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Outline

• Principle of locality
• Temporal locality: Locality in time
• Spatial locality: Locality in space

• Cache organizations
• Direct-mapped, set-associative, fully-associative

• Major categories of cache misses
• Compulsory, conflict, capacity, coherence

• Translation lookaside buffer (TLB): caching applied to address translation
• Cache relatively small number of PTEs
• On TLB miss, page table is traversed



Caching Concept

• Cache is repository for copies that can be accessed more quickly
• Make frequent case fast and infrequent case less dominant

• Caching underlies many techniques used today to make computers fast
• We can cache memory locations, address translations, pages, file blocks, file 

names, network routes, etc…
• Only good if

• Frequent case is frequent enough and
• Infrequent case is not too expensive



Why Bother with Caching?
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Why Does Caching Help?

• Temporal locality (locality in time):
• Cache recently accessed data items

• Spatial locality (locality in space):
• Cache contiguous blocks

Address Space0 2n-1

Probability
of reference



Some Terminology

• Block: group of spatially contiguous and aligned bytes (words)
• Typical sizes are 32B, 64B, 128B

• Hit: access cache and find what we want 
• Hit time: time to hit (or discover miss)

• Miss: access cache and fail to find what we want
• Miss time: time to satisfy miss
• Misses are expensive (take a long time) ⇒ try to avoid them
• But, if they happen, amortize their costs ⇒ bring in more than just 

specific word you want ⇒ bring in whole block (multiple words)



Some Terminology (cont.)

• Hit rate = num of hits / (num of hits + num of misses)
• Miss rate = 1 – hit rate
• High hit rate means high probability of finding what we want

• Average access time = hit rate x hit time + miss rate x (hit time + miss time)
= hit time + miss rate x miss time

• Problem: hard to get low hit time and miss rate in one memory structure
• Large memory structures have low miss rate but high hit time
• Small memory structures have low hit time but high miss rate

• Solution: use hierarchy of memory structures



• Goal: bring average memory access time close to L1’s

Memory Hierarchy of Modern 
Computer Systems
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Abstract Hierarchy Performance

Avg. memory access time = Avg-timeM1

= Hit-timeM1 + (Miss-ratioM1 x Miss-timeM1)

= Hit-timeM1 + (Miss-ratioM1 x Avg-timeM2)

= Hit-timeM1 + (Miss-ratioM1 x (Hit-timeM2 + (Miss-ratioM2 x Miss-timeM2)))

= Hit-timeM1 + (Miss-ratioM1 x (Hit-timeM2 + (Miss-ratioM2 x Avg-timeM3)))

= …

Miss time at level X = Average access time at level X + 1

M1 M2 M3 M4CPU



• 8-byte cache, 32-byte memory, 1 block = 1 byte

• Assume CPU accesses 01100

• How do you know whether byte @ 01100 is cached?

Cache

Caching Questions

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

000
001
010
011
100
101
110
111

Ph
ys

ica
l M

em
or

y

(01100)



• 8-byte cache, 32-byte memory, 1 block = 1 byte

• Assume CPU accesses 01100

• How do you know whether byte @ 01100 is cached?

• If not, at which location in cache should it be placed?

Cache

Caching Questions (cont.)
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• 8-byte cache, 32-byte memory, 1 block = 1 byte

• Assume CPU accesses 01100

• How do you know whether byte @ 01100 is cached?

• If not, at which location in cache should it be placed?

• If cache is full, which cached byte should be evicted?

Cache

Caching Questions (cont.)
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Where to Put Blocks in Cache?

• Divide cache into disjoint sets of blocks
• There is 1-to-1 mapping from block address to set

• M-way set-associative cache: each set holds M number of blocks
• E.g., 4 blocks per set ⇒ 4-way set-associative cache

• Fully-associative cache: whole cache has just one set
• + Most flexible
• − Longest access latency

• Direct-mapped cache: each set has one block (= 1-way set-associative)
• + Shortest access latency
• − Least flexible



Example: Direct-mapped Cache

• Each byte (block) in physical memory is 
cached to single cache location
• Least significant bits of address (last 3 bits) index cache
• (00100),(01100),(10100),(11100) cached to 100

• How do we know which byte is cached?
• Tag each byte with the most significant two bits
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Example: Fully-associative Cache

• Each byte (block) can be stored at any location in cache

• How do you know which byte is cached?
• Tag entire address of cached byte

Cache
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Where to Put Blocks in Cache? (cont.)

• Example: where is block 12 placed in 8-block cache?

32-Block 
Address Space

Block address 0
0
0
1
0
2
0
3
0
4
0
5
0
6
0
7
0
8
0
9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9
3
0
3
1

Set number

Direct-mapped
Block 12 can go 
only into block 4 

(12 mod 8)

0 1 2 3 4 5 6 7

Fully-associative
Block 12 can go 

anywhere

0 0 0 0 0 0 0 0

2-way set-associative
Block 12 can go 

anywhere in set 0 
(12 mod 4)

0 1 2 3 0 1 2 3

First
Block

Second
Block

01 100

Tag Index

011 00

Tag Index

01100

Tag Index



How is Block Found in Cache?

• Byte select field used to select data within block
• Offset of byte in block

• Cache index used to lookup candidate blocks in cache
• Index identifies set 

• Cache tag used to identify actual copy among candidate blocks
• If no candidate matches, then declare cache miss

Byte SelectCache IndexCache Tag

Memory address



0x50

Direct-mapped Cache

• Direct-mapped 2N byte cache with block size of 2M bytes

• Uppermost (32 - N) bits of address are cache tag
• Lowest M bits are byte select, rest are cash index

• Example: 1KiB direct-mapped cache with 32B blocks
• Log232 = 5 bits for byte select, 32 – Log21024 = 22 bits for cache tag
• 32 – 5 – 22 = 5 bits for cache index

Example: 0x50 0x000x01

Byte SelectCache IndexCache Tag
0431 9

Memory address

31

:

Valid
Bit Cache Tag Cache Data

0
1

2

3

:

B0B1B31 :

B33B63

B992B1023 :
:

B32:
Cache structure

1



==

Set-associative Cache

• 2K-way set-associative 2N byte cache with block size of 2M bytes

• Lowest M bits for byte select, (32 – N + K) bits for cache tag, rest for cache index
• 2K direct-mapped caches operates in parallel

• Previous example, now with 2-way set-associativity
• Cache Index selects “set” from cache, there are 16 sets ⇒ 4 bits for index

Cache 
Structure

:

Valid
Bit Cache Tag Cache Data

::

Cache Block 0

Cache Block 1

Cache Block 15

Byte SelectCache IndexCache Tag
0431 8

Memory address

15

:

Valid
Bit Cache Tag Cache Data

0
1

2

3
::

Cache Block 0

Cache Block 1

Cache Block 15

Cache Block

01

selc1 selc0

ORHit



• Every cache block can hold any memory block
• Address does not include cache index
• Compare cache tags of all cache blocks in parallel

• Previous example now with fully-associative cache

=

=

:

=

Fully-associative Cache

Byte SelectCache Tag
0431

Memory address

Cache
Structure

31

:

Valid
Bit Cache Tag Cache Data

0
1

2

3

:

B0B1B31 :

B33B63

B992B1023 :

:

B32:

Hit



Effective Cache

• Consider 2-MiB, 8-way-set-associative cache and 4KiB physical pages

• Suppose HW uses low-order bits of physical address to index cache

• Suppose process A is allocated physical pages that are separated by 256KiB

• How much cache capacity process A can effectively use?
• Bytes in memory that are separated by 256KiB are mapped to same cache set
• A will only be able to use 32KiB (4KiB pages times 8-way set associativity)
• A can only use less than 2% of cache!



Page Coloring

• Physical pages are given colors

• Pages with same color will be mapped to the same set in cache
• In above example, there will be 64 different colors (256KiB divided by 4KiB pages)

• Kernel maps sequential virtual pages to physical pages with different colors
• Sequential pages in virtual memory do not contend for the same cache set

en.wikipedia.org



Possible Sources of Cache Misses

• Compulsory (cold)
• Cache hasn’t seen this block before (start or migration of process)
• “Cold” fact of life: not whole lot you can do about it

• Capacity
• Cache cannot contain all blocks accessed by program
• Solution: increase cache size

• Conflict (collision)
• Multiple memory locations mapped to the same cache location
• Solution 1: increase cache size
• Solution 2: increase associativity (no conflict misses in fully-associative cache)

• Coherence (invalidation)
• Other process (e.g., I/O) updates memory 



Replaced Policy on Cache Miss?

• Easy for direct-mapped: only one possibility

• For set-associative or fully-associative

• Random

• Least Recently Used (LRU, more on this later)



What Happens on Write?

• Write-through: write to both cache and lower-level memory
• + Read misses cannot result in writes
• − Processor held up on writes unless writes are buffered

• Write-back: write only to cache
• Modified cache block is marked dirty
• On replacement, dirty block is written to lower-level memory
• + Repeated writes are not sent to DRAM
• + Processor not held up on writes
• − More complex
• − Read miss may require writeback of dirty data



Caching Address Translations

• Cannot afford to translate on every access
• At least five DRAM accesses per actual DRAM access
• Or: perhaps I/O if page table partially resides on disk!
• Even worse, what if we use caches to make memory access faster than DRAM access?



Recall: Memory Hierarchy

Core

Core

Secondary
Storage 
(Disk)

Processor

Main
Memory
(DRAM)

Secondary
Storage 
(SSD)

1
10,000,000
(10 ms)

Speed (ns): 10-30 1000.3 3
100,000
(0.1 ms)

100BsSize (bytes): MiBs GiBs TiBs10KiBs 100KiBs 100GiBs

Page table lives here 
(perhaps cached)

PT

Address Translation 
needs to occur here

Compiler
Managed

Hardware
Managed

Software
Managed (by OS)



Translation Lookaside Buffer (TLB)

• Main idea: cache recent virtual page number to physical page number translations

• TLB hit provides physical address without reading any of page tables!
• Caches end-to-end result
• Even if translation involved multiple levels

• Does page locality exist?
• Instruction accesses: sequential accesses ⇒ Frequent accesses to the same page ⇒Yes!
• Stack accesses: definite locality of reference ⇒Yes!
• Data accesses: less page locality, but still some ⇒Yes, so so!



TLB: Caching Applied to Address 
Translation

CPU TLB Page
Tables

Physical
Memory

Virtual 
Address Miss Invalid Raise

Exception

+
Offset

Hit

Physical Address

Data

Cache Valid



TLB Consistency with PTEs

• If PTE permission is reduced: TLB entry should be invalidated
• Early computers discarded entire TLB
• Modern architectures allow removal of individual entries

• If PTE permission is added: nothing needs to be done
• E.g., changing invalid to read-only or read-only to read-write
• Any reference would cause exception, OS removes TLB entry

• If PTE is invalidated: TLB entry should be invalidated too
• E.g., swapping out page from memory to disk (more on this later)



Accessed and Dirty Bits

• TLB entries generally don’t have accessed bit
• If address is cached in TLB, it already should have been accessed
• Page-table walk sets accessed bit of PTE on TLB miss

• TLB entries do have dirty bit
• When write misses in TLB, page-table walk sets dirty bit in PTE and TLB
• Even when write hits in TLB,  page-table walk is necessary to set dirty bit if it isn’t set
• If dirty bit is set in TLB, no page-table walk is necessary (saving memory bandwidth)

• Do we really need dirty bit in PTE and TLB?
• No! OS can emulate it (e.g., BSD Unix) 
• Initially, mark all pages as read-only
• On write, trap to OS, set software dirty bit, and mark page as read-write

• Do we really need access bit in PTE?
• No! OS can emulate it
• Initially, mark all pages as invalid
• On read, trap to OS (invalid), set software access bit, and mark page read-only
• On write, trap to OS (invalid or read-only), set software access and dirty bits, mark page read-write



Homonyms

• Definition: single virtual address mapped to different physical addresses

• Problem: TLB entries are invalid after context switching to another process

• Solution 1: invalidate all TLB entries
• + Simple 
• − Expensive (what if switching frequently between processes)

• Solution 2: tag each TLB entry with process-context identifier (PCID)
• + Less expensive
• − Needs extra hardware



TLB Shootdown

• If processor1 updates process 0’s PTE for page 0x53, then it should
• Remove old entry from its TLB
• Send inter-processor interrupt to other processors telling them to remove their old entries

• Shootdown is complete once all processors verify that their old entry is removed

• TLB shootdown overhead increases linearly with number of processors

Processor 1 TLB

VirtualPage PageFrame Access

0x00530

Process
ID

=

=

0x0003 R/W

0x4OFF1 0x0012 R/W

Processor 2 TLB 0x00530=

=

0x0003 R/W

0x00010 0x0005 Read

Processor 3 TLB 0x4OFF1=

=

0x0012 R/W

0x00010 0x0005 Read



What Happens on TLB Miss?

• Hardware-traversed page tables
• On TLB miss, hardware walks through current page tables to fill TLB 

(could be multiple levels)
• Valid PTE: Hardware fills TLB and processor never notices
• Invalid PTE: CPU raises page fault ⇒ Kernel decides what to do next

• Software-traversed page tables
• On TLB miss, CPU raises TLB fault
• Kernel walks through page table(s) to find PTE

• Valid PTE: Fills TLB and returns from fault
• Invalid, internally calls page fault handler



TLB Fault and Page Fault Exceptions

• Unlike interrupts, exceptions are synchronous, caused by particular instruction
• E.g., TLB fault or page fault, divide by zero

• In general, faulting instruction needs to be restarted after exception is handled 

• Side effects of faulting instruction need to be undone
• Example: push 10

• What if page fault occurs when write to stack pointer?
• Was sp incremented before or after page fault?

• Partially executed instructions should also be undone in out-of-order execution
• Example 1: mul r1, r2, r3

bne r1, r4, loop

ld r5,(r6)

• What if it take many cycles to see if r1 = r4, but load has already caused page fault?
• Example 2: div r1, r2, r3

ld r4, (r5)

• What if it takes many cycles to discover divide-by-zero, but load has already caused page fault?



Precise Exceptions

• Instructions retire when their results become visible in architectural state
• E.g., processor registers, memory, etc.
• Architectural state ≠ micro-architectural state (e.g., caches)

• To implement precise exceptions, instructions should retire in program’s sequential order
• Execution could still be out-of-order

• Exception should only be raised when faulting instruction tries to retire
• All instructions before faulting instruction should have already retired

• When exception is raised, architectural state should be preserved 
• Faulting instruction and all following instructions act as if they have not even started
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Improve Efficiency Even More!

• TLB improves performance by caching recent translations

• How to improve performance even more?
• Multi-level TLBs

• What is the cost of first-level TLB miss?
• Second-level TLB lookup

• What is the cost of second-level TLB miss?
• x86: 2-4 level page table walk



Virtually-addressed Cache

• Too slow to access TLB before looking up address in memory
• Instead, add virtually-addressed cache (virtual cache)
• In parallel, access TLB to generate physical address in case of cache miss

CPU TLB Page
Tables

Physical
Memory

Virtual 
Address Miss Invalid Raise

Exception

+
Offset

Hit

Physical Address

Data

Cache Valid

Virtual 
Address

Miss

Hit

Virtual
Cache



Synonym

• Definition: different virtual addresses mapped to same physical address
• Could be in same virtual address space or different virtual address spaces
• E.g., mmap() same file multiple times in same process or once in multiple processes

• Aliasing problem: synonyms could be mapped to different locations in virtual cache

• Typical solution: virtually-indexed-physically-tagged virtual cache
• Map synonyms to the same cache set (kernel ensures assigned VAs agree in index bits)
• Tag each virtual cache block by physical address
• Lookup virtual cache and TLB in parallel
• Update/invalidate other copies if physical address from TLB matches multiple entries

• Synonym problem could affect any HW structure that deals with memory accesses
• E.g., load with synonym VA misses in store buffer if entries are tagged by VA and PID



Aside: Memory-mapped Files

• Traditional I/O involves explicit transfers between buffers in process 
address space to/from regions of file
• This involves multiple copies into caches in memory, plus system calls

• OS can map region of file into empty region of process address space
• Implicitly page it in when we read it
• Write it and eventually page it out

• Executable files are treated this way when we exec the process



Putting it Together: Address Translation

Physical
Page

PT Pointer

Page Table
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Physical Address



Putting it Together: TLB

Physical
Page

PT Pointer

Page Table
(1st Level)

Page Table
(2nd Level)

TLB

:

V-P1 Index

Virtual Address

V-P2 Index Offset

P-Page # Offset

Physical Address



Putting it Together: Physical Cache

Physical
Page

PT Pointer

Page Table
(1st Level)

Page Table
(2nd Level)

TLB

:

V-P1 Index

Virtual Address

V-P2 Index Offset

P-Page # Offset

Physical Address

Tag ByteIndex

:

Tag Block

Cache



Putting it Together: 
Page Table, TLB, and Caches
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Recall: Memory Hierarchy

• Can TLB misses get resolved without ever going to main memory?
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TLB Set Associativity

• TLB hit time is added to all memory accesses
• Should TLB be direct-mapped or have low associativity?

• No! TLB needs to have very few conflicts!
• Miss time is extremely high!

• TLBs are typically fully-associative
• Significantly reduce conflict misses in return for slightly higher hit time

Average memory access time = hit-timeTLB + (miss-ratioTLB x miss-timeTLB)

CPU TLB Cache Memory



Do TLBs Always Improve Performance?

• Example: for HD displays, video frame buffer could be large
• E.g., 4k display: 32 bits x 4K x 3K = 48MiB (spans12K of 4KiB pages)

• Even large on-chip TLB with 256 entries cannot cover entire display
• Each horizontal line of pixels could be on on page
• Drawing vertical line could require loading a new TLB entry

Video Frame Buffer
Page#

0

1

2

3

1021

1022

1023



Superpages: Improving TLB Hit Rate

• Reduce number of  TLB entries for large, contiguous regions of memory
• Represent 2 adjacent 4KB pages by single 8KB superpage

• By setting a flag, TLB entry can be a page or a supperpage
• E.g., in x86: 4KB (12 bits offset), 2MB (21 bits offset), or 1GB (30 bits offset)

Physical
Memory

Frame Offset

Physical 
Address

SP Offset

Page# Offset

Virtual
Address

SF Offset

Translation Lookaside Buffer (TLB)

Superpage
(SP) or
Page#

Superframe
(SF) or
Frame Access

Matching Entry

Matching
Superpage

Page Table 
Lookup



Linux Virtual Memory Map 
Prior to KPTI Patch

• Address space of user process includes kernel memory
• Kernel memory is protected from user process by owner bit

• + On system calls or interrupts, kernel page tables are always present
• Mitigating context-switch overheads (e.g., TLB flush, page-table swapping, etc.)

• – It exposes serious security vulnerabilities that have been exploited by various attacks
• E.g. Meltdown and Spectre attacks
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Meltdown Attack: Background

• Branches can significantly slow down out-of-order execution
• E.g., processor has to wait for many cycles to determine direction of conditional jump

• To speed up out-of-order execution, modern processors implement branch predictors (BP)
• BP predicts whether conditional branch will be taken before its execution
• Predictions are usually based on previous executions of the branch
• Processor executes next instructions speculatively
• On branch misprediction, processor rolls back speculatively-executed instructions

• Their results do not change architectural state



Meltdown Attack

• Meltdown was announced in 2018 

• It affects Intel x86, IBM Power, and some ARM processors

• Kernel page-table isolation (KPTI) patch was released to mitigate Meltdown
• Without PCID tag in TLB, KPTI needs to flush TLB twice on syscall and interrupts 

(800% overhead!)
• Need at least kernel v4.14 which utilizes PCID tag in new HW to avoid flushing

char array[256 * 4096]; // Skip 4096 to avoid HW cache prefetch

flush_cache(array); // Make sure array is not cached

try { // catch and ignore SIGSEGV (illegal access)

char result = *(char *)kernel_address; // Segmentation fault

char dummy = array[result * 4096]; // Leak info!

} catch(){;} // Could use signal() to catch SIGSEGV

for (int i = 0; i < 256; i++)

if (is_in_cache(array[i * 4096]))

printf(“%d\n”); // found byte at kernel_address



Summary

• Principle of locality
• Programs access small portion of address space at any instant of time

• Cache organizations
• Direct-mapped, set-associative, fully-associative

• Three (+1) major categories of cache misses
• Compulsory, conflict, capacity, coherence

• TLB: caching applied to address translations
• Cache relatively small number of PTEs
• Fully-associative (since conflict misses expensive)
• On TLB miss, page table is traversed and if PTE is invalid, cause page fault 
• On change in page table, TLB entries must be invalidated



Questions?

globaldigitalcitizen.org
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