
Game-theoretic
Foundations of Multi-agent Systems

Lecture 7: Stochastic Games

Seyed Majid Zahedi

Outline

1. Markov Decision Processes

2. Definition of Stochastic Games

3. Strategies and Equilibria in Stochastic Games

2 / 31

Motivation: Non-deterministic Search in Grid World

3 / 31

Grid World Actions

Deterministic Stochastic

4 / 31

A Grid World Instance

• Agent lives in a grid

• Walls block agent’s path

• Actions do not always go as planned
• 80% of time, action “North” takes us north
• 10% of time, “North” takes us west; 10% east
• If there is a wall in the direction the agent

would have been taken, the agent stays put

• Agent receives rewards at each step

• Goal is to maximize sum of rewards

5 / 31

Change in Notation

• So far, we have used s to denote strategy profile

• In this lecture, we use π for strategy

• We use s to denote state

6 / 31

Markov Property

• Given present state, future and past are independent

• Future state depends only on current state and action

P(St+1 = s | St = st ,At = at ,St−1 = st−1,At−1 = at−1, . . . ,S0 = s0) =

P(St+1 = s | St = st ,At = at)

7 / 31

Andrey Markov (1856-1922)

Markov Decision Processes: Formal Definition

• S is set of states and A is set of actions

• p : S × A× S 7→ [0, 1] specifies transition probabilities

• p(s, a, s ′) is probability of going to s ′ when taking a in s

• r : S × A× S 7→ R returns reward

• r(s, a, s ′) is reward of going to s ′ when taking a in s

• There are two ways to aggregate rewards

• Limit-average reward: limT→∞
∑T

t=1 rt/T

• Future-discounted reward:
∑∞

t=1 δ
t−1rt

(we will focus on this)

8 / 31

Example: Racing

• Autonomous car wants to travel far, quickly

• There are 3 states: Cool, Warm, Overheated, and 2 actions: Slow, Fast

• Going faster gets double reward

9 / 31

Policies

• A (stationary, deterministic) policy π : S 7→ A
gives action for each state

• An optimal policy is one that maximizes
expected utility if followed

10 / 31

Values of States
• Value function: V π(s) specifies value of following π starting in s

V π(s) = E

[∞∑
t=1

δt−1rt(st , π(st), st+1) | s0 = s

]
• State-action value function: Qπ(s, a) returns value of starting in s, taking a, and

then continuing according to π

• These two are related to each other by

Qπ(s, a) =
∑
s′

p(s, a, s ′)
(
r(s, a, s ′) + δV π(s ′)

)
V π(s) = Qπ(s, π(s))

⇒ V π(s) =
∑
s′

p(s, π(s), s ′)
(
r(s, π(s), s ′) + δV π(s ′)

)
11 / 31

Policy Evaluation

Initialize V π
0 (s) ← 0 for all states s;

for t = 1 . . .T do
for each state s do

V π
t (s)←

∑
s′ p(s, π(s), s

′)
(
r(s, π(s), s ′) + δV π

t−1(s
′)
)

• How many iterations should we have (what should T be)?

• Repeat until values do not change much:

max
s∈S

|V π
t (s)− V π

t−1(s)| < ϵ

12 / 31

Solving MDP: Bellman Equations

Q∗(s, a) =
∑
s′

p(s, a, s ′)
(
r(s, a, s ′) + δV ∗(s ′)

)
V ∗(s) = max

a∈A
Q∗(s, a)

⇒ V ∗(s) = max
a∈A

∑
s′

p(s, a, s ′)
(
r(s, a, s ′) + δV ∗(s ′)

)

13 / 31

Value Iteration

Initialize V0(s) ← 0 for all states s;
repeat until V (s) converges for all s

for each state s do
Vt(s)← max

a∈A

∑
s′ p(s, a, s

′) (r(s, a, s ′) + δVt−1(s
′))

• Bellman equations characterize the optimal values

• Value iteration computes them

• Value iteration is just a fixed-point solution method

14 / 31

Policy Extraction

• Given V ∗, we can compute optimal policy as follows:

π∗(s) = argmax
a

∑
s′

p(s, a, s ′)
(
r(s, a, s ′) + δV ∗(s ′)

)
• Given Q∗, we can compute optimal policy as follows:

π∗(s) = argmax
a

Q∗(s, a)

• Takeaway: actions are easier to select from Q-values than values!

15 / 31

Problems with Value Iteration

• It is slow - O(S2A)

• The max at each state rarely changes

• The policy often converges long before the values

16 / 31

Policy Iteration

• (I) Policy evaluation: Calculate values for some fixed policy

• (II) Policy improvement: Extract policy given these values

• Repeat steps until policy converges

17 / 31

Value Iteration vs Policy Iteration

• Both compute the same thing (all optimal values)

• In value iteration:
• Every iteration updates both values and (implicitly) policy
• We don’t track policy, but taking max over actions implicitly recomputes it

• In policy iteration:
• We do several passes that update values with fixed policy

(each pass is fast because we consider only one action, not all of them)
• After policy is evaluated, a new policy is chosen

(slow like a value iteration pass)
• New policy will be better (or we’re done)

• Both are dynamic programs for solving MDPs

18 / 31

Outline

1. Markov Decision Processes

2. Definition of Stochastic Games

3. Strategies and Equilibria in Stochastic Games

19 / 31

Stochastic Games (a.k.a. Markov Games): Introduction

• Lloyd Shapley introduced stochastic games in early 1950s

• Stochastic games generalize repeated games
• Agents repeatedly play games from set of stage games

• Stochastic games generalize Markov decision process
• Game at each step only depends on outcome of previous step

• Single-state stochastic game = (infinitely) repeated game

• Single-agent stochastic game = MDP

20 / 31

Lloyd Shapley (1923-2016)

Repeated Games vs Stochastic Games

Repeated Games Stochastic Games

21 / 31

Stochastic Games: Formal Definition1

• S is finite set of stage games

• N is finite set of n agents

• Ai is finite set of actions available to agent i

• p : S × A× S 7→ [0, 1] is transition probability function
• p(s, a, s ′) is probability of going from s to s ′ after action profile a

• ri : S × A 7→ R is real-valued utility function for agent i
• ri (s, a) is agent i ’s utility at state s for action profile a

1Note that this definition assume actions available to agents are the same across different stage games.
Changing this assumption leads to a more involved notation.

22 / 31

Outline

1. Markov Decision Processes

2. Definition of Stochastic Games

3. Strategies and Equilibria in Stochastic Games

23 / 31

Stochastic Games: Strategies

• Let ht = (s0, a0, s1, a1, . . . , at−1, st) denote history of t stages

• Let Ht be set of all possible histories of this length

• Set of all deterministic strategies for agent i is∏
t,Ht

Ai

• Agents’ strategies can consist of any mixture over deterministic strategies

• However, there are several restricted classes of strategies

24 / 31

Behavioral, Markov, and Stationary Strategies

• Behavioral strategy πi (ht , ai) returns probability of playing ai for ht

• Mixing takes place at each history independently

• Markov strategy πi is behavioral strategy s.t. πi (ht , ai) = πi (h
′
t , ai) if st = s ′t

• st and s ′t are final states of ht and h′t , respectively

• For each t, distribution over actions depends only on current state

• Stationary strategy πi is a Markov strategy s.t. πi (ht1 , ai) = πi (h
′
t2 , ai) if st1 = s ′t2

• st1 and s ′t2 are final states of ht1 and h′t2 , respectively

• This removes possible dependence on time t

25 / 31

Markov-perfect Equilibrium (MPE)

• Strategy π is MPE if it is Markov strategy and is NE regardless of starting state

V π
i (s) ≥ V

(π′
i ,π−i)

i (s) ∀i , s, π′
i

• MPE is similar to subgame-perfect equilibrium in perfect-information games

• Every n-player, general-sum, discounted-reward stochastic game has MPE

26 / 31

Computing Equilibrium

• Poly-time algorithms are not generally available for full class of stochastic games

• However, they exist for several nontrivial sub-classes

• E.g., 2-player, general-sum, discounted-reward, single-controller stochastic games

• Transitions depend on single agent: if ai = a′i , then p(s, a, s ′) = p(s, a′, s ′) ∀s, s ′

• E.g., 2-player, general-sum, discounted-reward, separable-reward,
state-independent-transition (SR-SIT) stochastic games

• ri (s, a) = f (s) + g(a) ∀i , s, a, and
• p(s, a, s ′′) = p(s ′, a, s ′′) ∀s, s ′, s ′′, a

• E.g., 2-player, zero-sum, discounted-reward stochastic games

27 / 31

Shapley Algorithm: Finding MPE in 2-player Zero-sum Games

Initialize V0(s) arbitrarily for all s; ▷ Agent 1’s utility for being in s
repeat until V (s) converges for all s

for each state s do
Compute matrix game G (s,Vt−1):
u(s, a) = r(s, a) + δ

∑
s′ p(s, a, s

′)Vt−1(s
′)

for each state s do
Vt(s)← max

π1

min
π2

u1(s, π1, π2)

• Shapley’s algorithm is extension of value iteration to stochastic games

28 / 31

Shapley Algorithm: Example

V0(s1) = −4

0.3

0.7

-3

V0(s2) = 2

V0(s3) = 5

−3 + δ (0.7× 2 + 0.3× 5)

= −3 + 2.9 δ

G(s1,V0)

-3 + 2.9δ

29 / 31

Pollatschek & Avi-Itzhak Algorithm (Extension of Policy Iteration)

Initialize V (s) arbitrarily for all s; ▷ Agent 1’s utility for being in s
repeat until π1(s) and π2(s) converge for all s

for each state s do
Compute matrix game G (s,V) as in Shapley’s algorithm;
π1(s) ← maxmin strategy of Agent 1 in G (s,V);
π2(s) ← minmax strategy agents Agent 1 in G (s,V);

Calculate V (s) with policy evaluation for π1 and π2

30 / 31

Acknowledgment

• This lecture is a slightly modified version of ones prepared by
• Dan Klein and Pieter Abbeel [UC Berkeley CS 188]
• Vincent Conitzer [Duke CPS 590.4]

31 / 31

http://ai.berkeley.edu/home.html
https://courses.cs.duke.edu/spring16/compsci590.4/

	Markov Decision Processes
	Definition of Stochastic Games
	Strategies and Equilibria in Stochastic Games

