Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi
jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca

Department of Electrical and Computer Engineering
University of Waterloo

ECE 252 1/24

Previously: opening a file as Non-Blocking doesn’t work.
There is a way to do what we want using the POSIX Asynchronous 1/0 Interface.

Create a control block, enqueue it, with optional callback.

ECE 252 2/24

AIO Control Block

struct aiocb {

int aio_fildes; /*
off_t aio_offset; /*
volatile void* aio_buf; /*
size_t aio_nbytes; /*

/*
/*
/*

int aio_reqprio;
struct sigevent aio_sigevent;
int aio_lio_opcode;

File descriptor */

Offset for 1/0 */

Buffer */

Number of bytes to transfer */

Request priority */
Signal Info */
Operation for List 1/0 */

The offset does nothing if the file has been opened in “append” mode.

The AIO pointers in the file are separate from the blocking operation pointers.

Priority can be ignored by the OS (as per usual).

What about the event?

ECE 252

3/24

Event in AIO

struct sigevent {

int sigev_notify; /* Notify Type */

int sigev_signo; /* Signal number */
union sigval sigev_value; /* Notify argument */
void (*sigev_notify_function) (union sigval); /* Notify Function */
pthread_attr_t *sigev_notify_attributes; /* Notify attributes */

sigev_notify one of: SIGEV_NONE, SIGEV_SIGNAL,SIGEV_THREAD

Aunion sigvaliseitheran int or a voidx.
But not both at the same time.

union sigval {
int sival_int;
void* sival_ptr;

N

Function definition for the thread not exactly the same as we’re used to.

ECE 252 4/24

We can send a signal when the AlO is complete.

Mostly we expect we'll use the thread approach, because it is flexible.

ECE 252 5/24

Engqueue a Request

When we have the callback configured, we can enqueue the request.

int aio_read(struct aiocb* aiocb);
int aio_write(struct aiocb* aiocb);

These are self-explanatory, | would think.

We may not change the control block or buffer while in progress.

ECE 252 6/24

Are we there yet?

Are we there)yetak

o 8

4 4

veta

ECE 252 7/24

Are we there yet?

int aio_error(const struct aiocb* aiocb);
ssize_t aio_return(const struct aiocb* aiocb);

aio_error should really be called aio_status.
If it returns O the operation is complete.

If the operation is still waiting to run or in progress the return value is
EINPROGRESS.

If the operation completed successfully, aio_return will get the return value
from the read or write operation.

It does deallocate some structures, so use it...

ECE 252 8/24

Time for an example: reading while you eat.

ECE 252 9/24

Reading While Consuming

We have been asked to design a program that processes a group of files.

We can use asynchronous I/0 to partially parallelize this: start the read for file
n + 1and process file n in the meantime.

This doesn’t work for the first file, so a blocking read takes place first.

The maximum size of any file we will read is MAX_SIZE, so always use this size as
the length of a read.

We need two buffers: one for the file being processed and one where the next
read is taking place.

ECE 252 10/24

Reading While Consuming

A list of files to read will be provided as arguments on the commandline to the
program.

To make the code a bit more compact, we'll assume that errors won’t occur and
therefore we do not need to check for them.

For simplicity, we'll check completion and sleep if we need to wait.

ECE 252 1/24

Breakfast is Served

void process(char* buffer); /* Implementation not shown */

int main(int argc, char** argv) {
char* bufferl malloc(MAX_SIZE * sizeof(char))
char* buffer2 malloc(MAX_SIZE * sizeof(char))

5

= open(argv([1], O_RDONLY);

memset(bufferl, O, MAX_SIZE * sizeof(char));
read(fd, bufferl, MAX_SIZE);
close(fd);

It's worth noting that we need the header aio.h and to compile with the -1rt

option.

ECE 252

12/24

Breakfast is Served

for (int i = 2; 1 < argc; i++) {
int nextFD = open(argv[i], O_RDONLY);

struct aiocb cb;
memset(&cb, O, sizeof(struct aiocb));

cb.aio_nbytes = MAX_SIZE;

cb.aio_fildes = nextFD;

cb.aio_offset = O;

memset(buffer2, 0, MAX_SIZE * sizeof(char));
cb.aio_buf = buffer2;

aio_read(&cb);

process(bufferl);

while(aio_error(&cb) == EINPROGRESS) {
sleep(1);
}
aio_return(&cb); /* This frees some internal structures */
close(nextFD);

char* tmp = bufferl;
bufferl = buffer2;
buffer2 = tmp;

ECE 252 13/24

process(bufferl);
free(bufferl);
free(buffer2);

return O;

Is sleep really the best way to deal with this?

ECE 252

14/24

Snooze Button...

int aio_suspend(const struct aiocb *const list[], int nent,
const struct timespec* timeout);

list: array of control blocks.

nent: number of entries in the array.

timeout: how long we're willing to wait.

Returns O if the AlO finished; -1 if timeout is reached.

Does not block if the AlO is finished when this is called.

ECE 252 15/24

#include
#include
#include
#include
#include
#include
#include
#include

<stdlib.h>
<stdio.h>
<aio.h>
<fentl . h>
<string.h>
<errno.h>
<unistd .h>
<pthread.h>

#define MAX_SIZE 512

void worker(union sigval argument) {

char*
printf("Worker thread _here. Buffer contains: _%s\n", buffer)

buffer = (char*) argument.sival_ptr;

free(buffer);

ECE 252

16/24

Callback When Complete

int main(int argc, char** argv) {

char* buffer = malloc(MAX_SIZE * sizeof(char

int fd = open("example.txt", O_RDONLY);
memset(buffer, O, MAX_SIZE * sizeof(char));
struct aiocb cb;

memset(&cb, O, sizeof(struct aiocb));

cb.aio_nbytes = MAX_SIZE;

cb.aio_fildes = fd;

cb.aio_offset = O;

cb.aio_buf = buffer;
cb.aio_sigevent.sigev_notify = SIGEV_THREAD;
cb.aio_sigevent.sigev_notify_function = worker;
cb.aio_sigevent.sigev_value.sival_ptr = buffer;

aio_read(&cb);

pthread_exit(NULL);

));

ECE 252

17/24

Cancel!

s, s
Nl

_UNCANCEL A CANCELLATION

If an AlO request is no longer needed, it can be cancelled:

int aio_cancel(int fd, struct aiocb* aiocb);

If NULL is given as the control block argument, then it tries to cancel all
outstanding asynchronous 1/0 requests for that file.

ECE 252 18/24

If You Try To Fail and Succeed, Which Have You Done?

Ah, you noticed that | said “tries” to cancel. This function returns one of four
values:

m AIO_CANCELLED

m AIO_NOTCANCELLED
m -1

m AIO_ALLDONE

ECE 252 19/24

int main(int argc, char** argv) {

}

char* buffer = malloc(MAX_SIZE * sizeof(char));

int fd = open("example.txt", O_RDONLY);
memset(buffer, O, MAX_SIZE * sizeof(char));

struct aiocb cb;
memset(&cb, O, sizeof(struct aiocb));

cb.aio_nbytes MAX_SIZE;
cb.aio_fildes fd;
cb.aio_offset = O;
cb.aio_buf = buffer;
aio_read(&cb);

/* Do something */
aio_cancel(fd, & cb);
sleep(5);

close(fd);
free(buffer);

return O;

ECE 252

20/24

The List

“You can right my wrongs. You can be better than | was. You can save this city.”

ECE 252

Something Left Behind

In the AIO control block there was one more parameter that we did not cover but
said that we would come back to: aio_1lio_opcode.

We can submit a group of AlO requests in a single operation.

int lio_listio(int mode, struct aiocb * const list[], int nent,
struct sigevent* sigev);

mode: either LIO_WAIT or LIO_NOWAIT.
list: array of AlO control blocks.
nent: number of entries in the list.

sigev: event that fires when all is complete. Can be NULL.

ECE 252 22/24

If it’s going into the 1io_listio function, in the AIO block you specify the
aio_lio_opcode (operation code) as:

m LIO_READ
m LIO_WRITE
m LIO_NOP

ECE 252 23/24

AlO is Hard

The Linux implementation of AlO actually uses threads that do blocking reads.

AlO is a POSIX-compliant portable way of doing asynchronous I/0.

The poor implementation doesn’t affect your program, but it’s not ideal...

ECE 252 24/24

