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Repeated Games

® In a (typical) repeated game:
® Agents play a given game (aka. stage game)
® Then, they get their utilities
® And, they play again ...

® Can be repeated finitely or infinitely many times

® Really, an extensive form game
® Would like to find subgame-perfect equilibria
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Repeated Games (cont.)

® One subgame-perfect equilibrium:

® Keep repeating some Nash equilibrium of the stage game
® Memoryless strategy, called a stationary strategy




Repeated Games (cont.)

® One subgame-perfect equilibrium:

® Keep repeating some Nash equilibrium of the stage game
® Memoryless strategy, called a stationary strategy

® But are there other equilibria?
® Strategy space of repeated game is much richer than that of stage game
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Key Questions

® Do agents see what the other agents played earlier?
® Do they remember what they knew?

® Given utility of each stage game, what is the utility of the entire repeated game?




Finitely Repeated Games (with Perfect Monitoring)

® Agents play stage game G for R rounds
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Finitely Repeated Games (with Perfect Monitoring)

Agents play stage game G for R rounds

At each round, outcomes of all past rounds are observed by all agents
® Agents’ overall utility is sum of discounted utilities at each round

® Discount factoris0 <6 <1
® Game is denoted by GR(¢)

® Given sequence of utilities u1§1)7 e ufR), uj = 25:1 6’_1ufr)
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Example: Finitely Repeated Prisoner’'s Dilemma

® Two agents play Prisoner’s Dilemma for R rounds (6 = 1)
D C
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Example: Finitely Repeated Prisoner’'s Dilemma

® Two agents play Prisoner’s Dilemma for R rounds (6 = 1)
D C

D|-2-2]|-4-1

Cl-1,-4|-3-3

Starting from last round, (C, C) is dominant strategy

® Hence, in second-to-last round, there is no way to influence what will happen

So, (C, C) is dominant strategy at this round as well
® The unique SPE is (C, C) at each round
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SPE in Finitely Repeated Games

[Theorem|

® If stage game G has unique strategy equilibrium s*, then GR(§) has unique SPE
in which s() = s* for all r = 1,..., R, regardless of history

[Proof]
® By backward induction, at round R, we have s(R) — ¢*

® Given this, then we have s(R=1) — s*, and continuing inductively, s = s* for all
r=1,...,R, regardless of history
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SPE: Example |

® Two agents play the following game for 2 rounds (6 = 1)

DI D2 C
D1|4,4(1,1]6,0
D2|1,1(22]6,0
clo6]06|5,5

® Consider the following strategy:
® |n round 1, cooperate;

® |n round 2, if someone defected in round 1, play D2; otherwise, play D1

e If both agents play this, is that SPE?
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SPE: Example Il

® Two agents play the following game for 2 rounds (6 = 1)
D Crazy C

D| 44 | 1,0 | 6,0

Crazy | 0,1 0,0 0,1

c|l o6 | 1,0 | 55

® What are the subgame perfect equilibria?
® Consider the following strategy:

® |n round 1, cooperate;
® In round 2, if someone played D or Crazy in round 1, play Crazy; otherwise, play D




SPE: Example Il

® Two agents play the following game for 2 rounds (6 = 1)

D Crazy C

D| 4,4 1,0 6,0
Crazy | 0,1 0,0 0,1
C| 0,6 1,0 5,5

® What are the subgame perfect equilibria?

® Consider the following strategy:
® |n round 1, cooperate;

® In round 2, if someone played D or Crazy in round 1, play Crazy; otherwise, play D

® If both agents play this, is that NE (not SPE)?
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SPE: Example Il

® If G has multiple equilibria, then G®(§) does not have unique SPE

e Consider following example

X y z
x| 3,3 0,4 | —2,0
y| 40 1,1 | —2,0
z| 0,—2 | 0,2 | -1,-1

e Stage game has two pure NE: (y, y) and (z, z)

® Consider the following policy:

® Play x in first round
® Play y in second round if opponent played x; otherwise, play z

® |s both agents playing this SPE?




Outline

2. Infinitely Repeated Games




Utilities in Infinitely Repeated Games

® | imit-average utility:
R—o0 R
® Future-discounted utility:
o0
ui = (1-9) Zé’flufr),
r=1

forsome 0 <§ <1
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Subgame Perfection in Infinitely Repeated Games

One-shot deviation from strategy s means deviating from s in single stage and
conforming to it thereafter

Strategy profile s* is SPE if and only if there are no profitable one-shot deviation
for each subgame and every agent

This follows from principle of optimality of dynamic programming

This applies to finitely repeated games as well




Trigger Strategies (TS)

® Agents get punished if they deviate from agreed profile

In non-forgiving TS (or grim TS), punishment continues forever

(O _ {s,* if s() =s* Vr<t,

§’,: otherwise

® Here, s* is agreed profile, and §f, is punishment strategy of / against agent j

Single deviation by j triggers agent i to switch to g{ forever




Example: Infinitely Repeated Prisoner’'s Dilemma

e Consider trigger strategy:

® Deny as long as everyone denies
® Once a player confesses, confess forever

—2,-2

—4,-1

~1,-4

-3,-3




Example: Infinitely Repeated Prisoner’'s Dilemma

e Consider trigger strategy:

® Deny as long as everyone denies
® Once a player confesses, confess forever

® s both agents playing this SPE?

—2,-2

—4,-1

~1,-4

-3,-3




Example: Infinitely Repeated Prisoner’'s Dilemma

e Consider trigger strategy:
® Deny as long as everyone denies
® Once a player confesses, confess forever

® s both agents playing this SPE?

® Does it depend on §7

—2,-2

—4,-1

~1,-4

-3,-3
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Trigger Strategy for Infinitely Repeated Prisoners’ Dilemma

® \We can use one-stage deviation principle
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Trigger Strategy for Infinitely Repeated Prisoners’ Dilemma

® \We can use one-stage deviation principle

® There are two types of subgames:

® Type 1: Both agents denied so far
® Type 2: At least one agent confessed in the past

Type-1 subgames: (D is best response to D)
* Utility from no deviation: (1 — §)(—2—26 —26%+...) = -2
e Utility from one-shot deviation: (1 —§)(—1+ (=35 —36%+...) = —(1—6) -3¢
® Deviation is not beneficial if 6 > 1/2

Type-2 subgames: (C is best response to C)
® QOther agents will always play C, thus C is best response
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Tit-for-tat Strategy

® Consider tit-for-tat strategy:

® Deny in 1st round
® Then, do whatever other agent did in previous round
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Tit-for-tat Strategy

Consider tit-for-tat strategy:

® Deny in 1st round
® Then, do whatever other agent did in previous round

Is both agents playing this NE?

Is both agents playing this SPE?

What about one playing TFT and other trigger?
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Remarks

® If s* is NE of G, then “each agent plays s} is SPE of GR(J)
® Future play of other agents is independent of how each agent plays
® Optimal play is to maximize current utility, i.e., play static best response

® Sets of equilibria for finite and infinite horizon versions can be different

® Multiplicity of equilibria in repeated prisoner’s dilemma only occurs at R = oo
® For any finite R (thus for R — o0), repeated prisoners’ dilemma has unique SPE




Repetition Could Lead to Bad Outcomes

® Consider the following game

X y z
x| 22 2,1 0,0

y| 1,2 1,1 -1,0
z| o0 0,-1 | -1,-1

Strategy x strictly dominates y and z for both agents

Unique NE of stage game is (x, x)

If § > 1/2, this game has SPE in which (y, y) is played in every round

® |t is supported by slightly more complicated strategy than grim trigger

® |. Play y in every round unless someone deviates, then go to Il
® |I. Play z. If no one deviates go to |. If someone deviates stay in |l




Outline

3. Folk Theorem




Characterizing NE of Infinitely Repeated Games

e Characterizing all equilibrium strategy profiles might be challenging
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Characterizing NE of Infinitely Repeated Games

Characterizing all equilibrium strategy profiles might be challenging

Instead, we can characterize utilities obtained in them

Such utilities must be feasible
® There must be outcomes of game such that agents, on average, get these utilities

They must also be enforceable
® Deviation should lead to punishment that outweighs benefits of deviation

Folk theorem states that utility vector can be realized by some NE iff it is both
feasible and enforceable
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Feasible Utilities: Formal Definition

e Utility profile u = (u1, ua, ..., up) is feasible if there exist rational, non-negative
values {a,} such that for all i, u; = >, 4 caui(a), with 3°_ 0, =1
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Feasible Utilities: Formal Definition

e Utility profile u = (u1, ua, ..., up) is feasible if there exist rational, non-negative
values {a,} such that for all i, u; = >, 4 caui(a), with 3°_ 0, =1

® You could think of feasible utilities as convex hull of possible outcomes:

U = Conv{u € RN | there exists a € A such that u(a) = u}

* Note that U # {u € RINI| there exists s € S such that u(s) = u}
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Feasibility: Example

Left Right

Left | 2,2 | 0,3

Right | 3,0 | 1,1

e Utility vector (2, 2) is feasible as it is one of outcomes of game
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Left Right

Left | 2,2 | 0,3

Right | 3,0 | 1,1

e Utility vector (2, 2) is feasible as it is one of outcomes of game
e Utility vector (1, 2.5) is feasible as agents can alternate between (2, 2) and (0, 3)
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Feasibility: Example

Left Right

Left | 2,2 | 0,3

Right | 3,0 | 1,1

e Utility vector (2, 2) is feasible as it is one of outcomes of game
e Utility vector (1, 2.5) is feasible as agents can alternate between (2, 2) and (0, 3)
¢ What about (0.5, 2.75)?
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Feasibility: Example

Left Right

Left | 2,2 | 0,3

Right | 3,0 | 1,1

Utility vector (2, 2) is feasible as it is one of outcomes of game

Utility vector (1, 2.5) is feasible as agents can alternate between (2, 2) and (0, 3)
What about (0.5, 2.75)?
What about (3, 0.1)?
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Enforceable and Individually Rational Utilities

® Recall minmax value of agent i:

v; = min max u;(s;, s_;)
S_j Si
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Enforceable and Individually Rational Utilities

® Recall minmax value of agent i:

v; = min max u;(s;, s_;)
S_j S;

e Utility profile u € RIN is individually rational if u; > v; for all i

e Utility profile u = (u1, ua, ..., uy) is enforceable if it is individually rational
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Nash Folk Theorem

Consider infinitely repeated game G played by agents with average utilities

® |f u is utility profile for any NE of repeated G, then u; is enforceable for all i
® |f uis both feasible and enforceable, then v is utility profile for some NE of G
[ ]

Folk theorem can be stated for agents with discounted utilities as well
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Problems with Nash Folk Theorem

® Any feasible and enforceable utility can be achieved (for patient enough agents)
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Problems with Nash Folk Theorem

Any feasible and enforceable utility can be achieved (for patient enough agents)

Enforcement is often done by grim trigger strategy

® Play certain strategy as long as no one deviates
® |f some agent j deviates, then play minmax strategy against that agent thereafter

NE involves non-forgiving TS which may be costly for punishers

NE may include non-credible threats

NE may not be subgame perfect
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Example

L R

ul 66 |0,-100

D| 7,1 |o0,-100

Unique NE in this game is (D, L)
® Minmax values are given by vi =0 and v, =1

® Minmax strategy against agent 1 requires agent 2 to play R

R is strictly dominated by L for agent 2




Outline

4. Repeated Games with Imperfect Monitoring




Motivation

® So far, we assumed that agents observe actions of others at each round of game
® Next, we consider games where agents’ actions may not be directly observable

® \We assume that agents observe only an imperfect signal of stage game actions




Example: Cournot Competition with Noisy Demand

[Green and Porter, Non-cooperative Collusion under Imperfect Price Information, 1984]
® Firms set production levels qgr), e q,(,r) privately at round r
® Firms do not observe each others’ output levels
® Market demand is stochastic
® Market price depends on total production and market demand
® |ow price could be due to high production or low demand

® Firms utility depends on their own production and market price




Model

We focus on game with public information

At each round, all agents observe some public outcome

Let y(") € Y denote publicly observed outcome at round r

Each action profile a induces probability distribution over y

Let 7(y, a) denote probability distribution of y under action profile a

Public information at round r is h(") = (y(l), .. ,y(r_l))

Strategy of agent i is sequence of maps s R Si

i
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® Dependence on actions of others is through their effect on distribution of y
® Agent i's realized utility at round r is u,-(a,(r),y(’))

® Agent i's expected stage utility is
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Model (cont.)

® Agents utility depends only on their own action and public outcome

® Dependence on actions of others is through their effect on distribution of y
® Agent i's realized utility at round r is u,-(a,(r),y(’))

® Agent i's expected stage utility is

ui(a) =y w(y, a)ui(ai,y)

yYey

® Agent i's average discounted utility when sequence {a(t)} is played is

(1—6) iér_lu,-(a(r))
r=1
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Simpler Example: Noisy Prisoner’s Dilemma

® Prisoners do not observe each others actions, instead, they observe signal y

* uy(D,y)=1+y u(Cy)=4+y
®* wm(D,y)=1+y w(C,y)=4+y

e Signal y is defined by cont. random variable X with CDF F(x) and E[X] =0

® Ifa=(D,D), theny =X

® Ifa=(D,C)or(C,D), theny =X -2

e lfa=(C,C), theny=X—-4

® Normal-form stage game is
D

D| 14+X,1+X

—1+X,24+ X

24X, -1+ X

X, X
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Trigger-price Strategy

Consider following trigger strategy
® (1) - Play (D, D) until y < y*, then go to (ll)
e () - Play(C, C) for R rounds, then go back to (I)

Notice that strategy is stationary and symmetric

Also notice that punishment uses NE of stage game

We can choose y* and R such that this strategy profile is SPE




Trigger-price Strategy (cont.)

® We use one-shot deviation principle
® Deviation in (Il) is obviously not beneficial

e In (1), if agents do not deviate, their expected utility is

v=(1=0)((1+0)+35(F(y)ofv+ (1 - Fly )v))

From this, we obtain

B 1—-46
C1-6(1-6)(1— F(y*)(1—6R))

v




Trigger-price Strategy (cont.)

® |If some agent deviates in (1), then her expected utility is
vg=(1-08) ((2+0)+3 (Fy" +2)6%v + (1= F(y* +2))v))

¢ Deviation provides immediate utility, but increases probability of entering (II)

To have SPE, we mush have v > v; which means

y 2(1 - §)
SIS 0)(1- F(y' +2)(1 - oF))

= F(y" +2) = 2F(y") = 5(1 — g)((ll__?,?)

Any R and y* that satisfy this constraint construct SPE

Best trigger-price strategy can be found by maximizing v s.t. this constraint
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