

Lecture 6:
Real-time Systems
Prof. Seyed Majid Zahedi
https://ece.uwaterloo.ca/~smzahedi

https://ece.uwaterloo.ca/~smzahedi

Outline

• Real-time systems
• Definitions and features

• Real-time operating systems
• Desirable properties, interrupt handling, memory management

• Uniprocessor real-time scheduling
• RM, EDF, LLF, …
• Priority inversion

• Multiprocessor scheduling
• Different scheduling classes, remote blocking

Real-time Systems (RTSes)

• Definition
• Systems whose correctness depends on their temporal aspects as

well as their functional aspects

• Performance measure
• Timeliness on timing constraints (deadlines)
• Speed/average case performance are less significant

• Key property
• Predictability on timing constraints

Types of Real-time Systems

• Soft: must try to meet all deadlines
• System does not fail if a few

deadlines are missed

• Firm: result has no use outside
deadline window
• Tasks that fail are discarded

• Hard: must always meet all deadlines
• System fails if deadline window is missed

Va
lue

/u
se

fu
lne

ss

Deadline Time

Va
lue

/u
se

fu
lne

ss

Deadline Time

Va
lue

/u
se

fu
lne

ss
Deadline Time

Real-time Spectrum

Computer
simulation

User
interface

Internet
video/audio

Cruise
control

Tele-
communication

Flight
control

Electronic
engine

Soft RTNo RT Hard RT

General-purpose OS are Inadequate
for RTSes

• Multitasking/scheduling
• Provided through system calls
• Does not take time into account and could introduce unbounded delays

• Interrupt management
• Achieved by setting interrupt priority more than process priority
• Increases system reactivity but may cause unbounded delays even due to

unimportant interrupts

• Basic IPC and synchronization primitives
• May cause priority inversion
• Causes unbounded delays

Real-time Operating System (RTOS):
Desirable Properties

• Predictability
• Guaranteeing in advance deadline satisfaction
• Notifying when deadline cannot be guaranteed

• Timeliness
• Handling tasks with explicit time constraints

• Fault tolerance
• Avoiding crashes even with HW/SW failures

• Design for peak load
• All scenarios must be considered

• Maintainability

Microarchitecture

• I/O devices and CPU typically share the same bus
• DMA steals CPU memory cycle to

transfer data (cycle stealing)
• CPU waits until the transfer is completed

• Source of non-determinism!
• Possible solution: time-slice method

• Each memory cycle is split in two adjacent
time slots one for CPU one for DMA

• More costly, but more predictable!

• Caches speedup execution by keeping data close to CPU
• The same load/store instruction could experience different delays depending

on hitting or missing in cache ⇒ source of non-determinism!
• Possible solution: processors without cache

• Slow execution, but more predictable!

System Calls and Interrupts

• System call handler is usually non-preemptable
• Real-time task could be delayed while handler runs
• Delays could lead to missed deadlines
• Possible solution: make all kernel primitives,

including system call handlers, preemptable!

• Interrupt handler should remain non-preemptable
• Interrupt handler runs immediately when interrupts happen
• While handler runs, execution of interrupted task is delayed
• Solution1: disable all interrupts, only keep timer interrupt, tasks directly communicate

with any I/O devices they need, data is transferred by polling
• + Unbounded delays due to unexpected device handling is eliminated
• + Time for data transfers can be estimated precisely
• + No change of kernel is needed when adding devices
• − Performance of processor is degraded (busy waiting)
• − Tasks must know low level details of drives

System Calls and Interrupts (cont.)

• Solution II: disable interrupts, only keep timer interrupts, handle I/O by timer-activated device
routines within kernel tasks, data is transferred by polling
• + Unbounded delays due to unexpected device handling is eliminated
• + Execution time of periodic device routines can be estimated in advance
• + Hardware details are encapsulated in dedicated device routines
• − Performance of processor is degraded (still busy waiting for I/O)
• − Kernel has to be modified every time new device is added
• − Communicating with devices involves more inter-task communications than first solution

• Solution III: enable interrupts, reduce device drivers to least possible size, driver activates
proper task to handle device, kernel runs driver-activated tasks like any other task, user tasks
may have higher priority than driver-activated tasks
• + Busy waiting is eliminated
• + Kernel doesn’t need to be modified when adding new devices!
• o Communicating with devices may still involve some inter-task communications
• o Unbounded delay due to unexpected device handling is not eliminated but is dramatically reduced

Memory Management

• General-purpose OSes allow each process to access only its own virtual address
• Virtual and physical address spaces are divided into virtual and physical pages

• Virtual to physical page translations are stored in memory as page tables (PT)

• To speedup memory accesses, PT entries are cached in translation lookaside buffer (TLB)

• TLBs introduce non-deterministic delay (hit or miss)
• Possible solution: avoid using virtual memory, allow user tasks to use physical memory

• When memory is full, most OSes swap out some pages to make room for others
(this is called paging, more about it later!)
• Accessing evicted pages causes page fault

• Page fault handling & page replacement policy cause non-deterministic delays
• Possible solution: use selective page locking to increase determinism

Programming Languages

• Dynamic memory operations (e.g., malloc and free) are unpredictable
• Memory allocator runs non-deterministic space optimization algorithms
• Requests could fail due to fragmentation even if there is free memory

• Possible solution: partition memory into fixed-size blocks (partition pools)
• Another solution: prevent dynamic data structures all together

• Flexibility is reduced in dynamic environment

• Recursion could lead to unbounded execution time
• Possible solution: only allow time-bound loops

• Example of RT programming languages
• Real-Time Java, Concurrent C, Euclid

Defragmentation is not
feasible, all copies of p2

become broken if OS moves
allocated

p1 = malloc(3)

p2 = malloc(4)

free(p1)

p1 = malloc(4)

Scheduling

• General-purpose schedulers are system-oriented
• Maximize avg. system throughput

• RTSes need task-centric scheduling
• Minimize worst-case response time for each task
• Predictability ≠ fast computing

• Real-time tasks
• Periodic: set of jobs arriving at fixed period (p)

• Each job has worst-case execution time (e) and hard relative deadline (d ≤ p, usually d = p)
• Utilization of task is e / p

• Aperiodic: arrive randomly without any hard deadline
• Sporadic task arrives randomly with hard deadline
• Independent vs. interdependent and preemptable vs. non-preemptable

T: (7, 4)

Period = Relative deadline

Execution
time

Terminology of Real-time Scheduling

• Static scheduling: priority of each task does not change over time
• E.g., rate monotonic (RM)

• Dynamic scheduling: priority of each job does not change over time
• E.g., earliest deadline first (EDF)

• Fully-dynamic scheduling: priority of each job could change over time
• E.g., least laxity first (LLF)

• Schedule S is feasible if all deadline are met

• Task set T is schedulable under scheduling class C if there exists scheduling
algorithm A in C that produces feasible schedule for T

• Scheduling algorithm A is optimal w.r.t. scheduling class C if it produces feasible
schedule for any schedulable task set T under C

General-purpose Schedulers for RTSes

• RR example:

100 5

T1: (2, 1)

T2: (5, 1)

T3: (10, 3)

T2 missed its
deadline!

Rate Monotonic (RM)

• RM makes following assumptions
• Tasks are periodic and independent with known and fixed execution times

• RM is static online scheduling policy
• Higher priorities are assigned to tasks with shorter periods
• Priority of each task is fixed and doesn’t change at run-time
• RM is optimal w.r.t. static schedulers

100 5

T1: (2, 1)

T2: (5, 1)

T3: (10, 3)

RM: Schedulability

0 5 10

T1: (3, 1)

T2: (5, 2)

T3: (8, 2)

T3 missed
its deadline!

RM: Schedulability Test [Liu & Layland 1973]

• For n periodic tasks with execution time ei and deadline and period pi, RM
is guaranteed to produce feasible schedule if

• If condition does not hold, then deadlines may or may not be met!
• Example: T1(3,1), T2(5,2), T3(8,2)

• 1/3 + 2/5 + 2/8 (= 0.9833) ≥ 3(21/3-1) (≈ 0.78) ⇒No guarantee!

nX

i=1

✓
ei
pi

◆
 n(21/n � 1)

<latexit sha1_base64="BXoMJfOQdEPxj0tgAHTZNZVLptM=">AAACJXicbVBNTxsxEPVCoTR8peXIxSpCCgfCGoTaA0WR4NAjSA0gZcPK68wmFl7vyp5Fiqz9C1z4B730r3CAA6iq1FN/Btc6CYcWeNKMnt6bkT0vKZS0GIa/g6npNzOzb+fe1eYXFpeW6+8/nNi8NALaIle5OUu4BSU1tFGigrPCAM8SBafJxcHIP70EY2Wuv+GwgG7G+1qmUnD0Ulzfi2yZxU5+YdW501WkIMVGlBouHMSycoVvkZH9AW5Qb1JNG9vnjm3papNtxPW1sBmOQV8S9kTWWodXt/vs+vEorj9EvVyUGWgUilvbYWGBXccNSqGgqkWlhYKLC96HjqeaZ2C7bnxlRde90qNpbnxppGP13w3HM2uHWeInM44D+9wbia95nRLTz10ndVEiaDF5KC0VxZyOIqM9aUCgGnrChZH+r1QMuI8IfbA1HwJ7fvJLcrLdZDvN3WOfRotMMEdWyUfSIIx8Ii3ylRyRNhHkO7kh9+Qh+BHcBT+DX5PRqeBpZ4X8h+DPXxGvqJ0=</latexit> U
tili

za
tio

n
Number of tasks

Earliest Deadline First (EDF)

• EDF is dynamic online scheduling policy
• Scheduler always schedules active task with earliest deadline
• Current priority of tasks depends on how close their deadline is
• Tasks’ priorities change during execution
• EDF is optimal w.r.t. all online schedulers

0 5 10 15

T1: (3, 1)

T2: (5, 2)

T3: (8, 2)

EDF: Schedulability Test [Liu & Layland 1973]

• Even EDF won't work if you have too many tasks
• For n periodic tasks with execution time ei and deadline and

period pi, EDF is guaranteed to produce feasible schedule if

• System is overloaded if

nX

i=1

✓
ei
pi

◆
 1

<latexit sha1_base64="WW40Mp6CJIH3eL0WAGbjdRXYZLo=">AAACGXicbVA9SwNBEN3zM8avqKXNogjahDtFtFECWlgqGBVy8djbzCWLe3vH7pwQjvsLNoKNf8XGQhGx0spfYusmsfDrwQyP92bYnRemUhh03XdnaHhkdGy8NFGenJqema3MzZ+YJNMc6jyRiT4LmQEpFNRRoISzVAOLQwmn4cVezz+9BG1Eoo6xm0IzZm0lIsEZWimouL7J4iAXO15xnqvClxDhqh9pxnMIRJGntvlatDu4Rq1JvaCy7FbdPuhf4n2R5dr+1cuud/1xGFRe/VbCsxgUcsmMaXhuis2caRRcQlH2MwMp4xesDQ1LFYvBNPP+ZQVdsUqLRom2pZD21e8bOYuN6cahnYwZdsxvryf+5zUyjLabuVBphqD44KEokxQT2ouJtoQGjrJrCeNa2L9S3mE2FrRhlm0I3u+T/5KT9aq3Ud08smnUyAAlskiWyCrxyBapkQNySOqEkxtyRx7Io3Pr3DtPzvNgdMj52lkgP+C8fQI/eaTD</latexit>

nX

i=1

✓
ei
pi

◆
> 1

<latexit sha1_base64="q0lWOAKYd34maMmCkS7lzfgVf7k=">AAACF3icbVA9SwNBEN3z2/gVtbRZFEGbcKeINoaAFpYKRoVcPPY2c8ni3t6xOyeE4/6CjTb+FRsLRSxstPOX2LpJLPx6MMPjvRl254WpFAZd990ZGh4ZHRufmCxNTc/MzpXnF05MkmkOdZ7IRJ+FzIAUCuooUMJZqoHFoYTT8GKv559egjYiUcfYTaEZs7YSkeAMrRSUK77J4iAXu15xnqvClxDhmh9pxnMIRJGntvlatDu4TqvUC8orbsXtg/4l3hdZqe1fvVS964/DoPzmtxKexaCQS2ZMw3NTbOZMo+ASipKfGUgZv2BtaFiqWAymmffvKuiqVVo0SrQthbSvft/IWWxMNw7tZMywY357PfE/r5FhtNPMhUozBMUHD0WZpJjQXki0JTRwlF1LGNfC/pXyDrOhoI2yZEPwfp/8l5xsVLzNytaRTaNGBpggS2SZrBGPbJMaOSCHpE44uSF35IE8OrfOvfPkPA9Gh5yvnUXyA87rJ2Wdo8A=</latexit>

• EDF schedule could be suboptimal for overloaded system
• Domino effect example: T1(4,3), T2(5,3), T3(6,3), T4(7,3)

• Better schedules

Overloaded System under EDF

T1 T2 T3 T4

0 5 10

T1 T3

0 5 10

T1 T4

0 5 10

• LLF dynamically assigns priority to jobs based on their laxity (slack)
• With absolute deadline d and remaining execution time e, laxity at time t is l = d – t – e

• Job with the smallest laxity has the highest priority
• LLF is also optimal w.r.t. all online schedulers
• LLF is impractical to implement because laxity tie results in frequent context switches

e

Least Laxity First (LLF)

t d

l

3
3

l1
l2

2.5
2.5

2
2

1.5
1.5 1

T2: (5, 2)

0 5
T3: (6, 3)

RM vs. EDF vs. LLF

• Rate monotonic (RM)
• Simpler implementation, even in systems without explicit support for

timing constraints (periods, deadlines)
• Predictability for highest priority tasks

• Earliest deadline first (EDF)
• Full processor utilization
• Misbehavior during overload conditions

• Least laxity first (LLF)
• Full processor utilization
• Misbehavior when there are jobs with equal laxity

Scheduling Mixed Periodic and
Aperiodic Tasks

• One idea: run aperiodic tasks as soon as they arrive
• Response time for aperiodic tasks is minimized, but it’s unbounded for periodic tasks

• Another idea: assign aperiodic tasks lowest priority (run if no periodic task runs)
• Simple, bad response time for aperiodic tasks (applicable if they have no strict timing requirement)

• Better idea: aperiodic tasks can be served by periodically invoked server
• Server can be accounted for in periodic task schedulability analysis
• Server has period ps and budget Bs
• Server can serve aperiodic tasks until budget expires
• Servers have different flavors depending on details of when they are invoked, what priority they

have, and how budgets are replenished

Aperiodic Tasks

Periodic Tasks

Server

Ready Queue

CPU

Polling Server (PS)

• Periodic tasks and PS are scheduled based on RM
• Aperiodic arrivals are queued until PS is invoked
• At the beginning of its period, PS serves queued aperiodic tasks
• PS suspends itself when queue becomes empty or budget expires
• PS is treated as regular periodic task in schedulability analysis

Aperiodic Tasks

PS: (5,2)

T1: (4,2)

Why aren’t we running these right away?

Budget over time

Deferrable Server (DC)

• Basic approach is like polling server
• DS preserves its budget when queue becomes empty

• But no cumulation: at the beginning of period, budget is reset to its full value

• DS is demand driven
• Periodic tasks are ready to run at the beginning of their periods
• DS can run during its period only in response to aperiodic-task arrivals

Aperiodic Tasks

DS: (5,2)

T1: (4,2)

Budget over time

Although DS has budget, its priority is lower than T1

Total-bandwidth Server (TBS)

• Periodic tasks and TBS are scheduled based on EDF
• Aperiodic and periodic tasks are both inserted in the same ready queue
• Aperiodic tasks are artificially assigned deadline such that TBS’s utilization does

not exceed its given bandwidth UTBS

• Aperiodic task Ti with computation time Ci arriving at time ai is assigned
deadline di = max(di-1, ai) + Ci / UTBS

• Example: T1(3,1) and T2(6,2),
• T1 and T2 are schedulable if UTBS ≤ 1 – 2/3 = 1/3

T2: (6,2)

a1=1, C1=1 d1=1+1/(1/3)=4

a2=3, C2=0.5 d2=max(3,4)+
0.5/(1/3)=5.5

a3=8, C3=2 d3=8+2/(1/3)=14

a4=9, C4=0.5 d4=max(9,14)+
0.5/(1/3)=15.5

T1: (3,1)

Aperiodic Tasks
0 5 10 15

Scheduling Interdependent Tasks:
Synchronization

• Problem of deciding whether it is possible to schedule set of periodic tasks, that
use semaphores to enforce mutual exclusion is NP-hard [1]

• General-purpose synchronization primitives allow priority inversion
• High-priority task is indirectly preempted by lower-priority task

Lock R1

Lock R1 Lock R1Lock R1

H blocked

H

M

L

5 10 15

Pr
io

rit
y

Time

How long does this take?Try R1, block

Release R1
[1] A.K. Mok, ‘‘Fundamental Design Problems of Distributed Systems for Hard Real Time Environments’’, PhD Thesis, Laboratory for Computer Science (MIT), MIT/LCS/TR-297. (1983).

Priority Inversion and MARS Pathfinder

• Landed on Martian surface on July 4th, 1997

• After it started gathering data, it began experiencing
total system resets, each resulting in losses of data
• Pathfinder had single shared information bus used by

low and high-priority tasks
• Low-priority task ran infrequently and used bus to

publish its data, while holding mutex on bus
• Every system reset started by low-priority task

getting interrupted while holding mutex
• Interrupt handler scheduled medium-priority task
• High-priority task was blocked waiting for low-priority task

which was waiting for medium-priority task to finish
• After some time, watchdog timer went off,

noticing that bus has not been executed for some time,
it concluded that something had gone bad,
and initiated total system reset

• PIP increases priority of task to maximum priority of any task waiting for
any resource locked by the task
• If lower-priority task L has locked any resources required by higher-priority

task H, then priority of L is increased to priority of H
• Once task unlocks resources, it runs with its original priority

• PIP does not prevent deadlock

Lock R1

Priority-inheritance Protocol (PIP)

Lock R2

Lock R1

H

L

Try R1, block

Try R2, deadlock

• PIP does not prevent chained blocking

• H must wait for L and M

PIP and Chained Blocking

Lock R2

Lock R1Lock R1

L inherits M’s priority Release R1

Lock R1

Lock R1 and R2

Lock R2H

M

L

Try R1, block

Release R1

Try R2, block M inherits H’s priority

Priority-ceiling Protocol (PCP)

• Each resource is assigned priority ceiling
• Equal to the highest priority of any task that can lock it

• Each task can lock resources only if its priority is higher than priority
ceilings of all resources currently locked by other tasks

• Each task runs at its assigned priority unless it has locked any
resource needed by higher priority task

• After task unlocks resources, it runs with its original priority

• PCP prevents deadlocks

Lock R1Lock R1

Try R2, block (because priority is
not higher than ceiling of R1)

L inherits H’s priority

Lock R1 and R2 Lock R1

H

L

Lock R2

Lock R1

L inherits M’s priority

PCP Prevents Chained Blocking

• H does not wait for L

Lock R2

Lock R1

Release R1

Lock R1 and R2

H

M

L

Try R2, block
(M is not higher than

ceiling of R1)

Lock R2

EDF and Deadline Interchange

• Deadline interchange is analogous to priority inversion

• Task which has locked resources could be preempted by
another task with earlier deadline that needs those resources

• To avoid this, scheduler should assign to running task earliest
deadline from among other tasks waiting for it

Multiprocessors and Remote Blocking

• In uniprocessors, it is acceptable if high-priority task pre-empts lower-priority ones

• In multiprocessors, this is not necessarily desirable
• Example: high-priority task H and low-priority task L are assigned to CPU1

• Medium-priority task M runs on CPU2

• H is more important than either M or L, but is it more important than M and L?

HL

M

H arrives L unlocks R1

Try R1, block

L

H is doneL Locks R1

M

CPU1

CPU2

Time
H blocks both L and M

Multiprocessor Scheduling

• No migration (partitioned): each task and its jobs must run on single CPU
• Restricted migration: each job must run on single CPU

• Different jobs of the same task may run on different CPUs

• Full migration: each job can migrate between CPUs

No
Migration

Restricted
Migration

Full
Migration

Static (S,N) (S,R) (S,F)

Dynamic (D,N) (D,R) (D,F)

Fully Dynamic (F,N) (F,R) (F,F)

(.,N)-based Schedulers

• Finding optimal assignment of N periodic tasks to M CPUs is equivalent to bin-packing

• It’s NP-hard problem

• Several polynomial-time heuristics have been proposed
• First fit: assign each task to CPU that can accept it

(based on feasibility test according to that CPU’s uniprocessor scheduler)
• Best fit: assign each task to CPU that can accept it and will have minimal remaining spare capacity

• Worst-case utilization is (M+1)/2
• E.g., M+1 tasks with e = 1 + 𝜀 and p = 2 cannot be scheduled by any (.,N) scheduler
• Almost half of resources could be left underutilized

Some Other Scheduling Classes

• (D,R)-based: jobs have fixed priority and must run on single CPU
• Suitable for task sets in which each job has considerable amount of state

(it is not desirable to migrate jobs between processors)

• (D,F)-based: jobs have fixed priority but can migrate
• Preemption, and hence migration, can only happen because of new job arrival
• E.g., global EDF: use single ready queue for all CPUs, set priorities according to EDF

• No longer optimal: T1(10,5), T2(10,5), T3(11,7) on 2 CPUs
• EDF runs T1 and T2 first in parallel ⇒T3 misses its deadline

• (S,F)-based: tasks have fixed priority, jobs can migrate
• E.g., global RM: us single ready queue for all CPUs, set priorities according to RM

• Worst-case utilization of any (x,y)-based scheduler is (M+1)/2, unless x = y = F [1]

[1] Carpenter, J., Funk, S., Holman, P., Srinivasan, A., Anderson, J. H., & Baruah, S. K. (2004). A Categorization of Real-Time Multiprocessor Scheduling Problems and Algorithms.

(F,F)-based Schedulers

• Global LLF: use single ready queue for all CPUs, set priorities based on LLF
• It schedules any instance that global EDF can schedule
• Like global EDF, it is not optimal

• P-fair scheduling: allocate CPU time to enforce proportionate progress
• Is optimal (both for uniprocessors and multiprocessors)
• Produces feasible schedule for M CPUs and any task set T with UT ≤ M

P-fairness

• Main idea: allocate CPU time to each task i in proportion to its weight wi = e i / pi

• Divide time into small time quanta
• All parameters are integer multiples of time quantum (e.g., ei, pi ∈ ℤ+)

• Define lag for each task to captures discrepancy between what it should have received and
what it actually received
• lag(i,t) = t x wi – allocated(i,t)

• Schedule S is periodic if and only if for all task i and any integer k
• allocated(i,k x pi) = k x ei

• Schedule S is P-fair if and only if for all task i and time t
• –1 < lag(i,t) < 1

• Any P-fair schedule is periodic
• At t = k x pi, allocated(i,t) and t x wi are both integers ⇒ allocated(i,t) = k x ei
• Periodic schedules aren’t necessarily P-fair (why?)

• Divide task i into quantum-sized subtasks
• Tij denotes the jth subtask of task I

• Pseudo-release: Let r(i,j) denote the earliest time Tij could be scheduled
• r(i,j) = min t (≥ 0): (t + 1) x wi – j > -1 = !"#

$!

• Pseudo-deadline: Let d(i,j) denote the latest time by which Tij must have been scheduled
• d(i,j) = max t (≥ 0): (t – 1) x wi – (j – 1) < 1 = !

$!

• Window: Let w(i,j) = [r(i,j),d(i,j)] denote the interval during which Tij must be scheduled
• Window overlaps, denoted by b(i,j) = d(i,j) – r(i,j+1), are either 0 or 1
• Example: T1(6,5)

• r(1,1) = 0, d(1,1) = 2

• r(1,2) = 1, d(1,2) = 3

• r(1,3) = 2, d(1,3) = 4

• …

Subtasks and Pseudo Parameters

w(1,2)
w(1,3)

w(1,4)
w(1,5)

w(1,7)

0 1 2 3 4 5 6 7 8 9

w(1,1) w(1,6)

Existence of P-fair Schedule

• Example: scheduling T1(2,1), T2(6,5), and T3(3,2) on two CPUs

• Integral flow theorem: If all edges have integral capacity, then integral maximal flow exists

• Network flow problem has integer solution ⇒ P-fair schedule exists

LCM(2,3,6)

Num of Subtasks
= Num jobs x ei

Utilization =
Num of CPUs

(if utilization is less
than num of CPUs
add dummy task)

Utilization =
Num of CPUs

T3

T1

T13

T12

T11

t=3

t=1

t=5

t=2

t=0

t=4

2 x 6

3 x 1

1 x 5

2 x 2

1

1

1

1

2

2

2

2

2

2

T1 runs at t = 1

T1 runs at t = 0

T1 runs at t = 2

T1 runs at t = 3

T1 runs at t = 4

T1 runs at t = 5

T2 runs at t = 0

T2 runs at t = 1

T2 runs at t = 2

T2 runs at t = 3

T2 runs at t = 4

T2 runs at t = 5

T3 runs at t = 0

T3 runs at t = 1

T3 runs at t = 2

T3 runs at t = 3

T3 runs at t = 4

T3 runs at t = 5

T31

T34

T32

T33

1
1
1

T2 T23

T22

T24

T21

T25

1
1

1
1
1

w(1,1)

P-fair (PF) Scheduling Algorithm

• PF priorities subtasks on earliest-pseudo-deadline-first (EPDF) basis

• At time t, Tij has higher priority than Tmn (Tij ≻ Tmn), if any of following holds
I. d(i,j) < d(m,n)

II. d(i,j) = d(m,n) and b(i,j) > b(m,n)
III. d(i,j) = d(m,n), b(i,j) = b(m,n) = 1, and Ti(j+1)≻ Tm(n+1)

• If neither subtask has priority over other, then tie can be broken arbitrarily

• Intuition behind (II): scheduling Tij earlier prevents it from shortening w(i,j+1)
• Makes it easier to schedule Ti(j+1) by its pseudo-deadline
• Similar intuition behind (III)

PF Discussion

• PF incurs very high overheads by making scheduling decisions
at every time quantum

• Also, all processors need to synchronize on boundary
between quanta when scheduling decisions are made

• Extensions to PF try to mitigate some of these problems
• E.g., PD, PD2, ERfair

Summary

• Real-time systems have strict timing constraints
• General-purpose operating systems are inadequate for real-time systems
• Real-time operating systems should provide predictability

• Memory management, interrupt handling, scheduling, etc.

• Scheduling in real-time systems is task-centric
• All tasks should meet their deadlines
• Worst-case execution time is important not average throughput

• Optimal scheduler exist for uniprocessor systems
• RM, EDF, and LLF

• Scheduling real-time tasks on multiprocessors is challenging
• Optimal uniprocessor scheduler are no longer optimal for multiprocessors
• Partitioning tasks between processors is a “hard” problem
• Optimal schedulers exist, but they typically incur high overhead

Questions?

globaldigitalcitizen.org

Acknowledgment

• Slides by courtesy of Anderson, Culler, Stoica,
Silberschatz, Joseph, Canny, Lee (Insup), Drews, and
Andersson (Björn)

