

Lecture 6:
Address Translation
Prof. Seyed Majid Zahedi
https://ece.uwaterloo.ca/~smzahedi

https://ece.uwaterloo.ca/~smzahedi

Outline

• Virtual to physical address translation
• Base and bound
• Segmentation
• Page table
• Multi-level table
• Inverted page table

Recall: OS as Illusionist and Referee

• Illusion: each process has its own processor with (almost) infinite memory capacity

• Physical reality: there are only few processes, memory capacity is limited

• Scheduling: need to multiplex processors (done)

• Memory management: need to multiplex memory (now!)

Memory Management Goals

• Protection: prevent processes/threads from accessing others’ private data
• Protect kernel data from user programs
• Protect programs from themselves
• Give special access permissions to different data
• Allow processes to share data (controlled overlap)

• E.g., Shared binary file between multiple processes (e.g., fork())
• E.g., Shared memory used for inter-process communication
• E.g., Memory-mapped file shared by multiple processes
• E.g., User-level system libraries

• Allocation: divide available physical memory among processes/threads
• Manage memory capacity efficiently
• Avoid memory fragmentation
• Evict memory blocks to persistent storage if needed

Background: Some Basics

• What is 210 bytes (where one byte is abbreviated as “B”)?
• 210 B = 1024B = 1KiB (for memory, 1KiB = 1024B, not 1000B)

• How many bits to address each byte of 4KiB memory?
• 4KiB = 4 × 1KiB = 4 × 210= 212 Þ 12 bits

• How much memory can be addressed with 20 bits? 32 bits? 64 bits?
• 220B = 210KiB = 1MiB (mebibyte)

• 232B = 212MiB = 22GiB (gibibyte)

• 264B = 234GiB = 224TiB (tebibyte) = 214PiB (pebibyte) = 24EiB (exbibyte)

k bits

Address:

Address Space:

2k “things”

For memory, “things”
translates to “bytes” (8 bits)

Recall: Some Terminologies

• Address space: set of accessible addresses and their state

• Physical memory: data storage medium

• Physical addresses: addresses available on physical memory

• For 4GiB of memory: 232B ~ 4 billion addresses

• Virtual addresses: addresses generated by program

• For 64-bit processor: 264 > 18 quintillion (1018) addresses

Multi-step Processing of Programs

• Compiler : generate object file for each source code
• Has incomplete information when compiling each source code
• Doesn't know addresses of external objects (e.g., printf routine)
• Doesn't know where in memory compiled code will go

• Linkage editor : combines objects to single relocatable, executable image
• Arranges objects in program’s virtual address space
• Reorganizes code and data by changing addresses

• Loader: loads image from disk into memory for execution
• Allocates memory space to executable image
• Transfers control to the beginning instruction of the program

• Dynamic linker : defers linkage of shared libraries until run time
• Brings shared libraries if it’s not already in memory,
• Binds regions of program’s virtual address to shared library

Heap

Stack

Recall: Virtual Address Space Layout of
C Programs

#include <stdio.h>
#include <stdlib.h>

int x;
int y = 15;

int main(int argc, char *argv[]) {

int *values;
int I;

values = (int *)malloc(sizeof(int)*5);

for (i = 0; i < 5; i++)
values[i] = i;

return 0;
}

Binary Code

Initialized Data

Uninitialized Data

Command line args and
environment vars

Shared library

Shared library

0x0000…0

0xFFFF…F

Recall: What Happens During Program
Execution?

E.g., function calls, return, branches, etc.

• Execution sequence
• Fetch instruction at PC
• Decode
• Execute (possibly using registers)
• Write results to registers/memory
• PC ← Next(PC)
• Repeat

Memory

Data

PC

Decode

Instructions

ALU

Registers

Next

Data references:
Memory access on load/store instructions

Instruction references:
Memory access on every instruction

Uni-programming
Without Protection and Translation

• There is always only one program running at a time

• Program always runs at same place in physical memory
• Virtual address space = physical address space

• Program can access any physical address

• Program is given illusion of dedicated machine by literally giving it one

0x00000000

0xFFFFFFFF

User Process

Operating
System

Va
lid

 3
2-

bi
t

Ad
dr

es
se

s

Multi-programming
Without Protection and Translation

• To prevent address overlap between processes, loader/linker adjust
addresses while programs are loaded into memory (loads, stores, jumps)
• Virtual address = physical address

• Bugs in any program can cause other programs (including OS) to crash

0x00000000

0xFFFFFFFF

User Process 1

Operating
System

User Process 2 0x00020000

Multiprogramming With Protection
but Without Translation

• Can we protect programs from each other without translation?
• Yes: use two special registers base and limit

• Prevent application from straying outside designated area
• If application tries to access an illegal address, raise exception

• During switch, kernel loads new base/limit from PCB
• User is not allowed to change base/limit registers

0x00000000

0xFFFFFFFF

User Process 1

Operating
System

User Process 2 0x00020000 base = 0x20000

limit = 0x10000

Recall:
Protection With Address Translation

Process 1
Virtual Address Space 1

Code 2

Code 1

Data 2

OS heap &
Stacks

Data 1

Stack 2

Stack 1

Heap 2

Heap 1

OS code

OS data

Physical Address Space

Heap

Stack

Code

Data

Process 2
Virtual Address Space 2

Heap

Stack

Code

Data

Tr
an

sla
tio

n
M

ap
 1

Tr
an

sla
tio

n
M

ap
 2

• Upsides
• Code can be written, compiled, linked, and loaded independently

• Threads think they have unrestricted access to their entire virtual memory range
• Threads do not need to worry about memory usage of others

• OS can provide protection
• Threads cannot affect each other if they cannot see each other’s memory

• OS can allow memory sharing
• Threads’ virtual memory regions can be mapped to same physical regions

• Downsides
• Address translation adds performance overhead
• Address translation needs extra hardware support

• Extra hardware consumes area and power

Protection With Address Translation:
Discussion

Base and Bound (B&B) Address
Translation

Code
Data
Heap

Stack

0x000…0

0x010…0

0x000…0

0xFFF…F

+

Base

Bound
Code
Data
Heap

Stack

0x100…0

0x110…0

Virtual Address

0x001…1 0x101…1

Physical Address

0x100…0

0x010…0

>

Raise
Exception

B&B Address Translation: Discussion

• Process is given illusion of running on its own dedicated memory starting at 0x00000000

• Program are mapped to continuous region of memory

• Virtual addresses do not change if program is relocated to different physical memory region

CPU

BaseBound

Virtual Address Physical Address

Raise
Exception

Memory+>
yes

no

B&B Address Translation: Discussion
(cont.)

• Upsides
• OS protection and program isolation
• Low overhead address translation

• Downsides
• Expandable heap?
• Expandable stack?
• Memory sharing between processes?
• Non-relative addresses – hard to move memory around
• Memory fragmentation

Issues with B&B Address Translation

• Missing support for inter-process memory sharing
• E.g., it’s not possible to share code segments in two processes

• Fragmentation: wasted space
• External: free gaps between allocated chunks
• Internal: don’t need all memory within allocated chunks

Process 6

Process 5

Process 2

OS

Process 6

Process 5

OS

Process 6

Process 9

OS

Process 10
Process 11

Process 6

Process 5

OS

Process 9

Multi-segment Address Translation

• Segment map resides in processor
• Base is added to offset to generate physical address

• For each contiguous segment of physical memory there is one entry
• Segment addressed by portion of virtual address
• However, could be included in instruction instead

• E.g., mov ax, es:[bx]

Seg. Base Bound

0 Base 1 Bound 1

1 Base 2 Bound 2

2 Base 3 Bound 3

3 Base 4 Bound 4

Memory

Seg.
Virtual Address

Offset
Segment map

>

Raise Exception

Physical Address
+

Example: Multi-segment Address
Translation

OffsetSeg
014 1315

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

Physical
Address Space

0x4000
0x4800

Seg. ID = 0

Might
be shared0x4000

Seg ID # Base Limit

0 (code) 0x4000 0x0800

1 (data) 0x4800 0x1400

2 (shared) 0xF000 0x1000

3 (stack) 0x0000 0x3000

Example: Multi-segment Address
Translation (cont.)

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

0x0000

Physical
Address Space

0x4000
0x4800

Seg. ID = 0

Seg. ID = 1 0x5C00
Might
be shared

Seg ID # Base Limit

0 (code) 0x4000 0x0800

1 (data) 0x4800 0x1400

2 (shared) 0xF000 0x1000

3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

Virtual Address Format

Example: Multi-segment Address
Translation (cont.)

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

0x0000

Physical
Address Space

0x4000
0x4800

Seg. ID = 0

Seg. ID = 1 0x5C00

0xF000
Shared with
Other Apps

Might
be shared

Space for
Other Apps

Seg ID # Base Limit

0 (code) 0x4000 0x0800

1 (data) 0x4800 0x1400

2 (shared) 0xF000 0x1000

3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

Virtual Address Format

0x0240 main: la $a0, varx
0x0244 jal strlen
… …

0x0360 strlen: li $v0, 0 ;count
0x0364 loop: lb $t0, ($a0)
0x0368 beq $r0,$t0, done
… …

0x4050 varx dw 0x314159

Example: Multi-segment Address
Translation (cont.)

• Fetch 0x0240
• Virtual segment number? 0, offset? 0x240
• Physical address? Base: 0x4000, so physical address: 0x4240
• Fetch instruction at 0x4240, get “la $a0, varx”
• Move 0x4050 to $a0, move PC+4 to PC

• Fetch 0x244, translated to physical address: 0x4244, get “jal strlen”
• Move 0x0248 to $ra (return address!), move 0x0360 to PC

• Fetch 0x360, translated to physical address: 0x4360, get “li $v0, 0”
• Move 0x0000 to $v0, move PC+4 to PC

• Fetch 0x0364, translated to physical address 0x4364, get “lb $t0, ($a0)”
• Since $a0 is 0x4050, try to load byte from 0x4050
• Translate 0x4050 (0100 0000 0101 0000): virtual segment #? 1, offset? 0x50
• Physical address? Base: 0x4800, physical address; 0x4850
• Load byte from 0x4850 to $t0, move PC+4 to PC

Seg ID # Base Limit

0 (code) 0x4000 0x0800

1 (data) 0x4800 0x1400

2 (shared) 0xF000 0x1000

3 (stack) 0x0000 0x3000

Multi-segment Address Translation:
Discussion

• Virtual address space has holes
• It’s efficient for sparse address spaces (avoids internal fragmentation)
• If program tries to access gaps, trap to kernel (segmentation fault)

• When is it OK to address outside valid range?
• This is how stack and heap grow
• E.g., stack takes segmentation fault, kernel automatically increases size of stack

• What must be saved/restored on context switch?
• Segment table stored in CPU, not in memory (small)
• Might store all of processes memory in disk when switched (called swapping)

• What are downsides?
• Must fit variable-sized chunks into physical memory (external fragmentation)
• Limited options for swapping to disk

Paged Memory

• Allocate physical memory in fixed-size chunks called pages

• Can use simple bit map to handle allocation

00110001110001101 … 110010

• Each bit represents page of physical memory

1Þ allocated, 0Þ free

• Should pages be as big as our previous segments?

• No, big pages could lead to internal fragmentation

• Typically, pages are small (1-16Kib)

• Consequently, each segment needs multiple pages

Page-table Address Translation

• Page resides in physical memory
• Contains physical page and permission for each virtual page
• Offset from virtual address gets copied to physical address

• E.g., 10-bit offset ⇒ 1024-byte = 1KiB pages

• Virtual page number is all remaining bits
• Physical page number is copied from table into physical address

V-Page # P-Page # Permission V/N

0 10 R V

1 5 R/W V

2 22 - N

...
...

...
...

V-Page #

Virtual Address

Offset

Page-table Pointer

Offset

Page-table Size

Raise Exception

>

P-Page #Physical
Address

P-Page 1

P-Page 2

P-Page 3

P-Page 4

P-Page 5

...

Memory

Example: Page-table Address
Translation with 4-byte Pages

L
K
J
I

H
G
F
E

D
C
B
A

0x00

0x04

0x08

Virtual Memory

0x00

Physical Memory

4

3

1

Page Table

0

1

2

0000 0000

0000 1000

0x06?

0000 0110 0000 1110

0x0E!

0x09?

0000 1001 0000 0101

0x05!

0000 0100

0x08
L
K
J
I

H
G
F
E

D
C
B
A

0x10

0001 0000

0x0C

0000 1100

0x04

0000 0100

Page-table Entry

• What is in each page-table entry (or PTE)?
• Pointer to actual page
• Permission bits: valid, read-only, read-write, write-only

Read Write Execute Use Case

X X X Code or data; was common, but now generally
deprecated/discouraged due to security risks

X X - Read-write data; very common
X - X Executable code; very common

X - - Read-only data; very common
- X X N/A

- X - Interaction with devices

- - X To protect code from inspection; uncommon

- - - Guard; security feature used to trap buffer overflows or
other illegal accesses

Permissions in Action

• Demand paging (more on this later)
• Keep only active pages in memory
• Place others on disk and mark their PTEs invalid

• Copy-on-write
• UNIX fork gives copy of parent address space to child
• How to do this cheaply?

• Make copy of parent’s page tables
• Mark entries in both sets of page tables as read-only
• On write, page fault happens, OS creates two copies

• Zero-fill-on-demand
• New data pages must carry no information (say be zeroed)
• Mark PTEs as invalid; page fault on use gets zeroed page
• Often, OS creates zeroed pages in background

V-Page # P-Page # Permission V/N

0 10 R V

1 5 R/W V

2 22 - N

...
...

...
...

V-Page # P-Page # Permission V/N

0 5 R/W V

1 15 R V

2 4 R/W V

...
...

...
...

Memory Sharing

V-Page #

Process A’s Virtual Address

Offset Page-table Pointer

OffsetPhysical
Address P-Page #

P-Page 1

P-Page 2

P-Page 3

P-Page 4

P-Page 5

...

Memory

V-Page #

Process B’s Virtual Address

Offset Page-table Pointer

P-Page #Physical
Address Offset

Example: Updating Page Table

1111 1111 stack

heap

code

data

Virtual Memory

0000 0000

0100 0000

1000 0000

1100 0000

1111 0000

page# offset

Physical Memory

data

code

heap

stack

0000 0000
0001 0000

0101 0000

0111 0000

1110 0000

11101
11100
null
null
null
null
null
null
null
null
null
null
null
10000
01111
01110
null
null
null
null
01101
01100
01011
01010
null
null
null
null
00101
00100
00011
00010

Page Table
1110 1111

11111
11110
11101
11100
11011
11010
11001
11000
10111
10110
10101
10100
10011
10010
10001
10000
01111
01110
01101
01100
01011
01010
01001
01000
00111
00110
00101
00100
00011
00010
00001
00000

Example: Updating Page Table (cont.)

1111 1111
stack

heap

code

data

Virtual Memory

0000 0000

0100 0000

1000 0000

1100 0000

1110 0000

Physical Memory

data

code

heap

stack

0000 0000
0001 0000

0101 0000

0111 0000

1110 0000

11101
11100
null
null
null
null
null
null
null
null
null
null
null
10000
01111
01110
null
null
null
null
01101
01100
01011
01010
null
null
null
null
00101
00100
00011
00010

Page Table
11111
11110
11101
11100
11011
11010
11001
11000
10111
10110
10101
10100
10011
10010
10001
10000
01111
01110
01101
01100
01011
01010
01001
01000
00111
00110
00101
00100
00011
00010
00001
00000

What happens if stack
grows to 1110 0000?

Example: Updating Page Table (cont.)

1111 1111
stack

heap

code

data

Virtual Memory

0000 0000

0100 0000

1000 0000

1100 0000

1110 0000

Physical Memory

data

code

heap

stack

0000 0000
0001 0000

0101 0000

0111 0000

1110 0000

11101
11100
11101
11100
null
null
null
null
null
null
null
null
null
10000
01111
01110
null
null
null
null
01101
01100
01011
01010
null
null
null
null
00101
00100
00011
00010

Page Table
11111
11110
11101
11100
11011
11010
11001
11000
10111
10110
10101
10100
10011
10010
10001
10000
01111
01110
01101
01100
01011
01010
01001
01000
00111
00110
00101
00100
00011
00010
00001
00000

stack

Allocate new pages
where room!

Challenge: table size equal to # of pages in virtual memory!

Page-table Address Translation:
Discussion

• What needs to be switched on context switch?
• Page-table pointer and page-table size

• How big is page table?
• 32-bits and 4KiB pages ⇒ 220 entries x 4B each ⇒ 4MiB

• 64-bits and 4KiB pages ⇒ 252 entries x 8B each ⇒ 32PiB

• Upsides
• + Simple memory allocation
• + Easy to share

• Downsides
• − Inefficient for sparse address spaces
• There are too many unused page-table entries
• What if page size is very small?

• With 1KiB pages, we need 222 (~4 million) table entries!
• What if page size is too big?

• Wastes space inside of page (internal fragmentation)

Two-level Page-table
Address Translation

• Tables fixed size (e.g., 1024 entries)
• On context switch: save single page-table-pointer register

• Valid bits on page-table entries
• Don’t need every 2nd-level table
• Even when exist, 2nd-level tables can reside on disk if not in use

10 bits 10 bits 12 bits

V-P1 Index

Virtual Address

V-P2 Index

Page-table Pointer

4 bytes

Offset

4 bytes

4K

P-Page # Offset

Physical Address

Example: Two-level Page-table
Address Translation

1111 1111
stack

heap

code

data

Virtual Memory

0000 0000

0100 0000

1000 0000

1100 0000

1110 0000

Physical Memory

data

code

heap

stack

0000 0000
0001 0000

0101 0000

0111 0000

1110 0000

stack
111
110 null
101 null
100
011 null
010
001 null
000

11 11101
10 11100
01 10111
00 10110

11 01101
10 01100
01 01011
00 01010

11 00101
10 00100
01 00011
00 00010

11 null
10 10000
01 01111
00 01110

Page Tables
(level 2)

Page Table
(level 1)

p1# offset

p2#

Example: Two-level Page-table
Address Translation (cont.)

stack

heap

code

data

Virtual Memory

1001 0000
(x90)

Physical Memory

data

code

heap

stack

0000 0000

1000 0000
(0x80)

stack
111
110 null
101 null
100
011 null
010
001 null
000

11 11101
10 11100
01 10111
00 10110

11 01101
10 01100
01 01011
00 01010

11 00101
10 00100
01 00011
00 00010

11 null
10 10000
01 01111
00 01110

Page Tables
(level 2)

Page Table
(level 1)

In best case, total size of page tables ≈ number of pages used by program
virtual memory. Requires two additional memory access!

Seg. Base Bound

0 Base 1 Bound 1

1 Base 2 Bound 2

2 Base 3 Bound 3

3 Base 4 Bound 4

V-Page # P-Page # Permission V/N

0 8 R V

1 19 R/W V

2 7 R V

...
...

...
...

Multi-level Address Translation:
Segments and Pages

• What must be saved/restored on context switch?
• Contents of top-level segment registers

Seg #

Virtual Address
Offset

Segment Map

Check
Permissions

Raise
Exception

V-Page #

>

Physical Address
OffsetP-Page #

Page Table

Example: Multi-level Paged
Segmentation (x86)

• Global descriptor table (segment table)
• Pointer to page table for each segment
• Segment length
• Segment access permissions

• What should be saved on context switch?
• Change global descriptor table register

(GDTR, pointer to global descriptor table)

• Multi-level page table
• 32-bit: two-level page table (per segment)
• 64-bit: four-level page table (per segment)

x86 32-bit Virtual Address

• 4KiB pages; each level of page table fits in one page

x86 64-bit Virtual Address

• Fourth-level table maps 2MiB, and third level table maps 1GiB of data
• If physical memory covered by fourth level table is contiguous, then one

third-level entry can directly point to this region instead of pointing to
fourth-level page table

Example: x86 64-bit PTE

• V: Valid
• W: Read/write
• O: Owner (user/kernel)
• WT: Write-through (more on this soon)
• CD: Cache-disabled (page cannot be cached)
• A: Accessed: page has been accessed recently
• D: Dirty bit (page has been modified recently)
• L: Large page
• G: Global
• CP: Copy-on-write
• P: Prototype PTE
• U: Reserved
• SW: Software (working set index)
• NX: No-execute

P-Page NumberReserved U L D A

CD WT O W V

01234567839-1251-40

SW

CW GLP

9101162-5263

NX

Seg. Base Bound

0 Base 1 Bound 1

1 Base 2 Bound 2

2 Base 3 Bound 3

3 Base 4 Bound 4

Seg. Base Bound

0 Base 1 Bound 1

1 Base 2 Bound 2

2 Base 3 Bound 3

3 Base 4 Bound 4

Multi-level Address Translation:
Sharing Entire Segment

Seg #
Process A’s Virtual Address

Offset

Segment Map

Page #

Seg #
Process B’s Virtual Address

Offset

Segment Map

Page #

V-Page # P-Page # Permission V/N

0 8 R V

1 19 R/W V

2 7 R V

...
...

...
...

Aside: Shared Library Address Space

• Shared library’s global and static variables are private to each process
• Each process has read and write permissions on its own copy of variables

• Shared library’s code is shared between different processes
• Each process only has read and execute permissions on shared code

• Shared library code must be position-independent code (PIC)
• Same library code could be mapped to different virtual address regions in different processes
• Code must execute properly regardless of its absolute virtual address
• Code cannot contain absolute virtual addresses for data and instruction references

• Data references are made indirectly through global-offset tables (GOT)

• GOT is located at fixed offset from code and can be accessed using PC-relative offset
• GOT has one entry per variable which contains absolute address of that variable
• GOT is private to each process, and processes have read and write permissions to their GOT

• Similarly, instruction references are made indirectly through procedure-linkage table (PLT)

Multi-level Address Translation:
Discussion

• + Allocate only as many page-table entries as needed for application
• In other words, sparse address spaces are easy

• + Easy memory allocation
• Bit-map memory allocation

• + Easy sharing
• Share at segment or page level (need additional reference counting)

• − One extra pointer per page
• One pointer per 4 -16KiB pages

• − Page tables need to be contiguous
• However, we can make each table to fit exactly into one page

• − Two (or more, if > 2 levels) lookups per reference
• Seems very expensive!

Inverted Page Table

• In all previous methods (forward page tables), size of page table is at least as large
as amount of virtual memory allocated to processes
• Physical memory may be much smaller

• Inverted page table fixes this problem by using hash table
• Size of hash table is related to size of physical memory not virtual address space
• Very attractive option for 64-bit address spaces (e.g., PowerPC, UltraSPARC, IA64)

• Notice any downsides?
• Complexity of managing hash chains: often in hardware!
• Poor cache locality of page table

OffsetV-Page #Virtual Address

Hash
Table

OffsetP-Page #

11101
11100
10111
10110
10000
01111
01110
01101
01100
01011
01010
00101
00100
00011
00010

Inverted Paging Example (cont.)

1111 1111

Virtual Memory

0000 0000

0100 0000

1000 0000

1110 0000

Physical Memory

data

code

heap

stack

0000 0000
0001 0000

0101 0000

0111 0000

1110 0000Inverted Table
Hash(v-page#) = p-page#

stack
h(11111)=
h(11110)=
h(11101)=
h(11100)=
h(10010)=
h(10001)=
h(10000)=
h(01011)=
h(01010)=
h(01001)=
h(01000)=
h(00011)=
h(00010)=
h(00001)=
h(00000)=

stack

heap

code

data

Total size of page table ≈ number of pages used by
program in physical memory

HW vs. SW Address Translation

• Does kernel require HW support for translation?
• No! Almost anything that can be done in HW can also be done in SW

(might end up being too expensive, but possible!)

• Implement page tables in HW
• All memory reference pass through memory management unit (MMU)
• MMU generates page fault if it encounters invalid PTE
• Fault handler will decide what to do (more on this later)
• + Relatively fast (but still many memory accesses!)
• − Inflexible, complex hardware

• Implement page tables in SW
• + Very flexible
• − Every translation must invoke fault!

• In fact, we need a way to cache translations for either case

Address Translation Comparison

Method Advantages Disadvantages

Segmentation
Fast context switching:

Segment mapping maintained
by CPU

External fragmentation

Page-table translation No external fragmentation,
fast easy allocation

Large table size ~ virtual
memory

Multi-level translation
Table size ~ # of pages in
virtual memory, fast easy

allocation

Multiple memory references
per page access

Inverted table Table size ~ # of pages in
physical memory Hash function more complex

Summary

• Segmentation
• Segment ID associated with each access
• Each segment contains base and limit information

• Page tables
• Memory divided into fixed-sized chunks of memory
• Virtual page # from virtual address mapped through page table to physical page #

• Multi-level tables
• Virtual address mapped to series of tables
• Permit sparse population of address space

• Inverted page table
• Use of hash-table to hold translation entries
• Size of page table ~ size of physical memory rather than size of virtual memory

Questions?

globaldigitalcitizen.org

Acknowledgment

• Slides by courtesy of Anderson, Ousterhout, Culler,
Stoica, Silberschatz, Joseph, and Canny

