or something similar may result ina loss of data or inconsistent data in the file system.
The directory structures, pointers, inodes, et cetera are all data structures and ifthey become corrupted it may lead to serious problems.
We may need to check for consistency:

ECE 252 20 / 36

Consistency Checking
We could check for inconsistent data periodically (e.g., on system boot up) andmany operating systems do so.
This is, of course, an operation that will consume a very large amount of timewhile the whole disk is scanned.
UNIX: fsck. Windows: chkdsk/scandisk.
These tools will look for inconsistent states (e.g., a file that claims to be 12 blocksbut the linked list contains only 5) and will attempt to repair it.
Its level of success depends on the nature of the problem and theimplementation of the file system.

ECE 252 21 / 36

Preventing the Problem

Obviously we would like to prevent the problem, if we can.

All modern OS file systems use transactions to ensure consistency.

We’ll talk about ZFS, APFS, and NTFS...

ECE 252 22 / 36

ZFS

ZFS uses the idea of transactions, making sure that the state is always consistenton disk.

Much like the copy-modify-merge model, data is copied, then changed, thenrewritten.

Blocks are never overwritten with new data.

Instead, a transaction writes all data and metadata to new blocks.

ECE 252 23 / 36

ZFS

Only when the transaction is complete, any references to the old blocks arereplaced with the location of the new blocks.

Then the old pointers and blocks can be cleaned up (reused or disposed of).

Interesting weakness: what if the disk is totally full?!

ECE 252 24 / 36

APFS

Like some version control systems, APFS brings the ability to take snapshots ofthe file system.

Freeze the state of the file system and from there any additional changes are“diffs” against that base state, meaning only new things take up space.

This is potentially quite helpful for taking backups!

... You do take backups, right?

ECE 252 25 / 36

Time Machine, Whyyyyy

The performance of your system can be degraded while traditional backups arebeing taken.

Time-consuming: computing a diff between the last backup copy and the current.

APFS approach is faster, but also a way to avoid corruption.

You can replay changes as needed to get the file back to a consistent state.

ECE 252 26 / 36

More Copies, More Good?

The APFS does potentially harm the most common “backup” system ofnon-technical users: take a copy of the file and put it in a different folder.

APFS will not actually duplicate the data on the same volume.

It sounds like they’re doing you a favour if you think of this as just reducingwasted space.

But from the perspective of redundancy: if that part of the disk is damaged thenall copies are lost.

ECE 252 27 / 36

Marketing-Speak, Engage

Somewhat like ZFS, the APFS approach to avoiding inconsistent data amidst acrash is something like copy-on-write.

In typical Apple fashion they were pretty vague about what this means...

The APFS lead developer Dominic Giampaolo just says it’s a “novel copy-on-writemetadata scheme” but also somehow not exactly the same as ZFS’ssingle-atomic-update approach.

ECE 252 28 / 36

Example: NTFS (Windows File System)

NTFS uses several different storage levels:

1 Sector
2 Cluster
3 Volume

ECE 252 29 / 36

NTFS

The cluster is the fundamental unit of allocation of NTFS.

This allows the file system to be independent of the size of physical sectors onthe disk.

A volume contains file system information, a collection of files, and free space.

The logical volume may be some of a physical disk, all of one, or spread acrossmultiple physical disks.

ECE 252 30 / 36

NTFS Volume Layout

ECE 252 31 / 36

NTFS System Files

The Master File Table (MFT) contains information about all the files and folders.

A block is allocated to system files that contain important system information:

1 MFT2
2 Log File
3 Cluster Bitmap
4 Attribute Definition Table

ECE 252 32 / 36

NTFS Journalling

NTFS uses journalling to ensure that the file system will be in a consistent state atall times, even after a crash or restart.

There is a service responsible for maintaining a log file that will be used torecover in the event that things go wrong.

Note that the goal of recovery is to make sure the system-maintained metadata isin a consistent state; user data can still get lost.

This was a Microsoft design decision.

ECE 252 33 / 36

Sorry, You Lose

A particular write may not have taken place because of a crash, resulting in somedata loss for you, the user.

But at least the system will always remain in a consistent state.

As a side benefit, we can sometimes re-order the writes to get betterperformance.

ECE 252 34 / 36

NTFS Journalling Implementation

The actual implementation of journalling:

1 Record the change(s) in the log file in the cache.
2 Modify the volume in the cache.
3 The cache manager flushes the log file to disk.
4 Only after the log file is flushed to disk, the cache manager flushes thevolume changes.

ECE 252 35 / 36

Just Deal with This

What’s really interesting about this is that the changes are carried out in thebackground, that is to say, asynchronously.

A program can say that it wants to write some data, and not have to wait for thedata to be written before going on to the next thing.

How interesting!

Can we get that behaviour in our (regular) program? Yes we can...

ECE 252 36 / 36

