Game-theoretic
 Foundations of Multi-agent Systems

Lecture 9: Learning in Games

Seyed Majid Zahedi

WATERESLOF

Outline

1. Introduction
2. Background
3. Fictitious Play
4. Best-response Dynamics
5. No-regret Learning
6. Background: Single-agent Reinforcement Learning
7. Multi-agent Reinforcement Learning

Single-agent vs Muli-agent Learning

- In artificial intelligence (AI), learning is usually performed by single agent

Single-agent vs Muli-agent Learning

- In artificial intelligence (AI), learning is usually performed by single agent
- Learning agent learns to function successfully in unknown environment

Single-agent vs Muli-agent Learning

- In artificial intelligence (AI), learning is usually performed by single agent
- Learning agent learns to function successfully in unknown environment
- In multi-agent setting, environment contains other agents

Single-agent vs Muli-agent Learning

- In artificial intelligence (AI), learning is usually performed by single agent
- Learning agent learns to function successfully in unknown environment
- In multi-agent setting, environment contains other agents
- Agents' learning changes the environment

Single-agent vs Muli-agent Learning

- In artificial intelligence (AI), learning is usually performed by single agent
- Learning agent learns to function successfully in unknown environment
- In multi-agent setting, environment contains other agents
- Agents' learning changes the environment
- These changes depend in part on actions of learning agents

Single-agent vs Muli-agent Learning

- In artificial intelligence (AI), learning is usually performed by single agent
- Learning agent learns to function successfully in unknown environment
- In multi-agent setting, environment contains other agents
- Agents' learning changes the environment
- These changes depend in part on actions of learning agents
- Learning of each agent is impacted by learning performed by others

Single-agent vs Muli-agent Learning

- In artificial intelligence (AI), learning is usually performed by single agent
- Learning agent learns to function successfully in unknown environment
- In multi-agent setting, environment contains other agents
- Agents' learning changes the environment
- These changes depend in part on actions of learning agents
- Learning of each agent is impacted by learning performed by others
- Different learning rules lead to different dynamical system

Single-agent vs Muli-agent Learning

- In artificial intelligence (AI), learning is usually performed by single agent
- Learning agent learns to function successfully in unknown environment
- In multi-agent setting, environment contains other agents
- Agents' learning changes the environment
- These changes depend in part on actions of learning agents
- Learning of each agent is impacted by learning performed by others
- Different learning rules lead to different dynamical system
- Simple learning rules can lead to complex global behaviors of system

Learning and Teaching

- In multi-agent systems, learning and teaching are inseparable

Learning and Teaching

- In multi-agent systems, learning and teaching are inseparable
- Agents must consider what they have learned from others' past behavior

Learning and Teaching

- In multi-agent systems, learning and teaching are inseparable
- Agents must consider what they have learned from others' past behavior
- They also must consider how they wish to influence others' future behavior

Learning and Teaching

- In multi-agent systems, learning and teaching are inseparable
- Agents must consider what they have learned from others' past behavior
- They also must consider how they wish to influence others' future behavior
- In such setting, learning as accumulating knowledge is not always beneficial

Learning and Teaching

- In multi-agent systems, learning and teaching are inseparable
- Agents must consider what they have learned from others' past behavior
- They also must consider how they wish to influence others' future behavior
- In such setting, learning as accumulating knowledge is not always beneficial
- Accumulating knowledge should never hurt, one can always ignore what is learned

Learning and Teaching

- In multi-agent systems, learning and teaching are inseparable
- Agents must consider what they have learned from others' past behavior
- They also must consider how they wish to influence others' future behavior
- In such setting, learning as accumulating knowledge is not always beneficial
- Accumulating knowledge should never hurt, one can always ignore what is learned
- But when one pre-commits to particular strategy for acting on accumulated knowledge, sometimes less is more

Learning and Teaching

- In multi-agent systems, learning and teaching are inseparable
- Agents must consider what they have learned from others' past behavior
- They also must consider how they wish to influence others' future behavior
- In such setting, learning as accumulating knowledge is not always beneficial
- Accumulating knowledge should never hurt, one can always ignore what is learned
- But when one pre-commits to particular strategy for acting on accumulated knowledge, sometimes less is more
- E.g., in game of Chicken, if your opponent is learning your strategy to play best response, then optimal strategy is to always dare

Is Agent Learning in Optimal Way?

- In (repeated or stochastic) zero-sum games, this question is meaningful to ask

Is Agent Learning in Optimal Way?

- In (repeated or stochastic) zero-sum games, this question is meaningful to ask
- In general, answer depends not only on learning procedure but also on others' behavior

Is Agent Learning in Optimal Way?

- In (repeated or stochastic) zero-sum games, this question is meaningful to ask
- In general, answer depends not only on learning procedure but also on others' behavior
- When all agents adopt same strategy, the setting is called self-play

Is Agent Learning in Optimal Way?

- In (repeated or stochastic) zero-sum games, this question is meaningful to ask
- In general, answer depends not only on learning procedure but also on others' behavior
- When all agents adopt same strategy, the setting is called self-play
- E.g., all agent adopt TfT, or all adopt reinforcement learning (RL)

Is Agent Learning in Optimal Way?

- In (repeated or stochastic) zero-sum games, this question is meaningful to ask
- In general, answer depends not only on learning procedure but also on others' behavior
- When all agents adopt same strategy, the setting is called self-play
- E.g., all agent adopt TfT, or all adopt reinforcement learning (RL)
- One way to evaluate learning procedures is based on their performance in self-play

Is Agent Learning in Optimal Way?

- In (repeated or stochastic) zero-sum games, this question is meaningful to ask
- In general, answer depends not only on learning procedure but also on others' behavior
- When all agents adopt same strategy, the setting is called self-play
- E.g., all agent adopt TfT, or all adopt reinforcement learning (RL)
- One way to evaluate learning procedures is based on their performance in self-play
- But learning agents can also be judged by how they do in context of other agent types

Is Agent Learning in Optimal Way?

- In (repeated or stochastic) zero-sum games, this question is meaningful to ask
- In general, answer depends not only on learning procedure but also on others' behavior
- When all agents adopt same strategy, the setting is called self-play
- E.g., all agent adopt TfT, or all adopt reinforcement learning (RL)
- One way to evaluate learning procedures is based on their performance in self-play
- But learning agents can also be judged by how they do in context of other agent types
- TfT agent may perform well against TfT agents, but less well against RL agents

Is Agent Learning in Optimal Way?

- In (repeated or stochastic) zero-sum games, this question is meaningful to ask
- In general, answer depends not only on learning procedure but also on others' behavior
- When all agents adopt same strategy, the setting is called self-play
- E.g., all agent adopt TfT, or all adopt reinforcement learning (RL)
- One way to evaluate learning procedures is based on their performance in self-play
- But learning agents can also be judged by how they do in context of other agent types
- TfT agent may perform well against TfT agents, but less well against RL agents
- Note that in GT, optimal strategy is replaced by best response (and equilibrium)

Properties of Learning Rules

- Safety: Guarantee agents at least their maxmin value

Properties of Learning Rules

- Safety: Guarantee agents at least their maxmin value
- Rationality: Settle on best response to opponent's strategy whenever opponent settles on stationary strategy

Properties of Learning Rules

- Safety: Guarantee agents at least their maxmin value
- Rationality: Settle on best response to opponent's strategy whenever opponent settles on stationary strategy
- Opponent adopts same mixed strategy each time, regardless of the past

Properties of Learning Rules

- Safety: Guarantee agents at least their maxmin value
- Rationality: Settle on best response to opponent's strategy whenever opponent settles on stationary strategy
- Opponent adopts same mixed strategy each time, regardless of the past
- No regret: Yield payoff that is no less than payoff agent could have obtained by playing any pure strategy against any set of opponents (details later!)

Outline

1. Introduction
2. Background
3. Fictitious Play
4. Best-response Dynamics
5. No-regret Learning
6. Background: Single-agent Reinforcement Learning
7. Multi-agent Reinforcement Learning

Nash Equilibrium

- Nash equilibrium (NE): No agent wins from unilateral deviation

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}^{*}\right) \quad \forall i, s_{i}^{\prime}
$$

Nash Equilibrium

- Nash equilibrium (NE): No agent wins from unilateral deviation

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}^{*}\right) \quad \forall i, s_{i}^{\prime}
$$

- Pure-strategy NE: NE strategies are pure strategies for all agents

Nash Equilibrium

- Nash equilibrium (NE): No agent wins from unilateral deviation

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}^{*}\right) \quad \forall i, s_{i}^{\prime}
$$

- Pure-strategy NE: NE strategies are pure strategies for all agents
- It is opposite of mixed-strategy NE

Nash Equilibrium

- Nash equilibrium (NE): No agent wins from unilateral deviation

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}^{*}\right) \quad \forall i, s_{i}^{\prime}
$$

- Pure-strategy NE: NE strategies are pure strategies for all agents
- It is opposite of mixed-strategy NE
- Strict NE: Any agent who unilaterally deviates looses

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}^{*}\right) \quad \forall i, s_{i}^{\prime} \neq s_{i}^{*}
$$

Nash Equilibrium

- Nash equilibrium (NE): No agent wins from unilateral deviation

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}^{*}\right) \quad \forall i, s_{i}^{\prime}
$$

- Pure-strategy NE: NE strategies are pure strategies for all agents
- It is opposite of mixed-strategy NE
- Strict NE: Any agent who unilaterally deviates looses

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}^{*}\right) \quad \forall i, s_{i}^{\prime} \neq s_{i}^{*}
$$

- It is opposite of weak NE

Nash Equilibrium

- Nash equilibrium (NE): No agent wins from unilateral deviation

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}^{*}\right) \quad \forall i, s_{i}^{\prime}
$$

- Pure-strategy NE: NE strategies are pure strategies for all agents
- It is opposite of mixed-strategy NE
- Strict NE: Any agent who unilaterally deviates looses

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}^{*}\right) \quad \forall i, s_{i}^{\prime} \neq s_{i}^{*}
$$

- It is opposite of weak NE
- Each agent has unique best response to others

Nash Equilibrium

- Nash equilibrium (NE): No agent wins from unilateral deviation

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq u_{i}\left(s_{i}^{\prime}, s_{-i}^{*}\right) \quad \forall i, s_{i}^{\prime}
$$

- Pure-strategy NE: NE strategies are pure strategies for all agents
- It is opposite of mixed-strategy NE
- Strict NE: Any agent who unilaterally deviates looses

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right)>u_{i}\left(s_{i}^{\prime}, s_{-i}^{*}\right) \quad \forall i, s_{i}^{\prime} \neq s_{i}^{*}
$$

- It is opposite of weak NE
- Each agent has unique best response to others
- Strict NE is necessarily a pure-strategy NE (why?)

Nash Equilibrium (cont.)

- Strong NE: No coalition of agents wins by unilateral deviation

Nash Equilibrium (cont.)

- Strong NE: No coalition of agents wins by unilateral deviation
- It is not opposite of weak NE! NE can be both strong and weak, either, or neither!

Nash Equilibrium (cont.)

- Strong NE: No coalition of agents wins by unilateral deviation
- It is not opposite of weak NE! NE can be both strong and weak, either, or neither!
- It implies Pareto-optimality

Nash Equilibrium (cont.)

- Strong NE: No coalition of agents wins by unilateral deviation
- It is not opposite of weak NE! NE can be both strong and weak, either, or neither!
- It implies Pareto-optimality
- Stable NE: No agent wins by small unilateral deviation, one who deviates loses

Nash Equilibrium (cont.)

- Strong NE: No coalition of agents wins by unilateral deviation
- It is not opposite of weak NE! NE can be both strong and weak, either, or neither!
- It implies Pareto-optimality
- Stable NE: No agent wins by small unilateral deviation, one who deviates loses
- It is opposite of unstable NE

Nash Equilibrium (cont.)

- Strong NE: No coalition of agents wins by unilateral deviation
- It is not opposite of weak NE! NE can be both strong and weak, either, or neither!
- It implies Pareto-optimality
- Stable NE: No agent wins by small unilateral deviation, one who deviates loses
- It is opposite of unstable NE
- Agents who did not change have no better strategy in the new circumstance

Nash Equilibrium (cont.)

- Strong NE: No coalition of agents wins by unilateral deviation
- It is not opposite of weak NE! NE can be both strong and weak, either, or neither!
- It implies Pareto-optimality
- Stable NE: No agent wins by small unilateral deviation, one who deviates loses
- It is opposite of unstable NE
- Agents who did not change have no better strategy in the new circumstance
- Agent who made a small unilateral change will return immediately to NE

Nash Equilibrium Beyond Two-player Zero-sum Games

- NE is invaluable descriptive tool in game theory

Nash Equilibrium Beyond Two-player Zero-sum Games

- NE is invaluable descriptive tool in game theory
- But NE is problematic as prescriptive tool beyond two-player zero-sum game

Nash Equilibrium Beyond Two-player Zero-sum Games

- NE is invaluable descriptive tool in game theory
- But NE is problematic as prescriptive tool beyond two-player zero-sum game
- NE is hard to compute even in two-player general-sum games

Nash Equilibrium Beyond Two-player Zero-sum Games

- NE is invaluable descriptive tool in game theory
- But NE is problematic as prescriptive tool beyond two-player zero-sum game
- NE is hard to compute even in two-player general-sum games
- Equilibrium selection is challenging (coordination without communication)

Correlated Equilibrium (CE)

- CE is notion of rationality proposed by Aumann ${ }^{1}$

Robert J. Aumann ${ }^{2}$
(born in 1930)

[^0]
Correlated Equilibrium (CE)

- CE is notion of rationality proposed by Aumann ${ }^{1}$
- Agents receive recommendations according to distribution

Robert J. Aumann ${ }^{2}$
(born in 1930)

[^1]
Correlated Equilibrium (CE)

- CE is notion of rationality proposed by Aumann ${ }^{1}$
- Agents receive recommendations according to distribution
- Distribution is CE if agents have no incentives to deviate

Robert J. Aumann ${ }^{2}$
(born in 1930)

[^2]
Correlated Equilibrium (CE)

- CE is notion of rationality proposed by Aumann ${ }^{1}$
- Agents receive recommendations according to distribution
- Distribution is CE if agents have no incentives to deviate
- It overcomes shortcomings of NE as prescriptive tool

Robert J. Aumann ${ }^{2}$
(born in 1930)

[^3]
Correlated Equilibrium (CE)

- CE is notion of rationality proposed by Aumann ${ }^{1}$
- Agents receive recommendations according to distribution
- Distribution is CE if agents have no incentives to deviate
- It overcomes shortcomings of NE as prescriptive tool
- CE does not suffer from equilibrium selection

Robert J. Aumann ${ }^{2}$
(born in 1930)

[^4]
Correlated Equilibrium (CE)

- CE is notion of rationality proposed by Aumann ${ }^{1}$
- Agents receive recommendations according to distribution
- Distribution is CE if agents have no incentives to deviate
- It overcomes shortcomings of NE as prescriptive tool
- CE does not suffer from equilibrium selection
- And, it enables better social welfare

Robert J. Aumann ${ }^{2}$
(born in 1930)

[^5]
Correlated Equilibrium (CE)

- CE is notion of rationality proposed by Aumann ${ }^{1}$
- Agents receive recommendations according to distribution
- Distribution is CE if agents have no incentives to deviate
- It overcomes shortcomings of NE as prescriptive tool
- CE does not suffer from equilibrium selection
- And, it enables better social welfare
- CE arises naturally as empirical frequency of play by independent learners (details later!)

Robert J. Aumann ${ }^{2}$
(born in 1930)

[^6]
Correlated Equilibrium CE (cont.)

- Distribution π over action profiles A is correlated equilibrium if:

$$
\mathbb{E}_{\mathrm{a} \sim \pi}\left[u_{i}(a)\right] \geq \mathbb{E}_{\mathrm{a} \sim \pi}\left[u_{i}\left(a_{i}^{\prime}, a_{-i}\right) \mid a_{i}\right]
$$

for all i and a_{i}^{\prime}

Correlated Equilibrium CE (cont.)

- Distribution π over action profiles A is correlated equilibrium if:

$$
\mathbb{E}_{\mathrm{a} \sim \pi}\left[u_{i}(a)\right] \geq \mathbb{E}_{\mathrm{a} \sim \pi}\left[u_{i}\left(a_{i}^{\prime}, a_{-i}\right) \mid a_{i}\right]
$$

for all i and a_{i}^{\prime}

- After a is drawn, playing a_{i} is best response for i after seeing a_{i}, given that everyone else plays according to a

Coarse Correlated Equilibrium

- Distribution π over action profiles A is coarse correlated equilibrium if:

$$
\mathbb{E}_{\mathrm{a} \sim \pi}\left[u_{i}(a)\right] \geq \mathbb{E}_{a \sim \pi}\left[u_{i}\left(a_{i}^{\prime}, a_{-i}\right)\right]
$$

for all i and a_{i}^{\prime}

Coarse Correlated Equilibrium

- Distribution π over action profiles A is coarse correlated equilibrium if:

$$
\mathbb{E}_{a \sim \pi}\left[u_{i}(a)\right] \geq \mathbb{E}_{a \sim \pi}\left[u_{i}\left(a_{i}^{\prime}, a_{-i}\right)\right]
$$

for all i and a_{i}^{\prime}

- After a is drawn, playing a_{i} is best response for i before seeing a_{i}, given that everyone else plays according to a

Coarse Correlated Equilibrium

- Distribution π over action profiles A is coarse correlated equilibrium if:

$$
\mathbb{E}_{a \sim \pi}\left[u_{i}(a)\right] \geq \mathbb{E}_{a \sim \pi}\left[u_{i}\left(a_{i}^{\prime}, a_{-i}\right)\right]
$$

for all i and a_{i}^{\prime}

- After a is drawn, playing a_{i} is best response for i before seeing a_{i}, given that everyone else plays according to a
- This makes sense if agents have to commit up front to following recommendations or not (deviations are not allowed after recommendations are received)

Coarse Correlated Equilibrium

- Distribution π over action profiles A is coarse correlated equilibrium if:

$$
\mathbb{E}_{a \sim \pi}\left[u_{i}(a)\right] \geq \mathbb{E}_{\mathbf{a} \sim \pi}\left[u_{i}\left(a_{i}^{\prime}, a_{-i}\right)\right]
$$

for all i and a_{i}^{\prime}

- After a is drawn, playing a_{i} is best response for i before seeing a_{i}, given that everyone else plays according to a
- This makes sense if agents have to commit up front to following recommendations or not (deviations are not allowed after recommendations are received)
- Coarse correlated equilibrium could occasionally recommend really bad actions!

Coarse Correlated Equilibrium: Example

	A		B
C			
A	1,1	$-1,-1$	0,0
	33.3%	0%	0%
B	$-1,-1$	1,1	0,0
	0%	33.3%	0%
C	0,0	0,0	$-1.1,-1.1$
	0%	0%	33.3%

- Utility for following $\pi: 1 / 3+1 / 3-1.1 / 3=0.3$

Coarse Correlated Equilibrium: Example

	A		B
A			
A	1,1	$-1,-1$	0,0
	33.3%	0%	0%
B	$-1,-1$	1,1	0,0
	0%	33.3%	0%
C	0,0	0,0	$-1.1,-1.1$
	0%	0%	33.3%

- Utility for following $\pi: 1 / 3+1 / 3-1.1 / 3=0.3$
- Utility for playing A or B if other agent follows π : $1 / 3-1 / 3+0=0$

Coarse Correlated Equilibrium: Example

	A	B	C
A	1,1	$-1,-1$	0,0
	33.3%	0%	0%
	$-1,-1$	1,1	0,0
B	0%	33.3%	0%
	0,0	0,0	$-1.1,-1.1$
	0%	0%	33.3%

- Utility for following $\pi: 1 / 3+1 / 3-1.1 / 3=0.3$
- Utility for playing A or B if other agent follows π : $1 / 3-1 / 3+0=0$
- Utility for playing C is strictly less than zero

Coarse Correlated Equilibrium: Example

	A	B	C
A	1,1	$-1,-1$	0,0
	33.3%	0%	0%
	$-1,-1$	1,1	0,0
B	0%	33.3%	0%
	0,0	0,0	$-1.1,-1.1$
	0%	0%	33.3%

- Utility for following $\pi: 1 / 3+1 / 3-1.1 / 3=0.3$
- Utility for playing A or B if other agent follows π : $1 / 3-1 / 3+0=0$
- Utility for playing C is strictly less than zero
- π is coarse correlated equilibrium

Coarse Correlated Equilibrium: Example

	A	B	C
A	1,1	$-1,-1$	0,0
	33.3%	0%	0%
	$-1,-1$	1,1	0,0
B	0%	33.3%	0%
	0,0	0,0	$-1.1,-1.1$
	0%	0%	33.3%

- Utility for following $\pi: 1 / 3+1 / 3-1.1 / 3=0.3$
- Utility for playing A or B if other agent follows π : $1 / 3-1 / 3+0=0$
- Utility for playing C is strictly less than zero
- π is coarse correlated equilibrium
- But, if recommendation is C, it is not best response to play C (why?)

Coarse Correlated Equilibrium: Example

	A		B
C			
A	1,1	$-1,-1$	0,0
	33.3%	0%	0%
B	$-1,-1$	1,1	0,0
	0%	33.3%	0%
C	0,0	0,0	$-1.1,-1.1$
	0%	0%	33.3%

- Utility for following π : $1 / 3+1 / 3-1.1 / 3=0.3$
- Utility for playing A or B if other agent follows π : $1 / 3-1 / 3+0=0$
- Utility for playing C is strictly less than zero
- π is coarse correlated equilibrium
- But, if recommendation is C, it is not best response to play C (why?)
- Therefore, π is not correlated equilibrium

Equilibrium Notions for Normal-form Games

- Dominant strategy equilibria (DSE)
- Pure strategy Nash equilibria (PSNE)
- Mixed strategy Nash equilibria (MSNE)
- Correlated equilibria (CE)
- Coarse correlated equilibria (CCE)

Equilibrium Notions for Normal-form Games

- Dominant strategy equilibria (DSE)
- Pure strategy Nash equilibria (PSNE)
- Mixed strategy Nash equilibria (MSNE)
- Correlated equilibria (CE)
- Coarse correlated equilibria (CCE)
- $\mathrm{DSE} \subseteq \mathrm{PSNE} \subseteq \mathrm{MSNE} \subseteq \mathrm{CE} \subseteq \mathrm{CCE}$

Equilibrium Notions for Normal-form Games

- Dominant strategy equilibria (DSE)
- Pure strategy Nash equilibria (PSNE)
- Mixed strategy Nash equilibria (MSNE)
- Correlated equilibria (CE)
- Coarse correlated equilibria (CCE)
- $\mathrm{DSE} \subseteq \mathrm{PSNE} \subseteq \mathrm{MSNE} \subseteq \mathrm{CE} \subseteq \mathrm{CCE}$
- In two-player zero-sum games, $\mathrm{CE}=\mathrm{CCE}=\mathrm{NE}$

Outline

1. Introduction
2. Background

3. Fictitious Play

4. Best-response Dynamics
5. No-regret Learning
6. Background: Single-agent Reinforcement Learning
7. Multi-agent Reinforcement Learning

Fictitious Play: Introduction

- What are agents learning about?

[^7]
Fictitious Play: Introduction

- What are agents learning about?
- Arguably, most plausible answer is strategies of others

[^8]
Fictitious Play: Introduction

- What are agents learning about?
- Arguably, most plausible answer is strategies of others
- Fictitious play (FP), one of earliest learning rules, takes this approach

[^9]
Fictitious Play: Introduction

- What are agents learning about?
- Arguably, most plausible answer is strategies of others
- Fictitious play (FP), one of earliest learning rules, takes this approach
- FP was first introduced by G. W. Brown in 1951^{3}

[^10]
Fictitious Play: Introduction

- What are agents learning about?
- Arguably, most plausible answer is strategies of others
- Fictitious play (FP), one of earliest learning rules, takes this approach
- FP was first introduced by G. W. Brown in 1951^{3}
- Brown imagined that agents would "simulate" the game in their mind and update their future play based on this simulation; hence name fictitious play

[^11]
Fictitious Play: Introduction

- What are agents learning about?
- Arguably, most plausible answer is strategies of others
- Fictitious play (FP), one of earliest learning rules, takes this approach
- FP was first introduced by G. W. Brown in 1951^{3}
- Brown imagined that agents would "simulate" the game in their mind and update their future play based on this simulation; hence name fictitious play
- In its current use, FP is misnomer, since each play of the game actually occurs

[^12]
Fictitious Play

- Two agents repeatedly play stage game G

Fictitious Play

- Two agents repeatedly play stage game G
- $\eta_{i}^{t}\left(a_{-i}\right)$ denotes number of times agent i has observed a_{-i} before time t

Fictitious Play

- Two agents repeatedly play stage game G
- $\eta_{i}^{t}\left(a_{-i}\right)$ denotes number of times agent i has observed a_{-i} before time t
- η_{i}^{1} represents fictitious past and cannot be zero for all a_{-i}

Fictitious Play

- Two agents repeatedly play stage game G
- $\eta_{i}^{t}\left(a_{-i}\right)$ denotes number of times agent i has observed a_{-i} before time t
- η_{i}^{1} represents fictitious past and cannot be zero for all a_{-i}
- Agents assume that their opponent is using stationary mixed strategy

Fictitious Play

- Two agents repeatedly play stage game G
- $\eta_{i}^{t}\left(a_{-i}\right)$ denotes number of times agent i has observed a_{-i} before time t
- η_{i}^{1} represents fictitious past and cannot be zero for all a_{-i}
- Agents assume that their opponent is using stationary mixed strategy
- Agents update their beliefs about this strategy at each step according to:

$$
\mu_{i}^{t}\left(a_{-i}\right)=\frac{\eta_{i}^{t}\left(a_{-i}\right)}{\sum_{a_{-i}^{\prime}} \eta_{i}^{t}\left(a_{-i}^{\prime}\right)}
$$

Fictitious Play

- Two agents repeatedly play stage game G
- $\eta_{i}^{t}\left(a_{-i}\right)$ denotes number of times agent i has observed a_{-i} before time t
- η_{i}^{1} represents fictitious past and cannot be zero for all a_{-i}
- Agents assume that their opponent is using stationary mixed strategy
- Agents update their beliefs about this strategy at each step according to:

$$
\mu_{i}^{t}\left(a_{-i}\right)=\frac{\eta_{i}^{t}\left(a_{-i}\right)}{\sum_{a_{-i}^{\prime}} \eta_{i}^{t}\left(a_{-i}^{\prime}\right)}
$$

- μ_{i}^{t} is empirical distribution of past actions and is treated as mixed strategy

Fictitious Play

- Two agents repeatedly play stage game G
- $\eta_{i}^{t}\left(a_{-i}\right)$ denotes number of times agent i has observed a_{-i} before time t
- η_{i}^{1} represents fictitious past and cannot be zero for all a_{-i}
- Agents assume that their opponent is using stationary mixed strategy
- Agents update their beliefs about this strategy at each step according to:

$$
\mu_{i}^{t}\left(a_{-i}\right)=\frac{\eta_{i}^{t}\left(a_{-i}\right)}{\sum_{a_{-i}^{\prime}} \eta_{i}^{t}\left(a_{-i}^{\prime}\right)}
$$

- μ_{i}^{t} is empirical distribution of past actions and is treated as mixed strategy
- Agents best-respond to their beliefs about opponent' strategy

$$
a_{i}^{t+1}=\underset{a_{i}}{\operatorname{argmax}} u_{i}\left(a_{i}, \mu_{i}^{t}\right)
$$

Fictitious Play: Example

- Consider the following coordination game

	L	R
U	3,3	0,0
D	4,0	1,1

Fictitious Play: Example

- Consider the following coordination game

	L	R
U	3,3	0,0
D	4,0	1,1

- Note that this game is dominant solvable with unique NE of (D, R)

Fictitious Play: Example

- Consider the following coordination game

	L	R
U	3,3	0,0
D	4,0	1,1

- Note that this game is dominant solvable with unique NE of (D, R)
- Suppose that $\eta_{1}^{1}=(3,0)$ and $\eta_{2}^{1}=(1,2.5)$

Fictitious Play: Example

- Consider the following coordination game

	L	R
	3,3	0,0
	3,0	1,1

- Note that this game is dominant solvable with unique NE of (D, R)
- Suppose that $\eta_{1}^{1}=(3,0)$ and $\eta_{2}^{1}=(1,2.5)$
- FP proceeds as follows:

Round	1's η	2's η	1's action	2's action
1	$(3,0)$	$(1,2.5)$	D	L

Fictitious Play: Example

- Consider the following coordination game

	L	R
	3,3	0,0
	3,0	1,1

- Note that this game is dominant solvable with unique NE of (D, R)
- Suppose that $\eta_{1}^{1}=(3,0)$ and $\eta_{2}^{1}=(1,2.5)$
- FP proceeds as follows:

Round	1's η	2's η	1's action	2's action
1	$(3,0)$	$(1,2.5)$	D	L

Fictitious Play: Example

- Consider the following coordination game

	L	R
U	3,3	0,0
D	4,0	1,1

- Note that this game is dominant solvable with unique NE of (D, R)
- Suppose that $\eta_{1}^{1}=(3,0)$ and $\eta_{2}^{1}=(1,2.5)$
- FP proceeds as follows:

Round	1's η	2's η	1's action	2's action
1	$(3,0)$	$(1,2.5)$	D	L
2	$(4,0)$	$(1,3.5)$	D	R

Fictitious Play: Example

- Consider the following coordination game

	L	R
U	3,3	0,0
D	4,0	1,1

- Note that this game is dominant solvable with unique NE of (D, R)
- Suppose that $\eta_{1}^{1}=(3,0)$ and $\eta_{2}^{1}=(1,2.5)$
- FP proceeds as follows:

Round	1's η	2's η	1's action	2's action
1	$(3,0)$	$(1,2.5)$	D	L
2	$(4,0)$	$(1,3.5)$	D	R
3	$(4,1)$	$(1,4.5)$	D	R

Fictitious Play: Example

- Consider the following coordination game

	L	R
U	3,3	0,0
D	4,0	1,1

- Note that this game is dominant solvable with unique NE of (D, R)
- Suppose that $\eta_{1}^{1}=(3,0)$ and $\eta_{2}^{1}=(1,2.5)$
- FP proceeds as follows:

Round	1's η	2's η	1's action	2's action
1	$(3,0)$	$(1,2.5)$	D	L
2	$(4,0)$	$(1,3.5)$	D	R
3	$(4,1)$	$(1,4.5)$	D	R
4	$(4,2)$	$(1,5.5)$	D	R

Fictitious Play: Discussion

- In FP, agents do not need to know anything about their opponent's utilities

Fictitious Play: Discussion

- In FP, agents do not need to know anything about their opponent's utilities
- FP is somewhat paradoxical as agents assume stationary strategy for their opponent, yet no agent plays stationary strategy except when FP converges

Fictitious Play: Discussion

- In FP, agents do not need to know anything about their opponent's utilities
- FP is somewhat paradoxical as agents assume stationary strategy for their opponent, yet no agent plays stationary strategy except when FP converges
- Even though FP is belief based it is also myopic

Fictitious Play: Discussion

- In FP, agents do not need to know anything about their opponent's utilities
- FP is somewhat paradoxical as agents assume stationary strategy for their opponent, yet no agent plays stationary strategy except when FP converges
- Even though FP is belief based it is also myopic
- I.e., agents maximize current utility without considering their future ones

Fictitious Play: Discussion

- In FP, agents do not need to know anything about their opponent's utilities
- FP is somewhat paradoxical as agents assume stationary strategy for their opponent, yet no agent plays stationary strategy except when FP converges
- Even though FP is belief based it is also myopic
- I.e., agents maximize current utility without considering their future ones
- Agents do not learn true model that generates empirical frequencies

Fictitious Play: Discussion

- In FP, agents do not need to know anything about their opponent's utilities
- FP is somewhat paradoxical as agents assume stationary strategy for their opponent, yet no agent plays stationary strategy except when FP converges
- Even though FP is belief based it is also myopic
- I.e., agents maximize current utility without considering their future ones
- Agents do not learn true model that generates empirical frequencies
- In other words, they do not learn how their opponent is actually playing the game

Convergence of Fictitious Play to Pure Strategies

- Let $\left\{a^{t}\right\}$ be sequence of action profiles generated by FP for G

Convergence of Fictitious Play to Pure Strategies

- Let $\left\{a^{t}\right\}$ be sequence of action profiles generated by FP for G
- Sequence converges to a^{*} if there exists T s.t. $a^{t}=a^{*}$ for all $t \geq T$

Convergence of Fictitious Play to Pure Strategies

- Let $\left\{a^{t}\right\}$ be sequence of action profiles generated by FP for G
- Sequence converges to a^{*} if there exists T s.t. $a^{t}=a^{*}$ for all $t \geq T$
- a^{*} is called steady state or absorbing state of FP

Convergence of Fictitious Play to Pure Strategies

- Let $\left\{a^{t}\right\}$ be sequence of action profiles generated by FP for G
- Sequence converges to a^{*} if there exists T s.t. $a^{t}=a^{*}$ for all $t \geq T$
- a^{*} is called steady state or absorbing state of FP
- (I) If sequence converges to a^{*}, then a^{*} is pure-strategy NE of G

Convergence of Fictitious Play to Pure Strategies

- Let $\left\{a^{t}\right\}$ be sequence of action profiles generated by FP for G
- Sequence converges to a^{*} if there exists T s.t. $a^{t}=a^{*}$ for all $t \geq T$
- a^{*} is called steady state or absorbing state of FP
- (I) If sequence converges to a^{*}, then a^{*} is pure-strategy NE of G
- (II) If for some $t, a^{t}=a^{*}$, where a^{*} is strict NE of G, then $a^{\tau}=a^{*}$ for all $\tau>t$

Proof

- (I) is straightforward, for (II), let $a^{t}=a^{*}$, we want to show that $a^{t+1}=a^{*}$

Proof

- (I) is straightforward, for (II), let $a^{t}=a^{*}$, we want to show that $a^{t+1}=a^{*}$
- First, note that we can write μ as:

$$
\mu_{i}^{t+1}=(1-\alpha) \mu_{i}^{t}+\alpha a_{-i}^{t}=(1-\alpha) \mu_{i}^{t}+\alpha a_{-i}^{*}
$$

here, abusing notation, a_{-i}^{t} denotes degenerate probability distribution and:

$$
\alpha=\frac{1}{\sum_{a_{-i}^{\prime}} \eta_{i}^{t}\left(a_{-i}^{\prime}\right)+1}
$$

Proof

- (I) is straightforward, for (II), let $a^{t}=a^{*}$, we want to show that $a^{t+1}=a^{*}$
- First, note that we can write μ as:

$$
\mu_{i}^{t+1}=(1-\alpha) \mu_{i}^{t}+\alpha a_{-i}^{t}=(1-\alpha) \mu_{i}^{t}+\alpha a_{-i}^{*}
$$

here, abusing notation, a_{-i}^{t} denotes degenerate probability distribution and:

$$
\alpha=\frac{1}{\sum_{a_{-i}^{\prime}} \eta_{i}^{t}\left(a_{-i}^{\prime}\right)+1}
$$

- By linearity of expected utility, we have for all a_{i} :

$$
u_{i}\left(a_{i}, \mu_{i}^{t+1}\right)=(1-\alpha) u_{i}\left(a_{i}, \mu_{i}^{t}\right)+\alpha u_{i}\left(a_{i}, a_{-i}^{*}\right)
$$

Proof

- (I) is straightforward, for (II), let $a^{t}=a^{*}$, we want to show that $a^{t+1}=a^{*}$
- First, note that we can write μ as:

$$
\mu_{i}^{t+1}=(1-\alpha) \mu_{i}^{t}+\alpha a_{-i}^{t}=(1-\alpha) \mu_{i}^{t}+\alpha a_{-i}^{*}
$$

here, abusing notation, a_{-i}^{t} denotes degenerate probability distribution and:

$$
\alpha=\frac{1}{\sum_{a_{-i}^{\prime}} \eta_{i}^{t}\left(a_{-i}^{\prime}\right)+1}
$$

- By linearity of expected utility, we have for all a_{i} :

$$
u_{i}\left(a_{i}, \mu_{i}^{t+1}\right)=(1-\alpha) u_{i}\left(a_{i}, \mu_{i}^{t}\right)+\alpha u_{i}\left(a_{i}, a_{-i}^{*}\right)
$$

- Since a_{i}^{*} maximizes both terms, it follows that it is played at $t+1$

Convergence of Fictitious Play to Mixed Strategies

- Of course, one cannot guarantee that fictitious play always converges to NE

Convergence of Fictitious Play to Mixed Strategies

- Of course, one cannot guarantee that fictitious play always converges to NE
- In FP, agents only play pure strategies and pure-strategy NE may not exist

Convergence of Fictitious Play to Mixed Strategies

- Of course, one cannot guarantee that fictitious play always converges to NE
- In FP, agents only play pure strategies and pure-strategy NE may not exist
- While FP sequence may not converge, its empirical distribution may

Convergence of Fictitious Play to Mixed Strategies

- Of course, one cannot guarantee that fictitious play always converges to NE
- In FP, agents only play pure strategies and pure-strategy NE may not exist
- While FP sequence may not converge, its empirical distribution may
- Sequence $\left\{a^{t}\right\}$ converges to s^{*} in time-average sense if for all i and a_{i} :

$$
\lim _{T \rightarrow \infty} \frac{\sum_{t=1}^{T} \mathbb{1}\left(a_{i}^{t}=a_{i}\right)}{T}=s_{i}^{*}\left(a_{i}\right)
$$

$\mathbb{1}(\cdot)$ denotes the indicator function

Convergence of Fictitious Play to Mixed Strategies

- Of course, one cannot guarantee that fictitious play always converges to NE
- In FP, agents only play pure strategies and pure-strategy NE may not exist
- While FP sequence may not converge, its empirical distribution may
- Sequence $\left\{a^{t}\right\}$ converges to s^{*} in time-average sense if for all i and a_{i} :

$$
\lim _{T \rightarrow \infty} \frac{\sum_{t=1}^{T} \mathbb{1}\left(a_{i}^{t}=a_{i}\right)}{T}=s_{i}^{*}\left(a_{i}\right)
$$

$\mathbb{1}(\cdot)$ denotes the indicator function

- If FP sequence converges to s^{*} in the time-average sense, then s^{*} is NE

Proof

- Suppose $\left\{a^{t}\right\}$ converges to s^{*} in time-average sense, but s^{*} is not NE

Proof

- Suppose $\left\{a^{t}\right\}$ converges to s^{*} in time-average sense, but s^{*} is not NE
- There is some i, a_{i}^{\prime}, and a_{i} with $s_{i}^{*}\left(a_{i}\right)>0$ s.t. $u_{i}\left(a_{i}^{\prime}, s_{-i}^{*}\right)>u_{i}\left(a_{i}, s_{-i}^{*}\right)$

Proof

- Suppose $\left\{a^{t}\right\}$ converges to s^{*} in time-average sense, but s^{*} is not NE
- There is some i, a_{i}^{\prime}, and a_{i} with $s_{i}^{*}\left(a_{i}\right)>0$ s.t. $u_{i}\left(a_{i}^{\prime}, s_{-i}^{*}\right)>u_{i}\left(a_{i}, s_{-i}^{*}\right)$
- Choose ϵ s.t. $\epsilon<\left(u_{i}\left(a_{i}^{\prime}, s_{-i}^{*}\right)-u_{i}\left(a_{i}, s_{-i}^{*}\right)\right) / 2$

Proof

- Suppose $\left\{a^{t}\right\}$ converges to s^{*} in time-average sense, but s^{*} is not NE
- There is some i, a_{i}^{\prime}, and a_{i} with $s_{i}^{*}\left(a_{i}\right)>0$ s.t. $u_{i}\left(a_{i}^{\prime}, s_{-i}^{*}\right)>u_{i}\left(a_{i}, s_{-i}^{*}\right)$
- Choose ϵ s.t. $\epsilon<\left(u_{i}\left(a_{i}^{\prime}, s_{-i}^{*}\right)-u_{i}\left(a_{i}, s_{-i}^{*}\right)\right) / 2$
- Choose T s.t. for all $t \geq T,\left|\mu_{i}^{t}\left(a_{-i}\right)-s_{-i}^{*}\left(a_{-i}\right)\right|<\epsilon / \max _{a^{\prime}} u_{i}\left(a^{\prime}\right)$ for all a_{-i}

Proof

- Suppose $\left\{a^{t}\right\}$ converges to s^{*} in time-average sense, but s^{*} is not NE
- There is some i, a_{i}^{\prime}, and a_{i} with $s_{i}^{*}\left(a_{i}\right)>0$ s.t. $u_{i}\left(a_{i}^{\prime}, s_{-i}^{*}\right)>u_{i}\left(a_{i}, s_{-i}^{*}\right)$
- Choose ϵ s.t. $\epsilon<\left(u_{i}\left(a_{i}^{\prime}, s_{-i}^{*}\right)-u_{i}\left(a_{i}, s_{-i}^{*}\right)\right) / 2$
- Choose T s.t. for all $t \geq T,\left|\mu_{i}^{t}\left(a_{-i}\right)-s_{-i}^{*}\left(a_{-i}\right)\right|<\epsilon / \max _{a^{\prime}} u_{i}\left(a^{\prime}\right)$ for all a_{-i}
- This is possible because $\mu_{i}^{t}\left(a_{-i}\right) \rightarrow s_{-i}^{*}\left(a_{-i}\right)$ by assumption

Proof (cont.)

- Then, for any $t \geq T$, we have:

$$
u_{i}\left(a_{i}, \mu_{i}^{t}\right)=\sum_{a_{-i}} u_{i}\left(a_{i}, a_{-i}\right) \mu_{i}^{t}\left(a_{-i}\right)
$$

Proof (cont.)

- Then, for any $t \geq T$, we have:

$$
\begin{aligned}
u_{i}\left(a_{i}, \mu_{i}^{t}\right) & =\sum_{a_{-i}} u_{i}\left(a_{i}, a_{-i}\right) \mu_{i}^{t}\left(a_{-i}\right) \\
& \leq \sum_{a_{-i}} u_{i}\left(a_{i}, a_{-i}\right) s_{-i}^{*}\left(a_{-i}\right)+\epsilon
\end{aligned}
$$

Proof (cont.)

- Then, for any $t \geq T$, we have:

$$
\begin{aligned}
u_{i}\left(a_{i}, \mu_{i}^{t}\right) & =\sum_{a_{-i}} u_{i}\left(a_{i}, a_{-i}\right) \mu_{i}^{t}\left(a_{-i}\right) \\
& \leq \sum_{a_{-i}} u_{i}\left(a_{i}, a_{-i}\right) s_{-i}^{*}\left(a_{-i}\right)+\epsilon \\
& \leq \sum_{a_{-i}} u_{i}\left(a_{i}^{\prime}, a_{-i}\right) s_{-i}^{*}\left(a_{-i}\right)-\epsilon
\end{aligned}
$$

Proof (cont.)

- Then, for any $t \geq T$, we have:

$$
\begin{aligned}
u_{i}\left(a_{i}, \mu_{i}^{t}\right) & =\sum_{a_{-i}} u_{i}\left(a_{i}, a_{-i}\right) \mu_{i}^{t}\left(a_{-i}\right) \\
& \leq \sum_{a_{-i}} u_{i}\left(a_{i}, a_{-i}\right) s_{-i}^{*}\left(a_{-i}\right)+\epsilon \\
& \leq \sum_{a_{-i}} u_{i}\left(a_{i}^{\prime}, a_{-i}\right) s_{-i}^{*}\left(a_{-i}\right)-\epsilon \\
& \leq \sum_{a_{-i}} u_{i}\left(a_{i}^{\prime}, a_{-i}\right) \mu_{i}^{t}\left(a_{-i}\right)=u_{i}\left(a_{i}^{\prime}, \mu_{i}^{t}\right)
\end{aligned}
$$

Proof (cont.)

- Then, for any $t \geq T$, we have:

$$
\begin{aligned}
u_{i}\left(a_{i}, \mu_{i}^{t}\right) & =\sum_{a_{-i}} u_{i}\left(a_{i}, a_{-i}\right) \mu_{i}^{t}\left(a_{-i}\right) \\
& \leq \sum_{a_{-i}} u_{i}\left(a_{i}, a_{-i}\right) s_{-i}^{*}\left(a_{-i}\right)+\epsilon \\
& \leq \sum_{a_{-i}} u_{i}\left(a_{i}^{\prime}, a_{-i}\right) s_{-i}^{*}\left(a_{-i}\right)-\epsilon \\
& \leq \sum_{a_{-i}} u_{i}\left(a_{i}^{\prime}, a_{-i}\right) \mu_{i}^{t}\left(a_{-i}\right)=u_{i}\left(a_{i}^{\prime}, \mu_{i}^{t}\right)
\end{aligned}
$$

- So after sufficiently large t, a_{i} is never played

Proof (cont.)

- Then, for any $t \geq T$, we have:

$$
\begin{aligned}
u_{i}\left(a_{i}, \mu_{i}^{t}\right) & =\sum_{a_{-i}} u_{i}\left(a_{i}, a_{-i}\right) \mu_{i}^{t}\left(a_{-i}\right) \\
& \leq \sum_{a_{-i}} u_{i}\left(a_{i}, a_{-i}\right) s_{-i}^{*}\left(a_{-i}\right)+\epsilon \\
& \leq \sum_{a_{-i}} u_{i}\left(a_{i}^{\prime}, a_{-i}\right) s_{-i}^{*}\left(a_{-i}\right)-\epsilon \\
& \leq \sum_{a_{-i}} u_{i}\left(a_{i}^{\prime}, a_{-i}\right) \mu_{i}^{t}\left(a_{-i}\right)=u_{i}\left(a_{i}^{\prime}, \mu_{i}^{t}\right)
\end{aligned}
$$

- So after sufficiently large t, a_{i} is never played
- This implies that as $t \rightarrow \infty, \mu_{i}^{t}\left(a_{i}\right) \rightarrow 0$, which contradicts with $s_{i}^{*}\left(a_{i}\right)>0$

Example: Matching Pennies

- Consider the matching-pennies game

	H	C
H	$1,-1$	$-1,1$
T	$-1,1$	$1,-1$

Round	1's η	2's η	1's action	2's action
1	$(1.5,2)$	$(2,1.5)$	T	T

Example: Matching Pennies

- Consider the matching-pennies game

	H	C
H	$1,-1$	$-1,1$
T	$-1,1$	$1,-1$

Round	1's η	2's η	1's action	2's action
1	$(1.5,2)$	$(2,1.5)$	T	T

Example: Matching Pennies

- Consider the matching-pennies game

	H	T
H	$1,-1$	$-1,1$
T	$-1,1$	$1,-1$

Round	1's η	2's η	1's action	2's action
1	$(1.5,2)$	$(2,1.5)$	T	T
2	$(1.5,3)$	$(2,2.5)$	T	H

Example: Matching Pennies

- Consider the matching-pennies game

	H	T
H	$1,-1$	$-1,1$
T	$-1,1$	$1,-1$

Round	1's η	2's η	1's action	2's action
1	$(1.5,2)$	$(2,1.5)$	T	T
2	$(1.5,3)$	$(2,2.5)$	T	H
3	$(2.5,3)$	$(2,3.5)$	T	H

Example: Matching Pennies

- Consider the matching-pennies game

	H	T
H	$1,-1$	$-1,1$
T	$-1,1$	$1,-1$

Round	1's η	2's η	1's action	2's action
1	$(1.5,2)$	$(2,1.5)$	T	T
2	$(1.5,3)$	$(2,2.5)$	T	H
3	$(2.5,3)$	$(2,3.5)$	T	H
4	$(3.5,3)$	$(2,4.5)$	H	H

Example: Matching Pennies

- Consider the matching-pennies game

	H	T
H	$1,-1$	$-1,1$
T	$-1,1$	$1,-1$

Round	1's η	2's η	1's action	2's action
1	$(1.5,2)$	$(2,1.5)$	T	T
2	$(1.5,3)$	$(2,2.5)$	T	H
3	$(2.5,3)$	$(2,3.5)$	T	H
4	$(3.5,3)$	$(2,4.5)$	H	H
5	$(4.5,3)$	$(3,4.5)$	H	H

Example: Matching Pennies

- Consider the matching-pennies game

	H	T
H	$1,-1$	$-1,1$
T	$-1,1$	$1,-1$

Round	1's η	2's η	1's action	2's action
1	$(1.5,2)$	$(2,1.5)$	T	T
2	$(1.5,3)$	$(2,2.5)$	T	H
3	$(2.5,3)$	$(2,3.5)$	T	H
4	$(3.5,3)$	$(2,4.5)$	H	H
5	$(4.5,3)$	$(3,4.5)$	H	H
6	$(5.5,3)$	$(4,4.5)$	H	H

Example: Matching Pennies

- Consider the matching-pennies game

	H	C
H	$1,-1$	$-1,1$
T	$-1,1$	$1,-1$

Round	1's η	2's η	1's action	2's action
1	$(1.5,2)$	$(2,1.5)$	T	T
2	$(1.5,3)$	$(2,2.5)$	T	H
3	$(2.5,3)$	$(2,3.5)$	T	H
4	$(3.5,3)$	$(2,4.5)$	H	H
5	$(4.5,3)$	$(3,4.5)$	H	H
6	$(5.5,3)$	$(4,4.5)$	H	H
7	$(6.5,3)$	$(5,4.5)$	H	T

Example: Matching Pennies

- Consider the matching-pennies game

	H	C
H	$1,-1$	$-1,1$
T	$-1,1$	$1,-1$

Round	1's η	2's η	1's action	2's action
1	$(1.5,2)$	$(2,1.5)$	T	T
2	$(1.5,3)$	$(2,2.5)$	T	H
3	$(2.5,3)$	$(2,3.5)$	T	H
4	$(3.5,3)$	$(2,4.5)$	H	H
5	$(4.5,3)$	$(3,4.5)$	H	H
6	$(5.5,3)$	$(4,4.5)$	H	H
7	$(6.5,3)$	$(5,4.5)$	H	T

- FP continues as deterministic cycle, time average converges to unique NE

Example: (Anti-)Coordination Game

- Note that if empirical distribution of actions converges to NE, there is no guarantee on distribution of played outcomes

Example: (Anti-)Coordination Game

- Note that if empirical distribution of actions converges to NE, there is no guarantee on distribution of played outcomes
- Consider the following coordination game

	A	B
A	1,1	0,0
	0,0	1,1

Example: (Anti-)Coordination Game

- Note that if empirical distribution of actions converges to NE, there is no guarantee on distribution of played outcomes
- Consider the following coordination game

	A	B
A	1,1	0,0
	0,0	1,1

- Note that this game is unique NE of $((0.5,0.5),(0.5,0.5))$

Round	1's η	2's η	1's action	2's action
1	$(0.5,0)$	$(0,0.5)$	A	B

Example: (Anti-)Coordination Game

- Note that if empirical distribution of actions converges to NE, there is no guarantee on distribution of played outcomes
- Consider the following coordination game

	A	B
A	1,1	0,0
	0,0	1,1

- Note that this game is unique NE of $((0.5,0.5),(0.5,0.5))$

Round	1's η	2's η	1's action	2's action
1	$(0.5,0)$	$(0,0.5)$	A	B

Example: (Anti-)Coordination Game

- Note that if empirical distribution of actions converges to NE, there is no guarantee on distribution of played outcomes
- Consider the following coordination game

	A	B
A	1,1	0,0
	0,0	1,1

- Note that this game is unique NE of $((0.5,0.5),(0.5,0.5))$

Round	1's η	2's η	1's action	2's action
1	$(0.5,0)$	$(0,0.5)$	A	B
2	$(0.5,1)$	$(1,0.5)$	B	A

Example: (Anti-)Coordination Game

- Note that if empirical distribution of actions converges to NE, there is no guarantee on distribution of played outcomes
- Consider the following coordination game

	A	B
A	1,1	0,0
	0,0	1,1

- Note that this game is unique NE of $((0.5,0.5),(0.5,0.5))$

Round	1's η	2's η	1's action	2's action
1	$(0.5,0)$	$(0,0.5)$	A	B
2	$(0.5,1)$	$(1,0.5)$	B	A
3	$(1.5,1)$	$(1,1.5)$	A	B

Example: (Anti-)Coordination Game

- Note that if empirical distribution of actions converges to NE, there is no guarantee on distribution of played outcomes
- Consider the following coordination game

	A	B
A	1,1	0,0
	0,0	1,1

- Note that this game is unique NE of $((0.5,0.5),(0.5,0.5))$

Round	1's η	2's η	1's action	2's action
1	$(0.5,0)$	$(0,0.5)$	A	B
2	$(0.5,1)$	$(1,0.5)$	B	A
3	$(1.5,1)$	$(1,1.5)$	A	B
4	$(1.5,2)$	$(2,1.5)$	B	A

General Fictitious Play Convergence

- Fictitious play converges in time-average sense for game G if:

General Fictitious Play Convergence

- Fictitious play converges in time-average sense for game G if:
- G is zero-sum game

General Fictitious Play Convergence

- Fictitious play converges in time-average sense for game G if:
- G is zero-sum game
- G is two-player game where each agent has at most two actions (2×2 games)

General Fictitious Play Convergence

- Fictitious play converges in time-average sense for game G if:
- G is zero-sum game
- G is two-player game where each agent has at most two actions (2×2 games)
- G is solvable by iterated strict dominance

General Fictitious Play Convergence

- Fictitious play converges in time-average sense for game G if:
- G is zero-sum game
- G is two-player game where each agent has at most two actions (2×2 games)
- G is solvable by iterated strict dominance
- G is identical-interest game, i.e., all agents have same payoff function

General Fictitious Play Convergence

- Fictitious play converges in time-average sense for game G if:
- G is zero-sum game
- G is two-player game where each agent has at most two actions (2×2 games)
- G is solvable by iterated strict dominance
- G is identical-interest game, i.e., all agents have same payoff function
- G is potential game (more on this later!)

Non-convergence of Fictitious Play

- Convergence of fictitious play can not be guaranteed in general

Non-convergence of Fictitious Play

- Convergence of fictitious play can not be guaranteed in general
- Shapley showed that in modified rock-scissors-paper game, FP does not converge

	Rock	Paper	Scissors
Rock	0,0	0,1	1,0
Paper	1,0	0,0	0,1
Scissors	0,1	1,0	0,0

Non-convergence of Fictitious Play

- Convergence of fictitious play can not be guaranteed in general
- Shapley showed that in modified rock-scissors-paper game, FP does not converge

	Rock	Paper	Scissors
Rock	0,0	0,1	1,0
Paper	1,0	0,0	0,1
Scissors	0,1	1,0	0,0

- This game has unique NE: each agent mixes uniformly

Non-convergence of Fictitious Play

- Convergence of fictitious play can not be guaranteed in general
- Shapley showed that in modified rock-scissors-paper game, FP does not converge

	Rock	Paper	Scissors
Rock	0,0	0,1	1,0
Paper	1,0	0,0	0,1
Scissors	0,1	1,0	0,0

- This game has unique NE: each agent mixes uniformly
- Suppose $\eta_{1}^{1}=(1,0,0)$ and $\eta_{2}^{1}=(0,1,0)$

Non-convergence of Fictitious Play

- Convergence of fictitious play can not be guaranteed in general
- Shapley showed that in modified rock-scissors-paper game, FP does not converge

	Rock	Paper	Scissors
Rock	0,0	0,1	1,0
Paper	1,0	0,0	0,1
Scissors	0,1	1,0	0,0

- This game has unique NE: each agent mixes uniformly
- Suppose $\eta_{1}^{1}=(1,0,0)$ and $\eta_{2}^{1}=(0,1,0)$
- Shapley showed that play cycles among 6 (off-diagonal) profiles with periods of ever-increasing length, thus non-convergence

Smooth Fictitious Play (SFP)

- Instead of best-responding to beliefs, agents respond randomly, but somewhat proportional to their expected utility

$$
s_{i}^{t}\left(a_{i} \mid \mu_{i}^{t}\right)=\frac{\exp \left(u_{i}\left(a_{i}, \mu_{i}^{t}\right) / \gamma\right)}{\sum_{a_{i}^{\prime}} \exp \left(u_{i}\left(a_{i}^{\prime}, \mu_{i}^{t}\right) / \gamma\right)}
$$

Smooth Fictitious Play (SFP)

- Instead of best-responding to beliefs, agents respond randomly, but somewhat proportional to their expected utility

$$
s_{i}^{t}\left(a_{i} \mid \mu_{i}^{t}\right)=\frac{\exp \left(u_{i}\left(a_{i}, \mu_{i}^{t}\right) / \gamma\right)}{\sum_{a_{i}^{\prime}} \exp \left(u_{i}\left(a_{i}^{\prime}, \mu_{i}^{t}\right) / \gamma\right)}
$$

- γ is called the smoothing parameter

Smooth Fictitious Play (SFP)

- Instead of best-responding to beliefs, agents respond randomly, but somewhat proportional to their expected utility

$$
s_{i}^{t}\left(a_{i} \mid \mu_{i}^{t}\right)=\frac{\exp \left(u_{i}\left(a_{i}, \mu_{i}^{t}\right) / \gamma\right)}{\sum_{a_{i}^{\prime}} \exp \left(u_{i}\left(a_{i}^{\prime}, \mu_{i}^{t}\right) / \gamma\right)}
$$

- γ is called the smoothing parameter
- This is called soft-max policy

Smooth Fictitious Play (SFP)

- Instead of best-responding to beliefs, agents respond randomly, but somewhat proportional to their expected utility

$$
s_{i}^{t}\left(a_{i} \mid \mu_{i}^{t}\right)=\frac{\exp \left(u_{i}\left(a_{i}, \mu_{i}^{t}\right) / \gamma\right)}{\sum_{a_{i}^{\prime}} \exp \left(u_{i}\left(a_{i}^{\prime}, \mu_{i}^{t}\right) / \gamma\right)}
$$

- γ is called the smoothing parameter
- This is called soft-max policy
- Soft-max policy respects best replies, but leaves room for exploration

Smooth Fictitious Play (SFP)

- Instead of best-responding to beliefs, agents respond randomly, but somewhat proportional to their expected utility

$$
s_{i}^{t}\left(a_{i} \mid \mu_{i}^{t}\right)=\frac{\exp \left(u_{i}\left(a_{i}, \mu_{i}^{t}\right) / \gamma\right)}{\sum_{a_{i}^{\prime}} \exp \left(u_{i}\left(a_{i}^{\prime}, \mu_{i}^{t}\right) / \gamma\right)}
$$

- γ is called the smoothing parameter
- This is called soft-max policy
- Soft-max policy respects best replies, but leaves room for exploration
- If all agents use SFP with sufficiently small γ_{i}, empirical play converges to ϵ-CCE

Outline

1. Introduction
2. Background
3. Fictitious Play
4. Best-response Dynamics
5. No-regret Learning
6. Background: Single-agent Reinforcement Learning
7. Multi-agent Reinforcement Learning

Best-response Dynamics (BRD): Introduction

- Agents start playing arbitrary actions

Best-response Dynamics (BRD): Introduction

- Agents start playing arbitrary actions
- In arbitrary order, agents take turns updating their action

Best-response Dynamics (BRD): Introduction

- Agents start playing arbitrary actions
- In arbitrary order, agents take turns updating their action
- Agent update their action only if doing so can improve their utility

Best-response Dynamics (BRD): Introduction

- Agents start playing arbitrary actions
- In arbitrary order, agents take turns updating their action
- Agent update their action only if doing so can improve their utility
- This is repeated until no agents wants to update their action

```
Initialize a = (a, ,\ldots, an) to be arbitrary action profile;
while there exists i such that }\mp@subsup{a}{i}{}\not\in\mp@subsup{\operatorname{argmax }}{\mp@subsup{a}{\inA}{}}{}\mp@subsup{A}{i}{}\mp@subsup{u}{i}{}(a,\mp@subsup{a}{-i}{})\mathrm{ do
    Let }\mp@subsup{a}{i}{\prime}\mathrm{ be such that }\mp@subsup{u}{i}{}(\mp@subsup{a}{i}{\prime},\mp@subsup{a}{-i}{})>u(a)
    Set }\mp@subsup{a}{i}{}\leftarrow\mp@subsup{a}{i}{\prime}
return a
```


Best-response Dynamics: Discussion

- If BRD halts, it returns pure strategy Nash equilibrium

Best-response Dynamics: Discussion

- If BRD halts, it returns pure strategy Nash equilibrium
- Every agent must be playing best response

Best-response Dynamics: Discussion

- If BRD halts, it returns pure strategy Nash equilibrium
- Every agent must be playing best response
- Does BRD always halt?

Best-response Dynamics: Discussion

- If BRD halts, it returns pure strategy Nash equilibrium
- Every agent must be playing best response
- Does BRD always halt?
- No: Consider matching pennies/Rock Paper Scissors

Example: Congestion Games

- N is set of n agents

Example: Congestion Games

- N is set of n agents
- M is set of m resources

Example: Congestion Games

- N is set of n agents
- M is set of m resources
- A_{i} is set of actions available to agent i

Example: Congestion Games

- N is set of n agents
- M is set of m resources
- A_{i} is set of actions available to agent i
- a_{i} represents subset of resources that agent i chooses (i.e., $a_{i} \subseteq M$)

Example: Congestion Games

- N is set of n agents
- M is set of m resources
- A_{i} is set of actions available to agent i
- a_{i} represents subset of resources that agent i chooses (i.e., $a_{i} \subseteq M$)
- ℓ_{j} is congestion cost function for resources $j \in M$

Example: Congestion Games

- N is set of n agents
- M is set of m resources
- A_{i} is set of actions available to agent i
- a_{i} represents subset of resources that agent i chooses (i.e., $a_{i} \subseteq M$)
- ℓ_{j} is congestion cost function for resources $j \in M$
- $\ell_{j}(k)$ represents cost of congestion on resource j when k agents choose j

Example: Congestion Games

- N is set of n agents
- M is set of m resources
- A_{i} is set of actions available to agent i
- a_{i} represents subset of resources that agent i chooses (i.e., $a_{i} \subseteq M$)
- ℓ_{j} is congestion cost function for resources $j \in M$
- $\ell_{j}(k)$ represents cost of congestion on resource j when k agents choose j
- $n_{j}(a)$ is number of agents who choose resource j (i.e., $\left.n_{j}(a)=\left|\left\{i \mid j \in a_{i}\right\}\right|\right)$

Example: Congestion Games

- N is set of n agents
- M is set of m resources
- A_{i} is set of actions available to agent i
- a_{i} represents subset of resources that agent i chooses (i.e., $a_{i} \subseteq M$)
- ℓ_{j} is congestion cost function for resources $j \in M$
- $\ell_{j}(k)$ represents cost of congestion on resource j when k agents choose j
- $n_{j}(a)$ is number of agents who choose resource j (i.e., $\left.n_{j}(a)=\left|\left\{i \mid j \in a_{i}\right\}\right|\right)$
- $c_{i}(a)=\sum_{j \in a_{i}} \ell_{j}\left(n_{j}(a)\right)$ is total cost of agent

Example: Congestion Games

- N is set of n agents
- M is set of m resources
- A_{i} is set of actions available to agent i
- a_{i} represents subset of resources that agent i chooses (i.e., $a_{i} \subseteq M$)
- ℓ_{j} is congestion cost function for resources $j \in M$
- $\ell_{j}(k)$ represents cost of congestion on resource j when k agents choose j
- $n_{j}(a)$ is number of agents who choose resource j (i.e., $\left.n_{j}(a)=\left|\left\{i \mid j \in a_{i}\right\}\right|\right)$
- $c_{i}(a)=\sum_{j \in a_{i}} \ell_{j}\left(n_{j}(a)\right)$ is total cost of agent
- Agents minimize their total cost (instead of maximizing their total utility)

BRD in Congestion Games

- Consider potential function $\phi: A \rightarrow \mathbb{R}$:

$$
\phi(a)=\sum_{j=1}^{m} \sum_{k=1}^{n_{j}(a)} \ell_{j}(k)
$$

(Note: not social welfare)

BRD in Congestion Games

- Consider potential function $\phi: A \rightarrow \mathbb{R}$:

$$
\phi(a)=\sum_{j=1}^{m} \sum_{k=1}^{n_{j}(a)} \ell_{j}(k)
$$

(Note: not social welfare)

- How does ϕ change in one round of BRD? Say i switches from a_{i} to $b_{i} \in A_{i}$

BRD in Congestion Games

- Consider potential function $\phi: A \rightarrow \mathbb{R}$:

$$
\phi(a)=\sum_{j=1}^{m} \sum_{k=1}^{n_{j}(a)} \ell_{j}(k)
$$

(Note: not social welfare)

- How does ϕ change in one round of BRD? Say i switches from a_{i} to $b_{i} \in A_{i}$
- Well... We know it must have decreased agent i's cost:

$$
\begin{aligned}
\Delta c_{i} & \equiv c_{i}\left(b_{i}, a_{-i}\right)-c_{i}\left(a_{i}, a_{-i}\right) \\
& =\sum_{j \in b_{i} \backslash a_{i}} \ell_{j}\left(n_{j}(a)+1\right)-\sum_{j \in a_{i} \backslash b_{i}} \ell_{j}\left(n_{j}(s)\right)<0
\end{aligned}
$$

BRD in Congestion Games (cont.)

$$
\phi(a)=\sum_{j=1}^{m} \sum_{k=1}^{n_{j}(a)} \ell_{j}(k)
$$

- Change in potential is:

$$
\begin{aligned}
\Delta \phi & \equiv \phi\left(b_{i}, a_{-i}\right)-\phi\left(a_{i}, a_{-i}\right) \\
& =\sum_{j \in b_{i} \backslash a_{i}} \ell_{j}\left(n_{j}(a)+1\right)-\sum_{j \in a_{i} \backslash b_{i}} \ell_{j}\left(n_{j}(s)\right) \\
& =\Delta c_{i}
\end{aligned}
$$

BRD in Congestion Games (cont.)

$$
\phi(a)=\sum_{j=1}^{m} \sum_{k=1}^{n_{j}(a)} \ell_{j}(k)
$$

- Change in potential is:

$$
\begin{aligned}
\Delta \phi & \equiv \phi\left(b_{i}, a_{-i}\right)-\phi\left(a_{i}, a_{-i}\right) \\
& =\sum_{j \in b_{i} \backslash a_{i}} \ell_{j}\left(n_{j}(a)+1\right)-\sum_{j \in a_{i} \backslash b_{i}} \ell_{j}\left(n_{j}(s)\right) \\
& =\Delta c_{i}
\end{aligned}
$$

- Since ϕ can take on only finitely many values, this cannot go on forever

BRD in Congestion Games (cont.)

$$
\phi(a)=\sum_{j=1}^{m} \sum_{k=1}^{n_{j}(a)} \ell_{j}(k)
$$

- Change in potential is:

$$
\begin{aligned}
\Delta \phi & \equiv \phi\left(b_{i}, a_{-i}\right)-\phi\left(a_{i}, a_{-i}\right) \\
& =\sum_{j \in b_{i} \backslash a_{i}} \ell_{j}\left(n_{j}(a)+1\right)-\sum_{j \in a_{i} \backslash b_{i}} \ell_{j}\left(n_{j}(s)\right) \\
& =\Delta c_{i}
\end{aligned}
$$

- Since ϕ can take on only finitely many values, this cannot go on forever
- And hence BRD halts in congestion games ...

BRD in Congestion Games (cont.)

$$
\phi(a)=\sum_{j=1}^{m} \sum_{k=1}^{n_{j}(a)} \ell_{j}(k)
$$

- Change in potential is:

$$
\begin{aligned}
\Delta \phi & \equiv \phi\left(b_{i}, a_{-i}\right)-\phi\left(a_{i}, a_{-i}\right) \\
& =\sum_{j \in b_{i} \backslash a_{i}} \ell_{j}\left(n_{j}(a)+1\right)-\sum_{j \in a_{i} \backslash b_{i}} \ell_{j}\left(n_{j}(s)\right) \\
& =\Delta c_{i}
\end{aligned}
$$

- Since ϕ can take on only finitely many values, this cannot go on forever
- And hence BRD halts in congestion games ...
- Which proves the existence of pure strategy Nash equilibria!

Example: Load Balancing Games on Identical Servers

- n clients $i \in N$ schedule jobs of size $w_{i}>0$ on m identical servers M

Example: Load Balancing Games on Identical Servers

- n clients $i \in N$ schedule jobs of size $w_{i}>0$ on m identical servers M
- Action space $A_{i}=M$ for each client

Example: Load Balancing Games on Identical Servers

- n clients $i \in N$ schedule jobs of size $w_{i}>0$ on m identical servers M
- Action space $A_{i}=M$ for each client
- For each server $j \in M, \operatorname{load} \ell_{j}(a)=\sum_{i: a_{i}=j} w_{i}$

Example: Load Balancing Games on Identical Servers

- n clients $i \in N$ schedule jobs of size $w_{i}>0$ on m identical servers M
- Action space $A_{i}=M$ for each client
- For each server $j \in M, \operatorname{load} \ell_{j}(a)=\sum_{i: a_{i}=j} w_{i}$
- Cost of client i is load of server that i chooses: $c_{i}(a)=\ell_{a_{i}}(a)$

Load Balancing Games on Identical Servers: Discussion

- Almost congestion game - but server costs depend on which clients choose them

Load Balancing Games on Identical Servers: Discussion

- Almost congestion game - but server costs depend on which clients choose them
- BRD converges in load balancing games on identical servers

Load Balancing Games on Identical Servers: Discussion

- Almost congestion game - but server costs depend on which clients choose them
- BRD converges in load balancing games on identical servers
- Load balancing games on identical servers have pure strategy NE

BRD in Load Balancing Games on Identical Servers

- Consider potential function ϕ as:

$$
\phi(a)=\frac{1}{2} \sum_{j=1}^{m} \ell_{j}(a)^{2}
$$

- Suppose i switches from server j to server j^{\prime} :

$$
\Delta c_{i}(a) \equiv c_{i}\left(j^{\prime}, a_{-i}\right)-c_{i}\left(j, a_{-i}\right)
$$

BRD in Load Balancing Games on Identical Servers

- Consider potential function ϕ as:

$$
\phi(a)=\frac{1}{2} \sum_{j=1}^{m} \ell_{j}(a)^{2}
$$

- Suppose i switches from server j to server j^{\prime} :

$$
\begin{aligned}
\Delta c_{i}(a) & \equiv c_{i}\left(j^{\prime}, a_{-i}\right)-c_{i}\left(j, a_{-i}\right) \\
& =\ell_{j^{\prime}}(a)+w_{i}-\ell_{j}(a)
\end{aligned}
$$

BRD in Load Balancing Games on Identical Servers

- Consider potential function ϕ as:

$$
\phi(a)=\frac{1}{2} \sum_{j=1}^{m} \ell_{j}(a)^{2}
$$

- Suppose i switches from server j to server j^{\prime} :

$$
\begin{aligned}
\Delta c_{i}(a) & \equiv c_{i}\left(j^{\prime}, a_{-i}\right)-c_{i}\left(j, a_{-i}\right) \\
& =\ell_{j^{\prime}}(a)+w_{i}-\ell_{j}(a) \\
& <0
\end{aligned}
$$

BRD in Load Balancing Games on Identical Servers (cont.)

$$
\Delta \phi(a) \equiv \phi\left(j^{\prime}, a_{-i}\right)-\phi\left(j, a_{-i}\right)
$$

BRD in Load Balancing Games on Identical Servers (cont.)

$$
\begin{aligned}
\Delta \phi(a) & \equiv \phi\left(j^{\prime}, a_{-i}\right)-\phi\left(j, a_{-i}\right) \\
& =\frac{1}{2}\left(\left(\ell_{j^{\prime}}(a)+w_{i}\right)^{2}+\left(\ell_{j}(a)-w_{i}\right)^{2}-\ell_{j^{\prime}}(a)^{2}-\ell_{j}(a)^{2}\right)
\end{aligned}
$$

BRD in Load Balancing Games on Identical Servers (cont.)

$$
\begin{aligned}
\Delta \phi(a) & \equiv \phi\left(j^{\prime}, a_{-i}\right)-\phi\left(j, a_{-i}\right) \\
& =\frac{1}{2}\left(\left(\ell_{j^{\prime}}(a)+w_{i}\right)^{2}+\left(\ell_{j}(a)-w_{i}\right)^{2}-\ell_{j^{\prime}}(a)^{2}-\ell_{j}(a)^{2}\right) \\
& =\frac{1}{2}\left(2 w_{i} \ell_{j^{\prime}}(a)+w_{i}^{2}-2 w_{i} \ell_{j}(a)+w_{i}^{2}\right)
\end{aligned}
$$

BRD in Load Balancing Games on Identical Servers (cont.)

$$
\begin{aligned}
\Delta \phi(a) & \equiv \phi\left(j^{\prime}, a_{-i}\right)-\phi\left(j, a_{-i}\right) \\
& =\frac{1}{2}\left(\left(\ell_{j^{\prime}}(a)+w_{i}\right)^{2}+\left(\ell_{j}(a)-w_{i}\right)^{2}-\ell_{j^{\prime}}(a)^{2}-\ell_{j}(a)^{2}\right) \\
& =\frac{1}{2}\left(2 w_{i} \ell_{j^{\prime}}(a)+w_{i}^{2}-2 w_{i} \ell_{j}(a)+w_{i}^{2}\right) \\
& =w_{i}\left(\ell_{j^{\prime}}(a)+w_{i}-\ell_{j}(a)\right)
\end{aligned}
$$

BRD in Load Balancing Games on Identical Servers (cont.)

$$
\begin{aligned}
\Delta \phi(a) & \equiv \phi\left(j^{\prime}, a_{-i}\right)-\phi\left(j, a_{-i}\right) \\
& =\frac{1}{2}\left(\left(\ell_{j^{\prime}}(a)+w_{i}\right)^{2}+\left(\ell_{j}(a)-w_{i}\right)^{2}-\ell_{j^{\prime}}(a)^{2}-\ell_{j}(a)^{2}\right) \\
& =\frac{1}{2}\left(2 w_{i} \ell_{j^{\prime}}(a)+w_{i}^{2}-2 w_{i} \ell_{j}(a)+w_{i}^{2}\right) \\
& =w_{i}\left(\ell_{j^{\prime}}(a)+w_{i}-\ell_{j}(a)\right) \\
& =w_{i} \cdot \Delta c_{i}(a)
\end{aligned}
$$

BRD in Load Balancing Games on Identical Servers (cont.)

$$
\begin{aligned}
\Delta \phi(a) & \equiv \phi\left(j^{\prime}, a_{-i}\right)-\phi\left(j, a_{-i}\right) \\
& =\frac{1}{2}\left(\left(\ell_{j^{\prime}}(a)+w_{i}\right)^{2}+\left(\ell_{j}(a)-w_{i}\right)^{2}-\ell_{j^{\prime}}(a)^{2}-\ell_{j}(a)^{2}\right) \\
& =\frac{1}{2}\left(2 w_{i} \ell_{j^{\prime}}(a)+w_{i}^{2}-2 w_{i} \ell_{j}(a)+w_{i}^{2}\right) \\
& =w_{i}\left(\ell_{j^{\prime}}(a)+w_{i}-\ell_{j}(a)\right) \\
& =w_{i} \cdot \Delta c_{i}(a) \\
& <0
\end{aligned}
$$

BRD in Load Balancing Games on Identical Servers (cont.)

$$
\begin{aligned}
\Delta \phi(a) & \equiv \phi\left(j^{\prime}, a_{-i}\right)-\phi\left(j, a_{-i}\right) \\
& =\frac{1}{2}\left(\left(\ell_{j^{\prime}}(a)+w_{i}\right)^{2}+\left(\ell_{j}(a)-w_{i}\right)^{2}-\ell_{j^{\prime}}(a)^{2}-\ell_{j}(a)^{2}\right) \\
& =\frac{1}{2}\left(2 w_{i} \ell_{j^{\prime}}(a)+w_{i}^{2}-2 w_{i} \ell_{j}(a)+w_{i}^{2}\right) \\
& =w_{i}\left(\ell_{j^{\prime}}(a)+w_{i}-\ell_{j}(a)\right) \\
& =w_{i} \cdot \Delta c_{i}(a) \\
& <0
\end{aligned}
$$

Note: $\Delta c_{i} \neq \Delta \phi$

Potential Games

- $\phi: A \rightarrow \mathbb{R}_{\geq 0}$ is exact potential function for game G if for all a, i, a_{i}, and b_{i} :

$$
\phi\left(b_{i}, a_{-i}\right)-\phi\left(a_{i}, a_{-i}\right)=c_{i}\left(b_{i}, a_{-i}\right)-c_{i}\left(a_{i}, a_{-i}\right)
$$

Potential Games

- $\phi: A \rightarrow \mathbb{R}_{\geq 0}$ is exact potential function for game G if for all a, i, a_{i}, and b_{i} :

$$
\phi\left(b_{i}, a_{-i}\right)-\phi\left(a_{i}, a_{-i}\right)=c_{i}\left(b_{i}, a_{-i}\right)-c_{i}\left(a_{i}, a_{-i}\right)
$$

- $\phi: A \rightarrow \mathbb{R}_{\geq 0}$ is ordinal potential function for game G if for all a, i, a_{i}, and b_{i} :

$$
\left(c_{i}\left(b_{i}, a_{-i}\right)-c_{i}\left(a_{i}, a_{-i}\right)<0\right) \Rightarrow\left(\phi\left(b_{i}, a_{-i}\right)-\phi\left(a_{i}, a_{-i}\right)<0\right)
$$

(i.e. the change in utility is always equal in sign to the change in potential)

Potential Games

- $\phi: A \rightarrow \mathbb{R}_{\geq 0}$ is exact potential function for game G if for all a, i, a_{i}, and b_{i} :

$$
\phi\left(b_{i}, a_{-i}\right)-\phi\left(a_{i}, a_{-i}\right)=c_{i}\left(b_{i}, a_{-i}\right)-c_{i}\left(a_{i}, a_{-i}\right)
$$

- $\phi: A \rightarrow \mathbb{R}_{\geq 0}$ is ordinal potential function for game G if for all a, i, a_{i}, and b_{i} :

$$
\left(c_{i}\left(b_{i}, a_{-i}\right)-c_{i}\left(a_{i}, a_{-i}\right)<0\right) \Rightarrow\left(\phi\left(b_{i}, a_{-i}\right)-\phi\left(a_{i}, a_{-i}\right)<0\right)
$$

(i.e. the change in utility is always equal in sign to the change in potential)

- BRD is guaranteed to converge in game G iff G has ordinal potential function

BRD and Potential Games

- We've already seen ordinal potential function $\Rightarrow B R D$ converges

BRD and Potential Games

- We've already seen ordinal potential function $\Rightarrow B R D$ converges
- Lets prove other direction

BRD and Potential Games

- We've already seen ordinal potential function $\Rightarrow B R D$ converges
- Lets prove other direction
- Consider graph $G=(V, E)$

BRD and Potential Games

- We've already seen ordinal potential function $\Rightarrow B R D$ converges
- Lets prove other direction
- Consider graph $G=(V, E)$
- Let each $a \in A$ be a vertex in G (i.e., $V=A$)

BRD and Potential Games

- We've already seen ordinal potential function $\Rightarrow B R D$ converges
- Lets prove other direction
- Consider graph $G=(V, E)$
- Let each $a \in A$ be a vertex in G (i.e., $V=A$)
- Add directed edge (a, b) if it is possible to go from b to a by best-response move

BRD and Potential Games

- We've already seen ordinal potential function $\Rightarrow B R D$ converges
- Lets prove other direction
- Consider graph $G=(V, E)$
- Let each $a \in A$ be a vertex in G (i.e., $V=A$)
- Add directed edge (a, b) if it is possible to go from b to a by best-response move
- I.e., if there is i such that $b=\left(b_{i}, a_{-i}\right)$, and $c_{i}\left(b_{i}, a_{-i}\right)<c_{i}(a)$

BRD and Potential Games

- We've already seen ordinal potential function $\Rightarrow B R D$ converges
- Lets prove other direction
- Consider graph $G=(V, E)$
- Let each $a \in A$ be a vertex in G (i.e., $V=A$)
- Add directed edge (a, b) if it is possible to go from b to a by best-response move
- I.e., if there is i such that $b=\left(b_{i}, a_{-i}\right)$, and $c_{i}\left(b_{i}, a_{-i}\right)<c_{i}(a)$
- BRD can be viewed as traversing this graph

BRD and Potential Games

- We've already seen ordinal potential function $\Rightarrow B R D$ converges
- Lets prove other direction
- Consider graph $G=(V, E)$
- Let each $a \in A$ be a vertex in G (i.e., $V=A$)
- Add directed edge (a, b) if it is possible to go from b to a by best-response move
- I.e., if there is i such that $b=\left(b_{i}, a_{-i}\right)$, and $c_{i}\left(b_{i}, a_{-i}\right)<c_{i}(a)$
- BRD can be viewed as traversing this graph
- Start at arbitrary vertex a, and then traverse arbitrary outgoing edges

BRD and Potential Games (cont.)

- Nash Equilibria are the sinks in this graph

BRD and Potential Games (cont.)

- Nash Equilibria are the sinks in this graph
- Suppose BRD converges \Rightarrow there are no cycles in this graph

BRD and Potential Games (cont.)

- Nash Equilibria are the sinks in this graph
- Suppose BRD converges \Rightarrow there are no cycles in this graph
- So, from every vertex a there is some sink s that is reachable (why?)

BRD and Potential Games (cont.)

- Nash Equilibria are the sinks in this graph
- Suppose BRD converges \Rightarrow there are no cycles in this graph
- So, from every vertex a there is some sink s that is reachable (why?)
- We construct potential function $\phi(a)$ for each vertex a

BRD and Potential Games (cont.)

- Nash Equilibria are the sinks in this graph
- Suppose BRD converges \Rightarrow there are no cycles in this graph
- So, from every vertex a there is some sink s that is reachable (why?)
- We construct potential function $\phi(a)$ for each vertex a
- $\phi(a)$ is length of longest finite path from a to any sink s

BRD and Potential Games (cont.)

- Nash Equilibria are the sinks in this graph
- Suppose BRD converges \Rightarrow there are no cycles in this graph
- So, from every vertex a there is some sink s that is reachable (why?)
- We construct potential function $\phi(a)$ for each vertex a
- $\phi(a)$ is length of longest finite path from a to any sink s
- We need: for any edge $a \rightarrow b, \phi(b)<\phi(a)$.

BRD and Potential Games (cont.)

- Nash Equilibria are the sinks in this graph
- Suppose BRD converges \Rightarrow there are no cycles in this graph
- So, from every vertex a there is some sink s that is reachable (why?)
- We construct potential function $\phi(a)$ for each vertex a
- $\phi(a)$ is length of longest finite path from a to any sink s
- We need: for any edge $a \rightarrow b, \phi(b)<\phi(a)$.
- Its true! $\phi(a) \geq \phi(b)+1$. (why?)

Outline

1. Introduction
2. Background
3. Fictitious Play
4. Best-response Dynamics
5. No-regret Learning
6. Background: Single-agent Reinforcement Learning
7. Multi-agent Reinforcement Learning

Sequential Prediction: Stock-prediction Example

- Every day GME goes up or down

Sequential Prediction: Stock-prediction Example

- Every day GME goes up or down
- Goal is to predict direction each day before market opens (to buy or short)

Sequential Prediction: Stock-prediction Example

- Every day GME goes up or down
- Goal is to predict direction each day before market opens (to buy or short)
- Market can behave arbitrarily/adversarially

Sequential Prediction: Stock-prediction Example

- Every day GME goes up or down
- Goal is to predict direction each day before market opens (to buy or short)
- Market can behave arbitrarily/adversarially
- So there is no way we can promise to do well

Sequential Prediction: Stock-prediction Example

- Every day GME goes up or down
- Goal is to predict direction each day before market opens (to buy or short)
- Market can behave arbitrarily/adversarially
- So there is no way we can promise to do well
- However, we get advice

Expert Advice

- There are N experts who make predictions in T rounds

Expert Advice

- There are N experts who make predictions in T rounds
- At each round t, each expert i makes prediction $p_{i}^{t} \in\{U, D\}$

Expert Advice

- There are N experts who make predictions in T rounds
- At each round t, each expert i makes prediction $p_{i}^{t} \in\{U, D\}$
- Expertise is self proclaimed - no promise experts know what they're talking about

Expert Advice

- There are N experts who make predictions in T rounds
- At each round t, each expert i makes prediction $p_{i}^{t} \in\{U, D\}$
- Expertise is self proclaimed - no promise experts know what they're talking about
- We (algorithm) want to aggregate predictions, to make our own prediction p_{A}^{t}

Expert Advice

- There are N experts who make predictions in T rounds
- At each round t, each expert i makes prediction $p_{i}^{t} \in\{U, D\}$
- Expertise is self proclaimed - no promise experts know what they're talking about
- We (algorithm) want to aggregate predictions, to make our own prediction p_{A}^{t}
- We learn true outcome o^{t} at the end of each round

Expert Advice

- There are N experts who make predictions in T rounds
- At each round t, each expert i makes prediction $p_{i}^{t} \in\{U, D\}$
- Expertise is self proclaimed - no promise experts know what they're talking about
- We (algorithm) want to aggregate predictions, to make our own prediction p_{A}^{t}
- We learn true outcome o^{t} at the end of each round
- If we predicted incorrectly (i.e. $p_{A}^{t} \neq o^{t}$), then we made a mistake

Expert Advice (cont.)

- Goal is to after a while do (almost) as well as best expert in hindsight

Expert Advice (cont.)

- Goal is to after a while do (almost) as well as best expert in hindsight
- To make things easy, we assume for now that there is one perfect expert

Expert Advice (cont.)

- Goal is to after a while do (almost) as well as best expert in hindsight
- To make things easy, we assume for now that there is one perfect expert
- Perfect expert never makes mistakes (but we don't know who the expert is)

Expert Advice (cont.)

- Goal is to after a while do (almost) as well as best expert in hindsight
- To make things easy, we assume for now that there is one perfect expert
- Perfect expert never makes mistakes (but we don't know who the expert is)
- Can we find strategy that is guaranteed to make at most $\log (N)$ mistakes?

The Halving Algorithm

```
Let S}\mp@subsup{S}{}{1}\leftarrow{1,\ldots,N}\mathrm{ be set of all experts;
for }t=1\mathrm{ to }T\mathrm{ do
    Predict with majority vote;
    Observe the true outcome ot;
    Eliminate all experts that made a mistake: S }\mp@subsup{}{}{t+1}={i\in\mp@subsup{S}{}{t}|\mp@subsup{p}{i}{t}=\mp@subsup{o}{}{t}}
```


The Halving Algorithm: Analysis

- Algorithm predicts with majority vote

The Halving Algorithm: Analysis

- Algorithm predicts with majority vote
- Every time it makes a mistake, at least half of remaining experts are eliminated

The Halving Algorithm: Analysis

- Algorithm predicts with majority vote
- Every time it makes a mistake, at least half of remaining experts are eliminated
- Hence $\left|S^{t+1}\right| \leq\left|S^{t}\right| / 2$

The Halving Algorithm: Analysis

- Algorithm predicts with majority vote
- Every time it makes a mistake, at least half of remaining experts are eliminated
- Hence $\left|S^{t+1}\right| \leq\left|S^{t}\right| / 2$
- On the other hand, perfect expert is never eliminated

The Halving Algorithm: Analysis

- Algorithm predicts with majority vote
- Every time it makes a mistake, at least half of remaining experts are eliminated
- Hence $\left|S^{t+1}\right| \leq\left|S^{t}\right| / 2$
- On the other hand, perfect expert is never eliminated
- Hence $\left|S^{t}\right| \geq 1$ for all t

The Halving Algorithm: Analysis

- Algorithm predicts with majority vote
- Every time it makes a mistake, at least half of remaining experts are eliminated
- Hence $\left|S^{t+1}\right| \leq\left|S^{t}\right| / 2$
- On the other hand, perfect expert is never eliminated
- Hence $\left|S^{t}\right| \geq 1$ for all t
- Since $\left|S^{1}\right|=N$, this means there can be at most $\log N$ mistakes

The Halving Algorithm: Analysis

- Algorithm predicts with majority vote
- Every time it makes a mistake, at least half of remaining experts are eliminated
- Hence $\left|S^{t+1}\right| \leq\left|S^{t}\right| / 2$
- On the other hand, perfect expert is never eliminated
- Hence $\left|S^{t}\right| \geq 1$ for all t
- Since $\left|S^{1}\right|=N$, this means there can be at most $\log N$ mistakes
- But what if no expert is perfect? Say the best expert makes OPT mistakes

The Halving Algorithm: Analysis

- Algorithm predicts with majority vote
- Every time it makes a mistake, at least half of remaining experts are eliminated
- Hence $\left|S^{t+1}\right| \leq\left|S^{t}\right| / 2$
- On the other hand, perfect expert is never eliminated
- Hence $\left|S^{t}\right| \geq 1$ for all t
- Since $\left|S^{1}\right|=N$, this means there can be at most $\log N$ mistakes
- But what if no expert is perfect? Say the best expert makes OPT mistakes
- Can we find a way to make not too many more than OPT mistakes?

The Iterated Halving Algorithm

Let $S^{1} \leftarrow\{1, \ldots, N\}$ be the set of all experts;
for $t=1$ to T do
if $\left|S^{t}\right|=0$ then
Reset: Set $S^{t} \leftarrow\{1, \ldots, N\}$
Predict with majority vote;
Eliminate all experts that made a mistake: $S^{t+1}=\left\{i \in S^{t} \mid p_{i}^{t}=o^{t}\right\}$;

The Iterated Halving Algorithm: Analysis

- Whenever algorithm makes mistake, we eliminate half of experts

The Iterated Halving Algorithm: Analysis

- Whenever algorithm makes mistake, we eliminate half of experts
- So algorithm can make at most $\log N$ mistakes between any two resets

The Iterated Halving Algorithm: Analysis

- Whenever algorithm makes mistake, we eliminate half of experts
- So algorithm can make at most $\log N$ mistakes between any two resets
- But if we reset, it is because since last reset, every expert has made mistake

The Iterated Halving Algorithm: Analysis

- Whenever algorithm makes mistake, we eliminate half of experts
- So algorithm can make at most $\log N$ mistakes between any two resets
- But if we reset, it is because since last reset, every expert has made mistake
- In particular, between any two resets, best expert has made at least 1 mistake

The Iterated Halving Algorithm: Analysis

- Whenever algorithm makes mistake, we eliminate half of experts
- So algorithm can make at most $\log N$ mistakes between any two resets
- But if we reset, it is because since last reset, every expert has made mistake
- In particular, between any two resets, best expert has made at least 1 mistake
- Algorithm makes at most $\log (N)(\mathrm{OPT}+1)$ mistakes

The Iterated Halving Algorithm: Analysis

- Whenever algorithm makes mistake, we eliminate half of experts
- So algorithm can make at most $\log N$ mistakes between any two resets
- But if we reset, it is because since last reset, every expert has made mistake
- In particular, between any two resets, best expert has made at least 1 mistake
- Algorithm makes at most $\log (N)(\mathrm{OPT}+1)$ mistakes
- Algorithm is wasteful in that every time we reset, we forget what we have learned!

The Iterated Halving Algorithm: Analysis

- Whenever algorithm makes mistake, we eliminate half of experts
- So algorithm can make at most $\log N$ mistakes between any two resets
- But if we reset, it is because since last reset, every expert has made mistake
- In particular, between any two resets, best expert has made at least 1 mistake
- Algorithm makes at most $\log (N)(\mathrm{OPT}+1)$ mistakes
- Algorithm is wasteful in that every time we reset, we forget what we have learned!
- How about just downweight experts who make mistakes?

The Weighted Majority Algorithm

Set weights $w_{i}^{1} \leftarrow 1$ for all experts i;
for $t=1$ to T do
Predict with weighted majority vote;
Down-weight experts who made mistakes: (i.e., if $p_{i}^{t} \neq o^{t}$, set $w_{i}^{t+1} \leftarrow w_{i}^{t} / 2$)

The Weighted Majority Algorithm: Analysis

- Let M be total number of mistakes that algorithm makes

The Weighted Majority Algorithm: Analysis

- Let M be total number of mistakes that algorithm makes
- Let $W^{t}=\sum_{i} w_{i}^{t}$ be total weight at step t

The Weighted Majority Algorithm: Analysis

- Let M be total number of mistakes that algorithm makes
- Let $W^{t}=\sum_{i} w_{i}^{t}$ be total weight at step t
- When algorithm makes mistake, at least half of total weight is cut in half

The Weighted Majority Algorithm: Analysis

- Let M be total number of mistakes that algorithm makes
- Let $W^{t}=\sum_{i} w_{i}^{t}$ be total weight at step t
- When algorithm makes mistake, at least half of total weight is cut in half
- So: $W^{t+1} \leq(3 / 4) W^{t}$

The Weighted Majority Algorithm: Analysis

- Let M be total number of mistakes that algorithm makes
- Let $W^{t}=\sum_{i} w_{i}^{t}$ be total weight at step t
- When algorithm makes mistake, at least half of total weight is cut in half
- So: $W^{t+1} \leq(3 / 4) W^{t}$
- If algorithm makes M mistakes, $W^{T} \leq N \cdot(3 / 4)^{M}$

The Weighted Majority Algorithm: Analysis

- Let M be total number of mistakes that algorithm makes
- Let $W^{t}=\sum_{i} w_{i}^{t}$ be total weight at step t
- When algorithm makes mistake, at least half of total weight is cut in half
- So: $W^{t+1} \leq(3 / 4) W^{t}$
- If algorithm makes M mistakes, $W^{T} \leq N \cdot(3 / 4)^{M}$
- Let i^{*} be the best expert, $W^{T}>w_{i}^{T}=(1 / 2)^{\mathrm{OPT}}$, which gives:

$$
(1 / 2)^{\mathrm{OPT}} \leq W \leq N(3 / 4)^{M} \Rightarrow(4 / 3)^{M} \leq N \cdot 2^{\mathrm{OPT}} \Rightarrow M \leq 2.4(\mathrm{OPT}+\log (N))
$$

The Weighted Majority Algorithm: Analysis

- Let M be total number of mistakes that algorithm makes
- Let $W^{t}=\sum_{i} w_{i}^{t}$ be total weight at step t
- When algorithm makes mistake, at least half of total weight is cut in half
- So: $W^{t+1} \leq(3 / 4) W^{t}$
- If algorithm makes M mistakes, $W^{T} \leq N \cdot(3 / 4)^{M}$
- Let i^{*} be the best expert, $W^{T}>w_{i}^{T}=(1 / 2)^{\mathrm{OPT}}$, which gives:

$$
(1 / 2)^{\mathrm{OPT}} \leq W \leq N(3 / 4)^{M} \Rightarrow(4 / 3)^{M} \leq N \cdot 2^{\mathrm{OPT}} \Rightarrow M \leq 2.4(\mathrm{OPT}+\log (N))
$$

- Algorithm makes at most $2.4(\mathrm{OPT}+\log (N))$ mistakes

The Weighted Majority Algorithm: Analysis

- Let M be total number of mistakes that algorithm makes
- Let $W^{t}=\sum_{i} w_{i}^{t}$ be total weight at step t
- When algorithm makes mistake, at least half of total weight is cut in half
- So: $W^{t+1} \leq(3 / 4) W^{t}$
- If algorithm makes M mistakes, $W^{T} \leq N \cdot(3 / 4)^{M}$
- Let i^{*} be the best expert, $W^{T}>w_{i}^{T}=(1 / 2)^{\mathrm{OPT}}$, which gives:

$$
(1 / 2)^{\mathrm{OPT}} \leq W \leq N(3 / 4)^{M} \Rightarrow(4 / 3)^{M} \leq N \cdot 2^{\mathrm{OPT}} \Rightarrow M \leq 2.4(\mathrm{OPT}+\log (N))
$$

- Algorithm makes at most $2.4(\mathrm{OPT}+\log (N))$ mistakes
- $\log (N)$ is constant, so ratio of mistakes to OPT is 2.4 in limit - not great, but not bad

What Do We Want in an Algorithm?

- Make only $1 \times$ as many mistakes as OPT in limit, rather than $2.4 \times$
- Handle N distinct actions (separate action for each expert), not just up and down
- Handle arbitrary costs in $[0,1]$ per expert per round, not just right and wrong

New Model/Algorithm

- In rounds $1, \ldots, T$, algorithm chooses some expert i^{t}

New Model/Algorithm

- In rounds $1, \ldots, T$, algorithm chooses some expert i^{t}
- Each expert i experiences loss: $\ell_{i}^{t} \in[0,1]$

New Model/Algorithm

- In rounds $1, \ldots, T$, algorithm chooses some expert i^{t}
- Each expert i experiences loss: $\ell_{i}^{t} \in[0,1]$
- Algorithm experiences the loss of the expert it chooses: $\ell_{A}^{t}=\ell_{i t}^{t}$

New Model/Algorithm

- In rounds $1, \ldots, T$, algorithm chooses some expert i^{t}
- Each expert i experiences loss: $\ell_{i}^{t} \in[0,1]$
- Algorithm experiences the loss of the expert it chooses: $\ell_{A}^{t}=\ell_{i t}^{t}$
- Total loss of expert i is $L_{i}^{T}=\sum_{t=1}^{T} \ell_{i}^{t}$

New Model/Algorithm

- In rounds $1, \ldots, T$, algorithm chooses some expert i^{t}
- Each expert i experiences loss: $\ell_{i}^{t} \in[0,1]$
- Algorithm experiences the loss of the expert it chooses: $\ell_{A}^{t}=\ell_{i t}^{t}$
- Total loss of expert i is $L_{i}^{T}=\sum_{t=1}^{T} \ell_{i}^{t}$
- Total loss of algorithm is $L_{A}^{T}=\sum_{t=1}^{T} \ell_{A}^{t}$

New Model/Algorithm

- In rounds $1, \ldots, T$, algorithm chooses some expert i^{t}
- Each expert i experiences loss: $\ell_{i}^{t} \in[0,1]$
- Algorithm experiences the loss of the expert it chooses: $\ell_{A}^{t}=\ell_{i t}^{t}$
- Total loss of expert i is $L_{i}^{T}=\sum_{t=1}^{T} \ell_{i}^{t}$
- Total loss of algorithm is $L_{A}^{T}=\sum_{t=1}^{T} \ell_{A}^{t}$
- Goal is to obtain loss "not much worse" than that of the best expert: $\min _{i} L_{i}^{T}$

Multiplicative Weights (MW) Algorithm (a.w.a. Hedge Algorithm)

Set weights $w_{i}^{1} \leftarrow 1$ for all experts i;
for $t=1$ to T do
Let $W^{t}=\sum_{i=1}^{N} w_{i}^{t}$;
Choose expert i with probability w_{i}^{t} / W^{t};
For each i, set $w_{i}^{t+1} \leftarrow w_{i}^{t} \cdot \exp \left(-\epsilon \ell_{i}^{t}\right)$;

Multiplicative Weights (MW) Algorithm (a.w.a. Hedge Algorithm)

Set weights $w_{i}^{1} \leftarrow 1$ for all experts i;
for $t=1$ to T do
Let $W^{t}=\sum_{i=1}^{N} w_{i}^{t}$;
Choose expert i with probability w_{i}^{t} / W^{t};
For each i, set $w_{i}^{t+1} \leftarrow w_{i}^{t} \cdot \exp \left(-\epsilon \ell_{i}^{t}\right)$;

- Can be viewed as "smoothed" version of weighted majority algorithm

Multiplicative Weights (MW) Algorithm (a.w.a. Hedge Algorithm)

Set weights $w_{i}^{1} \leftarrow 1$ for all experts i;
for $t=1$ to T do
Let $W^{t}=\sum_{i=1}^{N} w_{i}^{t}$;
Choose expert i with probability w_{i}^{t} / W^{t};
For each i, set $w_{i}^{t+1} \leftarrow w_{i}^{t} \cdot \exp \left(-\epsilon \ell_{i}^{t}\right)$;

- Can be viewed as "smoothed" version of weighted majority algorithm
- Has parameter ϵ which controls how quickly it down-weights experts

Multiplicative Weights (MW) Algorithm (a.w.a. Hedge Algorithm)

Set weights $w_{i}^{1} \leftarrow 1$ for all experts i;
for $t=1$ to T do
Let $W^{t}=\sum_{i=1}^{N} w_{i}^{t}$;
Choose expert i with probability w_{i}^{t} / W^{t};
For each i, set $w_{i}^{t+1} \leftarrow w_{i}^{t} \cdot \exp \left(-\epsilon \ell_{i}^{t}\right)$;

- Can be viewed as "smoothed" version of weighted majority algorithm
- Has parameter ϵ which controls how quickly it down-weights experts
- Is randomized - chooses experts w.p. proportional to their weights

Multiplicative Weights (MW) Algorithm (a.w.a. Hedge Algorithm)

Set weights $w_{i}^{1} \leftarrow 1$ for all experts i;
for $t=1$ to T do
Let $W^{t}=\sum_{i=1}^{N} w_{i}^{t}$;
Choose expert i with probability w_{i}^{t} / W^{t};
For each i, set $w_{i}^{t+1} \leftarrow w_{i}^{t} \cdot \exp \left(-\epsilon \ell_{i}^{t}\right)$;

- Can be viewed as "smoothed" version of weighted majority algorithm
- Has parameter ϵ which controls how quickly it down-weights experts
- Is randomized - chooses experts w.p. proportional to their weights
- Can be used with alternative update: $w_{i}^{t+1} \leftarrow w_{i}^{t} \cdot\left(1-\epsilon \ell_{i}^{t}\right)$

Multiplicative Weights Algorithm: Discussion

- For any sequence of losses, and any expert k :

$$
\frac{1}{T} \mathbb{E}\left[L_{M W}^{T}\right] \leq \frac{1}{T} L_{k}^{T}+\epsilon+\frac{\ln (N)}{\epsilon \cdot T}
$$

Multiplicative Weights Algorithm: Discussion

- For any sequence of losses, and any expert k :

$$
\frac{1}{T} \mathbb{E}\left[L_{M W}^{T}\right] \leq \frac{1}{T} L_{k}^{T}+\epsilon+\frac{\ln (N)}{\epsilon \cdot T}
$$

- In particular, setting $\epsilon=\sqrt{\ln (N) / T}$:

$$
\frac{1}{T} \mathbb{E}\left[L_{M W}^{T}\right] \leq \frac{1}{T} \min _{k} L_{k}^{T}+2 \sqrt{\frac{\ln (N)}{T}}
$$

Multiplicative Weights Algorithm: Discussion

- For any sequence of losses, and any expert k :

$$
\frac{1}{T} \mathbb{E}\left[L_{M W}^{T}\right] \leq \frac{1}{T} L_{k}^{T}+\epsilon+\frac{\ln (N)}{\epsilon \cdot T}
$$

- In particular, setting $\epsilon=\sqrt{\ln (N) / T}$:

$$
\frac{1}{T} \mathbb{E}\left[L_{M W}^{T}\right] \leq \frac{1}{T} \min _{k} L_{k}^{T}+2 \sqrt{\frac{\ln (N)}{T}}
$$

- Average loss quickly approaches that of best expert exactly, at rate of $1 / \sqrt{T}$

Multiplicative Weights Algorithm: Discussion

- For any sequence of losses, and any expert k :

$$
\frac{1}{T} \mathbb{E}\left[L_{M W}^{T}\right] \leq \frac{1}{T} L_{k}^{T}+\epsilon+\frac{\ln (N)}{\epsilon \cdot T}
$$

- In particular, setting $\epsilon=\sqrt{\ln (N) / T}$:

$$
\frac{1}{T} \mathbb{E}\left[L_{M W}^{T}\right] \leq \frac{1}{T} \min _{k} L_{k}^{T}+2 \sqrt{\frac{\ln (N)}{T}}
$$

- Average loss quickly approaches that of best expert exactly, at rate of $1 / \sqrt{T}$
- This works for arbitrary sequence of losses (e.g., chosen adaptively by adversary)

Multiplicative Weights Algorithm: Discussion

- For any sequence of losses, and any expert k :

$$
\frac{1}{T} \mathbb{E}\left[L_{M W}^{T}\right] \leq \frac{1}{T} L_{k}^{T}+\epsilon+\frac{\ln (N)}{\epsilon \cdot T}
$$

- In particular, setting $\epsilon=\sqrt{\ln (N) / T}$:

$$
\frac{1}{T} \mathbb{E}\left[L_{M W}^{T}\right] \leq \frac{1}{T} \min _{k} L_{k}^{T}+2 \sqrt{\frac{\ln (N)}{T}}
$$

- Average loss quickly approaches that of best expert exactly, at rate of $1 / \sqrt{T}$
- This works for arbitrary sequence of losses (e.g., chosen adaptively by adversary)
- So we could us it to play games (experts \leftrightarrow actions and losses \leftrightarrow costs)

Recall: Minimax Theorem (John von Neumann, 1928)

In any finite, two-player, zero-sum game, in any NE, each agent receives a payoff that is equal to both their maxmin value and their minmax value

$$
\max _{s_{i}} \min _{s_{-i}} u_{i}\left(s_{i}, s_{-i}\right)=\min _{s_{-i}} \max _{s_{i}} u_{i}\left(s_{i}, s_{-i}\right)
$$

Simple Proof for Minimax Theorem

- Scale utilities such that u_{1} is in $[0,1]$

Simple Proof for Minimax Theorem

- Scale utilities such that u_{1} is in $[0,1]$
- Write $v_{1}=\min _{s_{2}} \max _{s_{1}} u_{1}\left(s_{1}, s_{2}\right)$ and $v_{2}=\max _{s_{1}} \min _{s_{2}} u_{1}\left(s_{1}, s_{2}\right)$

Simple Proof for Minimax Theorem

- Scale utilities such that u_{1} is in $[0,1]$
- Write $v_{1}=\min _{s_{2}} \max _{s_{1}} u_{1}\left(s_{1}, s_{2}\right)$ and $v_{2}=\max _{s_{1}} \min _{s_{2}} u_{1}\left(s_{1}, s_{2}\right)$
- Suppose theorem were false: $v_{1}=v_{2}+\epsilon$ for some constant $\epsilon>0$

Simple Proof for Minimax Theorem

- Scale utilities such that u_{1} is in $[0,1]$
- Write $v_{1}=\min _{s_{2}} \max _{s_{1}} u_{1}\left(s_{1}, s_{2}\right)$ and $v_{2}=\max _{s_{1}} \min _{s_{2}} u_{1}\left(s_{1}, s_{2}\right)$
- Suppose theorem were false: $v_{1}=v_{2}+\epsilon$ for some constant $\epsilon>0$
- Suppose A1 and A2 repeatedly play against each other as follows

Simple Proof for Minimax Theorem

- Scale utilities such that u_{1} is in $[0,1]$
- Write $v_{1}=\min _{s_{2}} \max _{s_{1}} u_{1}\left(s_{1}, s_{2}\right)$ and $v_{2}=\max _{s_{1}} \min _{s_{2}} u_{1}\left(s_{1}, s_{2}\right)$
- Suppose theorem were false: $v_{1}=v_{2}+\epsilon$ for some constant $\epsilon>0$
- Suppose A1 and A2 repeatedly play against each other as follows
- A2 uses MW algorithm: at round $t, s_{2}^{t}\left(a_{2}\right)=w_{a_{2}}^{t} / W^{t}$

Simple Proof for Minimax Theorem

- Scale utilities such that u_{1} is in $[0,1]$
- Write $v_{1}=\min _{s_{2}} \max _{s_{1}} u_{1}\left(s_{1}, s_{2}\right)$ and $v_{2}=\max _{s_{1}} \min _{s_{2}} u_{1}\left(s_{1}, s_{2}\right)$
- Suppose theorem were false: $v_{1}=v_{2}+\epsilon$ for some constant $\epsilon>0$
- Suppose A1 and A2 repeatedly play against each other as follows
- A2 uses MW algorithm: at round $t, s_{2}^{t}\left(a_{2}\right)=w_{\mathrm{az}_{2}}^{t} / W^{t}$
- A1 plays best response to A2's strategy: $s_{1}^{t}=\operatorname{argmax}_{s_{1}} u_{1}\left(s_{1}, s_{2}^{t}\right)$

Simple Proof for Minimax Theorem (cont.)

- For A2's MW algorithm, we have:

$$
\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[u_{1}\left(a_{1}^{t}, a_{2}^{t}\right)\right] \leq \frac{1}{T} \min _{a_{2}} \sum_{t=1}^{T} u_{1}\left(a_{1}^{t}, a_{2}\right)+2 \sqrt{\frac{\log n}{T}}
$$

Simple Proof for Minimax Theorem (cont.)

- For A2's MW algorithm, we have:

$$
\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[u_{1}\left(a_{1}^{t}, a_{2}^{t}\right)\right] \leq \frac{1}{T} \min _{a_{2}} \sum_{t=1}^{T} u_{1}\left(a_{1}^{t}, a_{2}\right)+2 \sqrt{\frac{\log n}{T}}
$$

- Let \bar{s}_{1} be mixed strategy that puts weight $1 / T$ on each action a_{1}^{t}, we have:

$$
\frac{1}{T} \min _{a_{2}} \sum_{t=1}^{T} u_{1}\left(a_{1}^{t}, a_{2}\right)=\min _{a_{2}} \sum_{t=1}^{T} \frac{1}{T} u_{1}\left(a_{1}^{t}, a_{2}\right)=\min _{a_{2}} u_{1}\left(\bar{s}_{1}, a_{2}\right)
$$

Simple Proof for Minimax Theorem (cont.)

- For A2's MW algorithm, we have:

$$
\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[u_{1}\left(a_{1}^{t}, a_{2}^{t}\right)\right] \leq \frac{1}{T} \min _{a_{2}} \sum_{t=1}^{T} u_{1}\left(a_{1}^{t}, a_{2}\right)+2 \sqrt{\frac{\log n}{T}}
$$

- Let \bar{s}_{1} be mixed strategy that puts weight $1 / T$ on each action a_{1}^{t}, we have:

$$
\frac{1}{T} \min _{a_{2}} \sum_{t=1}^{T} u_{1}\left(a_{1}^{t}, a_{2}\right)=\min _{a_{2}} \sum_{t=1}^{T} \frac{1}{T} u_{1}\left(a_{1}^{t}, a_{2}\right)=\min _{a_{2}} u_{1}\left(\bar{s}_{1}, a_{2}\right)
$$

- By definition, we have: $\min _{a_{2}} u_{1}\left(\bar{s}_{1}, a_{2}\right) \leq \max _{s_{1}} \min _{a_{2}} u_{1}\left(s_{1}, a_{2}\right)=v_{2}$, and so:

$$
\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[u_{1}\left(a_{1}^{t}, a_{2}^{t}\right)\right] \leq v_{2}+2 \sqrt{\frac{\log n}{T}}
$$

Simple Proof for Minimax Theorem (cont.)

- On the other hand, A1 best responds to A2's mixed strategy:

$$
\begin{aligned}
\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[u_{1}\left(a_{1}^{t}, a_{2}^{t}\right)\right] & =\frac{1}{T} \sum_{t=1}^{T} \max _{a_{1}} u_{1}\left(a_{1}, s_{2}^{t}\right) \\
& \geq \frac{1}{T} \sum_{t=1}^{T} \min _{s_{2}} \max _{a_{1}} u_{1}\left(a_{1}, s_{2}\right)=\frac{1}{T} \sum_{t=1}^{T} v_{1}=v 1
\end{aligned}
$$

Simple Proof for Minimax Theorem (cont.)

- On the other hand, A1 best responds to A2's mixed strategy:

$$
\begin{aligned}
\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[u_{1}\left(a_{1}^{t}, a_{2}^{t}\right)\right] & =\frac{1}{T} \sum_{t=1}^{T} \max _{a_{1}} u_{1}\left(a_{1}, s_{2}^{t}\right) \\
& \geq \frac{1}{T} \sum_{t=1}^{T} \min _{s_{2}} \max _{a_{1}} u_{1}\left(a_{1}, s_{2}\right)=\frac{1}{T} \sum_{t=1}^{T} v_{1}=v 1
\end{aligned}
$$

- Combining these inequalities, we get: $v_{1} \leq v_{2}+2 \sqrt{\log n / T}$

Simple Proof for Minimax Theorem (cont.)

- On the other hand, A1 best responds to A2's mixed strategy:

$$
\begin{aligned}
\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[u_{1}\left(a_{1}^{t}, a_{2}^{t}\right)\right] & =\frac{1}{T} \sum_{t=1}^{T} \max _{a_{1}} u_{1}\left(a_{1}, s_{2}^{t}\right) \\
& \geq \frac{1}{T} \sum_{t=1}^{T} \min _{s_{2}} \max _{a_{1}} u_{1}\left(a_{1}, s_{2}\right)=\frac{1}{T} \sum_{t=1}^{T} v_{1}=v 1
\end{aligned}
$$

- Combining these inequalities, we get: $v_{1} \leq v_{2}+2 \sqrt{\log n / T}$
- Since $v_{1}=v_{2}+\epsilon$, we have: $\epsilon \leq 2 \sqrt{\log n / T}$

Simple Proof for Minimax Theorem (cont.)

- On the other hand, A1 best responds to A2's mixed strategy:

$$
\begin{aligned}
\frac{1}{T} \sum_{t=1}^{T} \mathbb{E}\left[u_{1}\left(a_{1}^{t}, a_{2}^{t}\right)\right] & =\frac{1}{T} \sum_{t=1}^{T} \max _{a_{1}} u_{1}\left(a_{1}, s_{2}^{t}\right) \\
& \geq \frac{1}{T} \sum_{t=1}^{T} \min _{s_{2}} \max _{a_{1}} u_{1}\left(a_{1}, s_{2}\right)=\frac{1}{T} \sum_{t=1}^{T} v_{1}=v 1
\end{aligned}
$$

- Combining these inequalities, we get: $v_{1} \leq v_{2}+2 \sqrt{\log n / T}$
- Since $v_{1}=v_{2}+\epsilon$, we have: $\epsilon \leq 2 \sqrt{\log n / T}$
- Taking T large enough leads to contradiction

External Regret

- Sequence a^{1}, \ldots, a^{T} has external regret of $\Delta(T)$ if for every agent i and action a_{i}^{\prime} :

$$
\frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a^{t}\right) \geq \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a_{i}^{\prime}, a_{-i}\right)-\Delta(T)
$$

External Regret

- Sequence a^{1}, \ldots, a^{T} has external regret of $\Delta(T)$ if for every agent i and action a_{i}^{\prime} :

$$
\frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a^{t}\right) \geq \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a_{i}^{\prime}, a_{-i}\right)-\Delta(T)
$$

- If $\Delta(T)=o_{T}(1)$, we say that sequence of action profiles has no external regret

External Regret

- Sequence a^{1}, \ldots, a^{T} has external regret of $\Delta(T)$ if for every agent i and action a_{i}^{\prime} :

$$
\frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a^{t}\right) \geq \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a_{i}^{\prime}, a_{-i}\right)-\Delta(T)
$$

- If $\Delta(T)=o_{T}(1)$, we say that sequence of action profiles has no external regret
- External regret measures regret to the best fixed action in hindsight

External Regret

- Sequence a^{1}, \ldots, a^{T} has external regret of $\Delta(T)$ if for every agent i and action a_{i}^{\prime} :

$$
\frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a^{t}\right) \geq \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a_{i}^{\prime}, a_{-i}\right)-\Delta(T)
$$

- If $\Delta(T)=o_{T}(1)$, we say that sequence of action profiles has no external regret
- External regret measures regret to the best fixed action in hindsight
- If a^{1}, \ldots, a^{T} has ϵ external regret, then distribution π that puts weight $1 / T$ on each a^{t} (i.e., empirical distribution of actions) forms ϵ-approximate CCE

$$
\mathbb{E}_{\mathrm{a} \sim \pi}\left[u_{i}(a)\right]=\frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a^{t}\right) \geq \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a_{i}^{\prime}, a_{-i}\right)-\epsilon=\mathbb{E}_{\mathrm{a} \sim \pi}\left[u_{i}\left(a_{i}^{\prime}, a_{-i}\right)\right]-\epsilon
$$

No-(external-)regret Dynamics

- Suppose that all agents use MW algorithm to choose between k actions

No-(external-)regret Dynamics

- Suppose that all agents use MW algorithm to choose between k actions
- After T steps, sequence of outcomes has external regret of $\Delta(T)=2 \sqrt{\log k / T}$

No-(external-)regret Dynamics

- Suppose that all agents use MW algorithm to choose between k actions
- After T steps, sequence of outcomes has external regret of $\Delta(T)=2 \sqrt{\log k / T}$
- Empirical distribution of outcomes forms $\Delta(T)$-approximate CCE

No-(external-)regret Dynamics

- Suppose that all agents use MW algorithm to choose between k actions
- After T steps, sequence of outcomes has external regret of $\Delta(T)=2 \sqrt{\log k / T}$
- Empirical distribution of outcomes forms $\Delta(T)$-approximate CCE
- For $T=4 \log (k) / \epsilon^{2}$, distribution of outcomes converges to ϵ-approximate CCE

Swap Regret

- Sequence a^{1}, \ldots, a^{T} has swap regret of $\Delta(T)$ if for every agent i and every switching function $F_{i}: A_{i} \rightarrow A_{i}$:

$$
\frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a^{t}\right) \geq \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(F_{i}\left(a_{i}\right), a_{-i}\right)-\Delta(T)
$$

Swap Regret

- Sequence a^{1}, \ldots, a^{T} has swap regret of $\Delta(T)$ if for every agent i and every switching function $F_{i}: A_{i} \rightarrow A_{i}$:

$$
\frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a^{t}\right) \geq \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(F_{i}\left(a_{i}\right), a_{-i}\right)-\Delta(T)
$$

- If $\Delta(T)=o_{T}(1)$, we say that sequence of action profiles has no swap regret

Swap Regret

- Sequence a^{1}, \ldots, a^{T} has swap regret of $\Delta(T)$ if for every agent i and every switching function $F_{i}: A_{i} \rightarrow A_{i}$:

$$
\frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a^{t}\right) \geq \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(F_{i}\left(a_{i}\right), a_{-i}\right)-\Delta(T)
$$

- If $\Delta(T)=o_{T}(1)$, we say that sequence of action profiles has no swap regret
- This measures regret to counterfactual case where every action of particular type is swapped with different action in hindsight, separately for each action

Swap Regret

- Sequence a^{1}, \ldots, a^{T} has swap regret of $\Delta(T)$ if for every agent i and every switching function $F_{i}: A_{i} \rightarrow A_{i}$:

$$
\frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a^{t}\right) \geq \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(F_{i}\left(a_{i}\right), a_{-i}\right)-\Delta(T)
$$

- If $\Delta(T)=o_{T}(1)$, we say that sequence of action profiles has no swap regret
- This measures regret to counterfactual case where every action of particular type is swapped with different action in hindsight, separately for each action
- E.g., "Every time i bought Microsoft, i should have bought Apple, and every time i bought Google, i should have bought Comcast."

Swap Regret

- Sequence a^{1}, \ldots, a^{T} has swap regret of $\Delta(T)$ if for every agent i and every switching function $F_{i}: A_{i} \rightarrow A_{i}$:

$$
\frac{1}{T} \sum_{t=1}^{T} u_{i}\left(a^{t}\right) \geq \frac{1}{T} \sum_{t=1}^{T} u_{i}\left(F_{i}\left(a_{i}\right), a_{-i}\right)-\Delta(T)
$$

- If $\Delta(T)=o_{T}(1)$, we say that sequence of action profiles has no swap regret
- This measures regret to counterfactual case where every action of particular type is swapped with different action in hindsight, separately for each action
- E.g., "Every time i bought Microsoft, i should have bought Apple, and every time i bought Google, i should have bought Comcast."
- If a^{1}, \ldots, a^{T} has ϵ swap regret, then distribution π that picks among a^{1}, \ldots, a^{T} uniformly at random is ϵ-approximate correlated equilibrium

Generalization

- For any agent i, F_{i}, and $a \in A$, define regret as:

$$
\operatorname{Regret}_{i}\left(a, F_{i}\right)=u_{i}\left(F_{i}\left(a_{i}\right), a_{-i}\right)-u_{i}(a)
$$

Generalization

- For any agent i, F_{i}, and $a \in A$, define regret as:

$$
\operatorname{Regret}_{i}\left(a, F_{i}\right)=u_{i}\left(F_{i}\left(a_{i}\right), a_{-i}\right)-u_{i}(a)
$$

- F_{i} is constant switching function if $F_{i}\left(a_{i}\right)=F_{i}\left(a_{i}^{\prime}\right)$ for all $a_{i}, a_{i}^{\prime} \in A_{i}$

Generalization

- For any agent i, F_{i}, and $a \in A$, define regret as:

$$
\operatorname{Regret}_{i}\left(a, F_{i}\right)=u_{i}\left(F_{i}\left(a_{i}\right), a_{-i}\right)-u_{i}(a)
$$

- F_{i} is constant switching function if $F_{i}\left(a_{i}\right)=F_{i}\left(a_{i}^{\prime}\right)$ for all $a_{i}, a_{i}^{\prime} \in A_{i}$
- π is CCE if for every agent i and every constant switching function F_{i} :

$$
\mathbb{E}_{\mathrm{a} \sim \pi}\left[\operatorname{Regret}_{i}\left(a, F_{i}\right)\right] \leq 0
$$

Generalization

- For any agent i, F_{i}, and $a \in A$, define regret as:

$$
\operatorname{Regret}_{i}\left(a, F_{i}\right)=u_{i}\left(F_{i}\left(a_{i}\right), a_{-i}\right)-u_{i}(a)
$$

- F_{i} is constant switching function if $F_{i}\left(a_{i}\right)=F_{i}\left(a_{i}^{\prime}\right)$ for all $a_{i}, a_{i}^{\prime} \in A_{i}$
- π is CCE if for every agent i and every constant switching function F_{i} :

$$
\mathbb{E}_{a \sim \pi}\left[\operatorname{Regret}_{i}\left(a, F_{i}\right)\right] \leq 0
$$

- π is CE if for every agent i and every switching function F_{i} :

$$
\mathbb{E}_{a \sim \pi}\left[\operatorname{Regret}_{i}\left(a, F_{i}\right)\right] \leq 0
$$

How to Achieve No Swap Regret

- Define set of time steps that expert j is selected:

$$
S_{j}=\left\{t: a_{t}=j\right\}
$$

How to Achieve No Swap Regret

- Define set of time steps that expert j is selected:

$$
S_{j}=\left\{t: a_{t}=j\right\}
$$

- Observation: To achieve no swap regret it would be sufficient that for every j :

$$
\frac{1}{\left|S_{j}\right|} \sum_{t \in S_{j}} \ell_{a_{t}}^{t} \leq \frac{1}{\left|S_{j}\right|} \min _{i} \sum_{t \in S_{j}} \ell_{i}^{t}+\Delta(T)
$$

How to Achieve No Swap Regret

- Define set of time steps that expert j is selected:

$$
S_{j}=\left\{t: a_{t}=j\right\}
$$

- Observation: To achieve no swap regret it would be sufficient that for every j :

$$
\frac{1}{\left|S_{j}\right|} \sum_{t \in S_{j}} \ell_{a_{t}}^{t} \leq \frac{1}{\left|S_{j}\right|} \min _{i} \sum_{t \in S_{j}} \ell_{i}^{t}+\Delta(T)
$$

- No swap regret $=$ no external regret separately on each sequence of actions S_{j}

How to Achieve No Swap Regret

- Define set of time steps that expert j is selected:

$$
S_{j}=\left\{t: a_{t}=j\right\}
$$

- Observation: To achieve no swap regret it would be sufficient that for every j :

$$
\frac{1}{\left|S_{j}\right|} \sum_{t \in S_{j}} \ell_{a_{t}}^{t} \leq \frac{1}{\left|S_{j}\right|} \min _{i} \sum_{t \in S_{j}} \ell_{i}^{t}+\Delta(T)
$$

- No swap regret $=$ no external regret separately on each sequence of actions S_{j}
- Best switching function in hindsight $=$ swapping each action j for best fixed action in hindsight over S_{j}

How to Achieve No Swap Regret

- Define set of time steps that expert j is selected:

$$
S_{j}=\left\{t: a_{t}=j\right\}
$$

- Observation: To achieve no swap regret it would be sufficient that for every j :

$$
\frac{1}{\left|S_{j}\right|} \sum_{t \in S_{j}} \ell_{a_{t}}^{t} \leq \frac{1}{\left|S_{j}\right|} \min _{i} \sum_{t \in S_{j}} \ell_{i}^{t}+\Delta(T)
$$

- No swap regret $=$ no external regret separately on each sequence of actions S_{j}
- Best switching function in hindsight $=$ swapping each action j for best fixed action in hindsight over S_{j}
- Idea: Run k copies of PW, one responsible for each S_{j}

Algorithm Sketch for No Swap Regret

- Initialize k copies of MW algorithm one for each of k actions

Algorithm Sketch for No Swap Regret

- Initialize k copies of MW algorithm one for each of k actions
- Let $q(i)_{1}^{t}, \ldots, q(i)_{k}^{t}$ be distribution over experts for copy i at time t

Algorithm Sketch for No Swap Regret

- Initialize k copies of MW algorithm one for each of k actions
- Let $q(i)_{1}^{t}, \ldots, q(i)_{k}^{t}$ be distribution over experts for copy i at time t
- Combine these into single distribution over experts: $p_{1}^{t}, \ldots, p_{k}^{t}$ (details later!)

Algorithm Sketch for No Swap Regret

- Initialize k copies of MW algorithm one for each of k actions
- Let $q(i)_{1}^{t}, \ldots, q(i)_{k}^{t}$ be distribution over experts for copy i at time t
- Combine these into single distribution over experts: $p_{1}^{t}, \ldots, p_{k}^{t}$ (details later!)
- Let $\ell_{1}^{t}, \ldots, \ell_{k}^{t}$ be losses for experts at time t

Algorithm Sketch for No Swap Regret

- Initialize k copies of MW algorithm one for each of k actions
- Let $q(i)_{1}^{t}, \ldots, q(i)_{k}^{t}$ be distribution over experts for copy i at time t
- Combine these into single distribution over experts: $p_{1}^{t}, \ldots, p_{k}^{t}$ (details later!)
- Let $\ell_{1}^{t}, \ldots, \ell_{k}^{t}$ be losses for experts at time t
- For copy i of MW algorithm, we report losses $p_{i}^{t} \ell_{1}^{t}, \ldots, p_{i}^{t} \ell_{k}^{t}$

Algorithm Sketch for No Swap Regret

- Initialize k copies of MW algorithm one for each of k actions
- Let $q(i)_{1}^{t}, \ldots, q(i)_{k}^{t}$ be distribution over experts for copy i at time t
- Combine these into single distribution over experts: $p_{1}^{t}, \ldots, p_{k}^{t}$ (details later!)
- Let $\ell_{1}^{t}, \ldots, \ell_{k}^{t}$ be losses for experts at time t
- For copy i of MW algorithm, we report losses $p_{i}^{t} \ell_{1}^{t}, \ldots, p_{i}^{t} \ell_{k}^{t}$
- I.e., to copy i, we report the true losses scaled by p_{i}^{t}

No-swap-regret Algorithm

No-swap-regret Algorithm: Analysis

- Expected cost of the master algorithm:

$$
\begin{equation*}
\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{k} p_{i}^{t} \cdot \ell_{i}^{t} \tag{1}
\end{equation*}
$$

No-swap-regret Algorithm: Analysis

- Expected cost of the master algorithm:

$$
\begin{equation*}
\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{k} p_{i}^{t} \cdot \ell_{i}^{t} \tag{1}
\end{equation*}
$$

- Expected cost under switching function F

$$
\begin{equation*}
\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{k} p_{i}^{t} \cdot \ell_{F(i)}^{t} \tag{2}
\end{equation*}
$$

No-swap-regret Algorithm: Analysis

- Expected cost of the master algorithm:

$$
\begin{equation*}
\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{k} p_{i}^{t} \cdot \ell_{i}^{t} \tag{1}
\end{equation*}
$$

- Expected cost under switching function F

$$
\begin{equation*}
\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{k} p_{i}^{t} \cdot \ell_{F(i)}^{t} \tag{2}
\end{equation*}
$$

- Goal: prove that (1) is at most (2) plus $\Delta(T)=o_{T}(1)$

No-swap-regret Algorithm: Analysis (cont.)

- Expected cost of M_{j} :

$$
\begin{equation*}
\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{k} q(j)_{i}^{t}\left(p_{j}^{t} \cdot \ell_{i}^{t}\right) \tag{3}
\end{equation*}
$$

No-swap-regret Algorithm: Analysis (cont.)

- Expected cost of M_{j} :

$$
\begin{equation*}
\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{k} q(j)_{i}^{t}\left(p_{j}^{t} \cdot \ell_{i}^{t}\right) \tag{3}
\end{equation*}
$$

- M_{j} is no-regret algorithm, so its cost is at most:

$$
\begin{equation*}
\frac{1}{T} \sum_{t=1}^{T} p_{j}^{t} \cdot \ell_{F(j)}^{t}+\Delta(T) \tag{4}
\end{equation*}
$$

for any any arbitrary F

No-swap-regret Algorithm: Analysis (cont.)

- Summing inequality between (3) and (4) over all copies:

$$
\begin{equation*}
\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{k} \sum_{j=1}^{k} q(j)_{i}^{t}\left(p_{j}^{t} \cdot \ell_{i}^{t}\right) \leq \frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{k} p_{j}^{t} \cdot \ell_{F(j)}^{t}+k \cdot \Delta(T) \tag{5}
\end{equation*}
$$

No-swap-regret Algorithm: Analysis (cont.)

- Summing inequality between (3) and (4) over all copies:

$$
\begin{equation*}
\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{k} \sum_{j=1}^{k} q(j)_{i}^{t}\left(p_{j}^{t} \cdot \ell_{i}^{t}\right) \leq \frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{k} p_{j}^{t} \cdot \ell_{F(j)}^{t}+k \cdot \Delta(T) \tag{5}
\end{equation*}
$$

- Right-hand side is equal to (2)

No-swap-regret Algorithm: Analysis (cont.)

- Summing inequality between (3) and (4) over all copies:

$$
\begin{equation*}
\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{k} \sum_{j=1}^{k} q(j)_{i}^{t}\left(p_{j}^{t} \cdot \ell_{i}^{t}\right) \leq \frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{k} p_{j}^{t} \cdot \ell_{F(j)}^{t}+k \cdot \Delta(T) \tag{5}
\end{equation*}
$$

- Right-hand side is equal to (2)
- For left-hand side to be equal to (1), we need:

$$
p_{i}^{t}=\sum_{j=1}^{k} p_{j}^{t} \cdot q(j)_{i}^{t}
$$

Combining Distributions

$$
p_{i}^{t}=\sum_{j=1}^{k} p_{j}^{t} \cdot q(j)_{i}^{t}
$$

- These might be familiar as those defining stationary distribution of Markov chain

Combining Distributions

$$
p_{i}^{t}=\sum_{j=1}^{k} p_{j}^{t} \cdot q(j)_{i}^{t}
$$

- These might be familiar as those defining stationary distribution of Markov chain
- There are k states, probability of going to state i from j is $q(j)_{i}^{t}$

Combining Distributions

$$
p_{i}^{t}=\sum_{j=1}^{k} p_{j}^{t} \cdot q(j)_{i}^{t}
$$

- These might be familiar as those defining stationary distribution of Markov chain
- There are k states, probability of going to state i from j is $q(j)_{i}^{t}$
- Stationary distribution over states is $\left(p_{1}^{t} \ldots p_{k}^{t}\right)$

Combining Distributions

$$
p_{i}^{t}=\sum_{j=1}^{k} p_{j}^{t} \cdot q(j)_{i}^{t}
$$

- These might be familiar as those defining stationary distribution of Markov chain
- There are k states, probability of going to state i from j is $q(j)_{i}^{t}$
- Stationary distribution over states is $\left(p_{1}^{t} \ldots p_{k}^{t}\right)$
- These equations always have solution as probability distribution

Combining Distributions

$$
p_{i}^{t}=\sum_{j=1}^{k} p_{j}^{t} \cdot q(j)_{i}^{t}
$$

- These might be familiar as those defining stationary distribution of Markov chain
- There are k states, probability of going to state i from j is $q(j)_{i}^{t}$
- Stationary distribution over states is $\left(p_{1}^{t} \ldots p_{k}^{t}\right)$
- These equations always have solution as probability distribution
- Crucial property: two ways of viewing the distribution over experts:

Combining Distributions

$$
p_{i}^{t}=\sum_{j=1}^{k} p_{j}^{t} \cdot q(j)_{i}^{t}
$$

- These might be familiar as those defining stationary distribution of Markov chain
- There are k states, probability of going to state i from j is $q(j)_{i}^{t}$
- Stationary distribution over states is $\left(p_{1}^{t} \ldots p_{k}^{t}\right)$
- These equations always have solution as probability distribution
- Crucial property: two ways of viewing the distribution over experts:
- Each expert i is chosen with probability p_{i}^{t} or

Combining Distributions

$$
p_{i}^{t}=\sum_{j=1}^{k} p_{j}^{t} \cdot q(j)_{i}^{t}
$$

- These might be familiar as those defining stationary distribution of Markov chain
- There are k states, probability of going to state i from j is $q(j)_{i}^{t}$
- Stationary distribution over states is $\left(p_{1}^{t} \ldots p_{k}^{t}\right)$
- These equations always have solution as probability distribution
- Crucial property: two ways of viewing the distribution over experts:
- Each expert i is chosen with probability p_{i}^{t} or
- W.p. p_{j}^{t} we select copy j and then select expert i w.p. $q(j)_{i}^{t}$

Regret Matching

- α^{t} : Average per-step reward received by agent up until time t

Regret Matching

- α^{t} : Average per-step reward received by agent up until time t
- $\alpha^{t}(a)$: Average per-period reward that would have been received up until time t had pure strategy a was played by agent, assuming others played the same

Regret Matching

- α^{t} : Average per-step reward received by agent up until time t
- $\alpha^{t}(a)$: Average per-period reward that would have been received up until time t had pure strategy a was played by agent, assuming others played the same
- Regret at time t for not having played $a: R^{t}(a)=\alpha^{t}(a)-\alpha^{t}$

Regret Matching

- α^{t} : Average per-step reward received by agent up until time t
- $\alpha^{t}(a)$: Average per-period reward that would have been received up until time t had pure strategy a was played by agent, assuming others played the same
- Regret at time t for not having played $a: R^{t}(a)=\alpha^{t}(a)-\alpha^{t}$
- Regret matching: At time t, choose action a w.p. proportional to its regret:

$$
s^{t}(a)=\frac{R^{t}(a)^{+}}{\sum_{a^{\prime}} R^{t}\left(a^{\prime}\right)^{+}}
$$

Outline

1. Introduction

2. Background
3. Fictitious Play
4. Best-response Dynamics
5. No-regret Learning
6. Background: Single-agent Reinforcement Learning
7. Multi-agent Reinforcement Learning

Reinforcement Learning

- Still assume MDP
- Set of states $s \in S$
- Set of actions $a \in A$
- Model p(s,a, s')
- Reward $r\left(s, a, s^{\prime}\right)$

- Still looking for policy $\pi(s)$
- New twist: we do not know p or r
- I.e. we do not know which states are good or what actions do
- Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Offline solution

Online solution

Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V and Q for a fixed policy

$$
V_{t}^{\pi}(s) \leftarrow \sum_{s^{\prime}} p\left(s, \pi(s), s^{\prime}\right)\left(r\left(s, \pi(s), s^{\prime}\right)+\delta V_{t-1}^{\pi}\left(s^{\prime}\right)\right)
$$

Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V and Q for a fixed policy

$$
V_{t}^{\pi}(s) \leftarrow \sum_{s^{\prime}} p\left(s, \pi(s), s^{\prime}\right)\left(r\left(s, \pi(s), s^{\prime}\right)+\delta V_{t-1}^{\pi}\left(s^{\prime}\right)\right)
$$

- This approach fully exploited connections between the states

Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V and Q for a fixed policy

$$
V_{t}^{\pi}(s) \leftarrow \sum_{s^{\prime}} p\left(s, \pi(s), s^{\prime}\right)\left(r\left(s, \pi(s), s^{\prime}\right)+\delta V_{t-1}^{\pi}\left(s^{\prime}\right)\right)
$$

- This approach fully exploited connections between the states
- Unfortunately, we need p and r to do it!

Temporal Difference (TD) Learning

- Main idea: learn from every experience!

Temporal Difference (TD) Learning

- Main idea: learn from every experience!
- Update $V(s)$ each time we experience a transition $\left(s, a, s^{\prime}, r\right)$

Temporal Difference (TD) Learning

- Main idea: learn from every experience!
- Update $V(s)$ each time we experience a transition $\left(s, a, s^{\prime}, r\right)$
- Likely outcomes s^{\prime} will contribute updates more often

Temporal Difference (TD) Learning

- Main idea: learn from every experience!
- Update $V(s)$ each time we experience a transition (s, a, s^{\prime}, r)
- Likely outcomes s^{\prime} will contribute updates more often
- Temporal difference learning of values

Temporal Difference (TD) Learning

- Main idea: learn from every experience!
- Update $V(s)$ each time we experience a transition (s, a, s^{\prime}, r)
- Likely outcomes s^{\prime} will contribute updates more often
- Temporal difference learning of values
- Policy still fixed, still doing evaluation!

Temporal Difference (TD) Learning

- Main idea: learn from every experience!
- Update $V(s)$ each time we experience a transition (s, a, s^{\prime}, r)
- Likely outcomes s^{\prime} will contribute updates more often
- Temporal difference learning of values
- Policy still fixed, still doing evaluation!
- Move values toward value of whatever successor occurs: running average

$$
\begin{aligned}
\text { Sample of } V(s): & r\left(s, a, s^{\prime}\right)+\delta V^{\pi}\left(s^{\prime}\right) \\
\text { Update of } V(s): & V^{\pi}(s) \leftarrow(1-\alpha) V^{\pi}(s)+\alpha\left(r\left(s, a, s^{\prime}\right)+\delta V^{\pi}\left(s^{\prime}\right)\right) \\
\text { Same update }: & V^{\pi}(s) \leftarrow V^{\pi}(s)+\alpha\left(r\left(s, a, s^{\prime}\right)+\delta V^{\pi}\left(s^{\prime}\right)-V^{\pi}(s)\right)
\end{aligned}
$$

Problems with TD Value Learning

- TD value leaning is model-free way to do policy evaluation
- It mimics Bellman updates with running sample averages
- However, if we want to turn values into (new) policy, we need p and r !

$$
\begin{aligned}
\pi(s) & =\underset{a}{\operatorname{argmax}} Q(s, a) \\
Q^{\pi}(s, a) & =\sum_{s^{\prime}} p\left(s, a, s^{\prime}\right)\left(r\left(s, a, s^{\prime}\right)+\delta V\left(s^{\prime}\right)\right)
\end{aligned}
$$

- To solve this, we can learn Q-values instead of values
- This makes action selection model-free too!

Active Reinforcement Learning

Q-learning

- Q-Learning is sample-based Q-value iteration

$$
Q_{t}(s, a) \leftarrow \sum_{s^{\prime}} p\left(s, a, s^{\prime}\right)\left(r\left(s, a, s^{\prime}\right)+\delta \max _{a^{\prime} \in A} Q_{t-1}\left(s^{\prime}, a^{\prime}\right)\right)
$$

Q-learning

- Q-Learning is sample-based Q-value iteration

$$
Q_{t}(s, a) \leftarrow \sum_{s^{\prime}} p\left(s, a, s^{\prime}\right)\left(r\left(s, a, s^{\prime}\right)+\delta \max _{a^{\prime} \in A} Q_{t-1}\left(s^{\prime}, a^{\prime}\right)\right)
$$

- We learn $Q(s, a)$ values as we go

$$
\text { Sample: } r\left(s, a, s^{\prime}\right)+\delta \max _{a^{\prime} \in A} Q\left(s^{\prime}, a^{\prime}\right)
$$

Update : $\quad Q(s, a) \leftarrow\left(1-\alpha_{t}\right) Q(s, a)+\alpha_{t}\left(r\left(s, a, s^{\prime}\right)+\delta \max _{a^{\prime} \in A} Q\left(s^{\prime}, a^{\prime}\right)\right)$

Q-learning Algorithm

```
repeat until convergence
    observe current state \(s\);
    select action \(a\) and take it (e.g., via \(\epsilon\)-greedy policy);
    observe next state \(s^{\prime}\) and reward \(r\left(s, a, s^{\prime}\right)\);
    \(Q_{t+1}(s, a) \leftarrow\left(1-\alpha_{t}\right) Q_{t}(s, a)+\alpha_{t}\left(r\left(s, a, s^{\prime}\right)+\delta V_{t}\left(s^{\prime}\right)\right) ;\)
    \(V_{t+1}(s) \leftarrow \max _{a} Q_{t}(s, a) ;\)
```

- ϵ-greedy: W.p. ϵ, act randomly, w.p. $(1-\epsilon)$ act according to Q_{t}

Q-learning Properties

- Q-learning converges to optimal policy - even if agent acts sub-optimally!
- This is called off-policy learning
- There are some caveats
- We have to explore enough
- We have to eventually make the learning rate small enough
- But we should not decrease it too quickly
- Q-learning converges if $\sum_{0}^{\infty} \alpha_{t}=\infty$ and $\sum_{0}^{\infty} \alpha_{t}^{2}<\infty$
- Basically, in the limit, it does not matter how you select actions (!)

Outline

1. Introduction

2. Background
3. Fictitious Play
4. Best-response Dynamics
5. No-regret Learning
6. Background: Single-agent Reinforcement Learning
7. Multi-agent Reinforcement Learning

Independent Single-agent RL

- Setting: Two-player zero-sum games

Independent Single-agent RL

- Setting: Two-player zero-sum games
- Naive idea: Agents ignore the existence of their opponent

Independent Single-agent RL

- Setting: Two-player zero-sum games
- Naive idea: Agents ignore the existence of their opponent
- $Q_{i}^{\pi}\left(s, a_{i}\right)$: Value for i if both agents follow π starting from s and i plays a_{i}

Independent Single-agent RL

- Setting: Two-player zero-sum games
- Naive idea: Agents ignore the existence of their opponent
- $Q_{i}^{\pi}\left(s, a_{i}\right)$: Value for i if both agents follow π starting from s and i plays a_{i}
- Learning dynamics: Agents deploy independent Q-learning

Independent Single-agent RL

- Setting: Two-player zero-sum games
- Naive idea: Agents ignore the existence of their opponent
- $Q_{i}^{\pi}\left(s, a_{i}\right)$: Value for i if both agents follow π starting from s and i plays a_{i}
- Learning dynamics: Agents deploy independent Q-learning
- Good news: No-regret property if opponent plays stationary policy

Independent Single-agent RL

- Setting: Two-player zero-sum games
- Naive idea: Agents ignore the existence of their opponent
- $Q_{i}^{\pi}\left(s, a_{i}\right)$: Value for i if both agents follow π starting from s and i plays a_{i}
- Learning dynamics: Agents deploy independent Q-learning
- Good news: No-regret property if opponent plays stationary policy
- Bad news: No convergence guarantee if both agents are learning (e.g., self play)!

Minimax-Q

- Littman ${ }^{4}$ extended Q-learning algorithm to zero-sum stochastic games

[^13]
Minimax-Q

- Littman ${ }^{4}$ extended Q-learning algorithm to zero-sum stochastic games
- Main idea is to modify Q-function to consider actions of opponent

$$
Q_{i, t+1}\left(s_{t}, a_{t}\right)=\left(1-\alpha_{t}\right) Q_{i, t}\left(s_{t}, a_{t}\right)+\alpha_{t}\left(r_{i}\left(s_{t}, a_{t}\right)+\delta V_{i, t}\left(s_{t+1}\right)\right)
$$

[^14]
Minimax-Q

- Littman ${ }^{4}$ extended Q-learning algorithm to zero-sum stochastic games
- Main idea is to modify Q-function to consider actions of opponent

$$
Q_{i, t+1}\left(s_{t}, a_{t}\right)=\left(1-\alpha_{t}\right) Q_{i, t}\left(s_{t}, a_{t}\right)+\alpha_{t}\left(r_{i}\left(s_{t}, a_{t}\right)+\delta V_{i, t}\left(s_{t+1}\right)\right)
$$

- Since game is zero sum, we can have

$$
V_{i, t}(s)=\max _{\pi_{i}} \min _{a_{-i}} Q_{i, t}\left(s, \pi_{i}, a_{-i}\right)
$$

[^15]
Minimax-Q Algorithm

repeat until convergence
observe current state s;

Minimax-Q Algorithm

repeat until convergence
observe current state s;
select action a_{i} and take it (e.g., via ϵ-greedy policy);

Minimax-Q Algorithm

repeat until convergence
observe current state s;
select action a_{i} and take it (e.g., via ϵ-greedy policy); observe action profile a;

Minimax-Q Algorithm

repeat until convergence
observe current state s;
select action a_{i} and take it (e.g., via ϵ-greedy policy);
observe action profile a; observe next state s^{\prime} and reward $r\left(s, a, s^{\prime}\right)$;

Minimax-Q Algorithm

repeat until convergence
observe current state s;
select action a_{i} and take it (e.g., via ϵ-greedy policy);
observe action profile a; observe next state s^{\prime} and reward $r\left(s, a, s^{\prime}\right)$;
$Q_{i, t+1}(s, a) \leftarrow\left(1-\alpha_{t}\right) Q_{i, t}(s, a)+\alpha_{t}\left(r(s, a)+\delta V_{i, t}\left(s^{\prime}\right)\right) ;$

Minimax-Q Algorithm

repeat until convergence

observe current state s;
select action a_{i} and take it (e.g., via ϵ-greedy policy);
observe action profile a; observe next state s^{\prime} and reward $r\left(s, a, s^{\prime}\right)$;
$Q_{i, t+1}(s, a) \leftarrow\left(1-\alpha_{t}\right) Q_{i, t}(s, a)+\alpha_{t}\left(r(s, a)+\delta V_{i, t}\left(s^{\prime}\right)\right) ;$
$\pi_{i}(s, \cdot) \leftarrow \operatorname{argmax}_{\pi^{\prime}} \min _{a_{-i}} \sum_{a_{i}} \pi^{\prime}\left(s, a_{i}\right) Q_{i, t}\left(s, a_{i}, a_{-i}\right) ;$

Minimax-Q Algorithm

```
repeat until convergence
    observe current state s;
    select action }\mp@subsup{a}{i}{}\mathrm{ and take it (e.g., via }\epsilon\mathrm{ -greedy policy);
    observe action profile a;
    observe next state s' and reward r(s,a,s');
    Qi,t+1
    \pi}(s,\cdot)\leftarrow\mp@subsup{\operatorname{argmax }}{\mp@subsup{\pi}{}{\prime}}{}\mp@subsup{\operatorname{min}}{\mp@subsup{a}{-i}{}}{}\mp@subsup{\sum}{\mp@subsup{a}{i}{}}{}\mp@subsup{\pi}{}{\prime}(s,\mp@subsup{a}{i}{})\mp@subsup{Q}{i,t}{}(s,\mp@subsup{a}{i}{},\mp@subsup{a}{-i}{})
    Vt+1}(s)\leftarrow\mp@subsup{\operatorname{min}}{\mp@subsup{a}{-i}{}}{}\mp@subsup{\sum}{\mp@subsup{a}{i}{}}{}\pi(s,\mp@subsup{a}{i}{})\mp@subsup{Q}{i,t}{}(s,\mp@subsup{a}{i}{},\mp@subsup{a}{-i}{})
```


Minimax-Q Algorithm: Discussion

- It guarantees agents payoff at least equal to that of their maxmin strategy
- In zero-sum games, minimax-Q converges to the value of the game in self play
- It no longer satisfies no-regret property
- If opponent plays sub-optimally, minimax-Q does not exploit it in most games

Nash-Q

- Hu and Wellman ${ }^{5}$ extended minimax- Q to general-sum games
- Algorithm is structurally identical to minimax-Q
- Extension requires that each agent maintains values for all other agents
- LP to find maxmin value is replaced with quadratic programming to find NE
- Nash-Q makes number of very limiting assumptions (e.g., uniqueness of NE)

[^16]
Recall: Stochastic Games Model

- Focus on stationary Markov strategies (a mixed strategy per state)

Recall: Stochastic Games Model

- Focus on stationary Markov strategies (a mixed strategy per state)
- $\pi_{i}: S \mapsto \Delta\left(A_{i}\right)$ denotes (mixed) strategy of agent i at state s

Recall: Stochastic Games Model

- Focus on stationary Markov strategies (a mixed strategy per state)
- $\pi_{i}: S \mapsto \Delta\left(A_{i}\right)$ denotes (mixed) strategy of agent i at state s
- $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ denotes strategy profile of all agents

Recall: Stochastic Games Model

- Focus on stationary Markov strategies (a mixed strategy per state)
- $\pi_{i}: S \mapsto \Delta\left(A_{i}\right)$ denotes (mixed) strategy of agent i at state s
- $\pi=\left(\pi_{1}, \ldots, \pi_{n}\right)$ denotes strategy profile of all agents
- Expected utility (value) function of agent i is

$$
v_{i}(s, \pi):=\mathbb{E}_{a_{k} \sim \pi\left(s_{k}\right)}\left[\sum_{k=0}^{\infty} \delta^{k} r_{i}\left(s_{k}, a_{k}\right) \mid s_{0}=s\right]
$$

Equilibrium Characterization

- Equilibrium value function is defined using one-stage deviation principle (multi-agent extension of Bellman's equation) as

$$
v_{i}\left(s, \pi^{*}\right)=\max _{\pi_{i}} \mathbb{E}_{\mathrm{a} \sim\left(\pi_{i}, \pi_{-i}^{*}(s)\right)}\left[r_{i}(s, a)+\delta \sum_{s^{\prime} \in S} p\left(s, a, s^{\prime}\right) v_{i}\left(s^{\prime}, \pi^{*}\right)\right]
$$

Equilibrium Characterization

- Equilibrium value function is defined using one-stage deviation principle (multi-agent extension of Bellman's equation) as

$$
v_{i}\left(s, \pi^{*}\right)=\max _{\pi_{i}} \mathbb{E}_{a \sim\left(\pi_{i}, \pi_{-i}^{*}(s)\right)}\left[r_{i}(s, a)+\delta \sum_{s^{\prime} \in S} p\left(s, a, s^{\prime}\right) v_{i}\left(s^{\prime}, \pi^{*}\right)\right]
$$

- Q-function is defined as

$$
Q_{i}\left(s, a, \pi^{*}\right)=r_{i}(s, a)+\delta \sum_{s^{\prime} \in S} p\left(s, a, s^{\prime}\right) v_{i}\left(s^{\prime}, \pi^{*}\right)
$$

Equilibrium Characterization

- Equilibrium value function is defined using one-stage deviation principle (multi-agent extension of Bellman's equation) as

$$
v_{i}\left(s, \pi^{*}\right)=\max _{\pi_{i}} \mathbb{E}_{\mathrm{a} \sim\left(\pi_{i}, \pi_{-i}^{*}(s)\right)}\left[r_{i}(s, a)+\delta \sum_{s^{\prime} \in S} p\left(s, a, s^{\prime}\right) v_{i}\left(s^{\prime}, \pi^{*}\right)\right]
$$

- Q-function is defined as

$$
Q_{i}\left(s, a, \pi^{*}\right)=r_{i}(s, a)+\delta \sum_{s^{\prime} \in S} p\left(s, a, s^{\prime}\right) v_{i}\left(s^{\prime}, \pi^{*}\right)
$$

- Recursion is then defined as

$$
v_{i}\left(s, \pi^{*}\right)=\max _{\pi_{i}} \mathbb{E}_{\mathrm{a} \sim\left(\pi_{i}, \pi_{-i}^{*}(s)\right)}\left[Q_{i}\left(s, a, \pi^{*}\right)\right]
$$

FP for Model-based Learning

- Consider learning dynamic that combines FP with value-function (or Q-function) iteration

FP for Model-based Learning

- Consider learning dynamic that combines FP with value-function (or Q-function) iteration
- Agents form beliefs on opponent strategies (using empirical frequencies and assuming opponent uses stationary strategy)

FP for Model-based Learning

- Consider learning dynamic that combines FP with value-function (or Q-function) iteration
- Agents form beliefs on opponent strategies (using empirical frequencies and assuming opponent uses stationary strategy)
- Agents also form beliefs about equilibrium value function, or Q-function

FP for Model-based Learning

- Consider learning dynamic that combines FP with value-function (or Q-function) iteration
- Agents form beliefs on opponent strategies (using empirical frequencies and assuming opponent uses stationary strategy)
- Agents also form beliefs about equilibrium value function, or Q -function
- Agents then choose best response action in auxiliary game given their beliefs (where payoffs are given by Q-function estimates)

FP for Model-based Learning

- Consider learning dynamic that combines FP with value-function (or Q-function) iteration
- Agents form beliefs on opponent strategies (using empirical frequencies and assuming opponent uses stationary strategy)
- Agents also form beliefs about equilibrium value function, or Q -function
- Agents then choose best response action in auxiliary game given their beliefs (where payoffs are given by Q-function estimates)
- Key challenge is that payoffs or value functions in these auxiliary games are non-stationary (unlike repeated play of stage games)

FP for Model-based Learning: Model

- At time t, i 's belief on - i 's strategy is μ_{i}^{t} and on own Q-function is

$$
Q_{i}^{t}:=\mathbb{E}_{a_{-i} \sim \mu_{i}^{t}(s)}\left[Q_{i}^{t}\left(s, a_{i}, a_{-i}\right)\right]
$$

FP for Model-based Learning: Model

- At time t, i 's belief on -i's strategy is μ_{i}^{t} and on own Q-function is

$$
Q_{i}^{t}:=\mathbb{E}_{a_{-i} \sim \mu_{i}^{t}(s)}\left[Q_{i}^{t}\left(s, a_{i}, a_{-i}\right)\right]
$$

- Agent i selects best response $a_{i}^{t}(s) \in \operatorname{argmax}_{a_{i}} Q_{i}^{t}\left(s, a_{i}, \mu_{i}^{t}(s)\right)$

FP for Model-based Learning: Model

- At time t, i 's belief on -i's strategy is μ_{i}^{t} and on own Q-function is

$$
Q_{i}^{t}:=\mathbb{E}_{a_{-i} \sim \mu_{i}^{t}(s)}\left[Q_{i}^{t}\left(s, a_{i}, a_{-i}\right)\right]
$$

- Agent i selects best response $a_{i}^{t}(s) \in \operatorname{argmax}_{a_{i}} Q_{i}^{t}\left(s, a_{i}, \mu_{i}^{t}(s)\right)$
- Agent i updates μ_{i} as

$$
\mu_{i}^{t+1}(s)=\left(1-\alpha_{t}\right) \mu_{i}^{t}(s)+\alpha_{t} a_{-i}^{t}(s)
$$

FP for Model-based Learning: Model

- At time t, i 's belief on - i 's strategy is μ_{i}^{t} and on own Q-function is

$$
Q_{i}^{t}:=\mathbb{E}_{a_{-i} \sim \mu_{i}^{t}(s)}\left[Q_{i}^{t}\left(s, a_{i}, a_{-i}\right)\right]
$$

- Agent i selects best response $a_{i}^{t}(s) \in \operatorname{argmax}_{a_{i}} Q_{i}^{t}\left(s, a_{i}, \mu_{i}^{t}(s)\right)$
- Agent i updates μ_{i} as

$$
\mu_{i}^{t+1}(s)=\left(1-\alpha_{t}\right) \mu_{i}^{t}(s)+\alpha_{t} a_{-i}^{t}(s)
$$

- Agent i updates Q_{i} as

$$
Q_{i}^{t+1}(s, a)=\left(1-\beta_{t}\right) Q_{i}^{t}(s, a)+\beta_{t}\left(r_{i}(s, a)+\delta \sum_{s^{\prime} \in S} p\left(s, a, s^{\prime}\right) v_{i}^{t}\left(s^{\prime}\right)\right)
$$

where $v_{i}^{t}\left(s^{\prime}\right)=\max _{a_{i}} Q_{i}^{t}\left(s^{\prime}, a_{i}, \mu_{i}^{t}(s)\right)$

Two-timescale Learning Framework

- Beliefs on Q-functions are updated at slower rate than beliefs on opponent strategies

Two-timescale Learning Framework

- Beliefs on Q-functions are updated at slower rate than beliefs on opponent strategies
- This postulate agents' choices to be more dynamic than changes in their preferences

Two-timescale Learning Framework

- Beliefs on Q-functions are updated at slower rate than beliefs on opponent strategies
- This postulate agents' choices to be more dynamic than changes in their preferences
- Q-functions in auxiliary games can be viewed as slowly evolving agent preferences

Two-timescale Learning Framework

- Beliefs on Q-functions are updated at slower rate than beliefs on opponent strategies
- This postulate agents' choices to be more dynamic than changes in their preferences
- Q-functions in auxiliary games can be viewed as slowly evolving agent preferences
- This enables weakening the dependence between evolving strategies and Q-functions

Convergence of Two-timescale Learning Framework

- If each state is visited infinitely many times
- And, if $\lim _{k \rightarrow \infty} \alpha_{k}=\lim _{k \rightarrow \infty} \beta_{k}=0$ and $\sum_{k} \alpha_{k}=\sum_{k} \beta_{k}=\infty$
- And, if $\lim _{k \rightarrow \infty} \beta_{k} / \alpha_{k}=0$ (two-timescale learning: $\beta_{k} \rightarrow 0$ faster than $\alpha_{k} \rightarrow 0$)
- Then Q and μ converge to NE value and strategy in zero-sum stochastic games
- They also converge to NE value for single-controller stochastic games

Acknowledgment

- This lecture is a slightly modified version of ones prepared by
- Asu Ozdaglar [MIT 6.254]
- Vincent Conitzer [Duke CPS 590.4]
- Aaron Roth [UPenn NETS 412]
- Dan Klein and Pieter Abbeel [UC Berkeley CS 188]

[^0]: ${ }^{1}$ Aumann, R. J. "Subjectivity and correlation in randomized strategies." 1974

[^1]: ${ }^{1}$ Aumann, R. J. "Subjectivity and correlation in randomized strategies." 1974

[^2]: ${ }^{1}$ Aumann, R. J. "Subjectivity and correlation in randomized strategies." 1974

[^3]: ${ }^{1}$ Aumann, R. J. "Subjectivity and correlation in randomized strategies." 1974

[^4]: ${ }^{1}$ Aumann, R. J. "Subjectivity and correlation in randomized strategies." 1974

[^5]: ${ }^{1}$ Aumann, R. J. "Subjectivity and correlation in randomized strategies." 1974

[^6]: ${ }^{1}$ Aumann, R. J. "Subjectivity and correlation in randomized strategies." 1974

[^7]: ${ }^{3}$ Brown, G. W. "Iterative solution of games by fictitious play." 1951

[^8]: ${ }^{3}$ Brown, G. W. "Iterative solution of games by fictitious play." 1951

[^9]: ${ }^{3}$ Brown, G. W. "Iterative solution of games by fictitious play." 1951

[^10]: ${ }^{3}$ Brown, G. W. "Iterative solution of games by fictitious play." 1951

[^11]: ${ }^{3}$ Brown, G. W. "Iterative solution of games by fictitious play." 1951

[^12]: ${ }^{3}$ Brown, G. W. "Iterative solution of games by fictitious play." 1951

[^13]: ${ }^{4}$ Littman, M. L. "Markov games as a framework for multi-agent reinforcement learning." 1994

[^14]: 4Littman, M. L. "Markov games as a framework for multi-agent reinforcement learning." 1994

[^15]: 4 Littman, M. L. "Markov games as a framework for multi-agent reinforcement learning." 1994

[^16]: ${ }^{5} \mathrm{Hu}, \mathrm{J}$, and Wellman, M. P. "Multiagent reinforcement learning: theoretical framework and an algorithm." 1998

