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Outline

• Brief history of OSes
• Four fundamental OS concepts
• Thread
• Address space
• Process
• Dual-mode operation/protection



Serial Processing

• Machines did not have operating systems

• Run from console with display lights, toggle switches, input device, and printer

• Machine is used by a single user (users had to reserve time to use machines)

• Running programs had long lead time (users had to load compiler and source 
program, save compiled program, and then load and link it)

• Debugging programs was extremely hard

columbia.eduwikimedia.org



Evolution of OSes

• Simple batch OS
• Jobs with same requirement and grouped into batches
• Special program, called monitor, monitors and manages each program
• Erroneous or misbehaving jobs could corrupt entire system
• Automatic job sequencing improves throughput, but I/O is still slow

• Multiprogramming batch OS
• When running job requires I/O, OS switches to another job
• While this maximizes CPU utilization, response time could still suffer

• Time-sharing OS
• Multiple users simultaneously access system through terminals
• Processor’s time is shared among multiple users
• Primary focus is to minimize response time



Very Brief History of OS

• Several distinct phases:
• Hardware expensive, humans cheap 

• Eniac, … Multics

Thomas Watson was often called “the 
worlds greatest salesman” by the time 
of his death in 1956

“I think there is a world market for 
maybe five computers.” – Thomas 
Watson, chairman of IBM, 1943



Very Brief History of OS (cont.)

• Several distinct phases:
• Hardware expensive, humans cheap 

• Eniac, … Multics
• Hardware cheaper, humans expensive 

• PCs, workstations, rise of GUIs
• Hardware very cheap, humans very expensive 

• Ubiquitous devices, widespread networking



Very Brief History of OS (cont.)

• Several distinct phases:
• Hardware expensive, humans cheap 

• Eniac, … Multics
• Hardware cheaper, humans expensive 

• PCs, workstations, rise of GUIs
• Hardware very cheap, humans very expensive 

• Ubiquitous devices, widespread networking

• Rapid change in hardware leads to changing OS
• Batch Þ multiprogramming Þ timesharing Þ GUI Þ ubiquitous devices
• Gradual migration of features into smaller machines

• Today
• Small OS: 100K lines / Large: 20M lines (10M browser!)
• 100-1000 people-years



OS Archaeology

• Due to high cost of building OS from scratch, 
most modern OS’s have long lineage

• Multics Þ AT&T Unix Þ BSD Unix Þ
Ultrix, SunOS, NetBSD,…

• Mach (micro-kernel) + BSD Þ NextStep Þ
XNU Þ Apple OS X, iPhone iOS

• MINIX Þ Linux Þ Android, Chrome OS, RedHat, Ubuntu, Fedora, Debian, Suse,…

• CP/M Þ QDOS Þ MS-DOS ÞWindows 3.1 Þ NT Þ 95 Þ 98 Þ 2000 Þ
XP ÞVista Þ 7 Þ 8 Þ 10 Þ …

anthropology4u.medium.com



Today: Four Fundamental OS Concepts

• Thread
• Single unique execution context which fully describes program state
• Program counter, registers, execution flags, stack

• Address space (with translation)
• Address space which is distinct from machine’s physical memory addresses

• Process
• Instance of executing program consisting of address space and 1+ threads

• Dual-mode operation/protection
• Only “system” can access certain resources
• OS and hardware are protected from user programs
• User programs are isolated from one another by controlling translation from 

program virtual addresses to machine physical addresses



Booting OS
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• In most x86 systems, BIOS is stored on 
Boot ROM
• Expensive and writing to it is slow

• Why not storing kernel on Boot ROM?
• Hard to update (OS updates are frequent)

• Why does BIOS load bootloader not OS?
• Might have multiple OSes installed
• BIOS needs to read raw bytes from disk, 

whereas bootloader needs to know how to 
read from filesystem



OS Bottom Line: Run Programs

• Load instruction and data segments of 
executable file into memory

• Create stack and heap
• “Transfer control to program”
• Provide services to program
• While protecting OS and program
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Instruction Cycle:
Fetch, Decode, Execute

Memory

Data

• Execution sequence
• Fetch instruction at PC 
• Decode
• Execute (possibly using registers)
• Write results to registers/memory
• PC ← Next(PC)
• Repeat 

Next instruction or jump 
to new address …

PC

Decode

Instructions

ALU

Registers

Next



Thread (1st OS Concept)

• Thread is short for thread of execution

• Thread of execution is sequence of executable commands that can run on CPU

• Threads have some state and store some local variables
• Execution state (ready, running, waiting, …)
• Saved context when not running
• Execution stack
• Local variables
• …

• Multithreaded programs use more than one thread (some of the time)
• Program begins with single initial thread (where the main method is)
• Threads can be created and destroyed within programs dynamically

Thread 1 Thread 2 Thread 4 Thread 7

Thread 3

Thread 5 Thread 6
Time



Example: UI Thread

• One common way of dividing up program into threads is to separate user interface 
from other time-consuming actions

• If user interface and upload method share the same thread, then once file upload 
has started, user will not be able to use UI anymore
• Not even to click the button that cancels the upload!

• UI thread can spawn new thread to handle the upload when user clicks “upload”

• UI thread remain responsive as it is not waiting for the upload method to complete



The POSIX Thread

• pthread refers to POSIX standard that defines thread behavior in UNIX

• pthread_create

• Creates new thread to run a function

• pthread_exit

• Quit thread and clean up, wake up joiner if any
• To allow other threads to continue execution, the main thread should 

terminate by calling pthread_exit() rather than exit(3)

• pthread_join

• In parent, wait for children to exit, then return

• pthread_yield

• Relinquish CPU voluntarily

• …



Thread Lifecycle
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A process can go directly from ready or waiting to finished (example: main thread calls exit)



Thread Control Block (TCB)

• Data structure in OS containing information needed to manage a thread

• Thread unique identifier (tid)

• Stack pointer (points to thread's stack in the process)

• Program counter (points to the current program instruction of the thread)

• State of the thread (e.g., running, ready, waiting, etc.)

• Thread's register values

• Pointer to process control block (PCB) of the process that the thread lives on 

(more on this soon)



Some Numbers

• Many process are multi-threaded, so thread context switches 
may be either within-process or across-processes



Address Space (2nd OS Concept)

• Address space: set of accessible addresses and their state

• Physical memory: data storage medium

• Physical addresses: addresses available on physical memory

• For 4GB of memory: 232B ~ 4 billion addresses

• Virtual addresses: addresses generated by program

• For 64-bit processor: 264 > 18 quintillion (1018) addresses



Heap

Stack

Virtual Address Space Layout of 
C Programs

#include <stdio.h>
#include <stdlib.h>

int x;
int y = 15;

int main(int argc, char *argv[]) {

int *values;
int I;

values = (int *)malloc(sizeof(int)*5);

for (i = 0; i < 5; i++)
values[i] = i;

return 0;
}

Binary Code
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Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A0: A(int tmp) {

A1: if (tmp<2)

A2: B();

A3: printf(tmp);

A4: }

B0: B() {

B1: C();

B2: }

C0: C() {

C1: A(2);

C2: }

A(1);

ext:

tmp = 1
ret = ext

Stack 
Pointer
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Process (3rd OS Concept)

• A process is a program in execution

• Two instances of same program running equals two processes
• You may have two windows open for Microsoft Word, and even though they 

are the same program, they are separate processes
• Similarly, two users who both use Firefox at the same time on a terminal 

server are interacting with two different processes



Process Control Block (PCB)

• Is a data structure for managing processes
• Is created and updated by OS for each running process

• Is kept up to date constantly as process executes

• Is held in memory and maintained in some container (e.g., list) by kernel
• Contains everything OS needs to know about the process

• Unique process identifier (PID), state, priority
• Program counter (PC)
• Register data
• Memory pointers
• I/O status information,
• Accounting information

• PC and register data do not need to be updated when program is running
• They are needed when a system call (trap) or process switch occurs



PCB During Process Life Cycle

• Upon creation, OS creates new PCB for the process

• OS initializes data in new PCB
• Set variables to their initial values
• Set initial program state
• Set instruction pointer to first instruction in main

• OS then adds PCB to the list of PCBs

• After process is terminated and cleaned up, OS removes the PCB from its 
list of active processes
• OS might collect some data before removing PCB (e.g., summary of 

accounting information)



Context Switch:
CPU Switch Between Two Processes



Process Creation

• System boot up
• E.g., login process in Linux
• Embedded systems often create all processes they will ever run at bootup

• User request
• E.g., double clicking on icons

• One process spawns another
• E.g., clicking on a link in an email makes email process start a web browser
• E.g., entering a command, like ls or top, makes shell process start a new process
• Programs may beak their work up into different logical parts

• To promote parallelism or fault tolerance

• Processes, unlike most plants and animals, reproduces asexually
• Spawning process is the parent and the one spawned is the child

• Each process has one parent and zero or more children
• Each process and all its descendants form process group



fork(): Spawning New Process in Unix

• fork() creates new process as copy of itself with new PID

• Both parent and child continue after fork()

• Call to fork can return a value
• Positive value means this is the parent

• Value is PID of the child
• Zero value means this is the child
• Negative value means the fork failed

• Error!  Must be handled somehow
• Running in original process

• All state of original process duplicated in both parent and child
• Memory, file descriptors, etc. 

www.fortressofsolitude.co.za



UNIX Process Management

• fork()
• Syscall to create copy of current process and start it

• exec()
• Syscall to change program being run by current process

• wait()
• Syscall to wait for process to finish

• signal()
• Syscall to send notification to another process

(e.g., SIGKILL, SIGINT)



fork() Example

int pid = fork();

if (pid == 0)

exec(...);

else

wait(pid);

int pid = fork();

if (pid == 0)

exec(...);

else

wait(pid);

int pid = fork();

if (pid == 0)

exec(...);

else

wait(pid);

int main(...) {

...

}

exec()

wait()

fork()



Aside: Fork Bomb

• The idea is to call fork repeatedly

• Keep doing this until the system crashes 
(or no work can get done)

• Exponential growth (2n) processes after n calls

• OS can defend against this
• Limit total number of processes per user
• Limit rate of process spawning

• Note: do not attempt this on University computers

en
.w

iki
pe

di
a.o

rg



Process Family Tree in Unix

• First process created is called init
• Assigned PID of 1
• Grandparent of all processes
• Like object class in Java which is 

superclass of all classes

• init is replaced by systemd
in some newer distributions

• Parent of init is swapper (or sched)
• Part of kernel and responsible for paging 

(will come back to this later in the course)

• If parent dies before its child, the child becomes orphan
• Automatically adopted by init process



Example: pstree Output in FreeBSD

en.wikipedia.org



Process Destruction

• Normal exit (voluntary)
• E.g., when compilation is finished, compiler terminates normally
• E.g., when you are done editing your document, you click on close button

• Error exit (voluntary)
• E.g., computer exits with error if you ask it to compile a non-existent file
• E.g., process required access to temporary directory, but it didn’t have permission

• Fatal error (involuntary)
• E.g., division by zero or segmentation fault
• OS detects these errors and send it to the program

• Processes may tell OS that they wish to handle some of these errors by themselves
• If process can handle the error, it continues
• Unhandled errors result in involuntary terminations

• Killed by another process (involuntary)
• Typically, users may only kill processes they have created

• Exception: system administrator.



Process Lifecycle (5 States)

A process can go directly from 
ready or waiting to finished 
(example: process is killed!)

Ready
Created

Running Finished
Exits

BlockedUnblocked

Suspended

Scheduled

Init

Create

Blocked



Processes and Limited Memory

• Users often want more processes running than fit in memory

• Swapping: when demands for memory exceed available memory, parts of 
processes will be moved to disk storage to make room
• This is extremely expensive

• We need to know if a particular process is in memory or on disk

• Is adding a new state (e.g., swapped) be enough?
• Ideally, we will only swap a process to disk if it is blocked
• But what if there are no blocked process?
• Or what if the event a swapped process waited for took place?



Process Lifecycle (7 States)
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Inter-process Communication (IPC)

• Shared memory
• Normally, each region of memory is associated with one process (its owner)
• Processes can designate memory as shared
• OS is involved in setting up (and cleaning up) shared memory regions

• Shared file
• Processes could read/write to/from files in agreed upon locations
• OS is still involved in file creation and manipulation

• Message passing
• Sender gives a message to OS and asks for it to be delivered to recipient
• OS is obviously involved



Message Passing 

• Direct communication
• Processes must name each other explicitly
• send (P, message) – send a message to process P
• receive(Q, message) – receive a message from process Q

• Indirect communication
• Messages are directed and received from mailboxes (also called ports)
• send(M, message) – send a message to mailbox M
• receive(M, message) – receive a message from mailbox M



Synchronization

• Message passing may be either blocking or non-blocking

• Blocking is considered synchronous
• Sender is blocked until the message is received
• Receiver is blocked until a message is available

• Non-blocking is considered asynchronous
• Sender sends message and continues
• Receiver receives a valid message, or Null message



Signals: Limited Form of Direct IPC

• Standardized messages sent to 
processes to trigger specific behavior

• They don’t really contain a message

• The fact that signals contain no 
message is a limitation that means 
signals cannot be used for every 
single IPC scenario

imgflip.com



Signals

• UNIX systems use signals to indicate events
• E.g., the Ctrl-C on the console

• It is synchronous if the signal is sent as a result of program execution
• E.g., dividing by zero or segmentation fault

• It is asynchronous if it comes from outside the process 
• E.g., user pressing Ctrl-C or one process or thread sending a signal to another

• By default, OS handles signals sent to processes with the default handler

• Processes could inform OS they are prepared to handle signal themselves
• E.g., doing some cleanup when Ctrl-C is received instead of just dying



Signals (cont.)

• Signals can be sent using command line
• E.g., kill -9 24601
• -9 parameter sends signal 9 (SIGKILL)
• -0 is called the null signal
• It does not actually send any signal
• Can be used to check if the recipient process exists

• Process can block signals
• Exceptions are SIGKILL and SIGSTOP
• OS doesn’t deliver signal to recipient

• Once signal is delivered, recipient can
• Ignore it
• Run the default action
• Run a signal handler
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Signal Handler



Signal Handler Example

#include <stdio.h>

#include <stdlib.h>

#include <signal.h>

volatile int quit = 0;

void handle_it (int signal_num) {
quit = 1;

}

int main(int argc, char** argv) {
signal(SIGINT, handle_it);
while(quite == 0){};

printf(“Time to die.\n”);

return 0;

}



Signal Handler: Discussion

• Content of signal handler is restricted

• Because handler deals with interrupts and runs between two instructions, 
it is important to make sure that signal handler doesn’t mess anything up

• If signal handler runs in the middle of malloc and signal handler itself calls 
malloc it could put memory management in invalid state

• Signal handler can only use functions that are reentrant
• There are tables of safe functions to be invoked from within a signal handler.



Processes and Threads



Multithreaded Processes

• Threads encapsulate concurrency and are active components
• Address spaces encapsulate protection and are passive part

• Keeps buggy program from trashing system

• Why have multiple threads per address space?
• Processes are expensive to start, switch between, and communicate between

bbci.co.uk



Example: Web Server

• Server must handle many requests
• First option is multiprogramming

serverLoop() {
con = AcceptCon();
fork(ServiceWebpage, conn);

}

• What are some disadvantages 
of this technique?
• Expensive to start new process
• Heavyweight context switch overhead



Example: Web Server (cont.)

• Second option is multithreading

serverLoop() {
con = AcceptCon();
thread_create(ServiceWebpage, conn);

}

• Looks almost the same, but has many advantages
• Can share file caches kept in memory
• Threads are cheaper to create than processes 

(lower per-request overhead)

• What about denial-of-service (DoS) attacks?



Example: Web Server (cont.)

• Problem with previous version: unbounded number of threads
• When web-site becomes too popular, throughput sinks

• Solution: allocate bounded “pool” of threads, representing max level of parallelism

master() {
allocThreads(worker, maxLevel);
while(TRUE) {
con = acceptCon();
enqueue(queue, con);
broadcastToWorkers();

}
}

worker(queue) {
while(TRUE) {
con = dequeue(queue);
if (con == null)
waitForSignal();

else
serviceWebPage(con);

}
}

Master 
Thread

Worker pool

Client
Request



Multiple Processes vs. Single Process 
With Multiple Threads

• Fundamental tradeoff between protection and efficiency

• Communication harder between processes
• This is basically IPC
• It necessarily involves OS

• Communication easier within a process
• All threads of process share state and resources of process
• If one thread opens a file, other threads in the process can access it
• It does not involve OS



Memory Footprint of Multiple Threads

• How do we position stacks relative to each other?

• What maximum size should we choose for stacks?
• 8KB for kernel-level stacks in Linux on x86
• Less need for tight space constraint for user-level stacks

• What happens if threads violate this?
• “… program termination and/or corrupted data”

• How might you catch violations?
• Place guard values at top and bottom of each stack
• Check values on every context switch

Code
Global Data

Heap

Stack 1

Stack 2

Address Space



Multiprogramming: 
Running Multiple Processes

Code
Data
Heap

Stack

Code
Data
Heap

Stack

Code
Data
Heap

Stack

OS

Proc 1 Proc nProc 2 …

Physical memory

Virtual address spaces



Time Sharing:
Multiprogramming on Single CPU

• Illusion: infinite number of processors
• Each thread runs on dedicated virtual processor 

• Reality: few processors, multiple threads running at variable speed

• How can we give illusion of infinite number of processors?
• Multiplex in time!

• How do we switch from one process to next?
• Save PC, SP, and registers in current PCB
• Load PC, SP, and registers from new PCB

• What triggers switch?
• Timer, voluntary yield, I/O interrupts, …

Process
1

Process
2

Process
3

Process
1

Process
2

Time 

Process
3

Process
2

Process
1

CPU



How Do We Multiplex Processes?

• Scheduling: OS decides which process uses CPU time
• Only one process is “running” on each CPU at any time
• Scheduler could give more time to important processes

• Protection: OS divides non-CPU resources among processes
• E.g., give each process their own address space
• E.g., multiplex I/O through system calls



Scheduling

• Kernel scheduler decides which 
processes/threads receive CPU

• There are variety of scheduling policies for …
• Fairness or
• Realtime guarantees or
• Latency optimization or …

• Kernel scheduler maintains data structure containing PCBs

if (readyProcesses(PCBs)) {
nextPCB = selectProcess(PCBs);
run(nextPCB);

} else {
run_idle_process();

}



Ready Queue

• PCBs move from queue to queue as they change state
• Decisions about which order to remove from queues are scheduling decisions
• Many algorithms possible (more on this in a few weeks)



Ready Queue And I/O Device Queues

• Process not running Þ PCB is in some scheduler queue
• Separate queue for each device/signal/condition 
• Each queue can have different scheduler policy
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Protection

• OS must protect itself from user programs
• Reliability: prevent OS from crashing
• Security: limit scope of what processes can do
• Privacy: limit data each process can access
• Fairness: enforce appropriate share of HW

• It must protect user programs from one another
• Main method is to limit translation from virtual to physical address space



How to Protect Processes 
from One Another?

• Protection of memory
• Every process does not have access to all memory

• Protection of I/O devices
• Every process does not have access to every device

• Protection of access to processor
• Preemptive switching from process to process
• Use of timer
• Must not be possible to disable timer from user code



Address Translation Maps:
Illusion of Separate Address Space
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Data 1

Stack 2 

Stack 1

Heap 2

Heap 1

OS code

OS data

Physical Address Space

Heap

Stack

Code

Data

Process 2
Virtual Address Space 2

Heap

Stack

Code

Data

Tr
an

sla
tio

n 
M

ap
 1

Tr
an

sla
tio

n 
M

ap
 2



Putting it Together: Process

Memory

I/O State
(e.g., file, 
socket 
contexts)

CPU state 
(PC, SP, 
registers..)

Sequential stream 
of instructions

A(int tmp) {

if (tmp<2)

B();

printf(tmp);

}

B() {

C();

}

C() {

A(2);

}

A(1);

…

(Unix) Process

Resources
Stack

Stored in OS



Putting it Together: Processes

• Switch overhead: high
• CPU state: low
• Memory/IO state: high

• Process creation: high

• Protection
• CPU: yes
• Memory/IO: yes

• Sharing overhead: high
(involves at least one context 
switch)

…

Process 1 Process 2 Process N

CPU scheduler OS

CPU
(1 core)

1 process 
at a time

CPU
state

IO
state

Mem.

CPU
state

IO
state

Mem.

CPU
state

IO
state

Mem.



CPU scheduler

Putting it Together: Threads

• Switch overhead: medium
• CPU state: low

• Thread creation: medium

• Protection
• CPU: yes
• Memory/IO: no

• Sharing overhead: low(ish) 
(thread switch overhead 
low)

Process 1

OS

CPU
(1 core)

1 thread 
at a time

IO
state

Mem.

…

threads
Process N

IO
state

Mem.

…

threads

…
CPU
state

CPU
state

CPU
state

CPU
state



Putting it Together: Multi-cores

• Switch overhead: low
(only CPU state)

• Thread creation: low

• Protection
• CPU: yes
• Memory/IO: no

• Sharing overhead: low
(thread switch overhead 
low, may not need to switch 
at all!)

Core 1 Core 2 Core 3 Core 4 CPU

4 threads at 
a time

CPU scheduler
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threads
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state

CPU
state

CPU
state



Hyperthreading

• Superscalar processors can execute multiple instructions that are independent
• Multiprocessors can execute multiple independent threads
• Fine-grained multithreading executes two independent threads by switches between them
• Hyperthreading duplicates register state to make second (hardware) “thread” (virtual core)

• From OS’s point of view, virtual cores are separate CPUs
• OS can schedule as many threads at a time as there are virtual cores (but, sub-linear speedup!)
• See: http://www.cs.washington.edu/research/smt/index.html

Superscalar
Architecture

Multi-processor
Architecture

Fine-grained
Multithreading

Simultaneous
Multithreading

Ti
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) Thread 1

Thread 2

Colored blocks show
executed instructions

http://www.cs.washington.edu/research/smt/index.html


PCore 1 PCore 2 PCore 3 PCore 4

Putting it Together: Hyperthreading

• Switch overhead 
between hardware-
threads: very-low
(done in hardware)
• Contention for 

ALUs/FPUs may hurt
performance
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Dual-mode Operation 
(4th OS Concept)

• Hardware provides at least two modes
• Kernel mode (or “supervisor” or “protected”)
• User mode, which is how normal programs are executed 

• How can hardware support dual-mode operation?
• Single bit of state (user/system mode bit)
• Certain operations/actions only permitted in system/kernel mode

• In user mode they fail or trap
• User to kernel transition sets system mode AND saves user PC

• OS code carefully puts aside user state then performs necessary actions
• Kernel to user transition clears system mode AND restores user PC

• E.g., rfi: return-from-interrupt



Three Types of Mode Transfer

• System call: request for kernel services
• E.g., open, close, read, write, lseek
• Usually implemented by calling trap or syscall instruction

• Special instruction is not strictly required; on some systems, processes trigger 
system calls by executing some instruction with specific invalid opcode

• Processor exception: internal, synchronous, hardware event
• E.g., divide by zero, illegal instruction, segmentation fault, page fault
• Caused by software behavior

• Interrupt: external asynchronous event
• E.g., timer, disk ready, network
• Interrupts can be disabled, exceptions and traps cannot!



Requirements for Safe Mode Transfer

• Limited entry into kernel
• HW must ensure entry point into kernel is one set up by kernel
• User programs cannot be allowed to jump to arbitrary locations in kernel

• Atomic changes to processor state
• In user mode, PC and SP point to memory locations in user process
• In kernel mode, PC and SP point to memory locations in kernel
• Mode, PC, SP, and memory protection should all change atomically

• Transparent, restartable execution
• User-level process could get interrupted between any two instructions
• OS must restore state of user process exactly as it was before interrupt



Interrupt Vector Table

• Table set up by OS pointing to 
code to run on system calls, 
processor exceptions, and interrupts

• On x86, vector numbers 0-31 are 
for different types of processor exceptions 
(e.g., divide-by-zero)

• Vector numbers 32-255 are for different types of interrupts (e.g., timer)

• Vector number 64 is for system call handler

Interrupt
Vector Table

Processor
Register

h a n d l e T i m e r I n t e r r u p t ( )  {
 . . .
}

h a n d l e D i v i d e B y Z e r o ( )  {
 . . .
}

h a n d l e S y s t e m C a l l ( )  {
 . . .
}



Interrupt Stack

• User process state should be saved 

• OS should not save anything 
on user stack (why?)
• Reliability: what if user program’s 

SP is not valid?
• Security: what if other threads in 

process change kernel’s return address? 

• Most OSes go one step further and allocate separate kernel interrupt 
stack (also called kernel stack) for each user-level thread 
• PCB could store pointer to kernel stack
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Two-stack Model Example

User stack

Kernel stack

main

Proc1

Proc2

syscall

Running

main

Proc1

Proc2

syscall

Handling syscall

user CPU 
state

syscall
handler

I/O driver

main

Proc1

Proc2

Ready to run

user CPU 
state



Interrupt Masking

• Interrupt handler runs with interrupts disabled

• This simplifies interrupt handling

• Interrupts are re-enabled when interrupt completes

• Interrupts are deferred (masked) not ignored

• HW buffers new interrupts until interrupts are re-enabled

• If interrupt are disabled for long time, some interrupts may be lost

• On x86, cli disables interrupts and sti enables interrupts
• Only applies to current CPU (on a multicore)
• User programs cannot use these instructions (why?)



Mode Transfer Steps in x86

• Mask interrupts

• Save PS, SP, and execution flags in temporary HW registers

• Switch onto kernel interrupt stack (specified in special HW register)

• Push the three key values onto interrupt stack

• Optionally save an error code

• Invoke interrupt handler



Kernel stack

Example: x86 Mode Transfer

User stack

foo() {
while (…) {
x = x + 1;
y = y – 2;

}
}

User-level
process

Other Regs
EAX, EXB,

…

Processor
Registers

PC
SP

EFLAGS

…
foo

handler() {
pushad;
…

}

Kernel



Kernel stack

Example: x86 Mode Transfer (cont.)

• Single instruction to
• Save some registers (e.g., SP, PC)
• Change PC and SP
• Switch Kernel/user mode

User stack

foo() {
while (…) {
x = x + 1;
y = y – 2;

}
}

User-level
process

Other Regs
EAX, EXB,

…

Processor
Registers

PC
SP

EFLAGS

…
foo

handler() {
pushad;
…

}

SP
EFLAGS

PC
Error

Kernel



Example: x86 Mode Transfer (cont.)

• Single instruction to save all registers
• Why is stack pointer saved twice?

• Hint: are they the same?

User stack

foo() {
while (…) {
x = x + 1;
y = y – 2;

}
}

User-level
process

Other Regs
EAX, EXB,

…

Processor
Registers

PC
SP

EFLAGS

…
foo

handler() {
pushad;
…

}

SP
EFLAGS

PC
Error

…
EXB
EXA
SP

Kernel

Kernel stack
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Example: System Call Handler

• Vector through well-defined system call entry points!
• Table mapping system call number to handler

• Locate arguments
• In registers or on user (!) stack

• Copy arguments (copy before check)
• From user memory into kernel memory
• Protect kernel from malicious code evading checks

• Validate arguments
• Protect kernel from errors in user code

• Copy results back 
• Into user memory



Basic Cost of System Calls

• Min syscall has ~ 25x cost of function call

• Linux vDSO (virtual dynamic shared object) runs some system calls in user space
• E.g., gettimeofday or getpid



Aside: Monolithic vs Microkernel OS

en.wikipedia.org
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Aside: Influence of Microkernels

• Microkernels provide better modularity, security, and fault 
tolerance, but they introduce higher communication overhead
• Too many context switches

• Many OSes provide some services externally, like microkernels
• OS X and Linux: windowing (graphics and UI)

• Some currently monolithic OSes started as microkernels
• Windows family originally had microkernel design
• OS X is hybrid of Mach microkernel and FreeBSD monolithic kernel



Kernel to User Mode Switch Examples

• New process/new thread start
• Jump to first instruction in program/thread

• Return from interrupt, exception, system call
• Resume suspended execution

• Process/thread context switch
• Resume some other process

• User-level upcall (UNIX signal)
• Asynchronous notification to user program

• Preemptive user-level threads
• Asynchronous I/O notification
• Interprocess communication
• User-level excepting handling
• User-level resource allocation



Example: User/Kernel Mode Transfers

User Mode

Kernel Mode

Hardware

Full HW accessLimited HW access

exec

syscall

exit

rtn interrupt

rfi

exception



System Call Interface:
Access Point to Hardware Resources

The System Call Interface

Process
Management

Memory
Management Filesystems Device

Control Networking

Architecture
Dependent

Code

Memory
Manager

Device
Control

Network
Subsystem

File System 
Types

Block
Devices

IF drivers

Concurrency,
multitasking

Virtual
memory

Files and dirs:
the VFS

TTYs and
device access Connectivity



Device Drivers

• Device-specific code in kernel that interacts directly with device hardware
• Supports standard, internal interface
• Same kernel I/O system can interact easily with different device drivers
• Special device-specific configuration supported with ioctl() syscall

• Device drivers are typically divided into two pieces
• Top half: accessed in call path from system calls

• implements a set of standard, cross-device calls like 
open(), close(), read(), write(), ioctl(), etc. 

• This is kernel’s interface to device driver
• Top half will start I/O to device, may put thread to sleep until finished

• Bottom half: run as interrupt routine
• Gets input or transfers next block of output
• May wake sleeping threads if I/O now complete



Life Cycle of an I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program



I/O Data Transfer

• Programmed I/O
• Each byte transferred via processor in/out or load/store
• + Simple hardware, easy to program
• − Consumes processor cycles proportional to data size

• Direct memory access (DMA)
• Give controller access to memory bus
• Ask it to transfer data blocks to/from memory directly



DMA Transfer

1. Device driver is told to transfer disk data to buffer at address x
2. Device driver tells disk controller to transfer C bytes from disk to buffer at address x
3. Disk controller initiates DMA transfer
4. Disk controller send each byte to DMA controller
5. DMA controller transfers bytes to buffer x, increasing address and decreasing C
6. When C = 0, DMA interrupts CPU to signal transfer completion

4

5

6

1

2

3



DMA Example: Network Stack in 
Linux Kernels before 2.6

García-Dorado, José Luis, et al. "High-performance network traffic processing systems using commodity hardware." Data traffic monitoring 
and analysis. Springer, Berlin, Heidelberg, 2013. 3-27.



How Does Kernel Provide Services?

• You said that applications request services from OS via syscall, but …
• I’ve been writing all sorts of applications, and I never ever saw a “syscall” !!!

• That’s right!
• It was buried in the programming language runtime library (e.g., libc.a)

• … Layering



OS Run-time Library

OS

Proc 1 Proc nProc 2 …

OS

Proc 1 Proc nProc 2

…

OS 
Library

OS 
Library

OS 
Library

System Call
Interface

Portable Operating
System Kernel

Portable
OS Library

Web ServersCompilers Source Code Control

Web Browsers Email
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x86 ARM PowerPC
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Graphics Accelerators LCD Screens



Putting it Together: Web Server

Request

Reply
(retrieved by web server)

Client Web Server



Putting it Together: Web Server (cont.)

Server

Kernel

Hardware

request
buffer

reply
buffer

11. kernel copy 
from user buffer
to network buffer

Network 
interface Disk interface

12. format outgoing
packet and DMA

6. disk
request

10. network
socket
write

1. network
socket 
read

2. copy arriving
packet (DMA) 

syscall

wait

interrupt

3. kernel
copy 

RTU

5. file
readsyscall

8. kernel
copy

RTU

7. disk data 
(DMA)

interrupt

4. parse request 9. format reply

Request Reply

syscall



Summery

• Thread
• Single unique execution context which fully describes program state
• Program counter, registers, execution flags, stack

• Address space (with translation)
• Address space which is distinct from machine’s physical memory addresses

• Process
• Instance of executing program consisting of address space and 1+ threads

• Dual-mode operation/protection
• Only “system” can access certain resources
• OS and hardware are protected from user programs
• User programs are isolated from one another by controlling translation from 

program virtual addresses to machine physical addresses



Questions?

globaldigitalcitizen.org
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