Game-theoretic
 Foundations of Multi-agent Systems

Lecture 8: Bayesian Games

Seyed Majid Zahedi

WATERESLOF

Outline

1. Introduction and Definitions
2. Strategies and Equilibria
3. Auctions
4. Extensive-form Games of Incomplete-Info

Bayesian Games: Games of Incomplete Information

- So far, we assumed all agents know what game they are playing
- Number of agents
- Actions available to each agent
- Utilities associated with each outcome
- In extensive-form games, taken actions could be unknown, but game itself is
- Bayesian games allow us to represent uncertainties about game
- Commonly known probability distribution over possible games

Assumptions

- All games have same number of agents and same action sets for each agents
- Possible games only differ in agents' utilities for each outcome
- Beliefs are posteriors, obtained by conditioning common prior on private signals

Bayesian Games: Formal Definition

- N is finite set of agents
- A_{i} is set of actions available to agent i
- Θ_{i} is type space of agent i
- $p: \Theta \mapsto[0,1]$ is common prior over types
- $u_{i}: A \times \Theta \mapsto \mathbb{R}$ is utility function for agent i

Example I: Bayesian Entry-deterrence Game

- Firm 1 decides whether to fight, Firm 2 decides whether to enter
- Firm 1 knows its cost
- Firm 2 is uncertain if 1 's cost is 4 w.p. p or 1 w.p. $1-p$
- Game takes one of following two forms

- $\Theta_{1}=\left\{\theta_{11}, \theta_{12}\right\}$ and $\Theta_{2}=\left\{\theta_{21}\right\}$

Example II

Types: Discussion

- Types encapsulate information possessed by agents that is not common knowledge
- E.g., agents' knowledge of their private utility function
- Type could also include
- Agent's beliefs about other agents' utilities
- Other agents' beliefs about the agent's own utility
- And any other higher-order beliefs

Outline

1. Introduction and Definitions

2. Strategies and Equilibria
3. Auctions
4. Extensive-form Games of Incomplete-Info

Strategies

- Before the game starts, agents only know the common prior
- Agent i 's strategy is $s_{i}: \Theta_{i} \mapsto \Delta\left(A_{i}\right)$ is contingency plan for all $\theta_{i} \in \Theta_{i}$
- $s_{i}\left(\theta_{i}\right)$ specifies agent i 's (mixed) strategy when i 's type is θ_{i}
- $s_{i}\left(a_{i} \mid \theta_{i}\right)$ specifies probability of agent i taking action a_{i} when i 's type is θ_{i}
- Type of agents is revealed to them once the game starts
- Once agents know their type, they follow their strategy for that particular type

Expected Utilities

- We can calculate expected utility depending on what agents know
- Ex ante: Agents only know the common prior on types (before the game starts)
- Interim: Agents only knows about their own type (after types are reveals)
- Ex post: Agents know everyone's type (hypothetical - before they take actions)

Expected Utilities (cont.)

- Ex-post expected utility (a):

$$
E U_{i}(s, \theta)=\sum_{a \in A}\left(\prod_{j \in N} s_{j}\left(a_{j} \mid \theta_{j}\right)\right) u_{i}(a, \theta)
$$

- Interim expected utility:

$$
E U_{i}\left(s, \theta_{i}\right)=\sum_{\theta_{-i} \in \Theta_{-i}} p\left(\theta_{-i} \mid \theta_{i}\right) E U_{i}\left(s,\left(\theta_{i}, \theta_{-i}\right)\right)
$$

- Ex-ante expected utility:

$$
E U_{i}(s)=\sum_{\theta_{i} \in \Theta_{i}} p\left(\theta_{i}\right) E U_{i}\left(s, \theta_{i}\right)=\sum_{\theta \in \Theta} p(\theta) E U_{i}(s, \theta)
$$

Dominated Strategies

- Ex-ante dominated strategy: Alternative strategy provides greater ex ante utility regardless of all other agents' strategies
- Interim dominated strategy: For a given type, alternative strategy provides greater interim utility regardless of all other agents' strategies

Best Response in Bayesian Games

- Agent i 's best response to strategy s_{-i} is

$$
B R_{i}\left(s_{-i}\right)=\underset{s_{i}}{\operatorname{argmax}} E U_{i}\left(s_{i}, s_{-i}\right)
$$

- To play best response, i must know strategy of all agents for each of their types
- Without this information, it is not possible to evaluate $E U_{i}\left(s_{i}, s_{-i}\right)$

Best Response in Bayesian Games (cont.)

- Best response is defined based on agent i 's ex ante expected utility, $E U_{i}\left(s_{i}, s_{-i}\right)$
- However, we can rewrite it as

$$
B R_{i}\left(s_{-i}\right)=\underset{s_{i}}{\operatorname{argmax}} \sum_{\theta_{i} \in \Theta_{i}} p\left(\theta_{i}\right) E U_{i}\left(s_{i}, s_{-i}, \theta_{i}\right)
$$

- Observe that $E U_{i}\left(s_{i}, s_{-i}, \theta_{i}\right)$ does not depend on $s_{i}\left(\theta_{i}^{\prime}\right)$ for all $\theta_{i}^{\prime} \neq \theta_{i}$
- So, maximizing $E U_{i}\left(s_{i}, s_{-i}\right)$ is equal to maximizing $E U_{i}\left(s_{i}, s_{-i}, \theta_{i}\right)$ for all $\theta_{i} \in \Theta_{i}$
- Intuitively, if certain action is best after a signal is revealed, it is also the best conditional plan devised ahead of time for what to do should that signal be received

Bayes-Nash Equilibrium

- Bayes-Nash equilibrium (BNE) is strategy profile s^{*}, such that

$$
s_{i}^{*} \in B R_{i}\left(s_{-i}^{*}\right) \forall i
$$

- [Theorem] Any finite Bayesian game has BNE

Example

$$
\begin{aligned}
E U_{2}(U D, L R)= & \sum_{\theta \in \Theta} p(\theta) E U_{2}(U D, L R, \theta) \\
= & p\left(\theta_{11}, \theta_{21}\right) u_{2}\left(U, L, \theta_{11}, \theta_{21}\right)+p\left(\theta_{11}, \theta_{22}\right) u_{2}\left(U, R, \theta_{11}, \theta_{22}\right)+ \\
& p\left(\theta_{12}, \theta_{21}\right) u_{2}\left(D, L, \theta_{12}, \theta_{21}\right)+p\left(\theta_{12}, \theta_{22}\right) u_{2}\left(D, R, \theta_{12}, \theta_{22}\right) \\
= & 0.3 \times 0+0.1 \times 3+0.2 \times 0+0.4 \times 2=1.1
\end{aligned}
$$

Example (cont.)

- Continuing in this manner, complete payoff matrix can be constructed as

	LL	LR	RL	RR
UU	2,1	$1,0.7$	$1,1.2$	$0,0.9$
UD	$0.8,0.2$	$1,1.1$	$0.4,1$	$0.6,1.9$
DU	$1.5,1.4$	$0.5,1.1$	$1.7,0.4$	$0.7,0.1$
DD	$0.3,0.6$	$0.5,1.5$	$1.1,0.2$	$1.3,1.1$

- Note that row agent's best response to RL is DU

Example (cont.)

- Once row agent receives the signal θ_{11}, we can calculate interim utilities

	LL	LR	RL	RR
UU	$2,0.5$	$1.5,0.75$	$0.5,2$	$0,2.25$
UD	$2,0.5$	$1.5,0.75$	$0.5,2$	$0,2.25$
DU	$0.75,1.5$	$0.25,1.75$	$2.25,0$	$1.75,0.25$
DD	$0.75,1.5$	$0.25,1.75$	$2.25,0$	$1.75,0.25$

- Row agent's payoffs are now independent of action taken upon observing θ_{12}
- Note that DU is still best response to RL
- What has changed is how much better it is compared to other strategies

Ex-post Equilibrium

- Strategy profile s^{*} is ex-post equilibrium if

$$
s_{i}^{*} \in \underset{s_{i}}{\operatorname{argmax}} E U_{i}\left(s_{i}, s_{-i}^{*}, \theta\right) \quad \forall i, \theta \in \Theta
$$

- Ex-post equilibrium is similar to dominant strategy equilibrium
- Agents are not assumed to know θ
- Even if they knew θ, agents would never want to deviate
- Ex-post equilibrium is not guaranteed to exist

Example: Incomplete Information Cournot

- Two firms decide on their production level $q_{i} \in[0, \infty)$
- Price is given by $P(q)$ where $q=q_{1}+q_{2}$
- Firm 1 has marginal cost equal to c which is common knowledge
- Firm 2's marginal cost is private information
- c_{L} with probability x and c_{H} with probability $(1-x)$, where $c_{L}<c_{H}$
- Utility of agents are ($t \in\{L, H\}$ type of firm 2)
- $u_{1}\left(\left(q_{1}, q_{2}\right), t\right)=q_{1} P\left(q_{1}, q_{2}\right)-c$
- $u_{2}\left(\left(q_{1}, q_{2}\right), t\right)=q_{2} P\left(q_{1}, q_{2}\right)-c_{t}$

Example: Incomplete Information Cournot (cont.)

- What are firms best responses?

$$
\begin{aligned}
& B_{1}\left(q_{L}, q_{H}\right)=\arg \max _{q \geq 0}\left(\left(x P\left(q+q_{L}\right)+(1-x) P\left(q+q_{H}\right)-c\right) q\right) \\
& B_{2}^{L}\left(q_{1}\right)=\arg \max _{q \geq 0}\left(\left(P\left(q_{1}+q\right)-c_{L}\right) q\right) \\
& B_{2}^{H}\left(q_{1}\right)=\arg \max _{q \geq 0}\left(\left(P\left(q_{1}+q\right)-c_{H}\right) q\right)
\end{aligned}
$$

- BNE of this game is vector $\left(q_{1}^{*}, q_{L}^{*}, q_{H}^{*}\right)$ such that

$$
q_{1}^{*} \in B_{1}\left(q_{L}^{*}, q_{H}^{*}\right), q_{L}^{*} \in B_{2}^{L}\left(q_{1}^{*}\right), q_{H}^{*} \in B_{2}^{H}\left(q_{1}^{*}\right)
$$

Example: Incomplete Information Cournot (cont.)

- For example, if $P(q)=\max (\alpha-q, 0)$, then we have:

$$
\begin{aligned}
& q_{1}^{*}=\frac{1}{3}\left(\alpha-2 c+x c_{L}+(1-x) c_{H}\right) \\
& q_{L}^{*}=\frac{1}{3}\left(\alpha-2 c_{L}+c\right)-\frac{1}{6}(1-x)\left(c_{H}-c_{L}\right) \\
& q_{H}^{*}=\frac{1}{3}\left(\alpha-2 c_{H}+c\right)+\frac{1}{6} x\left(c_{H}-c_{L}\right)
\end{aligned}
$$

Outline

1. Introduction and Definitions

2. Strategies and Equilibria
3. Auctions
4. Extensive-form Games of Incomplete-Info

Multi-agent Resource Allocation

- Major application of Bayesian games is in auctions
- Auctions are commonly used to sell (allocate) items to bidders
- Auctioneers often would like to maximize their revenue
- Bidders' valuations are usually unknown to others and auctioneer
- Allocating items to bidders with highest valuations is often desirable
- Extracting private valuations could be challenging
- E.g., giving painting for free to bidder with highest valuation would create incentive for all bidders to overstate their valuations

Different Auctions

- English auction: bid must be higher than previous one, last bidder wins, pays last bid
- Dutch auction: price drops until one takes item at that price
- Japanese auction: price rises, bidders drop out, last bidder wins at price of last dropout
- First-price auction: bidders bid simultaneously, highest bid wins, winner pays winning bid
- Second-price action: similar to first price, except that winner pays second highest bid

Valuations

- Private valuations: valuation of each bidder is independent of others' valuations
- Common valuations: bidders' valuations are correlated to common value

Sealed-bid Auctions (First- and Second-price Auctions)

- Suppose that there are N bidders and single object for sale
- Bidder i has value v_{i} for the object and bids b_{i}
- Utility of bidder i is $v_{i}-p_{i}$, where p_{i} is bidder i 's payment
- Suppose v 's are drawn i.i.d. from $[0, \bar{v}]$ with commonly known CDF F
- Bidders only know their own realized value (type)
- Bidders are risk neutral, maximizing their expected utility
- Pure strategy for bidder i is map $b_{i}:[0, \bar{v}] \rightarrow \mathbb{R}_{+}$

Second-price Auction

- Agent i submit bid b_{i} simultaneously with other agents
- Agent with highest bid wins, and pays second highest bid
- Agent i 's profit is $v_{i}-\max _{j \neq i} b_{j}$ if i wins, and 0 otherwise
- [Proposition] Truthful bidding (i.e., $b_{i}=v_{i}$) is BNE in second price auction
- [Proof] We need to answer following questions
- If other bidders bid truthfully, does winner want to change their bid?
- If other bidders bid truthfully, does looser want to change their bid?

Truthful Bidding in Second-price Auction

- Truthful equilibrium is (weak) ex-post equilibrium
- I.e., truthful bidding weakly dominates other strategies even if all values are known
- [Proof sketch] Define maximum bid excluding i 's bid as $B_{-i}^{*}=\max _{j \neq i} b_{j}$

- Truthful equilibrium is also the unique BNE

Expected Payment in Second-price Auctions

- Define random variable $y_{i}=\max _{j \neq i} v_{j}$
- CDF of y_{i} is $G_{y_{i}}(v)=F(v)^{N-1}$
- PDF of y_{i} is $g_{y_{i}}(v)=(N-1) f(v) F(v)^{N-2}$
- Expected payment of bidder i with value v_{i} is given by

$$
\begin{aligned}
p\left(v_{i}\right) & =P\left(v_{i} \text { wins }\right) \times \mathbb{E}\left[y_{i} \mid y_{i} \leq v_{i}\right] \\
& =P\left(y_{i} \leq v_{i}\right) \times \mathbb{E}\left[y_{i} \mid y_{i} \leq v_{i}\right] \\
& =G_{y_{i}}\left(v_{i}\right) \times G_{y_{i}}\left(v_{i}\right)^{-1} \int_{0}^{v_{i}} y g_{y_{i}}(y) d y=\int_{0}^{v_{i}} y g_{y_{i}}(y) d y
\end{aligned}
$$

First-price Auctions

- Utility of agent i is $v_{i}-b_{i}$ if $b_{i}>\max _{j \neq i} b_{j}$ and zero otherwise
- We focus on symmetric (increasing and differentiable) equilibrium strategies β
- Bidder i wins whenever $\max _{j \neq i} \beta\left(v_{j}\right)<b_{i}$
- Since β is increasing, we have: $\max _{j \neq i} \beta\left(v_{j}\right)=\beta\left(\max _{j \neq i} v_{j}\right)=\beta\left(y_{i}\right)$
- This implies that bidder i wins whenever $y_{i}<\beta^{-1}\left(b_{i}\right)$
- Optimal bid of bidder i is $b_{i}=\underset{b>0}{\operatorname{argmax}} G_{y_{i}}\left(\beta^{-1}(b)\right)\left(v_{i}-b\right)$

First-price Auctions (cont.)

- First-order (necessary) optimality conditions imply ${ }^{1}$:

$$
\frac{g_{y_{1}}\left(\beta^{-1}\left(b_{i}\right)\right)}{\beta^{\prime}\left(\beta^{-1}\left(b_{i}\right)\right)}\left(v_{i}-b_{i}\right)-G_{y_{i}}\left(\beta^{-1}\left(b_{i}\right)\right)=0
$$

- In symmetric equilibrium, $b_{i}=\beta\left(v_{i}\right)$, therefore we have:

$$
v_{i} g_{y_{i}}\left(v_{i}\right)=\beta^{\prime}\left(v_{i}\right) G_{y_{i}}\left(v_{i}\right)+\beta\left(v_{i}\right) g_{y_{i}}\left(v_{i}\right)=\frac{d}{d v}\left(\beta\left(v_{i}\right) G_{y_{i}}\left(v_{i}\right)\right)
$$

- With boundary condition $\beta(0)=0$, we have:

$$
\beta\left(v_{i}\right)=G_{y_{i}}^{-1}\left(v_{i}\right) \int_{0}^{v_{i}} y g_{y_{i}}(y) d y=\mathbb{E}\left[y_{i} \mid y_{i} \leq v_{i}\right]
$$

[^0]
Expected Payment in First-price Auctions

- Expected payment of bidder i with value v_{i} is:

$$
\begin{aligned}
p\left(v_{i}\right) & =P\left(\beta\left(v_{i}\right) \text { wins }\right) \times \beta\left(v_{i}\right) \\
& =P\left(\beta\left(y_{i}\right) \leq \beta\left(v_{i}\right)\right) \times \mathbb{E}\left[y_{i} \mid y_{i} \leq v_{i}\right] \\
& =P\left(y_{i} \leq v_{i}\right) \times \mathbb{E}\left[y_{i} \mid y_{i} \leq v_{i}\right] \\
& =G_{y_{i}}\left(v_{i}\right) \times G_{y_{i}}\left(v_{i}\right)^{-1} \int_{0}^{v_{i}} y g_{y_{i}}(y) d y=\int_{0}^{v_{i}} y g_{y_{i}}(y) d y
\end{aligned}
$$

- This establishes somewhat surprising results that both first and second price auction formats yield same expected revenue to auctioneer

Revenue Equivalence

- In standard auctions, item is sold to bidder with highest submitted bid
- Suppose that values are i.i.d and all bidders are risk neutral
- [Theorem] Any symmetric and increasing equilibria of any standard auction (such that expected payment of bidder with value zero is zero) yields same expected revenue to auctioneer

Oil-field Example: Common Values with Correlated Recommendations

- Suppose that there are two bidders bidding to lease oil field
- Oil field could be worth $\$ 0, \$ 25 \mathrm{M}$, or $\$ 50 \mathrm{M}$ w.p. $0.25,0.5$, and 0.25 , respectively
- Bidders hire their own consultant to evaluate value of oil field
- Bidders get private recommendations, r_{1} and r_{2}
- If field is worth $\$ 0$, then $r_{1}=r_{2}=L$
- If field is worth $\$ 25 \mathrm{M}$, then $r_{1}=H, r_{2}=L$ or $r_{1}=L, r_{2}=H$ (both equally likely)
- If field is worth $\$ 50 \mathrm{M}$, then $r_{1}=r_{2}=H$
- Given their private recommendation, how should bidders bid?

Oil-field Example: Expected Value

- What is expected value of oil field if one receives L recommendation?
- Given L, oil field is worth either $\$ 0$ or $\$ 25$

$$
\begin{aligned}
& P(\$ 25 \mathrm{M} \mid L)=\frac{P(\$ 25 \mathrm{M}) \times P(L \mid \$ 25 \mathrm{M})}{P(\$ 25 \mathrm{M}) \times P(L \mid \$ 25 \mathrm{M})+P(\$ 0) \times P(L \mid \$ 0)}=\frac{0.5 \times 0.5}{0.5 \times 0.5+0.25 \times 1}=0.5 \\
& P(\$ 0 \mid L)=\frac{P(\$ 0) \times P(L \mid \$ 0)}{P(\$ 25 \mathrm{M}) \times P(L \mid \$ 25 \mathrm{M})+P(\$ 0) \times P(L \mid \$ 0)}=\frac{0.25 \times 1}{0.5 \times 0.5+0.25 \times 1}=0.5
\end{aligned}
$$

$\mathbb{E}[$ oil field's value $\mid L]=\$ 25 \mathrm{M} \times P(\$ 25 \mathrm{M} \mid L)+\$ 0 \times P(\$ 0 \mid L)=\$ 12.5 \mathrm{M}$
$\mathbb{E}[$ oil field's value $\mid H]=\$ 50 \mathrm{M} \times P(\$ 50 \mathrm{M} \mid H)+\$ 25 \mathrm{M} \times P(\$ 25 \mathrm{M} \mid H)=\$ 37.5 \mathrm{M}$

Oil-field Example: Second-price Auction

- What is expected utility of bidding $\$ 12.5 \mathrm{M}$ upon receiving L ?
- With probability 0.5 , true value is $\$ 0$
- Other bidder bids $\$ 12.5 \mathrm{M}$
- Each bidder wins with probability 0.5 and gets $-\$ 12.5 \mathrm{M}$
- With probability 0.5 , true value is $\$ 25 \mathrm{M}$
- Other bidder bids $\$ 37.5 \mathrm{M}$
- Bidder with L loses and gets $\$ 0$
- Expected utility $=0.5 \times 0.5 \times(-\$ 12.5 \mathrm{M})$
- Bidding \$0 leads to utility $\$ 0$ and is profitable deviation
- Truthful bidding is not BNE in second-price auction with common values and dependent recommendations

Winner's Curse

- Winning means bidder received highest or most optimistic recommendation
- Condition on winning, value of item is lower than what recommendation says
- Ignoring this leads to paying, on average, more than true value of item
- To avoid this curse, bidders should assume their recommendation is optimistic
- In oil-field example, we can show that the following bidding strategy is BNE
- Bid 0 upon receiving L
- Bid $\$ 50 \mathrm{M}$ upon receiving H

Oil-field Example II: Common Values and Independent Recommendations

- Consider two bidders interested in buying oil field that has part A and B
- Each bidder values A and B but is more interested in one of them
- Bidders hire their own consultant to evaluate value of their part
- Bidder 1 gets private recommendation r_{1} about value of part A
- Bidder 2 gets private recommendation r_{2} about value of part B
- Suppose that both recommendations are uniformly distributed over $[0,1]$
- Suppose value of oil field to each bidder is as follows
- $v_{i}=a . r_{i}+b . r_{-i}$ with $a \geq b \geq 0$
- Private values are special case where $a=1$ and $b=0$

Oil-field Example II: Second-price Auction

- Similar to previous example, truthful bidding is not BNE
- Instead, we show that both bidders following $\beta\left(r_{i}\right)=(a+b) r_{i}$ is BNE
- If $-i$ follows this, then probability that i wins by bidding b_{i} is:

$$
P\left(\beta\left(r_{-i}\right)<b_{i}\right)=P\left((a+b) r_{-i}<b_{i}\right)=b_{i} /(a+b)
$$

- Bidder i 's payment if i wins is $\beta\left(r_{-i}\right)=(a+b) r_{-i}$

Oil Field Example II: Second-price Auction (cont.)

- Expected payment of i condition on i winning is:

$$
\mathbb{E}\left[(a+b) r_{-i} \mid r_{-i}<b_{i} /(a+b)\right]=b_{i} / 2
$$

- Expected value of -i's signal condition on i winning is:

$$
\mathbb{E}\left[r_{-i} \mid r_{-i}<b_{i} /(a+b)\right]=b_{i} / 2(a+b)
$$

- Expected utility of bidding b_{i} for recommendation r_{i} is

$$
\begin{aligned}
E U\left(b_{i}, r_{i}\right) & =P\left(b_{i} \text { wins }\right) \times\left(a . r_{i}+b \cdot \mathbb{E}\left[r_{-i} \mid b_{i} \text { wins }\right]-\mathbb{E}\left[(a+b) r_{-i} \mid b_{i} \text { wins }\right]\right) \\
& =b_{i} /(a+b) \times\left(a . r_{i}+b \cdot b_{i} / 2(a+b)-b_{i} / 2\right)
\end{aligned}
$$

- Maximizing this with respect to b_{i} (for given r_{i}) leads to $b_{i}^{*}=(a+b) r_{i}$

Oil Field Example II: First-price Auction

- Analysis is similar to that of first-price auctions with private values
- It can be shown that unique symmetric BNE is for each bidder to bid $\beta\left(r_{i}\right)=(a+b) r_{i} / 2$
- It can be shown that expected revenue is equal to first price auction
- Revenue equivalence principle continues to hold for common values

Outline

1. Introduction and Definitions

2. Strategies and Equilibria
3. Auctions
4. Extensive-form Games of Incomplete-Info

Incomplete Information in Extensive-form Games

- Incomplete-information games cannot always be represented as static games
- Extensive-form games can capture explicit order of moves or dynamic games
- We can use information sets to represent what each agent knows
- We need to modify BNE to include notion of perfection (as in subgame perfection)

Equilibrium Concepts

Extensive-form Games of Incomplete Information: Definition

- $N, A, H, Z, \alpha, \beta, \rho, u$, and I are the same as extensive-form games
- Θ_{i} is type space of agent i
- $p: \Theta \mapsto[0,1]$ is common prior over types
- $u_{i}: Z \times \Theta \mapsto \mathbb{R}$ is utility function for agent i

The "Nature" with Chance Moves

- To capture common prior, we can add special agent called Nature
- Nature makes probabilistic choices
- Nature does not have utility function (can be viewed as having constant utility)
- Nature has unique strategy of randomizing in commonly known way
- Agents receive individual signals about Nature's choice

Example: Kune Poker

Beliefs and Strategies

- Agents have beliefs about which node they are for each information set (infoset)
- For each infoset, μ defines prob. distribution over all nodes in that infoset
- behavioral strategy, s, maps each infoset to prob. distribution over actions

Requirements for Perfect Bayesian Equilibrium (PBE)

- I. Beliefs: In addition to strategy profile s, beliefs μ must be specified
- II. Sequential rationality: At any infoset, strategy s must be optimal given belief s
- III. On-the-path consistency: For any on-the-equilibrium-path infoset, μ must be derived from s according to Bayes' rule
- IV. Off-the-path consistency: For any off-the-equilibrium-path infoset, μ must be derived from s according to Bayes' rule whenever possible

Weak and Strong PBE

- I-III define weak PBE, and I-IV define strong PBE
- PBE is defined for all extensive-form games with imperfect information

Example I (from Lecture 5)

- ($R,(R, R))$ is NE and SPE, but it is not PBE, why?
- R in A2's left-side infoset is not optimal for any belief of A2
- ($M,(L, R))$ + believing that $A 1$ takes M with probability 1 is weak PBE
- M is best response to (L, R) and (L, R) is best response to M
- On-the-path beliefs are consistent with the equilibrium strategy
- ($M,(L, R))$ + believing that $A 1$ takes M with probability 1 is also strong PBE
- Off-the-path beliefs are also consistent (right-side infoset has single node)

Example II: Strong vs. Weak PBE

- U is A 2 's dominant strategy
- NE of A2's subgame is (U, R)
- (E, U, R) is SPE
- ($\mathrm{E}, \mathrm{U}, \mathrm{R})+\mathrm{A} 3$ believing that A 2 takes U w.p 1 is PBE (S\&W)
- What about (Q, U, L) + A3 believing that A2 takes D w.p. 1?
- Q is best respond to (U, L) and U is dominant strategy
- L is best respond to believing that $A 2$ takes D w.p. 1
- So, it is weak PBE, but is it also strong PBE?

- No! IV does not hold; A3's belief is inconsistent with A2's strategy

Example II: Selten's Horse

[^1]
Example II: Selten's Horse (cont.)

- A3 believes that left and right nodes are reached w.p. p and $1-p$, respectively
- Utility for playing L is $4 p$ and $p+2(1-p)$ for playing R
- A3 must play R if $p<2 / 5, \mathrm{R}$ or L if $p=2 / 5$, and L if $p>2 / 5$

Example II: Selten's Horse (cont.)

- Is there any p with which (C, d, L) is weak PBE?
- Given (C, d), on-the-path belief for A3 must set $p=0$
- For $p=0, \mathrm{~A} 3$ must take R , so the answer is NO

Example II: Selten's Horse (cont.)

- Is there any p with which ($\mathrm{C}, \mathrm{c}, \mathrm{R}$) is weak PBE?
- Given (C, c), A3's infoset is off the equilibrium path
- Consistency does not put any constraint on p; optimality of R requires $p \leq 2 / 5$
- Is $(\mathrm{C}, \mathrm{c}, \mathrm{R})+p \leq 2 / 5$ strong PBE ? Why?

Example III: Signaling Games

- Informed agent moves first to signal some information to uninformed agent
- Sending signal is more costly if it conveys false information
- E.g., producer provides warranty to signal that its products are unlikely to break
- E.g., employees acquire college degree to signal their ability to employers
- This is different from sending costless messages in cheap talk games
- Cheap talk is communication between agents that does not directly affect payoffs
- E.g., agents message each other on where they want to go in Battle of the Sexes

PBE Types in Signaling Games

- Separating: Informed agent sends distinct signal for each type
- Signal always reveals sender's type
- Receiver's beliefs become deterministic after seeing the signal
- Pooling: Informed agent sends the same signal for all types
- Signal does not give any information to receiver
- Receiver's beliefs are not updated after seeing the signal
- Semi-separating (a.k.a. partially pooling): Informed agent sends same signal for some types distinct signal for some other types

Simple Poker-like Game: Separating PBE

- Consider Raising for King and Checking for Jack
- What is A2's posterior belief?
- If A1 Raises, then A1 has King w.p. 1
- If A1 Checks, then A1 has Jack w.p. 1
- What is A2's optimal strategy?
- Fold if A1 Raises, Call if A1 Checks
- Given A2's optimal strategy, what is A1's best response?
- Indifferent between Raise and Check if King $(1=1)$
- Prefers Raise to Check if Jack ($1>-1$)
- A1 wants to deviate from separating strategy
- How about Checking for King and Raising for Jack?

Nature

Simple Poker-like Game: Pooling PBE

- Consider Raising for both King and Jack
- A2's posterior beliefs are the same as prior beliefs
- King w.p. 0.5 and Jack w.p. 0.5
- What is A2's optimal strategy on equilibrium path (Raise)?
- Call give $0(-2 \times 0.5+2 \times 0.5)$, Fold gives -1
- A2 prefers Call on the equilibrium path
- What is A2's optimal strategy off equilibrium path (Check)?
- Consistency does not put any restriction on beliefs
- Consider p for King and $1-p$ for Jack
- Call give $-p+1-p$, Fold gives -1 and
- For $p<1, \mathrm{~A} 2$ prefers Call, for $p=1, \mathrm{~A} 2$ is indifferent

Nature

Simple Poker-like Game: Pooling PBE (cont.)

Nature

- If A2 Calls $(p \leq 1)$, what is A1's best response?
- If King, A1 prefers Raise
- If Jack, A1 prefers Check
- A1 wants to deviate from pooling strategy
- What if A2 Calls on and Folds off the path (for $p=1$)?
- If King, A1 prefers Raise
- If Jack, A1 prefers Check
- A1 wants to deviate from pooling strategy
- There is no p for which A1 wants to follow pooling
- What about Checking for both King and Jack?

Simple Poker-like Game: Semi-separating PBE

- If King, A1 Raises - If Jack, A1 Raises w.p x
- What is A2's posterior belief?
- If Check, Jack w.p. 1
- If Raise, King w.p. $1 /(1+x)$ and Jack w.p. $x /(1+x)$
- What is A2's best response if A1 Checks?
- A2 must Call (A2 believes Jack w.p. 1)
- A2's strategy should make A1 indifferent if Jack
- Suppose A2 Calls w.p. y if A1 Raises
- A1's utility for Raise is $-2 y+1-y$
- A1's utility for Check is -1
- $y=2 / 3$ makes A1 indifferent

Nature

Simple Poker-like Game: Semi-separating PBE (cont.)

- x should be set s.t. A2 is indifferent between Call and Fold
- If A1 Raises, A2's utility for Call is $(2 x-2) /(1+x)$
- If A1 Raises, A2's utility for Fold is -1
- $x=1 / 3$ makes A 2 indifferent between Call and Fold

Simple Poker-like Game: Final Semi-separating PBE

- A1 Raises w.p. 1 if King and w.p. $1 / 3$ if Jack
- A1 Checks w.p. 0 if King and w.p. $2 / 3$ if Jack
- A2 Calls w.p. 1 if A1 Checks and w.p. $2 / 3$ if A1 Raises
- A2 Folds w.p. 0 if A1 Checks and w.p. $1 / 3$ if A1 Raises
- If A1 Raises, A2 believes King w.p. 3/4 and Jack w.p. 1/4
- If A1 Checks, A2 believes Jack w.p. 1

Acknowledgment

- This lecture is a slightly modified version of ones prepared by
- Asu Ozdaglar [MIT 6.254]
- William Spaniel Game Theory 101
- Yiqin Huang helped with importing slides from PowerPoint to LATEX

[^0]: ${ }^{1}$ Derivative of $\beta^{-1}(b)$ is $1 / \beta^{\prime}\left(\beta^{-1}(b)\right)$.

[^1]: ${ }^{1}$ Photograph by Stefan Schickler

