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Outcomes and Lotteries

Let O = {o1,..., 0k} be set of mutually exclusive outcomes

Lottery A describes a probability distribution over outcomes
We write A = )" pxoy to indicate that o, € O happens with probability pk
* Yp=1
® Eg., A=0.750; + 0.250, means P(0;) = 0.75 and P(0;) = 0.25
Compound lottery is a lottery defined based on other lotteries

® Suppose O = {01, 02,03}
® let A=0.20; +0.800, and B = 0.40, + 0.603
® C =0.5A+0.5B is a compound lottery:

C =0.5(0.20; + 0.807) + 0.5(0.40;, + 0.603) = 0.101 + 0.602 + 0.303
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Ordinal Preferences

® We define preference relation over lotteries as follows

® A > B means agent strictly prefers A to B
® A > B means agent weakly prefers A to B

® A~ B means agent is indifferent between A and B (A > B and B > A)

4/17



Outline

2. von Neumann—Morgenstern Rationality
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1. Completeness
® For all lotteries A and B, either A= Bor B> AorA~B

2. Transitivity
® For all lotteries A, B, and C,if A= Band B> C, then A> C

3. Independence of irrelevant alternatives

® For all lotteries A, B, and C, and p € [0, 1], then
A-B<— pA+(1—-p)C=pB+(1-p)C

4. Continuity

® For all lotteries A, B, and C, if A= B = C, then 3p € [0, 1] such that
B~pA+(1-p)C
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Auxiliary Axioms

Lemma
Given VNM axioms, for any pair of lotteries A and B with A >= B, we have

® Betweenness: for p € (0,1), A> pA+(1—p)B > B

Proof sketch
® By independence, A=pA+(1l—p)A=pA+(1—p)B>-pB+(1—-p)B=B

® Monotonicity: for any p,q € [0,1], if p > q, then pA+ (1 —p)B = gA+ (1 —q)B

Proof sketch
® Define § = q/p
® By betweenness, A~ pA+ (1 —p)B > B
® Apply betweenness to second part with §:
pA+(1—p)B > 6[pA+(1—p)Bl+(1—-0)B=qgA+(1—q)B>B
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3. von Neumann—Morgenstern Utilities




von Neumann-Morgenstern Utility Theorem

Theorem (von Neumann and Morgenstern, 1944)

For any VNM-rational agent, there exists a function u that maps each lottery A to a
real number u(A) such that

° u(A)=u(>_ prok) = > pru(ox) (expected utility)

® u(A) > u(B) <= A*> B,

Such a function is called von Neumann-Morgenstern (VNM) utility.




von Neumann-Morgenstern Utility (Proof Sketch)

e If agent is indifferent between all outcomes, then set u(o) = 0 for all outcomes o
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von Neumann-Morgenstern Utility (Proof Sketch)

e If agent is indifferent between all outcomes, then set u(o) = 0 for all outcomes o
® Otherwise, there must be most-preferred and least-preferred outcomes, © and o
® Set u(ok) to be px such that o, ~ pxo + (1 — px)o (by continuity)

e Part I. Show u (3} pjok) = > pju(ok)
® Replace o by u(ox)o + (1 — u(ok))e (by independence)

A= plox ~ (Z pLU(ok)) o+ (1 -3 p’kU(ok)> o

® This is a lottery on 0 and o
® By the definition of u, we conclude

u(A) = u (3" phox) = D phuox)




von Neumann-Morgenstern Utility (Proof Sketch)

* Part Il. Show u(A) > u(B) = A= B
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von Neumann-Morgenstern Utility (Proof Sketch)

¢ Part Il. Show u(A) > u(B) = A> B
® A~ u(A)o+ (1 —u(A))o and B~ u(B)o + (1 — u(B))o
® If u(A) = u(B), then A and B define identical lotteries
® If u(A) > u(B), then by monotonicity, we have

A~ u(A)o+ (1 —u(A))o > u(B)o+(1—u(B))o~B

e Part Ill. Show A = B = u(A) > u(B)
® If u(A) < u(B), then by (Part Il), B~ A
® By completeness, this is a contradiction
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4. Uncertainty and Risk Attitudes
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Risk Attitudes

® |et u be utility of an investor

e Lottery A pays $x with probability p and $y with probability (1 — p)
® By utility theorem, u(A) = pu(x) + (1 — p)u(y)

® Let z=9%(px+ (1 —p)y)

® For a risk-neutral investor, u(A) = u(z)

® For a risk-averse investor, u(A) < u(z)

e For a risk-seeking investor, u(A) > u(z)
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Are You a Risk-taker or Risk-seeker?

® Which one do you prefer?

® |ottery A: $50 with prob 0.1 and $0 otherwise
® Lottery B: $5 with prob 1

® How about these?

® |ottery A: $5,000,000 with prob 0.1 and $0 otherwise
® |ottery B: $500,000 with prob 1
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Risk Attitudes (revisited)

Blue has constant marginal utility — risk-neutral

Green has decreasing marginal utility — risk-averse

utility

Red has increasing marginal utility — risk-seeking

Gray neither risk-averse nor risk-seeking money
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