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Outcomes and Lotteries

• Let O = {o1, . . . , oK} be set of mutually exclusive outcomes

• Lottery A describes a probability distribution over outcomes
• We write A =

∑
pkok to indicate that ok ∈ O happens with probability pk

• ∑
pk = 1

• E.g., A = 0.75o1 + 0.25o2 means P(o1) = 0.75 and P(o2) = 0.25

• Compound lottery is a lottery defined based on other lotteries

• Suppose O = {o1, o2, o3}
• Let A = 0.2o1 + 0.8o2 and B = 0.4o2 + 0.6o3
• C = 0.5A+ 0.5B is a compound lottery:

C = 0.5(0.2o1 + 0.8o2) + 0.5(0.4o2 + 0.6o3) = 0.1o1 + 0.6o2 + 0.3o3
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Ordinal Preferences

• We define preference relation over lotteries as follows

• A ≻ B means agent strictly prefers A to B

• A ⪰ B means agent weakly prefers A to B

• A ∼ B means agent is indifferent between A and B (A ⪰ B and B ⪰ A)
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Axioms of von Neumann–Morgenstern (VNM) Rationality

1. Completeness
• For all lotteries A and B, either A ≻ B or B ≻ A or A ∼ B

2. Transitivity

• For all lotteries A, B, and C , if A ⪰ B and B ⪰ C , then A ⪰ C

3. Independence of irrelevant alternatives

• For all lotteries A, B, and C , and p ∈ [0, 1], then
A ⪰ B ⇐⇒ pA+ (1− p)C ⪰ pB + (1− p)C

4. Continuity

• For all lotteries A, B, and C , if A ⪰ B ⪰ C , then ∃p ∈ [0, 1] such that
B ∼ pA+ (1− p)C
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Auxiliary Axioms

Lemma
Given VNM axioms, for any pair of lotteries A and B with A ≻ B, we have

• Betweenness: for p ∈ (0, 1), A ≻ pA+ (1− p)B ≻ B

Proof sketch
• By independence, A = pA+ (1− p)A ≻ pA+ (1− p)B ≻ pB + (1− p)B = B

• Monotonicity: for any p, q ∈ [0, 1], if p > q, then pA+ (1− p)B ⪰ qA+ (1− q)B

Proof sketch
• Define δ = q/p
• By betweenness, A ≻ pA+ (1− p)B ≻ B
• Apply betweenness to second part with δ:

pA+ (1− p)B ≻ δ[pA+ (1− p)B] + (1− δ)B = qA+ (1− q)B ≻ B
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von Neumann-Morgenstern Utility Theorem

Theorem (von Neumann and Morgenstern, 1944)

For any VNM-rational agent, there exists a function u that maps each lottery A to a
real number u(A) such that

• u(A) = u (
∑

pkok) =
∑

pku(ok) (expected utility)

• u(A) ≥ u(B) ⇐⇒ A ⪰ B,

Such a function is called von Neumann-Morgenstern (VNM) utility.
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von Neumann-Morgenstern Utility (Proof Sketch)

• If agent is indifferent between all outcomes, then set u(o) = 0 for all outcomes o

• Otherwise, there must be most-preferred and least-preferred outcomes, o and o

• Set u(ok) to be pk such that ok ∼ pko + (1− pk)o (by continuity)
• Part I. Show u (

∑
p′kok) =

∑
p′ku(ok)

• Replace ok by u(ok)o + (1− u(ok))o (by independence)

A =
∑

p′kok ∼
(∑

p′ku(ok)
)
o +

(
1−

∑
p′ku(ok)

)
o

• This is a lottery on o and o
• By the definition of u, we conclude

u(A) = u
(∑

p′kok
)
=

∑
p′ku(ok)
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von Neumann-Morgenstern Utility (Proof Sketch)

• Part II. Show u(A) ≥ u(B) =⇒ A ⪰ B

• A ∼ u(A)o + (1− u(A))o and B ∼ u(B)o + (1− u(B))o
• If u(A) = u(B), then A and B define identical lotteries
• If u(A) > u(B), then by monotonicity, we have

A ∼ u(A)o + (1− u(A))o ≻ u(B)o + (1− u(B))o ∼ B

• Part III. Show A ⪰ B =⇒ u(A) ≥ u(B)

• If u(A) < u(B), then by (Part II), B ≻ A
• By completeness, this is a contradiction
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Example

• More money makes people happier (?) but with diminishing marginal returns!

$500K $1.4M $5M

money
h
ap
p
in
es
s
(!
?)

• Based on this utility function, which one is more preferred?
• $500K with probability 0.8, and $5M with probability 0.2
• $1.4M with probability 1
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Risk Attitudes

• Let u be utility of an investor

• Lottery A pays $x with probability p and $y with probability (1− p)

• By utility theorem, u(A) = pu(x) + (1− p)u(y)

• Let z = $(px + (1− p)y)

• For a risk-neutral investor, u(A) = u(z)

• For a risk-averse investor, u(A) < u(z)

• For a risk-seeking investor, u(A) > u(z)
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• For a risk-neutral investor, u(A) = u(z)

• For a risk-averse investor, u(A) < u(z)

• For a risk-seeking investor, u(A) > u(z)
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Are You a Risk-taker or Risk-seeker?

• Which one do you prefer?
• Lottery A: $50 with prob 0.1 and $0 otherwise
• Lottery B: $5 with prob 1

• How about these?
• Lottery A: $5,000,000 with prob 0.1 and $0 otherwise
• Lottery B: $500,000 with prob 1
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Risk Attitudes (revisited)

• Blue has constant marginal utility −→ risk-neutral

• Green has decreasing marginal utility −→ risk-averse

• Red has increasing marginal utility −→ risk-seeking

• Gray neither risk-averse nor risk-seeking

money

u
ti
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