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1. Brief Overview of (Mixed Integer) Linear Programming




Example: Reproduction of Two Paintings

max. 3x + 2y
s.t. 4x 42y <16
x+2y <8
e Painting 1 sells for $30 x+y<5
e Painting 2 sells for $20 x>0
® We have 16 units of blue, 8 green, 5 red y>0

Painting 1 requires 4 blue, 1 green, 1 red

Painting 2 requires 2 blue, 2 green, 1 red
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Solving Linear Program Graphically

8
max. 3x+ 2y
6 |
st.  4x+4+2y <16
Optimal solution: x =3, y =2
x+2y<8 4 (objective 13)
x+y <5
x>0
2
y=0
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Modified LP

max.
s.t.
s.t.

3x + 2y

4x +2y <16
4x +2y <151
x+2y<8
x+y<5hH
x>0

y=>0

e Optimal solution: x =25,y =25
® QObjective =75 +5 =125

® Can we sell half paintings?




Integer Linear Program

max. 3x+ 2y

st. 4x+4+2y <15
x+2y <8
x+y <5
x € Ng
y € No

Optimal ILP solution:
x=2,y=3
(objective 12)
Optimal LP solution:

x=25y=25
(objective 12.5)
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Mixed Integer Linear Program

81 Optimal ILP solution:
x=2,y=3
max. 3x + 2y (objective 12)
6 Opti [
ptimal LP solution:
st. 4x+4+2y <15 =25 y—25
x+2y <8 (objective 12.5)
4 Opti
ptimal MILP
X+y< 5 solution: x = 2.75, y =2
x>0 (objective 12.25)
2
y € No
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Solving Mixed Linear/Integer Programs

Linear programs can be solved efficiently
® Simplex, ellipsoid, interior point methods, etc.

(Mixed) integer programs are NP-hard to solve

® Many standard NP-complete problems can be modeled as MILP
® Search type algorithms such as branch and bound

Standard packages for solving these
® Gurobi, MOSEK, GNU Linear Programming Kit, CPLEX, CVXOPT, etc.

LP relaxation of (M)ILP: remove integrality constraints
® Gives upper bound on MILP (~ admissible heuristic)




Exercise |: Knapsack-type Problem

® We arrive in room full of precious objects

® Can carry only 30kg out of the room

® Can carry only 20 liters out of the room

® Want to maximize our total value

¢ Unit of object A: 16kg, 3 liters, sells for $11 (3 units available)
e Unit of object B: 4kg, 4 liters, sells for $4 (4 units available)

e Unit of object C: 6kg, 3 liters, sells for $9 (1 unit available)

® What should we take?
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Exercise II: Cellphones (Set Cover)

® We want to have a working phone in every continent (besides Antarctica)
® But we want to have as few phones as possible

® Phone A works in NA, SA, Af

® Phone B works in E, Af, As

® Phone C works in NA, Au, E

® Phone D works in SA, As, E

® Phone E works in Af, As, Au

® Phone F works in NA, E




Exercise Ill: Hot-dog Stands

We have two hot-dog stands to be placed in somewhere along beach

® We know where groups of people who like hot dogs are

We also know how far each group is willing to walk

Where do we put our stands to maximize # hot dogs sold? (price is fixed)

Group 1 Group 2 Group 3 Group 4 Group 5
location: 1 location: 4 location: 7 location: 9 location: 15
size: 2 size: 1 size: 3 size: 4 size: 3

walk dist.: 4 walk dist.: 2 walk dist: 3 walk dist.: 3 walk dist.: 2
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2. Dominated Strategies




Recall: Strict Dominance

a; strictly dominates s; if uj(a;,s—;) > ui(si,s—;) Vs_; € S_;
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Dominance by Pure Strategy

Algorithm 1: Determine whether s; is strictly dominated by any pure strategy

for all a; € A; where a; # s; do
dom < true;
forall a_; € A_; do
if U,'(S,', a,,-) > u;(a,-, a,,-) then
dom <« false;
L break;

if dom = true then
L return true;

return false;




Dominance by Pure Strategy: Discussion

Complexity of the Algorithm is O(|A]), linear in the size of normal-form game

Recall: a; strictly dominates s; if uj(aj,s—;) > ui(si,s—i) Vs_;j € S_;

This definition refers to mixed-strategy profile of other agents

In Alg. (1), we do not check every mixed-strategy profile of others, why?
® Suppose a; strictly dominates s; for all a_;

® Then, there is no s_; for which u;(a;,s_;) < u;(s;,s—;)

® This holds because of the linearity of expectation




Weak Dominance by Mixed Strategy

® Checking if strategy s; is weakly dominated by any mixed strategy

max. Y > paui(aia i) | — ui(si;a-i)

a_;€A_; a;i€A;
s.t. Z Pa;ui(ai, a—;) > ui(si,a—;) Va_; €A
a,'EA,'
a;EA;
pa; > 0, Va; € A;

e If optimal solution is strictly positive, then s; is weakly dominated by {p,,}




Strict Dominance by Mixed Strategies

® Checking if strategy s; is strictly dominated by any mixed strategy

max. €

s.t. Z pa;ui(ai, a—i) > ui(si,a—j) +€ VYa_; € A_;
a;€EA;
a,-eA,-
Pa; = 0, Yaj € A;

e If optimal solution is strictly positive, then s; is strictly dominated by {p,,}




Path Dependency of lterated Dominance

® [terated weak dominance is path-dependent:
® Sequence of eliminations may determine which solution we get (if any)

A\ Yy

0 0 0 0, 0

0
1><0 1,0 1,0 1><o 1,0 | 1,0
%ﬂ 1 1 1 1

® [terated strict dominance is path-independent:
® Elimination process will always terminate at the same point




Computational Questions for Iterated Dominance

Is there some elimination path under which s; is eliminated?

Is there maximally reduced game where each agent has exactly 1 action?

® For strict dominance, both can be solved in polynomial time
® Due to path-independence
® Check if any strategy is dominated, remove it, repeat
® With or without dominance by mixed strategies

For weak dominance, both questions are NP-hard?

® Even when all utilities are 0 or 1
® With or without dominance by mixed strategies

![Conitzer, Sandholm 05] and weaker version proved by [Gilboa, Kalai, Zemel 93]
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3. Minmax and Maxmin Strategies




Recall: Minmax and Maxmin

e Maxmin strategy for agent i (maxmin value for agent i)

argmax min u;(s;, s_;)
S S—i

® Minmax strategy against agent i (minmax value for agent /)

argmin max u;(s;, s—;)
S_i Si




Maxmin Strategy and Value

® Finding maxmin strategy of agent i

max. U;

s.t. Z paui(ai,a—i) > U;, Va_je A
a,'EA,'

a;EA;
Pa; > Oa \V/a,' € Ai

® Given p,,, first constraint ensures that U; is less than any achievable expected
utility for any pure strategies of opponents

® Objective of this LP, U;, is maxmin value of agent /
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4. Nash Equilibrium




NE of Two-player, Zero-sum Games

® Maxmin value for agent 1

max. U
s.t. Z Pa; U1(a1, az) > U Vae A

a1 €Ay

Zpalzl

a1 €A
pa = 0, Va; € A

® Minmax value for agent 1

min. U
s.t. Z Pa, Ll1(a1, 32) < U Va €A

2 €A

Zp32=1

a A
Pa, 2 07 VBQ S A2

® NE is expressed as LP = NE can be computed in polynomial time




Maxmin Strategy for General-sum Games

® Agents could still play minmax strategy in general-sum games
® |.e., pretend that the opponent is only trying to hurt you

® But this might not be rational:
Agent 2
Left Right

Up| 0,0 3,1
Agent 1

Down | 1,0 2,1

® If A2 was trying to hurt Al, she would play Left, so Al should play Down
® |n reality, A2 will play Right (strictly dominant), so Al should play Up




Hardness of Computing NE for General-sum Games

e Complexity was open for long time
® ‘“together with factoring [...] the most important concrete open question on the
boundary of P today" [Papadimitriou STOC'01]

® Sequence of papers showed that computing any NE is PPAD-complete (even in
2-player games) [Daskalakis, Goldberg, Papadimitriou 2006; Chen, Deng 2006]

e All known algorithms require exponential time (in worst case)




Hardness of Computing NE for General-Sum Games (cont.)

® What about computing NE with specific property?

NE that is not Pareto-dominated

NE that maximizes expected social welfare (i.e., sum of all agents’ utilities)
NE that maximizes expected utility of given agent

NE that maximizes expected utility of worst-off player

NE in which given pure strategy is played with positive probability

NE in which given pure strategy is played with zero probability

¢ All of these are NP-hard (and the optimization questions are inapproximable
assuming P != NP), even in 2-player games
[Gilboa, Zemel 89; Conitzer & Sandholm IJCAI-03/GEB-08]




Search-based Approaches (for Two-player Games)

® We can use LP, if we know support X; of each player i's mixed strategy

find (U17 Uz)

s.t. pa; > 0, Vi, a; € A;
Z Pa; = 1, Vi
a;EA;
pa; =0, Vi, ai € Ai/X;

Z pa,,'ui(af»aff): Ul'a Vi,a,-GX,-
a_;€A_;

Z pa_;ui(ai;a—;) < Ui, Vi,a; € Ai/ X
a_;eA_;

® Thus, we can search over possible supports, which is basic idea underlying
methods in [Dickhaut & Kaplan 91; Porter, Nudelman, Shoham AAAI04/GEBOS]




NE using MILP (for Two-player Games)
[Sandholm, Gilpin, Conitzer AAAIO5]

max. whatever you like (e.g., social welfare)

st. pa >0, Vi, a;j € A;
Z pa =1, Vi
a;i€A;

> paui(aiasi) = u,, Vi,aj € A
a_j€EA_;
u, < uj, Vi, a; € A;
Pa; < b, Vi, a; € A;
U — Uy < /\/’(].—ba,.)7 Vi, a; € A;
b, € {0, 1}, Vi, a;j € A;

® b, indicates whether a; is in support of i's mixed strategy, and M is large numbe
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5. Correlated NE




Correlated Equilibrium (N-player Games!)

® Variables are now p, for all action profiles a (i.e., outcome)

max. whatever you like (e.g., social welfare)

s.t. Z paui(a) > Z paui(ti,a—;) Vijai t; € A;
a_j€A_; a_jEA_;
S -1
acA
pa >0, Vac A
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