Game-theoretic Foundations of Multi-agent Systems

Lecture 4: Computing Solution Concepts of Normal-form Games

Seyed Majid Zahedi

Outline

1. Brief Overview of (Mixed Integer) Linear Programming

2. Dominated Strategies

3. Minmax and Maxmin Strategies

4. Nash Equilibrium

5. Correlated NE

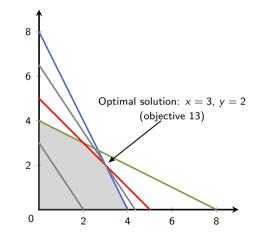
Example: Reproduction of Two Paintings

- Painting 1 sells for \$30
- Painting 2 sells for \$20
- We have 16 units of blue, 8 green, 5 red
- Painting 1 requires 4 blue, 1 green, 1 red
- Painting 2 requires 2 blue, 2 green, 1 red

max. 3x + 2y
s.t. $4x + 2y \le 16$
 $x + 2y \le 8$
 $x + y \le 5$
 $x \ge 0$
 $y \ge 0$

Solving Linear Program Graphically

max. 3x + 2y
s.t. $4x + 2y \le 16$
 $x + 2y \le 8$
 $x + y \le 5$
 $x \ge 0$
 $y \ge 0$



Modified LP

max.
$$3x + 2y$$

s.t.
$$4x + 2y \le 16$$

s.t.
$$4x + 2y \le 15$$

$$x + 2y \le 8$$

$$x + y \le 5$$

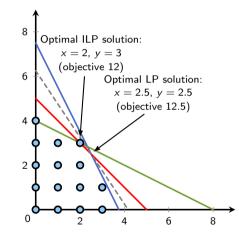
$$x \ge 0$$

$$y \ge 0$$

- Optimal solution: x = 2.5, y = 2.5
- Objective = 7.5 + 5 = 12.5
- Can we sell half paintings?

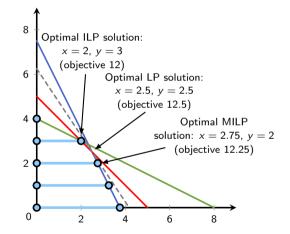
Integer Linear Program

max. 3x + 2y
s.t. $4x + 2y \le 15$
 $x + 2y \le 8$
 $x + y \le 5$
 $x \in \mathbb{N}_0$
 $y \in \mathbb{N}_0$



Mixed Integer Linear Program

 $\begin{array}{ll} \max & 3x+2y\\ \text{s.t.} & 4x+2y \leq 15\\ & x+2y \leq 8\\ & x+y \leq 5\\ & x \geq 0\\ & y \in \mathbb{N}_0 \end{array}$



Solving Mixed Linear/Integer Programs

- Linear programs can be solved efficiently
 - Simplex, ellipsoid, interior point methods, etc.
- (Mixed) integer programs are NP-hard to solve
 - Many standard NP-complete problems can be modeled as MILP
 - Search type algorithms such as branch and bound
- Standard packages for solving these
 - Gurobi, MOSEK, GNU Linear Programming Kit, CPLEX, CVXOPT, etc.
- LP relaxation of (M)ILP: remove integrality constraints
 - Gives upper bound on MILP (\sim admissible heuristic)

Exercise I: Knapsack-type Problem

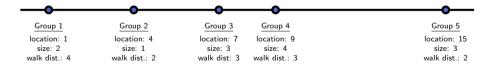
- We arrive in room full of precious objects
- Can carry only 30kg out of the room
- Can carry only 20 liters out of the room
- Want to maximize our total value
- Unit of object A: 16kg, 3 liters, sells for \$11 (3 units available)
- Unit of object B: 4kg, 4 liters, sells for \$4 (4 units available)
- Unit of object C: 6kg, 3 liters, sells for \$9 (1 unit available)
- What should we take?

Exercise II: Cellphones (Set Cover)

- We want to have a working phone in every continent (besides Antarctica)
- But we want to have as few phones as possible
- Phone A works in NA, SA, Af
- Phone B works in E, Af, As
- Phone C works in NA, Au, E
- Phone D works in SA, As, E
- Phone E works in Af, As, Au
- Phone F works in NA, E

Exercise III: Hot-dog Stands

- We have two hot-dog stands to be placed in somewhere along beach
- We know where groups of people who like hot dogs are
- We also know how far each group is willing to walk
- Where do we put our stands to maximize # hot dogs sold? (price is fixed)



Outline

1. Brief Overview of (Mixed Integer) Linear Programming

2. Dominated Strategies

3. Minmax and Maxmin Strategies

4. Nash Equilibrium

5. Correlated NE

Recall: Strict Dominance

 a_i strictly dominates s_i if $u_i(a_i, s_{-i}) > u_i(s_i, s_{-i}) \ \forall s_{-i} \in S_{-i}$

Dominance by Pure Strategy

Algorithm 1: Determine whether s_i is strictly dominated by any pure strategy

```
for all a_i \in A_i where a_i \neq s_i do

dom \leftarrow true;

forall a_{-i} \in A_{-i} do

if u_i(s_i, a_{-i}) \ge u_i(a_i, a_{-i}) then

dom \leftarrow false;

break;

if dom = true then

return true;
```

return false;

Dominance by Pure Strategy: Discussion

- Complexity of the Algorithm is O(|A|), linear in the size of normal-form game
- Recall: a_i strictly dominates s_i if $u_i(a_i, s_{-i}) > u_i(s_i, s_{-i}) \quad \forall s_{-i} \in S_{-i}$
- This definition refers to mixed-strategy profile of other agents
- In Alg. (1), we do not check every mixed-strategy profile of others, why?
 - Suppose a_i strictly dominates s_i for all a_{-i}
 - Then, there is no s_{-i} for which $u_i(a_i, s_{-i}) \le u_i(s_i, s_{-i})$
 - This holds because of the linearity of expectation

Weak Dominance by Mixed Strategy

• Checking if strategy s_i is weakly dominated by any mixed strategy

$$\begin{array}{ll} \max & \sum_{a_{-i} \in A_{-i}} \left[\left(\sum_{a_i \in A_i} p_{a_i} u_i(a_i, a_{-i}) \right) - u_i(s_i, a_{-i}) \right] \\ \text{s.t.} & \sum_{a_i \in A_i} p_{a_i} u_i(a_i, a_{-i}) \ge u_i(s_i, a_{-i}) \qquad \forall a_{-i} \in A_{-i} \\ & \sum_{a_i \in A_i} p_{a_i} = 1 \\ & p_{a_i} \ge 0, \qquad \forall a_i \in A_i \end{array}$$

• If optimal solution is strictly positive, then s_i is weakly dominated by $\{p_{a_i}\}$

Strict Dominance by Mixed Strategies

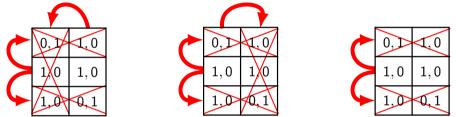
• Checking if strategy s_i is strictly dominated by any mixed strategy

$$\begin{array}{ll} \max & \epsilon \\ \text{s.t.} & \sum_{a_i \in A_i} p_{a_i} u_i(a_i, a_{-i}) \geq u_i(s_i, a_{-i}) + \epsilon \quad \forall a_{-i} \in A_{-i} \\ & \sum_{a_i \in A_i} p_{a_i} = 1 \\ & p_{a_i} \geq 0, \qquad \qquad \forall a_i \in A_i \end{array}$$

• If optimal solution is strictly positive, then s_i is strictly dominated by $\{p_{a_i}\}$

Path Dependency of Iterated Dominance

- Iterated weak dominance is path-dependent:
 - Sequence of eliminations may determine which solution we get (if any)



- Iterated strict dominance is path-independent:
 - Elimination process will always terminate at the same point

Computational Questions for Iterated Dominance

- Is there some elimination path under which s_i is eliminated?
- Is there maximally reduced game where each agent has exactly 1 action?
- For strict dominance, both can be solved in polynomial time
 - Due to path-independence
 - Check if any strategy is dominated, remove it, repeat
 - With or without dominance by mixed strategies
- For weak dominance, both questions are NP-hard¹
 - Even when all utilities are 0 or 1
 - With or without dominance by mixed strategies

¹[Conitzer, Sandholm 05] and weaker version proved by [Gilboa, Kalai, Zemel 93]

Outline

1. Brief Overview of (Mixed Integer) Linear Programming

2. Dominated Strategies

3. Minmax and Maxmin Strategies

4. Nash Equilibrium

5. Correlated NE

Recall: Minmax and Maxmin

• Maxmin strategy for agent *i* (maxmin value for agent *i*)

 $\operatorname*{argmax}_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$

• Minmax strategy against agent *i* (minmax value for agent *i*)

$$\operatorname*{argmin}_{s_{-i}} \max_{s_i} u_i(s_i, s_{-i})$$

Maxmin Strategy and Value

• Finding maxmin strategy of agent *i*

$$\begin{array}{ll} \max & U_i \\ \text{s.t.} & \sum_{a_i \in A_i} p_{a_i} u_i(a_i,a_{-i}) \geq U_i, \quad \forall a_{-i} \in A_{-i} \\ & \sum_{a_i \in A_i} p_{a_i} = 1 \\ & p_{a_i} \geq 0, \qquad \qquad \forall a_i \in A_i \end{array}$$

- Given p_{a_i} , first constraint ensures that U_i is less than any achievable expected utility for any pure strategies of opponents
- Objective of this LP, U_i , is maxmin value of agent i

Outline

- 1. Brief Overview of (Mixed Integer) Linear Programming
- 2. Dominated Strategies
- 3. Minmax and Maxmin Strategies
- 4. Nash Equilibrium
- 5. Correlated NE

NE of Two-player, Zero-sum Games

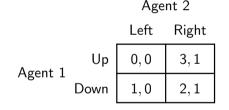
• Maxmin value for agent 1

• Minmax value for agent 1

• NE is expressed as LP \Rightarrow NE can be computed in polynomial time

Maxmin Strategy for General-sum Games

- Agents could still play minmax strategy in general-sum games
 - I.e., pretend that the opponent is only trying to hurt you
- But this might not be rational:



- If A2 was trying to hurt A1, she would play Left, so A1 should play Down
- In reality, A2 will play Right (strictly dominant), so A1 should play Up

Hardness of Computing NE for General-sum Games

- Complexity was open for long time
 - "together with factoring [...] the most important concrete open question on the boundary of P today" [Papadimitriou STOC'01]
- Sequence of papers showed that computing any NE is PPAD-complete (even in 2-player games) [Daskalakis, Goldberg, Papadimitriou 2006; Chen, Deng 2006]
- All known algorithms require exponential time (in worst case)

Hardness of Computing NE for General-Sum Games (cont.)

- What about computing NE with specific property?
 - NE that is not Pareto-dominated
 - NE that maximizes expected social welfare (i.e., sum of all agents' utilities)
 - NE that maximizes expected utility of given agent
 - NE that maximizes expected utility of worst-off player
 - NE in which given pure strategy is played with positive probability
 - NE in which given pure strategy is played with zero probability
 - ...
- All of these are NP-hard (and the optimization questions are inapproximable assuming P != NP), even in 2-player games
 [Gilboa, Zemel 89; Conitzer & Sandholm IJCAI-03/GEB-08]

Search-based Approaches (for Two-player Games)

• We can use LP, if we know support X_i of each player *i*'s mixed strategy

find
$$(U_1, U_2)$$

s.t. $p_{a_i} \ge 0$, $\forall i, a_i \in A_i$
 $\sum_{a_i \in A_i} p_{a_i} = 1$, $\forall i$
 $p_{a_i} = 0$, $\forall i, a_i \in A_i/X_i$
 $\sum_{a_{-i} \in A_{-i}} p_{a_{-i}} u_i(a_i, a_{-i}) = U_i$, $\forall i, a_i \in X_i$
 $\sum_{a_{-i} \in A_{-i}} p_{a_{-i}} u_i(a_i, a_{-i}) \le U_i$, $\forall i, a_i \in A_i/X_i$

• Thus, we can search over possible supports, which is basic idea underlying methods in [Dickhaut & Kaplan 91; Porter, Nudelman, Shoham AAAI04/GEB08]

NE using MILP (for Two-player Games)

[Sandholm, Gilpin, Conitzer AAAI05]

max.	whatever you like (e.g., social welfare)	
s.t.	${oldsymbol{ ho}}_{a_i}\geq 0,$	$\forall i, a_i \in A_i$
	$\sum_{a_i\in \mathcal{A}_i} p_{a_i} = 1,$	$\forall i$
	$\sum_{\mathbf{a}_{-i}\in A_{-i}}p_{\mathbf{a}_{-i}}u_i(\mathbf{a}_i,\mathbf{a}_{-i})=u_{\mathbf{a}_i},$	$\forall i, a_i \in A_i$
	$u_{a_i} \leq u_i,$	$\forall i, a_i \in A_i$
	$p_{a_i} \leq b_{a_i},$	$\forall i, a_i \in A_i$
	$u_i - u_{a_i} \leq M(1 - b_{a_i}),$	$\forall i, a_i \in A_i$
	$b_{a_i}\in\{0,1\},$	$\forall i, a_i \in A_i$

• b_{a_i} indicates whether a_i is in support of i's mixed strategy, and M is large number

Outline

- 1. Brief Overview of (Mixed Integer) Linear Programming
- 2. Dominated Strategies
- 3. Minmax and Maxmin Strategies
- 4. Nash Equilibrium
- 5. Correlated NE

Correlated Equilibrium (N-player Games!)

• Variables are now p_a for all action profiles a (i.e., outcome)

$$\begin{array}{ll} \text{max.} & \text{whatever you like (e.g., social welfare)} \\ \text{s.t.} & \sum_{a_{-i} \in A_{-i}} p_a u_i(a) \geq \sum_{a_{-i} \in A_{-i}} p_a u_i(t_i, a_{-i}) & \forall i, a_i, t_i \in A_i \\ & \sum_{a \in A} p_a = 1 \\ & p_a \geq 0, & \forall a \in A \end{array}$$

Acknowledgment

- This lecture is a slightly modified version of ones prepared by
 - Vincent Conitzer [Duke CPS 590.4]

