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Normal-form Games

• Let’s start with games in which all agents act simultaneously

• Agents choose their actions without knowledge of other agents’ actions

• Such games are referred to as strategic-form games or normal-form games
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Normal-form Games: Definition

• The game consists of a set of agents, N = {1, 2, . . . , n}

• Set of available actions to agent i is denoted by Ai

• Action taken by agent i is denoted by ai ∈ Ai

• Outcome of game is an action profile of all agents, a = (a1, . . . , an)

• Set of all action profiles is denoted by A =
∏

Ai

• Agent i has a utility function ui that maps outcomes to real numbers
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Some Notations

• a−i = (a1, . . . , ai−1, ai+1, . . . , an) is an action profile of all agents except i

• A−i =
∏

j ̸=i Aj is set of action profiles of all agents except i

• a = (ai , a−i ) ∈ A is another way of denoting an action profile (or an outcome)
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Matrix-form Representation

• When Ai is finite for all i , we call the game finite game

• For 2 agents and small action sets, game can be represented in matrix form

Agent 1

Agent 2

x y

m a, b e, f

n c , d g , h

• Each cell indexed by row r and column c contains a pair, (p, q), where
p = u1(r , c) and q = u2(r , c).
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Example: Matching Pennies

• Each agent has a penny and independently chooses to display either heads or tails

• Agents compare their pennies

• If they are the same, agent 2 pockets both, otherwise agent 1 pockets them

Heads Tails

Heads −1, 1 1,−1

Tails 1,−1 −1, 1

• Zero-sum game: Utility of one agent is negative of utility of other agent
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Example: Rock, Paper, Scissors Game

• Three-strategy generalization of the matching-pennies game

Rock Paper Scissors

Rock 0, 0 −1, 1 1,−1

Paper 1,−1 0, 0 −1, 1

Scissors −1, 1 1,−1 0, 0

8 / 48



Example: Coordination Game

• Two drivers driving towards each other in a country with no traffic rules

• Drivers must independently decide whether to drive on the left or on the right

• If drivers choose the same side (left or right) they have some high utility, and
otherwise they have a low utility

Left Right

Left 1, 1 −1,−1

Right −1,−1 1, 1

• Team game: For all outcomes s, and any pair of agents i and j , it is the case that
ui (a) = uj(a) (also known as common-payoff game or pure-coordination game)
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Example: Cournot Competition

• Two firms producing a homogeneous good for the same market

• Action of each firm is the amount of good it produces (ai ∈ [0,∞])

• Utility of each firm is its total revenue minus its total cost

ui (a1, a2) = aip(a1 + a2)− cai

• p(·) is the price function that maps total production to a price
• c is a unit cost
• E.g., p(x) = max(0, 2− x) and c = 1
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Mixed and Pure Strategies

• Let ∆(X ) be set of all probability distributions over X

• Set of (mixed) strategies for agent i is denoted by Si = ∆(Ai )

• For mixed strategy si ∈ Si , si (a) is probability that action a is played under si

• Pure strategy is a mixed strategy that puts probability 1 on a single action

• Support of mixed strategy si is set of pure strategies, ai , such that si (ai ) > 0

• Expected utility of agent i for a (mixed) strategy profile s = (s1, . . . , sn) is

ui (s) =
∑
a∈A

ui (a)
∏
j∈N

sj(aj)
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Example

Agent 1

Agent 2

R (23) P (0) S (13)

R (13) 0, 0 −1, 1 1,−1

P (23) 1,−1 0, 0 −1, 1

S (0) −1, 1 1,−1 0, 0

• u1 = 2/9× 0 + 1/9× 1 + 4/9× 1− 2/9× 1 = 1/3

• u2 = 2/9× 0− 1/9× 1− 4/9× 1 + 2/9× 1 = −1/3
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Dominant and Dominated Strategies

• Let si and s ′i be two strategies of agent i

• si strictly dominates s ′i if

• ui (si , s−i ) > ui (s
′
i , s−i ) for all s−i ∈ S−i

• si weakly dominates s ′i if

• ui (si , s−i ) ≥ ui (s
′
i , s−i ) for all s−i ∈ S−i , and

• ui (si , s−i ) > ui (s
′
i , s−i ) for at least one s−i ∈ S−i

• si is strictly/weakly dominant if it strictly/weakly dominates all other strategy

• si is strictly/weakly dominated if another strategy strictly/weakly dominates it

• s = (s1, . . . , sn) is dominant strategy equilibrium if si is dominant strategy for all i
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Example: Prisoner’s Dilemma

• Two prisoners suspected of a crime are taken to separate interrogation rooms

• Each can either confess to the crime or deny it

D C

D −2,−2 −4,−1

C −1,−4 −3,−3

• Absolute value of utilities are the length of jail term each prisoner gets

• Confess is strictly dominant strategy for both prisoners

• (C,C) is a strict dominant strategy equilibrium

• The dilemma: (D,D) is better for both prisoners, but they won’t play it!
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Iterated Elimination of Strictly Dominated Strategies

• All strictly dominated pure strategies can be ignored

L C R

U 3, 1 0, 2 0, 0

M 1, 2 1, 1 5, 0

D 0, 1 4, 2 0, 0

⇒

L C

U 3, 1 0, 2

M 1, 2 1, 1

D 0, 1 4, 2

⇒

L C

U 3, 1 0, 2

D 0, 1 4, 2
⇒

C

U 0, 2

D 4, 2
⇒

C

D 4, 2

• Column R can be eliminated, since it is dominated by, for example, column L

• M is not dominated by U or D but is dominated by 0.5U + 0.5D mixed strategy

• Note, however, that it was not dominated before the elimination of the R column
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Iterated Elimination of Strictly Dominated Strategies (cont.)

• Once one pure strategy is eliminated, another strategy that was not dominated
can become dominated

• In finite games, iterated elimination of strictly dominated strategies ends after
finite number of iterations

• Order of elimination does not matter when removing strictly dominated strategies
(Church–Rosser property)

• Elimination order can make a difference in final outcome when removing weakly
dominated strategies

• If the procedure ends with a single strategy for each agent, then the game is said
to be dominance solvable
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Existence of Dominant Strategy Equilibrium

• Dominant strategy equilibrium does not always exist

• Example: Matching pennies

Heads Tails

Heads −1, 1 1,−1

Tails 1,−1 −1, 1
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Best Response

• Picking a strategy would be simple if an agent knew how others were going to act

• Best response: s∗i ∈ BRi (s−i ) iff ui (s
∗
i , s−i ) ≥ ui (si , s−i ) for all strategies si ∈ Si

• Best response is not necessarily unique

• If there is more than one best response, any mixed strategy over those must be a
best response as well

• Best response is not a solution concept

• I.e., it does not identify an interesting set of outcomes
• Because agents do not know what strategies others will play

• However, we can leverage the idea of best response to define what is arguably the
most central notion in game theory, the Nash equilibrium
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Nash Equilibrium - Intersection of Best Responses

• s∗ = (s∗1 , ..., s
∗
n) is a Nash equilibrium iff ∀i , s∗i ∈ Bri (s

∗
−i )

• No agent can profitably deviate given strategies of others

• Nash equilibrium is a stable strategy profile

• Nash theorem: Every finite game has a Nash equilibrium
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Example: Battle of Sexes

• Husband and wife wish to meet this evening, but have a choice between two
events to attend: football or opera

• Husband would prefer to go to football, wife would prefer opera

• Both would prefer to go to the same event rather than different ones

Husband

Wife

Football Opera

Football 2,1 0, 0

Opera 0, 0 1,2

• Are these the only Nash equilibria?
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Example: Battle of Sexes (cont.)

F (p) O (1− p)

F 2, 1 0, 0

O 0, 0 1, 2

• In general, it is tricky to compute mixed-strategy equilibria (will discuss this later)

• It becomes easy when we know (or can guess) support of equilibrium strategies

• Let us now guess that both agents randomize over both F and O

• Wife’s strategy is to play F w.p. p and O w.p. 1− p

• Husband must be indifferent between F and O (why?):

uH(F ) = uH(O) ⇒ 2× p = (1− p) ⇒ p = 1/3

• You can show that the unique mixed-strategy NE is {(23 ,
1
3), (

1
3 ,

2
3)}
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Example: Cournot Competition

• ui (a1, a2) = ai max(0, 2− a1 − a2)− ai
• Using first order optimality conditions, we have

BRi (a−i ) = argmax
ai≥0

ai (2− ai − a−i )− ai

=

{
(1− a−i )/2 if a−i < 1,

0 Otherwise.
1/2 1

1/2

1

a1

a
2
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The ”Equilibrium Selection Problem”

• You are about to play a game that you have never played before with a person
that you have never met

• According to which equilibrium should you play?

• Equilibrium that maximizes the sum of utilities (social welfare)
• Or, at least not a Pareto-dominated equilibrium
• So-called focal equilibria (e.g., ”Meet in Paris” game - you and a friend were

supposed to meet in Paris at noon on Sunday, but you forgot to discuss where and
you cannot communicate. Where will you go?)

• Equilibrium that is the convergence point of some learning process
• An equilibrium that is easy to compute
• . . .

• Equilibrium selection is a difficult problem
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Outline

1. Normal-form Games: Definition, Notations, and Examples

2. Dominant Strategy Equilibrium

3. Nash Equilibrium

4. Price of Anarchy

5. Minmax Theorem

6. Rationalizability

7. Correlated Equilibrium

26 / 48



Braess’s Paradox

s

v

w

t

C(
x)

=
x

C(x) =
1

C(x) =
1

C(
x)

=
x

• Suppose there are 2k drivers commuting from s to t

• C (x) indicates travel time in hours for x fraction of drivers

• k drivers going through v , and k going through w is NE (why?)
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Braess’s Paradox (cont.)

s

v

w

t

C(
x)

=
x

C(x) =
1

C(x) =
1

C(
x)

=
x

C(x) = 0

• Suppose we install a teleportation device allowing instant travel from v to w

• What is new NE?

• What is optimal commute time?
• Price of anarchy: ratio between (worst) NE performance and optimal performance

• Ratio between 2 and 3/2 in Braess’s Paradox
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Maxmin Strategy

• Maxmin strategy for agent i is

argmax
si

min
s−i

ui (si , s−i )

• Maxmin value for agent i is

max
si

min
s−i

ui (si , s−i )

• If i plays maxmin strategy and others play arbitrarily, i still receives expected
payoff of at least their maxmin value
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Example: Battle of Sexes

1/3 1

2/3

1

2

H plays O

p

u
W

H

W

F (1− p) O (p)

F 2, 1 0, 0

O 0, 0 1, 2
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Example: Battle of Sexes

1/3 1

2/3

1

2

Minimum payoff

p

u
W

H
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Example: Battle of Sexes

1/3 1

2/3

1

2

Maxmin value

p

u
W
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Minmax Strategy

• Minmax strategy against against i is

argmin
s−i

max
si

ui (si , s−i )

• Minmax value for agent i is

min
s−i

max
si

ui (si , s−i )

• Minmax strategy against i keeps maximum payoff of agent i at minimum

• Agents’ maxmin value is always less than or equal to their minmax value
(try to show this!)
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Minimax Theorem (John von Neumann, 1928)

In any finite, two-player, zero-sum game, in any Nash
equilibrium1, each agent receives a payoff that is equal to both

their maxmin value and their minmax value

max
si

min
s−i

ui (si , s−i ) = min
s−i

max
si

ui (si , s−i )

• Minimax theorem does not hold with pure strategies only
(example?)

1You might wonder how a theorem from 1928 can use the term ”Nash equilibrium,” when Nash’s work was
published in 1950. John von Neumann used different terminology and proved the theorem in a different way;
however, the given presentation is probably clearer in the context of modern game theory
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Example

Agent 1

Agent 2

Left Right

Up 20,−20 0, 0

Down 0, 0 10,−10

• What is maximin value of agent 1 with and without mixed strategies?

• What is minimax value of agent 1 with and without mixed strategies?

• What is NE of this game?
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Rationalizability

• Rationalizable strategy: Perfectly rational agent could justifiably play it

• Best response to some beliefs about strategies of others

• Agents cannot have arbitrary beliefs about other agents

• Agent i ’s beliefs must take into account:

• Other agents’ rationality

• Other agents’ knowledge of agent i ’s rationality

• Other agents’ knowledge of agent i ’s knowledge of their rationality

• . . . (infinite regress)
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Example: Matching Pennies

H T

H −1, 1 1,−1

T 1,−1 −1, 1

• Col playing H is rationalizable

• Col could believe Row plays H

• Col believing that Row plays H is rationalizable

• Col could believe Row believes Col plays T

• Col believing that Row believes that Col plays T is rationalizable

• Col could believe Row believes Col believes Row plays T

• . . .

• In this game, all pure strategies are rationalizable
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Rationalizability: Properties

• Nash equilibrium strategies are always rationalizable

• Some rationalizable strategies are not Nash
• Set of rationalizable strategies in finite games is nonempty

• To find rationalizable strategies:

• In 2-player games, use iterated elimination of strictly dominated strategies

• In n-player games, iterated elimination of never-best response strategies
• Eliminate strategies that are not optimal against any belief about others’ strategies
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Example: 2/3-Beauty Contest Game

• No agent plays more than 100

• 2/3 of average is strictly less than 67 (100 × 2/3)

• Any integer > 67 is never-best response to any belief about others’ strategy

• No agent plays more than 67

• 2/3 of average is less than 45 (67 × 2/3)

• Any integer > 45 is never-best response to any belief about others’ strategy

• . . .

• Only rationalizable action is playing 1
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Example: Battle of Sexes

H

W

Football Opera

F 2, 1 0, 0

O 0, 0 1, 2

• Unique mixed strategy NE yields each agent expected payoff of 2/3

• In NE, agents randomize over strategies independently

• Can they both do better by coordinating?

• Agents can observe random coin flip and condition their strategies on its outcome
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Example: Battle of Sexes (cont.)

• Suppose there is publicly observable fair coin

• If it is heads/tails, they both get recommendation to go to football/opera

• If they see heads, they believe that the other one goes to football

• Going to football is best response, agents have no incentive to deviate

• Similar argument can be made when they see tails

• Expected utilities for this play of game increases to (1.5, 1.5)
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Correlated Recommendations

• Let R = (R1, . . . ,Rn) be random variable taking values in A =
∏

i Ai

• Let R be distributed according to π ∈ ∆(A)

• r = (r1, . . . , rn) is an instantiatation of R and a pure strategy profile

• ri ∈ Ai is called recommendation to agent i

• π(ri ) represents marginal probability for Ri = ri

• Given ri , agent i can use conditional probability to form beliefs others’ signals

π(r−i |ri ) =
π(ri , r−i )∑

r ′−i∈A−i
π(ri , r ′−i )
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Correlated Equilibrium: Formal Definition

• Correlated equilibrium of finite game is joint probability distribution π ∈ ∆(A)
such that if R is random variable distributed according to π, then for all i , ri ∈ Ai

with π(ri ) > 0, and r ′i ∈ Ai∑
r−i∈A−i

π(r−i | ri )
[
ui (ri , r−i )− ui (r

′
i , r−i )

]
≥ 0

• No agent can benefit by deviating from their recommendation, assuming that
other agents follow their recommendations
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Example: Game of Chicken

Driver 1

Driver 2

Dare Yield

D −5,−5 1,−1

Y −1, 1 0, 0

• (D,Y) and (Y,D) are strict pure-strategy NE

• Assume Driver 1 yields w.p. p and Driver 2 yields w.p. q

• Using mixed equilibrium characterization, we have

p − 5× (1− p) = −(1− p) =⇒ p = 4/5

q − 5× (1− q) = −(1− q) =⇒ q = 4/5

• Mixed-strategy NE utilities are (−0.2,−0.2), people die with probability 0.04

45 / 48
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Example: Game of Chicken (cont.)

• Is this correlated equilibrium?

• Suppose D1 gets Y recommendation

• Conditional probability that D2 yields is 1/3

• Expected utility of Y is -1 × 2/3

• Expected utility of D is 1 × 1/3 - 5 × 2/3

• Following the recommendation is better

• If D1 gets D recommendation, D2 must yield

• Following recommendation is again better

• Similar analysis works for D2

• Expected utilizes are (0, 0), so nobody dies!

D1

D2

D Y

D
−5,−5

0%

1,−1

40%

Y
−1, 1

40%

0, 0

20%
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• Expected utility of Y is -1 × 2/3

• Expected utility of D is 1 × 1/3 - 5 × 2/3

• Following the recommendation is better

• If D1 gets D recommendation, D2 must yield

• Following recommendation is again better

• Similar analysis works for D2

• Expected utilizes are (0, 0), so nobody dies!
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Characterization of Correlated Equilibrium

• Joint distribution π ∈ ∆(A) is correlated equilibrium of finite game iff∑
r−i∈A−i

π(r)
[
ui (r)− ui (r

′
i , r−i )

]
≥ 0, ∀i , ri , r ′i ∈ Ai (1)

• Proof (only for one side):

• Correlated equilibrium can be written for all i , ri , r
′
i ∈ Ai with π(ri ) > 0 as:∑

r−i∈A−i

π(ri , r−i )∑
r ′−i∈A−i

π(ri , r ′−i )
[ui (ri , r−i )− ui (r

′
i , r−i )] ≥ 0

• Denominator does not depend on variable of sum
• So it can be factored and canceled
• If π(ri ) = 0, LHS of (1) is zero regardless of i and r ′i , so equation always holds
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