Game-theoretic
Foundations of Multi-agent Systems

Lecture 9: Learning in Games

Seyed Majid Zahedi

UNIVERSITY OF

WATERLOO

>

Outline

1. Introduction

Single-agent vs Muli-agent Learning

In artificial intelligence (Al), learning is usually performed by single agent

® | earning agent learns to function successfully in unknown environment

In multi-agent setting, environment contains other agents

Agents’ learning changes the environment

These changes depend in part on actions of learning agents

Learning of each agent is impacted by learning performed by others

Different learning rules lead to different dynamical system

Simple learning rules can lead to complex global behaviors of system

Learning and Teaching

® |n multi-agent systems, learning and teaching are inseparable

® Agents must consider what they have learned from others’ past behavior

® They also must consider how they wish to influence others’ future behavior

® In such setting, learning as accumulating knowledge is not always beneficial

® Accumulating knowledge should never hurt, one can always ignore what is learned

® But when one pre-commits to particular strategy for
acting on accumulated knowledge, sometimes less is more

E.g., in game of Chicken, if your opponent is learning your strategy to play best
response, then optimal strategy is to always dare

Is Agent Learning in Optimal Way?

In (repeated or stochastic) zero-sum games, this question is meaningful to ask

In general, answer depends not only on learning procedure but also on others’ behavior

When all agents adopt same strategy, the setting is called self-play
® E.g., all agent adopt TfT, or all adopt reinforcement learning (RL)

® One way to evaluate learning procedures is based on their performance in self-play

But learning agents can also be judged by how they do in context of other agent types
® TfT agent may perform well against TfT agents, but less well against RL agents

® Note that in GT, optimal strategy is replaced by best response (and equilibrium)

Properties of Learning Rules

e Safety: Guarantee agents at least their maxmin value

® Rationality: Settle on best response to opponent’s strategy whenever opponent
settles on stationary strategy

® Opponent adopts same mixed strategy each time, regardless of the past

® No regret: Yield payoff that is no less than payoff agent could have obtained by
playing any pure strategy against any set of opponents (details later!)

Outline

2. Fictitious Play

Fictitious Play: Introduction

® What are agents learning about?

® Arguably, most plausible answer is strategies of others

e Fictitious play (FP), one of earliest learning rules, takes this approach
[]

FP was first introduced by G. W. Brown in 19511

® Brown imagined that agents would “simulate” the game in their mind and update
their future play based on this simulation; hence name fictitious play

® |n its current use, FP is misnomer, since each play of the game actually occurs

1 e
Brown, G. W. “Iterative solution of games by fictitious play.” 1951

Fictitious Play

® Two agents repeatedly play stage game G

n¥(a_;) denotes number of times agent i has observed a_; before time t
° 17} represents fictitious past and cannot be zero for all a_;

® Agents assume that their opponent is using stationary mixed strategy

® Agents update their beliefs about this strategy at each step according to:
t
t n;(a=i)
i) = = s
)= &)

e utis empirical distribution of past actions and is treated as mixed strategy

Agents best-respond to their beliefs about opponent’ strategy

t+1

1

ai™ = argmax uj(a;, pf)

aj

Fictitious Play: Example

e Consider the following coordination game
L R

uUl33]|o0
4,0 | 1,1

® Note that this game is dominant solvable with unique NE of (D, R)
® Suppose that n} = (3,0) and 73 = (1,2.5)
® FP proceeds as follows:

Round 1'sy 2'sn 1's action 2's action

1 (3,00 (L 25) D L
2 (40) (1,35) D R
3 (4,1) (1,45) D R
4 (4,2) (1,55) D R

Fictitious Play: Discussion

In FP, agents do not need to know anything about their opponent’s utilities

® FP is somewhat paradoxical as agents assume stationary strategy for their
opponent, yet no agent plays stationary strategy except when FP converges

Even though FP is belief based it is also myopic

® |.e., agents maximize current utility without considering their future ones

Agents do not learn true model that generates empirical frequencies

In other words, they do not learn how their opponent is actually playing the game

Convergence of Fictitious Play to Pure Strategies

Let {a'} be sequence of action profiles generated by FP for G

Sequence converges to a* if there exists T s.t. at = a* forall t > T

*

a* is called steady state or absorbing state of FP

() If sequence converges to a*, then a* is pure-strategy NE of G

() If for some t, a* = a*, where a* is strict NE of G, then a” = a* for all 7 > ¢t

Proof

1 %

e (1) is straightforward, for (), let a® = a*, we want to show that a'™ = a

® First, note that we can write y as:
HE = (1= o)t + aat; = (1 — a)f +aa;
here, abusing notation, a’ ; denotes degenerate probability distribution and:

1
Zalf nlt(aLI) +1

® By linearity of expected utility, we have for all a;:

o=

ui(aj, pi) = (1 - a)ui(ai, uf) + auj(a;, a ;)

® Since aj maximizes both terms, it follows that it is played at t + 1

Convergence of Fictitious Play to Mixed Strategies

Of course, one cannot guarantee that fictitious play always converges to NE

In FP, agents only play pure strategies and pure-strategy NE may not exist

While FP sequence may not converge, its empirical distribution may

Sequence {a'} converges to s* in time-average sense if for all / and a;:

Yt =a)
=1 T = s;(ai)

lim
T—oo

1(-) denotes the indicator function

If FP sequence converges to s* in the time-average sense, then s* is NE

Proof

Suppose {a'} converges to s* in time-average sense, but s* is not NE

There is some i, &}, and a; with s*(a;) > 0 s.t. u;i(a},s*;) > ui(aj, s*;)

e Choose € s.t. € < (uj(al,s*;) — uj(aj, s*;)) /2

Choose T s.t. forall t > T, |uf(a—j) — s*;(a—i)| < €/ maxy u;j(a") for all a_;

This is possible because pif(a_;) — s*;(a_;) by assumption

Proof (cont.)

® Then, for any t > T, we have:

u,-(a,-,,uf) = Zui(aiaa—f)#F(a—i)

a—j
< Y wiai ai)sti(ani) +e
a—j
< Y i@l ai)st(ani) — €
a_;
< Z ui(af, a—i)pi(a-i) = ui(aj, i)

a_j

® So after sufficiently large t, a; is never played
® This implies that as t — oo, pf(aj) — 0, which contradicts with s/(a;) > 0

16/87

Example: Matching Pennies

® Consider the matching-pennies game
H T

Hf1,-1]-11
—1,1]1,-1

Round 1'syp 2'sm 1'saction 2's action

1 (15 2) (2 15) T T
2 (153) (2 25) T H
3 (253) (2 35) T H
4 (353) (2 45) H H
5 (45 3) (3,45) H H
6 (55 3) (4 45) H H
7 (65,3) (5 45) H T

Example: (Anti-)Coordination Game

® Note that if empirical distribution of actions converges to NE, there is no
guarantee on distribution of played outcomes

® Consider the following coordination game

A B
1,1] 0,0
Bfoo|11

® Note that this game is unique NE of ((0.5, 0.5), (0.5, 0.5))

Round 1'sp 2'sm 1's action 2's action
1 (0.5, 0) (0, 0.5) A B
2 (0.5,1) (1,0.5) B A
3 (1.5,1) (1,1.5) A B
4 (1.5,2) (2, 1.5) B A

General Fictitious Play Convergence

® Fictitious play converges in time-average sense for game G if:

® G is zero-sum game

® G is two-player game where each agent has at most two actions (2x2 games)

G is solvable by iterated strict dominance
® G is identical-interest game, i.e., all agents have same payoff function

® G is potential game (more on this later!)

Non-convergence of Fictitious Play

Convergence of fictitious play can not be guaranteed in general

Shapley showed that in modified rock-scissors-paper game, FP does not converge

Rock Paper Scissors
Rock 0,0 0,1 1,0
Paper 1,0 0,0 0,1
Scissors 0,1 1,0 0,0

This game has unique NE: each agent mixes uniformly
Suppose i = (1,0,0) and n} = (0,1,0)

Shapley showed that play cycles among 6 (off-diagonal) profiles with periods of
ever-increasing length, thus non-convergence

Smooth Fictitious Play (SFP)

Instead of best-responding to beliefs, agents respond randomly, but somewhat
proportional to their expected utility

) exp(ui(aj, 1)/7)
U 2y ex(ui(a) i) /)

st(aj |

v is called the smoothing parameter

This is called soft-max policy

Soft-max policy respects best replies, but leaves room for exploration

If all agents use SFP with sufficiently small ~;, empirical play converges to e-CCE

Outline

3. Best-response Dynamics

Best-response Dynamics (BRD): Introduction

® Agents start playing arbitrary actions

In arbitrary order, agents take turns updating their action

Agent update their action only if doing so can improve their utility

This is repeated until no agents wants to update their action

Initialize a = (a1,...,an) to be arbitrary action profile;
while there exists i such that a; ¢ argmax,c . ui(a,a_;) do
Let a} be such that vj(a}, a_;) > u(a);
Set aj «+ a;
return a

Best-response Dynamics: Discussion

e |f BRD halts, it returns pure strategy Nash equilibrium

® Every agent must be playing best response

® Does BRD always halt?

® No: Consider matching pennies/Rock Paper Scissors

Example: Congestion Games

N is set of n agents

M is set of m resources

A; is set of actions available to agent i
® 2, represents subset of resources that agent i chooses (i.e., a; C M)

® [} is congestion cost function for resources j € M
® /i(k) represents cost of congestion on resource j when k agents choose j

nj(a) is number of agents who choose resource j (i.e., nj(a) = |{i |j € ai}|)

ci(a) = 2 je, ti(nj(a)) is total cost of agent

e Agents minimize their total cost (instead of maximizing their total utility)

BRD in Congestion Games

® Consider potential function ¢ : A — R:

m nj(a)
=22 blk
Jj=1 k=1
(Note: not social welfare)
® How does ¢ change in one round of BRD? Say i switches from a; to b; € A;

® Well... We know it must have decreased agent i's cost:

Aci = ci(biya—i) — ci(ai,a—j)

= > Gna)+1) = Y 4i(n(a) <0

JjEbi\a; Jj€ai\b;

BRD in Congestion Games (cont.)

® Change in potential is:

A¢p = ¢(bi,a_;) — #(ai,a))
= > G +1) = Y 4(ni(a)
J€Ebj\a; Jj€aj\b;
= AC,‘

Since ¢ can take on only finitely many values, this cannot go on forever

And hence BRD halts in congestion games ...

Which proves the existence of pure strategy Nash equilibria!

Example: Load Balancing Games on Identical Servers

® n clients i € N schedule jobs of size w; > 0 on m identical servers M

® Action space A; = M for each client

For each server j € M, load {j(a) = ., _; wi

Cost of client i is load of server that i chooses : ¢j(a) = ¢,(a)

Load Balancing Games on ldentical Servers: Discussion

® Almost congestion game — but server costs depend on which clients choose them
® BRD converges in load balancing games on identical servers

® | oad balancing games on identical servers have pure strategy NE

BRD in Load Balancing Games on ldentical Servers

® Consider potential function ¢ as:
1 &)
o) = 3 3403
J:

e Suppose i switches from server j to server j':

Aci(a) = (', a-i) —ci(j,a=i)
= Ej/(a) + w; — ¢(a)
< 0

30/87

BRD in Load Balancing Games on ldentical Servers (cont.)

Ap(a) = (' a-i) —¢(,a-i)
= (@) w4 () — wi) — ()~ (6))
= % (2W,-€J-/(a) + W,-2 — 2W,'fj(a) + le)
= W (fj/(a) —+ w; — Zj(a))
= w; - Aci(a)
< 0

Note: Ac; # A¢

Potential Games

®* ¢: A— Ry is exact potential function for game G if for all a, i,a;, and b;:
d(bi,a-i) — ¢(ai, a—i) = ci(bi,a—;) — ci(ai, a—;)
® ¢: A— Ry is ordinal potential function for game G if for all a, i,a;, and b;:

(ci(bi,a—i) = ci(ai,a—i) < 0) = (¢(bi,ai) — ¢(aj, a-i) <0)

(i.e. the change in utility is always equal in sign to the change in potential)

® BRD is guaranteed to converge in game G iff G has ordinal potential function

BRD and Potential Games

® We've already seen ordinal potential function = BRD converges

® | ets prove other direction

Consider graph G = (V, E)

Let each a € A be a vertex in G (i.e., V = A)

Add directed edge (a, b) if it is possible to go from b to a by best-response move
® |.e, if there is i such that b = (b;,a_;), and ci(b;, a—;) < ci(a)

BRD can be viewed as traversing this graph
® Start at arbitrary vertex a, and then traverse arbitrary outgoing edges

BRD and Potential Games (cont.)

Nash Equilibria are the sinks in this graph

Suppose BRD converges = there are no cycles in this graph

So, from every vertex a there is some sink s that is reachable (why?)

® We construct potential function ¢(a) for each vertex a

¢(a) is length of longest finite path from a to any sink s

We need: for any edge a — b, ¢(b) < ¢(a).
Its true! ¢(a) > ¢(b) + 1. (why?)

Outline

4. No-regret Learning

Sequential Prediction: Stock-prediction Example

Every day GME goes up or down

Goal is to predict direction each day before market opens (to buy or short)

® Market can behave arbitrarily/adversarially

So there is no way we can promise to do well

® However, we get advice

Expert Advice

There are N experts who make predictions in T rounds

At each round t, each expert i makes prediction p! € {U, D}

® Expertise is self proclaimed — no promise experts know what they're talking about

® We (algorithm) want to aggregate predictions, to make our own prediction p§
® \We learn true outcome o! at the end of each round
[)

If we predicted incorrectly (i.e. pj # o'), then we made a mistake

Expert Advice (cont.)

Goal is to after a while do (almost) as well as best expert in hindsight

To make things easy, we assume for now that there is one perfect expert

Perfect expert never makes mistakes (but we don't know who the expert is)

Can we find strategy that is guaranteed to make at most log(/N) mistakes?

The Halving Algorithm

Let S « {1,..., N} be set of all experts;
fort=1to T do
Predict with majority vote;
Observe the true outcome of;
Eliminate all experts that made a mistake: St™! = {i € S| pf = o'};

The Halving Algorithm: Analysis

® Algorithm predicts with majority vote

® Every time it makes a mistake, at least half of remaining experts are eliminated
® Hence |STTY] < |St|/2

® On the other hand, perfect expert is never eliminated

® Hence |Sf| > 1 forall t

® Since |S| = N, this means there can be at most log N mistakes

® But what if no expert is perfect? Say the best expert makes OPT mistakes

® Can we find a way to make not too many more than OPT mistakes?

The lterated Halving Algorithm

Let ST < {1,..., N} be the set of all experts;
fort=1to T do
if |St| = 0 then
| Reset: Set S* «+ {1,..., N}
Predict with majority vote;
Eliminate all experts that made a mistake: S'™! = {i € S| pf = o'};

The lterated Halving Algorithm: Analysis

® Whenever algorithm makes mistake, we eliminate half of experts

So algorithm can make at most log N mistakes between any two resets

But if we reset, it is because since last reset, every expert has made mistake

In particular, between any two resets, best expert has made at least 1 mistake

Algorithm makes at most log(/N)(OPT + 1) mistakes

Algorithm is wasteful in that every time we reset, we forget what we have learned!

How about just downweight experts who make mistakes?

The Weighted Majority Algorithm

Set weights w! < 1 for all experts i;
fort=1to T do
Predict with weighted majority vote;
L Down-weight experts who made mistakes: (i.e., if pf # of, set w/t! « wf/2)

The Weighted Majority Algorithm: Analysis

® Let M be total number of mistakes that algorithm makes
® Let W' =73", w be total weight at step t
® When algorithm makes mistake, at least half of total weight is cut in half
* So: W' < (3/4)Wt
® |f algorithm makes M mistakes, WT < N - (3/4)M
® Let i* be the best expert, WT > w, = (1/2)°FT which gives:
(1/2)°FT < W < N(3/8)M = (4/3)M < N - 2°PT = M < 2.4(OPT + log(N))
® Algorithm makes at most 2.4 (OPT + log(/)) mistakes

® log(NN) is constant, so ratio of mistakes to OPT is 2.4 in limit — not great, but not bad

What Do We Want in an Algorithm?

® Make only 1x as many mistakes as OPT in limit, rather than 2.4x
® Handle N distinct actions (separate action for each expert), not just up and down

® Handle arbitrary costs in [0, 1] per expert per round, not just right and wrong

New Model /Algorithm

In rounds 1,..., T, algorithm chooses some expert it

Each expert i experiences loss: ¢¢ € [0,1]

Algorithm experiences the loss of the expert it chooses: (5 = /1,

Total loss of expert i is L] = ZtT:1 0

Total loss of algorithm is L} = Z;rzl A

® Goal is to obtain loss “not much worse” than that of the best expert: min; L,-T

Multiplicative Weights (MW) Algorithm (a.w.a. Hedge Algorithm)

Set weights W,-1 < 1 for all experts i;
fort=1to T do

Let Wt=3"N. wt;

Choose expert i with probability wf/W?;

For each i, set W’-t+1 — wi - exp(—elt);

® Can be viewed as “smoothed” version of weighted majority algorithm
® Has parameter € which controls how quickly it down-weights experts

® |s randomized — chooses experts w.p. proportional to their weights

Can be used with alternative update: w'™ « wf - (1 — eft)

Multiplicative Weights Algorithm: Discussion

® For any sequence of losses, and any expert k:

1 T 1 7 In(N)
il < =
T ElLyw] < T Ly +e+ . T
® In particular, setting e = /In(N)/ T
1 . 1 .4 In(N)
— <

Average loss quickly approaches that of best expert exactly, at rate of l/ﬁ

This works for arbitrary sequence of losses (e.g., chosen adaptively by adversary)

So we could us it to play games (experts <> actions and losses <+ costs)

Recall: Minimax Theorem (John von Neumann, 1928)

In any finite, two-player, zero-sum game, in any NE, each agent receives a payoff that
is equal to both their maxmin value and their minmax value

max min u;(s;,s_;) = min max u;(s;, s_;)
S S_j S—j Si

Simple Proof for Minimax Theorem

® Scale utilities such that uy is in [0, 1]

e Write vi = ming, maxs, u1(s1,s2) and v, = maxs, ming, ui(s, s2)
® Suppose theorem were false: v; = v» + € for some constant € > 0
[

Suppose Al and A2 repeatedly play against each other as follows

® A2 uses MW algorithm: at round t, s5(a2) = wi,/W*

® Al plays best response to A2's strategy: s; = argmax,, uy(s1,S5)

Simple Proof for Minimax Theorem (cont.)
® For A2's MW algorithm, we have:

log n

ZE[U1(31,32)] mmZul al,a) +2 T

® Let 5; be mixed strategy that puts weight 1/T on each action a}, we have:

T
—mm E u(al, a) = E 1(at, a2) = min uy (51, a2)
an ar

® By definition, we have: min,, u1(51, a2) < maxg, min,, ui(s1, 82) = v2, and so:

.
1 log n
7 2 Eln(af)] < vo +2/ =5

t=1

Simple Proof for Minimax Theorem (cont.)

® On the other hand, Al best responds to A2's mixed strategy:

T
1 t
— g max u1 (a1, s;)
T a
t=1
T 1 T

1
> T ;n;;n max uy (a1, s2) = 7 Z vi =vl

ai

.

1

= > Blu(af, 3]
t=1

¢ Combining these inequalities, we get: vi < vo +24/logn/T
® Since vi = vy + ¢, we have: € < 2/logn/T

® Taking T large enough leads to contradiction

External Regret

1

® Sequence a',...,a’ has external regret of A(T) if for every agent i and action al:

T T
1 1
7 Y ui(at) > 7 > ui(alai) = A(T)
t=1 t=1
e If A(T) = or(1), we say that sequence of action profiles has no external regret
® External regret measures regret to the best fixed action in hindsight

e If a',...,a" has € external regret, then distribution 7 that puts weight 1/T on
each af (i.e., empirical distribution of actions) forms e-approximate CCE

T T
1
Earwr[u/ Z 7 Z u,-(af-, a—i) — €= EQNW[Uf(a;'v a—i)] — €

t=1

No-(external-)regret Dynamics

Suppose that all agents use MW algorithm to choose between k actions

After T steps, sequence of outcomes has external regret of A(T) =2,/logk/T

Empirical distribution of outcomes forms A(T)-approximate CCE

For T = 4log(k)/e?, distribution of outcomes converges to e-approximate CCE

Swap Regret

® Sequence a',...,a’ has swap regret of A(T) if for every agent i and every switching

function F; : A; — A;:

T

1 1

23w 2 o 3 ulFlan)a) — A(T)
t=1 t=1

® If A(T) = or(1), we say that sequence of action profiles has no swap regret

® This measures regret to counterfactual case where every action of particular type is
swapped with different action in hindsight, separately for each action

® E.g., "Every time i bought Microsoft, i should have bought Apple, and every time i
bought Google, i should have bought Comcast.”

® If a',....a" has e swap regret, then distribution 7 that picks among a',...,a’ uniformly
at random is e-approximate correlated equilibrium

Generalization

® For any agent /i, F;, and a € A, define regret as:
Regret,-(a, F,') = u,-(F,-(a,-), a_,-) — u,-(a)

® F; is constant switching function if Fj(a;) = Fi(a;) for all aj, a’ € A;

e 7 is CCE if for every agent i and every constant switching function F;:
E.r[Regret;(a, F;)] <0
e 7 is CE if for every agent i and every switching function F;:

E.r[Regret;(a, F;)] <0

How to Achieve No Swap Regret

Define set of time steps that expert j is selected:

SJ:{tat:j}

Observation: To achieve no swap regret it would be sufficient that for every j:

|5|Z at_—mmet—FA

tes; tes;

® No swap regret = no external regret separately on each sequence of actions S;

Best switching function in hindsight = swapping each action j for best fixed
action in hindsight over §;

Idea: Run k copies of PW, one responsible for each §;

Algorithm Sketch for No Swap Regret

Initialize k copies of MW algorithm one for each of k actions

Let (i)}, ..., q(i)} be distribution over experts for copy i at time ¢

Combine these into single distribution over experts: p;, ..., pi (details later!)

Let ¢%,..., ¢} be losses for experts at time t

For copy i of MW algorithm, we report losses pf¢i, ..., pfes

® le., to copy i, we report the true losses scaled by pf

No-swap-regret Algorithm

Pk - £f

q(1)f
My
pi -t
q(2)f
P’ M,
- ps-
g :
q(k)*
My

No-swap-regret Algorithm: Analysis

® Expected cost of the master algorithm:

T k

SR (1)

t=1 i=1
® Expected cost under switching function F
1 Tk
722 Pk)
t=1 i=1

® Goal: prove that (1) is at most (2) plus A(T) = or(1)

No-swap-regret Algorithm: Analysis (cont.)

® Expected cost of M;:

1 T k
LSS a8} £ ©
t=1 i

i—1

® M, is no-regret algorithm, so its cost is at most:

Pl gy + A(T) (4)

IIM\!

for any any arbitrary F

No-swap-regret Algorithm: Analysis (cont.)

¢ Summing inequality between (3) and (4) over all copies:

T k
1
t E E t t T

M-
M =~
P.j x

7

® Right-hand side is equal to (2)

® For left-hand side to be equal to (1), we need:

k

Combining Distributions

k
t t A\t
pi=> pf-q()
Jj=1
® These might be familiar as those defining stationary distribution of Markov chain
® There are k states, probability of going to state i from j is q(j)!
® Stationary distribution over states is (p} ... pf)
® These equations always have solution as probability distribution
e Crucial property: two ways of viewing the distribution over experts:

® Each expert i is chosen with probability p! or

° W.p. pjt we select copy j and then select expert i w.p. q(j)}

Regret Matching

e of: Average per-step reward received by agent up until time t

a'(a): Average per-period reward that would have been received up until time t
had pure strategy a was played by agent, assuming others played the same

t

Regret at time t for not having played a: R*(a) = af(a) — «
® Regret matching: At time t, choose action a w.p. proportional to its regret:

Rt(a)-‘r
2 RE&)T

st(a) =

Outline

5. Background: Single-agent Reinforcement Learning

Reinforcement Learning

e Still assume MDP
® Set of states s € S .
® Set of actions a € A 6
® Model p(s,a,s’) . Warm A
® Reward r(s,a,s’) 6
Overheated
e Still looking for policy (s)
® New twist: we do not know p or r
® |.e. we do not know which states are good or what actions do
[]

Must actually try actions and states out to learn

66 /87

Offline (MDPs) vs. Online (RL)

>

Offline solution Online solution

Why Not Use Policy Evaluation?

e Simplified Bellman updates calculate V and Q for a fixed policy

VI (s) = Y p(s,m(s),s) (r(s, 7(s),s) + 6 V4 (5))

® This approach fully exploited connections between the states

® Unfortunately, we need p and r to do it!

Temporal Difference (TD) Learning

® Main idea: learn from every experience!

® Update V/(s) each time we experience a transition (s, a,s’, r)

® Likely outcomes s’ will contribute updates more often
® Temporal difference learning of values

® Policy still fixed, still doing evaluation!

® Move values toward value of whatever successor occurs: running average
Sample of V(s): r(s,a,s') +V™(s')
Update of V(s): V7(s) + (1 —a)V7(s) + a(r(s,a,s’) +V7(s"))
Same update : V7(s) <= V™(s) + a(r(s,a,s") + V™(s") — V™(s))

Problems with TD Value Learning

® TD value leaning is model-free way to do policy evaluation

® |t mimics Bellman updates with running sample averages

However, if we want to turn values into (new) policy, we need p and r!
m(s) = argmax Q(s,a)

Q" (s,a) = Z p(s,a,s’) (r(s7 a,s')+ (5V(s’))

To solve this, we can learn Q-values instead of values

This makes action selection model-free too!

Active Reinforcement Learning

Q-learning

® Q-Learning is sample-based Q-value iteration
Q:(s,a) + Z: p(s,a,s’) (r(s, a,s')+§ max Q:r—1(s, a’)>
s

® We learn Q(s, a) values as we go

Sample : r(s,a,s’) + d max Q(s', &)
a'cA

Update : Q(s,a) «+ (1 — at)Q(s, a) + a; <r(s, a,s’) + 6 max Q(s, a’))

a’eA

Q-learning Algorithm

repeat until convergence
observe current state s;
select action a and take it (e.g., via e-greedy policy);
observe next state s’ and reward r(s, a, s’);
Qr+1(s,a) < (1 — ar)Qe(s, @) + ar (r(s, a, ") + 6 Vi(s));
Vit1(s) < max, Q¢(s, a);

o e-greedy: W.p. ¢, act randomly, w.p. (1 — €) act according to Q;

Q-learning Properties

® Q-learning converges to optimal policy — even if agent acts sub-optimally!
® This is called off-policy learning

® There are some caveats

® We have to explore enough
® We have to eventually make the learning rate small enough
® But we should not decrease it too quickly

* Q-learning converges if > ;" a; = 0o and Y " a? < oo

Basically, in the limit, it does not matter how you select actions (!)

Outline

6. Multi-agent Reinforcement Learning

Independent Single-agent RL

Setting: Two-player zero-sum games

Naive idea: Agents ignore the existence of their opponent

® Q7(s,a;): Value for i if both agents follow 7 starting from s and i plays a;

Learning dynamics: Agents deploy independent Q-learning

® Good news: No-regret property if opponent plays stationary policy

Bad news: No convergence guarantee if both agents are learning (e.g., self play)!

Minimax-Q

e Littman? extended Q-learning algorithm to zero-sum stochastic games
® Main idea is to modify Q-function to consider actions of opponent

Qi t+1(se,ar) = (1 — ae) Qi e(St, ar) + v (ri(se, ar) + 0 Vi ¢(Se41))
® Since game is zero sum, we can have

Vi ¢(s) = max min Q; +(s, m;, a_;)
m a—j

2 . . "
Littman, M. L. “Markov games as a framework for multi-agent reinforcement learning.” 1994

Minimax-Q Algorithm

repeat until convergence
observe current state s;

select action a; and take it (e.g., via e-greedy policy);
observe action profile a;

observe next state s’ and reward r(s, a, s’);

Qit+1(s,a) < (1 — ae)Qie(s,a) + ae (r(s,a) + 8Vii(s));
(s,) < argmaxy ming_, >, (s, ;) Qj«(s, ai, a—);
Vir1(s) <= mina_, >, 7(s, 1) Qie(s, ai, a—i);

Minimax-Q Algorithm: Discussion

® |t guarantees agents payoff at least equal to that of their maxmin strategy

® In zero-sum games, minimax-Q converges to the value of the game in self play

It no longer satisfies no-regret property

® |f opponent plays sub-optimally, minimax-Q does not exploit it in most games

Nash-Q

Hu and Wellman® extended minimax-Q to general-sum games

Algorithm is structurally identical to minimax-Q

® Extension requires that each agent maintains values for all other agents

LP to find maxmin value is replaced with quadratic programming to find NE

Nash-Q makes number of very limiting assumptions (e.g., uniqueness of NE)

Hu, J, and Wellman, M. P. “Multiagent reinforcement learning: theoretical framework and an algorithm.” 1998

Recall: Stochastic Games Model

® Focus on stationary Markov strategies (a mixed strategy per state)

mi S — A(Aj) denotes (mixed) strategy of agent i at state s

® 7 =(m,...,7s) denotes strategy profile of all agents

Expected utility (value) function of agent i is

[e.e]
Vi(5,) == Eapon(sy) Zékr;(sk, ak)|so=s
k=0

Equilibrium Characterization

® Equilibrium value function is defined using one-stage deviation principle
(multi-agent extension of Bellman's equation) as

vi(s,) = max E, (r, = (s)) | ri(s,a) + 0 E p(s,a, s)vi(s',)
v —!
s’eS

® Q-function is defined as

Qi(s,a,7*) =ri(s,a)+ 9 Z p(s,a, s)vi(s', ")

s'eS

® Recursion is then defined as

Vi(S, W*) = mﬂ_ax an(ﬂ;,ﬂ’ii(s)) [Qi(57 a, 77*)]

FP for Model-based Learning

® Consider learning dynamic that combines FP with value-function (or Q-function) iteration

® Agents form beliefs on opponent strategies (using empirical frequencies and assuming
opponent uses stationary strategy)

® Agents also form beliefs about equilibrium value function, or Q-function

® Agents then choose best response action in auxiliary game given their beliefs (where
payoffs are given by Q-function estimates)

® Key challenge is that payoffs or value functions in these auxiliary games are non-stationary
(unlike repeated play of stage games)

FP for Model-based Learning: Model

® At time t, i's belief on —i's strategy is ! and on own Q-function is
Q,t = Ea,;w/tf(s)[Qit(sa aj, a,,-)]
® Agent i selects best response af(s) € argmax,. Qf(s, aj, 11{(s))

® Agent / updates pu; as
;Lf+1(5) =(1- Oét).uf(s) + O‘fat—i(s)

Agent i updates Q; as

Q(s,2) = (1= B)Qf(s.2) + f <(A0 plsa S')V"t(s/)>

s’eS

where vi(s') = max,, QF(s’, a;, uf(s))

Two-timescale Learning Framework

Beliefs on Q-functions are updated at slower rate than beliefs on opponent strategies

This postulate agents' choices to be more dynamic than changes in their preferences

Q-functions in auxiliary games can be viewed as slowly evolving agent preferences

This enables weakening the dependence between evolving strategies and Q-functions

Convergence of Two-timescale Learning Framework

If each state is visited infinitely many times

And, if Iimk_mo Q) — Iimk_>oo ﬁk =0 and Zk Q) — Zk ,Bk = o0

And, if limg_o Bx/ak = 0 (two-timescale learning: Bk — 0 faster than o, — 0)

Then @ and p converge to NE value and strategy in zero-sum stochastic games

They also converge to NE value for single-controller stochastic games

Acknowledgment

® This lecture is a slightly modified version of ones prepared by

® Asu Ozdaglar [MIT 6.254]
® Vincent Conitzer [Duke CPS 590.4]
® Aaron Roth [UPenn NETS 412]

® Dan Klein and Pieter Abbeel [UC Berkeley CS 188]

87 /87

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-254-game-theory-with-engineering-applications-spring-2010/index.htm
https://courses.cs.duke.edu/spring16/compsci590.4/
https://www.cis.upenn.edu/~aaroth/courses/agtS21.html
http://ai.berkeley.edu/home.html

	Introduction
	Fictitious Play
	Best-response Dynamics
	No-regret Learning
	Background: Single-agent Reinforcement Learning
	Multi-agent Reinforcement Learning

