

Lecture 3:
Multithreaded Kernels
Prof. Seyed Majid Zahedi
https://ece.uwaterloo.ca/~smzahedi

https://ece.uwaterloo.ca/~smzahedi

Outline

• Thread implementation
• Create, yield, switch, etc.

• Kernel- vs. user-managed threads
• Implementation of synchronization objects
• Mutex, semaphore, condition variable

Kernel-managed Multithreading

• System library allocates
user-space stack for each user-level thread

• System library then uses system calls to
create, join, yield, exit threads

• Kernel handles scheduling and context switching
using kernel-space stacks

Kernel

User-Level Processes

Heap

Code

Globals TCB 1

Kernel Thread 1

Stack

TCB 2

Kernel Thread 2

Stack

TCB 3

Kernel Thread 3

Stack

TCB 1.B

Stack

TCB 1.A

Stack

Process 1

PCB 1

TCB 2.B

Stack

TCB 2.A

Stack

Process 2

PCB 2

Heap

Code

Globals

Stack

Thread A

Stack

Thread B
Process 2

Heap

Code

Globals

Stack

Thread A

Stack

Thread B
Process 1

Recall: Thread Lifecycle

Ready
Created

pthread_yield

Yields/Suspended

Running
Scheduled

Finished
pthread_exit

Exits

Waiting

pthread_join
pthread_cond_wait

Waits for event
pthread_exit

pthread_cond_signal/broadcast

Even happens

Init

Create
pthread_create

A process can go directly from ready or waiting to finished (example: main thread calls exit)

What Triggers a Context Switch?

• Synchronous event: thread invokes a system call or an exceptions happens
• E.g., yield, join, write, read, or segmentation fault, divide by zero, etc.
• This is called a voluntary context switch

• Asynchronous event: interrupts happens
• E.g., timer interrupt, new packet arrives, a DMA request finishes
• This is called an involuntary context switch

void compute_PI() {
while(TRUE) {

compute_next_digit();

thread_yield();
}

}

System Call, Interrupt, and Exception
Handlers

handler() {

// this runs in kernel mode

// SP points to a kernel stack

Push regs that might be used by handler on kernel stack

// (handle the event)

Handler_Exit

Pop regs that were pushed

Return

}
www.memecreator.org

// We enter as oldTCB, but we return as newTCB

// Returns with newTCB’s registers and stack

thread_switch(TCB *oldTCB, TCB *newTCB) {

Push all regs onto kernel stack of oldTCB

Set oldTCB->sp to stack pointer

Set stack point to newTCB->sp

Pop regs from kernel stack of newTCB

Return

}

Switch Between Threads

Where does this return to?

If newTCB is not newly created, then we return to
kernel code that called thread_switch
(return address is stored on newTCB‘s stack)

If newTCB is newly created, then it should have an
entry point address on its stack

What is popped here?

If newTCB is not newly created, then we pop what
we pushed last time we context switched it

If newTCB is newly created, then it should have
dummy data frame on top of its stack

newTCP could be a thread that was
context switched before and we are
context switching back to it, or it could
be a newly created thread

Threads Entry Point

• For kernel threads, no mode switch is required
• Could directly jump to function that thread will run

• For user threads, switch from kernel to user mode is required
• Need one level of indirection
• Could jump to a kernel code that then jumps to user code and

changes mode atomically
• E.g., could jump to Handler_Exit

Creating New User Threads

thread_create(void *(*func)(void*), void *args) {

// Allocate TCB

TCB *tcb = new TCB()

// Allocate kernel stack (note that stack grows downwards)

tcb->sp = new Stack(stack_size) + stack_size;

// Set up kernel stack

// (1) Push func and args

*(--tcb->sp) = args;

*(--tcb->sp) = func;

// (2) push data for Handle_Exit

push_dummy_handler_frame(&tcb->sp);

*(--tcb->sp) = Handler_Exit

// (3) Push dummy data for thread_switch

push_dummy_switch_frame(&tcb->sp);

// Set state of thread to read

tcb->state = READY;

// Put tcb on ready list

readyList.add(tcb);

}

Stack for Yielding Thread

void run_new_thread() {

// Prevent interrupt from stopping us

// in the middle of switch

disable_interrupts();

// Choose another TCB from ready list

chosenTCB = scheduler.getNextTCB();

if (chosenTCB != runningTCB) {

// Move running thread onto ready list

runningTCB->state = READY;

ready_list.add(runningTCB);

// Switch to the new thread

thread_switch(runningTCB, chosenTCB);

// We’re running again!

runningTCB->state = RUNNING;

// Do any cleanup

do_cleanup_housekeeping();

}

// Enable interrupts again

enable_interrupts();

}

thread_yield

compute_PI

Stack's grow
th

run_new_thread

Tr
ap

 to
 O

S
thread_switch

Thread
Stack

Kernel
Stack

Start from here whenever another
thread switches back to this thread

kernel_yield

How Do Stacks Look Like?

• Two threads run following code

A() {
B();

}

B() {
while(TRUE) {

thread_yield();
}

}

thread_yield

B (while)

run_new_thread

thread_switch

A

Thread 2Thread 1

thread_yield

B (while)

run_new_thread

thread_switch

A

kernel_yield kernel_yield

Outline

• Thread implementation
• Create, yield, switch, etc.

• Kernel- vs. user-managed threads
• Implementation of synchronization objects
• Mutex, semaphore, condition variable

Some Numbers

• Many process are multi-threaded, so thread context switches
may be either within-process or across-processes

Some Numbers (cont.)

• Frequency of performing context switches is ~10-100ms
• Context switch time in Linux is ~3-4 us (Intel i7 & Xeon E5)

• Thread switching faster than process switching (~100 ns)

• Switching across cores is ~2x more expensive than within-core
• Context switch time increases sharply with size of working set*

• Can increase ~100x or more

• Moral: overhead of context switching depends mostly on cache limits and
process or thread’s hunger for memory

*Working set is subset of memory used by process in time window

Kernel- vs. User-managed Threads

• We have been talking about kernel-managed threads
• Each user thread maps to one TCB (1:1 mapping)
• Every thread can run or block independently
• This approach is relatively expensive

• Need to make crossing into kernel mode to schedule

User space

Kernel space

TCB TCB TCB TCB

User-managed Threads

• Alternative is for user-level library to do all thread management tasks
• User process creates threads, maintains their state, and schedules them
• Kernel is not aware of existence of multiple threads
• Kernel only allocates single TCB to user process (N:1 mapping)
• Examples: Solaris Green Threads, GNU Portable Threads

User space

Kernel space

TCB

User-managed Threads:
Thread vs. Process State

Thread 1
Ready

Thread 3
Running

Thread 2
Ready

Process
Running

Thread 1
Running

Thread 3
Blocked

Thread 2
Ready

Process
Running

Thread 1
Ready

Thread 3
Running

Thread 2
Ready

Process
Ready

Thread 1
Ready

Thread 3
Running

Thread 2
Ready

Process
Blocked

Thread 3 is running on CPU Kernel has suspended user process

Thread 3 is blocked on user-level mutexThread 3 requests I/O

Downside of User-managed Threads

• Multiple threads may not run in parallel on multicore

• When one thread blocks on I/O, all threads block

• Alternative: scheduler activations

• Notify user-level scheduler of relevant kernel events

Classification of OSes

• Most operating systems have either
• One or many address spaces
• One or many threads per address space

Mach, OS/2, Linux,
Windows 10, Win NT to XP,

Solaris, HP-UX, OS X

Embedded systems
(Geoworks, VxWorks,
JavaOS, Pilot(PC), etc.)

Traditional UNIXMS/DOS, early Macintosh

Many

One

threads
Per AS:

ManyOne

of

 a
dd

r
sp

ac
es

:

Outline

• Thread implementation
• Create, yield, switch, etc.

• Kernel- vs. user-managed threads
• Implementation of synchronization objects
• Mutex, semaphore, condition variable

Load/Store Disable Interrupts Test&Set

Mutex Semaphore Monitor

Bounded Buffers

Atomic Inst

Synch
Objects

Programs

Implementing Synchronization Objects

Atomic Memory Operations

• In most architectures, load and store operations on single byte are atomic
• Threads cannot get context switched in middle of load/store to/from a word

• In x86, load and store operations on naturally aligned variables are atomic
• I.e., aligned to at least multiple of its own size
• E.g., 8-byte int that is aligned to an address that's multiple of 8

• Many instructions are not atomic
• Double-precision floating point store often not atomic
• VAX and IBM 360 had an instruction to copy whole array

• Unless otherwise stated, we assume loads and stores are atomic

Mutual Exclusion With Load and Store

// Thread A

valueA = BUSY;

turn = 1;

while (valueB == BUSY

&& turn == 1);

// critical section

valueA = FREE;

// Thread B

valueB = BUSY;

turn = 0;

while (valueA == BUSY

&& turn == 0);

// critical section

valueB = FREE;

Mutual Exclusion
With Load and Store: Discussion

• It’s very unsatisfactory
• Only protects a single critical section

• Extending this solution to protect multiple critical sections is nontrivial
• Way too complex even for this simple example

• It’s hard to convince yourself that this really works
• A’s code is different from B’s

• What if there are more than two threads?
• See Peterson’s algorithm

• A is busy-waiting while B is in critical section
• While A is waiting, it is consuming CPU time

• It doesn’t work on most of today’s computers
• It only works if instructions are executed in program order
• Compilers and hardware could reorder instructions

• E.g., store buffer allows next instruction to execute while store is being completed

Question: Can This Panic?

// Thread 1

p = someComputation();

pInitialized = true;

// Thread 2

While (!pInitialized);

q = someFunc(p);

If (q != someFunc(p))

panic();

Aside: Memory Consistency in
Multiprocessors

• Intuition says we should print r2 = NEW
• Yet, in some consistency models, this isn’t required!

// initially flag = data = r1 = r2 = 0

CPU1 CPU2

S1: data = NEW; L1: r1 = flag;

S2: flag = SET; B1: if (r1 != SET) goto L1;

L2: r2 = data;

Sequential Consistency

“The result of any execution is the same as if the operations of all processors
(CPUs) were executed in some sequential order, and the operations of each
individual processor (CPU) appear in this sequence in the order specified by its
program.”

Lamport, 1979

S1: data = NEW;

S2: flag = SET;

L1: r1 = flag; // 0

L1: r1 = flag; // 0

L1: r1 = flag; // SET

L1: r1 = flag; // 0

L2: r2 = data; // NEW

Memory OrderProgram Order of CPU1 Program Order of CPU2

Sequential Consistency (cont.)

“The result of any execution is the same as if the operations of all processors
(CPUs) were executed in some sequential order, and the operations of each
individual processor (CPU) appear in this sequence in the order specified by its
program.”

Lamport, 1979

S1: data = NEW;

S2: flag = SET;

L1: r1 = flag; // 0

L1: r1 = flag; // 0

L1: r1 = flag; // SET

L1: r1 = flag; // 0

L2: r2 = data; // NEW

Memory OrderProgram Order of CPU1 Program Order of CPU2

x86 Memory-consistency Model

// initially x = y = r1 = r2 = r3 = r4 = 0

CPU1 CPU2
S1: x = NEW; S2: y = NEW;
L1: r1 = x; L3: r3 = y;
L2: r2 = y; L4: r4 = x;

Memory OrderProgram Order of CPU1 Program Order of CPU2

L2: r2 = y; // 0 L4: r4 = x; // 0

S2: y = NEW; // NEWS1: x = NEW; // NEW

L1: r1 = x; // NEW L3: r3 = y; // NEW

Mutual Exclusion with Mutex

• Mutex operations
• mutex.lock() – wait until lock is free, then grab
• mutex.unlock() – Unlock, waking up anyone waiting

• Rules of using mutex
• Always lock before accessing shared data

• Best place for locking is beginning of procedure!
• Always unlock after finishing with shared data

• Best place for unlocking is end of procedure!
• Only the thread that locked mutex should unlock it
• DO NOT throw locked mutex to someone else to unlock

• Never access shared data without lock
• Danger! Don’t do it even if it’s tempting!

Lock Before Accessing Shared Data,
ALWAYS!

getP() {
if (p == NULL) {

mutex.lock();
if (p == NULL) {

temp = malloc(sizeof(…));
temp->field1 = …;
temp->field2 = …;
p = temp;

}
mutex.unlock();

}
return p;

}

• Safe but expensive solution is

getP() {
mutex.lock();
if (p == NULL) {

temp = malloc(sizeof(…));
temp->field1 = …;
temp->field2 = …;
p = temp;

}
mutex.unlock();
return p;

}

Does this work?
• No! Compiler/HW could make p point to temp before its fields are set
• This is called double-checked locking

Mutex Implementation - Take 1:
Disabling Interrupts

• Recall: context switching is triggered in two ways
• Voluntary: thread does something to relinquish CPU
• Involuntary: interrupts cause dispatcher to take CPU

• On uniprocessors, we can avoid context switching by
• Avoiding voluntary context switches
• Preventing involuntary context switches by disabling interrupts

• Naïve implementation of mutex in uniprocessors

class Mutex {

public:

void lock() { disable_interrupts(); };

void unlock() { enable_interrupts(); };

}

Problems with
Naïve Implementation of Mutex

• OS cannot let users use this!
Mutex::lock();
while(TRUE);

• It does not work well in multiprocessors
• Other CPUs could be interrupted

• Real-time OSes should provide guarantees on timing!
• Critical sections might be arbitrarily long
• What happens with I/O or other important events?

• “Reactor about to meltdown. Help?”

Implementation of Mutex - Take 2:
Disabling Interrupts + Lock Variable

class Mutex {

private:

int value = FREE;

Queue waiting;

public:

void lock();

void unlock();

}

Key idea: maintain lock variable and impose mutual exclusion only during operations
on that variable

Take 2 (cont.)

Mutex::unlock() {

disable_interrupts();

if (!waiting.empty()) {

// Make another TCB eady

next = waiting.remove();

next->state = READY;

ready_list.add(next);

} else {

value = FREE;

}

enable_interrupts();

}

Mutex::lock() {

disable_interrupts();

if (value == BUSY) {

// Add TCB to waiting queue

waiting.add(runningTCB);

runningTCB->state = WAITING;

// Pick new thread to run

chosenTCB = ready_list.get_nextTCB();

// Switch to new thread

thread_switch(runningTCB, chosedTCB);

// We’re back! We have locked mutex!

runningTCB->state = RUNNING;

} else {

value = BUSY;

}

enable_interrupts();

}

• Enable/disable interrupts also act as a
memory barrier operation forcing all
memory writes to complete first

Take 2: Discussion

• Why do we need to disable interrupts at all?
• Avoid interruption between checking and setting lock value
• Otherwise, two threads could think that they both have locked the mutex

• Unlike previous solution, critical section (inside lock()) is very short
• User of mutex can take as long as they like in their own critical section

(doesn’t impact global machine behavior)
• Critical interrupts taken in time!

Mutex::lock() {
disable_interrupts();
if (value == BUSY) {

…
} else {

value = BUSY;
}
enable_interrupts();

}

Critical section of mutex
(different form critical section of program)

Re-enabling Interrupts

• Before putting thread on wait queue?
• unlock() can check waiting queue and not wake up thread

• After putting thread on wait queue?
• unlock() puts thread on ready queue, but thread still thinks it needs to go to sleep!
• Thread goes to sleep while keeping mutex locked (deadlock!)

• After thread_switch()? But … how?

Mutext::lock() {
disable_interrupts();
if (value == BUSY) {

waiting.add(runningTCB);
runningTCB->state = WAITING;
chosenTCB = ready_list.get_nextTCB();
thread_switch(runningTCB, chosedTCB);
runningTCB->state = RUNNING;

} else {
value = BUSY;

}
enable_interrupts();

}

enable interrupts here?

How to Re-enable After
thread_switch()?

• It is responsibility of next thread to re-enable interrupts
• This invariant should be carefully maintained

• When sleeping thread wakes up, returns to lock() and re-enables interrupts

Thread A Thread B

disable_interrupts()
thread_switch()

thread_switch() return
enable_interrupts()

.

.

.

disable_interrupts()
thread_switch()

thread_switch() return
enable_interrupts()

.

.

context
switch

context

switch

Problems with Take 2

• User libraries cannot use this implementation (why?)

• Doesn’t work well on multiprocessor
• Disabling interrupts on all processors requires messages and would be very

time consuming

• Alternative solution: atomic read-modify-write instructions
• Read value from an address and then write new value to it atomically
• Make HW responsible for implementing this correctly

• Uniprocessors (not too hard)
• Multiprocessors (requires help from cache coherence protocol)

• Unlike disabling interrupts, this can be used in both uniprocessors and
multiprocessors

Examples of Read-Modify-Write
Instructions

• test&set (&address) { /* most architectures */
result = M[address]; /* return result from
M[address] = 1; “address” and set value at
return result; “address” to 1 */

}

• swap (&address, register) { /* x86 */
temp = M[address]; /* swap register’s value to
M[address] = register; value at “address” */
register = temp;

}

• compare&swap (&address, reg1, reg2) { /* 68000 */
if (reg1 == M[address]) {

M[address] = reg2;
return success;

} else {
return failure;

}
}

Spinlock with test&set()

• Simple implementation

class Spinlock {

private:

int value = 0

public:

void lock() { while(test&set(value)); };

void unlock() { value = 0; };

}

• Unlocked mutex: test&set reads 0 and sets value = 1
• Locked mutex: test&set reads 1 and sets value = 1 (no change)
• What is wrong with this implementation?

• Waiting threads consume cycles while busy-waiting

Spinlock with test&set(): Discussion

• Upside?
• Machine can receive interrupts
• User code can use this mutex
• Works on multiprocessors

• Downside?
• This is very wasteful as threads consume CPU cycles (busy-waiting)
• Waiting threads may delay the thread that has locked mutex (no one wins!)
• Priority inversion: if busy-waiting thread has higher priority than the thread

that has locked mutex then there will be no progress! (more on this later)

• In semaphores and monitors, threads may wait for arbitrary long time!
• Even if busy-waiting was OK for mutexes, it’s not OK for other primitives
• Exam/quiz solutions should avoid busy-waiting!

Implementation of Mutex - Take 3:
Using Spinlock

• Can we implement mutex with text&set without busy-waiting?
• We cannot eliminate busy-waiting, but we can minimize it!
• Idea: only busy-wait to atomically check mutex value

class Mutex {

private:

int value = FREE;

Spinlock mutex_spinlock;

Queue waiting;

public:

void lock();

void unlock();

}

class Scheduler {

private:

Queue readyList;

Spinlock scheduler_spinlock;

public:

void suspend(Spinlock *spinlock);

void make_ready(TCB *tcb);

}

Implementation of Mutex - Take 3
(cont.)

Mutex::unlock() {

mutex_spinlock.lock();

if (!waiting.empty()) {

// Make another TCB ready

next = waiting.remove();

scheduler->make_ready(next);

} else {

value = FREE;

}

mutext_spinlock.unlock();

}

Mutex::lock() {

mutex_spinlock.lock();

if (value == BUSY) {

// Add TCB to waiting queue

waiting.add(runningTCB);

scheduler->suspend(&mutex_spinlock)

// Scheduler unlocks mutex_spinlock

} else {

value = BUSY;

}

mutex_spinlock.unlock();

}

Can interrupt handler use this lock?
• No! Interrupt handler is not a thread, it cannot be suspended
How should we protect data shared by interrupt handler and kernel thread?
• Use spinlocks!
• To avoid deadlock, kernel thread should disable interrupts before locking the spinlock.
• Otherwise, interrupt handler could spin forever if spinlock is locked by a kernel thread!

Implementation of Mutex - Take 3
(cont.)

Scheduler::make_ready(TCB *tcb) {

disable_interrupts();

scheduler_spinlock.lock();

ready_list.add(tcb);

thread->state = READY;

scheduler_spinlock.unlock();

enable_interrupts();

}

Scheduler::suspend(Spinlock *spinlock) {

disable_interrupts();

scheduler_spinlock.lock();

spinlock->unlock();

runningTCB->state = WAITING;

chosenTCB = ready_list.get_nextTCB();

thread_switch(runningTCB, chosenTCB);

runningTCB->state = RUNNING;

scheduler_spinlock.unlock();

enable_interrupts();

}

Why disable interrupts?
• To avoid deadlock!
• Interrupt handler could spin forever if it needs scheduler’s spinlock!
What might happen if we unlock mutex_spilock before suspend()?
• Then make_ready() could run before suspend(), which is very bad!

Mutex Using Interrupts vs. Spinlock

• Replace
• disable interrupts; ⇒ spinlock.lock;

• enable interrupts ⇒ spinlock.unlock;

lock() {
mutex_spinlock.lock();
if (value == BUSY) {

// put thread on wait queue and
// go to sleep

} else {
value = BUSY;

}
mutex_spinlock.unlock();

}

lock() {
disable_interrupts();
if (value == BUSY) {

// put thread on wait queue and
// go to sleep

} else {
value = BUSY;

}
enable_interrupts();

}

Recap: Mutexes Using Interrupts

Mutex::lock();
…

critical section;

…
Mutex::unlock();

lock() {
disable_interrupts();

}

unlock() {
enable_interrupts();

}

If one thread is in critical
section, no other activity
(including OS) can run!

int value = FREE;
lock() {
// Short busy-wait time
disable_interrupts();
if (value == BUSY) {
// put thread on wait queue
// and go to sleep

} else {
value = BUSY;

}
enable_interrupts();

}

unlock() {
// Short busy-wait time
disable_interrupts();
if (!waiting.empty()) {

// take thread off wait queue
// place it on ready queue;

} else {
value = FREE;

}
enable_interrupts();

}

Recap: Mutexes Using Spinlock
(test&set)

Mutex::lock();
…

critical section;

…
Mutex::unlock();

int value = FREE
lock() {
while (test&set(value));

}

unlock() {
value = FREE;

}

Threads waiting to enter
critical section busy-wait

Spinlock mutex_spinlock;
int value = FREE;
lock() {
// Short busy-wait time
mutex_spinlock.lock();
if (value == BUSY) {
// put thread on wait queue
// and go to sleep

} else {
value = BUSY;

}
mutex_spinlock.unlock();

}

Release() {
// Short busy-wait time
mutex_spinlock.lock();
if (!waiting.empty()) {

// take thread off wait queue
// place it on ready queue

} else {
value = FREE;

}
mutex_spinlock.unlock();

}

Mutex Implementation in Linux

• Most mutexes are free most of the time
• Linux implementation takes advantage of this fact

• Hardware supports powerful atomic operations
• E.g., atomic increment, decrement, exchange, etc.
• Linux implementation takes advantage of these too

• Fast path
• If mutex is unlocked, and no one is waiting, two instructions to lock
• If no one is waiting, two instructions to unlock

• Slow path
• If mutex is locked or someone is waiting, use take 3 implementation

Mutex Implementation in Linux (cont.)

struct Mutex {

// 1: unlocked; < 1: locked

atomic_t count;

Spinlock mutex_spinlock;

Queue waiting;

}

// code for lock()
lock decl (%eax)
// jump if not signed
// i.e., if value is now 0
jns 1f
call slow_path_lock
1:
//critical section

• For Mutex::lock(), Linux uses macro
• To void making procedure call on fast path

• x86 lock prefix before decl instruction signifies to processor
that instruction should be executed atomically

Mutex Implementations: Discussion

• Our lock implementations are procedure calls

• Work well for kernel threads

• Does not work properly for user threads
• Because system call may often disable interrupts/save state to TCB
• But same basic idea works – e.g., in Linux, user-level mutex has two paths - Fast path:

lock using test&set and slow path: system call to kernel, use kernel mutex

• How do lock–initiated and timer-interrupt-initiated switches interleave?
• Turns out, they just work as long as we maintain the inv ariant on interrupts -disable

before calling thread_switch() and enable when thread_switch() returns

Recall: Semaphores

• First defined by Dijkstra in late 60s
• Main synchronization primitive used in original UNIX
• Semaphore has non-negative integer value and 2 operations

• P(): atomic operation that waits for semaphore to become positive,
then decrements it by one

• V(): atomic operation that increments semaphore by one,
then wakes up a waiting P(), if any

Value=2Value=1Value=0Value=1Value=0

Implementation of Semaphore

Semaphore::P() {

semaphore_spinlock.lock();

if (value == 0) {

waiting.add(myTCB);

scheduler->suspend(&semaphore_spinlock);

} else {

value--;

}

semaphore_spinlock.unlock();

}

Semaphore::V() {

semaphore_spinlock.lock();

if (!waiting.empty()) {

next = waiting.remove();

scheduler->make_ready(next);

} else {

value++;

}

semaphore_spinlock.unlock();

}

Can interrupt handler use this semaphore?
• It cannot use P (why?), but it might want to use V (more on this later)
• In that case, interrupts should be disabled at the beginning of P and V and enabled at the end

Semaphores are Harmful!

“During system conception it transpired that we used the
semaphores in two completely different ways. The difference
is so marked that, looking back, one wonders whether it was
really fair to present the two ways as uses of the very same
primitives. On the one hand, we have the semaphores used
for mutual exclusion, on the other hand, the private
semaphores.”

Dijkstra “The structure of the ’THE’-Multiprogramming System” Communications of the ACM v. 11 n. 5 May 1968.

Monitors and Condition Variables

• Problem: analyzing code that uses semaphores is complex

• They are dual purpose (both mutual exclusion and scheduling constraints)

• Solution: use monitors

• It consists of one mutex with zero or more condition variables (CV)

• Mutex is used for mutual exclusion, CV’s are used for scheduling constraints

Recall: Condition Variables

• CV is queue of threads waiting for an event inside critical section
• Makes it possible to go to sleep inside critical section
• Atomically unlocks mutex at time thread goes to sleep
• With semaphores, threads cannot wait inside critical section (deadlock)

• CV operations
• wait(Mutex *CVMutex)

• Atomically unlocks mutex, puts thread to sleep, and relinquishes processor
• Attempts to locks mutex when thread wakes up

• signal()

• Wakes up a waiter, if any
• broadcast()

• Wakes up all waiters, if any

Recall: Properties of CV

• Condition variables are memoryless
• No internal memory except a queue of waiting threads
• No effect in calling signal/broadcast on empty queue

• ALWAYS hold lock when calling wait(), signal(), broadcast()

• Calling wait() atomically adds thread to wait queue and releases lock

• Re-enabled waiting threads may not run immediately
• No atomicity between signal/broadcast and the return from wait

Recall: CV Design Pattern

method_that_waits() {

mutex.lock();

// Read/write shared state

while (!testSharedState())

cv.wait(&mutex);

// Read/write shared state

mutex.unlock();

}

method_that_signals() {

mutex.lock();

// Read/write shared state

// If testSharedState is now true

cv.signal();

// Read/write shared state

mutex.unlock();

}

Example: Bounded Buffer With
Monitors

Mutex BBMutex;
CV emptyCV, fullCV;

produce(item) {
BBMutex.lock(); // lock the mutex
while (buffer.size() == MAX) // wait until there is space

fullCV.wait(&BBMutex);
buffer.enqueue(item);
emptyCV.signal(); // signal waiting costumer
BBMutex.unlock(); // unlock the mutex

}

consume() {
BBMutex.lock(); // lock the mutex
while (buffer.isEmpty()) // wait until there is item

emptyCV.wait(&BBMutex);
item = buffer.dequeue();
fullCV.signal(); // signal waiting producer
BBMutex.unlock(); // unlock the mutex
return item;

}

Mesa vs. Hoare Monitors

• Consider piece of consume() code
while (queue.empty())

emptyCV.wait(&mutex);

• Why didn’t we do this?
if (queue.empty())

emptyCV.wait(&mutex);

• Answer: it depends on the type of scheduling
• Hoare style
• Mesa style

Hoare Monitors

• Signaler gives up mutex and processor to waiter – waiter runs
immediately
• Waiter gives up mutex and processor back to signaler when it

exits critical section or if it waits again

mutex.lock()
…
if (queue.empty())
emptyCV.wait(&mutex);

…
mutex.unlock();

…
mutex.lock()
…
emptyCV.signal();
…
mutex.unlock();

mutex & CPU

mutex & CPU

Mesa Monitors

• Signaler keeps mutex and processor
• Waiter placed on ready queue with no special priority
• Practically, need to check condition again after wait
• Most real operating systems

Put waiting thread
on ready queue

schedule waiting

thread

mutex.lock()
…
while (queue.empty())
emptyCV.wait(&mutex);

…
mutex.unlock();

…
mutex.lock()
…
emptyCV.signal();
…
mutex.unlock();

Mesa Monitor: Why “while()”?

• What if we use “if” instead of “while” in bounded buffer example?

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

produce(item) {
mutex.lock();
if (queue.size() == MAX)
fullCV.wait(&mutex);

queue.add(item);
emptyCV.signal();
mutex.unlock();

}

Use “if” instead of “while”

Mesa Monitor: Why “while()”? (cont.)

T1 (Running)

queue mutex: unlocked
emptyCV queue → NULL

MonitorApp. Shared State

Running: T1
ready queue → NULL
…

CPU State

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

Mesa Monitor: Why “while()”? (cont.)

T1 (Running)

queue mutex: locked (T1)
emptyCV queue → NULL

MonitorApp. Shared State

Running: T1
ready queue → NULL
…

CPU State

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

Mesa Monitor: Why “while()”? (cont.)

T1 (Waiting)

queue mutex: unlocked
emptyCV queue →T1

MonitorApp. Shared State

Running:
ready queue → NULL
…

CPU State

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

wait(&lock) puts thread
on emptyCV queue and
releases lock

Mesa Monitor: Why “while()”? (cont.)

T1 (Waiting)

queue mutex: unlocked
emptyCV queue →T1

MonitorApp. Shared State

Running: T2
ready queue → NULL
…

CPU State

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

produce(item) {
mutex.lock();
if (queue.size()==MAX)
fullCV.wait(&mutex);

queue.add(item);
emptyCV.signal();
mutex.unlock();

}

T2 (Running)

Mesa Monitor: Why “while()”? (cont.)

T1 (Waiting)

queue mutex: locked (T2)
emptyCV queue →T1

MonitorApp. Shared State

Running: T2
ready queue → NULL
…

CPU State

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

produce(item) {
mutex.lock();
if (queue.size()==MAX)
fullCV.wait(&mutex);

queue.add(item);
emptyCV.signal();
mutex.unlock();

}

T2 (Running)

Mesa Monitor: Why “while()”? (cont.)

T1 (Ready)

queue mutex: locked (T2)
emptyCV queue → NULL

MonitorApp. Shared State

Running: T2
ready queue →T1
…

CPU State

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

produce(item) {
mutex.lock();
if (queue.size()==MAX)
fullCV.wait(&mutex);

queue.add(item);
emptyCV.signal();
mutex.unlock();

}

T2 (Running)
signal() wakes up and
moves it to ready queue

Mesa Monitor: Why “while()”? (cont.)

T1 (Ready)

queue mutex: locked (T2)
emptyCV queue → NULL

MonitorApp. Shared State

Running: T2
ready queue →T1, T3
…

CPU State

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

produce(item) {
mutex.lock();
if (queue.size()==MAX)
fullCV.wait(&mutex);

queue.add(item);
emptyCV.signal();
mutex.unlock();

}

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

T2 (Running) T3 (Ready)

Mesa Monitor: Why “while()”? (cont.)

T1 (Ready)

queue mutex: unlocked
emptyCV queue → NULL

MonitorApp. Shared State

Running:
ready queue →T1, T3
…

CPU State

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

produce(item) {
mutex.lock();
if (queue.size()==MAX)
fullCV.wait(&mutex);

queue.add(item);
emptyCV.signal();
mutex.unlock();

}

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

T2 (Terminated) T3 (Ready)

Mesa Monitor: Why “while()”? (cont.)

T1 (Ready)

queue mutex: unlocked
emptyCV queue → NULL

MonitorApp. Shared State

Running: T3
ready queue →T1
…

CPU State

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

T3 (Running)
T3 is scheduled first

Mesa Monitor: Why “while()”? (cont.)

T1 (Ready)

queue mutex: locked (T3)
emptyCV queue → NULL

MonitorApp. Shared State

Running: T3
ready queue →T1
…

CPU State

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

T3 (Running)

Mesa Monitor: Why “while()”? (cont.)

T1 (Ready)

queue mutex: locked (T3)
emptyCV queue → NULL

MonitorApp. Shared State

Running: T3
ready queue →T1
…

CPU State

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

T3 (Running)

Mesa Monitor: Why “while()”? (cont.)

T1 (Ready)

queue mutex: unlocked
emptyCV queue → NULL

MonitorApp. Shared State

Running:
ready queue →T1
…

CPU State

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

T3 (Terminated)

Mesa Monitor: Why “while()”? (cont.)

T1 (Running)

queue mutex: locked (T1)
emptyCV queue → NULL

MonitorApp. Shared State

Running: T1
ready queue → NULL
…

CPU State

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

Mesa Monitor: Why “while()”? (cont.)

T1 (Running)

queue mutex: locked (T1)
emptyCV queue → NULL

MonitorApp. Shared State

Running: T1
ready queue → NULL
…

CPU State

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

Error!

Mesa Monitor: Why “while()”? (cont.)

T1 (Running)

queue mutex: locked (T1)
emptyCV queue → NULL

MonitorApp. Shared State

Running: T1
ready queue → NULL
…

CPU State

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

Check again if
empty!

Mesa Monitor: Why “while()”? (cont.)

T1 (Waiting)

queue mutex: unlocked
emptyCV queue →T1

MonitorApp. Shared State

Running:
ready queue → NULL
…

CPU State

consume() {
mutex.lock();
if (queue.empty())
emptyCV.wait(&mutex);

item = queue.remove();
fullCV.signal();
mutex.unlock();
return item;

}

Mesa Monitor: Why “while()”? (cont.)

When waiting upon a Condition, a spurious wakeup is permitted
to occur, in general, as a concession to the underlying platform
semantics. This has little practical impact on most application
programs as a Condition should always be waited upon in a loop,
testing the state predicate that is being waited for

From Java User Manual

Condition Variable vs. Semaphore

• CV’s signal() has no memory
• If signal() is called before wait(), then signal is waisted

• Semaphore’s V() has memory
• If V() is called before P(), P() will not wait

• Generally, it’s better to use monitors but not always
• Example: interrupt handlers

• Shared memory is used concurrently by interrupt handler and kernel thread
• Interrupt handler cannot use mutexes
• Kernel thread checks for data and calls wait() if there is no data
• Interrupt handler write to shared memory and calls signal()

• This is called naked notify because interrupt handler hasn’t locked mutex (why?)

• This may not work if signal comes before kernel thread calls wait
• Common solution is to use semaphores instead

Implementation of Condition Variables

class CV {

private:

Queue waiting;

public:

void wait(Mutex *mutex);

void signal();

void broadcast();

}

CV::signal() {

if (!waiting.empty()) {

thread = waiting.remove();

scheduler.make_ready(thread);

}

}

Why doesn’t class CV need cv_spinlock?
• Since mutex is locked whenever wait, signal, or broadcast is called, we

already have mutually exclusive access to condition wait queue

CV::wait(Mutex *mutex) {

waiting.add(myTCB);

scheduler.suspend(&mutex);

mutex->lock();

}

void CV::broadcast() {

while (!waiting.empty()) {

thread = waiting.remove();

scheduler.make_ready(thread);

}

}

Implementation of Condition Variable
using Semaphores (Take 1)

• Does this work?
• No! signal() should not have memory!

wait(*mutex) {
mutex->unlock();
semaphore.P();
mutex->lock();

}

signal() {
semaphore.V();

}

Implementation of Condition Variable
using Semaphores (Take 2)

• Does this work?
• No! For one, not legal to look at contents of semaphore’s queue.
• But also, unlocking mutex and going to sleep should happen atomically

– signaler can slip in after mutex is unlocked, and before waiter is put
on wait queue, which means waiter never wakes up!

wait(*mutex) {
mutex->unlock();
semaphore.P();
mutex->lock();

}

signal() {
if (semaphore’s queue is not empty)

semaphore.V();
}

Implementation Condition Variable
using Semaphores (Take 3)

Key idea: have separate semaphore for each waiting thread
and put semaphores in ordered queue

wait(*mutex) {
semaphore = new Semaphore; // a semaphore per waiting thread
queue.add(semaphore); // queue for waiting threads
mutex->unlock();
semaphore.P();
mutex->lock();

}

signal() {
if (!queue.empty()) {

semaphore = queue.remove()
semaphore.V();

}
}

Summary

• Use HW atomic primitives as needed to implement synchronization
• Disabling of Interrupts, test&set, swap, compare&swap

• Define lock variable to implement mutex,
• Use HW atomic primitives to protect modifications of that variable

• Maintain the invariant on interrupts
• Disable interrupts before calling thread_switch() and enable them when

thread_switch() returns

• Be very careful not to waste machine resources
• Shouldn’t disable interrupts for long
• Shouldn’t busy-wait for long

Questions?

globaldigitalcitizen.org

Acknowledgment

• Slides by courtesy of Anderson, Culler, Stoica,
Silberschatz, Joseph, and Canny

