Game-theoretic
 Foundations of Multi-agent Systems

Lecture 2: Preferences and Utilities

Seyed Majid Zahedi
WATVERSTITOF
-

Outline

1. Agent Preferences
2. von Neumann-Morgenstern Rationality
3. von Neumann-Morgenstern Utilities
4. Uncertainty and Risk Attitudes

Outcomes and Lotteries

- Let $O=\left\{o_{1}, \ldots, o_{K}\right\}$ be set of mutually exclusive outcomes

Outcomes and Lotteries

- Let $O=\left\{o_{1}, \ldots, o_{K}\right\}$ be set of mutually exclusive outcomes
- Lottery A describes a probability distribution over outcomes

Outcomes and Lotteries

- Let $O=\left\{o_{1}, \ldots, o_{K}\right\}$ be set of mutually exclusive outcomes
- Lottery A describes a probability distribution over outcomes
- We write $A=\sum p_{k} o_{k}$ to indicate that $o_{k} \in O$ happens with probability p_{k}

Outcomes and Lotteries

- Let $O=\left\{o_{1}, \ldots, o_{K}\right\}$ be set of mutually exclusive outcomes
- Lottery A describes a probability distribution over outcomes
- We write $A=\sum p_{k} o_{k}$ to indicate that $o_{k} \in O$ happens with probability p_{k}
- $\sum p_{k}=1$

Outcomes and Lotteries

- Let $O=\left\{o_{1}, \ldots, o_{K}\right\}$ be set of mutually exclusive outcomes
- Lottery A describes a probability distribution over outcomes
- We write $A=\sum p_{k} o_{k}$ to indicate that $o_{k} \in O$ happens with probability p_{k}
- $\sum p_{k}=1$
- E.g., $A=0.75 o_{1}+0.25 o_{2}$ means $P\left(o_{1}\right)=0.75$ and $P\left(o_{2}\right)=0.25$

Outcomes and Lotteries

- Let $O=\left\{o_{1}, \ldots, o_{K}\right\}$ be set of mutually exclusive outcomes
- Lottery A describes a probability distribution over outcomes
- We write $A=\sum p_{k} o_{k}$ to indicate that $o_{k} \in O$ happens with probability p_{k}
- $\sum p_{k}=1$
- E.g., $A=0.75 o_{1}+0.25 o_{2}$ means $P\left(o_{1}\right)=0.75$ and $P\left(o_{2}\right)=0.25$
- Compound lottery is a lottery defined based on other lotteries

Outcomes and Lotteries

- Let $O=\left\{o_{1}, \ldots, o_{K}\right\}$ be set of mutually exclusive outcomes
- Lottery A describes a probability distribution over outcomes
- We write $A=\sum p_{k} o_{k}$ to indicate that $o_{k} \in O$ happens with probability p_{k}
- $\sum p_{k}=1$
- E.g., $A=0.75 o_{1}+0.25 o_{2}$ means $P\left(o_{1}\right)=0.75$ and $P\left(o_{2}\right)=0.25$
- Compound lottery is a lottery defined based on other lotteries
- Suppose $O=\left\{o_{1}, o_{2}, o_{3}\right\}$

Outcomes and Lotteries

- Let $O=\left\{o_{1}, \ldots, o_{K}\right\}$ be set of mutually exclusive outcomes
- Lottery A describes a probability distribution over outcomes
- We write $A=\sum p_{k} o_{k}$ to indicate that $o_{k} \in O$ happens with probability p_{k}
- $\sum p_{k}=1$
- E.g., $A=0.75 o_{1}+0.25 o_{2}$ means $P\left(o_{1}\right)=0.75$ and $P\left(o_{2}\right)=0.25$
- Compound lottery is a lottery defined based on other lotteries
- Suppose $O=\left\{o_{1}, o_{2}, o_{3}\right\}$
- Let $A=0.2 o_{1}+0.8 o_{2}$ and $B=0.4 o_{2}+0.6 o_{3}$

Outcomes and Lotteries

- Let $O=\left\{o_{1}, \ldots, o_{K}\right\}$ be set of mutually exclusive outcomes
- Lottery A describes a probability distribution over outcomes
- We write $A=\sum p_{k} o_{k}$ to indicate that $o_{k} \in O$ happens with probability p_{k}
- $\sum p_{k}=1$
- E.g., $A=0.75 o_{1}+0.25 o_{2}$ means $P\left(o_{1}\right)=0.75$ and $P\left(o_{2}\right)=0.25$
- Compound lottery is a lottery defined based on other lotteries
- Suppose $O=\left\{o_{1}, o_{2}, o_{3}\right\}$
- Let $A=0.2 o_{1}+0.8 o_{2}$ and $B=0.4 o_{2}+0.6 o_{3}$
- $C=0.5 A+0.5 B$ is a compound lottery:

$$
C=0.5\left(0.2 o_{1}+0.8 o_{2}\right)+0.5\left(0.4 o_{2}+0.6 o_{3}\right)=0.1 o_{1}+0.6 o_{2}+0.3 o_{3}
$$

Ordinal Preferences

- We define preference relation over lotteries as follows

Ordinal Preferences

- We define preference relation over lotteries as follows
- $A \succ B$ means agent strictly prefers A to B

Ordinal Preferences

- We define preference relation over lotteries as follows
- $A \succ B$ means agent strictly prefers A to B
- $A \succeq B$ means agent weakly prefers A to B

Ordinal Preferences

- We define preference relation over lotteries as follows
- $A \succ B$ means agent strictly prefers A to B
- $A \succeq B$ means agent weakly prefers A to B
- $A \sim B$ means agent is indifferent between A and $B(A \succeq B$ and $B \succeq A)$

Outline

1. Agent Preferences
2. von Neumann-Morgenstern Rationality
3. von Neumann-Morgenstern Utilities
4. Uncertainty and Risk Attitudes

Axioms of von Neumann-Morgenstern (VNM) Rationality

1. Completeness

- For all lotteries A and B, either $A \succ B$ or $B \succ A$ or $A \sim B$

Axioms of von Neumann-Morgenstern (VNM) Rationality

1. Completeness

- For all lotteries A and B, either $A \succ B$ or $B \succ A$ or $A \sim B$

2. Transitivity

- For all lotteries A, B, and C, if $A \succeq B$ and $B \succeq C$, then $A \succeq C$

Axioms of von Neumann-Morgenstern (VNM) Rationality

1. Completeness

- For all lotteries A and B, either $A \succ B$ or $B \succ A$ or $A \sim B$

2. Transitivity

- For all lotteries A, B, and C, if $A \succeq B$ and $B \succeq C$, then $A \succeq C$

3. Independence of irrelevant alternatives

- For all lotteries A, B, and C, and $p \in[0,1]$, then $A \succeq B \Longleftrightarrow p A+(1-p) C \succeq p B+(1-p) C$

Axioms of von Neumann-Morgenstern (VNM) Rationality

1. Completeness

- For all lotteries A and B, either $A \succ B$ or $B \succ A$ or $A \sim B$

2. Transitivity

- For all lotteries A, B, and C, if $A \succeq B$ and $B \succeq C$, then $A \succeq C$

3. Independence of irrelevant alternatives

- For all lotteries A, B, and C, and $p \in[0,1]$, then $A \succeq B \Longleftrightarrow p A+(1-p) C \succeq p B+(1-p) C$

4. Continuity

- For all lotteries A, B, and C, if $A \succeq B \succeq C$, then $\exists p \in[0,1]$ such that $B \sim p A+(1-p) C$

Auxiliary Axioms

Lemma
Given VNM axioms, for any pair of lotteries A and B with $A \succ B$, we have

- Betweenness: for $p \in(0,1), A \succ p A+(1-p) B \succ B$

Auxiliary Axioms

Lemma

Given VNM axioms, for any pair of lotteries A and B with $A \succ B$, we have

- Betweenness: for $p \in(0,1), A \succ p A+(1-p) B \succ B$
- Monotonicity: for any $p, q \in[0,1]$, if $p>q$, then $p A+(1-p) B \succeq q A+(1-q) B$

Auxiliary Axioms

Lemma

Given VNM axioms, for any pair of lotteries A and B with $A \succ B$, we have

- Betweenness: for $p \in(0,1), A \succ p A+(1-p) B \succ B$

Proof sketch

- By independence, $A=p A+(1-p) A \succ p A+(1-p) B \succ p B+(1-p) B=B$
- Monotonicity: for any $p, q \in[0,1]$, if $p>q$, then $p A+(1-p) B \succeq q A+(1-q) B$

Auxiliary Axioms

Lemma

Given VNM axioms, for any pair of lotteries A and B with $A \succ B$, we have

- Betweenness: for $p \in(0,1), A \succ p A+(1-p) B \succ B$

Proof sketch

- By independence, $A=p A+(1-p) A \succ p A+(1-p) B \succ p B+(1-p) B=B$
- Monotonicity: for any $p, q \in[0,1]$, if $p>q$, then $p A+(1-p) B \succeq q A+(1-q) B$

Proof sketch

- Define $\delta=q / p$
- By betweenness, $A \succ p A+(1-p) B \succ B$
- Apply betweenness to second part with δ :

$$
p A+(1-p) B \succ \delta[p A+(1-p) B]+(1-\delta) B=q A+(1-q) B \succ B
$$

Outline

1. Agent Preferences
2. von Neumann-Morgenstern Rationality
3. von Neumann-Morgenstern Utilities
4. Uncertainty and Risk Attitudes

von Neumann-Morgenstern Utility Theorem

Theorem (von Neumann and Morgenstern, 1944)
For any VNM-rational agent, there exists a function u that maps each lottery A to a real number $u(A)$ such that

- $u(A)=u\left(\sum p_{k} o_{k}\right)=\sum p_{k} u\left(o_{k}\right)$ (expected utility)
- $u(A) \geq u(B) \Longleftrightarrow A \succeq B$,

Such a function is called von Neumann-Morgenstern (VNM) utility.
von Neumann-Morgenstern Utility (Proof Sketch)

- If agent is indifferent between all outcomes, then set $u(o)=0$ for all outcomes o

von Neumann-Morgenstern Utility (Proof Sketch)

- If agent is indifferent between all outcomes, then set $u(o)=0$ for all outcomes o
- Otherwise, there must be most-preferred and least-preferred outcomes, \bar{o} and \underline{o}
von Neumann-Morgenstern Utility (Proof Sketch)
- If agent is indifferent between all outcomes, then set $u(o)=0$ for all outcomes o
- Otherwise, there must be most-preferred and least-preferred outcomes, \bar{o} and \underline{o}
- Set $u\left(o_{k}\right)$ to be p_{k} such that $o_{k} \sim p_{k} \bar{o}+\left(1-p_{k}\right) \underline{o}$ (by continuity)
von Neumann-Morgenstern Utility (Proof Sketch)
- If agent is indifferent between all outcomes, then set $u(o)=0$ for all outcomes o
- Otherwise, there must be most-preferred and least-preferred outcomes, \bar{o} and \underline{o}
- Set $u\left(o_{k}\right)$ to be p_{k} such that $o_{k} \sim p_{k} \bar{o}+\left(1-p_{k}\right) \underline{o}$ (by continuity)
- Part I. Show $u\left(\sum p_{k}^{\prime} o_{k}\right)=\sum p_{k}^{\prime} u\left(o_{k}\right)$
von Neumann-Morgenstern Utility (Proof Sketch)
- If agent is indifferent between all outcomes, then set $u(o)=0$ for all outcomes o
- Otherwise, there must be most-preferred and least-preferred outcomes, \bar{o} and o
- Set $u\left(o_{k}\right)$ to be p_{k} such that $o_{k} \sim p_{k} \bar{o}+\left(1-p_{k}\right) \underline{o}$ (by continuity)
- Part I. Show $u\left(\sum p_{k}^{\prime} o_{k}\right)=\sum p_{k}^{\prime} u\left(o_{k}\right)$
- Replace o_{k} by $u\left(o_{k}\right) \bar{o}+\left(1-u\left(o_{k}\right)\right) \underline{o}$ (by independence)

$$
A=\sum p_{k}^{\prime} o_{k} \sim\left(\sum p_{k}^{\prime} u\left(o_{k}\right)\right) \bar{o}+\left(1-\sum p_{k}^{\prime} u\left(o_{k}\right)\right) \underline{o}
$$

- This is a lottery on \bar{o} and \underline{o}
- By the definition of u, we conclude

$$
u(A)=u\left(\sum p_{k}^{\prime} o_{k}\right)=\sum p_{k}^{\prime} u\left(o_{k}\right)
$$

von Neumann-Morgenstern Utility (Proof Sketch)

- Part II. Show $u(A) \geq u(B) \Longrightarrow A \succeq B$
von Neumann-Morgenstern Utility (Proof Sketch)
- Part II. Show $u(A) \geq u(B) \Longrightarrow A \succeq B$
- $A \sim u(A) \bar{o}+(1-u(A)) \underline{o}$ and $B \sim u(B) \bar{o}+(1-u(B)) \underline{o}$
- If $u(A)=u(B)$, then A and B define identical lotteries
- If $u(A)>u(B)$, then by monotonicity, we have

$$
A \sim u(A) \bar{o}+(1-u(A)) \underline{o} \succ u(B) \bar{o}+(1-u(B)) \underline{o} \sim B
$$

- Part III. Show $A \succeq B \Longrightarrow u(A) \geq u(B)$
von Neumann-Morgenstern Utility (Proof Sketch)
- Part II. Show $u(A) \geq u(B) \Longrightarrow A \succeq B$
- $A \sim u(A) \bar{o}+(1-u(A)) \underline{o}$ and $B \sim u(B) \bar{o}+(1-u(B)) \underline{o}$
- If $u(A)=u(B)$, then A and B define identical lotteries
- If $u(A)>u(B)$, then by monotonicity, we have

$$
A \sim u(A) \bar{o}+(1-u(A)) \underline{o} \succ u(B) \bar{o}+(1-u(B)) \underline{o} \sim B
$$

- Part III. Show $A \succeq B \Longrightarrow u(A) \geq u(B)$
- If $u(A)<u(B)$, then by (Part II), $B \succ A$
- By completeness, this is a contradiction

Outline

> 1. Agent Preferences
> 2. von Neumann-Morgenstern Rationality
> 3. von Neumann-Morgenstern Utilities
4. Uncertainty and Risk Attitudes

Example

- More money makes people happier (?) but with diminishing marginal returns!

Example

- More money makes people happier (?) but with diminishing marginal returns!

- Based on this utility function, which one is more preferred?
- $\$ 500 \mathrm{~K}$ with probability 0.8 , and $\$ 5 \mathrm{M}$ with probability 0.2
- $\$ 1.4 \mathrm{M}$ with probability 1

Example

- More money makes people happier (?) but with diminishing marginal returns!

- Based on this utility function, which one is more preferred?
- $\$ 500 \mathrm{~K}$ with probability 0.8 , and $\$ 5 \mathrm{M}$ with probability 0.2
- $\$ 1.4 \mathrm{M}$ with probability 1

Risk Attitudes

- Let u be utility of an investor

Risk Attitudes

- Let u be utility of an investor
- Lottery A pays $\$ x$ with probability p and $\$ y$ with probability $(1-p)$

Risk Attitudes

- Let u be utility of an investor
- Lottery A pays $\$ x$ with probability p and $\$ y$ with probability $(1-p)$
- By utility theorem, $u(A)=p u(x)+(1-p) u(y)$

Risk Attitudes

- Let u be utility of an investor
- Lottery A pays $\$ x$ with probability p and $\$ y$ with probability $(1-p)$
- By utility theorem, $u(A)=p u(x)+(1-p) u(y)$
- Let $z=\$(p x+(1-p) y)$

Risk Attitudes

- Let u be utility of an investor
- Lottery A pays $\$ x$ with probability p and $\$ y$ with probability $(1-p)$
- By utility theorem, $u(A)=p u(x)+(1-p) u(y)$
- Let $z=\$(p x+(1-p) y)$
- For a risk-neutral investor, $u(A)=u(z)$

Risk Attitudes

- Let u be utility of an investor
- Lottery A pays $\$ x$ with probability p and $\$ y$ with probability $(1-p)$
- By utility theorem, $u(A)=p u(x)+(1-p) u(y)$
- Let $z=\$(p x+(1-p) y)$
- For a risk-neutral investor, $u(A)=u(z)$
- For a risk-averse investor, $u(A)<u(z)$

Risk Attitudes

- Let u be utility of an investor
- Lottery A pays $\$ x$ with probability p and $\$ y$ with probability $(1-p)$
- By utility theorem, $u(A)=p u(x)+(1-p) u(y)$
- Let $z=\$(p x+(1-p) y)$
- For a risk-neutral investor, $u(A)=u(z)$
- For a risk-averse investor, $u(A)<u(z)$
- For a risk-seeking investor, $u(A)>u(z)$

Are You a Risk-taker or Risk-seeker?

- Which one do you prefer?
- Lottery A: $\$ 50$ with prob 0.1 and $\$ 0$ otherwise
- Lottery B: \$5 with prob 1

Are You a Risk-taker or Risk-seeker?

- Which one do you prefer?
- Lottery A: $\$ 50$ with prob 0.1 and $\$ 0$ otherwise
- Lottery B: $\$ 5$ with prob 1
- How about these?
- Lottery A: $\$ 5,000,000$ with prob 0.1 and $\$ 0$ otherwise
- Lottery B: $\$ 500,000$ with prob 1

Risk Attitudes (revisited)

- Blue has constant marginal utility \longrightarrow risk-neutral

Risk Attitudes (revisited)

- Blue has constant marginal utility \longrightarrow risk-neutral
- Green has decreasing marginal utility \longrightarrow risk-averse

Risk Attitudes (revisited)

- Blue has constant marginal utility \longrightarrow risk-neutral
- Green has decreasing marginal utility \longrightarrow risk-averse
- Red has increasing marginal utility \longrightarrow risk-seeking

Risk Attitudes (revisited)

- Blue has constant marginal utility \longrightarrow risk-neutral
- Green has decreasing marginal utility \longrightarrow risk-averse
- Red has increasing marginal utility \longrightarrow risk-seeking
- Gray neither risk-averse nor risk-seeking

Acknowledgment

- This lecture is a slightly modified version of ones prepared by
- Asu Ozdaglar [MIT 6.254]
- Vincent Conitzer [Duke CPS 590.4]

