


Lecture 8: Demand Paging
Prof. Seyed Majid Zahedi
https://ece.uwaterloo.ca/~smzahedi

https://ece.uwaterloo.ca/~smzahedi


Outline

• Demand paging
• Replacement policies

• FIFO, MIN, LRU

• Clock algorithm
• Nth-chance algorithm



Demand Paging

• Modern programs require a lot of physical memory
• Memory per system is growing faster than 25%-30% per year

• But they don’t use all their memory most of the time
• 90-10 rule: programs spend 90% of their time in 10% of their code
• Wasteful to require all of user’s code to be in memory

• Solution: demand paging (also known as paging)
• Use main memory as cache for disk

Core

Core

Secondary
Storage 
(Disk)

Processor

Main
Memory
(DRAM)

Secondary
Storage 
(SSD)

Caching

Paging



Demand Paging is Just Caching …

• What is block size?
• One page

• What is organization of cache structure?
• Fully associative

• How do we find pages in cache?
• First check TLB, then page-table traversal

• What is page replacement policy? 
• This requires more explanation… (coming next!)

• What happens on misses?
• Go to lower level (i.e., disk) to resolve miss

• What happens on writes?
• Write-back



Recall: x86 64-bit PTE

• V: Valid
• W: Read/write
• O: Owner (user/kernel)
• WT: Write-through (more on this soon)
• CD: Cache-disabled (page cannot be cached)
• A: Accessed: page has been accessed recently
• D: Dirty bit (page has been modified recently)
• L: Large page
• G: Global
• CP: Copy-on-write
• P: Prototype PTE
• U: Reserved
• SW: Software (working set index)
• NX: No-execute

P-Page NumberReserved U L D A

CD WT O W V

01234567839-1251-40

SW

CW GLP

9101162-5263

NX



• PTE helps us implement demand paging
• Valid Þ page in memory, PTE points to physical page
• Invalid Þ page not in memory; use info in PTE to find it on disk when necessary

• What happens on references to page with invalid PTE?
• Page-fault exception Þ trap to OS

• What does OS do on page fault?
• Allocate physical page to referenced virtual page
• Load new page into memory from disk and make PTE valid

• What if there are no free physical pages?
• Evict one and write back its content to disk if it has been modified (i.e., dirty bit is set)
• Invalidate PTEs and TLB entries pointing to evicted physical page

• While pulling pages off disk for one process, run another one from ready queue
• Suspended process sits on disk’s waiting queue

Demand Paging Overview



Paging Big Picture!

PT
Instruction

Virtual address

Page-fault
exception

Page-fault
handler Load page from disk

Update 
PTE

CPU

Scheduler

Retry

P-Page#

Offset

Memory

Disk

Offset

V-Page#

P-Page#



Example: Loading Executable

• Each executable file lives on disk in file system
• Contains contents of code & data segments, relocation entries and symbols

• OS loads executable file into memory, initializes registers (and initial stack pointer)

• Program sets up stack and heap upon initialization (e.g., crt0() in C)

exe

Code

Data

Info

MemoryDisk Virtual Address 
Space

Code
Data
Heap

Kernel

Stack

User 
pages

Kernel 
pages



Example: Provide Backing Store

• All used virtual pages are backed by page blocks on disk (called backing store or swap file)

• User page tables map entire virtual address space
• OS must record where to find non-resident virtual pages on disk
• Some OSs utilize spare space in PTE for paged blocks
• Portion of page tables that HW needs to access must be also resident in memory

Code
Data
Heap

Kernel

Stack

Code

Data

Heap

Stack

exe

Code

Data

Info User 
page tables

User 
pages

MemoryDisk VAS PT

Kernel 
pages



Example: On Page Fault …

Code
Data
Heap

Kernel

Stack

Code

Data

Heap

Stack User 
page tables

User 
pages

MemoryDisk VAS1 PT1

Kernel 
pages

Code
Data
Heap

Kernel

Stack

Code

Data

Heap

Stack

User 
pages

VAS2 PT2

Current PT



Example: On Page Fault … Schedule 
Other Process

Code
Data
Heap

Kernel

Stack

Code

Data

Heap

Stack User 
page tables

User 
pages

MemoryDisk VAS1 PT1

Kernel 
pages

Code
Data
Heap

Kernel

Stack

Code

Data

Heap

Stack

User 
pages

VAS2 PT2

Current PT



Example: On Page Fault … Update 
PTE

Code
Data
Heap

Kernel

Stack

Code

Data

Heap

Stack User 
page tables

User 
pages

MemoryDisk VAS1 PT1

Kernel 
pages

Code
Data
Heap

Kernel

Stack

Code

Data

Heap

Stack

User 
pages

VAS2 PT2

Current PT



Example: Resume from Faulting 
Instruction

Code
Data
Heap

Kernel

Stack

Code

Data

Heap

Stack User 
page tables

User 
pages

MemoryDisk VAS1 PT1

Kernel 
pages

Code
Data
Heap

Kernel

Stack

Code

Data

Heap

Stack

User 
pages

VAS2 PT2

Current PT



Demand Paging Cost Model

• Effective access time (EAT) = Hit time + Miss ratio x Miss time

• Example:
• Memory access time = 200ns, avg page-fault service time = 8ms, and miss ratio = p
• EAT = 200ns + p x 8ms = 200ns + p x 8,000,000ns

• If one out of 1,000 accesses causes page fault, then EAT = 8.2μs
• 40x slowdown!

• What if we want slowdown of less than 10%?
• 200ns x 1.1 > EAT Þ p < 2.5 x 10-6

• This is approximately single page fault in every 400,000 accesses!



What Factors Lead to Misses?

• Compulsory misses
• Pages that have never been paged into memory before
• How might we remove these misses?

• Prefetching: loading them into memory before needed
• Need to predict future somehow!

• Capacity misses
• Not enough memory; must somehow increase available memory size
• Can we do this?

• One option is increasing amount of DRAM (not quick fix!)
• Another option is adjusting percentage of memory allocated to process if multiple processes are in memory

• Conflict misses
• Technically, conflict misses don’t exist in virtual memory, since it is “fully-associative” cache

• Policy misses
• Caused when pages were in memory, but kicked out prematurely because of replacement policy
• How to fix this? 

• Better replacement policy



Page Replacement Policies

• Random
• Pick random page for every replacement
• + Simple hardware (typical solution for TLB’s)
• – Very unpredictable (makes it hard to provide any real-time guarantees)

• First-in-first-out (FIFO)
• Throw out oldest page
• + Fair (let every page live in memory for same amount of time)
• – Not optimal (could throw out heavily used pages instead of infrequently used)

• Minimum (MIN) 
• Replace page that won’t be used for the longest time in future
• + Optimal  (perfect benchmark)
• – Impractical (how can we really know future?)

• Least-recently-used (LRU):
• Replace page that hasn’t been used for the longest time (if it hasn’t been used for a while, it’s 

unlikely to be used in near future)
• + Seems like LRU should be good approximation to MIN
• – High implement overhead (need to track all references to all pages)



Example: FIFO

• Suppose we have 3 p-pages , 4 v-pages, and following reference stream: 

• FIFO: 7 faults

• When referencing D, replacing A is bad choice, since we’ll need A again right away

C

B
A

D

C
B

A

BCBDADBACBA

3
2
1

Ref
Page



Example: MIN

• MIN: 5 faults 
• Where will D be brought in? Look for page not referenced farthest in future

• What will LRU do?
• Same decisions as MIN here but won’t always be true!

C

DC
B

A

BCBDADBACBA

3
2
1

Ref
Page



• Every reference leads to page fault!

When Will LRU Perform Badly?

D
C

B

A
D

C

B
A

D

C
B

A

CBADCBADCBA D

3
2
1

Ref
Page



When will LRU Perform Badly? (cont.)

• MIN Does much better

B
C

DC
B

A

BCDCBA

3
2
1

Ref
Page AD C DBA



Memory Size and Page Fault Rate

• One desirable property: When you add memory the miss rate drops
• Does this always happen?
• Seems like it should, right?

• No: Bélády’s anomaly 
• Certain replacement policies don’t have this obvious property!



Bélády's Anomaly

• After adding memory:
• With FIFO, contents can be completely different
• With LRU or MIN, contents of memory with X pages are a subset of contents with X+1 Page

D
C

E

B
A

D

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page:

CD4

E
D

B
A

E

C
B

A

DCBAEBADCBA E

3
2
1

Ref:
Page:



LRU Implementation

• How to implement LRU? Use a list!

• On each use, remove page from list and place at head, LRU page is at tail

• Problems with this scheme for paging?
• Need to know when each page is used to change its position in list
• Add extra overhead to each memory access

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)



Clock Algorithm: LRU Approximation

• Arrange physical pages in circle with single clock hand

• Page-table walk sets accessed bit of PTE on TLB miss
• No change on further accesses resolved in TLB!

(recall: TLB entries usually don’t have accessed bit)

• On page fault, advance clock hand and then check access bit
• If 1, clear it, invalidate TLB entry, advance clock hand, and repeat
• If 0, pick candidate for replacement and terminate

• Clock algorithm finds an old page, not the oldest page

• Will this algorithm always find replacement page, or does it loop forever?
• If all use accessed bits are set, clock hand will eventually loop around Þ FIFO

Page Frames
0- use:0

1- use:1

2- use:0

3- use:0

4- use:0

5- use:1

6- use:1

7- use:18- use:0



Clock Algorithm: Discussion

• What if hand is moving slowly? Is it a good sign or a bad sign?
• A good sign! Not many page faults and/or find page quickly

• What if hand is moving quickly?
• Not a good sign! Lots of page faults and/or lots of reference bits set

• One way to view clock algorithm
• Crude partitioning of pages into two groups: young and old
• Why not partition into more than 2 groups?



Nth-chance Algorithm: 
Modified Clock Algorithm

• Give each page N chances
• OS keeps counter per page to track number

of times it qualifies for replacement
• On page fault, advance clock hand and 

check access bit
• 1 ® clear it, invalidate TLB entry, clear counter, 

advance clock hand, and repeat
• 0 ® increment counter; if counter is N, 

pick as replacement candidate

• How do we pick N?
• Large N: better approximation to LRU, more overhead to find replacement candidate
• Small N: more efficient, less accurate

• What about dirty pages?
• It takes extra overhead to replace dirty page, let dirty pages survive one extra sweep
• If counter is N and dirty bit is set, decrement counter and write back to disk



Clock Algorithms: Discussion

• Can run synchronously with page-fault handler
• When page-fault handler, run clock algorithm to find next page to evict

• Can run asynchronously with page-fault handler
• Maintain pool of candidate pages
• On page fault, evict one page from pool
• Run clock algorithm when size of pool decreases beyond fixed threshold
• Write dirty pages back to disk when they are added to pool
• Remove page from pool if it is accessed before eviction



Allocation of Physical Pages

• How do we allocate memory among different processes?
• Does every process get same fraction of memory? 
• Should we completely swap some processes out of memory?

• Each process needs minimum number of pages
• All processes loaded into memory should make progress

• Possible replacement scopes
• Global replacement – to make space for one process’s page, 

replacement is selected from all processes’ pages
• Local replacement – to make space for one process’s page, 

replacement is selected from process’ set of allocated pages



Fixed-priority Allocation

• Equal allocation (fixed scheme)
• Every process gets same amount of memory
• Example: 100 physical pages, 5 processes ® Each. process gets 20 pages

• Proportional allocation (fixed scheme)
• Allocate according to size of process
• Computation proceeds as follows:

• si = size of process pi and S = sum of si’s for all pi’s
• m = total number of physical pages
• ai = allocation for pi = (si x m) / S

• Priority allocation
• Proportional scheme using priorities rather than size
• Possible behavior : If process pi generates page fault, select for replacement page from 

process with lower priority number

• Perhaps we should use an adaptive scheme instead?
• What if some application just needs more memory?



Page-fault Rate: Capacity Misses

• Can we reduce capacity misses by dynamically changing # of pages per application?

• Establish “acceptable” page-fault rate
• If actual rate too low, process loses page
• If actual rate too high, process gains page

• Question: what if we just don’t have enough memory?



Thrashing

• If process does not have “enough” pages, page-fault rate is very high which leads to
• Low CPU utilization
• OS spends most of its time swapping pages to disk

• Thrashing º process is busy swapping pages in and out disk

• Questions:
• How do we detect thrashing?
• What is best response to thrashing?



Locality In Memory References

• Working set: set of pages 
referenced in sampling window 

• Not enough memory for working 
set causes thrashing

• At any sampling window, hit rate 
is impacted by number of working 
sets that fit into memory

H
it 

Ra
te

Memory Allocation

New working
set fits

0

1



Working-set Model

• D º sampling window º fixed number of page references 
• Example:  10,000 instructions

• WSi (working set of pi) = total set of pages referenced in most recent D (varies in time)
• if D too small will not encompass entire locality
• if D too large will encompass several localities
• if D = ¥ Þ will encompass entire program

• D = S|WSi| º total demand frames 

• if D > m ÞThrashing
• Policy: if D > m, then suspend/swap out processes
• This can improve overall system behavior by a lot!



Page-fault Rate: Compulsory Misses

• Recall that compulsory misses are misses that occur first time that page is seen
• Pages that are touched for the first time
• Pages that are touched after process is swapped out/swapped back in

• Clustering
• On page-fault, bring in multiple pages “around” the faulting page
• Since efficiency of disk reads increases with sequential reads, makes sense to read 

several sequential pages

• Working set tracking
• Use algorithm to track working set of applications
• When swapping process back in, swap in working set



Core-map: Reverse Page Mapping 

• Physical page frames often shared by many different address spaces/page tables
• All children forked from given process
• Shared memory pages between processes

• Whatever reverse mapping mechanism that is in place must be very fast
• Must hunt down all page tables pointing at given page frame when freeing a page
• Must hunt down all PTEs when seeing if pages “active”

• Implementation options:
• For every page descriptor, keep linked list of page table entries that point to it

• Management nightmare – expensive
• Linux 2.6: object-based reverse mapping

• Link together memory region descriptors instead (much coarser granularity)



Summary

• Replacement policies
• FIFO: Place pages on queue, replace page at end
• MIN: Replace page that will be used farthest in future
• LRU: Replace page used farthest in past 

• Clock Algorithm: Approximation to LRU
• Arrange all pages in circular list
• Sweep through them, marking as not “in use”
• If page not “in use” for one pass, then can replace

• Nth-chance clock algorithm: Another approximate LRU
• Give pages multiple passes of clock hand before replacing

• Thrashing: process is busy swapping pages in and out
• Process will thrash if working set doesn’t fit in memory
• Need to swap out a process



Questions?

globaldigitalcitizen.org



Acknowledgment

• Slides by courtesy of Anderson, Culler, Stoica, 
Silberschatz, Joseph, and Canny


