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1. Brief Overview of (Mixed Integer) Linear Programming
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Example: Reproduction of Two Paintings

max. 3x + 2y
s.t. 4x 42y <16
x+2y <8
e Painting 1 sells for $30 x+y<5
e Painting 2 sells for $20 x>0
® We have 16 units of blue, 8 green, 5 red y>0

Painting 1 requires 4 blue, 1 green, 1 red

Painting 2 requires 2 blue, 2 green, 1 red
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Solving Linear Program Graphically

max.

s.t.

3x 4 2y

4x +2y <16
x+2y <8
x+y <5
x>0
y=0
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Solving Linear Program Graphically

8
max. 3x+ 2y
6 |
st.  4x+4+2y <16
Optimal solution: x =3, y =2
x+2y<8 4 (objective 13)
x+y <5
x>0
2 |
y=0
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Modified LP

max.
s.t.

3x + 2y

4x 4+ 2y <16
x+2y <8
x+y<5
x>0
y=0

5/32



Modified LP

max.
s.t.

3x + 2y

4x 4+ 2y <15
x+2y <8
x+y<5
x>0
y=0

5/32



Modified LP

max.
s.t.

3x + 2y

4x + 2y <151
X+2y§§-
x+y<5
x>0

y=0

5/32



Modified LP

max.
s.t.

3x + 2y

4x + 2y <151
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Modified LP

max. 3x + 2y

st 4x+2y <151
x+2y < 8“' e Optimal solution: x = 2.5,y =25
x+y<5 ® Objective = 7.5+ 5 =125
x>0

y=>0
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Modified LP

max. 3x + 2y

st 4x+2y <151
x+2y < 8“' e Optimal solution: x = 2.5,y =25
x+y<5 ® QObjective =75+ 5 =125
x>0

Y >0 e Can we sell half paintings?




Integer Linear Program

max.

s.t.

3x 4 2y

4x 42y <15
x+2y <8
x+y <5

x € Ng

y €No
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Integer Linear Program

max. 3x+ 2y

st. 4x+4+2y <15
x+2y <8
x+y <5
x € Ng
y € No

Optimal ILP solution:
x=2,y=3
(objective 12)
Optimal LP solution:

x=25y=25
(objective 12.5)
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Mixed Integer Linear Program

8 | Optimal ILP solution:
x=2,y=3
max. 3x + 2y ol (objective 12)
1 Optimal LP solution:
st. 4x+2y <15 X =25 y=25
x+2y <8 (objective 12.5)
4 i,
x+y<b5
x>0
2 €1
y € Np
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Mixed Integer Linear Program

| Optimal ILP solution:
x=2,y=3

max. 3x+ 2y 6 b (objective 12)
1 Optimal LP solution:
s.t. 4x 4+ 2y <15 =25 y—25
x+2y <8 (objective 12.5)
4
x+y <5
x>0
2
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Mixed Integer Linear Program

81 Optimal ILP solution:
x=2,y=3
max. 3x + 2y (objective 12)
6 Opti [
ptimal LP solution:
st. 4x+4+2y <15 =25 y—25
x+2y <8 (objective 12.5)
4 Opti
ptimal MILP
X+y< 5 solution: x = 2.75, y =2
x>0 (objective 12.25)
2
y € No
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Solving Mixed Linear/Integer Programs

® |linear programs can be solved efficiently
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Solving Mixed Linear/Integer Programs

Linear programs can be solved efficiently
® Simplex, ellipsoid, interior point methods, etc.

(Mixed) integer programs are NP-hard to solve

® Many standard NP-complete problems can be modeled as MILP
® Search type algorithms such as branch and bound

Standard packages for solving these
® Gurobi, MOSEK, GNU Linear Programming Kit, CPLEX, CVXOPT, etc.

LP relaxation of (M)ILP: remove integrality constraints
® Gives upper bound on MILP (~ admissible heuristic)
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Exercise |: Knapsack-type Problem

® We arrive in room full of precious objects

® Can carry only 30kg out of the room

® Can carry only 20 liters out of the room

® Want to maximize our total value

¢ Unit of object A: 16kg, 3 liters, sells for $11 (3 units available)
e Unit of object B: 4kg, 4 liters, sells for $4 (4 units available)

e Unit of object C: 6kg, 3 liters, sells for $9 (1 unit available)

® What should we take?
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Exercise II: Cellphones (Set Cover)

® We want to have a working phone in every continent (besides Antarctica)
® But we want to have as few phones as possible

® Phone A works in NA, SA, Af

® Phone B works in E, Af, As

® Phone C works in NA, Au, E

® Phone D works in SA, As, E

® Phone E works in Af, As, Au

® Phone F works in NA, E




Exercise Ill: Hot-dog Stands

We have two hot-dog stands to be placed in somewhere along beach

We know where groups of people who like hot dogs are

We also know how far each group is willing to walk

Where do we put our stands to maximize # hot dogs sold? (price is fixed)
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Exercise Ill: Hot-dog Stands

We have two hot-dog stands to be placed in somewhere along beach

® We know where groups of people who like hot dogs are

We also know how far each group is willing to walk

Where do we put our stands to maximize # hot dogs sold? (price is fixed)

Group 1 Group 2 Group 3 Group 4 Group 5
location: 1 location: 4 location: 7 location: 9 location: 15
size: 2 size: 1 size: 3 size: 4 size: 3

walk dist.: 4 walk dist.: 2 walk dist: 3 walk dist.: 3 walk dist.: 2




Outline

2. Dominated Strategies




Recall: Strict Dominance

a; strictly dominates s; if uj(a;,s—;) > ui(si,s—;) Vs_; € S_;
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Dominance by Pure Strategy

Algorithm 1: Determine whether s; is strictly dominated by any pure strategy

for all a; € A; where a; # s; do
dom < true;
forall a_; € A_; do
if U,'(S,', a,,-) > u;(a,-, a,,-) then
dom <« false;
L break;

if dom = true then
L return true;

return false;
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® Complexity of the Algorithm is O(|A]), linear in the size of normal-form game
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Dominance by Pure Strategy: Discussion

Complexity of the Algorithm is O(|A]), linear in the size of normal-form game

Recall: a; strictly dominates s; if uj(aj,s—;) > ui(si,s—i) Vs_;j € S_;

This definition refers to mixed-strategy profile of other agents

In Alg. (1), we do not check every mixed-strategy profile of others, why?
® Suppose a; strictly dominates s; for all a_;

® Then, there is no s_; for which u;(a;,s_;) > u;(s;,s—;)

® This holds because of the linearity of expectation
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Weak Dominance by Mixed Strategy

® Checking if strategy s; is weakly dominated by any mixed strategy

max. Y > paui(aia i) | — ui(si;a-i)

a_;€A_; a;i€A;
s.t. Z Pa;ui(ai, a—;) > ui(si,a—;) Va_; €A
a,'EA,'
a;EA;
pa; > 0, Va; € A;

e If optimal solution is strictly positive, then s; is weakly dominated by {p,,}
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® Checking if strategy s; is strictly dominated by any mixed strategy
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Strict Dominance by Mixed Strategies

® Checking if strategy s; is strictly dominated by any mixed strategy

max. €

s.t. Z pa;ui(ai, a—i) > ui(si,a—j) +€ VYa_; € A_;
a;€EA;
a,-eA,-
Pa; = 0, Yaj € A;

e If optimal solution is strictly positive, then s; is strictly dominated by {p,,}
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Path Dependency of lterated Dominance

® [terated weak dominance is path-dependent:
® Sequence of eliminations may determine which solution we get (if any)

A\ Yy

0 0 0 0, 0

0
1><0 1,0 1,0 1><o 1,0 | 1,0
%ﬂ 1 1 1 1

® [terated strict dominance is path-independent:
® Elimination process will always terminate at the same point




Computational Questions for Iterated Dominance

® |s there some elimination path under which s; is eliminated?
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Computational Questions for Iterated Dominance

Is there some elimination path under which s; is eliminated?

Is there maximally reduced game where each agent has exactly 1 action?

® For strict dominance, both can be solved in polynomial time
® Due to path-independence
® Check if any strategy is dominated, remove it, repeat
® With or without dominance by mixed strategies

For weak dominance, both questions are NP-hard?

® Even when all utilities are 0 or 1
® With or without dominance by mixed strategies

![Conitzer, Sandholm 05] and weaker version proved by [Gilboa, Kalai, Zemel 93]
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3. Minmax and Maxmin Strategies




Recall: Minmax and Maxmin
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Recall: Minmax and Maxmin

e Maxmin strategy for agent i (maxmin value for agent i)

argmax min u;(s;, s_;)
S S—i

® Minmax strategy against agent i (minmax value for agent /)

argmin max u;(s;, s—;)
S_i Si




Maxmin Strategy and Value

® Finding maxmin strategy of agent i
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Maxmin Strategy and Value

® Finding maxmin strategy of agent i

max. U;

s.t. Z paui(ai,a—i) > U;, Va_je A
a,'EA,'

a;EA;
Pa; > Oa \V/a,' € Ai

® Given p,,, first constraint ensures that U; is less than any achievable expected
utility for any pure strategies of opponents

® Objective of this LP, U;, is maxmin value of agent /
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4. Nash Equilibrium




NE of Two-player, Zero-sum Games

® Maxmin value for agent 1
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NE of Two-player, Zero-sum Games

® Maxmin value for agent 1

max. U
s.t. Z Pa; U1(a1, az) > U Vae A

a1 €Ay

Zpalzl

a1 €A
pa = 0, Va; € A

® Minmax value for agent 1

min. U
s.t. Z Pa, Ll1(a1, 32) < U Va €A

2 €A

Zp32=1

a A
Pa, 2 07 VBQ S A2

® NE is expressed as LP = NE can be computed in polynomial time
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Maxmin Strategy for General-sum Games

® Agents could still play minmax strategy in general-sum games
® |.e., pretend that the opponent is only trying to hurt you

® But this might not be rational:
Agent 2
Left Right

Up| 0,0 3,1
Agent 1

Down | 1,0 2,1

® If A2 was trying to hurt Al, she would play Left, so Al should play Down
® |n reality, A2 will play Right (strictly dominant), so Al should play Up
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Hardness of Computing NE for General-sum Games

e Complexity was open for long time
® ‘“together with factoring [...] the most important concrete open question on the
boundary of P today" [Papadimitriou STOC'01]

® Sequence of papers showed that computing any NE is PPAD-complete (even in
2-player games) [Daskalakis, Goldberg, Papadimitriou 2006; Chen, Deng 2006]

e All known algorithms require exponential time (in worst case)
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Hardness of Computing NE for General-Sum Games (cont.)

® What about computing NE with specific property?

NE that is not Pareto-dominated

NE that maximizes expected social welfare (i.e., sum of all agents’ utilities)
NE that maximizes expected utility of given agent

NE that maximizes expected utility of worst-off player

NE in which given pure strategy is played with positive probability

NE in which given pure strategy is played with zero probability




Hardness of Computing NE for General-Sum Games (cont.)

® What about computing NE with specific property?

NE that is not Pareto-dominated

NE that maximizes expected social welfare (i.e., sum of all agents’ utilities)
NE that maximizes expected utility of given agent

NE that maximizes expected utility of worst-off player

NE in which given pure strategy is played with positive probability

NE in which given pure strategy is played with zero probability

¢ All of these are NP-hard (and the optimization questions are inapproximable
assuming P != NP), even in 2-player games
[Gilboa, Zemel 89; Conitzer & Sandholm IJCAI-03/GEB-08]
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Search-based Approaches (for Two-player Games)

® We can use LP, if we know support X; of each player i's mixed strategy
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® We can use LP, if we know support X; of each player i's mixed strategy

find (U17 Uz)

s.t. pa; > 0, Vi, a; € A;
Z Pa; = 1, Vi
a;EA;
pa; =0, Vi, ai € Ai/X;

Z pa,,'ui(af»afl‘): Ul'a Vi,a,-EX,-
a_;€A_;

Z pa_;ui(ai;a—;) < Ui, Vi,a; € Ai/ X
a_j€A_;




Search-based Approaches (for Two-player Games)

® We can use LP, if we know support X; of each player i's mixed strategy

find (U17 Uz)

s.t. pa; > 0, Vi, a; € A;
Z Pa; = 1, Vi
a;EA;
pa; =0, Vi, ai € Ai/X;

Z pa,,'ui(af»aff): Ul'a Vi,a,-GX,-
a_;€A_;

Z pa_;ui(ai;a—;) < Ui, Vi,a; € Ai/ X
a_;eA_;

® Thus, we can search over possible supports, which is basic idea underlying
methods in [Dickhaut & Kaplan 91; Porter, Nudelman, Shoham AAAI04/GEBOS]




NE using MILP (for Two-player Games)
[Sandholm, Gilpin, Conitzer AAAIO5]

max.

s.t.

whatever you like (e.g., social welfare)
Pa = 0,

Z pa; = 1,

a;€A;

E Pa,,-ui(r?h afi) = Uy,
a_jEA_;
us < uj,

pa,- S ba,- ?

up — uy < M(1 = by,),
bai 6 {07 1}7

Vi, aj €A
Vi

Vi, aj € A;

Vi, a; € A;
Vi, a; € A;
Vi, a; € A;
Vi, a; € A;




NE using MILP (for Two-player Games)
[Sandholm, Gilpin, Conitzer AAAIO5]

max. whatever you like (e.g., social welfare)

st. pa >0, Vi, a;j € A;
Z pa =1, Vi
a;i€A;

> paui(aiasi) = u,, Vi,aj € A
a_j€EA_;
u, < uj, Vi, a; € A;
Pa; < b, Vi, a; € A;
U — Uy < /\/’(].—ba,.)7 Vi, a; € A;
b, € {0, 1}, Vi, a;j € A;

® b, indicates whether a; is in support of i's mixed strategy, and M is large numbe



Outline

5. Correlated NE




Correlated Equilibrium (N-player Games!)

® Variables are now p, for all action profiles a (i.e., outcome)
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Correlated Equilibrium (N-player Games!)

® Variables are now p, for all action profiles a (i.e., outcome)

max. whatever you like (e.g., social welfare)

s.t. Z paui(a) > Z paui(ti,a—;) Vijai t; € A;
a_j€A_; a_jEA_;
S -1
acA
pa >0, Vac A
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