
Game-theoretic
Foundations of Multi-agent Systems

Lecture 9: Learning in Games

Seyed Majid Zahedi

Outline

1. Introduction

2. Fictitious Play

3. Best-response Dynamics

4. No-regret Learning

5. Background: Single-agent Reinforcement Learning

6. Multi-agent Reinforcement Learning

2 / 87

Single-agent vs Muli-agent Learning

• In artificial intelligence (AI), learning is usually performed by single agent

• Learning agent learns to function successfully in unknown environment

• In multi-agent setting, environment contains other agents

• Agents’ learning changes the environment

• These changes depend in part on actions of learning agents

• Learning of each agent is impacted by learning performed by others

• Different learning rules lead to different dynamical system

• Simple learning rules can lead to complex global behaviors of system

3 / 87

Learning and Teaching

• In multi-agent systems, learning and teaching are inseparable

• Agents must consider what they have learned from others’ past behavior

• They also must consider how they wish to influence others’ future behavior

• In such setting, learning as accumulating knowledge is not always beneficial

• Accumulating knowledge should never hurt, one can always ignore what is learned

• But when one pre-commits to particular strategy for
acting on accumulated knowledge, sometimes less is more

• E.g., in game of Chicken, if your opponent is learning your strategy to play best
response, then optimal strategy is to always dare

4 / 87

Is Agent Learning in Optimal Way?

• In (repeated or stochastic) zero-sum games, this question is meaningful to ask

• In general, answer depends not only on learning procedure but also on others’ behavior

• When all agents adopt same strategy, the setting is called self-play

• E.g., all agent adopt TfT, or all adopt reinforcement learning (RL)

• One way to evaluate learning procedures is based on their performance in self-play

• But learning agents can also be judged by how they do in context of other agent types

• TfT agent may perform well against TfT agents, but less well against RL agents

• Note that in GT, optimal strategy is replaced by best response (and equilibrium)

5 / 87

Properties of Learning Rules

• Safety: Guarantee agents at least their maxmin value

• Rationality: Settle on best response to opponent’s strategy whenever opponent
settles on stationary strategy

• Opponent adopts same mixed strategy each time, regardless of the past

• No regret: Yield payoff that is no less than payoff agent could have obtained by
playing any pure strategy against any set of opponents (details later!)

6 / 87

Outline

1. Introduction

2. Fictitious Play

3. Best-response Dynamics

4. No-regret Learning

5. Background: Single-agent Reinforcement Learning

6. Multi-agent Reinforcement Learning

7 / 87

Fictitious Play: Introduction

• What are agents learning about?

• Arguably, most plausible answer is strategies of others

• Fictitious play (FP), one of earliest learning rules, takes this approach

• FP was first introduced by G. W. Brown in 19511

• Brown imagined that agents would “simulate” the game in their mind and update
their future play based on this simulation; hence name fictitious play

• In its current use, FP is misnomer, since each play of the game actually occurs

1
Brown, G. W. “Iterative solution of games by fictitious play.” 1951

8 / 87

Fictitious Play

• Two agents repeatedly play stage game G

• ηti (a−i) denotes number of times agent i has observed a−i before time t

• η1i represents fictitious past and cannot be zero for all a−i

• Agents assume that their opponent is using stationary mixed strategy

• Agents update their beliefs about this strategy at each step according to:

µt
i (a−i) =

ηti (a−i)∑
a′−i

ηti (a
′
−i)

• µt
i is empirical distribution of past actions and is treated as mixed strategy

• Agents best-respond to their beliefs about opponent’ strategy

at+1
i = argmax

ai
ui (ai , µ

t
i)

9 / 87

Fictitious Play: Example

• Consider the following coordination game
L R

U 3, 3 0, 0

D 4, 0 1, 1

• Note that this game is dominant solvable with unique NE of (D, R)

• Suppose that η11 = (3, 0) and η12 = (1, 2.5)

• FP proceeds as follows:

Round 1’s η 2’s η 1’s action 2’s action

1 (3, 0) (1, 2.5) D L
2 (4, 0) (1, 3.5) D R
3 (4, 1) (1, 4.5) D R
4 (4, 2) (1, 5.5) D R

10 / 87

Fictitious Play: Discussion

• In FP, agents do not need to know anything about their opponent’s utilities

• FP is somewhat paradoxical as agents assume stationary strategy for their
opponent, yet no agent plays stationary strategy except when FP converges

• Even though FP is belief based it is also myopic

• I.e., agents maximize current utility without considering their future ones

• Agents do not learn true model that generates empirical frequencies

• In other words, they do not learn how their opponent is actually playing the game

11 / 87

Convergence of Fictitious Play to Pure Strategies

• Let {at} be sequence of action profiles generated by FP for G

• Sequence converges to a∗ if there exists T s.t. at = a∗ for all t ≥ T

• a∗ is called steady state or absorbing state of FP

• (I) If sequence converges to a∗, then a∗ is pure-strategy NE of G

• (II) If for some t, at = a∗, where a∗ is strict NE of G , then aτ = a∗ for all τ > t

12 / 87

Proof

• (I) is straightforward, for (II), let at = a∗, we want to show that at+1 = a∗

• First, note that we can write µ as:

µt+1
i = (1− α)µt

i + αat−i = (1− α)µt
i + αa∗−i

here, abusing notation, at−i denotes degenerate probability distribution and:

α =
1∑

a′−i
ηti (a

′
−i) + 1

• By linearity of expected utility, we have for all ai :

ui (ai , µ
t+1
i) = (1− α)ui (ai , µ

t
i) + αui (ai , a

∗
−i)

• Since a∗i maximizes both terms, it follows that it is played at t + 1

13 / 87

Convergence of Fictitious Play to Mixed Strategies

• Of course, one cannot guarantee that fictitious play always converges to NE

• In FP, agents only play pure strategies and pure-strategy NE may not exist

• While FP sequence may not converge, its empirical distribution may

• Sequence {at} converges to s∗ in time-average sense if for all i and ai :

lim
T→∞

∑T
t=1 1(a

t
i = ai)

T
= s∗i (ai)

1(·) denotes the indicator function

• If FP sequence converges to s∗ in the time-average sense, then s∗ is NE

14 / 87

Proof

• Suppose {at} converges to s∗ in time-average sense, but s∗ is not NE

• There is some i , a′i , and ai with s∗i (ai) > 0 s.t. ui (a
′
i , s

∗
−i) > ui (ai , s

∗
−i)

• Choose ϵ s.t. ϵ <
(
ui (a

′
i , s

∗
−i)− ui (ai , s

∗
−i)
)
/2

• Choose T s.t. for all t ≥ T , |µt
i (a−i)− s∗−i (a−i)| < ϵ/maxa′ ui (a

′) for all a−i

• This is possible because µt
i (a−i)→ s∗−i (a−i) by assumption

15 / 87

Proof (cont.)

• Then, for any t ≥ T , we have:

ui (ai , µ
t
i) =

∑
a−i

ui (ai , a−i)µ
t
i (a−i)

≤
∑
a−i

ui (ai , a−i)s
∗
−i (a−i) + ϵ

≤
∑
a−i

ui (a
′
i , a−i)s

∗
−i (a−i)− ϵ

≤
∑
a−i

ui (a
′
i , a−i)µ

t
i (a−i) = ui (a

′
i , µ

t
i)

• So after sufficiently large t, ai is never played

• This implies that as t →∞, µt
i (ai)→ 0, which contradicts with s∗i (ai) > 0

16 / 87

Example: Matching Pennies

• Consider the matching-pennies game
H T

H 1,−1 −1, 1

T −1, 1 1,−1

Round 1’s η 2’s η 1’s action 2’s action

1 (1.5, 2) (2, 1.5) T T
2 (1.5, 3) (2, 2.5) T H
3 (2.5, 3) (2, 3.5) T H
4 (3.5, 3) (2, 4.5) H H
5 (4.5, 3) (3, 4.5) H H
6 (5.5, 3) (4, 4.5) H H
7 (6.5, 3) (5, 4.5) H T

• FP continues as deterministic cycle, time average converges to unique NE

17 / 87

Example: (Anti-)Coordination Game

• Note that if empirical distribution of actions converges to NE, there is no
guarantee on distribution of played outcomes

• Consider the following coordination game
A B

A 1, 1 0, 0

B 0, 0 1, 1

• Note that this game is unique NE of ((0.5, 0.5), (0.5, 0.5))

Round 1’s η 2’s η 1’s action 2’s action

1 (0.5, 0) (0, 0.5) A B
2 (0.5, 1) (1, 0.5) B A
3 (1.5, 1) (1, 1.5) A B
4 (1.5, 2) (2, 1.5) B A

18 / 87

General Fictitious Play Convergence

• Fictitious play converges in time-average sense for game G if:

• G is zero-sum game

• G is two-player game where each agent has at most two actions (2x2 games)

• G is solvable by iterated strict dominance

• G is identical-interest game, i.e., all agents have same payoff function

• G is potential game (more on this later!)

19 / 87

Non-convergence of Fictitious Play

• Convergence of fictitious play can not be guaranteed in general

• Shapley showed that in modified rock-scissors-paper game, FP does not converge

Rock Paper Scissors

Rock 0, 0 0, 1 1, 0

Paper 1, 0 0, 0 0, 1

Scissors 0, 1 1, 0 0, 0

• This game has unique NE: each agent mixes uniformly

• Suppose η11 = (1, 0, 0) and η12 = (0, 1, 0)

• Shapley showed that play cycles among 6 (off-diagonal) profiles with periods of
ever-increasing length, thus non-convergence

20 / 87

Smooth Fictitious Play (SFP)

• Instead of best-responding to beliefs, agents respond randomly, but somewhat
proportional to their expected utility

sti (ai | µt
i) =

exp(ui (ai , µ
t
i)/γ)∑

a′i
exp(ui (a′i , µ

t
i)/γ)

• γ is called the smoothing parameter

• This is called soft-max policy

• Soft-max policy respects best replies, but leaves room for exploration

• If all agents use SFP with sufficiently small γi , empirical play converges to ϵ-CCE

21 / 87

Outline

1. Introduction

2. Fictitious Play

3. Best-response Dynamics

4. No-regret Learning

5. Background: Single-agent Reinforcement Learning

6. Multi-agent Reinforcement Learning

22 / 87

Best-response Dynamics (BRD): Introduction

• Agents start playing arbitrary actions

• In arbitrary order, agents take turns updating their action

• Agent update their action only if doing so can improve their utility

• This is repeated until no agents wants to update their action

Initialize a = (a1, . . . , an) to be arbitrary action profile;
while there exists i such that ai ̸∈ argmaxa∈Ai

ui (a, a−i) do
Let a′i be such that ui (a

′
i , a−i) > u(a);

Set ai ← a′i ;

return a

23 / 87

Best-response Dynamics: Discussion

• If BRD halts, it returns pure strategy Nash equilibrium

• Every agent must be playing best response

• Does BRD always halt?

• No: Consider matching pennies/Rock Paper Scissors

24 / 87

Example: Congestion Games

• N is set of n agents

• M is set of m resources

• Ai is set of actions available to agent i
• ai represents subset of resources that agent i chooses (i.e., ai ⊆ M)

• ℓj is congestion cost function for resources j ∈ M
• ℓj(k) represents cost of congestion on resource j when k agents choose j

• nj(a) is number of agents who choose resource j (i.e., nj(a) = |{i | j ∈ ai}|)

• ci (a) =
∑

j∈ai ℓj(nj(a)) is total cost of agent

• Agents minimize their total cost (instead of maximizing their total utility)

25 / 87

BRD in Congestion Games

• Consider potential function ϕ : A→ R:

ϕ(a) =
m∑
j=1

nj (a)∑
k=1

ℓj(k)

(Note: not social welfare)

• How does ϕ change in one round of BRD? Say i switches from ai to bi ∈ Ai

• Well... We know it must have decreased agent i ’s cost:

∆ci ≡ ci (bi , a−i)− ci (ai , a−i)

=
∑

j∈bi\ai

ℓj(nj(a) + 1)−
∑

j∈ai\bi

ℓj(nj(a)) < 0

26 / 87

BRD in Congestion Games (cont.)

ϕ(a) =
m∑
j=1

nj (a)∑
k=1

ℓj(k)

• Change in potential is:

∆ϕ ≡ ϕ(bi , a−i)− ϕ(ai , a−i)

=
∑

j∈bi\ai

ℓj(nj(a) + 1)−
∑

j∈ai\bi

ℓj(nj(a))

= ∆ci

• Since ϕ can take on only finitely many values, this cannot go on forever

• And hence BRD halts in congestion games ...

• Which proves the existence of pure strategy Nash equilibria!

27 / 87

Example: Load Balancing Games on Identical Servers

• n clients i ∈ N schedule jobs of size wi > 0 on m identical servers M

• Action space Ai = M for each client

• For each server j ∈ M, load ℓj(a) =
∑

i :ai=j wi

• Cost of client i is load of server that i chooses : ci (a) = ℓai (a)

28 / 87

Load Balancing Games on Identical Servers: Discussion

• Almost congestion game — but server costs depend on which clients choose them

• BRD converges in load balancing games on identical servers

• Load balancing games on identical servers have pure strategy NE

29 / 87

BRD in Load Balancing Games on Identical Servers

• Consider potential function ϕ as:

ϕ(a) =
1

2

m∑
j=1

ℓj(a)
2

• Suppose i switches from server j to server j ′:

∆ci (a) ≡ ci (j
′, a−i)− ci (j , a−i)

= ℓj ′(a) + wi − ℓj(a)

< 0

30 / 87

BRD in Load Balancing Games on Identical Servers (cont.)

∆ϕ(a) ≡ ϕ(j ′, a−i)− ϕ(j , a−i)

=
1

2

(
(ℓj ′(a) + wi)

2 + (ℓj(a)− wi)
2 − ℓj ′(a)

2 − ℓj(a)
2
)

=
1

2

(
2wiℓj ′(a) + w2

i − 2wiℓj(a) + w2
i

)
= wi

(
ℓj ′(a) + wi − ℓj(a)

)
= wi ·∆ci (a)

< 0

Note: ∆ci ̸= ∆ϕ

31 / 87

Potential Games

• ϕ : A→ R≥0 is exact potential function for game G if for all a, i ,ai , and bi :

ϕ(bi , a−i)− ϕ(ai , a−i) = ci (bi , a−i)− ci (ai , a−i)

• ϕ : A→ R≥0 is ordinal potential function for game G if for all a, i ,ai , and bi :

(ci (bi , a−i)− ci (ai , a−i) < 0)⇒ (ϕ(bi , a−i)− ϕ(ai , a−i) < 0)

(i.e. the change in utility is always equal in sign to the change in potential)

• BRD is guaranteed to converge in game G iff G has ordinal potential function

32 / 87

BRD and Potential Games

• We’ve already seen ordinal potential function ⇒ BRD converges

• Lets prove other direction

• Consider graph G = (V ,E)

• Let each a ∈ A be a vertex in G (i.e., V = A)

• Add directed edge (a, b) if it is possible to go from b to a by best-response move
• I.e., if there is i such that b = (bi , a−i), and ci (bi , a−i) < ci (a)

• BRD can be viewed as traversing this graph
• Start at arbitrary vertex a, and then traverse arbitrary outgoing edges

33 / 87

BRD and Potential Games (cont.)

• Nash Equilibria are the sinks in this graph

• Suppose BRD converges ⇒ there are no cycles in this graph

• So, from every vertex a there is some sink s that is reachable (why?)

• We construct potential function ϕ(a) for each vertex a

• ϕ(a) is length of longest finite path from a to any sink s

• We need: for any edge a→ b, ϕ(b) < ϕ(a).

• Its true! ϕ(a) ≥ ϕ(b) + 1. (why?)

34 / 87

Outline

1. Introduction

2. Fictitious Play

3. Best-response Dynamics

4. No-regret Learning

5. Background: Single-agent Reinforcement Learning

6. Multi-agent Reinforcement Learning

35 / 87

Sequential Prediction: Stock-prediction Example

• Every day GME goes up or down

• Goal is to predict direction each day before market opens (to buy or short)

• Market can behave arbitrarily/adversarially

• So there is no way we can promise to do well

• However, we get advice

36 / 87

Expert Advice

• There are N experts who make predictions in T rounds

• At each round t, each expert i makes prediction pti ∈ {U,D}

• Expertise is self proclaimed — no promise experts know what they’re talking about

• We (algorithm) want to aggregate predictions, to make our own prediction ptA

• We learn true outcome ot at the end of each round

• If we predicted incorrectly (i.e. ptA ̸= ot), then we made a mistake

37 / 87

Expert Advice (cont.)

• Goal is to after a while do (almost) as well as best expert in hindsight

• To make things easy, we assume for now that there is one perfect expert

• Perfect expert never makes mistakes (but we don’t know who the expert is)

• Can we find strategy that is guaranteed to make at most log(N) mistakes?

38 / 87

The Halving Algorithm

Let S1 ← {1, . . . ,N} be set of all experts;
for t = 1 to T do

Predict with majority vote;
Observe the true outcome ot ;
Eliminate all experts that made a mistake: S t+1 = {i ∈ S t | pti = ot};

39 / 87

The Halving Algorithm: Analysis

• Algorithm predicts with majority vote

• Every time it makes a mistake, at least half of remaining experts are eliminated

• Hence |S t+1| ≤ |S t |/2

• On the other hand, perfect expert is never eliminated

• Hence |S t | ≥ 1 for all t

• Since |S1| = N, this means there can be at most logN mistakes

• But what if no expert is perfect? Say the best expert makes OPT mistakes

• Can we find a way to make not too many more than OPT mistakes?

40 / 87

The Iterated Halving Algorithm

Let S1 ← {1, . . . ,N} be the set of all experts;
for t = 1 to T do

if |S t | = 0 then
Reset: Set S t ← {1, . . . ,N}

Predict with majority vote;
Eliminate all experts that made a mistake: S t+1 = {i ∈ S t | pti = ot};

41 / 87

The Iterated Halving Algorithm: Analysis

• Whenever algorithm makes mistake, we eliminate half of experts

• So algorithm can make at most logN mistakes between any two resets

• But if we reset, it is because since last reset, every expert has made mistake

• In particular, between any two resets, best expert has made at least 1 mistake

• Algorithm makes at most log(N)(OPT+ 1) mistakes

• Algorithm is wasteful in that every time we reset, we forget what we have learned!

• How about just downweight experts who make mistakes?

42 / 87

The Weighted Majority Algorithm

Set weights w1
i ← 1 for all experts i ;

for t = 1 to T do
Predict with weighted majority vote;

Down-weight experts who made mistakes: (i.e., if pti ̸= ot , set w t+1
i ← w t

i /2)

43 / 87

The Weighted Majority Algorithm: Analysis

• Let M be total number of mistakes that algorithm makes

• Let W t =
∑

i w
t
i be total weight at step t

• When algorithm makes mistake, at least half of total weight is cut in half

• So: W t+1 ≤ (3/4)W t

• If algorithm makes M mistakes, W T ≤ N · (3/4)M

• Let i∗ be the best expert, W T > wT
i = (1/2)OPT, which gives:

(1/2)OPT ≤W ≤ N(3/4)M ⇒ (4/3)M ≤ N · 2OPT ⇒ M ≤ 2.4(OPT+ log(N))

• Algorithm makes at most 2.4 (OPT+ log(N)) mistakes

• log(N) is constant, so ratio of mistakes to OPT is 2.4 in limit – not great, but not bad

44 / 87

What Do We Want in an Algorithm?

• Make only 1× as many mistakes as OPT in limit, rather than 2.4×

• Handle N distinct actions (separate action for each expert), not just up and down

• Handle arbitrary costs in [0, 1] per expert per round, not just right and wrong

45 / 87

New Model/Algorithm

• In rounds 1, . . . ,T , algorithm chooses some expert i t

• Each expert i experiences loss: ℓti ∈ [0, 1]

• Algorithm experiences the loss of the expert it chooses: ℓtA = ℓti t

• Total loss of expert i is LTi =
∑T

t=1 ℓ
t
i

• Total loss of algorithm is LTA =
∑T

t=1 ℓ
t
A

• Goal is to obtain loss “not much worse” than that of the best expert: mini L
T
i

46 / 87

Multiplicative Weights (MW) Algorithm (a.w.a. Hedge Algorithm)

Set weights w1
i ← 1 for all experts i ;

for t = 1 to T do

Let W t =
∑N

i=1 w
t
i ;

Choose expert i with probability w t
i /W

t ;

For each i , set w t+1
i ← w t

i · exp(−ϵℓti);

• Can be viewed as “smoothed” version of weighted majority algorithm

• Has parameter ϵ which controls how quickly it down-weights experts

• Is randomized — chooses experts w.p. proportional to their weights

• Can be used with alternative update: w t+1
i ← w t

i · (1− ϵℓti)

47 / 87

Multiplicative Weights Algorithm: Discussion

• For any sequence of losses, and any expert k :

1

T
E[LTMW] ≤ 1

T
LTk + ϵ+

ln(N)

ϵ · T

• In particular, setting ϵ =
√
ln(N)/T :

1

T
E[LTMW] ≤ 1

T
min
k

LTk + 2

√
ln(N)

T

• Average loss quickly approaches that of best expert exactly, at rate of 1/
√
T

• This works for arbitrary sequence of losses (e.g., chosen adaptively by adversary)

• So we could us it to play games (experts ↔ actions and losses ↔ costs)

48 / 87

Recall: Minimax Theorem (John von Neumann, 1928)

In any finite, two-player, zero-sum game, in any NE, each agent receives a payoff that
is equal to both their maxmin value and their minmax value

max
si

min
s−i

ui (si , s−i) = min
s−i

max
si

ui (si , s−i)

49 / 87

Simple Proof for Minimax Theorem

• Scale utilities such that u1 is in [0, 1]

• Write v1 = mins2 maxs1 u1(s1, s2) and v2 = maxs1 mins2 u1(s1, s2)

• Suppose theorem were false: v1 = v2 + ϵ for some constant ϵ > 0

• Suppose A1 and A2 repeatedly play against each other as follows

• A2 uses MW algorithm: at round t, st2(a2) = w t
a2/W

t

• A1 plays best response to A2’s strategy: st1 = argmaxs1 u1(s1, s
t
2)

50 / 87

Simple Proof for Minimax Theorem (cont.)

• For A2’s MW algorithm, we have:

1

T

T∑
t=1

E[u1(at1, at2)] ≤
1

T
min
a2

T∑
t=1

u1(a
t
1, a2) + 2

√
log n

T

• Let s̄1 be mixed strategy that puts weight 1/T on each action at1, we have:

1

T
min
a2

T∑
t=1

u1(a
t
1, a2) = min

a2

T∑
t=1

1

T
u1(a

t
1, a2) = min

a2
u1(s̄1, a2)

• By definition, we have: mina2 u1(s̄1, a2) ≤ maxs1 mina2 u1(s1, a2) = v2, and so:

1

T

T∑
t=1

E[u1(at1, at2)] ≤ v2 + 2

√
log n

T

51 / 87

Simple Proof for Minimax Theorem (cont.)

• On the other hand, A1 best responds to A2’s mixed strategy:

1

T

T∑
t=1

E[u1(at1, at2)] =
1

T

T∑
t=1

max
a1

u1(a1, s
t
2)

≥ 1

T

T∑
t=1

min
s2

max
a1

u1(a1, s2) =
1

T

T∑
t=1

v1 = v1

• Combining these inequalities, we get: v1 ≤ v2 + 2
√

log n/T

• Since v1 = v2 + ϵ, we have: ϵ ≤ 2
√

log n/T

• Taking T large enough leads to contradiction

52 / 87

External Regret

• Sequence a1, . . . , aT has external regret of ∆(T) if for every agent i and action a′i :

1

T

T∑
t=1

ui (a
t) ≥ 1

T

T∑
t=1

ui (a
′
i , a−i)−∆(T)

• If ∆(T) = oT (1), we say that sequence of action profiles has no external regret

• External regret measures regret to the best fixed action in hindsight

• If a1, . . . , aT has ϵ external regret, then distribution π that puts weight 1/T on
each at (i.e., empirical distribution of actions) forms ϵ-approximate CCE

Ea∼π[ui (a)] =
1

T

T∑
t=1

ui (a
t) ≥ 1

T

T∑
t=1

ui (a
′
i , a−i)− ϵ = Ea∼π[ui (a

′
i , a−i)]− ϵ

53 / 87

No-(external-)regret Dynamics

• Suppose that all agents use MW algorithm to choose between k actions

• After T steps, sequence of outcomes has external regret of ∆(T) = 2
√

log k/T

• Empirical distribution of outcomes forms ∆(T)-approximate CCE

• For T = 4 log(k)/ϵ2, distribution of outcomes converges to ϵ-approximate CCE

54 / 87

Swap Regret

• Sequence a1, . . . , aT has swap regret of ∆(T) if for every agent i and every switching
function Fi : Ai → Ai :

1

T

T∑
t=1

ui (a
t) ≥ 1

T

T∑
t=1

ui (Fi (ai), a−i)−∆(T)

• If ∆(T) = oT (1), we say that sequence of action profiles has no swap regret

• This measures regret to counterfactual case where every action of particular type is
swapped with different action in hindsight, separately for each action

• E.g., “Every time i bought Microsoft, i should have bought Apple, and every time i
bought Google, i should have bought Comcast.”

• If a1, . . . , aT has ϵ swap regret, then distribution π that picks among a1, . . . , aT uniformly
at random is ϵ-approximate correlated equilibrium

55 / 87

Generalization

• For any agent i , Fi , and a ∈ A, define regret as:

Regreti (a,Fi) = ui (Fi (ai), a−i)− ui (a)

• Fi is constant switching function if Fi (ai) = Fi (a
′
i) for all ai , a

′
i ∈ Ai

• π is CCE if for every agent i and every constant switching function Fi :

Ea∼π[Regreti (a,Fi)] ≤ 0

• π is CE if for every agent i and every switching function Fi :

Ea∼π[Regreti (a,Fi)] ≤ 0

56 / 87

How to Achieve No Swap Regret

• Define set of time steps that expert j is selected:

Sj = {t : at = j}

• Observation: To achieve no swap regret it would be sufficient that for every j :

1

|Sj |
∑
t∈Sj

ℓtat ≤
1

|Sj |
min
i

∑
t∈Sj

ℓti +∆(T)

• No swap regret = no external regret separately on each sequence of actions Sj
• Best switching function in hindsight = swapping each action j for best fixed

action in hindsight over Sj
• Idea: Run k copies of PW, one responsible for each Sj

57 / 87

Algorithm Sketch for No Swap Regret

• Initialize k copies of MW algorithm one for each of k actions

• Let q(i)t1, . . . , q(i)
t
k be distribution over experts for copy i at time t

• Combine these into single distribution over experts: pt1, . . . , p
t
k (details later!)

• Let ℓt1, . . . , ℓ
t
k be losses for experts at time t

• For copy i of MW algorithm, we report losses pti ℓ
t
1, . . . , p

t
i ℓ

t
k

• I.e., to copy i , we report the true losses scaled by pti

58 / 87

No-swap-regret Algorithm

Mk

M2

M1

ℓt

pt

pt
1 · ℓt

q(1)t

pt
2 · ℓt

q(2)t

pt
k · ℓt

q(k)t

59 / 87

No-swap-regret Algorithm: Analysis

• Expected cost of the master algorithm:

1

T

T∑
t=1

k∑
i=1

pti · ℓti (1)

• Expected cost under switching function F

1

T

T∑
t=1

k∑
i=1

pti · ℓtF (i) (2)

• Goal: prove that (1) is at most (2) plus ∆(T) = oT (1)

60 / 87

No-swap-regret Algorithm: Analysis (cont.)

• Expected cost of Mj :

1

T

T∑
t=1

k∑
i=1

q(j)ti
(
ptj · ℓti

)
(3)

• Mj is no-regret algorithm, so its cost is at most:

1

T

T∑
t=1

ptj · ℓtF (j) +∆(T) (4)

for any any arbitrary F

61 / 87

No-swap-regret Algorithm: Analysis (cont.)

• Summing inequality between (3) and (4) over all copies:

1

T

T∑
t=1

k∑
i=1

k∑
j=1

q(j)ti
(
ptj · ℓti

)
≤ 1

T

T∑
t=1

k∑
j=1

ptj · ℓtF (j) + k ·∆(T) (5)

• Right-hand side is equal to (2)

• For left-hand side to be equal to (1), we need:

pti =
k∑

j=1

ptj · q(j)ti

62 / 87

Combining Distributions

pti =
k∑

j=1

ptj · q(j)ti

• These might be familiar as those defining stationary distribution of Markov chain

• There are k states, probability of going to state i from j is q(j)ti

• Stationary distribution over states is (pt1 . . . p
t
k)

• These equations always have solution as probability distribution

• Crucial property: two ways of viewing the distribution over experts:

• Each expert i is chosen with probability pti or

• W.p. ptj we select copy j and then select expert i w.p. q(j)ti

63 / 87

Regret Matching

• αt : Average per-step reward received by agent up until time t

• αt(a): Average per-period reward that would have been received up until time t
had pure strategy a was played by agent, assuming others played the same

• Regret at time t for not having played a: Rt(a) = αt(a)− αt

• Regret matching: At time t, choose action a w.p. proportional to its regret:

st(a) =
Rt(a)+∑
a′ R

t(a′)+

64 / 87

Outline

1. Introduction

2. Fictitious Play

3. Best-response Dynamics

4. No-regret Learning

5. Background: Single-agent Reinforcement Learning

6. Multi-agent Reinforcement Learning

65 / 87

Reinforcement Learning

• Still assume MDP

• Set of states s ∈ S

• Set of actions a ∈ A

• Model p(s, a, s ′)

• Reward r(s, a, s ′)

• Still looking for policy π(s)

• New twist: we do not know p or r

• I.e. we do not know which states are good or what actions do

• Must actually try actions and states out to learn

66 / 87

Offline (MDPs) vs. Online (RL)

Offline solution Online solution

67 / 87

Why Not Use Policy Evaluation?

• Simplified Bellman updates calculate V and Q for a fixed policy

V π
t (s)←

∑
s′

p(s, π(s), s ′)
(
r(s, π(s), s ′) + δV π

t−1(s
′)
)

• This approach fully exploited connections between the states

• Unfortunately, we need p and r to do it!

68 / 87

Temporal Difference (TD) Learning

• Main idea: learn from every experience!

• Update V (s) each time we experience a transition (s, a, s ′, r)

• Likely outcomes s ′ will contribute updates more often

• Temporal difference learning of values

• Policy still fixed, still doing evaluation!

• Move values toward value of whatever successor occurs: running average

Sample of V (s) : r(s, a, s ′) + δV π(s ′)

Update of V (s) : V π(s)← (1− α)V π(s) + α (r(s, a, s ′) + δV π(s ′))

Same update : V π(s)← V π(s) + α (r(s, a, s ′) + δV π(s ′)− V π(s))

69 / 87

Problems with TD Value Learning

• TD value leaning is model-free way to do policy evaluation

• It mimics Bellman updates with running sample averages

• However, if we want to turn values into (new) policy, we need p and r !

π(s) = argmax
a

Q(s, a)

Qπ(s, a) =
∑
s′

p(s, a, s ′)
(
r(s, a, s ′) + δV (s ′)

)
• To solve this, we can learn Q-values instead of values

• This makes action selection model-free too!

70 / 87

Active Reinforcement Learning

71 / 87

Q-learning

• Q-Learning is sample-based Q-value iteration

Qt(s, a)←
∑
s′

p(s, a, s ′)

(
r(s, a, s ′) + δ max

a′∈A
Qt−1(s

′, a′)

)
• We learn Q(s, a) values as we go

Sample : r(s, a, s ′) + δ max
a′∈A

Q(s ′, a′)

Update : Q(s, a)← (1− αt)Q(s, a) + αt

(
r(s, a, s ′) + δ max

a′∈A
Q(s ′, a′)

)

72 / 87

Q-learning Algorithm

repeat until convergence
observe current state s;
select action a and take it (e.g., via ϵ-greedy policy);
observe next state s ′ and reward r(s, a, s ′);
Qt+1(s, a)← (1− αt)Qt(s, a) + αt (r(s, a, s

′) + δVt(s
′));

Vt+1(s)← maxa Qt(s, a);

• ϵ-greedy: W.p. ϵ, act randomly, w.p. (1− ϵ) act according to Qt

73 / 87

Q-learning Properties

• Q-learning converges to optimal policy – even if agent acts sub-optimally!

• This is called off-policy learning

• There are some caveats

• We have to explore enough

• We have to eventually make the learning rate small enough

• But we should not decrease it too quickly

• Q-learning converges if
∑∞

0 αt =∞ and
∑∞

0 α2
t <∞

• Basically, in the limit, it does not matter how you select actions (!)

74 / 87

Outline

1. Introduction

2. Fictitious Play

3. Best-response Dynamics

4. No-regret Learning

5. Background: Single-agent Reinforcement Learning

6. Multi-agent Reinforcement Learning

75 / 87

Independent Single-agent RL

• Setting: Two-player zero-sum games

• Naive idea: Agents ignore the existence of their opponent

• Qπ
i (s, ai): Value for i if both agents follow π starting from s and i plays ai

• Learning dynamics: Agents deploy independent Q-learning

• Good news: No-regret property if opponent plays stationary policy

• Bad news: No convergence guarantee if both agents are learning (e.g., self play)!

76 / 87

Minimax-Q

• Littman2 extended Q-learning algorithm to zero-sum stochastic games

• Main idea is to modify Q-function to consider actions of opponent

Qi ,t+1(st , at) = (1− αt)Qi ,t(st , at) + αt (ri (st , at) + δVi ,t(st+1))

• Since game is zero sum, we can have

Vi ,t(s) = max
πi

min
a−i

Qi ,t(s, πi , a−i)

2
Littman, M. L. “Markov games as a framework for multi-agent reinforcement learning.” 1994

77 / 87

Minimax-Q Algorithm

repeat until convergence
observe current state s;
select action ai and take it (e.g., via ϵ-greedy policy);
observe action profile a;
observe next state s ′ and reward r(s, a, s ′);
Qi ,t+1(s, a)← (1− αt)Qi ,t(s, a) + αt (r(s, a) + δVi ,t(s

′));
πi (s, ·)← argmaxπ′ mina−i

∑
ai
π′(s, ai)Qi ,t(s, ai , a−i);

Vt+1(s)← mina−i

∑
ai
π(s, ai)Qi ,t(s, ai , a−i);

78 / 87

Minimax-Q Algorithm: Discussion

• It guarantees agents payoff at least equal to that of their maxmin strategy

• In zero-sum games, minimax-Q converges to the value of the game in self play

• It no longer satisfies no-regret property

• If opponent plays sub-optimally, minimax-Q does not exploit it in most games

79 / 87

Nash-Q

• Hu and Wellman3 extended minimax-Q to general-sum games

• Algorithm is structurally identical to minimax-Q

• Extension requires that each agent maintains values for all other agents

• LP to find maxmin value is replaced with quadratic programming to find NE

• Nash-Q makes number of very limiting assumptions (e.g., uniqueness of NE)

3
Hu, J, and Wellman, M. P. “Multiagent reinforcement learning: theoretical framework and an algorithm.” 1998

80 / 87

Recall: Stochastic Games Model

• Focus on stationary Markov strategies (a mixed strategy per state)

• πi : S 7→ ∆(Ai) denotes (mixed) strategy of agent i at state s

• π = (π1, . . . , πn) denotes strategy profile of all agents

• Expected utility (value) function of agent i is

vi (s, π) :=Eak∼π(sk)

[∞∑
k=0

δk ri (sk , ak) | s0 = s

]

81 / 87

Equilibrium Characterization

• Equilibrium value function is defined using one-stage deviation principle
(multi-agent extension of Bellman’s equation) as

vi (s, π
∗) = max

πi

Ea∼(πi ,π
∗
−i (s))

[
ri (s, a) + δ

∑
s′∈S

p(s, a, s ′)vi (s
′, π∗)

]

• Q-function is defined as

Qi (s, a, π
∗) = ri (s, a) + δ

∑
s′∈S

p(s, a, s ′)vi (s
′, π∗)

• Recursion is then defined as

vi (s, π
∗) = max

πi

Ea∼(πi ,π
∗
−i (s))

[Qi (s, a, π
∗)]

82 / 87

FP for Model-based Learning

• Consider learning dynamic that combines FP with value-function (or Q-function) iteration

• Agents form beliefs on opponent strategies (using empirical frequencies and assuming
opponent uses stationary strategy)

• Agents also form beliefs about equilibrium value function, or Q-function

• Agents then choose best response action in auxiliary game given their beliefs (where
payoffs are given by Q-function estimates)

• Key challenge is that payoffs or value functions in these auxiliary games are non-stationary
(unlike repeated play of stage games)

83 / 87

FP for Model-based Learning: Model

• At time t, i ’s belief on −i ’s strategy is µt
i and on own Q-function is

Qt
i :=Ea−i∼µt

i (s)
[Qt

i (s, ai , a−i)]

• Agent i selects best response ati (s) ∈ argmaxai Q
t
i (s, ai , µ

t
i (s))

• Agent i updates µi as
µt+1
i (s) = (1− αt)µ

t
i (s) + αta

t
−i (s)

• Agent i updates Qi as

Qt+1
i (s, a) = (1− βt)Q

t
i (s, a) + βt

(
ri (s, a) + δ

∑
s′∈S

p(s, a, s ′)v t
i (s

′)

)

where v t
i (s

′) = maxai Q
t
i (s

′, ai , µ
t
i (s))

84 / 87

Two-timescale Learning Framework

• Beliefs on Q-functions are updated at slower rate than beliefs on opponent strategies

• This postulate agents’ choices to be more dynamic than changes in their preferences

• Q-functions in auxiliary games can be viewed as slowly evolving agent preferences

• This enables weakening the dependence between evolving strategies and Q-functions

85 / 87

Convergence of Two-timescale Learning Framework

• If each state is visited infinitely many times

• And, if limk→∞ αk = limk→∞ βk = 0 and
∑

k αk =
∑

k βk =∞

• And, if limk→∞ βk/αk = 0 (two-timescale learning: βk → 0 faster than αk → 0)

• Then Q and µ converge to NE value and strategy in zero-sum stochastic games

• They also converge to NE value for single-controller stochastic games

86 / 87

Acknowledgment

• This lecture is a slightly modified version of ones prepared by

• Asu Ozdaglar [MIT 6.254]

• Vincent Conitzer [Duke CPS 590.4]

• Aaron Roth [UPenn NETS 412]

• Dan Klein and Pieter Abbeel [UC Berkeley CS 188]

87 / 87

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-254-game-theory-with-engineering-applications-spring-2010/index.htm
https://courses.cs.duke.edu/spring16/compsci590.4/
https://www.cis.upenn.edu/~aaroth/courses/agtS21.html
http://ai.berkeley.edu/home.html

	Introduction
	Fictitious Play
	Best-response Dynamics
	No-regret Learning
	Background: Single-agent Reinforcement Learning
	Multi-agent Reinforcement Learning

