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Repeated Games

• In a (typical) repeated game:
• Agents play a given game (aka. stage game)
• Then, they get their utilities
• And, they play again . . .

• Can be repeated finitely or infinitely many times

• Really, an extensive form game

• Would like to find subgame-perfect equilibria
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Repeated Games (cont.)

• One subgame-perfect equilibrium:
• Keep repeating some Nash equilibrium of the stage game
• Memoryless strategy, called a stationary strategy

• But are there other equilibria?

• Strategy space of repeated game is much richer than that of stage game
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Key Questions

• Do agents see what the other agents played earlier?

• Do they remember what they knew?

• Given utility of each stage game, what is the utility of the entire repeated game?
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Finitely Repeated Games (with Perfect Monitoring)

• Agents play stage game G for R rounds

• At each round, outcomes of all past rounds are observed by all agents

• Agents’ overall utility is sum of discounted utilities at each round

• Discount factor is 0 ≤ δ ≤ 1
• Game is denoted by GR(δ)

• Given sequence of utilities u
(1)
i , ..., u

(R)
i , ui =

∑R
r=1 δ

r−1u
(r)
i
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Example: Finitely Repeated Prisoner’s Dilemma

• Two agents play Prisoner’s Dilemma for R rounds (δ = 1)

D C

D −2,−2 −4,−1

C −1,−4 −3,−3

• Starting from last round, (C, C) is dominant strategy

• Hence, in second-to-last round, there is no way to influence what will happen

• So, (C, C) is dominant strategy at this round as well

• The unique SPE is (C, C) at each round

7 / 38
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SPE in Finitely Repeated Games

[Theorem]

• If stage game G has unique strategy equilibrium s∗, then GR(δ) has unique SPE
in which s(r) = s∗ for all r = 1, ...,R, regardless of history

[Proof]

• By backward induction, at round R, we have s(R) = s∗

• Given this, then we have s(R−1) = s∗, and continuing inductively, s(r) = s∗ for all
r = 1, ...,R, regardless of history
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SPE: Example I

• Two agents play the following game for 2 rounds (δ = 1)

D1 D2 C

D1 4, 4 1, 1 6, 0

D2 1, 1 2, 2 6, 0

C 0, 6 0, 6 5, 5

• Consider the following strategy:

• In round 1, cooperate;
• In round 2, if someone defected in round 1, play D2; otherwise, play D1

• If both agents play this, is that SPE?
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SPE: Example II

• Two agents play the following game for 2 rounds (δ = 1)

D Crazy C

D 4, 4 1, 0 6, 0

Crazy 0, 1 0, 0 0, 1

C 0, 6 1, 0 5, 5

• What are the subgame perfect equilibria?
• Consider the following strategy:

• In round 1, cooperate;
• In round 2, if someone played D or Crazy in round 1, play Crazy; otherwise, play D

• If both agents play this, is that NE (not SPE)?
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SPE: Example III

• If G has multiple equilibria, then GR(δ) does not have unique SPE

• Consider following example

x y z

x 3, 3 0, 4 −2, 0

y 4, 0 1, 1 −2, 0

z 0,−2 0,−2 −1,−1

• Stage game has two pure NE: (y, y) and (z, z)
• Consider the following policy:

• Play x in first round
• Play y in second round if opponent played x; otherwise, play z

• Is both agents playing this SPE?
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1. Finitely Repeated Games
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Utilities in Infinitely Repeated Games

• Limit-average utility:

ui = lim
R→∞

∑R
r=1 u

(r)
i

R

• Future-discounted utility:

ui = (1− δ)
∞∑
r=1

δr−1u
(r)
i ,

for some 0 ≤ δ < 1
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Subgame Perfection in Infinitely Repeated Games

• One-shot deviation from strategy s means deviating from s in single stage and
conforming to it thereafter

• Strategy profile s∗ is SPE if and only if there are no profitable one-shot deviation
for each subgame and every agent

• This follows from principle of optimality of dynamic programming

• This applies to finitely repeated games as well
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Trigger Strategies (TS)

• Agents get punished if they deviate from agreed profile

• In non-forgiving TS (or grim TS), punishment continues forever

s
(t)
i =

{
s∗i if s(r) = s∗ ∀r < t,

s ji otherwise

• Here, s∗ is agreed profile, and s ji is punishment strategy of i against agent j

• Single deviation by j triggers agent i to switch to s ji forever
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Example: Infinitely Repeated Prisoner’s Dilemma

• Consider trigger strategy:
• Deny as long as everyone denies
• Once a player confesses, confess forever

• Is both agents playing this SPE?

• Does it depend on δ?

D C

D −2,−2 −4,−1

C −1,−4 −3,−3
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Trigger Strategy for Infinitely Repeated Prisoners’ Dilemma

• We can use one-stage deviation principle

• There are two types of subgames:

• Type 1: Both agents denied so far
• Type 2: At least one agent confessed in the past

• Type-1 subgames: (D is best response to D)

• Utility from no deviation: (1− δ)(−2− 2δ − 2δ2 + . . . ) = −2
• Utility from one-shot deviation: (1− δ)(−1 + (−3δ − 3δ2 + . . . ) = −(1− δ)− 3δ
• Deviation is not beneficial if δ ≥ 1/2

• Type-2 subgames: (C is best response to C)

• Other agents will always play C, thus C is best response
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Tit-for-tat Strategy

• Consider tit-for-tat strategy:
• Deny in 1st round
• Then, do whatever other agent did in previous round

• Is both agents playing this NE?

• Is both agents playing this SPE?

• What about one playing TFT and other trigger?

18 / 38
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Remarks

• If s∗ is NE of G , then “each agent plays s∗i ” is SPE of GR(δ)
• Future play of other agents is independent of how each agent plays
• Optimal play is to maximize current utility, i.e., play static best response

• Sets of equilibria for finite and infinite horizon versions can be different
• Multiplicity of equilibria in repeated prisoner’s dilemma only occurs at R = ∞
• For any finite R (thus for R → ∞), repeated prisoners’ dilemma has unique SPE

19 / 38



Repetition Could Lead to Bad Outcomes

• Consider the following game
x y z

x 2, 2 2, 1 0, 0

y 1, 2 1, 1 −1, 0

z 0, 0 0,−1 −1,−1

• Strategy x strictly dominates y and z for both agents

• Unique NE of stage game is (x, x)

• If δ ≥ 1/2, this game has SPE in which (y, y) is played in every round

• It is supported by slightly more complicated strategy than grim trigger
• I. Play y in every round unless someone deviates, then go to II
• II. Play z. If no one deviates go to I. If someone deviates stay in II
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Characterizing NE of Infinitely Repeated Games

• Characterizing all equilibrium strategy profiles might be challenging

• Instead, we can characterize utilities obtained in them

• Such utilities must be feasible

• There must be outcomes of game such that agents, on average, get these utilities

• They must also be enforceable

• Deviation should lead to punishment that outweighs benefits of deviation

• Folk theorem states that utility vector can be realized by some NE iff it is both
feasible and enforceable

22 / 38
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Feasible Utilities: Formal Definition

• Utility profile u = (u1, u2, . . . , un) is feasible if there exist rational, non-negative
values {αa} such that for all i , ui =

∑
a∈A αaui (a), with

∑
a∈A αa = 1

• You could think of feasible utilities as convex hull of possible outcomes:

U = Conv{u ∈ R|N| | there exists a ∈ A such that u(a) = u}

• Note that U ̸= {u ∈ R|N| | there exists s ∈ S such that u(s) = u}
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Feasibility: Example

Left Right

Left 2, 2 0, 3

Right 3, 0 1, 1

• Utility vector (2, 2) is feasible as it is one of outcomes of game

• Utility vector (1, 2.5) is feasible as agents can alternate between (2, 2) and (0, 3)

• What about (0.5, 2.75)?

• What about (3, 0.1)?

24 / 38
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Enforceable and Individually Rational Utilities

• Recall minmax value of agent i :

v i = min
s−i

max
si

ui (si , s−i )

• Utility profile u ∈ R|N| is individually rational if ui ≥ v i for all i

• Utility profile u = (u1, u2, . . . , un) is enforceable if it is individually rational
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Nash Folk Theorem

• Consider infinitely repeated game G played by agents with average utilities

• If u is utility profile for any NE of repeated G , then ui is enforceable for all i

• If u is both feasible and enforceable, then u is utility profile for some NE of G

• Folk theorem can be stated for agents with discounted utilities as well
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Problems with Nash Folk Theorem

• Any feasible and enforceable utility can be achieved (for patient enough agents)

• Enforcement is often done by grim trigger strategy

• Play certain strategy as long as no one deviates
• If some agent j deviates, then play minmax strategy against that agent thereafter

• NE involves non-forgiving TS which may be costly for punishers

• NE may include non-credible threats

• NE may not be subgame perfect
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Example

L R

U 6, 6 0,−100

D 7, 1 0,−100

• Unique NE in this game is (D, L)

• Minmax values are given by v1 = 0 and v2 = 1

• Minmax strategy against agent 1 requires agent 2 to play R

• R is strictly dominated by L for agent 2
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Outline

1. Finitely Repeated Games

2. Infinitely Repeated Games

3. Folk Theorem

4. Repeated Games with Imperfect Monitoring
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Motivation

• So far, we assumed that agents observe actions of others at each round of game

• Next, we consider games where agents’ actions may not be directly observable

• We assume that agents observe only an imperfect signal of stage game actions
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Example: Cournot Competition with Noisy Demand
[Green and Porter, Non-cooperative Collusion under Imperfect Price Information, 1984]

• Firms set production levels q
(r)
1 , . . . , q

(r)
n privately at round r

• Firms do not observe each others’ output levels

• Market demand is stochastic

• Market price depends on total production and market demand

• Low price could be due to high production or low demand

• Firms utility depends on their own production and market price
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Model

• We focus on game with public information

• At each round, all agents observe some public outcome

• Let y (r) ∈ Y denote publicly observed outcome at round r

• Each action profile a induces probability distribution over y

• Let π(y , a) denote probability distribution of y under action profile a

• Public information at round r is h(r) = (y (1), . . . , y (r−1))

• Strategy of agent i is sequence of maps s
(r)
i : h(r) → Si
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Model (cont.)

• Agents utility depends only on their own action and public outcome

• Dependence on actions of others is through their effect on distribution of y

• Agent i ’s realized utility at round r is ui (a
(r)
i , y (r))

• Agent i ’s expected stage utility is

ui (a) =
∑
y∈Y

π(y , a)ui (ai , y)

• Agent i ’s average discounted utility when sequence {a(t)} is played is

(1− δ)
∞∑
r=1

δr−1ui (a
(r))
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Simpler Example: Noisy Prisoner’s Dilemma

• Prisoners do not observe each others actions, instead, they observe signal y

• u1(D, y) = 1 + y u1(C , y) = 4 + y
• u2(D, y) = 1 + y u2(C , y) = 4 + y

• Signal y is defined by cont. random variable X with CDF F (x) and E[X ] = 0

• If a = (D,D), then y = X
• If a = (D,C ) or (C ,D), then y = X − 2
• If a = (C ,C ), then y = X − 4

• Normal-form stage game is

D C

D 1 + X , 1 + X −1 + X , 2 + X

C 2 + X ,−1 + X X ,X
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Trigger-price Strategy

• Consider following trigger strategy
• (I) - Play (D,D) until y ≤ y∗, then go to (II)
• (II) - Play(C ,C ) for R rounds, then go back to (I)

• Notice that strategy is stationary and symmetric

• Also notice that punishment uses NE of stage game

• We can choose y∗ and R such that this strategy profile is SPE
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Trigger-price Strategy (cont.)

• We use one-shot deviation principle

• Deviation in (II) is obviously not beneficial

• In (I), if agents do not deviate, their expected utility is

v = (1− δ)
(
(1 + 0) + δ

(
F (y∗)δRv + (1− F (y∗))v

))
• From this, we obtain

v =
1− δ

1− δ(1− δ)
(
1− F (y∗)(1− δR)

)
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Trigger-price Strategy (cont.)

• If some agent deviates in (1), then her expected utility is

vd = (1− δ)
(
(2 + 0) + δ

(
F (y∗ + 2)δRv + (1− F (y∗ + 2))v

))
• Deviation provides immediate utility, but increases probability of entering (II)

• To have SPE, we mush have v ≥ vd which means

v ≥ 2(1− δ)

1− δ(1− δ)
(
1− F (y∗ + 2)(1− δR)

)
⇒ F (y∗ + 2)− 2F (y∗) ≥ 1− δ(1− δ)

δ(1− δ)(1− δR)

• Any R and y∗ that satisfy this constraint construct SPE

• Best trigger-price strategy can be found by maximizing v s.t. this constraint
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