
Game-theoretic
Foundations of Multi-agent Systems

Lecture 4: Computing Solution Concepts of Normal-form Games

Seyed Majid Zahedi

Outline

1. Brief Overview of (Mixed Integer) Linear Programming

2. Dominated Strategies

3. Minmax and Maxmin Strategies

4. Nash Equilibrium

5. Correlated NE

2 / 32

Example: Reproduction of Two Paintings

• Painting 1 sells for $30
• Painting 2 sells for $20
• We have 16 units of blue, 8 green, 5 red

• Painting 1 requires 4 blue, 1 green, 1 red

• Painting 2 requires 2 blue, 2 green, 1 red

max. 3x + 2y

s.t. 4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

3 / 32

Example: Reproduction of Two Paintings

• Painting 1 sells for $30

• Painting 2 sells for $20
• We have 16 units of blue, 8 green, 5 red

• Painting 1 requires 4 blue, 1 green, 1 red

• Painting 2 requires 2 blue, 2 green, 1 red

max. 3x + 2y

s.t. 4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

3 / 32

Example: Reproduction of Two Paintings

• Painting 1 sells for $30
• Painting 2 sells for $20

• We have 16 units of blue, 8 green, 5 red

• Painting 1 requires 4 blue, 1 green, 1 red

• Painting 2 requires 2 blue, 2 green, 1 red

max. 3x + 2y

s.t. 4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

3 / 32

Example: Reproduction of Two Paintings

• Painting 1 sells for $30
• Painting 2 sells for $20
• We have 16 units of blue, 8 green, 5 red

• Painting 1 requires 4 blue, 1 green, 1 red

• Painting 2 requires 2 blue, 2 green, 1 red

max. 3x + 2y

s.t. 4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

3 / 32

Example: Reproduction of Two Paintings

• Painting 1 sells for $30
• Painting 2 sells for $20
• We have 16 units of blue, 8 green, 5 red

• Painting 1 requires 4 blue, 1 green, 1 red

• Painting 2 requires 2 blue, 2 green, 1 red

max. 3x + 2y

s.t. 4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

3 / 32

Example: Reproduction of Two Paintings

• Painting 1 sells for $30
• Painting 2 sells for $20
• We have 16 units of blue, 8 green, 5 red

• Painting 1 requires 4 blue, 1 green, 1 red

• Painting 2 requires 2 blue, 2 green, 1 red

max. 3x + 2y

s.t. 4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

3 / 32

Example: Reproduction of Two Paintings

• Painting 1 sells for $30
• Painting 2 sells for $20
• We have 16 units of blue, 8 green, 5 red

• Painting 1 requires 4 blue, 1 green, 1 red

• Painting 2 requires 2 blue, 2 green, 1 red

max. 3x + 2y

s.t. 4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

3 / 32

Solving Linear Program Graphically

max. 3x + 2y

s.t. 4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

2 4 6 8

2

4

6

8

0

4 / 32

Solving Linear Program Graphically

max. 3x + 2y

s.t. 4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

2 4 6 8

2

4

6

8

0

4 / 32

Solving Linear Program Graphically

max. 3x + 2y

s.t. 4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

2 4 6 8

2

4

6

8

0

4 / 32

Solving Linear Program Graphically

max. 3x + 2y

s.t. 4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

2 4 6 8

2

4

6

8

0

4 / 32

Solving Linear Program Graphically

max. 3x + 2y

s.t. 4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

2 4 6 8

2

4

6

8

0

4 / 32

Solving Linear Program Graphically

max. 3x + 2y

s.t. 4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

2 4 6 8

2

4

6

8

0

4 / 32

Solving Linear Program Graphically

max. 3x + 2y

s.t. 4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

2 4 6 8

2

4

6

8

0

4 / 32

Solving Linear Program Graphically

max. 3x + 2y

s.t. 4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

2 4 6 8

2

4

6

8

0

4 / 32

Solving Linear Program Graphically

max. 3x + 2y

s.t. 4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

2 4 6 8

2

4

6

8

0

Optimal solution: x = 3, y = 2

(objective 13)

4 / 32

Modified LP

max. 3x + 2y

s.t. 4x + 2y ≤ 16

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

• Optimal solution: x = 2.5, y = 2.5

• Objective = 7.5 + 5 = 12.5

• Can we sell half paintings?

5 / 32

Modified LP

max. 3x + 2y

s.t. 4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

• Optimal solution: x = 2.5, y = 2.5

• Objective = 7.5 + 5 = 12.5

• Can we sell half paintings?

5 / 32

Modified LP

max. 3x + 2y

s.t. 4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

• Optimal solution: x = 2.5, y = 2.5

• Objective = 7.5 + 5 = 12.5

• Can we sell half paintings?

5 / 32

Modified LP

max. 3x + 2y

s.t. 4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

• Optimal solution: x = 2.5, y = 2.5

• Objective = 7.5 + 5 = 12.5

• Can we sell half paintings?

5 / 32

Modified LP

max. 3x + 2y

s.t. 4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

• Optimal solution: x = 2.5, y = 2.5

• Objective = 7.5 + 5 = 12.5

• Can we sell half paintings?

5 / 32

Modified LP

max. 3x + 2y

s.t. 4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ≥ 0

• Optimal solution: x = 2.5, y = 2.5

• Objective = 7.5 + 5 = 12.5

• Can we sell half paintings?

5 / 32

Integer Linear Program

max. 3x + 2y

s.t. 4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ∈ N0

y ∈ N0

2 4 6 8

2

4

6

8

0

6 / 32

Integer Linear Program

max. 3x + 2y

s.t. 4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ∈ N0

y ∈ N0

2 4 6 8

2

4

6

8

0

6 / 32

Integer Linear Program

max. 3x + 2y

s.t. 4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ∈ N0

y ∈ N0

2 4 6 8

2

4

6

8

0

Optimal LP solution:
x = 2.5, y = 2.5

(objective 12.5)

6 / 32

Integer Linear Program

max. 3x + 2y

s.t. 4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ∈ N0

y ∈ N0

2 4 6 8

2

4

6

8

0

Optimal LP solution:
x = 2.5, y = 2.5

(objective 12.5)

6 / 32

Integer Linear Program

max. 3x + 2y

s.t. 4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ∈ N0

y ∈ N0

2 4 6 8

2

4

6

8

0

Optimal LP solution:
x = 2.5, y = 2.5

(objective 12.5)

Optimal ILP solution:
x = 2, y = 3

(objective 12)

6 / 32

Mixed Integer Linear Program

max. 3x + 2y

s.t. 4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ∈ N0

2 4 6 8

2

4

6

8
Optimal ILP solution:

x = 2, y = 3

(objective 12)
Optimal LP solution:
x = 2.5, y = 2.5

(objective 12.5)

0

7 / 32

Mixed Integer Linear Program

max. 3x + 2y

s.t. 4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ∈ N0

2 4 6 8

2

4

6

8
Optimal ILP solution:

x = 2, y = 3

(objective 12)
Optimal LP solution:
x = 2.5, y = 2.5

(objective 12.5)

0

7 / 32

Mixed Integer Linear Program

max. 3x + 2y

s.t. 4x + 2y ≤ 15

x + 2y ≤ 8

x + y ≤ 5

x ≥ 0

y ∈ N0

2 4 6 8

2

4

6

8
Optimal ILP solution:

x = 2, y = 3

(objective 12)
Optimal LP solution:
x = 2.5, y = 2.5

(objective 12.5)

Optimal MILP

solution: x = 2.75, y = 2

(objective 12.25)

0

7 / 32

Solving Mixed Linear/Integer Programs

• Linear programs can be solved efficiently

• Simplex, ellipsoid, interior point methods, etc.

• (Mixed) integer programs are NP-hard to solve

• Many standard NP-complete problems can be modeled as MILP
• Search type algorithms such as branch and bound

• Standard packages for solving these

• Gurobi, MOSEK, GNU Linear Programming Kit, CPLEX, CVXOPT, etc.

• LP relaxation of (M)ILP: remove integrality constraints

• Gives upper bound on MILP (∼ admissible heuristic)

8 / 32

Solving Mixed Linear/Integer Programs

• Linear programs can be solved efficiently
• Simplex, ellipsoid, interior point methods, etc.

• (Mixed) integer programs are NP-hard to solve

• Many standard NP-complete problems can be modeled as MILP
• Search type algorithms such as branch and bound

• Standard packages for solving these

• Gurobi, MOSEK, GNU Linear Programming Kit, CPLEX, CVXOPT, etc.

• LP relaxation of (M)ILP: remove integrality constraints

• Gives upper bound on MILP (∼ admissible heuristic)

8 / 32

Solving Mixed Linear/Integer Programs

• Linear programs can be solved efficiently
• Simplex, ellipsoid, interior point methods, etc.

• (Mixed) integer programs are NP-hard to solve

• Many standard NP-complete problems can be modeled as MILP
• Search type algorithms such as branch and bound

• Standard packages for solving these

• Gurobi, MOSEK, GNU Linear Programming Kit, CPLEX, CVXOPT, etc.

• LP relaxation of (M)ILP: remove integrality constraints

• Gives upper bound on MILP (∼ admissible heuristic)

8 / 32

Solving Mixed Linear/Integer Programs

• Linear programs can be solved efficiently
• Simplex, ellipsoid, interior point methods, etc.

• (Mixed) integer programs are NP-hard to solve
• Many standard NP-complete problems can be modeled as MILP

• Search type algorithms such as branch and bound

• Standard packages for solving these

• Gurobi, MOSEK, GNU Linear Programming Kit, CPLEX, CVXOPT, etc.

• LP relaxation of (M)ILP: remove integrality constraints

• Gives upper bound on MILP (∼ admissible heuristic)

8 / 32

Solving Mixed Linear/Integer Programs

• Linear programs can be solved efficiently
• Simplex, ellipsoid, interior point methods, etc.

• (Mixed) integer programs are NP-hard to solve
• Many standard NP-complete problems can be modeled as MILP
• Search type algorithms such as branch and bound

• Standard packages for solving these

• Gurobi, MOSEK, GNU Linear Programming Kit, CPLEX, CVXOPT, etc.

• LP relaxation of (M)ILP: remove integrality constraints

• Gives upper bound on MILP (∼ admissible heuristic)

8 / 32

Solving Mixed Linear/Integer Programs

• Linear programs can be solved efficiently
• Simplex, ellipsoid, interior point methods, etc.

• (Mixed) integer programs are NP-hard to solve
• Many standard NP-complete problems can be modeled as MILP
• Search type algorithms such as branch and bound

• Standard packages for solving these

• Gurobi, MOSEK, GNU Linear Programming Kit, CPLEX, CVXOPT, etc.

• LP relaxation of (M)ILP: remove integrality constraints

• Gives upper bound on MILP (∼ admissible heuristic)

8 / 32

Solving Mixed Linear/Integer Programs

• Linear programs can be solved efficiently
• Simplex, ellipsoid, interior point methods, etc.

• (Mixed) integer programs are NP-hard to solve
• Many standard NP-complete problems can be modeled as MILP
• Search type algorithms such as branch and bound

• Standard packages for solving these
• Gurobi, MOSEK, GNU Linear Programming Kit, CPLEX, CVXOPT, etc.

• LP relaxation of (M)ILP: remove integrality constraints

• Gives upper bound on MILP (∼ admissible heuristic)

8 / 32

Solving Mixed Linear/Integer Programs

• Linear programs can be solved efficiently
• Simplex, ellipsoid, interior point methods, etc.

• (Mixed) integer programs are NP-hard to solve
• Many standard NP-complete problems can be modeled as MILP
• Search type algorithms such as branch and bound

• Standard packages for solving these
• Gurobi, MOSEK, GNU Linear Programming Kit, CPLEX, CVXOPT, etc.

• LP relaxation of (M)ILP: remove integrality constraints

• Gives upper bound on MILP (∼ admissible heuristic)

8 / 32

Solving Mixed Linear/Integer Programs

• Linear programs can be solved efficiently
• Simplex, ellipsoid, interior point methods, etc.

• (Mixed) integer programs are NP-hard to solve
• Many standard NP-complete problems can be modeled as MILP
• Search type algorithms such as branch and bound

• Standard packages for solving these
• Gurobi, MOSEK, GNU Linear Programming Kit, CPLEX, CVXOPT, etc.

• LP relaxation of (M)ILP: remove integrality constraints
• Gives upper bound on MILP (∼ admissible heuristic)

8 / 32

Exercise I: Knapsack-type Problem

• We arrive in room full of precious objects

• Can carry only 30kg out of the room

• Can carry only 20 liters out of the room

• Want to maximize our total value

• Unit of object A: 16kg, 3 liters, sells for $11 (3 units available)

• Unit of object B: 4kg, 4 liters, sells for $4 (4 units available)

• Unit of object C: 6kg, 3 liters, sells for $9 (1 unit available)

• What should we take?

9 / 32

Exercise II: Cellphones (Set Cover)

• We want to have a working phone in every continent (besides Antarctica)

• But we want to have as few phones as possible

• Phone A works in NA, SA, Af

• Phone B works in E, Af, As

• Phone C works in NA, Au, E

• Phone D works in SA, As, E

• Phone E works in Af, As, Au

• Phone F works in NA, E

10 / 32

Exercise III: Hot-dog Stands

• We have two hot-dog stands to be placed in somewhere along beach

• We know where groups of people who like hot dogs are

• We also know how far each group is willing to walk

• Where do we put our stands to maximize # hot dogs sold? (price is fixed)

11 / 32

Exercise III: Hot-dog Stands

• We have two hot-dog stands to be placed in somewhere along beach

• We know where groups of people who like hot dogs are

• We also know how far each group is willing to walk

• Where do we put our stands to maximize # hot dogs sold? (price is fixed)

Group 1

location: 1
size: 2

walk dist.: 4

11 / 32

Exercise III: Hot-dog Stands

• We have two hot-dog stands to be placed in somewhere along beach

• We know where groups of people who like hot dogs are

• We also know how far each group is willing to walk

• Where do we put our stands to maximize # hot dogs sold? (price is fixed)

Group 1

location: 1
size: 2

walk dist.: 4

Group 2

location: 4
size: 1

walk dist.: 2

Group 3

location: 7
size: 3

walk dist: 3

Group 4

location: 9
size: 4

walk dist.: 3

Group 5

location: 15
size: 3

walk dist.: 2

11 / 32

Outline

1. Brief Overview of (Mixed Integer) Linear Programming

2. Dominated Strategies

3. Minmax and Maxmin Strategies

4. Nash Equilibrium

5. Correlated NE

12 / 32

Recall: Strict Dominance

ai strictly dominates si if ui (ai , s−i) > ui (si , s−i) ∀s−i ∈ S−i

13 / 32

Dominance by Pure Strategy

Algorithm 1: Determine whether si is strictly dominated by any pure strategy

for all ai ∈ Ai where ai ̸= si do
dom ← true;
forall a−i ∈ A−i do

if ui (si , a−i) ≥ ui (ai , a−i) then
dom ← false;
break;

if dom = true then
return true;

return false;

14 / 32

Dominance by Pure Strategy: Discussion

• Complexity of the Algorithm is O(|A|), linear in the size of normal-form game

• Recall: ai strictly dominates si if ui (ai , s−i) > ui (si , s−i) ∀s−i ∈ S−i

• This definition refers to mixed-strategy profile of other agents

• In Alg. (1), we do not check every mixed-strategy profile of others, why?

• Suppose ai strictly dominates si for all a−i

• Then, there is no s−i for which ui (ai , s−i) ≥ ui (si , s−i)

• This holds because of the linearity of expectation

15 / 32

Dominance by Pure Strategy: Discussion

• Complexity of the Algorithm is O(|A|), linear in the size of normal-form game

• Recall: ai strictly dominates si if ui (ai , s−i) > ui (si , s−i) ∀s−i ∈ S−i

• This definition refers to mixed-strategy profile of other agents

• In Alg. (1), we do not check every mixed-strategy profile of others, why?

• Suppose ai strictly dominates si for all a−i

• Then, there is no s−i for which ui (ai , s−i) ≥ ui (si , s−i)

• This holds because of the linearity of expectation

15 / 32

Dominance by Pure Strategy: Discussion

• Complexity of the Algorithm is O(|A|), linear in the size of normal-form game

• Recall: ai strictly dominates si if ui (ai , s−i) > ui (si , s−i) ∀s−i ∈ S−i

• This definition refers to mixed-strategy profile of other agents

• In Alg. (1), we do not check every mixed-strategy profile of others, why?

• Suppose ai strictly dominates si for all a−i

• Then, there is no s−i for which ui (ai , s−i) ≥ ui (si , s−i)

• This holds because of the linearity of expectation

15 / 32

Dominance by Pure Strategy: Discussion

• Complexity of the Algorithm is O(|A|), linear in the size of normal-form game

• Recall: ai strictly dominates si if ui (ai , s−i) > ui (si , s−i) ∀s−i ∈ S−i

• This definition refers to mixed-strategy profile of other agents

• In Alg. (1), we do not check every mixed-strategy profile of others, why?
• Suppose ai strictly dominates si for all a−i

• Then, there is no s−i for which ui (ai , s−i) ≥ ui (si , s−i)

• This holds because of the linearity of expectation

15 / 32

Dominance by Pure Strategy: Discussion

• Complexity of the Algorithm is O(|A|), linear in the size of normal-form game

• Recall: ai strictly dominates si if ui (ai , s−i) > ui (si , s−i) ∀s−i ∈ S−i

• This definition refers to mixed-strategy profile of other agents

• In Alg. (1), we do not check every mixed-strategy profile of others, why?
• Suppose ai strictly dominates si for all a−i

• Then, there is no s−i for which ui (ai , s−i) ≥ ui (si , s−i)

• This holds because of the linearity of expectation

15 / 32

Dominance by Pure Strategy: Discussion

• Complexity of the Algorithm is O(|A|), linear in the size of normal-form game

• Recall: ai strictly dominates si if ui (ai , s−i) > ui (si , s−i) ∀s−i ∈ S−i

• This definition refers to mixed-strategy profile of other agents

• In Alg. (1), we do not check every mixed-strategy profile of others, why?
• Suppose ai strictly dominates si for all a−i

• Then, there is no s−i for which ui (ai , s−i) ≥ ui (si , s−i)

• This holds because of the linearity of expectation

15 / 32

Weak Dominance by Mixed Strategy

• Checking if strategy si is weakly dominated by any mixed strategy

max.
∑

a−i∈A−i

∑
ai∈Ai

paiui (ai , a−i)

− ui (si , a−i)


s.t.

∑
ai∈Ai

paiui (ai , a−i) ≥ ui (si , a−i) ∀a−i ∈ A−i∑
ai∈Ai

pai = 1

pai ≥ 0, ∀ai ∈ Ai

• If optimal solution is strictly positive, then si is weakly dominated by {pai}

16 / 32

Weak Dominance by Mixed Strategy

• Checking if strategy si is weakly dominated by any mixed strategy

max.
∑

a−i∈A−i

∑
ai∈Ai

paiui (ai , a−i)

− ui (si , a−i)



s.t.
∑
ai∈Ai

paiui (ai , a−i) ≥ ui (si , a−i) ∀a−i ∈ A−i∑
ai∈Ai

pai = 1

pai ≥ 0, ∀ai ∈ Ai

• If optimal solution is strictly positive, then si is weakly dominated by {pai}

16 / 32

Weak Dominance by Mixed Strategy

• Checking if strategy si is weakly dominated by any mixed strategy

max.
∑

a−i∈A−i

∑
ai∈Ai

paiui (ai , a−i)

− ui (si , a−i)


s.t.

∑
ai∈Ai

paiui (ai , a−i) ≥ ui (si , a−i) ∀a−i ∈ A−i∑
ai∈Ai

pai = 1

pai ≥ 0, ∀ai ∈ Ai

• If optimal solution is strictly positive, then si is weakly dominated by {pai}

16 / 32

Weak Dominance by Mixed Strategy

• Checking if strategy si is weakly dominated by any mixed strategy

max.
∑

a−i∈A−i

∑
ai∈Ai

paiui (ai , a−i)

− ui (si , a−i)


s.t.

∑
ai∈Ai

paiui (ai , a−i) ≥ ui (si , a−i) ∀a−i ∈ A−i∑
ai∈Ai

pai = 1

pai ≥ 0, ∀ai ∈ Ai

• If optimal solution is strictly positive, then si is weakly dominated by {pai}

16 / 32

Strict Dominance by Mixed Strategies

• Checking if strategy si is strictly dominated by any mixed strategy

max. ϵ

s.t.
∑
ai∈Ai

paiui (ai , a−i) ≥ ui (si , a−i) + ϵ ∀a−i ∈ A−i∑
ai∈Ai

pai = 1

pai ≥ 0, ∀ai ∈ Ai

• If optimal solution is strictly positive, then si is strictly dominated by {pai}

17 / 32

Strict Dominance by Mixed Strategies

• Checking if strategy si is strictly dominated by any mixed strategy

max. ϵ

s.t.
∑
ai∈Ai

paiui (ai , a−i) ≥ ui (si , a−i) + ϵ ∀a−i ∈ A−i

∑
ai∈Ai

pai = 1

pai ≥ 0, ∀ai ∈ Ai

• If optimal solution is strictly positive, then si is strictly dominated by {pai}

17 / 32

Strict Dominance by Mixed Strategies

• Checking if strategy si is strictly dominated by any mixed strategy

max. ϵ

s.t.
∑
ai∈Ai

paiui (ai , a−i) ≥ ui (si , a−i) + ϵ ∀a−i ∈ A−i∑
ai∈Ai

pai = 1

pai ≥ 0, ∀ai ∈ Ai

• If optimal solution is strictly positive, then si is strictly dominated by {pai}

17 / 32

Strict Dominance by Mixed Strategies

• Checking if strategy si is strictly dominated by any mixed strategy

max. ϵ

s.t.
∑
ai∈Ai

paiui (ai , a−i) ≥ ui (si , a−i) + ϵ ∀a−i ∈ A−i∑
ai∈Ai

pai = 1

pai ≥ 0, ∀ai ∈ Ai

• If optimal solution is strictly positive, then si is strictly dominated by {pai}

17 / 32

Strict Dominance by Mixed Strategies

• Checking if strategy si is strictly dominated by any mixed strategy

max. ϵ

s.t.
∑
ai∈Ai

paiui (ai , a−i) ≥ ui (si , a−i) + ϵ ∀a−i ∈ A−i∑
ai∈Ai

pai = 1

pai ≥ 0, ∀ai ∈ Ai

• If optimal solution is strictly positive, then si is strictly dominated by {pai}

17 / 32

Path Dependency of Iterated Dominance

• Iterated weak dominance is path-dependent:
• Sequence of eliminations may determine which solution we get (if any)

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

• Iterated strict dominance is path-independent:

• Elimination process will always terminate at the same point

18 / 32

Path Dependency of Iterated Dominance

• Iterated weak dominance is path-dependent:
• Sequence of eliminations may determine which solution we get (if any)

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

• Iterated strict dominance is path-independent:

• Elimination process will always terminate at the same point

18 / 32

Path Dependency of Iterated Dominance

• Iterated weak dominance is path-dependent:
• Sequence of eliminations may determine which solution we get (if any)

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

• Iterated strict dominance is path-independent:

• Elimination process will always terminate at the same point

18 / 32

Path Dependency of Iterated Dominance

• Iterated weak dominance is path-dependent:
• Sequence of eliminations may determine which solution we get (if any)

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

• Iterated strict dominance is path-independent:

• Elimination process will always terminate at the same point

18 / 32

Path Dependency of Iterated Dominance

• Iterated weak dominance is path-dependent:
• Sequence of eliminations may determine which solution we get (if any)

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

• Iterated strict dominance is path-independent:

• Elimination process will always terminate at the same point

18 / 32

Path Dependency of Iterated Dominance

• Iterated weak dominance is path-dependent:
• Sequence of eliminations may determine which solution we get (if any)

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

• Iterated strict dominance is path-independent:

• Elimination process will always terminate at the same point

18 / 32

Path Dependency of Iterated Dominance

• Iterated weak dominance is path-dependent:
• Sequence of eliminations may determine which solution we get (if any)

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

• Iterated strict dominance is path-independent:

• Elimination process will always terminate at the same point

18 / 32

Path Dependency of Iterated Dominance

• Iterated weak dominance is path-dependent:
• Sequence of eliminations may determine which solution we get (if any)

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

• Iterated strict dominance is path-independent:

• Elimination process will always terminate at the same point

18 / 32

Path Dependency of Iterated Dominance

• Iterated weak dominance is path-dependent:
• Sequence of eliminations may determine which solution we get (if any)

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

• Iterated strict dominance is path-independent:

• Elimination process will always terminate at the same point

18 / 32

Path Dependency of Iterated Dominance

• Iterated weak dominance is path-dependent:
• Sequence of eliminations may determine which solution we get (if any)

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

• Iterated strict dominance is path-independent:

• Elimination process will always terminate at the same point

18 / 32

Path Dependency of Iterated Dominance

• Iterated weak dominance is path-dependent:
• Sequence of eliminations may determine which solution we get (if any)

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

• Iterated strict dominance is path-independent:

• Elimination process will always terminate at the same point

18 / 32

Path Dependency of Iterated Dominance

• Iterated weak dominance is path-dependent:
• Sequence of eliminations may determine which solution we get (if any)

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

• Iterated strict dominance is path-independent:

• Elimination process will always terminate at the same point

18 / 32

Path Dependency of Iterated Dominance

• Iterated weak dominance is path-dependent:
• Sequence of eliminations may determine which solution we get (if any)

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

• Iterated strict dominance is path-independent:

• Elimination process will always terminate at the same point

18 / 32

Path Dependency of Iterated Dominance

• Iterated weak dominance is path-dependent:
• Sequence of eliminations may determine which solution we get (if any)

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

• Iterated strict dominance is path-independent:

• Elimination process will always terminate at the same point

18 / 32

Path Dependency of Iterated Dominance

• Iterated weak dominance is path-dependent:
• Sequence of eliminations may determine which solution we get (if any)

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

• Iterated strict dominance is path-independent:

• Elimination process will always terminate at the same point

18 / 32

Path Dependency of Iterated Dominance

• Iterated weak dominance is path-dependent:
• Sequence of eliminations may determine which solution we get (if any)

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

• Iterated strict dominance is path-independent:

• Elimination process will always terminate at the same point

18 / 32

Path Dependency of Iterated Dominance

• Iterated weak dominance is path-dependent:
• Sequence of eliminations may determine which solution we get (if any)

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

• Iterated strict dominance is path-independent:

• Elimination process will always terminate at the same point

18 / 32

Path Dependency of Iterated Dominance

• Iterated weak dominance is path-dependent:
• Sequence of eliminations may determine which solution we get (if any)

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

• Iterated strict dominance is path-independent:

• Elimination process will always terminate at the same point

18 / 32

Path Dependency of Iterated Dominance

• Iterated weak dominance is path-dependent:
• Sequence of eliminations may determine which solution we get (if any)

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

0, 1 1, 0

1, 0 1, 0

1, 0 0, 1

• Iterated strict dominance is path-independent:
• Elimination process will always terminate at the same point

18 / 32

Computational Questions for Iterated Dominance

• Is there some elimination path under which si is eliminated?

• Is there maximally reduced game where each agent has exactly 1 action?

• For strict dominance, both can be solved in polynomial time

• Due to path-independence
• Check if any strategy is dominated, remove it, repeat
• With or without dominance by mixed strategies

• For weak dominance, both questions are NP-hard1

• Even when all utilities are 0 or 1
• With or without dominance by mixed strategies

1[Conitzer, Sandholm 05] and weaker version proved by [Gilboa, Kalai, Zemel 93]

19 / 32

Computational Questions for Iterated Dominance

• Is there some elimination path under which si is eliminated?

• Is there maximally reduced game where each agent has exactly 1 action?

• For strict dominance, both can be solved in polynomial time

• Due to path-independence
• Check if any strategy is dominated, remove it, repeat
• With or without dominance by mixed strategies

• For weak dominance, both questions are NP-hard1

• Even when all utilities are 0 or 1
• With or without dominance by mixed strategies

1[Conitzer, Sandholm 05] and weaker version proved by [Gilboa, Kalai, Zemel 93]

19 / 32

Computational Questions for Iterated Dominance

• Is there some elimination path under which si is eliminated?

• Is there maximally reduced game where each agent has exactly 1 action?

• For strict dominance, both can be solved in polynomial time
• Due to path-independence
• Check if any strategy is dominated, remove it, repeat
• With or without dominance by mixed strategies

• For weak dominance, both questions are NP-hard1

• Even when all utilities are 0 or 1
• With or without dominance by mixed strategies

1[Conitzer, Sandholm 05] and weaker version proved by [Gilboa, Kalai, Zemel 93]

19 / 32

Computational Questions for Iterated Dominance

• Is there some elimination path under which si is eliminated?

• Is there maximally reduced game where each agent has exactly 1 action?

• For strict dominance, both can be solved in polynomial time
• Due to path-independence
• Check if any strategy is dominated, remove it, repeat
• With or without dominance by mixed strategies

• For weak dominance, both questions are NP-hard1

• Even when all utilities are 0 or 1
• With or without dominance by mixed strategies

1[Conitzer, Sandholm 05] and weaker version proved by [Gilboa, Kalai, Zemel 93]
19 / 32

Outline

1. Brief Overview of (Mixed Integer) Linear Programming

2. Dominated Strategies

3. Minmax and Maxmin Strategies

4. Nash Equilibrium

5. Correlated NE

20 / 32

Recall: Minmax and Maxmin

• Maxmin strategy for agent i (maxmin value for agent i)

argmax
si

min
s−i

ui (si , s−i)

• Minmax strategy against agent i (minmax value for agent i)

argmin
s−i

max
si

ui (si , s−i)

21 / 32

Recall: Minmax and Maxmin

• Maxmin strategy for agent i (maxmin value for agent i)

argmax
si

min
s−i

ui (si , s−i)

• Minmax strategy against agent i (minmax value for agent i)

argmin
s−i

max
si

ui (si , s−i)

21 / 32

Maxmin Strategy and Value

• Finding maxmin strategy of agent i

max. Ui

s.t.
∑
ai∈Ai

paiui (ai , a−i) ≥ Ui , ∀a−i ∈ A−i∑
ai∈Ai

pai = 1

pai ≥ 0, ∀ai ∈ Ai

• Given pai , first constraint ensures that Ui is less than any achievable expected
utility for any pure strategies of opponents

• Objective of this LP, Ui , is maxmin value of agent i

22 / 32

Maxmin Strategy and Value

• Finding maxmin strategy of agent i

max. Ui

s.t.
∑
ai∈Ai

paiui (ai , a−i) ≥ Ui , ∀a−i ∈ A−i

∑
ai∈Ai

pai = 1

pai ≥ 0, ∀ai ∈ Ai

• Given pai , first constraint ensures that Ui is less than any achievable expected
utility for any pure strategies of opponents

• Objective of this LP, Ui , is maxmin value of agent i

22 / 32

Maxmin Strategy and Value

• Finding maxmin strategy of agent i

max. Ui

s.t.
∑
ai∈Ai

paiui (ai , a−i) ≥ Ui , ∀a−i ∈ A−i∑
ai∈Ai

pai = 1

pai ≥ 0, ∀ai ∈ Ai

• Given pai , first constraint ensures that Ui is less than any achievable expected
utility for any pure strategies of opponents

• Objective of this LP, Ui , is maxmin value of agent i

22 / 32

Maxmin Strategy and Value

• Finding maxmin strategy of agent i

max. Ui

s.t.
∑
ai∈Ai

paiui (ai , a−i) ≥ Ui , ∀a−i ∈ A−i∑
ai∈Ai

pai = 1

pai ≥ 0, ∀ai ∈ Ai

• Given pai , first constraint ensures that Ui is less than any achievable expected
utility for any pure strategies of opponents

• Objective of this LP, Ui , is maxmin value of agent i

22 / 32

Outline

1. Brief Overview of (Mixed Integer) Linear Programming

2. Dominated Strategies

3. Minmax and Maxmin Strategies

4. Nash Equilibrium

5. Correlated NE

23 / 32

NE of Two-player, Zero-sum Games

• Maxmin value for agent 1

max. U1

s.t.
∑
a1∈A1

pa1u1(a1, a2) ≥ U1 ∀a2 ∈ A2∑
a1∈A1

pa1 = 1

pa1 ≥ 0, ∀a1 ∈ A1

• Minmax value for agent 1

min. U1

s.t.
∑
a2∈A2

pa2u1(a1, a2) ≤ U1 ∀a1 ∈ A1∑
a2∈A2

pa2 = 1

pa2 ≥ 0, ∀a2 ∈ A2

• NE is expressed as LP ⇒ NE can be computed in polynomial time

24 / 32

NE of Two-player, Zero-sum Games

• Maxmin value for agent 1

max. U1

s.t.
∑
a1∈A1

pa1u1(a1, a2) ≥ U1 ∀a2 ∈ A2∑
a1∈A1

pa1 = 1

pa1 ≥ 0, ∀a1 ∈ A1

• Minmax value for agent 1

min. U1

s.t.
∑
a2∈A2

pa2u1(a1, a2) ≤ U1 ∀a1 ∈ A1∑
a2∈A2

pa2 = 1

pa2 ≥ 0, ∀a2 ∈ A2

• NE is expressed as LP ⇒ NE can be computed in polynomial time

24 / 32

NE of Two-player, Zero-sum Games

• Maxmin value for agent 1

max. U1

s.t.
∑
a1∈A1

pa1u1(a1, a2) ≥ U1 ∀a2 ∈ A2∑
a1∈A1

pa1 = 1

pa1 ≥ 0, ∀a1 ∈ A1

• Minmax value for agent 1

min. U1

s.t.
∑
a2∈A2

pa2u1(a1, a2) ≤ U1 ∀a1 ∈ A1∑
a2∈A2

pa2 = 1

pa2 ≥ 0, ∀a2 ∈ A2

• NE is expressed as LP ⇒ NE can be computed in polynomial time

24 / 32

NE of Two-player, Zero-sum Games

• Maxmin value for agent 1

max. U1

s.t.
∑
a1∈A1

pa1u1(a1, a2) ≥ U1 ∀a2 ∈ A2∑
a1∈A1

pa1 = 1

pa1 ≥ 0, ∀a1 ∈ A1

• Minmax value for agent 1

min. U1

s.t.
∑
a2∈A2

pa2u1(a1, a2) ≤ U1 ∀a1 ∈ A1∑
a2∈A2

pa2 = 1

pa2 ≥ 0, ∀a2 ∈ A2

• NE is expressed as LP ⇒ NE can be computed in polynomial time

24 / 32

NE of Two-player, Zero-sum Games

• Maxmin value for agent 1

max. U1

s.t.
∑
a1∈A1

pa1u1(a1, a2) ≥ U1 ∀a2 ∈ A2∑
a1∈A1

pa1 = 1

pa1 ≥ 0, ∀a1 ∈ A1

• Minmax value for agent 1

min. U1

s.t.
∑
a2∈A2

pa2u1(a1, a2) ≤ U1 ∀a1 ∈ A1∑
a2∈A2

pa2 = 1

pa2 ≥ 0, ∀a2 ∈ A2

• NE is expressed as LP ⇒ NE can be computed in polynomial time

24 / 32

Maxmin Strategy for General-sum Games

• Agents could still play minmax strategy in general-sum games

• I.e., pretend that the opponent is only trying to hurt you

• But this might not be rational:

Agent 1

Agent 2

Left Right

Up 0, 0 3, 1

Down 1, 0 2, 1

• If A2 was trying to hurt A1, she would play Left, so A1 should play Down
• In reality, A2 will play Right (strictly dominant), so A1 should play Up

25 / 32

Maxmin Strategy for General-sum Games

• Agents could still play minmax strategy in general-sum games
• I.e., pretend that the opponent is only trying to hurt you

• But this might not be rational:

Agent 1

Agent 2

Left Right

Up 0, 0 3, 1

Down 1, 0 2, 1

• If A2 was trying to hurt A1, she would play Left, so A1 should play Down
• In reality, A2 will play Right (strictly dominant), so A1 should play Up

25 / 32

Maxmin Strategy for General-sum Games

• Agents could still play minmax strategy in general-sum games
• I.e., pretend that the opponent is only trying to hurt you

• But this might not be rational:

Agent 1

Agent 2

Left Right

Up 0, 0 3, 1

Down 1, 0 2, 1

• If A2 was trying to hurt A1, she would play Left, so A1 should play Down
• In reality, A2 will play Right (strictly dominant), so A1 should play Up

25 / 32

Maxmin Strategy for General-sum Games

• Agents could still play minmax strategy in general-sum games
• I.e., pretend that the opponent is only trying to hurt you

• But this might not be rational:

Agent 1

Agent 2

Left Right

Up 0, 0 3, 1

Down 1, 0 2, 1

• If A2 was trying to hurt A1, she would play Left, so A1 should play Down
• In reality, A2 will play Right (strictly dominant), so A1 should play Up

25 / 32

Maxmin Strategy for General-sum Games

• Agents could still play minmax strategy in general-sum games
• I.e., pretend that the opponent is only trying to hurt you

• But this might not be rational:

Agent 1

Agent 2

Left Right

Up 0, 0 3, 1

Down 1, 0 2, 1

• If A2 was trying to hurt A1, she would play Left, so A1 should play Down

• In reality, A2 will play Right (strictly dominant), so A1 should play Up

25 / 32

Maxmin Strategy for General-sum Games

• Agents could still play minmax strategy in general-sum games
• I.e., pretend that the opponent is only trying to hurt you

• But this might not be rational:

Agent 1

Agent 2

Left Right

Up 0, 0 3, 1

Down 1, 0 2, 1

• If A2 was trying to hurt A1, she would play Left, so A1 should play Down
• In reality, A2 will play Right (strictly dominant), so A1 should play Up

25 / 32

Hardness of Computing NE for General-sum Games

• Complexity was open for long time
• “together with factoring [. . .] the most important concrete open question on the

boundary of P today” [Papadimitriou STOC’01]

• Sequence of papers showed that computing any NE is PPAD-complete (even in
2-player games) [Daskalakis, Goldberg, Papadimitriou 2006; Chen, Deng 2006]

• All known algorithms require exponential time (in worst case)

26 / 32

Hardness of Computing NE for General-sum Games

• Complexity was open for long time
• “together with factoring [. . .] the most important concrete open question on the

boundary of P today” [Papadimitriou STOC’01]

• Sequence of papers showed that computing any NE is PPAD-complete (even in
2-player games) [Daskalakis, Goldberg, Papadimitriou 2006; Chen, Deng 2006]

• All known algorithms require exponential time (in worst case)

26 / 32

Hardness of Computing NE for General-sum Games

• Complexity was open for long time
• “together with factoring [. . .] the most important concrete open question on the

boundary of P today” [Papadimitriou STOC’01]

• Sequence of papers showed that computing any NE is PPAD-complete (even in
2-player games) [Daskalakis, Goldberg, Papadimitriou 2006; Chen, Deng 2006]

• All known algorithms require exponential time (in worst case)

26 / 32

Hardness of Computing NE for General-Sum Games (cont.)

• What about computing NE with specific property?
• NE that is not Pareto-dominated
• NE that maximizes expected social welfare (i.e., sum of all agents’ utilities)
• NE that maximizes expected utility of given agent
• NE that maximizes expected utility of worst-off player
• NE in which given pure strategy is played with positive probability
• NE in which given pure strategy is played with zero probability
• . . .

• All of these are NP-hard (and the optimization questions are inapproximable
assuming P != NP), even in 2-player games
[Gilboa, Zemel 89; Conitzer & Sandholm IJCAI-03/GEB-08]

27 / 32

Hardness of Computing NE for General-Sum Games (cont.)

• What about computing NE with specific property?
• NE that is not Pareto-dominated
• NE that maximizes expected social welfare (i.e., sum of all agents’ utilities)
• NE that maximizes expected utility of given agent
• NE that maximizes expected utility of worst-off player
• NE in which given pure strategy is played with positive probability
• NE in which given pure strategy is played with zero probability
• . . .

• All of these are NP-hard (and the optimization questions are inapproximable
assuming P != NP), even in 2-player games
[Gilboa, Zemel 89; Conitzer & Sandholm IJCAI-03/GEB-08]

27 / 32

Search-based Approaches (for Two-player Games)

• We can use LP, if we know support Xi of each player i ’s mixed strategy

find (U1,U2)

s.t. pai ≥ 0, ∀i , ai ∈ Ai∑
ai∈Ai

pai = 1, ∀i

pai = 0, ∀i , ai ∈ Ai/Xi∑
a−i∈A−i

pa−i ui (ai , a−i) = Ui , ∀i , ai ∈ Xi

∑
a−i∈A−i

pa−i ui (ai , a−i) ≤ Ui , ∀i , ai ∈ Ai/Xi

• Thus, we can search over possible supports, which is basic idea underlying
methods in [Dickhaut & Kaplan 91; Porter, Nudelman, Shoham AAAI04/GEB08]

28 / 32

Search-based Approaches (for Two-player Games)

• We can use LP, if we know support Xi of each player i ’s mixed strategy

find (U1,U2)

s.t. pai ≥ 0, ∀i , ai ∈ Ai∑
ai∈Ai

pai = 1, ∀i

pai = 0, ∀i , ai ∈ Ai/Xi∑
a−i∈A−i

pa−i ui (ai , a−i) = Ui , ∀i , ai ∈ Xi

∑
a−i∈A−i

pa−i ui (ai , a−i) ≤ Ui , ∀i , ai ∈ Ai/Xi

• Thus, we can search over possible supports, which is basic idea underlying
methods in [Dickhaut & Kaplan 91; Porter, Nudelman, Shoham AAAI04/GEB08]

28 / 32

Search-based Approaches (for Two-player Games)

• We can use LP, if we know support Xi of each player i ’s mixed strategy

find (U1,U2)

s.t. pai ≥ 0, ∀i , ai ∈ Ai∑
ai∈Ai

pai = 1, ∀i

pai = 0, ∀i , ai ∈ Ai/Xi∑
a−i∈A−i

pa−i ui (ai , a−i) = Ui , ∀i , ai ∈ Xi

∑
a−i∈A−i

pa−i ui (ai , a−i) ≤ Ui , ∀i , ai ∈ Ai/Xi

• Thus, we can search over possible supports, which is basic idea underlying
methods in [Dickhaut & Kaplan 91; Porter, Nudelman, Shoham AAAI04/GEB08]

28 / 32

NE using MILP (for Two-player Games)
[Sandholm, Gilpin, Conitzer AAAI05]

max. whatever you like (e.g., social welfare)

s.t. pai ≥ 0, ∀i , ai ∈ Ai∑
ai∈Ai

pai = 1, ∀i

∑
a−i∈A−i

pa−iui (ai , a−i) = uai , ∀i , ai ∈ Ai

uai ≤ ui , ∀i , ai ∈ Ai

pai ≤ bai , ∀i , ai ∈ Ai

ui − uai ≤ M(1− bai), ∀i , ai ∈ Ai

bai ∈ {0, 1}, ∀i , ai ∈ Ai

• bai indicates whether ai is in support of i ’s mixed strategy, and M is large number

29 / 32

NE using MILP (for Two-player Games)
[Sandholm, Gilpin, Conitzer AAAI05]

max. whatever you like (e.g., social welfare)

s.t. pai ≥ 0, ∀i , ai ∈ Ai∑
ai∈Ai

pai = 1, ∀i

∑
a−i∈A−i

pa−iui (ai , a−i) = uai , ∀i , ai ∈ Ai

uai ≤ ui , ∀i , ai ∈ Ai

pai ≤ bai , ∀i , ai ∈ Ai

ui − uai ≤ M(1− bai), ∀i , ai ∈ Ai

bai ∈ {0, 1}, ∀i , ai ∈ Ai

• bai indicates whether ai is in support of i ’s mixed strategy, and M is large number

29 / 32

Outline

1. Brief Overview of (Mixed Integer) Linear Programming

2. Dominated Strategies

3. Minmax and Maxmin Strategies

4. Nash Equilibrium

5. Correlated NE

30 / 32

Correlated Equilibrium (N-player Games!)

• Variables are now pa for all action profiles a (i.e., outcome)

max. whatever you like (e.g., social welfare)

s.t.
∑

a−i∈A−i

paui (a) ≥
∑

a−i∈A−i

paui (ti , a−i) ∀i , ai , ti ∈ Ai∑
a∈A

pa = 1

pa ≥ 0, ∀a ∈ A

31 / 32

Correlated Equilibrium (N-player Games!)

• Variables are now pa for all action profiles a (i.e., outcome)

max. whatever you like (e.g., social welfare)

s.t.
∑

a−i∈A−i

paui (a) ≥
∑

a−i∈A−i

paui (ti , a−i) ∀i , ai , ti ∈ Ai∑
a∈A

pa = 1

pa ≥ 0, ∀a ∈ A

31 / 32

Acknowledgment

• This lecture is a slightly modified version of ones prepared by

• Vincent Conitzer [Duke CPS 590.4]

• Xiaoliang Zhou helped with importing slides from PowerPoint to LATEX

32 / 32

https://courses.cs.duke.edu/spring16/compsci590.4/

	Brief Overview of (Mixed Integer) Linear Programming
	Dominated Strategies
	Minmax and Maxmin Strategies
	Nash Equilibrium
	Correlated NE

