Prepared by Jeff Zarnett, taught by Seyed Majid Zahedi
jzarnett@uwaterloo.ca, smzahedi@uwaterloo.ca

Department of Electrical and Computer Engineering
University of Waterloo

ECE 252 1/35

ECE 252 2/35

Using libevent

The libevent library is meant for high performance applications and scalable
network servers.

Instead of focusing now on whether an operation is blocking or not, we’ll try to
think about I/0 as events: when something happens, take some action.

ECE 252 3/35

The library supports a lot of different configuration options.

But the most important setup thing is that we need to configure it to use the
pthreads library and functions.

int evthread_use_pthreads()

ECE 252 4/35

Zero Wing...

Each event is associated with an event_base structure.
We might need multiple bases for multiple thread operations.

ECE 252 5/35

Building a Base

struct event_base* event_base_new(); /* Create with default settings */
struct event_base* event_base_new_with_config(

const struct event_config* cfg); /* Create with configuration */
struct event_config* event_config_new();
void event_config_free(struct event_config* cfg);

The use of a configuration is optional.

To deallocate an event base, the (self-explanatory) function for that is:

void event_base_free(struct event_base* base);

ECE 252 6/35

#include <stdlib.h>
#include <stdio.h>
#include <event2/event.h>

int main(int argc, char** argv) {

int i;
const char **methods = event_get_supported_methods();
printf("Starting _Libevent %s.,. Available_methods_ are:\n",
event_get_version());
for (i=0; methods[i] != NULL; ++i) {
printf("____%s\n", methods[i]);

return O;

7/35

ECE 252

jzarnett@eceteslal:~/ece252% gcc -std=c99 -g -levent -0 lel lel.c
jzarnett@ecetesla0:~/ece252¢% ./lel
Starting Libevent 2.1.8-stable. Available methods are:

epoll

poll

select

ECE 252 8/35

What You Can Do vs What You Will Do

#include <stdlib.h>
#include <stdio.h>
#include <event2/event.h>

int main(int argc, char** argv) {
struct event_base *base;
enum event_method_feature f;

base = event_base_new();

if (!base) {
puts("Couldn't _get_an_event_base!");
} else {

printf("Using_Libevent_with_backend_method _%s."
event_base_get_method(base));

f = event_base_get_features(base);

if ((f & EV_FEATURE_ET))
printf("__Edge-triggered _events_are_supported.");

if ((f & EV_FEATURE_01))
printf(",.O(1)_event_notification _is_supported.");

if ((f & EV_FEATURE_FDS))
printf("__All FD_types_are_supported.");

puts("");

}

return O;

ECE 252 9/35

Well, we'll... just go with that then.

jzarnett@eceteslal:~/ece252% ./le2

Using Libevent with backend method epoll.
Edge-triggered events are supported.
0(1) event notification is supported.

Wait, we didn’t learn about epoll... Do we need to?

ECE 252 10/35

No.

The great thing about libevent is that we don't have to think about the details of
the backend.

ECE 252 1/35

The goal is to watch for some events; for that we need a definition of an event.
An event happens on a file descriptor (as usual).

Event Lifecycle:

m Created

m Initialized

m Pending

m Non-Pending

ECE 252 12/35

Creating an Event Events

typedef void (*event_callback_fn)(evutil_socket_t fd, short what, void* arg)
struct event* event_new(struct event_base* base, evutil_socket_t fd,
short what, event_callback_fn cb, void* arg)

event_callback_fn: function signature definition for callback.

base: event base to use.

fd: file descriptor.

what: what we want to be notified of.

arg: user-defined argument.

ECE 252 13/35

What?!

Professor: there is a use for the short type in C

Students:

ECE 252 14/35

#define
#define
#define
#define
#define
#define

EV_TIMEOUT
EV_READ
EV_WRITE
EV_SIGNAL
EV_PERSIST
EV_ET

0x01
0x02
0x04
0x08
0x10
0x20

Some require some explanation...

They can be combined with the bitwise-OR operator again.

ECE 252

15/35

Call Yourself?

If you want the event itself to be the void* argument passed to the callback
function, that can be done here as well.

Normally this would not work, because the event doesn’t exist yet.

But there’s a workaround for that, a function event_self_cbarg() that does a
little magic for you.

ECE 252 16/35

void event_free(struct event* event)

It is okay to call this even on an event that is pending or active.

ECE 252 17/35

int event_add(struct event* ev, const struct timeval* tv);
int event_del(struct event* ev);

But did we forget something?

Oh yeah... starting the events!

18/35

ECE 252

Dispatching Events

There are two ways to dispatch events, the simple way and the hard way:

int event_base_dispatch(struct event_base* base);
int event_base_loop(struct event_base *base, int flags);

The easy way is the same as the hard way with no flags set.

#define EVLOOP_ONCE 0x01
#define EVLOOP_NONBLOCK 0x02
#define EVLOOP_NO_EXIT_ON_EMPTY 0x04

No-exit means don’t break the loop when no more events pending/active.

ECE 252 19/35

When | Say...

WE'RE DONE WHEN I'SAY WE'RE DONE

int event_base_loopexit(struct event_base* base, const struct timeval* tv);
int event_base_loopbreak(struct event_base* base);

ECE 252 20/35

void cb_func(evutil_socket_t fd, short what, void *arg) {
const char *data = arg;
printf("Got_an_event_on_socket %d:%s%s%s%s_[%s]",

(int) fd,
(what&EV_TIMEOUT) ? ", timeout" : "",
(what&EV_READ) ? "_.read" : """,
(what&EV_WRITE) ? " _write" """,
(what&EV_SIGNAL) ? " _signal" : "",
data);
}
ECE 252

21/35

Start Events and Watch For Them

void main_loop(evutil_socket_t fdl, evutil_socket_t fd2){
struct event *evl, *ev2;
struct timeval five_seconds = {5,0};
struct event_base *base = event_base_new();

/* The caller has already set up fd1, fd2 somehow,
and make them nonblocking. */

evl = event_new(base, fdl, EV_TIMEOUT|EV_READ|EV_PERSIST, cb_func,
(char *)"Reading _event");

ev2 = event_new(base, fd2, EV_WRITE|EV_PERSIST, cb_func,
(char*)"Writing _event");

event_add(evl, &five_seconds);
event_add(ev2, NULL);
event_base_dispatch(base);

ECE 252 22/35

It's Clean-Up Time

Finally, libevent has some global structures that are initialized once.

When we're all completely done with everything:

void libevent_global_shutdown()

This does not deallocate anything that was the return value of a libevent function.

ECE 252 23/35

Buffering...

THEY SEE ME ROLLIN

THEY WAITIN

We might want to wait until we have a significant chunk of data before we're
ready to process it.

ECE 252 24/35

Buffering...

It's better to have the event happen when a condition is fulfilled, such as having
enough data available.

The library does support this: bufferevents!

A normal callback is triggered when the underlying transport (e.g., socket) is
ready to be read or written.

A buffer event takes place when enough data has been read or written.

Buffer events really only work for TCP communication.

ECE 252 25/35

Each buffer event has two buffers: the input and output buffer.
There are also two callbacks, a read and a write callback.

There are defaults; these can be overridden.

ECE 252 26/35

Every buffer event has four “watermarks”:

m Read low-water mark

m Read high-water mark
m Write low-water mark
m Write high-water mark

ECE 252 27/35

Make Me a Buffer Event

struct bufferevent* bufferevent_socket_new(struct event_base* base,
evutil_socket_t fd, enum bufferevent_options options);

base: the event base the buffer event belongs to.

fd: file descriptor

options: there are several, but we care about BEV_OPT_CLOSE_ON_FREE,
BEV_OPT_THREADSAFE

void bufferevent_free(struct bufferevent* bev);

Deallocation is straightforward...

ECE 252 28/35

typedef void (*bufferevent_data_cb)(struct bufferevent* bev, void* ctx);
typedef void (*bufferevent_event_cb)(struct bufferevent* bev,
short events, void* ctx);

Return type is void.

bev: buffer event in question.

ctx: user-provided context.

what: same as before, what we are interested in,.

ECE 252 29/35

Set up Buffer Event Callbacks

void bufferevent_setcb(struct bufferevent* bufev,
bufferevent_data_cb readcb, bufferevent_data_cb writecb,
bufferevent_event_cb eventcb, void* cbarg);

bufev: buffer event in question

readcb: read callback, NULL if not desired.

writecb: write callback; NULL if not desired.

eventch: event callback; NULL if not desired.

cbarg: the user-supplied argument.

ECE 252 30/35

We're ready, but have not yet actually created the event.

int bufferevent_socket_connect(struct bufferevent* bev,
struct sockaddr* address, int addrlen);

bev: buffer event in question.

address: address to connect to.

addrlen: size of the address structure.

ECE 252 31/35

Put It All Together: A Silly Callback

#include <event2/event.h>
#include <event2/bufferevent.h>
#include <sys/socket.h>
#include <string.h>

void eventcb(struct bufferevent *bev, short events, void *ptr) {
if (events & BEV_EVENT_CONNECTED) {
/* We're connected to 127.0.0.1:8080. Ordinarily we'd do
something here, like start reading or writing. */
} else if (events & BEV_EVENT_ERROR) {
/* An error occured while connecting. */
}

ECE 252 32/35

Put It All Together: Main Loop

int main_loop() {

struct event_base *base;
struct bufferevent *bev;
struct sockaddr_in sin;

base = event_base_new();

memset(&sin, O, sizeof(sin));

sin.sin_family = AF_INET;

sin.sin_addr.s_addr = htonl(0x7f000001); /* 127.0.0.1 */
sin.sin_port = htons(8080); /* Port 8080 */

bev = bufferevent_socket_new(base, -1, BEV_OPT_CLOSE_ON_FREE);
bufferevent_setcb(bev, NULL, NULL, eventcb, NULL);

if (bufferevent_socket_connect(bev,
(struct sockaddr *)&sin, sizeof(sin)) < 0) {
/* Error starting connection */
bufferevent_free(bev);
return -1;

}

event_base_dispatch(base);
return O;

ECE 252

33/35

By no means have we covered every possible option or tool in the libevent library.

It's just one of the many ways we have seen for how to do asynchronous I/0...

ECE 252 34/35

Sunset in Starling City...

ECE 252

