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Outline

• Demand paging
• Replacement policies

• FIFO, MIN, LRU

• Clock algorithm
• Nth-chance algorithm



Demand Paging

• Modern programs require a lot of physical memory
• Memory per system is growing faster than 25%-30% per year

• But they don’t use all their memory most of the time
• 90-10 rule: programs spend 90% of their time in 10% of their code
• Wasteful to require all of user’s code to be in memory

• Solution: demand paging (also known as paging)
• Use main memory as cache for disk
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Demand Paging is Just Caching …

• What is block size?
• One page

• What is organization of cache structure?
• Fully associative

• How do we find pages in cache?
• First check TLB, then page-table traversal

• What is page replacement policy? 
• This requires more explanation… (coming next!)

• What happens on misses?
• Go to lower level (i.e., disk) to resolve miss

• What happens on writes?
• Write-back



Recall: x86 64-bit PTE

• V: Valid
• W: Read/write
• O: Owner (user/kernel)
• WT: Write-through (more on this soon)
• CD: Cache-disabled (page cannot be cached)
• A: Accessed: page has been accessed recently
• D: Dirty bit (page has been modified recently)
• L: Large page
• G: Global
• CP: Copy-on-write
• P: Prototype PTE
• U: Reserved
• SW: Software (working set index)
• NX: No-execute
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• PTE helps us implement demand paging
• Valid Þ page in memory, PTE points to physical page
• Invalid Þ page not in memory; use info in PTE to find it on disk when necessary

• What happens on references to page with invalid PTE?
• Page-fault exception Þ trap to OS

• What does OS do on page fault?
• Allocate physical page to referenced virtual page
• Load new page into memory from disk and make PTE valid

• What if there are no free physical pages?
• Evict one and write back its content to disk if it has been modified (i.e., dirty bit is set)
• Invalidate PTEs and TLB entries pointing to evicted physical page

• While pulling pages off disk for one process, run another one from ready queue
• Suspended process sits on disk’s waiting queue

Demand Paging Overview



Paging Big Picture!
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Example: Loading Executable

• Each executable file lives on disk in file system
• Contains contents of code & data segments, relocation entries and symbols

• OS loads executable file into memory, initializes registers (and initial stack pointer)

• Program sets up stack and heap upon initialization (e.g., crt0() in C)
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Example: Provide Backing Store

• All used virtual pages are backed by page blocks on disk (called backing store or swap file)

• User page tables map entire virtual address space
• OS must record where to find non-resident virtual pages on disk
• Some OSs utilize spare space in PTE for paged blocks
• Portion of page tables that HW needs to access must be also resident in memory
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Example: On Page Fault …
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Example: On Page Fault … Schedule 
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Example: On Page Fault … Update 
PTE
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Example: Resume from Faulting 
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Demand Paging Cost Model

• Effective access time (EAT) = Hit time + Miss ratio x Miss time

• Example:
• Memory access time = 200ns, avg page-fault service time = 8ms, and miss ratio = p
• EAT = 200ns + p x 8ms = 200ns + p x 8,000,000ns

• If one out of 1,000 accesses causes page fault, then EAT = 8.2μs
• 40x slowdown!

• What if we want slowdown of less than 10%?
• 200ns x 1.1 > EAT Þ p < 2.5 x 10-6

• This is approximately single page fault in every 400,000 accesses!



What Factors Lead to Misses?

• Compulsory misses
• Pages that have never been paged into memory before
• How might we remove these misses?

• Prefetching: loading them into memory before needed
• Need to predict future somehow!

• Capacity misses
• Not enough memory; must somehow increase available memory size
• Can we do this?

• One option is increasing amount of DRAM (not quick fix!)
• Another option is adjusting percentage of memory allocated to process if multiple processes are in memory

• Conflict misses
• Technically, conflict misses don’t exist in virtual memory, since it is “fully-associative” cache

• Policy misses
• Caused when pages were in memory, but kicked out prematurely because of replacement policy
• How to fix this? 

• Better replacement policy



Page Replacement Policies

• Random
• Pick random page for every replacement
• + Simple hardware (typical solution for TLB’s)
• – Very unpredictable (makes it hard to provide any real-time guarantees)

• First-in-first-out (FIFO)
• Throw out oldest page
• + Fair (let every page live in memory for same amount of time)
• – Not optimal (could throw out heavily used pages instead of infrequently used)

• Minimum (MIN) 
• Replace page that won’t be used for the longest time in future
• + Optimal  (perfect benchmark)
• – Impractical (how can we really know future?)

• Least-recently-used (LRU):
• Replace page that hasn’t been used for the longest time (if it hasn’t been used for a while, it’s 

unlikely to be used in near future)
• + Seems like LRU should be good approximation to MIN
• – High implement overhead (need to track all references to all pages)



Example: FIFO

• Suppose we have 3 p-pages , 4 v-pages, and following reference stream: 

• FIFO: 7 faults

• When referencing D, replacing A is bad choice, since we’ll need A again right away
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Example: MIN

• MIN: 5 faults 
• Where will D be brought in? Look for page not referenced farthest in future

• What will LRU do?
• Same decisions as MIN here but won’t always be true!
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• Every reference leads to page fault!

When Will LRU Perform Badly?
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When will LRU Perform Badly? (cont.)

• MIN Does much better
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Memory Size and Page Fault Rate

• One desirable property: When you add memory the miss rate drops
• Does this always happen?
• Seems like it should, right?

• No: Bélády’s anomaly 
• Certain replacement policies don’t have this obvious property!



Bélády's Anomaly

• After adding memory:
• With FIFO, contents can be completely different
• With LRU or MIN, contents of memory with X pages are a subset of contents with X+1 Page
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LRU Implementation

• How to implement LRU? Use a list!

• On each use, remove page from list and place at head, LRU page is at tail

• Problems with this scheme for paging?
• Need to know when each page is used to change its position in list
• Add extra overhead to each memory access
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Clock Algorithm: LRU Approximation

• Arrange physical pages in circle with single clock hand

• Page-table walk sets accessed bit of PTE on TLB miss
• No change on further accesses resolved in TLB!

(recall: TLB entries usually don’t have accessed bit)

• On page fault, advance clock hand and then check access bit
• If 1, clear it, invalidate TLB entry, advance clock hand, and repeat
• If 0, pick candidate for replacement and terminate

• Clock algorithm finds an old page, not the oldest page

• Will this algorithm always find replacement page, or does it loop forever?
• If all use accessed bits are set, clock hand will eventually loop around Þ FIFO

Page Frames
0- use:0

1- use:1

2- use:0

3- use:0

4- use:0

5- use:1

6- use:1

7- use:18- use:0



Clock Algorithm: Discussion

• What if hand is moving slowly? Is it a good sign or a bad sign?
• A good sign! Not many page faults and/or find page quickly

• What if hand is moving quickly?
• Not a good sign! Lots of page faults and/or lots of reference bits set

• One way to view clock algorithm
• Crude partitioning of pages into two groups: young and old
• Why not partition into more than 2 groups?



Nth-chance Algorithm: 
Modified Clock Algorithm

• Give each page N chances
• OS keeps counter per page to track number

of times it qualifies for replacement
• On page fault, advance clock hand and 

check access bit
• 1 ® clear it, invalidate TLB entry, clear counter, 

advance clock hand, and repeat
• 0 ® increment counter; if counter is N, 

pick as replacement candidate

• How do we pick N?
• Large N: better approximation to LRU, more overhead to find replacement candidate
• Small N: more efficient, less accurate

• What about dirty pages?
• It takes extra overhead to replace dirty page, let dirty pages survive one extra sweep
• If counter is N and dirty bit is set, decrement counter and write back to disk



Clock Algorithms: Discussion

• Can run synchronously with page-fault handler
• When page-fault handler, run clock algorithm to find next page to evict

• Can run asynchronously with page-fault handler
• Maintain pool of candidate pages
• On page fault, evict one page from pool
• Run clock algorithm when size of pool decreases beyond fixed threshold
• Write dirty pages back to disk when they are added to pool
• Remove page from pool if it is accessed before eviction



Allocation of Physical Pages

• How do we allocate memory among different processes?
• Does every process get same fraction of memory? 
• Should we completely swap some processes out of memory?

• Each process needs minimum number of pages
• All processes loaded into memory should make progress

• Possible replacement scopes
• Global replacement – to make space for one process’s page, 

replacement is selected from all processes’ pages
• Local replacement – to make space for one process’s page, 

replacement is selected from process’ set of allocated pages



Fixed-priority Allocation

• Equal allocation (fixed scheme)
• Every process gets same amount of memory
• Example: 100 physical pages, 5 processes ® Each. process gets 20 pages

• Proportional allocation (fixed scheme)
• Allocate according to size of process
• Computation proceeds as follows:

• si = size of process pi and S = sum of si’s for all pi’s
• m = total number of physical pages
• ai = allocation for pi = (si x m) / S

• Priority allocation
• Proportional scheme using priorities rather than size
• Possible behavior : If process pi generates page fault, select for replacement page from 

process with lower priority number

• Perhaps we should use an adaptive scheme instead?
• What if some application just needs more memory?



Page-fault Rate: Capacity Misses

• Can we reduce capacity misses by dynamically changing # of pages per application?

• Establish “acceptable” page-fault rate
• If actual rate too low, process loses page
• If actual rate too high, process gains page

• Question: what if we just don’t have enough memory?



Thrashing

• If process does not have “enough” pages, page-fault rate is very high which leads to
• Low CPU utilization
• OS spends most of its time swapping pages to disk

• Thrashing º process is busy swapping pages in and out disk

• Questions:
• How do we detect thrashing?
• What is best response to thrashing?



Locality In Memory References

• Working set: set of pages 
referenced in sampling window 

• Not enough memory for working 
set causes thrashing

• At any sampling window, hit rate 
is impacted by number of working 
sets that fit into memory
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Working-set Model

• D º sampling window º fixed number of page references 
• Example:  10,000 instructions

• WSi (working set of pi) = total set of pages referenced in most recent D (varies in time)
• if D too small will not encompass entire locality
• if D too large will encompass several localities
• if D = ¥ Þ will encompass entire program

• D = S|WSi| º total demand frames 

• if D > m ÞThrashing
• Policy: if D > m, then suspend/swap out processes
• This can improve overall system behavior by a lot!



Page-fault Rate: Compulsory Misses

• Recall that compulsory misses are misses that occur first time that page is seen
• Pages that are touched for the first time
• Pages that are touched after process is swapped out/swapped back in

• Clustering
• On page-fault, bring in multiple pages “around” the faulting page
• Since efficiency of disk reads increases with sequential reads, makes sense to read 

several sequential pages

• Working set tracking
• Use algorithm to track working set of applications
• When swapping process back in, swap in working set



Core-map: Reverse Page Mapping 

• Physical page frames often shared by many different address spaces/page tables
• All children forked from given process
• Shared memory pages between processes

• Whatever reverse mapping mechanism that is in place must be very fast
• Must hunt down all page tables pointing at given page frame when freeing a page
• Must hunt down all PTEs when seeing if pages “active”

• Implementation options:
• For every page descriptor, keep linked list of page table entries that point to it

• Management nightmare – expensive
• Linux 2.6: object-based reverse mapping

• Link together memory region descriptors instead (much coarser granularity)



Summary

• Replacement policies
• FIFO: Place pages on queue, replace page at end
• MIN: Replace page that will be used farthest in future
• LRU: Replace page used farthest in past 

• Clock Algorithm: Approximation to LRU
• Arrange all pages in circular list
• Sweep through them, marking as not “in use”
• If page not “in use” for one pass, then can replace

• Nth-chance clock algorithm: Another approximate LRU
• Give pages multiple passes of clock hand before replacing

• Thrashing: process is busy swapping pages in and out
• Process will thrash if working set doesn’t fit in memory
• Need to swap out a process



Questions?

globaldigitalcitizen.org
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