Game-theoretic
 Foundations of Multi-agent Systems

Lecture 3: Games in Normal Form

Seyed Majid Zahedi
WATERSRLTOF
-

Outline

1. Normal-form Games: Definition, Notations, and Examples
2. Dominant Strategy Equilibrium
3. Nash Equilibrium
4. Price of Anarchy
5. Minmax Theorem
6. Rationalizability
7. Correlated Equilibrium

Normal-form Games

- Let's start with games in which all agents act simultaneously

Normal-form Games

- Let's start with games in which all agents act simultaneously
- Agents choose their actions without knowledge of other agents' actions

Normal-form Games

- Let's start with games in which all agents act simultaneously
- Agents choose their actions without knowledge of other agents' actions
- Such games are referred to as strategic-form games or normal-form games

Normal-form Games: Definition

- The game consists of a set of agents, $N=\{1,2, \ldots, n\}$

Normal-form Games: Definition

- The game consists of a set of agents, $N=\{1,2, \ldots, n\}$
- Set of available actions to agent i is denoted by A_{i}

Normal-form Games: Definition

- The game consists of a set of agents, $N=\{1,2, \ldots, n\}$
- Set of available actions to agent i is denoted by A_{i}
- Action taken by agent i is denoted by $a_{i} \in A_{i}$

Normal-form Games: Definition

- The game consists of a set of agents, $N=\{1,2, \ldots, n\}$
- Set of available actions to agent i is denoted by A_{i}
- Action taken by agent i is denoted by $a_{i} \in A_{i}$
- Outcome of game is an action profile of all agents, $a=\left(a_{1}, \ldots, a_{n}\right)$

Normal-form Games: Definition

- The game consists of a set of agents, $N=\{1,2, \ldots, n\}$
- Set of available actions to agent i is denoted by A_{i}
- Action taken by agent i is denoted by $a_{i} \in A_{i}$
- Outcome of game is an action profile of all agents, $a=\left(a_{1}, \ldots, a_{n}\right)$
- Set of all action profiles is denoted by $A=\prod A_{i}$

Normal-form Games: Definition

- The game consists of a set of agents, $N=\{1,2, \ldots, n\}$
- Set of available actions to agent i is denoted by A_{i}
- Action taken by agent i is denoted by $a_{i} \in A_{i}$
- Outcome of game is an action profile of all agents, $a=\left(a_{1}, \ldots, a_{n}\right)$
- Set of all action profiles is denoted by $A=\Pi A_{i}$
- Agent i has a utility function u_{i} that maps outcomes to real numbers

Some Notations

- $a_{-i}=\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right)$ is an action profile of all agents except i
- $A_{-i}=\prod_{j \neq i} A_{j}$ is set of action profiles of all agents except i
- $a=\left(a_{i}, a_{-i}\right) \in A$ is another way of denoting an action profile (or an outcome)

Matrix-form Representation

- When A_{i} is finite for all i, we call the game finite game

Matrix-form Representation

- When A_{i} is finite for all i, we call the game finite game
- For 2 agents and small action sets, game can be represented in matrix form

Matrix-form Representation

- When A_{i} is finite for all i, we call the game finite game
- For 2 agents and small action sets, game can be represented in matrix form

- Each cell indexed by row r and column c contains a pair, (p, q), where $p=u_{1}(r, c)$ and $q=u_{2}(r, c)$.

Example: Matching Pennies

- Each agent has a penny and independently chooses to display either heads or tails
- Agents compare their pennies
- If they are the same, agent 2 pockets both, otherwise agent 1 pockets them

Heads Tails

Heads	$-1,1$	$1,-1$
	$1,-1$	$-1,1$

Example: Matching Pennies

- Each agent has a penny and independently chooses to display either heads or tails
- Agents compare their pennies
- If they are the same, agent 2 pockets both, otherwise agent 1 pockets them Heads Tails

Heads	$-1,1$	$1,-1$
Tails	$1,-1$	$-1,1$

- Zero-sum game: Utility of one agent is negative of utility of other agent

Example: Rock, Paper, Scissors Game

- Three-strategy generalization of the matching-pennies game

	Rock	Paper	Scissors
Rock	0,0	$-1,1$	$1,-1$
Paper	$1,-1$	0,0	$-1,1$
Scissors	$-1,1$	$1,-1$	0,0

Example: Coordination Game

- Two drivers driving towards each other in a country with no traffic rules
- Drivers must independently decide whether to drive on the left or on the right
- If drivers choose the same side (left or right) they have some high utility, and otherwise they have a low utility

Example: Coordination Game

- Two drivers driving towards each other in a country with no traffic rules
- Drivers must independently decide whether to drive on the left or on the right
- If drivers choose the same side (left or right) they have some high utility, and otherwise they have a low utility

- Team game: For all outcomes s, and any pair of agents i and j, it is the case that $u_{i}(a)=u_{j}(a)$ (also known as common-payoff game or pure-coordination game)

Example: Cournot Competition

- Two firms producing a homogeneous good for the same market
- Action of each firm is the amount of good it produces $\left(a_{i} \in[0, \infty]\right)$
- Utility of each firm is its total revenue minus its total cost

$$
u_{i}\left(a_{1}, a_{2}\right)=a_{i} p\left(a_{1}+a_{2}\right)-c a_{i}
$$

Example: Cournot Competition

- Two firms producing a homogeneous good for the same market
- Action of each firm is the amount of good it produces $\left(a_{i} \in[0, \infty]\right)$
- Utility of each firm is its total revenue minus its total cost

$$
u_{i}\left(a_{1}, a_{2}\right)=a_{i} p\left(a_{1}+a_{2}\right)-c a_{i}
$$

- $p(\cdot)$ is the price function that maps total production to a price
- c is a unit cost
- E.g., $p(x)=\max (0,2-x)$ and $c=1$

Outline

1. Normal-form Games: Definition, Notations, and Examples
2. Dominant Strategy Equilibrium
3. Nash Equilibrium
4. Price of Anarchy
5. Minmax Theorem
6. Rationalizability
7. Correlated Equilibrium

Mixed and Pure Strategies

- Let $\Delta(X)$ be set of all probability distributions over X

Mixed and Pure Strategies

- Let $\Delta(X)$ be set of all probability distributions over X
- Set of (mixed) strategies for agent i is denoted by $S_{i}=\Delta\left(A_{i}\right)$

Mixed and Pure Strategies

- Let $\Delta(X)$ be set of all probability distributions over X
- Set of (mixed) strategies for agent i is denoted by $S_{i}=\Delta\left(A_{i}\right)$
- For mixed strategy $s_{i} \in S_{i}, s_{i}(a)$ is probability that action a is played under s_{i}

Mixed and Pure Strategies

- Let $\Delta(X)$ be set of all probability distributions over X
- Set of (mixed) strategies for agent i is denoted by $S_{i}=\Delta\left(A_{i}\right)$
- For mixed strategy $s_{i} \in S_{i}, s_{i}(a)$ is probability that action a is played under s_{i}
- Pure strategy is a mixed strategy that puts probability 1 on a single action

Mixed and Pure Strategies

- Let $\Delta(X)$ be set of all probability distributions over X
- Set of (mixed) strategies for agent i is denoted by $S_{i}=\Delta\left(A_{i}\right)$
- For mixed strategy $s_{i} \in S_{i}, s_{i}(a)$ is probability that action a is played under s_{i}
- Pure strategy is a mixed strategy that puts probability 1 on a single action
- Support of mixed strategy s_{i} is set of pure strategies, a_{i}, such that $s_{i}\left(a_{i}\right)>0$

Mixed and Pure Strategies

- Let $\Delta(X)$ be set of all probability distributions over X
- Set of (mixed) strategies for agent i is denoted by $S_{i}=\Delta\left(A_{i}\right)$
- For mixed strategy $s_{i} \in S_{i}, s_{i}(a)$ is probability that action a is played under s_{i}
- Pure strategy is a mixed strategy that puts probability 1 on a single action
- Support of mixed strategy s_{i} is set of pure strategies, a_{i}, such that $s_{i}\left(a_{i}\right)>0$
- Expected utility of agent i for a (mixed) strategy profile $s=\left(s_{1}, \ldots, s_{n}\right)$ is

$$
u_{i}(s)=\sum_{a \in A} u_{i}(a) \prod_{j \in N} s_{j}\left(a_{j}\right)
$$

Example

Agent 2

	$\mathrm{R}\left(\frac{2}{3}\right)$	P (0)	S ($1 \frac{1}{3}$)
R (${ }^{\frac{1}{3}}$)	0, 0	$-1,1$	1, -1
Agent 1	1, -1	0,0	-1,1
	$-1,1$	1, -1	0,0

- $u_{1}=2 / 9 \times 0+1 / 9 \times 1+4 / 9 \times 1-2 / 9 \times 1=1 / 3$
- $u_{2}=2 / 9 \times 0-1 / 9 \times 1-4 / 9 \times 1+2 / 9 \times 1=-1 / 3$

Dominant and Dominated Strategies

- Let s_{i} and s_{i}^{\prime} be two strategies of agent i

Dominant and Dominated Strategies

- Let s_{i} and s_{i}^{\prime} be two strategies of agent i
- s_{i} strictly dominates s_{i}^{\prime} if
- $u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all $s_{-i} \in S_{-i}$

Dominant and Dominated Strategies

- Let s_{i} and s_{i}^{\prime} be two strategies of agent i
- s_{i} strictly dominates s_{i}^{\prime} if
- $u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all $s_{-i} \in S_{-i}$
- s_{i} weakly dominates s_{i}^{\prime} if
- $u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all $s_{-i} \in S_{-i}$, and
- $u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for at least one $s_{-i} \in S_{-i}$

Dominant and Dominated Strategies

- Let s_{i} and s_{i}^{\prime} be two strategies of agent i
- s_{i} strictly dominates s_{i}^{\prime} if
- $u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all $s_{-i} \in S_{-i}$
- s_{i} weakly dominates s_{i}^{\prime} if
- $u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all $s_{-i} \in S_{-i}$, and
- $u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for at least one $s_{-i} \in S_{-i}$
- s_{i} is strictly/weakly dominant if it strictly/weakly dominates all other strategy

Dominant and Dominated Strategies

- Let s_{i} and s_{i}^{\prime} be two strategies of agent i
- s_{i} strictly dominates s_{i}^{\prime} if
- $u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all $s_{-i} \in S_{-i}$
- s_{i} weakly dominates s_{i}^{\prime} if
- $u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all $s_{-i} \in S_{-i}$, and
- $u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for at least one $s_{-i} \in S_{-i}$
- s_{i} is strictly/weakly dominant if it strictly/weakly dominates all other strategy
- s_{i} is strictly/weakly dominated if another strategy strictly/weakly dominates it

Dominant and Dominated Strategies

- Let s_{i} and s_{i}^{\prime} be two strategies of agent i
- s_{i} strictly dominates s_{i}^{\prime} if
- $u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all $s_{-i} \in S_{-i}$
- s_{i} weakly dominates s_{i}^{\prime} if
- $u_{i}\left(s_{i}, s_{-i}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for all $s_{-i} \in S_{-i}$, and
- $u_{i}\left(s_{i}, s_{-i}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}\right)$ for at least one $s_{-i} \in S_{-i}$
- s_{i} is strictly/weakly dominant if it strictly/weakly dominates all other strategy
- s_{i} is strictly/weakly dominated if another strategy strictly/weakly dominates it
- $s=\left(s_{1}, \ldots, s_{n}\right)$ is dominant strategy equilibrium if s_{i} is dominant strategy for all i

Example: Prisoner's Dilemma

- Two prisoners suspected of a crime are taken to separate interrogation rooms
- Each can either confess to the crime or deny it

	D	C
	$-2,-2$	$-4,-1$
	$-1,-4$	$-3,-3$

- Absolute value of utilities are the length of jail term each prisoner gets

Example: Prisoner's Dilemma

- Two prisoners suspected of a crime are taken to separate interrogation rooms
- Each can either confess to the crime or deny it

	D	C
	$-2,-2$	$-4,-1$
	$-1,-4$	$-3,-3$

- Absolute value of utilities are the length of jail term each prisoner gets
- Confess is strictly dominant strategy for both prisoners

Example: Prisoner's Dilemma

- Two prisoners suspected of a crime are taken to separate interrogation rooms
- Each can either confess to the crime or deny it

	D	C
	$-2,-2$	$-4,-1$
C	$-1,-4$	$-3,-3$

- Absolute value of utilities are the length of jail term each prisoner gets
- Confess is strictly dominant strategy for both prisoners
- (C, C) is a strict dominant strategy equilibrium

Example: Prisoner's Dilemma

- Two prisoners suspected of a crime are taken to separate interrogation rooms
- Each can either confess to the crime or deny it

	D	C
	$-2,-2$	$-4,-1$
C	$-1,-4$	$-3,-3$

- Absolute value of utilities are the length of jail term each prisoner gets
- Confess is strictly dominant strategy for both prisoners
- (C, C) is a strict dominant strategy equilibrium
- The dilemma: (D, D) is better for both prisoners, but they won't play it!

Iterated Elimination of Strictly Dominated Strategies

- All strictly dominated pure strategies can be ignored

Iterated Elimination of Strictly Dominated Strategies

- All strictly dominated pure strategies can be ignored

	L	C	R
	3,1	0,2	0,0
	1,2	1,1	5,0
	1,2		
	0,1	4,2	0,0

Iterated Elimination of Strictly Dominated Strategies

- All strictly dominated pure strategies can be ignored

L	C	R	
	3,1	0,2	0,0
M	1,2	1,1	5,0
D	0,1	4,2	0,0

- Column R can be eliminated, since it is dominated by, for example, column L

Iterated Elimination of Strictly Dominated Strategies

- All strictly dominated pure strategies can be ignored

	L	C	R		L C	
U	3,1	0,2	0,0	U	3,1	0,2
M	1,2	1,1	5,0	$\Rightarrow \mathrm{M}$	1,2	1,1
D	0,1	4,2	0,0	D	0,1	4,2

- Column R can be eliminated, since it is dominated by, for example, column L

Iterated Elimination of Strictly Dominated Strategies

- All strictly dominated pure strategies can be ignored

	L	C	R		L C	
U	3,1	0,2	0,0	U	3,1	0,2
M	1,2	1,1	5,0	$\Rightarrow \mathrm{M}$	1,2	1,1
D	0,1	4,2	0,0	D	0,1	4,2

- Column R can be eliminated, since it is dominated by, for example, column L
- M is not dominated by U or D but is dominated by $0.5 \mathrm{U}+0.5 \mathrm{D}$ mixed strategy

Iterated Elimination of Strictly Dominated Strategies

- All strictly dominated pure strategies can be ignored

- Column R can be eliminated, since it is dominated by, for example, column L
- M is not dominated by U or D but is dominated by $0.5 \mathrm{U}+0.5 \mathrm{D}$ mixed strategy

Iterated Elimination of Strictly Dominated Strategies

- All strictly dominated pure strategies can be ignored

- Column R can be eliminated, since it is dominated by, for example, column L
- M is not dominated by U or D but is dominated by $0.5 \mathrm{U}+0.5 \mathrm{D}$ mixed strategy
- Note, however, that it was not dominated before the elimination of the R column

Iterated Elimination of Strictly Dominated Strategies

- All strictly dominated pure strategies can be ignored

- Column R can be eliminated, since it is dominated by, for example, column L
- M is not dominated by U or D but is dominated by $0.5 \mathrm{U}+0.5 \mathrm{D}$ mixed strategy
- Note, however, that it was not dominated before the elimination of the R column

Iterated Elimination of Strictly Dominated Strategies

- All strictly dominated pure strategies can be ignored

- Column R can be eliminated, since it is dominated by, for example, column L
- M is not dominated by U or D but is dominated by $0.5 \mathrm{U}+0.5 \mathrm{D}$ mixed strategy
- Note, however, that it was not dominated before the elimination of the R column

Iterated Elimination of Strictly Dominated Strategies (cont.)

- Once one pure strategy is eliminated, another strategy that was not dominated can become dominated

Iterated Elimination of Strictly Dominated Strategies (cont.)

- Once one pure strategy is eliminated, another strategy that was not dominated can become dominated
- In finite games, iterated elimination of strictly dominated strategies ends after finite number of iterations

Iterated Elimination of Strictly Dominated Strategies (cont.)

- Once one pure strategy is eliminated, another strategy that was not dominated can become dominated
- In finite games, iterated elimination of strictly dominated strategies ends after finite number of iterations
- Order of elimination does not matter when removing strictly dominated strategies (Church-Rosser property)

Iterated Elimination of Strictly Dominated Strategies (cont.)

- Once one pure strategy is eliminated, another strategy that was not dominated can become dominated
- In finite games, iterated elimination of strictly dominated strategies ends after finite number of iterations
- Order of elimination does not matter when removing strictly dominated strategies (Church-Rosser property)
- Elimination order can make a difference in final outcome when removing weakly dominated strategies

Iterated Elimination of Strictly Dominated Strategies (cont.)

- Once one pure strategy is eliminated, another strategy that was not dominated can become dominated
- In finite games, iterated elimination of strictly dominated strategies ends after finite number of iterations
- Order of elimination does not matter when removing strictly dominated strategies (Church-Rosser property)
- Elimination order can make a difference in final outcome when removing weakly dominated strategies
- If the procedure ends with a single strategy for each agent, then the game is said to be dominance solvable

Existence of Dominant Strategy Equilibrium

- Dominant strategy equilibrium does not always exist

Existence of Dominant Strategy Equilibrium

- Dominant strategy equilibrium does not always exist
- Example: Matching pennies

	Heads	Tails
Heads	$-1,1$	$1,-1$
Tails	$1,-1$	$-1,1$

Outline

1. Normal-form Games: Definition, Notations, and Examples
2. Dominant Strategy Equilibrium
3. Nash Equilibrium
4. Price of Anarchy
5. Minmax Theorem
6. Rationalizability
7. Correlated Equilibrium

Best Response

- Picking a strategy would be simple if an agent knew how others were going to act

Best Response

- Picking a strategy would be simple if an agent knew how others were going to act
- Best response: $s_{i}^{*} \in B R_{i}\left(s_{-i}\right)$ iff $u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq u_{i}\left(s_{i}, s_{-i}\right)$ for all strategies $s_{i} \in S_{i}$

Best Response

- Picking a strategy would be simple if an agent knew how others were going to act
- Best response: $s_{i}^{*} \in B R_{i}\left(s_{-i}\right)$ iff $u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq u_{i}\left(s_{i}, s_{-i}\right)$ for all strategies $s_{i} \in S_{i}$
- Best response is not necessarily unique
- If there is more than one best response, any mixed strategy over those must be a best response as well

Best Response

- Picking a strategy would be simple if an agent knew how others were going to act
- Best response: $s_{i}^{*} \in B R_{i}\left(s_{-i}\right)$ iff $u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq u_{i}\left(s_{i}, s_{-i}\right)$ for all strategies $s_{i} \in S_{i}$
- Best response is not necessarily unique
- If there is more than one best response, any mixed strategy over those must be a best response as well
- Best response is not a solution concept
- I.e., it does not identify an interesting set of outcomes
- Because agents do not know what strategies others will play

Best Response

- Picking a strategy would be simple if an agent knew how others were going to act
- Best response: $s_{i}^{*} \in B R_{i}\left(s_{-i}\right)$ iff $u_{i}\left(s_{i}^{*}, s_{-i}\right) \geq u_{i}\left(s_{i}, s_{-i}\right)$ for all strategies $s_{i} \in S_{i}$
- Best response is not necessarily unique
- If there is more than one best response, any mixed strategy over those must be a best response as well
- Best response is not a solution concept
- I.e., it does not identify an interesting set of outcomes
- Because agents do not know what strategies others will play
- However, we can leverage the idea of best response to define what is arguably the most central notion in game theory, the Nash equilibrium

Nash Equilibrium - Intersection of Best Responses

- $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a Nash equilibrium iff $\forall i, s_{i}^{*} \in B r_{i}\left(s_{-i}^{*}\right)$

Nash Equilibrium - Intersection of Best Responses

- $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a Nash equilibrium iff $\forall i, s_{i}^{*} \in B r_{i}\left(s_{-i}^{*}\right)$
- No agent can profitably deviate given strategies of others

Nash Equilibrium - Intersection of Best Responses

- $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a Nash equilibrium iff $\forall i, s_{i}^{*} \in B r_{i}\left(s_{-i}^{*}\right)$
- No agent can profitably deviate given strategies of others
- Nash equilibrium is a stable strategy profile

Nash Equilibrium - Intersection of Best Responses

- $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a Nash equilibrium iff $\forall i, s_{i}^{*} \in B r_{i}\left(s_{-i}^{*}\right)$
- No agent can profitably deviate given strategies of others
- Nash equilibrium is a stable strategy profile
- Nash theorem: Every finite game has a Nash equilibrium

Nash Equilibrium - Intersection of Best Responses

- $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a Nash equilibrium iff $\forall i, s_{i}^{*} \in B r_{i}\left(s_{-i}^{*}\right)$
- No agent can profitably deviate given strategies of others
- Nash equilibrium is a stable strategy profile
- Nash theorem: Every finite game has a Nash equilibrium

Nash Equilibrium - Intersection of Best Responses

- $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a Nash equilibrium iff $\forall i, s_{i}^{*} \in B r_{i}\left(s_{-i}^{*}\right)$
- No agent can profitably deviate given strategies of others
- Nash equilibrium is a stable strategy profile
- Nash theorem: Every finite game has a Nash equilibrium

John Forbes Nash Jr. 1928-2015

Example: Battle of Sexes

- Husband and wife wish to meet this evening, but have a choice between two events to attend: football or opera
- Husband would prefer to go to football, wife would prefer opera
- Both would prefer to go to the same event rather than different ones

Wife

Example: Battle of Sexes

- Husband and wife wish to meet this evening, but have a choice between two events to attend: football or opera
- Husband would prefer to go to football, wife would prefer opera
- Both would prefer to go to the same event rather than different ones

Wife

Example: Battle of Sexes

- Husband and wife wish to meet this evening, but have a choice between two events to attend: football or opera
- Husband would prefer to go to football, wife would prefer opera
- Both would prefer to go to the same event rather than different ones

Wife

Example: Battle of Sexes

- Husband and wife wish to meet this evening, but have a choice between two events to attend: football or opera
- Husband would prefer to go to football, wife would prefer opera
- Both would prefer to go to the same event rather than different ones

Wife

Example: Battle of Sexes

- Husband and wife wish to meet this evening, but have a choice between two events to attend: football or opera
- Husband would prefer to go to football, wife would prefer opera
- Both would prefer to go to the same event rather than different ones

Wife

Example: Battle of Sexes

- Husband and wife wish to meet this evening, but have a choice between two events to attend: football or opera
- Husband would prefer to go to football, wife would prefer opera
- Both would prefer to go to the same event rather than different ones

Wife

Example: Battle of Sexes

- Husband and wife wish to meet this evening, but have a choice between two events to attend: football or opera
- Husband would prefer to go to football, wife would prefer opera
- Both would prefer to go to the same event rather than different ones

Wife

- Are these the only Nash equilibria?

Example: Battle of Sexes (cont.)

- In general, it is tricky to compute mixed-strategy equilibria (will discuss this later)

Example: Battle of Sexes (cont.)

- In general, it is tricky to compute mixed-strategy equilibria (will discuss this later)
- It becomes easy when we know (or can guess) support of equilibrium strategies

Example: Battle of Sexes (cont.)

	$\mathrm{F}(p)$	$\mathrm{O}(1-p)$
F	2,1	0,0
O	0,0	1,2

- In general, it is tricky to compute mixed-strategy equilibria (will discuss this later)
- It becomes easy when we know (or can guess) support of equilibrium strategies
- Let us now guess that both agents randomize over both F and O

Example: Battle of Sexes (cont.)

	$\mathrm{F}(p)$	$\mathrm{O}(1-p)$
F	2,1	0,0
O	0,0	1,2

- In general, it is tricky to compute mixed-strategy equilibria (will discuss this later)
- It becomes easy when we know (or can guess) support of equilibrium strategies
- Let us now guess that both agents randomize over both F and O
- Wife's strategy is to play F w.p. p and O w.p. $1-p$

Example: Battle of Sexes (cont.)

	$\mathrm{F}(p)$	$\mathrm{O}(1-p)$
F	2,1	0,0
	0,0	1,2

- In general, it is tricky to compute mixed-strategy equilibria (will discuss this later)
- It becomes easy when we know (or can guess) support of equilibrium strategies
- Let us now guess that both agents randomize over both F and O
- Wife's strategy is to play F w.p. p and O w.p. $1-p$
- Husband must be indifferent between F and O (why?):

$$
u_{H}(F)=u_{H}(O) \Rightarrow 2 \times p=(1-p) \Rightarrow p=1 / 3
$$

Example: Battle of Sexes (cont.)

	$\mathrm{F}(p)$	$\mathrm{O}(1-p)$
F	2,1	0,0
O	0,0	1,2

- In general, it is tricky to compute mixed-strategy equilibria (will discuss this later)
- It becomes easy when we know (or can guess) support of equilibrium strategies
- Let us now guess that both agents randomize over both F and O
- Wife's strategy is to play F w.p. p and O w.p. $1-p$
- Husband must be indifferent between F and O (why?):

$$
u_{H}(F)=u_{H}(O) \Rightarrow 2 \times p=(1-p) \Rightarrow p=1 / 3
$$

- You can show that the unique mixed-strategy NE is $\left\{\left(\frac{2}{3}, \frac{1}{3}\right),\left(\frac{1}{3}, \frac{2}{3}\right)\right\}$

Example: Cournot Competition

- $u_{i}\left(a_{1}, a_{2}\right)=a_{i} \max \left(0,2-a_{1}-a_{2}\right)-a_{i}$
- Using first order optimality conditions, we have

$$
\begin{aligned}
B R_{i}\left(a_{-i}\right) & =\underset{a_{i} \geq 0}{\operatorname{argmax}} a_{i}\left(2-a_{i}-a_{-i}\right)-a_{i} \\
& = \begin{cases}\left(1-a_{-i}\right) / 2 & \text { if } a_{-i}<1, \\
0 & \text { Otherwise. }\end{cases}
\end{aligned}
$$

${ }^{\circ}$
$1 / 2$

Example: Cournot Competition

- $u_{i}\left(a_{1}, a_{2}\right)=a_{i} \max \left(0,2-a_{1}-a_{2}\right)-a_{i}$
- Using first order optimality conditions, we have

$$
\begin{aligned}
B R_{i}\left(a_{-i}\right) & =\underset{a_{i} \geq 0}{\operatorname{argmax}} a_{i}\left(2-a_{i}-a_{-i}\right)-a_{i} \\
& = \begin{cases}\left(1-a_{-i}\right) / 2 & \text { if } a_{-i}<1, \\
0 & \text { Otherwise. }\end{cases}
\end{aligned}
$$

Example: Cournot Competition

- $u_{i}\left(a_{1}, a_{2}\right)=a_{i} \max \left(0,2-a_{1}-a_{2}\right)-a_{i}$
- Using first order optimality conditions, we have

$$
\begin{aligned}
B R_{i}\left(a_{-i}\right) & =\underset{a_{i} \geq 0}{\operatorname{argmax}} a_{i}\left(2-a_{i}-a_{-i}\right)-a_{i} \\
& = \begin{cases}\left(1-a_{-i}\right) / 2 & \text { if } a_{-i}<1, \\
0 & \text { Otherwise. }\end{cases}
\end{aligned}
$$

The "Equilibrium Selection Problem"

- You are about to play a game that you have never played before with a person that you have never met

The "Equilibrium Selection Problem"

- You are about to play a game that you have never played before with a person that you have never met
- According to which equilibrium should you play?

The "Equilibrium Selection Problem"

- You are about to play a game that you have never played before with a person that you have never met
- According to which equilibrium should you play?
- Equilibrium that maximizes the sum of utilities (social welfare)

The "Equilibrium Selection Problem"

- You are about to play a game that you have never played before with a person that you have never met
- According to which equilibrium should you play?
- Equilibrium that maximizes the sum of utilities (social welfare)
- Or, at least not a Pareto-dominated equilibrium

The "Equilibrium Selection Problem"

- You are about to play a game that you have never played before with a person that you have never met
- According to which equilibrium should you play?
- Equilibrium that maximizes the sum of utilities (social welfare)
- Or, at least not a Pareto-dominated equilibrium
- So-called focal equilibria (e.g., "Meet in Paris" game - you and a friend were supposed to meet in Paris at noon on Sunday, but you forgot to discuss where and you cannot communicate. Where will you go?)

The "Equilibrium Selection Problem"

- You are about to play a game that you have never played before with a person that you have never met
- According to which equilibrium should you play?
- Equilibrium that maximizes the sum of utilities (social welfare)
- Or, at least not a Pareto-dominated equilibrium
- So-called focal equilibria (e.g., "Meet in Paris" game - you and a friend were supposed to meet in Paris at noon on Sunday, but you forgot to discuss where and you cannot communicate. Where will you go?)
- Equilibrium that is the convergence point of some learning process

The "Equilibrium Selection Problem"

- You are about to play a game that you have never played before with a person that you have never met
- According to which equilibrium should you play?
- Equilibrium that maximizes the sum of utilities (social welfare)
- Or, at least not a Pareto-dominated equilibrium
- So-called focal equilibria (e.g., "Meet in Paris" game - you and a friend were supposed to meet in Paris at noon on Sunday, but you forgot to discuss where and you cannot communicate. Where will you go?)
- Equilibrium that is the convergence point of some learning process
- An equilibrium that is easy to compute

The "Equilibrium Selection Problem"

- You are about to play a game that you have never played before with a person that you have never met
- According to which equilibrium should you play?
- Equilibrium that maximizes the sum of utilities (social welfare)
- Or, at least not a Pareto-dominated equilibrium
- So-called focal equilibria (e.g., "Meet in Paris" game - you and a friend were supposed to meet in Paris at noon on Sunday, but you forgot to discuss where and you cannot communicate. Where will you go?)
- Equilibrium that is the convergence point of some learning process
- An equilibrium that is easy to compute
- ...

The "Equilibrium Selection Problem"

- You are about to play a game that you have never played before with a person that you have never met
- According to which equilibrium should you play?
- Equilibrium that maximizes the sum of utilities (social welfare)
- Or, at least not a Pareto-dominated equilibrium
- So-called focal equilibria (e.g., "Meet in Paris" game - you and a friend were supposed to meet in Paris at noon on Sunday, but you forgot to discuss where and you cannot communicate. Where will you go?)
- Equilibrium that is the convergence point of some learning process
- An equilibrium that is easy to compute
- ...
- Equilibrium selection is a difficult problem

Outline

1. Normal-form Games: Definition, Notations, and Examples
2. Dominant Strategy Equilibrium
3. Nash Equilibrium
4. Price of Anarchy
5. Minmax Theorem
6. Rationalizability
7. Correlated Equilibrium

Braess's Paradox

- Suppose there are $2 k$ drivers commuting from s to t

Braess's Paradox

- Suppose there are $2 k$ drivers commuting from s to t
- $C(x)$ indicates travel time in hours for x fraction of drivers

Braess's Paradox

- Suppose there are $2 k$ drivers commuting from s to t
- $C(x)$ indicates travel time in hours for x fraction of drivers
- k drivers going through v, and k going through w is NE (why?)

Braess's Paradox (cont.)

- Suppose we install a teleportation device allowing instant travel from v to w
- What is new NE?
- What is optimal commute time?
- Price of anarchy: ratio between (worst) NE performance and optimal performance
- Ratio between 2 and 3/2 in Braess's Paradox

Outline

1. Normal-form Games: Definition, Notations, and Examples
2. Dominant Strategy Equilibrium
3. Nash Equilibrium
4. Price of Anarchy
5. Minmax Theorem
6. Rationalizability
7. Correlated Equilibrium

Maxmin Strategy

- Maxmin strategy for agent i is

$$
\underset{s_{i}}{\operatorname{argmax}} \min _{s_{-i}} u_{i}\left(s_{i}, s_{-i}\right)
$$

- Maxmin value for agent i is

$$
\max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{i}, s_{-i}\right)
$$

- If i plays maxmin strategy and others play arbitrarily, i still receives expected payoff of at least their maxmin value

Example: Battle of Sexes

	C			
		$\mathrm{F}(1-p)$		$\mathrm{O}(p)$
	F	2,1		
	H	0,0		
	O	0,0		

Example: Battle of Sexes

	C			
		$\mathrm{F}(1-p)$		$\mathrm{O}(p)$
	F	2,1		
	H	0,0		
	O	0,0		

Example: Battle of Sexes

Example: Battle of Sexes

	C			
		$\mathrm{F}(1-p)$		$\mathrm{O}(p)$
	F	2,1		
	H	0,0		
	O	0,0		

Minmax Strategy

- Minmax strategy against against i is

$$
\underset{s_{-i}}{\operatorname{argmin}} \max _{s_{i}} u_{i}\left(s_{i}, s_{-i}\right)
$$

- Minmax value for agent i is

$$
\min _{s_{-i}} \max _{s_{i}} u_{i}\left(s_{i}, s_{-i}\right)
$$

- Minmax strategy against i keeps maximum payoff of agent i at minimum
- Agents' maxmin value is always less than or equal to their minmax value (try to show this!)

Minimax Theorem (John von Neumann, 1928)

In any finite, two-player, zero-sum game, in any Nash equilibrium ${ }^{1}$, each agent receives a payoff that is equal to both their maxmin value and their minmax value

$$
\max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{i}, s_{-i}\right)=\min _{s_{-i}} \max _{s_{i}} u_{i}\left(s_{i}, s_{-i}\right)
$$

[^0]
Minimax Theorem (John von Neumann, 1928)

In any finite, two-player, zero-sum game, in any Nash equilibrium ${ }^{1}$, each agent receives a payoff that is equal to both their maxmin value and their minmax value

$$
\max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{i}, s_{-i}\right)=\min _{s_{-i}} \max _{s_{i}} u_{i}\left(s_{i}, s_{-i}\right)
$$

- Minimax theorem does not hold with pure strategies only (example?)

[^1]
Example

- What is maximin value of agent 1 with and without mixed strategies?

Example

- What is maximin value of agent 1 with and without mixed strategies?
- What is minimax value of agent 1 with and without mixed strategies?

Example

- What is maximin value of agent 1 with and without mixed strategies?
- What is minimax value of agent 1 with and without mixed strategies?
- What is NE of this game?

Outline

1. Normal-form Games: Definition, Notations, and Examples
2. Dominant Strategy Equilibrium
3. Nash Equilibrium
4. Price of Anarchy
5. Minmax Theorem
6. Rationalizability
7. Correlated Equilibrium

Rationalizability

- Rationalizable strategy: Perfectly rational agent could justifiably play it

Rationalizability

- Rationalizable strategy: Perfectly rational agent could justifiably play it
- Best response to some beliefs about strategies of others

Rationalizability

- Rationalizable strategy: Perfectly rational agent could justifiably play it
- Best response to some beliefs about strategies of others
- Agents cannot have arbitrary beliefs about other agents

Rationalizability

- Rationalizable strategy: Perfectly rational agent could justifiably play it
- Best response to some beliefs about strategies of others
- Agents cannot have arbitrary beliefs about other agents
- Agent i's beliefs must take into account:

Rationalizability

- Rationalizable strategy: Perfectly rational agent could justifiably play it
- Best response to some beliefs about strategies of others
- Agents cannot have arbitrary beliefs about other agents
- Agent i's beliefs must take into account:
- Other agents' rationality

Rationalizability

- Rationalizable strategy: Perfectly rational agent could justifiably play it
- Best response to some beliefs about strategies of others
- Agents cannot have arbitrary beliefs about other agents
- Agent i 's beliefs must take into account:
- Other agents' rationality
- Other agents' knowledge of agent i's rationality

Rationalizability

- Rationalizable strategy: Perfectly rational agent could justifiably play it
- Best response to some beliefs about strategies of others
- Agents cannot have arbitrary beliefs about other agents
- Agent i's beliefs must take into account:
- Other agents' rationality
- Other agents' knowledge of agent i's rationality
- Other agents' knowledge of agent i 's knowledge of their rationality

Rationalizability

- Rationalizable strategy: Perfectly rational agent could justifiably play it
- Best response to some beliefs about strategies of others
- Agents cannot have arbitrary beliefs about other agents
- Agent i's beliefs must take into account:
- Other agents' rationality
- Other agents' knowledge of agent i's rationality
- Other agents' knowledge of agent i 's knowledge of their rationality
- ... (infinite regress)

Example: Matching Pennies

	H	T
H	$-1,1$	$1,-1$
T	$1,-1$	$-1,1$

- Col playing H is rationalizable

Example: Matching Pennies

	H	C
H	$-1,1$	$1,-1$
T	$1,-1$	$-1,1$

- Col playing H is rationalizable
- Col could believe Row plays H

Example: Matching Pennies

	H	C
H	$-1,1$	$1,-1$
T	$1,-1$	$-1,1$

- Col playing H is rationalizable
- Col could believe Row plays H
- Col believing that Row plays H is rationalizable

Example: Matching Pennies

	H	C
H	$-1,1$	$1,-1$
T	$1,-1$	$-1,1$

- Col playing H is rationalizable
- Col could believe Row plays H
- Col believing that Row plays H is rationalizable
- Col could believe Row believes Col plays T

Example: Matching Pennies

	H	C
H	$-1,1$	$1,-1$
	$1,-1$	$-1,1$

- Col playing H is rationalizable
- Col could believe Row plays H
- Col believing that Row plays H is rationalizable
- Col could believe Row believes Col plays T
- Col believing that Row believes that Col plays T is rationalizable

Example: Matching Pennies

	H	C
H	$-1,1$	$1,-1$
	$1,-1$	$-1,1$

- Col playing H is rationalizable
- Col could believe Row plays H
- Col believing that Row plays H is rationalizable
- Col could believe Row believes Col plays T
- Col believing that Row believes that Col plays T is rationalizable
- Col could believe Row believes Col believes Row plays T

Example: Matching Pennies

	H	C
H	$-1,1$	$1,-1$
T	$1,-1$	$-1,1$

- Col playing H is rationalizable
- Col could believe Row plays H
- Col believing that Row plays H is rationalizable
- Col could believe Row believes Col plays T
- Col believing that Row believes that Col plays T is rationalizable
- Col could believe Row believes Col believes Row plays T

Example: Matching Pennies

	H	T
H	$-1,1$	$1,-1$
T	$1,-1$	$-1,1$

- Col playing H is rationalizable
- Col could believe Row plays H
- Col believing that Row plays H is rationalizable
- Col could believe Row believes Col plays T
- Col believing that Row believes that Col plays T is rationalizable
- Col could believe Row believes Col believes Row plays T
- In this game, all pure strategies are rationalizable

Rationalizability: Properties

- Nash equilibrium strategies are always rationalizable
- Some rationalizable strategies are not Nash
- Set of rationalizable strategies in finite games is nonempty

Rationalizability: Properties

- Nash equilibrium strategies are always rationalizable
- Some rationalizable strategies are not Nash
- Set of rationalizable strategies in finite games is nonempty
- To find rationalizable strategies:

Rationalizability: Properties

- Nash equilibrium strategies are always rationalizable
- Some rationalizable strategies are not Nash
- Set of rationalizable strategies in finite games is nonempty
- To find rationalizable strategies:
- In 2-player games, use iterated elimination of strictly dominated strategies

Rationalizability: Properties

- Nash equilibrium strategies are always rationalizable
- Some rationalizable strategies are not Nash
- Set of rationalizable strategies in finite games is nonempty
- To find rationalizable strategies:
- In 2-player games, use iterated elimination of strictly dominated strategies
- In n-player games, iterated elimination of never-best response strategies
- Eliminate strategies that are not optimal against any belief about others' strategies

Example: 2/3-Beauty Contest Game

- No agent plays more than 100

Example: 2/3-Beauty Contest Game

- No agent plays more than 100
- $2 / 3$ of average is strictly less than $67(100 \times 2 / 3)$

Example: 2/3-Beauty Contest Game

- No agent plays more than 100
- $2 / 3$ of average is strictly less than $67(100 \times 2 / 3)$
- Any integer > 67 is never-best response to any belief about others' strategy

Example: 2/3-Beauty Contest Game

- No agent plays more than 100
- $2 / 3$ of average is strictly less than $67(100 \times 2 / 3)$
- Any integer > 67 is never-best response to any belief about others' strategy
- No agent plays more than 67

Example: 2/3-Beauty Contest Game

- No agent plays more than 100
- $2 / 3$ of average is strictly less than $67(100 \times 2 / 3)$
- Any integer > 67 is never-best response to any belief about others' strategy
- No agent plays more than 67
- $2 / 3$ of average is less than $45(67 \times 2 / 3)$

Example: 2/3-Beauty Contest Game

- No agent plays more than 100
- $2 / 3$ of average is strictly less than $67(100 \times 2 / 3)$
- Any integer > 67 is never-best response to any belief about others' strategy
- No agent plays more than 67
- $2 / 3$ of average is less than $45(67 \times 2 / 3)$
- Any integer >45 is never-best response to any belief about others' strategy

Example: 2/3-Beauty Contest Game

- No agent plays more than 100
- $2 / 3$ of average is strictly less than $67(100 \times 2 / 3)$
- Any integer > 67 is never-best response to any belief about others' strategy
- No agent plays more than 67
- $2 / 3$ of average is less than $45(67 \times 2 / 3)$
- Any integer >45 is never-best response to any belief about others' strategy - ...

Example: 2/3-Beauty Contest Game

- No agent plays more than 100
- $2 / 3$ of average is strictly less than $67(100 \times 2 / 3)$
- Any integer > 67 is never-best response to any belief about others' strategy
- No agent plays more than 67
- $2 / 3$ of average is less than $45(67 \times 2 / 3)$
- Any integer >45 is never-best response to any belief about others' strategy - . .
- Only rationalizable action is playing 1

Outline

1. Normal-form Games: Definition, Notations, and Examples
2. Dominant Strategy Equilibrium
3. Nash Equilibrium
4. Price of Anarchy
5. Minmax Theorem
6. Rationalizability
7. Correlated Equilibrium

Example: Battle of Sexes

	W	
	Football	Opera
F	2,1	0,0
0	0, 0	1,2

- Unique mixed strategy NE yields each agent expected payoff of $2 / 3$

Example: Battle of Sexes

	W			
		Football		Opera
		2,1		
		0,0		

- Unique mixed strategy NE yields each agent expected payoff of $2 / 3$
- In NE, agents randomize over strategies independently

Example: Battle of Sexes

	W			
		Football		Opera
		2,1		
		0,0		

- Unique mixed strategy NE yields each agent expected payoff of $2 / 3$
- In NE, agents randomize over strategies independently
- Can they both do better by coordinating?

Example: Battle of Sexes

	W	
	Football	Opera
F	2,1	0,0
0	0,0	1,2

- Unique mixed strategy NE yields each agent expected payoff of $2 / 3$
- In NE, agents randomize over strategies independently
- Can they both do better by coordinating?
- Agents can observe random coin flip and condition their strategies on its outcome

Example: Battle of Sexes (cont.)

- Suppose there is publicly observable fair coin

Example: Battle of Sexes (cont.)

- Suppose there is publicly observable fair coin
- If it is heads/tails, they both get recommendation to go to football/opera

Example: Battle of Sexes (cont.)

- Suppose there is publicly observable fair coin
- If it is heads/tails, they both get recommendation to go to football/opera
- If they see heads, they believe that the other one goes to football

Example: Battle of Sexes (cont.)

- Suppose there is publicly observable fair coin
- If it is heads/tails, they both get recommendation to go to football/opera
- If they see heads, they believe that the other one goes to football
- Going to football is best response, agents have no incentive to deviate

Example: Battle of Sexes (cont.)

- Suppose there is publicly observable fair coin
- If it is heads/tails, they both get recommendation to go to football/opera
- If they see heads, they believe that the other one goes to football
- Going to football is best response, agents have no incentive to deviate
- Similar argument can be made when they see tails

Example: Battle of Sexes (cont.)

- Suppose there is publicly observable fair coin
- If it is heads/tails, they both get recommendation to go to football/opera
- If they see heads, they believe that the other one goes to football
- Going to football is best response, agents have no incentive to deviate
- Similar argument can be made when they see tails
- Expected utilities for this play of game increases to $(1.5,1.5)$

Correlated Recommendations

- Let $R=\left(R_{1}, \ldots, R_{n}\right)$ be random variable taking values in $A=\prod_{i} A_{i}$

Correlated Recommendations

- Let $R=\left(R_{1}, \ldots, R_{n}\right)$ be random variable taking values in $A=\prod_{i} A_{i}$
- Let R be distributed according to $\pi \in \Delta(A)$

Correlated Recommendations

- Let $R=\left(R_{1}, \ldots, R_{n}\right)$ be random variable taking values in $A=\prod_{i} A_{i}$
- Let R be distributed according to $\pi \in \Delta(A)$
- $r=\left(r_{1}, \ldots, r_{n}\right)$ is an instantiatation of R and a pure strategy profile

Correlated Recommendations

- Let $R=\left(R_{1}, \ldots, R_{n}\right)$ be random variable taking values in $A=\prod_{i} A_{i}$
- Let R be distributed according to $\pi \in \Delta(A)$
- $r=\left(r_{1}, \ldots, r_{n}\right)$ is an instantiatation of R and a pure strategy profile
- $r_{i} \in A_{i}$ is called recommendation to agent i

Correlated Recommendations

- Let $R=\left(R_{1}, \ldots, R_{n}\right)$ be random variable taking values in $A=\prod_{i} A_{i}$
- Let R be distributed according to $\pi \in \Delta(A)$
- $r=\left(r_{1}, \ldots, r_{n}\right)$ is an instantiatation of R and a pure strategy profile
- $r_{i} \in A_{i}$ is called recommendation to agent i
- $\pi\left(r_{i}\right)$ represents marginal probability for $R_{i}=r_{i}$

Correlated Recommendations

- Let $R=\left(R_{1}, \ldots, R_{n}\right)$ be random variable taking values in $A=\prod_{i} A_{i}$
- Let R be distributed according to $\pi \in \Delta(A)$
- $r=\left(r_{1}, \ldots, r_{n}\right)$ is an instantiatation of R and a pure strategy profile
- $r_{i} \in A_{i}$ is called recommendation to agent i
- $\pi\left(r_{i}\right)$ represents marginal probability for $R_{i}=r_{i}$
- Given r_{i}, agent i can use conditional probability to form beliefs others' signals

$$
\pi\left(r_{-i} \mid r_{i}\right)=\frac{\pi\left(r_{i}, r_{-i}\right)}{\sum_{r_{-i}^{\prime} \in A_{-i}} \pi\left(r_{i}, r_{-i}^{\prime}\right)}
$$

Correlated Equilibrium: Formal Definition

- Correlated equilibrium of finite game is joint probability distribution $\pi \in \Delta(A)$ such that if R is random variable distributed according to π, then for all $i, r_{i} \in A_{i}$ with $\pi\left(r_{i}\right)>0$, and $r_{i}^{\prime} \in A_{i}$

$$
\sum_{r_{-i} \in A_{-i}} \pi\left(r_{-i} \mid r_{i}\right)\left[u_{i}\left(r_{i}, r_{-i}\right)-u_{i}\left(r_{i}^{\prime}, r_{-i}\right)\right] \geq 0
$$

Correlated Equilibrium: Formal Definition

- Correlated equilibrium of finite game is joint probability distribution $\pi \in \Delta(A)$ such that if R is random variable distributed according to π, then for all $i, r_{i} \in A_{i}$ with $\pi\left(r_{i}\right)>0$, and $r_{i}^{\prime} \in A_{i}$

$$
\sum_{r_{-i} \in A_{-i}} \pi\left(r_{-i} \mid r_{i}\right)\left[u_{i}\left(r_{i}, r_{-i}\right)-u_{i}\left(r_{i}^{\prime}, r_{-i}\right)\right] \geq 0
$$

- No agent can benefit by deviating from their recommendation, assuming that other agents follow their recommendations

Example: Game of Chicken

Driver 2

	Dare		Yield
Driver 11	D	$-5,-5$	$1,-1$
	Y	$-1,1$	0,0

- (D,Y) and (Y,D) are strict pure-strategy NE

Example: Game of Chicken

Driver 2

	Dare		Yield
Driver 11	D	$-5,-5$	$1,-1$
	Y	$-1,1$	0,0

- (D, Y) and (Y,D) are strict pure-strategy NE
- Assume Driver 1 yields w.p. p and Driver 2 yields w.p. q

Example: Game of Chicken

Driver 2

- (D, Y) and (Y,D) are strict pure-strategy NE
- Assume Driver 1 yields w.p. p and Driver 2 yields w.p. q
- Using mixed equilibrium characterization, we have

$$
\begin{aligned}
& p-5 \times(1-p)=-(1-p) \Longrightarrow p=4 / 5 \\
& q-5 \times(1-q)=-(1-q) \Longrightarrow q=4 / 5
\end{aligned}
$$

Example: Game of Chicken

Driver 2

- (D,Y) and (Y,D) are strict pure-strategy NE
- Assume Driver 1 yields w.p. p and Driver 2 yields w.p. q
- Using mixed equilibrium characterization, we have

$$
\begin{aligned}
& p-5 \times(1-p)=-(1-p) \Longrightarrow p=4 / 5 \\
& q-5 \times(1-q)=-(1-q) \Longrightarrow q=4 / 5
\end{aligned}
$$

- Mixed-strategy NE utilities are $(-0.2,-0.2)$, people die with probability 0.04

Example: Game of Chicken (cont.)

D2

- Is this correlated equilibrium?

	D	Y
D	$\begin{gathered} -5,-5 \\ 0 \% \end{gathered}$	$\begin{aligned} & 1,-1 \\ & 40 \% \end{aligned}$
Y	$\begin{aligned} & -1,1 \\ & 40 \% \end{aligned}$	$\begin{gathered} 0,0 \\ 20 \% \end{gathered}$

Example: Game of Chicken (cont.)

D2

- Is this correlated equilibrium?
- Suppose D1 gets Y recommendation

Example: Game of Chicken (cont.)

D2

- Is this correlated equilibrium?
- Suppose D1 gets Y recommendation
- Conditional probability that D2 yields is $1 / 3$

	D	Y
D	$\begin{gathered} -5,-5 \\ 0 \% \end{gathered}$	$\begin{gathered} 1,-1 \\ 40 \% \end{gathered}$
Y	$\begin{gathered} -1,1 \\ 40 \% \end{gathered}$	$\begin{gathered} 0,0 \\ 20 \% \end{gathered}$

Example: Game of Chicken (cont.)

D2

- Is this correlated equilibrium?
- Suppose D1 gets Y recommendation
- Conditional probability that D2 yields is $1 / 3$
- Expected utility of Y is $-1 \times 2 / 3$

	D	Y
D	$\begin{gathered} -5,-5 \\ 0 \% \end{gathered}$	$\begin{aligned} & 1,-1 \\ & 40 \% \end{aligned}$
Y	$\begin{aligned} & -1,1 \\ & 40 \% \end{aligned}$	$\begin{gathered} 0,0 \\ 20 \% \end{gathered}$

Example: Game of Chicken (cont.)

D2

- Is this correlated equilibrium?
- Suppose D1 gets Y recommendation
- Conditional probability that D2 yields is $1 / 3$
- Expected utility of Y is $-1 \times 2 / 3$
- Expected utility of D is $1 \times 1 / 3-5 \times 2 / 3$

Example: Game of Chicken (cont.)

D2

- Is this correlated equilibrium?
- Suppose D1 gets Y recommendation
- Conditional probability that D2 yields is $1 / 3$
- Expected utility of Y is $-1 \times 2 / 3$
- Expected utility of D is $1 \times 1 / 3-5 \times 2 / 3$
- Following the recommendation is better

	D	Y
D	$\begin{gathered} -5,-5 \\ 0 \% \end{gathered}$	$\begin{gathered} 1,-1 \\ 40 \% \end{gathered}$
Y	$\begin{gathered} -1,1 \\ 40 \% \end{gathered}$	$\begin{gathered} 0,0 \\ 20 \% \end{gathered}$

Example: Game of Chicken (cont.)

D2

- Is this correlated equilibrium?
- Suppose D1 gets Y recommendation
- Conditional probability that D2 yields is $1 / 3$
- Expected utility of Y is $-1 \times 2 / 3$
- Expected utility of D is $1 \times 1 / 3-5 \times 2 / 3$
- Following the recommendation is better

- If D1 gets D recommendation, D2 must yield

Example: Game of Chicken (cont.)

D2

- Is this correlated equilibrium?
- Suppose D1 gets Y recommendation
- Conditional probability that D2 yields is $1 / 3$
- Expected utility of Y is $-1 \times 2 / 3$
- Expected utility of D is $1 \times 1 / 3-5 \times 2 / 3$
- Following the recommendation is better

- If D1 gets D recommendation, D2 must yield
- Following recommendation is again better

	D	Y
D	$\begin{gathered} -5,-5 \\ 0 \% \end{gathered}$	$\begin{gathered} 1,-1 \\ 40 \% \end{gathered}$
Y	$\begin{aligned} & -1,1 \\ & 40 \% \end{aligned}$	$\begin{gathered} 0,0 \\ 20 \% \end{gathered}$

Example: Game of Chicken (cont.)

D2

- Is this correlated equilibrium?
- Suppose D1 gets Y recommendation
- Conditional probability that D2 yields is $1 / 3$
- Expected utility of Y is $-1 \times 2 / 3$
- Expected utility of D is $1 \times 1 / 3-5 \times 2 / 3$
- Following the recommendation is better

- If D1 gets D recommendation, D2 must yield
- Following recommendation is again better
- Similar analysis works for D2

	D	Y
D	$\begin{gathered} -5,-5 \\ 0 \% \end{gathered}$	$\begin{gathered} 1,-1 \\ 40 \% \end{gathered}$
Y	$\begin{aligned} & -1,1 \\ & 40 \% \end{aligned}$	$\begin{gathered} 0,0 \\ 20 \% \end{gathered}$

Example: Game of Chicken (cont.)

D2

- Is this correlated equilibrium?
- Suppose D1 gets Y recommendation
- Conditional probability that D2 yields is $1 / 3$
- Expected utility of Y is $-1 \times 2 / 3$
- Expected utility of D is $1 \times 1 / 3-5 \times 2 / 3$
- Following the recommendation is better

- If D1 gets D recommendation, D2 must yield
- Following recommendation is again better
- Similar analysis works for D2
- Expected utilizes are $(0,0)$, so nobody dies!

Characterization of Correlated Equilibrium

- Joint distribution $\pi \in \Delta(A)$ is correlated equilibrium of finite game iff

$$
\begin{equation*}
\sum_{r_{-i} \in A_{-i}} \pi(r)\left[u_{i}(r)-u_{i}\left(r_{i}^{\prime}, r_{-i}\right)\right] \geq 0, \quad \forall i, r_{i}, r_{i}^{\prime} \in A_{i} \tag{1}
\end{equation*}
$$

Characterization of Correlated Equilibrium

- Joint distribution $\pi \in \Delta(A)$ is correlated equilibrium of finite game iff

$$
\begin{equation*}
\sum_{r_{-i} \in A_{-i}} \pi(r)\left[u_{i}(r)-u_{i}\left(r_{i}^{\prime}, r_{-i}\right)\right] \geq 0, \quad \forall i, r_{i}, r_{i}^{\prime} \in A_{i} \tag{1}
\end{equation*}
$$

- Proof (only for one side):

Characterization of Correlated Equilibrium

- Joint distribution $\pi \in \Delta(A)$ is correlated equilibrium of finite game iff

$$
\begin{equation*}
\sum_{r_{-i} \in A_{-i}} \pi(r)\left[u_{i}(r)-u_{i}\left(r_{i}^{\prime}, r_{-i}\right)\right] \geq 0, \quad \forall i, r_{i}, r_{i}^{\prime} \in A_{i} \tag{1}
\end{equation*}
$$

- Proof (only for one side):
- Correlated equilibrium can be written for all $i, r_{i}, r_{i}^{\prime} \in A_{i}$ with $\pi\left(r_{i}\right)>0$ as:

$$
\sum_{r_{-i} \in A_{-i}} \frac{\pi\left(r_{i}, r_{-i}\right)}{\sum_{r_{-i}^{\prime} \in A_{-i}} \pi\left(r_{i}, r_{-i}^{\prime}\right)}\left[u_{i}\left(r_{i}, r_{-i}\right)-u_{i}\left(r_{i}^{\prime}, r_{-i}\right)\right] \geq 0
$$

Characterization of Correlated Equilibrium

- Joint distribution $\pi \in \Delta(A)$ is correlated equilibrium of finite game iff

$$
\begin{equation*}
\sum_{r_{-i} \in A_{-i}} \pi(r)\left[u_{i}(r)-u_{i}\left(r_{i}^{\prime}, r_{-i}\right)\right] \geq 0, \quad \forall i, r_{i}, r_{i}^{\prime} \in A_{i} \tag{1}
\end{equation*}
$$

- Proof (only for one side):
- Correlated equilibrium can be written for all $i, r_{i}, r_{i}^{\prime} \in A_{i}$ with $\pi\left(r_{i}\right)>0$ as:

$$
\sum_{r_{-i} \in A_{-i}} \frac{\pi\left(r_{i}, r_{-i}\right)}{\sum_{r_{-i}^{\prime} \in A_{-i}} \pi\left(r_{i}, r_{-i}^{\prime}\right)}\left[u_{i}\left(r_{i}, r_{-i}\right)-u_{i}\left(r_{i}^{\prime}, r_{-i}\right)\right] \geq 0
$$

- Denominator does not depend on variable of sum

Characterization of Correlated Equilibrium

- Joint distribution $\pi \in \Delta(A)$ is correlated equilibrium of finite game iff

$$
\begin{equation*}
\sum_{r_{-i} \in A_{-i}} \pi(r)\left[u_{i}(r)-u_{i}\left(r_{i}^{\prime}, r_{-i}\right)\right] \geq 0, \quad \forall i, r_{i}, r_{i}^{\prime} \in A_{i} \tag{1}
\end{equation*}
$$

- Proof (only for one side):
- Correlated equilibrium can be written for all $i, r_{i}, r_{i}^{\prime} \in A_{i}$ with $\pi\left(r_{i}\right)>0$ as:

$$
\sum_{r_{-i} \in A_{-i}} \frac{\pi\left(r_{i}, r_{-i}\right)}{\sum_{r_{-i}^{\prime} \in A_{-i}} \pi\left(r_{i}, r_{-i}^{\prime}\right)}\left[u_{i}\left(r_{i}, r_{-i}\right)-u_{i}\left(r_{i}^{\prime}, r_{-i}\right)\right] \geq 0
$$

- Denominator does not depend on variable of sum
- So it can be factored and canceled

Characterization of Correlated Equilibrium

- Joint distribution $\pi \in \Delta(A)$ is correlated equilibrium of finite game iff

$$
\begin{equation*}
\sum_{r_{-i} \in A_{-i}} \pi(r)\left[u_{i}(r)-u_{i}\left(r_{i}^{\prime}, r_{-i}\right)\right] \geq 0, \quad \forall i, r_{i}, r_{i}^{\prime} \in A_{i} \tag{1}
\end{equation*}
$$

- Proof (only for one side):
- Correlated equilibrium can be written for all $i, r_{i}, r_{i}^{\prime} \in A_{i}$ with $\pi\left(r_{i}\right)>0$ as:

$$
\sum_{r_{-i} \in A_{-i}} \frac{\pi\left(r_{i}, r_{-i}\right)}{\sum_{r_{-i}^{\prime} \in A_{-i}} \pi\left(r_{i}, r_{-i}^{\prime}\right)}\left[u_{i}\left(r_{i}, r_{-i}\right)-u_{i}\left(r_{i}^{\prime}, r_{-i}\right)\right] \geq 0
$$

- Denominator does not depend on variable of sum
- So it can be factored and canceled
- If $\pi\left(r_{i}\right)=0$, LHS of (1) is zero regardless of i and r_{i}^{\prime}, so equation always holds

Acknowledgment

- This lecture is a slightly modified version of ones prepared by
- Asu Ozdaglar [MIT 6.254]
- Vincent Conitzer [Duke CPS 590.4]
- Aravind Vellora Vayalapra helped with importing slides from PowerPoint to ATEX

[^0]: ${ }^{1}$ You might wonder how a theorem from 1928 can use the term "Nash equilibrium," when Nash's work was published in 1950. John von Neumann used different terminology and proved the theorem in a different way; however, the given presentation is probably clearer in the context of modern game theory

[^1]: ${ }^{1}$ You might wonder how a theorem from 1928 can use the term "Nash equilibrium," when Nash's work was published in 1950. John von Neumann used different terminology and proved the theorem in a different way; however, the given presentation is probably clearer in the context of modern game theory

