Game-theoretic
 Foundations of Multi-agent Systems

Lecture 5: Games in Extensive Form

Seyed Majid Zahedi
WAIERSITY OF
-

Outline

1. Perfect-info Extensive-form Games
2. Pure Strategies in Perfect-info Games
3. Subgame-perfect Equilibrium
4. Imperfect-info Extensive-form Games
5. Randomized Strategies in Extensive-form Games

Extensive-form Games

- So far, we have studied strategic-form games
- Agents take actions once and simultaneously

Extensive-form Games

- So far, we have studied strategic-form games
- Agents take actions once and simultaneously
- Next, we study extensive-form games (a.k.a. sequential or multi-stage games)
- Extensive-form games can be conveniently represented by game trees

(Finite) Perfect-info Extensive-form Game: Definition

- The game consists of a set of agents, $N=\{1,2, \ldots, n\}$

(Finite) Perfect-info Extensive-form Game: Definition

- The game consists of a set of agents, $N=\{1,2, \ldots, n\}$
- A is set of actions

(Finite) Perfect-info Extensive-form Game: Definition

- The game consists of a set of agents, $N=\{1,2, \ldots, n\}$
- A is set of actions
- H is set of choice nodes (internal nodes of game tree)

(Finite) Perfect-info Extensive-form Game: Definition

- The game consists of a set of agents, $N=\{1,2, \ldots, n\}$
- A is set of actions
- H is set of choice nodes (internal nodes of game tree)
- Z is set of terminal nodes (leaves of game tree)

(Finite) Perfect-info Extensive-form Game: Definition (cont.)

- $\alpha: H \rightarrow N$ is agent function
- Maps each choice node to an agent who chooses an action at that node

(Finite) Perfect-info Extensive-form Game: Definition (cont.)

- $\alpha: H \rightarrow N$ is agent function
- Maps each choice node to an agent who chooses an action at that node
- $\beta: H \rightarrow 2^{A}$ is action function
- Maps each choice node to set of actions available at that node

(Finite) Perfect-info Extensive-form Game: Definition (cont.)

- $\alpha: H \rightarrow N$ is agent function
- Maps each choice node to an agent who chooses an action at that node
- $\beta: H \rightarrow 2^{A}$ is action function
- Maps each choice node to set of actions available at that node
- $\rho: H \times A \rightarrow H \cup Z$ is successor function
- Maps each choice node and action pair to new choice node or terminal node
- If $\rho\left(h_{1}, a_{1}\right)=\rho\left(h_{2}, a_{2}\right)$ then $h_{1}=h_{2}$ and $a_{1}=a_{2}$

(Finite) Perfect-info Extensive-form Game: Definition (cont.)

- $\alpha: H \rightarrow N$ is agent function
- Maps each choice node to an agent who chooses an action at that node
- $\beta: H \rightarrow 2^{A}$ is action function
- Maps each choice node to set of actions available at that node
- $\rho: H \times A \rightarrow H \cup Z$ is successor function
- Maps each choice node and action pair to new choice node or terminal node
- If $\rho\left(h_{1}, a_{1}\right)=\rho\left(h_{2}, a_{2}\right)$ then $h_{1}=h_{2}$ and $a_{1}=a_{2}$
- $u=\left(u_{1}, \ldots, u_{n}\right)$, where $u_{i}: Z \rightarrow \mathbb{R}$ is agent i 's utility function
- Maps each terminal node to a real value

Example: Sharing Game

- Brother and sister share two gifts
- Brother suggests a split first
- Sister then chooses to accept or reject
- If she accepts, they get suggested gifts

- Otherwise, neither gets any gift

Outline

1. Perfect-info Extensive-form Games

2. Pure Strategies in Perfect-info Games
3. Subgame-perfect Equilibrium
4. Imperfect-info Extensive-form Games
5. Randomized Strategies in Extensive-form Games

History in Extensive-form Games

- If height of game tree (i.e, number of stages) is finite, then game is finite-horizon game
- Otherwise, the game is called infinite-horizon game
- For perfect-information games, each node maps to unique history (and vice versa)
- Since choice nodes form a tree, we can unambiguously identify a node with its history
- I.e., sequence of choices leading from the root node to it

Pure Strategies

- Agent i 's pure strategy defines contingency plan for all choice nodes mapped to i

$$
a_{i} \in A_{i}=\prod_{h \in H, \alpha(h)=i} \beta(h)
$$

- Strategy must specify a decision at each choice node
- Regardless of whether it is possible to reach that node

Pure Strategies: Example

- $A_{B}=\{" 2-0 ", " 1-1 ", " 0-2 "\}$
- $A_{s}=\{(\mathrm{R}, \mathrm{R}, \mathrm{R}),(\mathrm{R}, \mathrm{R}, \mathrm{A}),(\mathrm{R}, \mathrm{A}, \mathrm{R}),(\mathrm{A}, \mathrm{R}, \mathrm{R}),(\mathrm{R}, \mathrm{A}, \mathrm{A}),(\mathrm{A}, \mathrm{R}, \mathrm{A}),(\mathrm{A}, \mathrm{A}, \mathrm{R}),(\mathrm{A}, \mathrm{A}, \mathrm{A})\}$

Pure Strategies: (Another) Example

- What are pure strategies for A 2 ?

Pure Strategies: (Another) Example

- What are pure strategies for A 2 ?
- $A_{A 2}=\{(\mathrm{L}, \mathrm{L}),(\mathrm{L}, \mathrm{R}),(\mathrm{R}, \mathrm{L}),(\mathrm{R}, \mathrm{R})\}$

Pure Strategies: (Another) Example

- What are pure strategies for A 2 ?
- $A_{A 2}=\{(\mathrm{L}, \mathrm{L}),(\mathrm{L}, \mathrm{R}),(\mathrm{R}, \mathrm{L}),(\mathrm{R}, \mathrm{R})\}$
- What about A1?

Pure Strategies: (Another) Example

- What are pure strategies for A2?
- $A_{A 2}=\{(\mathrm{L}, \mathrm{L}),(\mathrm{L}, \mathrm{R}),(\mathrm{R}, \mathrm{L}),(\mathrm{R}, \mathrm{R})\}$
- What about A 1 ?
- $A_{A 1}=\{(\mathrm{L}, \mathrm{L}),(\mathrm{L}, \mathrm{R}),(\mathrm{R}, \mathrm{L}),(\mathrm{R}, \mathrm{R})\}$

Normal-form Representation of Extensive-form Games

- For every perfect-info game, there is corresponding normal-form game

	A2			
	(L, L)	(L, R)	(R, L)	(R, R)
(L, L)	2, 4	2, 4	5,3	5,3
(L, R)	2, 4	2, 4	5,3	5,3
(R, L)	3, 2	1,5	3, 2	1,5
(R, R)	3, 2	0,1	3,2	0,1

Transformation from Extensive form to Normal From

- It can always be performed for perfect-information games
- It can cause redundancy
- E.g., $(2,4)$ occurs once in extensive form but 4 times in normal form
- It can result in exponential blowup of game representation
- Reverse transformation does not always exist
- E.g., there is no extensive-form representation for Prisoner's Dilemma
- Perfect-information extensive-form games cannot model simultaneity

Nash Equilibrium of Perfect-info Games in Extensive Form

- [Theorem] Every (finite) perfect-info extensive-form game has pure-strategy NE
- Agents see everything before each action \Rightarrow randomness is not required
- This is not the case for every finite game in normal form

Nash Equilibrium: An Empty Threat?

	A2			
	(L, L)	(L, R)	(R, L)	(R, R)
(L, L)	2, 4	2,4	5,3	5,3
A1 (L, R)	2, 4	(2,4)	5,3	5,3
(R, L)	3, 2	1,5	3, 2	1,5
(R, R)	(3,2)	0,1	3,2	0,1

Nash Equilibrium: An Empty Threat?

	A2			
	(L, L)	(L, R)	(R, L)	(R, R)
(L, L)	2, 4	2,4	5, 3	5,3
(L, R)	2, 4	2,4	5, 3	5,3
(R, L)	3,2	1,5	3, 2	1,5
(R, R)	(3,2)	0,1	3,2	0,1

Nash Equilibrium: An Empty Threat?

		A 2			
			$(\mathrm{~L}, \mathrm{~L})$	(L, R)	(R, L)
		(R, R)			
	(L, L)	2,4	2,4	5,3	5,3
A 1	$(\mathrm{~L}, \mathrm{R})$	2,4	2,4	5,3	5,3
	(R, L)	3,2	1,5	3,2	1,5
	(R, R)	3,2	0,1	3,2	0,1

- Strategy of A1 is called a threat
- Committing to choose R forces A 2 to avoid that part of the tree

Nash Equilibrium: An Empty Threat?

	A2			
	(L, L)	(L, R)	(R, L)	(R, R)
(L, L)	2, 4	2,4	5,3	5, 3
(L, R)	2, 4	2,4	5, 3	5, 3
(R, L)	3, 2	1,5	3,2	1,5
(R, R)	(3,2)	0,1	3,2	0,1

- Strategy of A1 is called a threat
- Committing to choose R forces A 2 to avoid that part of the tree
- A2 may not consider A1's threat to be credible
- Would A1 really follow through on this threat if final decision node is reached?

Outline

1. Perfect-info Extensive-form Games

2. Pure Strategies in Perfect-info Games
3. Subgame-perfect Equilibrium
4. Imperfect-info Extensive-form Games
5. Randomized Strategies in Extensive-form Games

Subgames: Definition

- Let G be a perfect-information extensive-form game
- Subgame of G rooted at node h is restriction of G to descendants of h
- Set of subgames of G consists of all of subgames of G rooted at some node in G

Subgames: Example

Subgame Perfect Equilibrium (SPE)

- Let $s_{G^{\prime}}$ be restriction of strategy profile s to subgame G^{\prime}
- Profile s^{*} is SPE of game G if for every subgame G^{\prime} of $G, s_{G^{\prime}}^{*}$ is NE
- Loosely speaking, subgame perfection removes non-credible threats
- Non-credible threads are not NE in their subgames
- How to find SPE?
- One could find all of NE, then eliminate those that are not subgame perfect
- But there are more economical ways of doing it

Computing Equilibrium: Backward Induction for Finite Games

- (1) Start from "last" subgames (choice nodes with all terminal children)
- (2) Find Nash equilibria of those subgames
- (3) Turn those choice nodes to terminal nodes using NE utilities
- (4) Go to (1) until no choice node remains

Backward Induction Procedure

```
Algorithm 1: Finding value of sample SPE of perfect-info extensive-form game
procedure Backward_Induction(node \(h\) )
    if \(h \in Z\) then
    return \(u(h)\);
    best_utility \(\leftarrow-\infty\);
    forall \(a \in \beta(h)\) do
        \(u=\) Backward_Induction \((\rho(h, a)\) );
        if \(u_{\alpha(h)}>\) best_utility then
        best_utility \(=u_{\alpha(h)}\);
    return best_utility
```


SPE: Example

Example: Ultimatum Game

- Two agents want to split c dollars
- A1 offers A2 some amount $x \leq c$
- If A2 accepts, outcome is $(c-x, x)$
- If A2 rejects, outcome is $(0,0)$

Example: Ultimatum Game

- Two agents want to split c dollars
- A1 offers A2 some amount $x \leq c$
- If A2 accepts, outcome is $(c-x, x)$
- If A2 rejects, outcome is $(0,0)$
- What is A2's best response if $x>0$?

Example: Ultimatum Game

- Two agents want to split c dollars
- A1 offers A2 some amount $x \leq c$
- If A2 accepts, outcome is $(c-x, x)$
- If A2 rejects, outcome is $(0,0)$
- What is A2's best response if $x>0$?
- Yes

Example: Ultimatum Game

- Two agents want to split c dollars
- A1 offers A2 some amount $x \leq c$
- If A2 accepts, outcome is $(c-x, x)$
- If A2 rejects, outcome is $(0,0)$
- What is A2's best response if $x>0$?
- Yes
- What is A2's best response if $x=0$?

Example: Ultimatum Game

- Two agents want to split c dollars
- A1 offers A2 some amount $x \leq c$
- If A2 accepts, outcome is $(c-x, x)$
- If A2 rejects, outcome is $(0,0)$
- What is A2's best response if $x>0$?
- Yes
- What is A2's best response if $x=0$?
- Indifferent between Yes or No

Example: Ultimatum Game

- Two agents want to split c dollars
- A1 offers A2 some amount $x \leq c$
- If A2 accepts, outcome is $(c-x, x)$
- If A2 rejects, outcome is $(0,0)$
- What is A2's best response if $x>0$?
- Yes
- What is A2's best response if $x=0$?
- Indifferent between Yes or No
- What are A2's optimal strategies?

Example: Ultimatum Game

- Two agents want to split c dollars
- A1 offers A2 some amount $x \leq c$
- If A2 accepts, outcome is $(c-x, x)$
- If A2 rejects, outcome is $(0,0)$
- What is A2's best response if $x>0$?
- Yes
- What is A2's best response if $x=0$?
- Indifferent between Yes or No
- What are A2's optimal strategies?
- Option 1: Yes for all $x \geq 0$

Example: Ultimatum Game

- Two agents want to split c dollars
- A1 offers A2 some amount $x \leq c$
- If A2 accepts, outcome is $(c-x, x)$
- If A2 rejects, outcome is $(0,0)$
- What is A2's best response if $x>0$?
- Yes
- What is A2's best response if $x=0$?
- Indifferent between Yes or No
- What are A2's optimal strategies?
- Option 1: Yes for all $x \geq 0$
- Option 2: Yes if $x>0$, No if $x=0$

SPE of Ultimatum Game

- What is A1's optimal strategy for each of A2's optimal strategies?

SPE of Ultimatum Game

- What is A1's optimal strategy for each of A2's optimal strategies?
- For option 1, A1's optimal strategy is to offer $x=0$

SPE of Ultimatum Game

- What is A1's optimal strategy for each of A2's optimal strategies?
- For option 1, A1's optimal strategy is to offer $x=0$
- For option 2 , if A1 offers $x=0$, then A1's utility is 0

SPE of Ultimatum Game

- What is A1's optimal strategy for each of A2's optimal strategies?
- For option 1, A1's optimal strategy is to offer $x=0$
- For option 2 , if A1 offers $x=0$, then A1's utility is 0
- If A1 wants to offer any $x>0$, then A1 must offer

$$
\underset{x>0}{\operatorname{argmax}}(c-x)
$$

SPE of Ultimatum Game

- What is A1's optimal strategy for each of A2's optimal strategies?
- For option 1, A1's optimal strategy is to offer $x=0$
- For option 2, if A1 offers $x=0$, then A1's utility is 0
- If A1 wants to offer any $x>0$, then A1 must offer

$$
\underset{x>0}{\operatorname{argmax}}(c-x)
$$

- This optimization does not have any optimal solution

SPE of Ultimatum Game

- What is A1's optimal strategy for each of A2's optimal strategies?
- For option 1, A1's optimal strategy is to offer $x=0$
- For option 2, if A1 offers $x=0$, then A1's utility is 0
- If A1 wants to offer any $x>0$, then A1 must offer

$$
\underset{x>0}{\operatorname{argmax}}(c-x)
$$

- This optimization does not have any optimal solution
- No offer of agent 1 is optimal

SPE of Ultimatum Game

- What is A1's optimal strategy for each of A2's optimal strategies?
- For option 1, A1's optimal strategy is to offer $x=0$
- For option 2, if A1 offers $x=0$, then A1's utility is 0
- If A1 wants to offer any $x>0$, then A1 must offer

$$
\underset{x>0}{\operatorname{argmax}}(c-x)
$$

- This optimization does not have any optimal solution
- No offer of agent 1 is optimal
- Unique SPE of ultimatum game is A1 offers 0 , and $A 2$ accepts all offers

Example: Discrete Ultimatum Game

- What are A2's optimal strategies if c is in multiple of cent?

Example: Discrete Ultimatum Game

- What are A2's optimal strategies if c is in multiple of cent?
- Option 1: Yes for all $x \geq 0$

Example: Discrete Ultimatum Game

- What are A2's optimal strategies if c is in multiple of cent?
- Option 1: Yes for all $x \geq 0$
- Option 2: Yes if $x>0$, No if $x=0$

Example: Discrete Ultimatum Game

- What are A2's optimal strategies if c is in multiple of cent?
- Option 1: Yes for all $x \geq 0$
- Option 2: Yes if $x>0$, No if $x=0$
- What are A1's optimal strategies for each of A2's?

Example: Discrete Ultimatum Game

- What are A2's optimal strategies if c is in multiple of cent?
- Option 1: Yes for all $x \geq 0$
- Option 2: Yes if $x>0$, No if $x=0$
- What are A1's optimal strategies for each of A2's?
- For option 1, offer $x=0$

Example: Discrete Ultimatum Game

- What are A2's optimal strategies if c is in multiple of cent?
- Option 1: Yes for all $x \geq 0$
- Option 2: Yes if $x>0$, No if $x=0$
- What are A1's optimal strategies for each of A2's?
- For option 1, offer $x=0$
- For option 2 , offer $x=1$ cent

Example: Discrete Ultimatum Game

- What are A2's optimal strategies if c is in multiple of cent?
- Option 1: Yes for all $x \geq 0$
- Option 2: Yes if $x>0$, No if $x=0$
- What are A1's optimal strategies for each of A2's?
- For option 1, offer $x=0$
- For option 2, offer $x=1$ cent
- What are SPE of this modified ultimatum game?

Example: Discrete Ultimatum Game

- What are A2's optimal strategies if c is in multiple of cent?
- Option 1: Yes for all $x \geq 0$
- Option 2: Yes if $x>0$, No if $x=0$
- What are A1's optimal strategies for each of A2's?
- For option 1, offer $x=0$
- For option 2, offer $x=1$ cent
- What are SPE of this modified ultimatum game?
- A1 offers 0 , and A2 accepts all offers

Example: Discrete Ultimatum Game

- What are A2's optimal strategies if c is in multiple of cent?
- Option 1: Yes for all $x \geq 0$
- Option 2: Yes if $x>0$, No if $x=0$
- What are A1's optimal strategies for each of A2's?
- For option 1, offer $x=0$
- For option 2, offer $x=1$ cent
- What are SPE of this modified ultimatum game?
- A1 offers 0, and A2 accepts all offers
- A1 offers 1 cent, and A2 accepts all offers except 0

Example: Discrete Ultimatum Game

- What are A2's optimal strategies if c is in multiple of cent?
- Option 1: Yes for all $x \geq 0$
- Option 2: Yes if $x>0$, No if $x=0$
- What are A1's optimal strategies for each of A2's?
- For option 1, offer $x=0$
- For option 2, offer $x=1$ cent
- What are SPE of this modified ultimatum game?
- A1 offers 0, and A2 accepts all offers
- A1 offers 1 cent, and A2 accepts all offers except 0
- Show that every $\bar{x} \in[0, c]$, there exists NE in which A 1 offers \bar{x}

Example: Discrete Ultimatum Game

- What are A2's optimal strategies if c is in multiple of cent?
- Option 1: Yes for all $x \geq 0$
- Option 2: Yes if $x>0$, No if $x=0$
- What are A1's optimal strategies for each of A2's?
- For option 1, offer $x=0$
- For option 2, offer $x=1$ cent
- What are SPE of this modified ultimatum game?
- A1 offers 0, and A2 accepts all offers
- A1 offers 1 cent, and A2 accepts all offers except 0
- Show that every $\bar{x} \in[0, c]$, there exists NE in which A 1 offers \bar{x}
- What is agent A2's optimal strategy?

Example: Bargaining Game

- Two agents want to split $c=1$ dollar
- First, A1 makes her offer
- Then, A2 decides to accept or reject
- If A2 rejects, then A 2 makes new offer
- Then, A1 decides to accept or reject
- Let $x=\left(x_{1}, x_{2}\right)$ denote A1's offer
- Let $y=\left(y_{1}, y_{2}\right)$ denote A2's offer

Backward Induction for Bargaining Game

- Second round is ultimatum game with unique SPE

Backward Induction for Bargaining Game

- Second round is ultimatum game with unique SPE
- A2 offers 0 , and A1 accepts all offers

Backward Induction for Bargaining Game

- Second round is ultimatum game with unique SPE
- A2 offers 0 , and A1 accepts all offers
- What is A2's optimal strategy in round 1's subgame?

Backward Induction for Bargaining Game

- Second round is ultimatum game with unique SPE
- A2 offers 0 , and A1 accepts all offers
- What is A2's optimal strategy in round 1's subgame?
- Option 1: If $x_{2} \leq 1$, reject

Backward Induction for Bargaining Game

- Second round is ultimatum game with unique SPE
- A2 offers 0 , and A1 accepts all offers
- What is A2's optimal strategy in round 1's subgame?
- Option 1: If $x_{2} \leq 1$, reject
- Option 2: If $x_{2}=1$, accept, and reject otherwise

Backward Induction for Bargaining Game

- Second round is ultimatum game with unique SPE
- A2 offers 0 , and A1 accepts all offers
- What is A2's optimal strategy in round 1's subgame?
- Option 1: If $x_{2} \leq 1$, reject
- Option 2: If $x_{2}=1$, accept, and reject otherwise
- What are A1's optimal strategies in round 1 for each of A2's?

Backward Induction for Bargaining Game

- Second round is ultimatum game with unique SPE
- A2 offers 0 , and A1 accepts all offers
- What is A2's optimal strategy in round 1's subgame?
- Option 1: If $x_{2} \leq 1$, reject
- Option 2: If $x_{2}=1$, accept, and reject otherwise
- What are A1's optimal strategies in round 1 for each of A2's?
- For both options, A1 is indifferent between all strategies

Backward Induction for Bargaining Game

- Second round is ultimatum game with unique SPE
- A2 offers 0 , and A1 accepts all offers
- What is A2's optimal strategy in round 1's subgame?
- Option 1: If $x_{2} \leq 1$, reject
- Option 2: If $x_{2}=1$, accept, and reject otherwise
- What are A1's optimal strategies in round 1 for each of A2's?
- For both options, A1 is indifferent between all strategies
- How many SPE does this game have?

Backward Induction for Bargaining Game

- Second round is ultimatum game with unique SPE
- A2 offers 0 , and A1 accepts all offers
- What is A2's optimal strategy in round 1's subgame?
- Option 1: If $x_{2} \leq 1$, reject
- Option 2: If $x_{2}=1$, accept, and reject otherwise
- What are A1's optimal strategies in round 1 for each of A2's?
- For both options, A1 is indifferent between all strategies
- How many SPE does this game have?
- Infinitely many! In all SPE, A2 gets everything (Last mover's advantage)

Backward Induction for Bargaining Game

- Second round is ultimatum game with unique SPE
- A2 offers 0 , and A 1 accepts all offers
- What is A2's optimal strategy in round 1's subgame?
- Option 1: If $x_{2} \leq 1$, reject
- Option 2: If $x_{2}=1$, accept, and reject otherwise
- What are A1's optimal strategies in round 1 for each of A2's?
- For both options, A1 is indifferent between all strategies
- How many SPE does this game have?
- Infinitely many! In all SPE, A2 gets everything (Last mover's advantage)
- In every SPE, agent who makes offer in last round gets everything

Example: Discounted Bargaining Game

- Utilities are discounted by $0<\delta_{i}<1$

Example: Discounted Bargaining Game

- Utilities are discounted by $0<\delta_{i}<1$
- What is unique SPE of (1)?

Example: Discounted Bargaining Game

- Utilities are discounted by $0<\delta_{i}<1$
- What is unique SPE of (1)?
- A2 offers $y_{1}=0$ and A1 accepts all offers

Example: Discounted Bargaining Game

- Utilities are discounted by $0<\delta_{i}<1$
- What is unique SPE of (1)?
- A2 offers $y_{1}=0$ and A 1 accepts all offers
- What are optimal strategies in (2)?

Example: Discounted Bargaining Game

- Utilities are discounted by $0<\delta_{i}<1$
- What is unique SPE of (1)?
- A2 offers $y_{1}=0$ and A1 accepts all offers
- What are optimal strategies in (2)?
- Option 1: Yes if $x_{2} \geq \delta_{2}$, No otherwise

Example: Discounted Bargaining Game

- Utilities are discounted by $0<\delta_{i}<1$
- What is unique SPE of (1)?
- A2 offers $y_{1}=0$ and A1 accepts all offers
- What are optimal strategies in (2)?
- Option 1: Yes if $x_{2} \geq \delta_{2}$, No otherwise
- Option 2: Yes if $x_{2}>\delta_{2}$, No otherwise

Example: Discounted Bargaining Game

- Utilities are discounted by $0<\delta_{i}<1$
- What is unique SPE of (1)?
- A2 offers $y_{1}=0$ and A1 accepts all offers
- What are optimal strategies in (2)?
- Option 1: Yes if $x_{2} \geq \delta_{2}$, No otherwise
- Option 2: Yes if $x_{2}>\delta_{2}$, No otherwise
- What are optimal strategies in (3)?

Example: Discounted Bargaining Game

- Utilities are discounted by $0<\delta_{i}<1$
- What is unique SPE of (1)?
- A2 offers $y_{1}=0$ and A1 accepts all offers
- What are optimal strategies in (2)?
- Option 1: Yes if $x_{2} \geq \delta_{2}$, No otherwise
- Option 2: Yes if $x_{2}>\delta_{2}$, No otherwise
-What are optimal strategies in (3)?
- For option 1 , offer $x_{2}=\delta_{2}$

Example: Discounted Bargaining Game

- Utilities are discounted by $0<\delta_{i}<1$
- What is unique SPE of (1)?
- A2 offers $y_{1}=0$ and A1 accepts all offers
- What are optimal strategies in (2)?
- Option 1: Yes if $x_{2} \geq \delta_{2}$, No otherwise
- Option 2: Yes if $x_{2}>\delta_{2}$, No otherwise
- What are optimal strategies in (3)?
- For option 1, offer $x_{2}=\delta_{2}$
- For option 2, there is no optimal strategy

Unique SPE of Discounted Bargaining Game

- What are SPE strategies?
- Agent 1 's proposes $\left(1-\delta_{2}, \delta_{2}\right)$
- Agent 2 only accepts proposals with $x_{2} \geq \delta_{2}$
- Agent 2 proposes $(0,1)$ after any history in which1's proposal is rejected
- Agent 1 accepts all proposals of Agent 2
- What is SPE outcome of game?
- Agent 1 proposes $\left(1-\delta_{2}, \delta_{2}\right)$
- Agent 2 accepts
- Resulting utilities are $\left(1-\delta_{2}, \delta_{2}\right)$
- Desirability of earlier agreement yields positive utility for agent 1

Limitation of Backward Induction

- If there are ties, how they are broken affects what happens up in tree

Limitation of Backward Induction

- If there are ties, how they are broken affects what happens up in tree

Limitation of Backward Induction

- If there are ties, how they are broken affects what happens up in tree

Limitation of Backward Induction

- If there are ties, how they are broken affects what happens up in tree

Outline

1. Perfect-info Extensive-form Games

2. Pure Strategies in Perfect-info Games
3. Subgame-perfect Equilibrium
4. Imperfect-info Extensive-form Games
5. Randomized Strategies in Extensive-form Games

Imperfect-info Games: Motivation

- So far, we have allowed agents to specify action they take at every choice node

Imperfect-info Games: Motivation

- So far, we have allowed agents to specify action they take at every choice node
- This implies that agents know the node they are in and all prior choices

Imperfect-info Games: Motivation

- So far, we have allowed agents to specify action they take at every choice node
- This implies that agents know the node they are in and all prior choices
- This is why we call these games perfect-information games

Imperfect-info Games: Motivation

- So far, we have allowed agents to specify action they take at every choice node
- This implies that agents know the node they are in and all prior choices
- This is why we call these games perfect-information games
- However, this might not be the case in all environments

Imperfect-info Games: Motivation (cont.)

- We may want to model agents with partial or no knowledge of others' actions

Imperfect-info Games: Motivation (cont.)

- We may want to model agents with partial or no knowledge of others' actions
- We may even want to model agents with limited memory of their own past actions

Imperfect-info Games: Motivation (cont.)

- We may want to model agents with partial or no knowledge of others' actions
- We may even want to model agents with limited memory of their own past actions
- Imperfect-info games in extensive form address this limitation

Imperfect-info Games: Motivation (cont.)

- We may want to model agents with partial or no knowledge of others' actions
- We may even want to model agents with limited memory of their own past actions
- Imperfect-info games in extensive form address this limitation
- In such games, each agent's choice nodes are partitioned into information sets

Imperfect-info Games: Motivation (cont.)

- We may want to model agents with partial or no knowledge of others' actions
- We may even want to model agents with limited memory of their own past actions
- Imperfect-info games in extensive form address this limitation
- In such games, each agent's choice nodes are partitioned into information sets
- If two nodes are in same info set, then agent cannot distinguish between them

Imperfect-info Extensive-form Games: Definition

- $N, A, H, Z, \alpha, \beta, \rho, u$ are the same as before
- $I=\left(I_{1}, \ldots, I_{n}\right)$, where $I_{i}=\left(I_{i, 1}, \ldots, I_{i, k_{i}}\right)$ is a partition of $\{h \in H: \alpha(h)=i\}$
- If h, h^{\prime} are in the same equivalence class $\boldsymbol{I}_{\mathbf{i}, \boldsymbol{j}}$, then $\beta(h)=\beta\left(h^{\prime}\right)$
- Perfect-info games are imperfect-info games with singleton equivalence classes

Example: Prisoners' Dilemma in Extensive Form

- P1 decides on D or C
- P2 then decides on D or C (without observing P1's decision)

Outline

```
1. Perfect-info Extensive-form Games
2. Pure Strategies in Perfect-info Games
3. Subgame-perfect Equilibrium
4. Imperfect-info Extensive-form Games
```

5. Randomized Strategies in Extensive-form Games

Pure, Mixed, and Behavioral Strategies

- Pure strategies of agent i consists of $\prod_{i_{i, j} \in l_{i}} \beta\left(l_{i, j}\right)$

Pure, Mixed, and Behavioral Strategies

- Pure strategies of agent i consists of $\prod_{I_{i, j} \in I_{i}} \beta\left(I_{i, j}\right)$
- Mixed strategies define randomization over pure strategies

Pure, Mixed, and Behavioral Strategies

- Pure strategies of agent i consists of $\prod_{I_{i, j} \in I_{i}} \beta\left(I_{i, j}\right)$
- Mixed strategies define randomization over pure strategies
- Behavioral strategy define independent randomization at each info set

Pure, Mixed, and Behavioral Strategies

- Pure strategies of agent i consists of $\prod_{I_{i, j} \in I_{i}} \beta\left(I_{i, j}\right)$
- Mixed strategies define randomization over pure strategies
- Behavioral strategy define independent randomization at each info set
- Mixed strategy is distribution over vectors (each vector describing a pure strategy)

Pure, Mixed, and Behavioral Strategies

- Pure strategies of agent i consists of $\prod_{I_{i, j} \in I_{i}} \beta\left(I_{i, j}\right)$
- Mixed strategies define randomization over pure strategies
- Behavioral strategy define independent randomization at each info set
- Mixed strategy is distribution over vectors (each vector describing a pure strategy)
- Behavioral strategy is a vector of distributions

Pure, Mixed, and Behavioral Strategies

- Pure strategies of agent i consists of $\prod_{I_{i, j} \in I_{i}} \beta\left(I_{i, j}\right)$
- Mixed strategies define randomization over pure strategies
- Behavioral strategy define independent randomization at each info set
- Mixed strategy is distribution over vectors (each vector describing a pure strategy)
- Behavioral strategy is a vector of distributions
- In general, expressive power of behavioral and mixed strategies are noncomparable

Pure, Mixed, and Behavioral Strategies

- Pure strategies of agent i consists of $\prod_{I_{i, j} \in I_{i}} \beta\left(I_{i, j}\right)$
- Mixed strategies define randomization over pure strategies
- Behavioral strategy define independent randomization at each info set
- Mixed strategy is distribution over vectors (each vector describing a pure strategy)
- Behavioral strategy is a vector of distributions
- In general, expressive power of behavioral and mixed strategies are noncomparable
- In some games, there are outcomes that are achieved via mixed but not any behavioral strategies

Pure, Mixed, and Behavioral Strategies

- Pure strategies of agent i consists of $\prod_{I_{i, j} \in I_{i}} \beta\left(I_{i, j}\right)$
- Mixed strategies define randomization over pure strategies
- Behavioral strategy define independent randomization at each info set
- Mixed strategy is distribution over vectors (each vector describing a pure strategy)
- Behavioral strategy is a vector of distributions
- In general, expressive power of behavioral and mixed strategies are noncomparable
- In some games, there are outcomes that are achieved via mixed but not any behavioral strategies
- And in some games it is the other way around

Mixed vs Behavioral Strategies: Example I

- Give behavioral strategy for A1

Mixed vs Behavioral Strategies: Example I

- Give behavioral strategy for A1
- L w.p. 0.2 and L w.p. 0.5

Mixed vs Behavioral Strategies: Example I

- Give behavioral strategy for A1
- L w.p. 0.2 and L w.p. 0.5
- Give mixed strategy for A1 that is not behavioral strategy

Mixed vs Behavioral Strategies: Example I

- Give behavioral strategy for A1
- L w.p. 0.2 and L w.p. 0.5
- Give mixed strategy for A1 that is not behavioral strategy
- (L, L) w.p. 0.4 and (R, R) w.p. 0.6

Mixed vs Behavioral Strategies: Example I

- Give behavioral strategy for A1
- L w.p. 0.2 and L w.p. 0.5
- Give mixed strategy for A1 that is not behavioral strategy
- (L, L) w.p. 0.4 and (R, R) w.p. 0.6
- Why this is not behavioral strategy?

Mixed vs Behavioral Strategies: Example I

- Give behavioral strategy for A1
- L w.p. 0.2 and L w.p. 0.5
- Give mixed strategy for A1 that is not behavioral strategy
- (L, L) w.p. 0.4 and (R, R) w.p. 0.6
- Why this is not behavioral strategy?
- In this game, every behavioral strategy corresponds to a mixed strategy and vice versa
 (more on this soon)

Mixed vs Behavioral Strategies: Example II

- What is mixed-strategy NE of this game?

Mixed vs Behavioral Strategies: Example II

- What is mixed-strategy NE of this game?
- (R, D) with outcome utilities $(2,2)$

Mixed vs Behavioral Strategies: Example II

- What is mixed-strategy NE of this game?
- (R, D) with outcome utilities $(2,2)$
- What is A1's expected utility for $(p, 1-p)$?

Mixed vs Behavioral Strategies: Example II

- What is mixed-strategy NE of this game?
- (R, D) with outcome utilities $(2,2)$
- What is A1's expected utility for $(p, 1-p)$?
- $p^{2}+100 p(1-p)+2(1-p)$

Mixed vs Behavioral Strategies: Example II

- What is mixed-strategy NE of this game?
- (R, D) with outcome utilities $(2,2)$
- What is A1's expected utility for $(p, 1-p)$?
- $p^{2}+100 p(1-p)+2(1-p)$
- What is A 1 's best response?

Mixed vs Behavioral Strategies: Example II

- What is mixed-strategy NE of this game?
- (R, D) with outcome utilities $(2,2)$
- What is A1's expected utility for $(p, 1-p)$?
- $p^{2}+100 p(1-p)+2(1-p)$
- What is A 1 's best response?
- $p=98 / 198$

Mixed vs Behavioral Strategies: Example II

- What is mixed-strategy NE of this game?
- (R, D) with outcome utilities $(2,2)$
- What is A1's expected utility for $(p, 1-p)$?
- $p^{2}+100 p(1-p)+2(1-p)$
- What is A 1 's best response?
- $p=98 / 198$
- What is behavioral NE of this game?

Mixed vs Behavioral Strategies: Example II

- What is mixed-strategy NE of this game?
- (R, D) with outcome utilities $(2,2)$
- What is A1's expected utility for $(p, 1-p)$?
- $p^{2}+100 p(1-p)+2(1-p)$
- What is A 1 's best response?
- $p=98 / 198$
- What is behavioral NE of this game?

- ((98/198, 100/198), (0, 1))

Perfect Recall

- Strategies that induce same distribution on outcomes, for fixed strategy profile of others, are called equivalent strategies

Perfect Recall

- Strategies that induce same distribution on outcomes, for fixed strategy profile of others, are called equivalent strategies
- If all agents remember all their own actions, game is a game of perfect recall

Perfect Recall

- Strategies that induce same distribution on outcomes, for fixed strategy profile of others, are called equivalent strategies
- If all agents remember all their own actions, game is a game of perfect recall
- In such games, any mixed strategy of given agent can be replaced by an equivalent behavioral strategy

Perfect Recall

- Strategies that induce same distribution on outcomes, for fixed strategy profile of others, are called equivalent strategies
- If all agents remember all their own actions, game is a game of perfect recall
- In such games, any mixed strategy of given agent can be replaced by an equivalent behavioral strategy
- And any behavioral strategy can be replaced by an equivalent mixed strategy

Subgame Perfection and Imperfect Information

- There are two subgames: game itself and subgame after agent 1 plays R

Subgame Perfection and Imperfect Information

- There are two subgames: game itself and subgame after agent 1 plays R
- $(R,(R, R))$ is NE and SPE

Subgame Perfection and Imperfect Information

- There are two subgames: game itself and subgame after agent 1 plays R - ($\mathrm{R},(\mathrm{R}, \mathrm{R})$) is NE and SPE
- But, why should 2 play R after 1 plays L or M ?

Subgame Perfection and Imperfect Information

- There are two subgames: game itself and subgame after agent 1 plays R - ($\mathrm{R},(\mathrm{R}, \mathrm{R})$) is NE and SPE
- But, why should 2 play R after 1 plays L or M ?
- This is non-credible threat

Subgame Perfection and Imperfect Information

- There are two subgames: game itself and subgame after agent 1 plays R - ($\mathrm{R},(\mathrm{R}, \mathrm{R})$) is NE and SPE
- But, why should 2 play R after 1 plays L or M ?
- This is non-credible threat
- There are more sophisticated equilibrium refinements that rule this out

Subgame Perfection and Imperfect Information

- There are two subgames: game itself and subgame after agent 1 plays R - ($R,(R, R)$) is NE and SPE
- But, why should 2 play R after 1 plays L or M ?
- This is non-credible threat
- There are more sophisticated equilibrium refinements that rule this out
- They explicitly model agents' beliefs on where they are for every info set

Subgame Perfection and Imperfect Information

- There are two subgames: game itself and subgame after agent 1 plays R - ($R,(R, R)$) is NE and SPE
- But, why should 2 play R after 1 plays L or M ?
- This is non-credible threat
- There are more sophisticated equilibrium refinements that rule this out
- They explicitly model agents' beliefs on where they are for every info set
- E.g., sequential equilibrium, perfect Bayesian equilibrium

Acknowledgment

- This lecture is a slightly modified version of ones prepared by
- Asu Ozdaglar [MIT 6.254]
- Vincent Conitzer [Duke CPS 590.4]
- Hadi Omidi helped with importing slides from PowerPoint to ${ }^{L T} T_{E X}$

