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Outline

• I/O subsystem
• I/O performance

• Some queueing theory

• Storage devices
• Magnetic storage
• Flash memory



What’s Next?

• So far in this course
• We have learned how to manage CPU and memory

• What about I/O?
• Without I/O, computers are useless (disembodied brains?)
• But … there is incredible variety of I/O devices

• Accelerator (e.g., GPU, TPU), storage (e.g., SSD, HDD), transmission (e.g., NIC, 
wireless adaptor), human-interface (e.g., keyboard, mouse)

• How can we standardize interfaces to these devices?
• Devices are unreliable: media failures and transmission errors

• How can we make them reliable?
• Devices are unpredictable and/or slow

• How can we manage them if we don’t know 
what they will do or how they will perform?



Example: 
Wide Range of I/O Transfer Rates

• Transfer rates vary over 7 orders of magnitude!
• System better be able to handle this wide range
• Better not have high overhead/byte for fast devices!
• Better not waste time waiting for slow devices



Goal of I/O Subsystem

• Provide uniform interfaces, despite wide range of different devices
• This code works on many different devices:

FILE fd = fopen("/dev/something", "rw");

for (int i = 0; i < 10; i++) {
fprintf(fd, "Count %d\n", i);

}

close(fd);

• Why? Because device drivers implement standard interface

• We will get a flavor for what is involved in controlling devices in this lecture
• We can only scratch the surface!



I/O Devices: Operational Parameters

• Data granularity: byte vs. block
• Some devices provide single byte at a time (e.g., keyboard)
• Others provide whole blocks (e.g., disks, networks, etc.)

• Access pattern: sequential vs. random
• Some devices must be accessed sequentially (e.g., tape)
• Others can be accessed “randomly” (e.g., disk, cd, etc.)

• Fixed overhead to start transfers

• Notification mechanisms: polling vs. interrupt
• Some devices require continual monitoring
• Others generate interrupts when they need service



I/O Devices: Data Access

• Character/byte devices: e.g., keyboards, mice, serial ports, some USB devices
• Access single characters at a time
• Commands include get(), put()
• Libraries layered to allow line editing

• Block devices: e.g., disk drives, tape drives, DVD-ROM
• Access blocks of data
• Commands include open(), read(), write(), seek()

• Network devices: e.g., ethernet, wireless, Bluetooth
• Different enough from block/character to have its own interface
• Unix and Windows include socket interface



I/O Devices: Timing

• Blocking interface: “wait”
• When request data (e.g., read() system call), put to sleep until data is ready
• When write data (e.g., write() system call), put to sleep until device is ready

• Non-blocking interface:“don’t wait”
• Return quickly from read or write with count of bytes successfully transferred
• Read may return nothing, write may write nothing

• Asynchronous interface: “tell me later”
• When request data, take pointer to user’s buffer, return immediately; later kernel fills 

buffer and notifies user
• When send data, take pointer to user’s buffer, return immediately; later kernel takes 

data and notifies user 



I/O Devices: Notification Mechanisms

• Polling: CPU periodically checks device-specific status register
• E.g., I/O device puts completion information in status register
• + CPU is not frequently interrupted by unpredictable events
• – CPU time is wasted if it polls for infrequent or unpredictable I/O events

• Interrupt-driven: device generates interrupt whenever it needs service
• + CPU time could be spent on other things rather than polling for I/O
• – Interrupt handling could introduce unpredictability

• Hybrid: combination of polling and interrupt-driven
• E.g., high-bandwidth network adapter

• Interrupt for first incoming packet
• Poll for following packets until hardware queues are empty



Typical North/Southbridge Layout

wikipedia.org and pngall.com and cdw.com



PCI Evolution

• PCI started life out as parallel bus

• But parallel bus has many limitations
• Multiplexing address/data for many requests
• Slowest devices must be able to tell what’s happening (e.g., for arbitration)

• Bus speed is set to that of the slowest device

wikimedia.org



PCI Express (PCIe)

• PCIe turned conventional PCI bus from parallel bus architecture into serial, packet-
switched, point-to-point architecture
• Each device is connected to PCIe switch with dedicated, bi-directional link
• PCIe bus is very similar to packet-switched networks

• Devices can use as many lanes as they need to achieve desired bandwidth
• Slow devices don’t have to share with fast ones

• Device abstraction in Linux seamlessly migrated from PCI to PCIe
• Physical interconnect changed completely, but old API still worked
• PCIe added new features but kept the same standardized API
• Drivers written for older PCI devices still worked on new PCIe buses

• Without being able to use new features of course



I/O Device Controller

• Device controller (may) contains set of registers and memory buffers
• CPU communicate with devices by reading from and writing to registers and buffers
• PCI devices have configuration space registers used to perform auto configuration

• E.g., during device enumeration, base address register (BAR) is used by PCI device to specify 
how much memory it needs

wikipedia.org and pcworld.com
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Accessing I/O Devices

• Port-mapped: I/O devices have separate address space from physical memory
• Port-mapped I/O is also called isolated I/O

• Entire bus could be dedicated to I/O devices
• CPU performs I/O operations using special I/O instructions

• Example: in/out instructions used in some Intel microprocessors (e.g., out 0x21,al)

• Memory-mapped: I/O devices use the same address space as physical memory
• I/O devices listen to the same address bus that is connected to memory
• Addresses reserved for I/O should not be available to physical memory
• I/O devices are accessed like they are part of memory using 

• Example: load/store instructions 



Example: 
Memory-mapped Display Controller

• Map registers and/or buffers into physical address space
• Addresses are set by HW jumpers, BIOS, or OS at boot time

• Change image on screen by writing to display memory 
• Also called the “frame buffer”
• E.g., address range of 0x8000F000-0x8000FFFF

• Write graphics description to command-queue area 
• E.g., write set of triangles that describe some scene

to address range of 0x80010000-0x8001FFFF

• Send command to graphics HW by writing to command register
• E.g., write to address 0x0007F004

to render triangles in above example

• Protect mapped addresses using address translation
• Set them read only or write only, and typically non-cacheable
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Recall: I/O Data Transfer

• Programmed I/O
• Each byte transferred via processor in/out or load/store
• + Simple hardware, easy to program
• − Consumes processor cycles proportional to data size

• Direct memory access (DMA)
• Give controller access to memory bus
• Ask it to transfer data blocks to/from memory directly



DMA for PCIe Devices

• PCIe enables point-to-point communication between all endpoints

• Each device contains its own, proprietary DMA engine

• Unlike ISA, there is no central DMA controller

• Device driver programs DMA engine and signals it to begin DMA transfer

• DMA engine sends packets directly to memory controller

• Once transfer is over, DMA engine raises interrupts (using same PCIe bus)



I/O Devices: Memory Protection

• Typically, I/O devices can only read/write from contiguous range of memory addresses
• E.g., after device enumeration, BAR holds base address of mapped memory block

• In old computers, I/O devices could directly access physical memory
• + Fast memory access: devices can transfer data at maximum speed possible
• – Reduced flexibility: OS must reserve contiguous physical memory regions for devices
• – No memory protection: malicious devices can compromise system (e.g., DMA attack)

• New architectures provide address translation for I/O devices
• I/O memory management unit (IOMMU) maps virtual addresses to physical address for I/O devices
• E.g., AMD Vi and Intel VT-d
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Memory Translation for PCIe Devices

• Problem 1: address translation services (ATS) allows PCIe devices to bypass IOMMU
• PCIe devices can implement address translation cache (ATC) similar to TLB
• Using ATS protocol, any device can claim it is using addresses that have already been translated 
• For trusted devices, this is useful performance improvement
• For untrusted devices, this introduces security threat
• ATS protocol could allow malicious device to write to places it should not have access to

• Problem 2: PCIe packets do not reach IOMMU when devices communicate with each other
• PCIe allows peer-to-peer communication between devices
• Malicious devices can compromise other devices by reading from or writing to their registers/buffers

• Solution: access control services (ACS) disables ATS and prevents peer-to-peer transactions
• ACS acts as gate-keeper, forcing all packets to go up to root complex and pass through IOMMU
• Without ACS, PCIe endpoints can accidentally or intentionally write to invalid or illegal area on peer 

endpoints and physical memory



I/O Performance Concepts

• Latency: time to serve I/O request (response time)
• From when it is placed in queue until its data is completely transferred

• Throughput: rate of serving I/O requests
• To measure highest possible throughput, device should never become idle 

(queue should not become empty)

• Overhead: time to initiate data transfer for I/O request
• From when it is placed in queue until data transfer starts
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I/O Performance Concepts (cont.)

• Peak bandwidth: maximum rate of data transfer
• Depends on bus bandwidth

• E.g., PCIe v5.0: 3.93GBps (per lane)
• Also depends on device bandwidth

• E.g., rotational speed of disk
• E.g., write/read rate of NAND flash

• Whichever is the bottleneck …

• Effective bandwidth: rate of data transfer for I/O request
• Latency degrades bandwidth
• For most I/O requests, latency is roughly linear in size of transferred data
• Latency(n) = overhead + n / peak bandwidth
• Effective bandwidth(n) = n / latency(n)



How Does Overhead Affect Effective 
Bandwidth?

• Latency(n) = O + n/P  (O for overhead and P for peak bandwidth)

• Effective bandwidth = n/(O + n/P) = P/(P x O/n + 1)
• E.g., effective bandwidth is half of peak bandwidth when n = O x P

• Suppose that peak bandwidth is 1Gbps 
• If overhead is 1ms, then n = 125,000 bytes
• If overhead is 10ms, then n = 1,250,000 bytes
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Contributing Factors to Overhead

• Overhead = wait time in queue + controller and device service time

• Queuing behavior can lead to big increases of latency as utilization increases
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A Simple Deterministic World

• One arrival every 𝑇! time units
• Fixed service time of 𝑇" time units
• Service rate: 𝜇 = 1/𝑇"

• Arrival rate: 𝜆 = 1/𝑇!

• Utilization: 𝜌 = min 1, 𝜆/𝜇

• Throughput: 𝜏 = min 𝜇, 𝜆

Queue ServerArrivals Departures



A Simple Deterministic World (cont.)

• Number of arrivals at time t: 𝐴! = 𝑡 × 𝜆

• Number of departures at time t: 𝐷! = 𝑡 ×min 𝜆, 𝜇

• Number of requests in queue at time t: 𝐿! = 𝐴! – 𝐷!

• Wait time in queue for request arriving at time t: 𝑊! = 𝐿!/𝜇

• 𝐿! = 𝑊! = 0 if 𝜆 ≤ 𝜇

• 𝐿! = 𝑡 × 𝜆 – 𝜇 and 𝑊! = 𝑡 × 𝜌 – 1 if 𝜆 > 𝜇

𝑡 × 𝜆

𝑡 × 𝜇
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A Bursty World

• Requests arrive in burst, must queue up till served

• Same average arrival time, but requests experience large queue delays

• Even though average utilization is low
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How Do We Model Burstiness?

• One option is to use probability distributions to model inter-arrival times

• Popular choice is exponential distribution
• Cumulative distribution function (CDF): Pr 𝑇" ≤ 𝑥 = 1 – 𝑒#$% , for 𝑥 ≥ 0 & 𝐸[𝑇"] = 1/𝜆

• Memoryless: likelihood of new arrival is independent of time passed since the last one
• Pr 𝑇! > 𝑡 + 𝑠 | 𝑇! > 𝑠 = Pr 𝑇! > 𝑡

• Past tells us nothing about future
• Many complex systems (or aggregates) are well described as memoryless 

wikipedia.org
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Background: Properties of Random 
Variables

• Consider random variable 𝑋 taking values in 𝑥1, 𝑥2
• Mean (average): 𝑚, = 𝐸 𝑋 = ∑-&

-' Pr 𝑥 𝑥

• Variance (standard deviation): 𝜎,. = ∑-&
-' Pr 𝑥 𝑥 − 𝑚,

. = 𝐸 𝑋. − 𝐸 𝑋 .

• Squared coefficient of variance (SCV): 𝐶, = 𝜎,./𝑚,
.

• No variance or deterministic Þ 𝐶 = 0

• Memoryless or exponential Þ 𝐶 = 1



Little’s Law [John Little, 1961]

• In any stationary system (i.e., system parameters do not change over time)

𝐿 = 𝜆 ×𝑊

• Average number of items in system is equal to average arrival rate multiplied 
by average time each item spends in system

shutterstock.com



Little’s Law Applied to Queues

• Average number of request in system is equal to average number of request 
waiting in queue plus average number of requests in server (i.e., utilization)
• 𝐿 = 𝐿/ + 𝜌

• Average time of request in system is equal to average time of request in queue 
plus average service time
• 𝑊 = 𝑊/ + 1/𝜇

• Little’s law implies
• 𝐿/ = 𝜆 ×𝑊/

Queue ServerArrivals Departures



A Little Queuing Theory

• Assumptions
• System is stable and stationary and there is no limit to size of queue
• Time between successive arrivals is random and memoryless

• Parameters that describe our system
• l: arrival rate (1/𝐸 𝑇𝐴 )
• 𝜇: service rate (1/𝐸 𝑇𝑆 )
• 𝐶0: SCV of service time
• 𝜌: utilization (l/𝜇)

• Parameters we wish to compute
• 𝑊/: average time spent waiting in queue
• 𝐿/: average length of queue = l ×𝑊( (by Little’s law)

• Important results for 1 server
• Memoryless service time distribution (M/M/1 queue): 𝑊( = 𝜌/𝜇 1 − 𝜌

• General service time distribution (M/G/1 queue): 𝑊( = 𝜌 𝐶) + 1 /2𝜇 1 − 𝜌
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Why Unbounded Response Time?

• Assume deterministic arrival and service times
• It is possible to sustain 𝜌 = 1 with bounded response time!

• Assume stochastic arrival process (and service time)
• No longer possible to achieve 𝜌 = 1

Time

Service time = inter-arrival time

Time

This wasted time can never be reclaimed! 
So we cannot achieve 𝜌 = 1!



How Do Real-world Systems Avoid 
Unbounded Queueing Delays?

• Open system

• Closed system

• Clients adjust request rate based on response time of previous requests
• As system saturates delay increases, request rate is limited by service rate
• Many protocols are designed to have self-limited behavior

(e.g., TCP congestion control)
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Example: M/M/1 Queue and Disk

• Usage statistics (M/M/1 queue)
• User sends 10 requests per second for 8KB data block from disk
• Inter-arrival times and service times are exponentially distributed
• Average service time per request is 20ms

• Questions 
• How utilized is the disk (𝜌 = l/𝜇)

• 10/50 = 0.2
• What is the average time spent in the queue (𝑊/)?

• 0.2 / (50 x 0.8) = 5ms
• What is the average number of requests in the queue (𝐿/)?

• 5ms x 10req/s = 0.05
• What is the average overhead for each disk request (𝑊/ + 1/𝜇)?

• 5ms + 20ms = 25ms



Where are we?

• I/O subsystem
• I/O performance

• Some queueing theory

• Storage devices
• Magnetic storage
• Flash memory



Storage Devices

• Magnetic disks
• Storage that rarely becomes corrupted
• Large capacity at low cost
• Block level random access (except for Shingled Magnetic Recording (SMR))
• Slow performance for random access
• Better performance for sequential access

• Flash memory
• Storage that rarely becomes corrupted
• Capacity at intermediate cost (5-20x disk)
• Block level random access
• Good performance for reads; worse for random writes
• Erasure requirement in large blocks
• Wear patterns issue



The Amazing Magnetic Disk

• Unit of transfer : sector
• Ring of sectors form track
• Stack of tracks form cylinder
• Heads position on cylinders

• Disk tracks ~ 1µm (micron) wide
• Wavelength of light is ~ 0.5µm
• Resolution of human eye: 50µm
• 100K tracks on a typical 2.5” disk

• Separated by unused guard regions
• Reduces likelihood neighboring 

tracks are corrupted during writes 
(still small non-zero chance)
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The Amazing Magnetic Disk (cont.)

• Track length varies across disk
• Outside: more sectors per track, 

higher bandwidth
• Disk is organized into regions of 

tracks with same # of sectors/track
• Only outer half of radius is used

• Most of disk area in outer regions of disk

• Disks are so big that some companies 
(like Google) reportedly only use 
part of disk for active data
• Rest is archival data

www.lorextechnology.com



Original
position

Desired
data

Magnetic Disks

• Recall: cylinder is all tracks under head at any given point on all surface

• Read/write data includes three stages
• Seek time: position r/w head over proper track
• Rotational latency: wait for desired sector to rotate under r/w head
• Transfer time: transfer block of bits (sector) under r/w head
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Disk Performance Example

• Assumptions
• Ignoring queuing and controller times for now
• Average seek time of 5ms
• 7200RPM Þ time for rotation: 60000 (ms/minute) / 7200 (rotation/minute) @ 8ms
• Transfer rate of 4 MiB/s, sector size of 1KiB Þ 210 B / 222 (B/s) = 2-12 s @ 0.24ms

• Read sector from random place on disk
• Seek (5ms) + rotational delay (4ms) + transfer (0.24ms)
• Approximately 10ms to fetch/put data: 100KiB/s

• Read sector from random place in same cylinder
• Rotational delay (4ms) + transfer (0.24ms)
• Approximately 5ms to fetch/put data: 200 KiB/s

• Read next sector on same track
• Transfer (0.24ms): 4 MiB/s

• Key to using disk effectively (especially for file systems) is to minimize seek & rotational delays



More Examples

• How long to complete 500 random disk reads (in FIFO order)?
• 500 x 9.24ms = 4.12s

• How long to complete 500 sequential disk reads (starting from random sector)?
• Seek (5ms) + rotational delay (4ms) + transfer (500 x 0.24ms) = 0.129s

• Might need an extra head or track switch
• Track buffer may allow some sectors to be read off disk out of order

• How large transferred data should be to achieve 80% of max disk transfer rate 
(zero track-to-track seek time)?
• Assume R rotations are needed, then solve for R
• Recall: effective bandwidth = data size/latency = peak bandwidth x transfer time/latency
• Transfer time / latency = 0.8

• Transfer time = R x rotation time = R x 8ms
• Latency = Seek (5ms) + transfer time (R x 8ms)

• Note that rotational delay is zero because entire track is transferred

• R = 2.5 ⇒ transferred data size = 2.5 x 8ms x 4 MB/s @ 8KiB



(Lots of) Intelligence in Controller

• Sectors contain sophisticated error correcting codes
• Disk head magnet has field wider than track
• Hide corruptions due to neighboring track writes

• Sector sparing
• Remap bad sectors transparently to spare 

sectors on the same surface

• Slip sparing
• Remap all sectors (when there is a bad sector) 

to preserve sequential behavior

• Track skewing
• Offset sector numbers to allow for 

disk head movement to achieve sequential operations

• …



Example of Current HDDs

• Seagate EXOS X14 (2018)
• 14 TB hard disk
• 8 platters, 16 heads
• 4.16 ms average seek time
• 4 KB physical sectors
• 7200 RPMs
• 6 Gbps SATA / 12Gbps SAS interface
• 261 MB/s MAX transfer rate
• Cache size: 256 MB 

• IBM Personal Computer/AT (1986)
• 30 MB hard disk
• 30-40 ms seek time
• 0.7-1 MB/s (est.)



Disk Scheduling

• FCFS: schedule requests in order they arrive
• + Fair among requests
• – Poor performance for sequence of requests 

that alternate between outer and inner tracks

• Shortest seek time first (SSTF): pick the request that is closest to head
• + Avoid frequent long seeks
• – May lead to starvation!

• SCAN: move disk arm in one direction, 
take the closest request in direction of travel, 
then reverse direction also called “elevator scheduling”)
• + No starvation
• + Low seek
• – Favoring middle tracks



Disk Scheduling (cont.)

• CSCAN: move disk arm in one direction, 
take the closest request in direction of travel, 
then start again from farthest request
• + Fairer than SCAN
• – Longer seeks on the way back

• R-CSCAN: CSCAN but consider that 
short track switch has rotational delay



Example: FCFS



Example: SCAN



Example: C-SCAN



Final Notes on Disk Performance

• When is disk performance highest?
• When there are big sequential reads, or
• When there is so much work to do that they can be piggy backed 

(reordering queues)

• OK to be inefficient when things are mostly idle

• Bursts are both a threat and an opportunity

• Other techniques:
• Reduce overhead through user level drivers
• Reduce the impact of I/O delays by doing other useful work in the meantime



Flash Memory

• 1995: replace rotating magnetic media with battery backed DRAM

• 2009: use NAND multi-level cell (e.g., 2 or 3-bit cell) flash memory
• No charge on FG ⇒ 1 and negative charge on FG ⇒ 0

• Data can be addressed, read, and modified in pages, typically between 4KiB and 16KiB
• But … data can only be erased at level of entire blocks (MiB in size)
• When block is erased all cells are logically set to 1

• No moving parts (no rotate/seek motors)
• Eliminates seek and rotational delay
• Very low power and lightweight
• Limited “write cycles”

Figures: www.androidcentral.com and flashdba.com



Flash Memory: Reads

• Reading data is similar to memory read
• No seek or rotational latency

• Transfer rate is limited by controller and bus
• E.g., transfer 4KiB page over SATA: 300-600 MiB/s ⇒ 4KiB / 400MiB/s ~ 10us

• Latency = queuing time + controller time + transfer time

• Highest bandwidth: sequential OR random reads
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Flash Memory: Writes

• Writing data is complex!

• Write and erase cycles require “high” voltage
• Damages memory cells, limits SSD lifespan
• Controller uses ECC, performs wear leveling

• Data can only be written into empty pages in each block

• Pages cannot be erased individually, erasing entire block takes time

wikipedia.org



Flash Memory Controller

• Flash devices include flash translation layer (FTL)
• Maps logical flash pages to physical pages on flash device
• Wear-levels by only writing each physical page a limited number of times
• Remaps pages that no longer work (sector sparing)

• When logical page is overwritten, TTL write new version to already-erased page
• Remaps logical page to the new physical page

• FTL maintains pool of empty blocks by coalescing used pages 
• Garbage collects blocks by copying live pages to new location, then erase
• More efficient if blocks stored at the same time are deleted at the same time 

(e.g., keep blocks of file together)

• How does flash device know which blocks are live?
• File system tells device when blocks are no longer in use (Trim command)



Example: Writes with GC

• Rewriting some data requires reading, updating, and writing to new locations

• If new location was previously used, it also needs to be erased

• Much larger portions of flash may be erased and rewritten than required by size of new data

wikipedia.org



Flash Memory: Write Amplification

• Flash memory must be erased before it can be rewritten

• Erasure happens in much coarser granularity then writes 

• Flash controllers end up moving (or rewriting) user data and metadata more than once

• This multiplying effect increases number of writes required 
• Shortens life cycle of SSD 
• Consumes bandwidth, which reduces random write performance

• Result is very workload dependent performance

• Latency = queuing time + controller time (find free block) + transfer time

• Highest bandwidth: sequential OR random writes (limited by empty pages)
wikipedia.org



Example of Current SSDs

• Flash controller could cache random writes and flush them to flash efficiently
• Write latency becomes latency of accessing the cache

• For random reads, however, controller can't do much
• Pre-fetching data helps sequential reads but could hurt performance of random reads



Is Full Kindle Heavier Than Empty 
One?

• Actually, “Yes”, but not by much

• Flash works by trapping electrons:
• So, erased state lower energy than written state

• Assuming that:
• Kindle has 4 GB flash
• ½ of all bits in full Kindle are in high-energy state
• High-energy state about 10-15 joules higher
• Then: Full Kindle is 1 attogram (10-18 gram) heavier (Using E = mc2)

• Of course, this is less than most sensitive scale can measure (10-9 grams)

• This difference is overwhelmed by battery discharge, weight from getting warm, …

According to John Kubiatowicz (New York Times, Oct 24, 2011)



SSD Summary

• Pros (vs. hard disk drives)
• Low latency, high throughput (eliminate seek/rotational delay)
• No moving parts (very light weight, low power, silent, very shock insensitive)
• Read at memory speeds (limited by controller and I/O bus)

• Cons (these are changing rapidly!)
• Expensive
• Asymmetric block write performance

• Controller garbage collection (GC) algorithms have major effect on performance
• Limited drive lifetime 

• 1-10K writes/page for MLC NAND
• Average failure rate is 6 years, life expectancy is 9–11 years



HDD vs. SSD



Summary

• I/O devices
• Different speeds, different access patterns, different access timing

• I/O controllers
• Hardware that controls actual device
• Processor accesses through I/O instructions, load/store to special physical memory

• I/O performance
• Latency = overhead + transfer
• Queueing theory help in analyzing overhead

• Disk scheduling
• FIFO, SSTF, SCAN, CSCAN, R-CSCAN

• HDD performance
• Latency = queuing time + controller + seek + rotation + transfer

• SDD performance
• Latency = queuing time + controller + transfer (erasure & wear)



Questions?

globaldigitalcitizen.org
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