Fall 2013

OOP TABLE OF CONTENTS

LIHORNE.COM

CS 246

OBJECT-ORIENTED SOFTWARE DEVELOPMENT

DR. MARK PROSSER e FALL 2013 e UNIVERSITY OF WATERLOO

Last Revi

sion: December 13, 2013

Table of Contents

1 Introduction 1

2 The Linux Shell 1
2.1 Linux File System 1
2.2 Wildcard Matching / Globbing 3
2.3 Variables 3
24 QUOLING e 3
2.5 Input/Output Redirection 4
2.6 Pipes 4
2.7 Command Substitution 5
2.8 Grep - pattern matching in text files 5
2.9 Permissions e 6
2.10 Shell Scripts 7
2.11 Testing o e 11

3 C++ 12
3.1 Introduction - Hello World 12
32 CH++Input & Output 13
3.3 Strings . .. oL 14
3.4 1/0 Manipulation 15
3.5 Working with files 16
3.6 Default Function Parameters 17
3.7 Overloading e 18
3.8 Declaration Before Use 18
3.9 Pointers 18
3.10 Arrays . .o 19
3.11 Constants 19
3.12 Dynamic Memory Allocation 20
3.13 Passing Parameters L L 20

LIHORNE.COM

Fall 2013 OOP TABLE OF CONTENTS
3.14 References 20
3.15 Operator Overloading e 21
3.16 The Stack and the Heap 23
3.17 The Preprocessor e 24
3.18 Seperate Compilation 25
319 Classes e 26
3.20 Arrays of Objects 33
3.21 Seperate Compilation for Classes 34
322 Consts Again L e 34
3.23 SE Topic - Design Patterns 35
3.24 SE Topic - System Modelling 40
3.25 Composition of Classes 40
3.26 Aggregation L 42
3.27 Inheritance L 42
3.28 Destructor Revisited e 47
3.29 Tools: The make Utility 47
3.30 Pure Virtual Methods and Abstract Classes 50
3.31 Inheritance and the Copy Constructor, operator= 50
3.32 Observer Pattern 53
3.33 Decorator Pattern e 55
3.34 Factory Method Pattern 57
3.35 Template Method Pattern 58
3.36 Tools: DGB (GNU Debugger: gdb) 59
3.37 Relationships Summary e 60
3.38 Templates 61

The Standard Template Library (STL) 61

[terators 62

Map . . e 62
3.39 The Visitor Pattern 62
3.40 Compilation Dependencies L 65
3.41 Coupling and Cohesion 68
342 Casting 68
3.43 Exceptions 70
3.44 Exceptions & Polymorphism 72
3.45 Some Standard Exception Classes 73
3.46 Exception Safety L 74

auto_ptr copy semantics L e 74
3.47 How Virtual Methods Work 75
3.48 Multiple Inheritance e 77
3.49 Return Value Optimization (RVO) 79

ii

Fall 2013 OOP 2 THE LINUX SHELL

Abstract

These notes are intended as a resource for myself; past, present, or future students of this course, and anyone interested
in the material. The goal is to provide an end-to-end resource that covers all material discussed in the course displayed
in an organized manner. If you spot any errors or would like to contribute, please contact me directly.

Brad Lushman: Any such notes have no official status in this course and we do not endorse their contents, nor will

we point out or correct any errors in them. Use at your own risk.

1 Introduction

This course uses Linux. Thus one of the following are necessary
e a bash shell
e a Linux install

Linux virtual machine

ssh into linux.student.cs.uwaterloo.ca

PuTTy, WinSCP, Cygwin, etc

This course is structured into understanding Linux shells (bash), using the C++ programming language, studying various
tools and some software engineering concepts.

2 The Linux Shell

The Linux shell is an interface to the operating system. It provides a way to get the operating system to accept
commands and carry out the necessary work, or to manage things for us. There are two kinds of interfaces; graphical
and command-line.

Remark 2.1. A graphical shell is common on Windows and Mac. Operations typically include things like double-clicking,
dragging, hovering, etc. In Linux, Gnome and KDE are examples. GUIs make simple tasks easy and intuitive. The
shortshide however are that tasks can become harder to carry out as complexity increases.

Remark 2.2. Command line interfaces accept commands at a prompt and are traditional for UNIX/Linux. Windows has
the "DOS" Command Prompt, and Mac is UNIX based. These interfaces have a steeper learning curve but are much
more powerful than graphical interfaces. A typical command line interface would look something like this:

[mycomputer /var/nsm/] $

In this course we use bash (short for "Bourne Again Shell"). To check what shell you're using, run

echo $0

2.1 Linux File System

The file system consists of files (e.g., programs, data) and directories. Directories can contain other directories as well
as files. Directories are arranged in hierarchical tree structure. The typical hierarchy is:

Fall 2013 OOP 2 THE LINUX SHELL

AN

home usr
bash shells me bin include
1s cs246 cs245

We can specify any file or directory by its path from the root. For example, /var/nsm/bin/.

Definition 2.1 (Current Directory). There is a notion of present working directory that, when in a bash shell, is the
current directory that will provide an environment for commands to run in. Usually, a new bash shell will open to the
home directory. The command pwd will return this directory. As well, each directory has a shortcut within itself, and is
symbollicaly represented by ".".

There are two kinds of paths.

Definition 2.2 (Relative Path). Relative path is a path that is referring to your current directory. For example, if pwd
return /home/ then any file | refer to or directory refers to what is in the /home/ folder.

[var]l $ pwd

/var

[var]l] $ cd mail/
[maill $ pwd
/var/mail

Definition 2.3 (Absolute Path). An absolute path starts with the root directory. For example /home/ will always refer to
exactly that directory, even if there is a home directory in some other directory.

Remark 2.3. The following special directories exist:
e . refers to the current directory. (relative)
e .. refers to the parent directory. (relative)
e ~ refers to the home directory. (absolute)
e ~userid refers to the home directory of userid. (absolute)

Change Directory To change the current directory, use the cd command. For example, cd /home/ takes you to the
/home/ directory.

List Files/Directories To list all files in the current directory, use the 1s command. For example, 1s /home/ will list all
files or directories in /home/. To show hidden files, pass the -a flag.

Create Directory Use mkdir dirname

Remove Directory Use rmdir dirname

Remove Directory AND Contents rm -r dirname

Fall 2013 OOP 2 THE LINUX SHELL

2.2 Wildcard Matching / Globbing

What if | want to see just the text files? (.txt extension). The * character symbolizes a "globbing" pattern, matching
any string at all to it. Thus,
1s *.txt

will match all . txt files and list them. The act of globbing by the command line is that the shell will substitude every file
matching the expression and replaces the single term with multiple terms of matching files. If there is no match, the
original glob considers the x to be a literal character. For example,

ls *.txt <= 1s abc.txt def.txt ghi.txt

This is a bash constant, and therefore works for every command.

2.3 Variables

Declaration of a variable is done like so: x=1 (no spaces!) and accessing variables in other contexts uses a dollar sign, so
echo $x will return 1. For example

$ dir=~/cs246

$ echo ${dir}
/home/rmprosse/cs246
$ 1s ${dir}

ad al a2 etc

Note that the ~ is expanded before the variable is assigned.

In bash there are several "global" variabels that are already set up for you. To list these variables, use the env command.
For example,

$ env

SHELL=/bin/bash

USER=1ihorne

PATH=/usr/local/Cellar/emacs/24.3/bin:/usr/local/bin:/bin:/usr/sbin:/sbin:/usr/bin:/usr/«
texbin

PWD=/Users/lihorne

LANG=en_CA.UTF -8

HOME=/Users/lihorne

LOGNAME=1ihorne

_=/usr/bin/env

The most important of these global variables is the PATH. The path is a colon (":") delimited list of directories that are
searched in order when a command is issued.

2.4 Quoting

Quotes are used to control how the shell interprets strings. Note that globbing does not occur inside quoted strings,
they are treated as literals. As well, single quotes protect everything except a single quote, and double quotes protect
everything except double quotes ("), back quotes (), and dollar signs ($). When inside double quotes, these characters
have to be escaped. Escaping is done using the backslash (\).

Example 2.1.

$ echo $PATH
/usr/local/bin:/bin:/usr/sbin:/sbin:/usr/bin:/usr/texbin

Fall 2013 OOP 2 THE LINUX SHELL

$ echo "$PATH"
/usr/local/bin:/bin:/usr/sbin:/sbin:/usr/bin:/usr/texbin
$ echo ’$PATH’

$PATH

What if | wanted to use the strijng "*.txt" including the quotes? Simply put it all inside single quotes, or double quotes
with escaping like this

$ echo ’"*.txt"’

n * . tXt n

$ x="\"*x_txt\""

$ echo ${x}
H*. tXt”

2.5 Input/Output Redirection

There is a command called cat that displays the contents of a file or returns input. So, cat hello.txt returns hello,
world. If there is no argument cat waits for input and returns that input after it had completed. Hit "C to stop the
process, and "D to stop the input. If however we wanted to redirect the output of cat then we can use a redirection
operator like so:

$ cat hello.txt
hello, world

$ cat > hello. txt
my name is liam
D

$ cat hello. txt
my name is liam

In general, command args > file will redirect the output from command args to file. This is called output redirection.
We can do both input and output redirection using redirection, for example cat < inputfile.txt > outputfile.txt
will take the contents of inputfile.txt and overwrite outputfile.txt with it.

Note that every process has 3 streams. They are

1. Standard Input - which is input into a program
2. Standard Output - that a program outputs

3. Standard Error - that a program outputs, it is a seperate output stream for error messages and is seperate from
regular output

By default, stdin is conected to the keyboard, stdout and stderr are connected to the screen. Input redirection connects
stdin to a file and output redirection connects stdout to a file. We can redirect stderr as well, for example program <
in.txt > out.txt 2> errlog.txt. The 2> will only output errors to the file. Note that redirection will create the file
if necessary and replace entire contents. Additionally, you can use >> to append output.

2.6 Pipes

Pipes let you connect the output of one program to the input of another (just like a pipe, wow). Connecting two
commands is done using a vertical bar ("|"). This sets the second program’s stdin to the first program’s stdout.

Example 2.2. How many words occur in the first 20 lines of myfile.txt? We can use this series of commands

Fall 2013 OOP 2 THE LINUX SHELL

$ head -20 myfile.txt | wc -w
42

This example illustrates using the output of head -20 myfile.txt which is the first 20 lines of a file, and using it as the
input for wc -w which counts the number of words in the input.

Example 2.3. Suppose words. txt, words2.txt, ... contains lists of words, one word per line. Print a duplicate-free list
of all the words in these files, wordsx. txt. We will consider two programs that are useful in this problem.

i. uniqg - removes adjacent duplicate lines
ii. sort - sorts lines
Therefore if the input is sorted, uniq removes all duplicates. Our solution is the command

cat wordsx.txt | sort | unig

2.7 Command Substitution

Can we use the output of a command as a parameter of another? The answer is yes, we simply put the command in
backquotes (or quasiquotes). For example, echo ‘date‘ will execute the date command and use it as input into echo.

Remark 2.4. Recall that double quotes do not protect back quotes, shell expands back quotes inside double quotes.
For example echo ‘date‘ " has the same meaning. Alternatively, we can use $() instead of ¢ ‘. For example, echo
$(date) has the same effect.

2.8 Grep - pattern matching in text files

We now study a new tool called grep, which stands for "Global Regular Expression Print". There is also an extended
version called egrep which is equivalent to grep -E, which interprets a pattern as an extended regular expression (i.e.
forces grep to behave as egrep). The general format is

grep pattern file, which prints lines in file which match pattern.

Example 2.4. Suppose we want to print all lines in our websites homepage, index.html that contain the pattern cs246.
We simply call grep ¢s246 index.html.

How many lines match?
grep cs246 index.html | wc -1 or grep -c cs246 index.html

We can use expressions called regular expressions; note that this is a completely seperate idea to globbing, and although
there are many things in common and the syntax is similar, they are different.

Example 2.5. Search for cs246 or CS246. The solution involes a regex that checks on the first alphabetic letters.
grep -E "cs246|CS246" index.html or grep -E "(cs|CS)246" index.html

Observe that the parentheses allow grouping for the "or" operator "|". Some more identical commands include egrep

"(clC)(s]S)246" index.html (which included mismatches of upper or lowercase characters) or egrep "[cC][sS]1246"
index.html.

Notation 2.1.

e [ajasas...a,] will match any character a; in between [and 1. So, [abc] = alb]c.

Fall 2013 OOP 2 THE LINUX SHELL

e ["ai...ayp] will match anything except the characters mentioned.

e To denote an optional preceding character, use the ? character. For example cs ?246 will match both cs246 and
cs 246.

e To denote optional preceding characters repeated 0 or more times, use *. For example, cs*246 will match cs246
and cssssssssss246 and c246.

e To denote a single instance of any character, use . (for example, .* denotes 0 or more of any character, which
mimics globbing)

e The caret * has a different meaning at the beginning of a line. In the case
egrep ""cs246" index.html

indicates lines starting with cs246.

e Similarly, the dollar sign $ indicates the end of a line. So,
egrep”“cs246$" index.html

will match lines containg only cs246 and nothing else.
e The + sign will match 1 or more of the preceding pattern
Example 2.6. Print all lines of even length.
egrep ""(..)*$" index.html
Example 2.7. Print all files in current directory whose names contain exactly one a.

1s | grep -E ""["al*a["al*$"

2.9 Permissions

Recall the 1s -1 will print the long form directory listing. For example

$ 1s -1

total @

drwxr-xr-x+ 4 lihorne staff 136 16 Sep 20:57 Desktop

drwxr-xr-x+ 10 lihorne staff 340 14 Sep 10:35 Documents

drwxr-xr-x+ 12 lihorne staff 408 17 Sep 11:32 Downloads

drwx ------ \ 9 lihorne staff 306 15 Sep 16:37 Dropboxdrwx------ 60 lihorne staff 2040 14 Sep 02:06
Librarydrwxr-xr-x+ 6 lihorne staff 204 14 Sep 04:55 Moviesdrwxr-xr-x+ 6 lihorne staff 204 14 Sep 04:55
Musicdrwxr-xr-x+ 9 lihorne staff 306 14 Sep 04:55 Picturesdrwxr-xr-x+ 6 lihorne staff 204 21 Aug 19:28
Public

These listings mean,

d rwxr-xr-x+ 6 lihorne staff 204 21 Aug 19:28 Public
~ —— N~ S N W~ N) N —
typepermissions #links OWNe€r group size jzst modified MNaMe

We're interested in the permissions. The permissions are split into three pieces,

rwx r—x r--
~~
usergroupother

BN =

Fall 2013 OOP 2 THE LINUX SHELL

e user bits: what the file's owner can do with it
e group bits: what members of the file's group can do with it (other than owner)
e other bits: what other users can do

Each set has

rwx

read bit write bit execute bit
What these mean depends on the type of file.

Bit ‘ Ordinary File ‘ Directory

r file can be read contents can be read (i.e., 1s)

w | file can be modified | contents can be modified (i.e., add / remove)
x | files can be executed | directory can be navigated (i.e., in cd)

Note. If a directory’s x bit is not set, it is not accessible whatsoever; no file or subdirectory within it is reachable.
Remark 2.5. We list some more features of grep:

e grep -v is an inverted grep, it displays the lines that don’t match.

e 1s pipes output as a column (not line) (detects if stdout is a terminal).

e pcrgrep is a grep variant with a multiline option (-m).

e Use a dash within [] to specify range. For example, [0-9], [a-z] are ranges over the first 10 digits and the 26
lowercase letters.

We can use the command chmod which stands for "change permissions" to alter some of these bits. The general format is
chmod mode file

The term mode is formatted such that there are three ownership groups,

Ownership Class ‘ Operator ‘ Permissions
u for user (owner) + to add permission r for read
g for group - to remove permission w for write
o for other = to set permission exactly | x to execute

a for all (u,g, and o)

2.10 Shell Scripts

A shell script is a file containing a sequence of shell commands and is executed as a program.

Example 2.8.

#!/bin/bash # <-"she-bang"”

date # (tells Linux to execute
whoami # this file as a bash script)
pwd

Pk wwnN =

o~NOOT R WwN -

Fall 2013 OOP 2 THE LINUX SHELL

We first give the file execute permissions using
chmod u+x myscript
Then run the file with . /myscript.
Note. Command-line arguments are accessed as variables such as ${1}, ${23}, etc

Example 2.9. Check whether a word is in the dictionary. We create a file isItAWord that contains the following:

#!/bin/bash
egrep "*1" /usr/share/dict/word

The script checks a dictionary file for the regex that is a line of only the word given as an argument to the script. Thus,
./isItAWord hello prints hello if it is there, nothing otherwise.

Example 2.10. A "good" password is not in the dictionary. Determine whether a word might be a "good" password.

#!/bin/bash
egrep "*1" /usr/share/dict/words > /dev/null

where /dev/null is a directory that suppresses output.

Note. Every program returns a status code when finished. For example, grep returns 0 if a match was found and 1
otherwise. In Linux, 0 means success and nonzero means a failure. Essentially,

success if status code is 0

program = { failure otherwise

The variable ${?3} is the status code of the most recently executed program. So, we now add the following to our script:

if [${?} -eq @]; then

echo Not a good password
else

echo Maybe a good password
fi

Note. We have a particular usage for this program that we want, and that is that the user should pass exactly one
argument. To ensure this use, or rather to provide helpful error messages should it be used incorrectly, we use another
special variable, $#.

It's common to write a function with usage information as shown here:

usage () {
echo "Usage: $0 password” >&2
exit 1

3

if [${#} -ne 1 7; then
usage

fi

And the complete script then defines a usage function, checks the number of arguments, runs the dictionary lookup, and
finally returns whether or not a password is deemed to be good.

O~NOOT A~ WN -

~NOo Ol wWwN

co~NOoOOT P WwWwN

Fall 2013 OOP

#!/bin/bash

Answers whether a candidate word might be a good password

usage () {
echo "Usage: $0 password” >&2
exit 1

3

if [${#} -ne 1 1; then
usage

fi

egrep "*$1%$" /usr/share/dict/words > /dev/null
if [$? -eq @]; then

echo Not a good password
else

echo Maybe a good password
fi

Notation 2.2. The general format for if statements is
if [condition J; then

elif [condition J]; then

else

fi

Example 2.11. We'll have a look at an example of loops. This example prints the number 1 to $1. This file is from

lectures/shell/scripts/count
#!/bin/bash

count limit ---counts the numbers from 1 to limit

usage () {
echo "Usage: $0 limit"” 1>&2

echo " where 1limit is at least 1" 1>&2
exit 1

3

if [$# -ne 1 1; then
usage

fi

if [$1 -1t 1 J; then
usage
fi

x=1

while [$x -le $1 1; do
echo $x
x=$((x + 1))

done

2 THE LINUX SHELL

SO WN =

15
16
17
18
19
20

Fall 2013 OOP 2 THE LINUX SHELL

Note.
e 1>&2 "ties" stdout (1) to stderr (2)
e $((...)) does arithmetic expansion
Now suppose we want to loop over a list, this next example portrays this.

Example 2.12. Rename all .C files to .cc. This next script is from lectures/shell/scripts/renamecC.

#!/bin/bash
Renames all .C files to .cc

for name in *.C; do
mv ${name} ${name%Cl}cc
done

Note.

for v in list : sets variable v to each word in list
${name%C} : returns the value of the name variable without the trailing C

Example 2.13. Write a script that returns the date of the last friday of this month.
To accomplish this we use the awk command in conjunction with the cal command. Thus one possible command to
accomplish this is. For example,

cal January 2014| awk ’print $6’ | grep [0-9] | tail -1

The following script is from /shell/scripts/payday. There are two steps, the first is to find the date and the second is
to report the answer.

#!/bin/bash
Returns the date of the next payday (last Friday of the month)

Examples:
payday (no arguments) -- gives this month’s payday
payday October 2012 -- gives payday in October 2012

answer () {
if [$2 1; then
preamble=${2}
else
preamble="This month”
fi
if [$1 -eq 31 1; then
echo "${preamble}’s payday is on the ${1}st.”

else
echo "${preamble}’s payday is on the ${1}th.”
fi
1
answer ‘cal $1 $2 | awk ’{print $63}’ | grep "[0-9]1" | tail -1°¢ $1

Example 2.14. The following string counts the number of lines that a word appears in a file.

10

—
H O WOWWO~NOO P~ WN =

[y

Fall 2013 OOP 2 THE LINUX SHELL

#!/bin/bash
countWords word file
Prints the number of times word occurs in file

x=0

for word in ‘cat "$2"°‘; do
if [$word == $1 1; then

x=$((x + 1))

fi

done

echo $x

2.11 Testing

Testing is the essential part of software engineering; it often takes much more time than expected. Additionally, it
is ongoing, not just at the end, and tests should be written before the program is written. Test suites are used for
streamlining the process of testing. Note that testing is not debugging, and testing must happen first.

Testing can't guarantee your program is correct, it can only prove it is incorrect. ldeally, the developer and tester are
different people (but not in this course).

e Human testing - people examine code, looking for flaws. This includes code inspection, and walkthroughs.

e Machine testing - systematically run programs through test input, check the output against specifications. Can't
test everything, so choose cases carefully.

There are two main approaches to testing.

e Black-box Testing - no knowledge of implementations

e White-box Testing - full knowledge of implementation

Gray-box testing could be considered testing done with some knowledge of implementation but not all.
Typically, black-box testing is the first to occur and is then supplemented by white-box testing. We analyze some
techniques of both types.

Black-Box
e Think about classes of inputs to avoid redundancy. For example, numeric ranges, positive, negative, etc.
e Boundary cases (edge cases), consider boundaries between classes
e Intuition and experience should be used to guess errors
e Extreme cases, push the limits of the program
White-Box
e Check all logical paths
e Test to make every function run
Strategies

e Single Component:

11

ok wnN =

DO WN -

Fall 2013 OOP 3 C++

— Unit testing: test individual components (e.g., small code, program, class)
e Multiple Component:
— Integration testing: test interaction between multiple components

e All Components:

Functional testing: program works as expected in normal conditions

Regression testing: test modified version of a previously validated program.

System testing: test the functionality, performance, reliability, and security of the entire system

Performance testing: program efficiency

Volume testing: ability to handle inputs in different volumes (small and large)

Stress testing: ability to handle extreme volume of data in limited amount of time

Acceptance testing: Operating the system in the user environment with standard user input scenario

3 C++

3.1 Introduction - Hello World

In C, the Hello World program looks like this:

#include <stdio.h>

int main() {
printf("Hello World\n");
return 0;

3
The C++ version looks like this:

#include <iostream>

using namespace std;

int main() {
cout << "Hello World"” << endl;
return 0;

Note. In C++, the main program must return an int (status code). Emitting the return statement will however return 0
anyway. Note that stdio.h and printf are still available in C++, but the preferred method is as shown above. That is,
using the header <iostream>, and with output mechanism std::cout << ... << ... << std::endl (meaning there
can be multiple uses of the << operator).

std: :cout is the standard output stream, and std: :endl is the end of line indicator.

using namespace std; lets you refer to std: :cout and std: :endl without the std::.

Most C programs are valid C++ programs, that is C++ is a near-perfect superset of C.

To compile a C++ program: g++ program.cc -0 program . If the name is emitted, then the compiled
—_——

specifies name of executable
program is called a.out. Then executing is as simple as running ./program.

12

[y

O OWOoO~NOOLDS WN

Fall 2013 OOP 3 C++

3.2 C++ Input & Output
There are 3 1/O Stream objects:
e cin - reading from stdin.
e cout - printing to stdout.
e cerr - printing to stderr.
The /O operators are:
e << - "put to" (output).
e >> - "get from" (reading).
Example 3.1.
cin >> x means getting data from cin and writing it to x.

cout << x means taking x and writing it to stdout.

cerr << x means writing x to stderr.

Note. cin >> ignores whitespace (tabs, spaces, newlines). That is, cin >> x >> y; looks for two integers seperated by
whitespace.

Some scenarios:
(1) What if the input doesn't contain an integer next? Then the statement fails, and the variable is not assigned.

(2) What happens if input is exhausted before we get two integers? Then the statement fails, and the variable is not
assigned.

How do we detect if either of these scenarios has occurred? Then,

read failed = cin.fail() returns true.
end-of-file reached = cin.eof () and cin.fail() will return true, but not until the attempted read fails.

Example 3.2. Read integers from stdin, then echo them one per line to stdout. Stop when the end of the file is
reached or the read fails.
Version 1:

#include <iostream>
using namespace std;
int main() {
int i;
while (true) {
cin >> i;
if (cin.fail()) break;
cout << i << endl;
3
3

Note. cin can be used as a condition in an if statement, since

if (cin) <= if (!cin.fail())

13

o~NOoOOCT Pk WwWwN =

Fall 2013 OOP 3 C++

How does this work? The if statement can use booleans, integers, or pointers as conditions. The compiler changed cin
to either 0 or the address of cin. This is because cin is a pointer, a reference to an object.
Note that >> is a function under cin. That is,

e cin >> x is equivalent to cin.>>(x)

e >> returns cin itself

e This allows: cin >> x >> y (which can be written as cin.>>(x).>>(y);, which is then cin.>>(y))
Also note that cin is of type istream.

Example 3.3. This example reads all integers from stdin and echos them, one per line, to stdout. It skips non-integer
inputs. Note that cin.clear() clears the internal error state and cin.ignore() removes the part in input stream that
generated the error.

#include <iostream>
using namespace std;

int main () {
int i;
while (true) {
if (!(cin >> i)) {
if (cin,eof ()) break;
else {
cin.clear();
cin.ignore();

b
b

else ¢
cout << i << endl;

3

3.3 Strings

C-like strings, that is null-terminated character arrays (char[], charx), are well supported in C++. That is a string
"Hello" can be defined like char mystr[] = "Hello"”; where it is represented like [H][e][l][l][o][null]. C++ has a
std::string class that can be used like a basic data type. This reduces the maintenance overhead (e.g., memory
management) and is more reliable (it hides the null character). Additionally, they can grow and shrink as needed, and are
safer to manipulate.

We can use the following string operators
e == Equality
e !|= Inequality
o <,>,<=,>= Comparison
e s.length Length

e s[i] Character extraction

14

G~ W N DOk~ WwWwN -

BN =

Fall 2013 OOP

3 C++

e s = sl + s2 Concatenate (or +=)

This requires adding

#include <string>
using namespace std;

Creating and initializing a string is done like this:

string si1; // initialize to empty

string s2("My string in C++"); // initialize by constructor

string s3 = "my value”; // initialize by assignment

string s4 (s2); // initialize by another string

s2 = "another string”; // directly assign value, no strcpy
s2 = s1;

Strings can also be concatenated using the + operator:

string s1 = "Hello”;

string s2(" world");

string s3 = s1 + " " + s2 + "I";

cout << s3 << endl;

cout << (s1 + " my” + s2 + ".") << endl;

However, strings can still be accessed as though they are characters in an array. So,

string city = "Waterloo";
for (int i = 0; i < city.length(); i++) {
cout << cityl[i] << " - ",

}
would returnW - a -t -e-r-1-o0-o0 -.
cin reads strings with the following semantics:

e discard leading spaces

e read non-white characters into string

e stop at next whitespace character

To read the entire line, including the leading spaces, use getline(cin, str);.

Refer to http://www.cplusplus.com/reference/string/string/ for some useful methods from the string class.

3.4 1/0O Manipulation

The behaviour of cout can be controlled using |/O manipulations. The following header must be included:

#include <iomanip>

Maniuplators are not variables for input / output but rather control the |/O formatting for all literals / variables af-
ter it, continuing to the next |/O expression for a specific stream file. Except for setw, they all apply to all proceeding values.

15

http://www.cplusplus.com/reference/string/string/

O 00O ~NOOL D WN -

DO WN -

g~ wWwN =

Fall 2013

OOP

3 C++

oct

dec

hex

left / right (default)

boolalpha / noboolalpha (default)
showbase / noshowbase (default)
showpoint / noshowpoint (default)
fixed (default) / scientific
setprecision(N)

setfill(¢ch®)

setw(N)

endl

skipws (default) / noskipws

Note. Manipulators and Floats

e fixed - fixed decimal place (no exponent)

e scientific - scientific notation (use exponent)

integral values in octal

integral values in decimal

integral values in hexadecimal

values with padding after / before values

bool values as false / true instead of 0/1

values with / without prefix 0 for octal and 0x for hex
print decimal if no fraction

float-point values without / with exponent

fraction of float-point values in maximum of N columns
padding character before / after value (default blank)
next value only in minimum of N columns

flush output buffer and start new line (output only)
skip whitespace characters (input only)

The default is neither fixed not precision, precision meand number of significant digits to display after (not including)
decimal point.

Example
cout << showbase
<< setw(6) << "Dec”
<< setw(6) << "Oct”
<< setw(6) << "Hex" << endl;
for (int i = 16; i < 20; ++i) {
cout << dec << setw(6) << i
<< oct << setw(6) << 1
<< hex << setw(6) << i << endl;

3.5 Working with files

3.4. To produce formatted output showing decimal, octal, and hexadecimal values for 16 through 20:

In C we use fopen, then fscanf, then finally fclose. Note that fscanf returns the number of arguments read, and -1
on error. fscanf does not take care of string overflow. The C example:

FILE *f =

char name

while (fs
printf(

3

fclose (f)

fopen("suite.txt”, "r");
[801;
canf (f, "%s", name) == 1) {
"%s\n", name);

’

Now in C++ we can do the following:

ifstream

string s;

while (fi
cout <<

}

file("suite.txt”);

le >> s) {
s << endl;

16

co~NOOT b WwWwN

©

~NOoO 1k~ W

Fall 2013 OOP 3 C++

ifstream is used for reading a file, and of stream for writing to a file. The file is automatically closed once out of scope.
All operations on cin/cout are valid for ifstream/ofstream.

Example 3.5. Constructing strings from other strings or numbers. See buildString.cc:

#include <iostream>
#include <string>
#include <sstream>
using namespace std;

int main () {
ostringstream ss;
int lo = 1, hi = 100;
ss << "Enter a # between " << lo << " and " << hi;
string s = ss.str();
cout << s << endl;

}
We revisit a past example, of reading and echoing integers, skipping non-integers. See readIntsSS.cc

#include <iostream>
#include <sstream>
using namespace std;

int main () {
string s;
while (cin >> s) {
istringstream ss(s);
int n;
if (ss >> n) cout << n << endl;

3.6 Default Function Parameters

Example 3.6.

void printSuiteFile (string name = "suite.txt”) {
ifstream file (name.c_str());
string s;
while (file >> s)
cout << s << endl;
3
3

Note that the file stream initializer must be given a C-style string, use .c_str() to get a C-style string from std: :string.
Now,

print SuiteFile("suite2.txt"); // prints suite2.txt
print SuiteFile(); // prints suite.xt

Note that optional parameters must be last.

17

DO WN -

DO WN -

O~NOOT A~ WN -

~NOoO Ok~ WwWwN

Fall 2013 OOP 3 C++

3.7 Overloading

In C:

int negInt (int a) {
return -a;

}
bool negBool (bool b) {

return !b;

}
However in C++ we can do the following:

int neg (int a) {
return -a;

}
bool neg (bool b) {
return !b;

3

So two functions can have the same name and the function that is called will depend on the type of the argument
given, which will be registered by the compiler. This is called overloading. The compiler uses the number and types of
parameters to choose which function to call. Overloads must differ in number of parameters or type of parameters if
they have the same number. Indistinguishable functions will raise an error by the compiler. Additionally, any optional
arguments must no cause any ambiguity.

3.8 Declaration Before Use

You cannot use something before it has been declared. So how do we do mutual recursion?

bool even (unsigned n) {
if (n == @) return true;
else return odd(n-1);

3

bool odd (unsigned n) {
if (n == @) return false;
else return even(n-1);

3

This fails because even calls odd before odd has been declared. The solution to this problem is forward declaration. We
simply declare the existence of odd, we don't write it but we declare it.

bool odd (unsigned n); // forward declaration
bool even (...) {

3
bool odd (...) {

3

There is an important distinction between a declaration (which only asserts the existence of the entity) and a definition
which is the full entity itself, including all details. An entity can be declared several times but defined only once.

3.9 Pointers

We'll show by example.

18

Fall 2013 OOP 3 C++

int n = 5;
int *p = &n; // p is a pointer to an int, and p’s value is the address of n

cout << p << endl; // displays some hexadecimal number representing the address of n
cout << *p << endl; // 5 (*¥p is the value at the address of p)

int *xpp; // ptr to ptr to int
pp = &p;
cout << *x%pp << endl; // 5

3.10 Arrays

Pointers are very closely related to arrays. This is because an array asignment like int a[] = {1,2,4,8%}; has a being a
pointer to the first element of the array, that is, a is equal to the address of the element with value 1. Furthermore

*a = al[e] = 1;
p = &al[o];
*(a+1) = a[1] = 2;

The notation of writing [] after the array name is really just a dereferencing operator with a shift, that is a[i] = *(a+i).

Note. The + operator on strings only works with a character and a string object, thus "abd” + "def” is not a valid
statement.

3.11 Constants

Constants are useful when you have variables that you don't intend to change. For example, const int maxGrade =
100. Constant definitions must be initialized immediately. It is a good idea to declare things constant when possible, it
is a helpful way to catch errors.

Example 3.7.

Node n1 = {5,NULL};
const Node n2 = nl; // creates constant copy of nl

Note that const can also be used with pointers. For example,

const int *A;
int const *A; // same thing

In this example, it is equivalent to a variable pointer to a constant integer (value is constant). Also,

int xconst B; // is a constant pointer (the address is constant, pointing to variable <«
integer)

We can combine these two types of situations to create a constant pointer to a constant integer.
int const *const C; // constant pointer to constant integer

Note that A can be reassigned but *A cannot. We can't change where B points but can change the data B points to. We
can't change where C points to or the value it points to. Basically, "const" applies to whatever is on its immediate left,
unless nothing is there in which case it applies to whatever is on its immediate right.

19

B~ N =

N

OO

AN =

A W=

Fall 2013 OOP 3 C++

3.12 Dynamic Memory Allocation

Recall from C,
int size = ___;
int *p = malloc(sizexsizeof(int)); // allocate memory

free(p); // deallocate memory

Note that since C++ is a subset of C, both malloc and free are available, however it is not common practice to use them,
instead use the type-aware and less error-prone functions new and delete.

struct Node { ... 3};
Node *np = new Node;
delete np;

Note that delete np only deletes the node that the pointer is pointing to, and nothing else. In an array, the behaviour of
calling delete on it is undefined. To handle this, we call delete [] np. For example,

int *a = new int[5];
delete [] np; // deletes all elements

3.13 Passing Parameters

Example 3.8.

void inc(int n) {n = n + 1; }
int x = 5;

inc(x);

cout << x << endl // prints 5

In C++, parameters are passed by value, inc increments a copy of x (not the original). If a functions needs to modify its
original argument, pass a pointer.

void inc (int *n) { *n = *n + 1; }
int x = 5;

inc (&x);

cout << x << endl; // prints 6

Note that x's address is passed by value.
Question. Why do we need to use cin >> x and not cin >> (&x)7
Answer. C++ provides another pointer-like type called the reference.

3.14 References

References are like constant pointers with automatic dereferencing.

int y = 10;

int &z = y; // z is a reference to int, similar int xconst z = &y
z =12; // now y = 12

int *xp = &z; // gives address of vy

In all cases z behaves exactly like y. That is, z is an alias for y.

There are some things you cannot do with references.

e leave them uninitalized e.g., int &y; (bad)

20

N

B OON

O~NOOT A~ WN -

17

Fall 2013 OOP 3 C++

e create a pointer to a reference e.g., int &xy; (bad) (but you can create a reference to a pointer, e.g., int *&y;)
e create a reference to a reference : e.g., int &&y; (bad)
e create an array of references : e.g., int & r[3] = {n,n,n} (bad)

However there are also some great things you can do!

e pass as function parameters, for example

1 void inc (int &) { n =n + 1; }
2 int x = 5;
3 inc(x); \\ note no &
4 cout << x << endl; // prints 6
So, cin >> x works because it takes x by reference.
1 istream& operator >> (istream &in, int &n)

Recall that pass-by-value copies the argument which implies that if the argument is big, this can be expensive. For
example,

struct ReallyBig { ... }

int f (ReallyBig rb) { ... } // copies the whole struct

int g (ReallyBig &rb) { ... } // pass an, alias, more efficient but allows changes to <«
propogate to caller

int h (const ReallyBig &rb) { ... } // argument can’t be changed

It is prefered to pass-by-reference-to-const over pass-by-value for anything larger than int. Note also for

int f (int &n) { ... }

int g (const int &n) { ... 3}

f(5); // can’t initialize a reference (n) to a literal value i.e., BAD
g(5); // OK since n can’t be changed, allowed by compiler

3.15 Operator Overloading

We can give custom meanings for C++ operators for types we construct. For example, Vector.cc.

#include <iostream>
using namespace std;

struct Vector {

int x;
int y;
1
Vector operator+(const Vector &vl, const Vector &v2) {
Vector v;
v.x = vl.x + v2.Xx;
v,y = vl.y + v2.y;
return v;

b

Vector operator*(const Vector &v1l, const int k) {
Vector v;

21

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

wo~NOOT R WN

21
22
23

Fall 2013 OOP 3 C++

V. X k * vl.x;
V.y k x vl.y;
return v;

b

Vector operator*(const int k, const Vector &v1l) {
return vl * k;

3

int main () {

Vector v1 = {1, 2}%};
Vector v2 = {3, 43%;
Vector v3 = vl + v2;
Vector v4 = 2 % v1;
Vector v5 = v2 * 3;
cout << "v3.x = " << v3.x << " v3.y = " << v3.y << endl;
cout << "v4.x = " << v4.x << " vd.y = " << v4.y << endl;
cout << "v5.x = " << v5.x << " vhb.y = " << v5.y << endl;
3
// Returns
// v3.x = 4 v3.y = 6
// vd.x = 2 vd.y = 4
// v5.x =9 vb.y = 12

also consider grades.cc

#include <iostream>
using namespace std;

struct Grade {
int theGrade;

};

ostream &operator<<(ostream &out, const Grade &g) {
out << g.theGrade << "%";
return out;

3

istream &operator>>(istream &in, Grade &g) {
in >> g.theGrade;
if (g.theGrade < @) g.theGrade = 0;
if (g.theGrade > 100) g.theGrade =
return in;

100;

b

int main () {
Grade g;
while (cin >> g) cout << g << endl;

b

22

A0 = N Ao

DO WN -

Fall 2013 OOP 3 C++

3.16 The Stack and the Heap

In memory there are typically three layers, the first is the program, then somewhere below that is the heap and finally at
the end is the stack. The stack grows towards the heap. (Imagine a tower, at the top floors are the program, somewhere
in the middle is the heap, and the bottom floor is the stack, the stack gets taller).

The heap is used for dynamic memory allocation, and data that is allocated to the heap lives on until it is explicitly
deallocated (see new and delete). This means that the memory leaks are a danger of using the heap. The stack however
is used for local variables within some scope, and may disappear when they go out of scope.

Example 3.9. Note that within some scope, a use of new allocates space on the stack for the pointer however the
actual object that is created is on the heap. The obvious problem here is that once the pointer goes out of scope, there is
still memory on the heap that has no been deallocated.

Node n; // on the stack

Node *np = new Node; // np (pointer) on stack, Node object on heap
Example 3.10.
Node getMeANode () {
Node n;
return n;
3

This example describes creating an object (note that Node n; does not initialize a null object, there are initial values
and so it is an object), then returning that same object. This is expensive because n is copied as a return value, but the
memory allocated on the stack for the original n is destroyed. So we've essentially done the same operation of creating n
twice, which is a waste. Now consider

Node *getMeANode () {
Node n;
return &n; // unsafe: returns a pointer to stack-allocated data which is dead on <«
return

3

A better way is as follows

Node *getMeANode () {
Node *n = new Node;
return n;

3

This is much better because it returns a pointer to heap allocated data.

Example 3.11. Allocating arrays:

cin >> n;
int *a = new int[n]; // a points to memory on the heap, containing n ints
for (int i = 0; i < n; ++i) {
al[i]l = i; // initialize values
}

delete [] a;

23

= O~NOOT A~ WN -

N

DO WN -

N

Fall 2013 OOP 3 C++

3.17 The Preprocessor

The preprocessor transforms the program before the compiler sees it. The preprocessor directive is the 'hash/pound’
symbol #. Note that we've seen this already, because it is used for include statements, like

#include <iostream>
#include "file.h"

What this does is that it tells the preprocessor to get the contents of whatever is mentioned and insert the code in that
position. Note that <...> means to look in the standard include directory (/usr/include/c++) and "..." means to
look inside the current directory. Note also that there is a naming convention for old C headers. For example, instead of
#include <stdio.h> we use #include <cstdio>.

There is also a define directive which looks like

#define VAR VALUE

this defines a preprocessor variable. All occurrences of VAR in the source file are replaced with VALUE. It is best applied as
inline constants, for example

#define MAX 10

int x[MAX]

Note that defined constants are useful for conditional compilation. For example,

#tdefine Unix 1
#define Win 2
#define 0S Unix

#if 0S == Unix
int main () {
#elif 0S == Win
int WinMain () {
#tendif
Note that

#if @ // never true, all innter text is remove dbefore it gets to compiler

#endif // heavy duty way to comment out code

as well, #if's nest. Another fact, you can also define symbols via compiler arguments. For example, in the file define.cc,
#include <iostream>

using namespace std;

int main () {
cout << X << endl;

b

Just a simple file, but if we compile it with
g++ -DX=15 define.cc -o define

and then run ./define, we get the value 15 printed.

In this way we can also do things like

#define FLAG // sets variable FLAG (value is empty string)
#ifdef FLAG
#ifndef FLAG

24

wo~NOOCT R WN =

SO WN =

O~NOOT A~ WN -

Fall 2013 OOP

3 C++

where #ifdef and #ifndef are determined by whether or not FLAG has been set. For example, see debug. cc.

#include <iostream>
using namespace std;

int main() {
#ifdef DEBUG
cout << "setting x=1" << endl;
#tendif
int x = 1;
while (x < 10) {
++X;
#ifdef DEBUG
cout << "x is now " << x << endl;
#endif

3

cout << x << endl;

}

Where we run it with
g++ -DDEBUG debug.cc

3.18 Seperate Compilation

Split programs into seperate modules, which each prove an

e interface - type definitions, function prototypes - .h file

e implementation - full definition for every provided function - .cc file
Example 3.12. See seperate/examplel

vector.h

struct Vector {
int x;
int y;

1

Vector operator+(const Vector &v1l, const Vector &v2);

vector.cc

#include "vector.h”

Vector operator+(const Vector &vl, const Vector &v2) {
Vector v;
V.Xx = vl.x + v2.x;
v.y = vl.y + v2.y;
return v;

main.cc

#include <iostream>
#include "vector.h”

25

[Ey

O VWO ~NO Ol W

N =

Fall 2013 OOP 3 C++

using namespace std;

int main () {
Vector v = {1,2};
vV = v + v,
cout << v.x << " " << v.y << endl;

3

These can actually be compiled seperately, such as (in sequence from left to right)
g++ -c vector.cc g++ —-c main.cc g++ vector.o main.o -o main ./main

the third command links object files into an executable. Also note that -c means "compile-only" (don't link, don’t build
executable), it outputs an object file (.o).

Recall that an entity can be declared several times, but defined only once. What if we want to put a variable in a .h
file? For example, abc.h

int globalNum; // declaration and definition

Now every file that includes abc.h defines a seperate globalNum. So the program will not link. The solution to this
problem is that we can use the extern keyword in the .h file and make the definition in the C++ file. So in abc.h we
have

abc.h

extern int globalNum; // declaration, not definition

abc.cc

int globalNum; // definition

Example 3.13. Suppose we want to write a Linear Algebra module (see seperate/example3). Then within LinAlg.h
we have include statements for "vector.h" and within LinAlg.cc we include "LinAlg.h" and "vector.h". This won't
compile since there are 2 copies of vector.h thus there are two definitons for struct Vector.

We need to prevent the files from being included more than once. The solution is to use include guards. Thus in
vector.h we have

#ifndef __VECTOR_H__
#define __VECTOR_H__

#endif
So the first time vector.h is included, we have that VECTOR H is not defined, so the file is included, subsequently we
have that VECTOR H is defined, thus the contents of vector.h are suppressed. Always put incldue guards in .h files.

Note. never put "using namespace std" in .h files, as it will be forced upon any user who includes the file.

3.19 Classes

The big innovation of Object Oriented Programming is that we can put functions inside structures. For example,

26

O 0O ~NO O WN -

b wnN =

wo~NOOCT R WN =

b wnN =

Fall 2013 OOP 3 C++

struct Student {
int assn, midterm, final;
float computeGrade () {
return assn * 0.4 + midterm x 0.2 + final * 0.4;

b
}

Student billy = {60,70,803};
cout << billy.computeGrade() << endl; // prints out its grade

A class is essentially a structure type that can contain functions. (C++ has a class keyword, but we'll start using it later)

An object is a particular instance of that class. For example, "Billy" is an object that is an instance of the "Student"
class. The function computeGrade is called a member function (or a method). Also, assn, midterm, final are
fields of the current object, the object upon which computeGrade is invoked. Formally, there is a hidden extra parameter
called this, which is a pointer to the current object.

// e.g.,
billy.computeGrades(); // *this == billy
float computeGrades () {
return this->assn * 0.4 + this->midterm *0.2 + this->final * 0.4;
} // recall: this->assn means (*this).assn

Initializing Objects
We can initialize objects in this way:

Student billy = {60, 70, 803}; // OK, but limited

However it is better to initialize using a method: a constructor.

struct Student {
int assn, midterm, final;
float computegrade() { ... }
Struct (int assn, int midterm, int final) {
this->assn = assn;
this->midterm = midterm;
this->final = final;

3

// Now we can construct students like this:
Student billy (60, 70, 80);

// OR:

Student billy = Student(60, 70, 80);

// Heap allocation:

Student* pBilly = new Student (60, 70, 80);

The advantages of constructors are that we can use default parameter values, and overloading.

// e.g.

Student (int assn = @, int midterm = @, int final = 0) { ... }
Student bob (60, 70); // 60, 70, 0

Student newguy; // 0, 0, 0

// Alternatively: Student newguy = Student();

Note that every structure comes with a default constructor (no arguments), which just calls default constructors on any
members that have them. For example,

27

~NOoO 1k~ W

G wwN -

DO WN -

Fall 2013 OOP 3 C++

Vector v; // default constructor

However this goes away as soon as you provide a constructor!

struct Vector {

int x, y;

Vector (int x, int y) { ... }
1

Vector v; // no longer valid!!

Vector v(1, 2); // okay

You also lose C-style structure initialization.
Vector v = {1, 23}; // invalid!!

What if a struct contains constants or references?

struct MyStruct {
const int myConst = 5; // these need to be initialized "immediately”
int z;
int &myRef = z;

}; // won’t compile!!

Besides, each instance of MyStruct each gets its own myConst and myRef - why should they all be the same? Also, we
can't initialize them in the constructor - it's too late at that point.
When an object is created:

e Space for the object is allocated

e Members are initialized to defaults <— needs to put our initializations here

e Constructor is called

Member Initialization List

// in struct MyStruct
MyStruct (int c, int &r) : myConst(c), myRef(r) {3}
// initializes before calling constructor!

Student (int assn, int midterm, int final): assn(assn), midterm(midterm), final(final) {3}
// Can be more efficient than setting fields in body of constructor; otherwise they are <«
initialized by their default constructors and then reassigned in the body

Note that fields are initialized in the order they were declared, regardless of order in initialization list.
Copy Constructor, for constructing an object as a copy of another.

Stuent billy (60, 70, 80);
Student bobby = billy;

Every class comes with:
e default constructor (all fields to default), which are lost if you define your own constructor
e copy constructor (blindy copies all fields)
e copy assignment operator

e destructor

28

O OO ~NOOTDWN -

[Ey

co~NOOT P WN

Fall 2013 OOP 3 C++

Building your own copy constructor:

Student (const Student& other) : assn(other.assn), midterm(other.mt), final(other.final)«
{1}

// this 1is equivalent to built-in copy constructor)
Consider:

struct Node {

int data; Node* next;

Node (int data, Nodex next) : data(data), next(next) {}

Node (const Node& other) : data(other.data), next(other.next) {3}
1

// and say we want a node linked list 1 -> 2 -> 3
Node *n = new Node (1, new Node(2, new Node(3, 0)));
Node m = *n; // uses copy constructor

Node *p = new Node (*n); // uses copy constructor

Note that the above are only shallow copies - they only copy out the first node! If you need a deep copy (the entire list),
write your own copy constructor:

Node (const Node &other) : data(other.data),
next (other.next ? new Node(*other.next) : @) {} // <
recursively copies rest of list

When is the copy constructor called?
1. When an object is initialized with a copy of another
2. When an object is passed by value
3. When an object is returned by a function

A deep copy file would look like

#include <iostream>
using namespace std;

struct Node {
int data;
Node =*next;
Node (int data, Node =xnext): data(data), next(next) {}

Node (const Node &n): data(n.data),
next(n.next == NULL ? NULL : new Node(*n.next)) {3}
1

ostream &operator<<(ostream &out, const Node &n) {
out << n.data;
if (n.next) {
out << " ,";
out << *n.next;
}
return out;

3

int main() {

29

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

A~ N =

B OON R

Fall 2013 OOP 3 C++

Node *n = new Node (1, new Node(2, new Node(3, NULL)));
Node m = *n;
m.data = 5;
Node *p = new Node (*n);
p->data = 6;
cout << "n: " << *n << endl;
cout << "m: " << m << endl;
cout << "p: " << *p << endl;
cout << endl;
n->next->next->data = 7;
cout << "n: " << *n << endl;
cout << "m: " << m << endl;
cout << "p: " << *p << endl;

3

// returns

/*

n: 1,2,3

m: 5,2,3

p: 6,2,3

n: 1,2,7

m: 5,2,3

p: 6,2,3

*/

Note. Be careful of constructors that take one parameter! For example,
struct Node {
Node (int data) : data(data), next(Q) {3}
¥

Single-arg constructors create implicit conversions. For example, Node n(4);, but also Node n = 4;, there is an implicit
conversion from 4 to Node(4), and also int f(Node n) {...}, then f(4);. That works, the 4 is converted to Node (4).
This can be dangerous, for example accidentally pass an int to a function expecting a node, and you get a silent conversion,
the compiler does not signal an error, and therefore potential errors are not caught. It is a good idea to disable the
implicit conversion. To do this, declare the constructor explicit.

struct Node {

explicit Node (int d) : data (d), next(Q) { }
3

Destructors
When an object is destroyed (stack-allocated means goes out of scope, heap-allocated means is deleted), a method called

the destructor runs. Classes come with a destructor (doesn't do much - calls destructor for each field). Wehen do we
need to write one? Suppose we have

30

— O 0O ~NOOCT A~ WN - G~ W SO W N DO WN -

co~NOOThWwWwN

Fall 2013 OOP 3 C++

Node *np = new Node (1, new Node(2, new Node(3, 0)));
// np -=> 1 ->2 -> 3/

If np goes out of scope, the pointer np (stack-allocated) is reclaimed, the list is not. If we simply say, delete np;, we
delete the first node, but the destructor running does not delete the rest of the list so we have a memory leak. We need
to write destructor.

struct Node {
~Node () {
if (next) delete next;

}
3

Even better, since deleting a null does nothing (but works safely), we can just say

struct Node {

~Node () {
delete next;

}
};

Assignment Operator
Brad Lushman's story

Student tony (60,70,80);

Student liam = tony; // I just cheat on everything

Student devin; // default constructor

devin = tony; // copy assignment operator, not constructor
// assignment operator uses compiler, supplied default

We may need to write our own copy assigment operator.

struct Node {

Node &operator=(const Node &other) {
data = other.data;
delete next;
next = other.next ? new Node (xother.next) : 0;
return xthis;
}
1

But this is very dangerous. Why? Consider

Node n(1, new Node(2, new Node(3, 0)));

n =n;

So we need to check for this case. In fact, ALWAYS check for this case when writing assignment operators.

struct Node {

Node &operator=(const Node &other) {
if (this == &other) return *this;
data = other.data;
delete next;
next = other.next ? new Node (*other.next) : 0;
return xthis;

31

O~NOOT A~ WN =

w0 N =

Fall 2013 OO0P 3 C++
3
1
Even better than this, we can do
Node &operator=(const Node &other) {
if (this == &other) return *this;
data = other.data;
Node *tmp = next;
next = other.next ? new Node (*other.next) Q;
delete tmp;

b

There is infact, yet another better way to accomplish this. It is the alternative copy-and-swap idiom.

return xthis;

struct Node {

void swap (Node &other) {

}

int tdata = data;
data = other.data;
other.data = tdata;

Node *tnext = next;
next = other.next;
other.next = tnext;

Node &operator=(const Node &other) {

3
3

And,

Node tmp = other;

swap (tmp);
return xthis;

equivalently,

Node &operator=(Node other) {
swap(other);
return xthis;

3

It works by using the copy-constructor's functionality to create a local copy of the data, then takes the copied data with a
swap function, swapping the old data with the new data. The temporary copy then destructs, taking the old data with it.
We are left with a copy of the new data.
In order to use the copy-and-swap idiom, we need three things: a working copy-constructor, a working destructor (both

are the basis of any wrapper, so should be complete anyway), and a swap function.

Certain themes have arised from this past discussion, and we call them the Rule of 3.

Definition 3.1 (rule of 3). If you need to write a custom version of any one of

e copy constructor

e operator equals

e destructor

32

O ©WOoO~NOOLE, WN -

[y

N

~NOo o~ N

Fall 2013 OOP 3 C++

Then you usually need a custom version of all three

Notice that operator=is a member function, not a standalone function. When an operator is declared as a member
function, this plays the role of the LHS assignment. So,

struct Vector {
int x, y;
Vector operator+(const Vector &v) {
Vector v2(x + v.x, y + v.y);
return v2;

3
Vector operator*(const int k) {
return Vector (x*k, y*k);

b
b

Note that the multiplication implements the order vxk. How do we implement kxv? The first argument is not a vector, it
can't be a member function, so it must be a standalone.

Vector operatorx(const int k, const Vector &v) {
return v*k;

}
What about 1/O operators?

struct Vector {

ostream &operator<<(ostream &out) {
out << x << " " KL y;
return out;

b

However there is a problem with this implementation which is that it makes Vector the LHS operand and not the RHS
operand, so we'd need to use v << cout; which is a little confusing. The point is that input and output operators should
really be standalones as well. Note that, certain operator must be members. That is, you have no choice. They are:

e operator=
e operator[]
e operator->
e operator()
e operatorT()

The reason that operator= must be a member is because it has a default implementation and so what you could end up
doing is write your class without operator equal and then write a function using that class that assigns something using
operator= before its definition.

3.20 Arrays of Objects

Consider this code.

33

DO WN =

D WN -

O WO ~NOOTDWN -

[y

N —

Fall 2013 OOP 3 C++

struct Vector {
int x, y;
Vector (int x, int y): x(x), y(y) {2}
b
Vector *vp = new Vector[10];
Vector moreVectors[15];

This does not compile. Why? Because it can't initialize the array elements. You can only create arrays of objects that
have a default (i.e., zero-ary) constructor. If you want arrays, provide a default constructor. To fix this, add default values.

struct Vector {
int x, y;
Vector (int x=0, int y=0): x(x), y(y) {}
1
Vector xvp = new Vector[10];
Vector moreVectors[15];

3.21 Seperate Compilation for Classes

Consider Node.h

#ifndef __NODE_H__
#tdefine NODE_H__

struct Node {
int data;
Node =*next;
Node (int data, Node *next);
Node (const Node &n);
explicit Node (int d);

1

#tendif

Then, in Node.cc

#include "Node.h"
Node::Node(int data, Node *next): data(data), next(next) {3}
Node::Node (const Node &n):data(n.data), next(n.next == NULL ? NULL : new Node(*n.next)) «

{3
Node::Node(int d): data(d), next(Q) {}

Let's finally define what the hell this :: thing is. It is called the scope resolution operator. Essentially it means (in this
example) that Node: : x means x in the context of the Node class. Usually it is similar to just using ., but the difference is
that for ::, where LHS is a class, not an object. Basically,

e Is LHS an object? Use .

e Is LHS a class? Use ::

3.22 Consts Again

Constants come up much more often in C++. Things likes
int f(const Node &n) { ... }

What is a const object? Essentially it is an object whose fields can't be changed. Can we call methods on const objects?
The issue is that the method might modify fields in the process, violating the const.

The answer is a qualified yes, we can call methods that promise not to modify fields.

34

O~NOOT PR~ WN = DO WN =

co~NOoOOlT b WwWwN

Fall 2013 OOP 3 C++

struct Student {
int assns, mt, final;
float grade() const {
return ...,

b
}

By putting const after the function name, it says "does not modify fields". The compiler checks that const methods
don't modify fields. Only const methods can be called on const objects. Now consider, what if we want to collect some
usage statistics on Student objects.

struct Student {
int assns, mt, final;
int numMethodCalls; // increment this counter per method call
float grade() const {
++numMethodCalls; // fails, changing something in a const method
return ...;

b

Since this fails, the result would be that we have to remove several consts from our code just to check statistics. This is
called const poisoning. Our problem here is that numMethodCalls isn't really a defining characteristic of a Student. We
want to be able to update numMethodCalls even if the object is const. The solution is to declare the field mutable. So,

struct Student {
int assns, mt, final;
mutable int numMethodCalls; // increment this counter per method call
float grade() const {
++numMethodCalls; // works, mutable
return ...,

b
}

Mutable fields can be changed even if the object is const.

3.23 SE Topic - Design Patterns

Experience shows that certain programming scenarios arise frequently. If you've got a problem to solve, there's a good
chance someone has had the same problem before. The idea is to keep track of solutions to these problems, and use them
in similar situations. It is reccomended that you read the book Design Patterns: Elements of Reusable Object-Oriented
Software by Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. There are some examples, such as

Definition 3.2 (Singleton Pattern). We have a class C, and we want to ensure that only one instance of C' ever gets
created, no matter how many times we may attempt to create an instance. An example of this is a database class. If we
have a class that is a frontend to a database, and it is used several times, we want to ensure that there is only ever one
instance of that database class, so the same database is always being accessed. Similarly for a log file. These are under
the assumption that there are only one of these.

Example 3.14. Write a program to track my finances. We will use two classes
e Wallet (this is a singleton - | have only one)
e Expense (several of these - each have access to my wallet (sadly))

For this example we require a new C++ concept, the static member.

35

b wnN - ~NOoO O W=

co~NOOlT b WwWwN

N =

AW N =

Fall 2013 OOP 3 C++

Definition 3.3 (static member). Static members are associated with the class itself, not with any specific instance of
a class.

Example 3.15. For example, how many times as a Student object been created? We'll return to the finance example in
a second, first we define a few things.

struct Student {

static int numInstances; // shared by all Student instances
Student (...) : ... { // constructor calls static member
++numInstances;

}
3

Appreciate the fact that the static keyword within the struct Student means that every instance of a Student uses the
exact same variable, which means every time a Student is constructed, numInstances is updated.

However we are not done! There is an important line that must be written in the .cc file,

int Student::numInstances = 0; // initialization

This must be done for every static variable; if not the program won't link. So, if we run

int main () {
Student 1iam(49,49,49); // almost there
Student umar (100,100,100); // 100%
cout << Student::numInstances << endl; // access static using scope operator

}

We return 2.

Definition 3.4 (static member function). Next, we look at static member functions. These are functions that don't
depend on any specific instance (therefore there is no "this" pointer). Therefore within a static member function we can
access static member, since they don’t depend on any instance (also can call other static methods).

Example 3.16. Consider the structure definition with this new static member function,

struct Student {
static int numInstances;

static void printNumInstances () {
cout << numInstances << endl;

}
3}

then if in main we have

Student 1iam(49,49,47);
Student greg(94,94,94);
Student::printNumInstances(); // returns 2

Back to the finance example, let's write Wallet.h,

struct Wallet (
static Wallet *instance; // only one instance
static Wallet *getInstance(); // fetch the instance, initialize if necessary
Wallet ();

36

~No o~ wN ~NOo O wN oO~NOOCT R~ WN = o ~N o O

co~NO Ol WN

Fall 2013 OOP

3 C++

int money;
void addMoney (int amt);

}
Then in Wallet.cc

Wallet xWallet::instance = @; // first thing, define static member, starts at NULL
Wallet *Wallet::getInstance() {
if (!instance) { // if instance hasnt been created, then create it
instance = new Wallet;

3

return instance;
3
Wallet::Wallet() : money(0) {3}
void Wallet::addMoney(int amt) {
money += amt;

}
Then we have a header file Expense.h, whch each has access to a wallet instance (the same one)

struct Expense {
const std::string desc;
const int amt;
Wallet *wallet;
Expense (std::string desc, int amt);
void pay();
1

and it companion .cc file,

Expense::Expense (string desc, int amt) : desc(desc), amt(amt) {
wallet = Wallet::getInstance();

3

void Expense::pay() {
cout << "Paying << desc << "("" << amt << ")" << endl;
wallet ->addMoney (-amt);

}

Finally, the main C++ file,

int main() {
Expense mortgage("mortgage”, 1000);

Expense car("car", 300);

Expense ins("insurance”, 200);

Wallet *mywallet = Wallet::getInstance();
Expense payCheque("paycheque”, -2000);

n

cout << "Initial Money:
payCheque.pay();
mortgage.pay();
car.pay(Q);

ins.pay();

<< mywallet->money << endl;

}
Running this code will get us

Initial money: 0
Paying expense: paycheque (-2000)

37

B OWN -

AN =

~NOo o N

~NOoO 0Bk~ w N

B WN -

Fall 2013 OOP 3 C++

Paying expense: mortgage (1000)
Paying expense: car (300)
Paying expense: insurance (200)
Final money: 500

Great. Now however we have a question, when do we delete the Wallet instance? How can we know when all clients are
done with it? Well we can't. Let's write some cleanup function,

.h
struct Wallet {

static void cleanup(); // must be static

}

.CC

void Wallet::cleanup() {
cout << "Cleaning up..."” << endl;
delete instance;

b

If we were to run this at the end of main, we'd handle 99% of all cases. However we can be better than that. There is a
function called atexit (from <cstdlib>) that takes a function returning void, and runs it when the program terminates.
So in our implementation for getInstance(),

wallet xWallet::getInstance() {
if (linstance) {
instance = new Wallet;
atexit(cleanup);

3

return instance;

Okay, so can't we just create our own Wallet instances by calling the constructor? The time has therefore come for us to
use the big terms of OOP. For now, that is encapsulation. The idea is that we want to control the way our objects are
used, we want our clients to treat objects as black boxes (capsules). We want implementation details sealed away, and we
want it so you can only interact via provided methods.

struct Vector {
Vector (int x, int y); // public (say nothing implies public)
private: // can’t be accessed outside the struct
int x, y;
public: // anyone can access
Vector operator+(const Vector &v);

};

The default visibility in structs is public. In general, you want fields to be private and methods to be public. One might
desire for the default to be private, however the problem with this is that all C program will compile (since struct is
defaulted to public in C). So instead, we invent something that is not in C, called class. So, class vector would look like
this:
class Vector {

int x, y; // default private

public:
Vector (int x, int y);

38

(o236,]

~NOoO Ol WwWwN -

~NOoO b wWwN -

wo~NOOCT R WwN =

Fall 2013 OOP 3 C++

Vector operator+(const Vector &v);

}
The only difference between class and struct is default visibility. It is public in struct, and private in class. Once
again, keep fields private. If you have public fields
e you have no way of preventing the user from doing anything they want with them
e you can't maintain class invariants
e can't replace implementations without breaking client code
If you want to provide field access, then provide methods that do just that; that is, write an accessor method. For

example,

class Vector {
int x, y;
public:

int getX() const { return x; 3}
int getY() const {return y; }
3

If you want to let clients change fields as well, provide what are known as mutator methods. For example,

class Vector {

int x, y;
public:

void setX(int newX) { x = newX; }
void setY(int newY) { y = newY; }

3

Returning to our singleton example with the wallet, we can rewrite our Wallet struct as a class like this, which implements
the single Wallet instance as private, and has a public instance to get the instance, which means no one can change the
single instance after it is initialized the first time.

class Wallet ¢
static Wallet xinstance;

Wallet ();

int money;
static void cleanup();

public:

static Wallet xgetInstance();
int getMoney() const;

void addMoney(int amt);

3

Now, suppose we don't want to provide accessors and mutators, but we do want to provide operator<<. There is an
issue, operator<< needs to get x and y but we don't want to provide general access to everyone. THe solution is to
make operator<< a friend function, for example

39

DO WN =

AN =

DO WN -

[a—y

Fall 2013 OOP 3 C++

class Vector {
int x, y;
public:

friend std::ostream &operator<<(std::ostream &out, const Vector &v);
}
Then in the C++ file,

ostream &operator<<(ostream &out, const Vector &v) {
return out << v.x << " " << v.y;

b

friend functions can see all of a classes members but are not themselved part of the class. Give your class as few friends
as possible. When you declare friends, it weakens the encapsulation.

3.24 SE Topic - System Modelling

Building an Object-Oriented system involved identifying the major abstractions (what do | want my classes to be?) and
then formalizing the relationships among them. Once I've decided what my classes ought to be, how are they related to
each other and how to they interact? It has been proven helpful to map these relationships out, to aid in design and
implementation.

A popular standard is called UML (Unified Modelling Language).

Vector
- X : Integer
-y : Integer

+ getX() : Integer
+ getY() : Integer

where '-' represents private, and '+’ represents public. In UML, the fields and methods blocks are of course optional but
you need the name of the class.

3.25 Composition of Classes

class Vector {
int x, y, z;
public:
Vector (int x, int y, int z) : x(x), y(Qy), z(z) {3}
};
Two vectors define a plane.

class Plane {
Vector vi1, v2;

40

SOl W

DO WN -

Fall 2013 OOP 3 C++

public:

1
Plane p;

This does not compile however since it cannot initialize v1 and v2. Now, note that, when an object is created:
1. Space is allocated

2. Default constructors / initialization lists for all fields in declaration order

3. Constructor body runs
and when an object is destroyed,

1. Destructor body runs
2. Destructors are invoked for all fields in reverse order

3. Space is deallocated

So for the case of Plane p;, the field constructors must be called for v1, v2, but Vector has no default constructor.
Solution 1 : Give Vector a default constructor. What if we don't want to?

Solution 2 : Initialize v1, v2 in Plane’s initialization list.

class Plane {
Vector vi1, v2;
public:
Plane() : v1(1,0,0), v2(0,1,0) {3}

};

Embedding one object (Vector) inside another (Plane) is called composition. Relationships between Plane and Vector is
called an "owns-a" relationship. A Plane object owns a vector object (in fact, it owns two of them).

Here are the typical characteristics of an "owns-a" relationship: If A owns a B, then typically
e B has no identity outside A (does not have an independent existence).
e If A is destroyed, then B is destroyed

e If A is copied, then B is copied (deep copy)

Example 3.17. If a car owns four wheels, a wheel is part of a car. Destroy the car implies destroy the wheels. Copy the
car implies copy the wheels (don't share wheels).

Modelling composition in UML:

Plane Vector
vl, v2 _
-v1 : Vector of - X : Integer
-v2 : Vector -y . Integer
- Z . Integer

41

wo~NOOCT R~ WwWwN =

~NOo ok~ N

co~NOOT Pk WwWwN

Fall 2013 OOP 3 C++

A (diamond) -> B means A owns some part of B. You can annotate with multiplicities and field names. 0..* means any
number of B's, 2 = 2Bs, 1...5 = 1-5 Bs.
3.26 Aggregation

Compare car parts in a car ("owns-a") versus car parts in a catalogue. The catalogue contains the parts but the parts
have an independent existence. This is a "has-a" relationship ("aggregation"). These typically have

e If A has a B, then B has an existence apart from its association with A
e If A is destroyed then B lives on
e If A is copied, B is not (shallow copy), copies of A share the same B

Example 3.18. Parts in a catalogue is an example. Ducks in a pond is another example, if you're copying a pond you're
probably not copying the ducks. In UML this looks like:

0“*
Pond < Duck

Typical implementation looks like

class Pond {
Duck *ducks[maxDucks];

3}

class Catalogue {
Part x*p;
1

3.27 Inheritance

Suppose you want to track your collection of books. Then we have

class Book {
string title, author;
int numPages;
public:
Book (...)...;

¥

But for CS books, we want to know what programming language it's about.

class CSBook {
string title, author;
int numPages;
string languages;
public:
CSBook (...)...;

3}

For comic books, we want to know who the hero is.

42

O~NOOT A~ WN -

~NOoO oW N

DO WN -

DO WN -

Fall 2013 OOP 3 C++

class ComicBook {
string title, author;
int numPages;
string hero;
public:
Hero(...){...3};

};

Creating these individual classes doesn't capture the relationship between books, CS books, and comic books. Additionally
how would we create an array with a mix of these classes. Options include

e Use a union
union bookTypes Book * b, CSBook * csb, ComicBook * cb;
bookTypes myBooks[207;

e An array of void * that points to Books, CSBooks, and ComicBooks.

There are no good solutions when we are trying to suvert the type system. CS books and comic books are kinds of books
with particualr additional features. To model this in c++ we use inheritance.
Base Class / Super Class

class Book {
string title, author;
int numPages;
public:
Book (...)...;

3

Derived classes or sub classes
class CSBook : public Book {
string language;
public:
CSBook (...)...;

3}

class ComicBook : public Book {
string hero;
public:
ComicBook (...)...;

35

Derived classes inherit fields and methods from the base class. Both CSBook and ComicBook get title, author, numPages
fieds. Any mehtod chat can be called on Book can be called on CSBook and ComicBook.

Who can see these members? title, author, and numPages are private in Book, therefore outsiders cannot see them and
nor can the subclasses. They do exist in the subclass; however, they cannot be accessed.

book part

How do we initialize a CSBook? We need to initialize the title, author, numPages and language part. Why will the
following fail

CSBook(string title, string author, int numPages, string language) : title(title), author(author),
numPages (numPages), language(language) {3};

43

Fall 2013 OOP 3 C++

1. Title, Author, and numPages are not accessable in CSBook

2. Book has no default constructor to construct superclass part
Remark 3.1. Recall: When an object is constructed

1. Space is allocated

2. Superclass part is constructed

3. Default ctors or init list for fields

4. Ctor body runs

To solve both problems invoke the book constructor in the initialization list.

CSBook(string title, string author, int numPages, string language) : Book(title, author, numPages),
language(language) {3};

If the superclass nas no default constructor you must explicity invoke a non-default constructor for the superclass in the
subclass initialization list.

There are good reasons for keeping superclass fields from subclasses. If you want to give a subclass access to certain
members use protected: visibility. Not a good idea to give subclasses access to fields, it is better to make the fields
private but provide protected accesors.

class Book {

string title, author;

int numPages;

protected:

string getTitle() const;

string getAuthor () const;

string setAuthor(string name);
public:

Book (...)...;

};

The relationship among Book, CSBook, and ComicBook is called a "is-a" relationship.
1. a CSBook is a Book
2. a ComicBook is a Book

UML:

Book

CSBook ComicBook

Now consider a method isltHeavy for books which is true

44

OO ND = wo~NOOCT R WN =

g wWwN =

Fall 2013 OOP

3 C++

1. for ordinary books >200 pages

2. for ComicBooks > 30 pages

3. for CSBooks >500 pages
class Book {

pr6£écted:

public:
bool isItHeavy(){return numPages > 200;};

+;
class ComicBook {
protected:

public:
bool isItHeavy(){return numPages > 30;};

1
Consider:
Book b("Is small book”, "A small man", 50);
ComicBook cb("A big comic”, "A different author”, 40, "Superman");

cout << b.isItHeavy() // false
<< cb.isItHeavy() // true

Because inherriteance is an "is-a" relationship we can do this:
Book b = ComicBook(... , ... , 40, ...);

Question: What is the result of b.isItHeavy?

Answer: Book: :isItHeavy executes and returns false.

Book b = ComicBook(...) tries to fit a comic book object where there is only space for a book object.

1. ComicBook is sliced (the hero field is cut off)

2. ComicBook is condensed into a book and its Book: : isItHeavy runs.

When accessing objects through pointers shaving is unnecessary and does not happen.

ComicBook cb("A big comic”, "A different author”, 40, "Superman”);
Book *x pb = &cb;
ComicBook * pcb = &cb

cout << pcb->isItHeavy() // true, because ComicBook::isItHeavy runs and 40 > 30.

<< pb->isItHeavy () // false, because Book::isItHeavy runs and 40 < 200.

The compiler uses the type of the pointer or reference to determine which isItHeavy to run and does not consider the
actual type. This means that ComicBook is only a ComicBook when a Comic pointer or reference points to it. This is

probably not what we want.

So we've seen that ComicBook only behaves as a ComicBook when pointed to by a ComicBook pointer (or reference).
Question: How do we make a ComicBook act like one when pointed to by a Book pointer? (that is, how do we ensure

45

SO ~NOoO 1k~ W

0N =

co~NO O~ WN

©

Fall 2013 OOP 3 C++

ComicBook: : isItHeavy() runs pB->isItHeavy()?)
Answer: Declare the method virtual. Virtual methods choose which class method to run based on actual type of the
object at runtime.

class Book {

virtual bool isItHeavy() { return numPages > 200; }
1
class ComicBook : public Book {

bool isItHeavy() { return numPages > 30; }

s
Then the following is how we can use this result,

ComicBook cb (___,__,40,__);

Book *pb = &cb;

Book &rb = cb;

cout << pb->isItHeavy() // true
<< rb.isItHeavy() // true
<< endl;

(ComicBook: : isItHeavy runs).

Now we can have a mixed book collection:

Book *myBooks[20];

for (int i = 0; i < 20; i ++)
cout << myBooks[i]->isItHeavy() << endl;

where isItHeavy uses Book: :isItHeavy() for Books and ComicBook: :isItHeavy() for ComicBooks, etc. This acco-
modates multiple types under one abstraction, and is known as polymorphism.

Note. This is why a function void f(istream &in) can be passed an ifstream; that is, an ifstream "is an" istream.

DANGER! Consider,

class One {
int x;
public:
One (int x = @) : x(x) {3}
1
class Two : public One {
int y;
public:
Two(int x = @, int y = @) : One(x), y(y) {3}
1

One myArray[2];

myArray[@] = Two(1,2);

myArray[1] = One(3);

What happens is that this only allocates space for two instances of One, which in memory are two blocks like [][] and
myArray[0] would allocate too much space, because it contains two ints, whereas the base only contains one, and myArray
is only allocated with enough space for multiple One objects (just one int). So we end up in memory with [1][3]. The "2"
gets overwritten. Moral of the story, never use arrays of objects polymorphically.

If you want a polymorphic array, use pointers. Like,

46

wo~NOOT R WwN -

N

Fall 2013 OOP

3 C++

One *myArray[2]; // okay :)

3.28 Destructor Revisited

class X {
int *x;
public:
X(int n) : x(new int[n]) {3}
~X() { delete [] x; 1}
1
class Y : public X {
int *y;
public:
Y(int m, int n) : X(n), y(new int [m]) {3}
~Y { delete [] y; 7}
1

X *xmyX = new Y(10, 20);
delete myX; // leaks memory - why?

Only x, (not y) is freed. it called ~X(), but not ~Y(). How can we ensure that deletion through a pointer to the superclass
won't leak memory? We declare the destructor method virtual. Always make the destructor virtual if the class is meant to
have a subclass (even if it doesn't do anything). See some examples in /lectures/c++/inheritance/examples[1-5].

3.29 Tools: The make Utility

Recall seperate compilation, for example g++ book.cc, g++ -c csbook.cc, g++ -c main.cc, and finally g++ book.o
csbook.o main.o -o main. This was our workflow for making builds. We do this because if for example we have a big

project and we only make one little change, we don't need to rebuild the entire thing all over again.

How do we keep track of what has changed and what hasn't? We use the make utility. It creates a Makefile that outlines
dependencies among components: (note this is a file, but I'm showing it here in a weird format, pointing out some things)

main: main.o book.o csbook.o

main depends on these

g++ main.o book.o csbook.o -0 main

tab how to build r;wfain from these
csbook.o: csbook.cc csbook.h book.h

g++ -c csbook.cc

book.o: book.h book.cc

g++ -c book.cc

main.o: main.cc book.cc csbook.cc book.h csbook.h
g++ -c book.cc

Then from the command line, type in make and it will build the whole project. Now suppose you change book.cc. What

happens?

$ make
g++ -c book.cc
g++ main.o book.o csbook.o -0 main

An actual file would look like this

47

O~NOOT A~ WN -

O OO ~NOOLDS WN

[y

Fall 2013 OOP 3 C++

main: main.o book.o csbook.o comichook.o
g++ main.o book.o csbook.o comicbook.o -o main

main.o: main.cc book.h csbook.h comicbook.h
g++ -c main.cc

book.o: book.h book.cc
g++ -c book.cc

csbook.o: csbook.h csbook.cc book.h
g++ -c csbook.cc

comicbhbook.o: comicbook.h comicbook.cc book.h
g++ -c comicbook.cc

It only compiles book.cc. In general, make
e builds the first target in Makefile (main)
e recursively builds the things main depends on (book.o, csbook.o, main.o)

(Dependency graph)

main.cc

main.o

/ book.cc

main book.o
book.h
csbook.o
csbook.cc
csbook.h

So book.cc changes are that book. cc is now newer than book.o (which it tells by a timestampt) and then rebuilds book.o.
Book.o is now newer than main, so we rebuild main. We can also rebuild specific targets, like $ make csbook.o. It is
common practice to put a target "clean" at the bottom to remove all binaries, which looks like

clean:
rm *.o0 main

Then to do a full rebuild, run, make clean, followed by make. Our new file,

A c++/classes/inheritance
A ct++/classes/inheritance/books.cc
main: main.o book.o csbook.o comichook.o
g++ main.o book.o csbook.o comicbook.o -o main

main.o: main.cc book.h csbook.h comicbook.h
g++ -c main.cc

book.o: book.h book.cc
g++ -c book.cc

48

11
12
13
14
15
16
17
18
19
20
21

o~NOOCT R WN =

w N

Fall 2013 OO0OP 3 C++
csbook.o: csbook.h csbook.cc book.h

g++ -c csbook.cc
comicbook.o: comicbook.h comicbook.cc book.h

g++ -c comicbook.cc
.PHONY: clean
clean:

rm *.0 main
We can generalize this with variables,

CXX = g++ (compiler's name)
CXXFLAGS = -Wall (compilers options) (-Wall turns on all warnings)
For example, we could write
book.o : book.h book.cc
${CXX} ${CXXFLAGS} -c book.cc

Shortcut. For any rule of the form X.0 : x.cc x.h b.h .., we can omit the build command and make will assume

that it is of the form
${CXX} ${CXXFLAGS} -c x.cc -0 X.0

Example 4 does this, as shown below:

CXX = g++

CXXFLAGS = -Wall

EXEC = main

OBJECTS = main.o book.o csbook.o comichook.o

${EXEC}: ${OBJECTS}
${CXX} ${CXXFLAGS} ${OBJECTS} -o ${EXEC}

main.o: main.cc book.h csbook.h comicbook.h
book.o: book.h book.cc

csbook.o: csbook.h csbook.cc book.h
comicbook.o: comicbook.h comicbook.cc book.h
.PHONY: clean

clean:
rm ${OBJECTS} ${EXEC}

The biggest challenge with makefiles is tracking and maintaining dependencies. We can get help from g++: g++ -MMD -c
csbook. ¢ will generate csbook.d which basically is a file that contains the rule that you would use in your makefile. Now

just include this in the Makefile using -include, like in this case:

CXX = g++
CXXFLAGS = -Wall -MMD
EXEC = main

49

DO WN -

O~NOOT R WN =

B OON

Fall 2013 OOP 3 C++

OBJECTS
DEPENDS

main.o book.o csbook.o comicbhook.o
${0OBJECTS:.0=.d}

${EXEC}: ${OBJECTS}
${CXX} ${CXXFLAGS} ${OBJECTS} -o ${EXEC}

-include ${DEPENDS}
.PHONY: clean

clean:
rm ${OBJECTS} ${EXEC} ${DEPENDS}

3.30 Pure Virtual Methods and Abstract Classes

class Student {
protected:
int num Courses;
public:
virtual int fees();

1
For example there are 2 kinds of Students, Co-op and Regular.

class Regular : public Student {
public:
int fees();
1
class CoOp : public Student {
public:
int fees();
1

What should we put for Student: :fees()? Not sure, every Student should be either regular or co-op. We can explicitly
give Student: :fees NO implementation:

virtual int fees() = @; // no implementation
This is a pure virtual method. A class with a pure virtual method cannot be instantiated.
Student s; // error

called an abstract class. The purpose of this is to organise subclasses.

Subclasses of an abstract class are also abstract unless they implement all pure virtual methods. Classes that can be
instantiated (that is, no pure virtual methods) are called concrete classes.

class Regular : public Student {
public:
int fees { return 700 * numCourses; 3}

};

In UML, pure virtual methods and abstract classes are identified using italics.

3.31 Inheritance and the Copy Constructor, operator=

20

O~NOOT A~ WN -

ok wnN -

N =

O~NOOT A~ WN -

Fall 2013 OOP 3 C++

class Book {

public:

Book (const Book &other) : title(other.title), ... {3}
};
class CSBook : public Book {
public:
// no copy constructor defined
};
CSBook b("Algorithms”, "CLRS", 500, "C");

CSBook ¢ = b; // copy constructor, okay b/c blindly copies all fields

To write your own copy constructor:

CSBook::CSBook (const CSBook &other) : Book(other), language(other language) {}
calls the Book copy constructor. The assignment operator works similarly,

CSBook c;
c = b;

By default, calls Book: :operator= and then goes field-for-field for CSBook part. To write your own:

CSBook &operator=(const CSBook &other) {

Book::operator = (other);
language = other.language;
return xthis;

b

Now consider the following situation, we'll create two instances of CSBook,

CSBook csb1(...), csbhb2(...);
Book *pb1 = &csbl;
Book *pb2 = &csb2;

What happens if we try to assign the value that the first pointer points to to the value that the second pointer points
to? (i.e., *pb1 = *pb2). The answer is that Book: :operator= runs. This is a problem because the Book methods
assignment operator only knows about itself, so it can only copy the Book part, not any of the CSBook features. So what
we get is partial assigment (copies only the Book part).

How can we fix this? We can try making the assignment operator virtual.

class Book {
public:
virtual Book &operator=(const Book &other) {

1
};
class CSBook : public Book {
public:
virtual CSBook &operator=(const Book &other) {

}
3}

Note. To override the method, parameter types must match. However, different return types allowed here.

o1

[y

[y

G wnN =

N =

O OWOO~NOOLS WN -

O OO ~NOOLHS WN -

Fall 2013 OOP

3 C++

But this would allow assignment of a Book object to a CSBook variable.

CSBook csb(...);

CSBook =xpcsb = &csb;

Book b(...);

Book *pb = &b;

*pcsb = xpb; // BAD (compiles though)

Also,

ComicBook chb(...);
ComicBook =*pcb = &cb;
*pcsb = *pcb; // REALLY BAD

Quick recap:
e If operator=is nonvirtual, we can get partial assignments.

e If operator=is virtual, compiler allows mixed assignments

Reccomendation: make superclasses abstract, rewrite the Book hierarchy as follows, AbstractBook as the parent of

RegularBook, CSBook, and ComicBook. Then

e make operator= protected in AbstractBook to prevent assignment through base class pointers, but make the

implementation available to subclasses
e Need at least one pure virtual method, use the destructor

Note. Even though it is purely virtual, the destructor must be implemented (but can be empty)

class AbstractBook {

string title, author;

int numPages;

protected:

AbstractBook &operator=(const AbstractBook &other);
public:

AbstractBook (...);

virtual ~AbstractBook () = 0;
1
AbstractBook::~AbstractBook () {3}

class RegularBook : public AbstractBook {
public:

RegularBook (...);

~RegularBook () ;

RegularBook &operator=(const RegularBook &other) {
AbstractBook::operator=(other); // since it is protected, not private
return xthis;

3

1

// etc. This prevents both partial assignments and mixed assignments

Note that every class has a destructor, either built-in or user-defined that counts as overriding the pure virtual destructor.

UML Relationships

92

Fall 2013

OOP

3 C++

— means association

A line with a hollow diamond on the left and an arrow on the right denotes aggregation. The left side element is
the containing class, the right hand side is the contained class.

A line with a solid diamond on the left and an arrow on the right denotes composition. The left side element is the
containing class, the right hand side is the contained class.

A # represents a protected member.

3.32 Observer Pattern

This is also known as the Public-subscribe model

e In 1 class, there is a subject / publisher idea where a subject is observable and generates data and it is the publisher
that does the observing

e In multiple classes, there is an observer / subscriber idea where the observer observes data from the subscriber and

responds to it

Example 3.19. For example, a subject could be spreadsheet cells, and the observers could be graphs (based on data in

the cells). When cells change, the graphs update. Subject need not know details of the observer.

(sorry again for the terrible quality, if anyone has a better way to draw these on the fly let me know)

dbserver
Subject
. .j . + notify()

+ attach(Observer %) e —
+ detach(Observer)
+ notifyObservers()

Concrete Observer

<
+ notify ()
Concrete Subject

+ getState() éE

Control Flow:

1. Observers are attached to subject (Subject::attach(Observer *))

N

Code:

. Subjects state is updated

. Subject notifies each observer (Subject: :notifyObservers())

. Each observer queries the state of the subject and responds (ConcretSubject: :getState())

o3

O~NOOT A~ WN -

16
17
18
19
20
21

O~NOOT A~ WN -

P wN =

Fall 2013 OOP 3 C++

class Subject {
Observer xobservers[maxObservers];
int numObservers;
public:
Subject ();
bool attach(Observer *0) // adds to obeservers (return true if successful)
bool detach(Observer xo0) // remove o from observers
void notifyObservers () {
for (int i = @; i < numObservers; i++)
observers[i]->notify();

3
virtual ~Subject() = @; // make class abstract
1
Subject::~Subject() {} // destructor must have user-defined implementation (since <>

declared)

class Observer {
public:
virtual void notify();
virtual ~Observer () {}
1

Example 3.20. Some horse races (see lectures/se/observer). The subject is the race, and it publishes the winners. The
observers are the bettors (people making bets), and they declare victory when their horse wins (or cry...).

HorseFace.h

class HorseRace: public Subject {
string lastWinner;
public:
HorseRace (string source);
~HorseRace () ;
bool runRace(); // Returns true if a race was successfully run.
string getState() { return lastWinner; }
1

then

Bettor.h

class Bettor: public Observer {
HorseRace #*subject;
const string name, myHorse;
public:
Bettor (HorseRace *hr, string name, string horse): subject(hr), name(name), myHorse (+
horse) {
hr->attach(this);
3
~Bettor () { subject->detach(this); 3}
void notify () {
string winner = hr->getState();
if (winner == myHorse)
cout << "Win!" << endl;
else
cout << "Lose!"” << endl;

o4

15
16

b wnN =

Fall 2013

OOP

3 C++

HorseRace hr;

Bettor Liam(&hr, "Liam", "Secretariat”);

// -- some other bettors --

while (hr.runRace())
hr.notifyObservers();

Simplifications:

1. Can merge Subject and ConcreteSubject

main.cc

2. If just being notified is enough, we don’t need getState()

3. If Subject == Observer then we can merge these classes. For example, cells in a grid.

3.33 Decorator Pattern

Enhance an object at runtime by decorating it, essentially by adding features or functionality. For example, on a
windowing system, we may want to start with a basic window, then add a scroll bar, then add a menu. We want to be

able to choose these enhancements at runtime.

Structure:

Component

ConcreteComponent

+ ﬂeeratiun”

A -——
+ D?ra tion

| component (ptr)

Decorator

+ operation

ConcreteDecoratorA

+ operation()

How it works:

ConcreteDecoratorB

+ operation()

e Component - defines the interface (basic operations your objects provide)

95

G~ W DO WN -

~NOoO OBk~ w N

Fall 2013 OOP

3 C++

e ConcreteComponent - implements the interface

e Decorator - inherits from Componenet and has a pointer to a Component (a Decorator "is-a" component and
"has-a" component!). Redirects Component methods to the Component pointer.

e ConcreteDecorators - inherits form the Decorator, overrides any Componenet method(s) you want to "decorate"

All Decorators inherit from abstract Component so component methods can be used polymorphically on all of them.

Consider the following class definitions:

Pizza

-
o

F component [ptr}

Decorator

| CrustAndSauce

W

StuffedCrust

Example 3.21.
Code:

Begin with a Component class, in this case it is Pizza. This class is pure virtual.

class Pizza {
public:
virtual float price()
virtual string desc()
virtual ~Pizza() {3}

I n
[SEEN]

};

Topping

Topping

Then we add our concrete class which is essentially a respresentation of the base case. A pizza is at th very least, just

some crust and sauce.

class CrustAndSauce : public Pizza {

public:
float price() { return 5.99; }
string desc() { return "Pizza"; }
3

Then we define the Decorator clsss, which is a subclass of Pizza again, and will be the superclass of multiple optional

decorators afterwards like toppings and dipping sauce.

class Decorator : public Pizza {
protected:
Pizza *component; // has-a relationship
public:

Decorator (Pizza *component);
virtual ~Decorator();

};

o6

O~NOOT A~ WN -

DO WN =

Fall 2013 OOP 3 C++

Then the following are our Decorators. Note that the only reason we have this Decorator superclass above is because we
are defining multiple optional decorators. Here are some of our decorations:

class DippingSauce: public Decorator {
std::string flavour;
public:
DippingSauce(std::string flavour, Pizza *component);
float price();
std::string description();
1
class Topping: public Decorator {
std::string theTopping;
const float thePrice;
public:
Topping(std::string topping, Pizza *component);
float price();
std::string description();
1
class StuffedCrust: public Decorator {
public:
StuffedCrust (Pizza *component);
float price();
std::string description();

3

Note. Decorator is abstract because it doesn't override the pure virtual methods in Pizza.

Consider the following main code

Pizza *p1 = new CrustAndSauce;

pl = new Topping("”"cheese”, pl1);

pl = new Topping("mushrooms”, pl1);

pl = new StuffedCrust(pl);

cout << pl->desc() << " " << pl->price() << endl;
delete pil;

The output would be: Pizza with cheese with mushrooms with stuffed crust 10.18

Note that in each case, you are decorating the previous object (pl changes after each line). You end up with a StuffedCrust
which has a pointer to a Topping, which as a pointer to another Topping, which has a pointer to the CrustAndSauce.
Calling price() results in a chain of calls that produces the right price: 5.99 4+ 0.75 + 0.75 + 2.69 (thanks to polymorphism).
Also note how the single delete statement leads to a chain of destructors being called, freeing all of the allocated memory.
Wikipedia has a nice explanation of the motivation for this design pattern: http://en.wikipedia.org/wiki/Decorator
pattern#Motivation.

Note. Make sure you think of it as a chain. The pointer to the object points to the more recently added decoration, and
each decoration has a component pointer which points to the decoration added before it. This continues recursively until
we hit the base case, which in this example was the CrustAndSauce.

3.34 Factory Method Pattern

Example 3.22. Write a video game with 2 kinds of enemies, turtles and bullets. The system randomly sends turtles and
bullets, but bullets become more frequent as you approach the end.

UML:

o7

http://en.wikipedia.org/wiki/Decorator_pattern#Motivation
http://en.wikipedia.org/wiki/Decorator_pattern#Motivation

wO~NOOT R WN =

Fall 2013 OOP 3 C++

Enemy Level

Turtle

Bullet
ulie ‘ NormalLevel ‘ Castle

We don't know exactly which Enemy comes next, so rather than calling Turtle / Bullet constructors directly, we put in a
"factory method" in level that creates enemies (Enemys). Consider the following classes for a Level, a NormalLevel, and a
Castle.

class Level {

public:
virtual Enemy x createEnemy() = 0;
1
class NormallLevel : public Level {
public:

Enemy *createEnemy () {
// creates mostly Turtles

}
};

class Castle : public Level {
public:
Enemy *createEnemy() {
// creates mostly Bullets

}
3

Level *1 = new NormallLevel;
Enemy *e = l->createEnemy();

Factories integrate well with singletons. Suppose we add another enemy type, Boss, but we only want one Boss, so every
time he appears it is the very same one. The solution is to make Boss a singleton (of the Enemy class). Then the UML is
updated to include Boss, also deriving from Enemy, taking note of the fact that it is a singleton.

Note. NormalLevel can not generate a Boss, but the Castle can generate a Boss. Meaning, Castle::createEnemy()
can produce a new Enemy or the singleton Boss instance (difference is transparent to the client).

3.35 Template Method Pattern

What subclasses to override superclasses behaviour, but some aspects must stay the same.

o8

Fall 2013 OOP 3 C++

Example 3.23. Suppose we have red turtles and green turtles, then the base clase is Turtle, which looks like

class Turtle {
public:
void Draw() {
drawHead () ;
drawShell ();
drawFeet ();

b

private:

void drawHead () {...}

void drawFeet() {...}

virtual void drawShell() = 0;

};
where it is up to the subclass to determine how to draw the shell, so we make that a pure virtual function. Then the
derived classes:

class RedTurtle : public Turtle {
void drawShell () {
// draw red shell

}
};

class GreenTurtle : public Turtle {
void drawShell () {
// draw green shell

}
3+

Subclasses can't change the way a Turtle is drawn (head, shell, feet), but they change the way the shell is drawn.

3.36 Tools: DGB (GNU Debugger: gdb)
To use this tool you must compile your code with the -g flag to enable debugging information. For example,
g++ -g myfile.cc
Then, to run the debugger:
gdb ./a.out
GDB Commands:
e r (run) - runs the program. If the program crashes, tells you which line it crashed on.
e bt (backtrace) - prints the chain of function calls that lead to the crash.
e 1 (list) - lists source code surrounding the current point of execution
e p (print) - prints the value of a variable
Breakpoints: tell gdb to stop execution at certain points so you can see what's going on.
e b main - break when entering the main function

e b myfile.cc:15 - break at line 15 in myfile.cc

29

© o ~NOOoT P~ WN =

Fall 2013 OOP 3 C++

e n (next) - run current line of the program without stepping into any functions
e s (step) - run one line of program stepping into functions as necessary
e c (continue) - continues execution from wherever you are

Check the repository for examples of this tool. (lecturs/se/tools/gdb)

3.37 Relationships Summary

e "has a" (aggregation, uses hollow diamond ¢ on UML)
e "owns a" (composition, uses solid diamond ¢ on UML)

e "is a" (public inheritance, uses triangle A in UML)

There is another relationship, called "uses for implementation" or "implementation in terms of".

Consider,

class LogFile {
ofstream out;
public:
LogFile(string name) : out(name.c_str()) {3}
virtual void log (string s) { out << s << endl; }
1

A loggedWindow class:

class Window {
LogFile 1;
public:
Window() : 1("window.log") {2}
void drawSquare () {
l.log("square");
3
void drawCircle() {...}

3+

What if you want to only log the first 100 draws? Then we want to override the virtual log method, but inheritance
creates an "is a" relationship. We don’t want this though, we want a "uses for implementation" relationship. The solution
is to use private inheritance.

class Window : private LogFile {
int count;
void log(string s) {
if (count > 100) return;
++count;
LogFile::1log(s); // call superclass method
}
public:
Window() : LogFile("window.low") {3}
void drawSquare() {
log("square");
}

void drawCircle() {

60

14
15
16

B~ N =

—
H O WOWWO~NOO A~ WN -

[y

~NOoO o1k~ wWwnN

Fall 2013 OOP 3 C++

log("circle");
}
};
To reiterate, private inheritance means that public and protected members of the base class become private in subclasses.
Private inheritance does not create an "is-a" relationship.

Example 3.24.
LogFile 1 = Window(); // this will not compile

(the inheritance relationship is not public)

In general, we prefer fields over private inheritance (meaning its better to include a data member of the superclass instead
of using private inheritance). However, use private inheritance if:

e you want to override virtul methods

e you want to access protected members

3.38 Templates

class Node {
int data;
Node =*next;

3

What if you want to store something else as data? Do we need a whole new Node class? The alternative is to use a
template; a class parameterized by type. The code for a more abstract Node template would look like:

template <typename T> class Node {
T data;
Node<T> #*next;
public:
Node (T data, Node<T> =xnext) : data(data), next(next) {}
T getData() const { return data; }
Node<T> =*getNext () const { return next; }

};

Node<int> intList = new Node<int>(1, new Node<int>(2,0));
Node<char> charList = new Node<char>(’a’, 0);

The compilor specializes templates at the source code level, before compilation begins (guarantee this will be a multiple
choice question on the exam).

The Standard Template Library (STL)

There are a large number of useful templates, for example dynamic-length arrays: vectors. For example,

#include <vector>
#indluce <iostream>
using namespace std;
vector<int> v;
v.push_back (1);
v._push_back (2);

61

OO

—
O VWO ~NOOTLD WN -

N~

Fall 2013 OOP 3 C++

There's a convenient size method for the size of a vector, so we can iterate over vectors:
for (int i = 0; i < v.size(); ++i)
cout << v[i] << endl;

v[i] // accesses i-th element (no subscript checking)
v.pop_back() - remove and return last element

This is one way to go throigh a vector, a better way is to use iterators.

Iterators

All containers in the standard library implement an iterator type, and begin and end methods. An iterator acts like a
pointer to the elements.

for (vector<int>::iterator i = v.begin(); i != v.end(); i++)
cout << *i << endl;

v.begin() points to the first element, and v.end() points to one past the last element.
Some other properties,

v.erase(v.begin()); // erases 1st element (i.e., subscript 0)

v.erase(v.begin()+3); // erases 4th element (i.e., subscript 3), using pointer <
arithmetic

v.erase(v.end()-1); // erase last element

Map

Map is for creating association lists. For example an "array" mapping strings to ints.

#include <map>

#include <string>

#include <iostream>

using namespace std;

map<string, int> m; // initilization

m["abc"] = 1; // access element with key "abc” and set value to 1
m["def"] = 4; // access element with ket "def” and set value to 4
cout << m["abc"”] << endl; // output

m.erase("abc"); // erase element in the map

if (m.count("def"”)) // © = not found, 1 = found

You can iterate over a map:

map<string, int> m;
for (map<string, int>::iterator i = m.begin(); i != m.end(); i++)
cout << i->first << " " << i->second << endl;

Note that i is a pointer to a key-value pair. It uses the sorted key order.

3.39 The Visitor Pattern

Recall that virtual methods are chosen based on runtime of the type of the object on which method is invoked. What if
we need to choose the version of a method based on the two objects? This is called double dispatch.

Example 3.25. Striking enemies with various weapons: Each combination of enemy and weapon needs its own version
of strike().

62

O~NOOT A~ WN =

Fall 2013

OOP

3 C++

Enemy

Turtle

We want something like:
virtual void strike(Enemy &e,
If in Enemy:

virtual void strike(Weapon

Weapon

Bullet

Weapon &w);

&w) ;

choose based on Enemy but not weapon. However, if in Weapon,

virtual void strike(Enemy &e);

choose based on Weapon but not Enemy.

The trick to get dispatched based on both Enemy and Weapon ("double dispatch") is to combine overloading with

overriding:

class Enemy {
virtual void strike(Weapon

3

class Weapon { // the "Visito
virtual void strike(Turtle
virtual void strike(Bullet
// one overloaded for each

3
// Then, each kind of Weapon

class Rock : public Weapon {
void strike(Turtle &t) {
//strike Turtle (t) with
3
void strike(Bullet &b) {
//strike Bullet (b) with
}
3

// similarly for class Stick
class Stick : public Weapon {
void strike(Turtle &t) {

//strike Turtle (t) with

&w) = 0;
r" class
&t) = 0;
&b) = 0;

kind of Enemy

overrides each overload:

Rock (*¥this)

Rock (*this)

Stick(*this)

63

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

OO =

wo~NOOCT kA~ WwWwN =

Fall 2013

OOP

3 C++

3}

// Each kind of ENemy delegates to the appropriate overload:

class Turtle

};

class Bullet

3

3
void strike(Bullet &b) {

//strike Bullet (b) with Stick(xthis)

b

public Enemy {

void strike(Weapon &w) {
w.strike (*this);

}

public Enemy {
void strike(Weapon &w) {
w.strike(*this);

3

Then the client using these classes would use:

Enemy *e = new Turtle(...);
Weapon *w = new Rock(...);

e-

It's important to understand exactly what happens when we run e->strike(w), so here it is:

>strike(w);

e Enemy::strike is (pure) virtual, xe is Turtle, so Turtle::strike runs

e Weapon::strike is (pure) virtual, xthis is Turtle so Weapon: : strike(Turtle &t) is the called overloaded method

e virtual method call resolves to Rock: :strike(Bullet e) (at runtime, since *w is a Rock)

The Visitor pattern can be used to add functionality to existing classes, without having to change or recompile the classes
themselves (once the pattern is in place).

Example 3.26. Add a visitor to the Book hierarchy:

class Book {

public:
virtual void accept(BookVisitor &v) {

3

v.visit(xthis);

3

// same for CSBook and ComicBook

class BookVisitor {

3}

virtual void visit(Book &b) = 0;
virtual void visit(CSBook &csb)
virtual void visit(ComicBook &cb

)

0;

0;

64

O~NOOT A~ WN -

co~NO Ol WwWwN

O~NOOT A~ WN -

Fall 2013 OOP 3 C++

Application. Tracking how many of each type of book we have.

Books are organized by author, CSBooks by language, and ComicBooks by hero. We use a mapping map<string, int>.
We could add a method to each Book class to update the map, or we could write a visitor.

class Catalogue : public BookVisitor {
map<string, int> cat;
public:
map<string, int> getCatalogue()) { return cat; }
void visit(Book &b) { cat[b.getAuthor () J++; 3}
void visit(CSBook &csb) { catl[csb.getlLanguage()]1++; }
void visit(ComicBook &cb) { catlcb.getHero()J++; 3}
3

However this won't compile. Why? Consider a linked list of alternating ints and chars.

alist.h
#ifndef __ALIST_H_

#tdefine __ALIST_H_

#include "blist.h”
class AList {
int data;
BList *next;
};
#tendif

blist.h

#ifndef __BLIST_H_
#define BLIST_H_

#include "blist.h”
class BList {

char data;

AList *next;

1
#endif

So then in our main file we have

main.cc

#include "alist.h”
#include "blist.h”

at the top, but the problem is that the BList header is included from the AList header but AList is never defined in the
BList header so AList is an unknown type when defining BList. The circular include dependencies won't compile.
Question. How much about BList does AList need to know?

Answer. Just that it exists.

So can we declare an AList without having it defined? The answer is to replace "#include blist.h" with class Blist;.
This is called a forward declaration. Similarly, for alist.h. This will compile.

3.40 Compilation Dependencies

When does a compilation dependency exist? Consider some class A in a.h, and the following seperate scenarios: (1) first a
class that inherits from A,

65

(S0~ OO RN O R G~ W N B~ N

ok wwnN =

b wnN =

—_
H O WOWWO~NOO A~ WN -

[y

Fall 2013 OOP 3 C++

#include "a.h”
class B : public A {

3

() one that has A as a data member,

#include "a.h"
class C {
A myA;

s
(111) one that has a pointer to an A,

class A;
class D {
A *xmyAp;

3
(IV) one that has a functin that uses A,

class A;
class E {
A f(A x);

};

Like | showed in the code, the first two have a compilation dependency (because you need to know how big A is in order
to know how big B is if it inherits from A), and since we have a member variable, we need again to know how big A is
in C. For the last two cases, we don’t need the know anything about A, since we know the size of a pointer, and the
function is just a prototype declaration.

The advice is, if there's no compilation dependency necessitated by the code, don't introduce one with an unnecessary
include statement. Now, in the implementations of D and E,

d.cc
#include "a.h"”
void D::f() {
myAp ->someMethod () ;
};

// at this point we need to know more about A, there IS a true compilation dependency

Do the include in the .cc file instead of the .h file where possible. Now, we can fix the BookVisitor example.

#ifndef __BOOKVISITOR_H__

#define __BOOKVISITOR_H__

//#include "book.h"
//#include "csbook.h"
//#include "comicbook.h"

class Book;

class CSBook;
class ComicBook;

66

12
13
14
15
16
17
18
19
20

O OVWO~NOOHS WN -

[y

O~NOOT P~ WN =

DO WN -

N

Fall 2013 OOP 3 C++

class BookVisitor {
public:

virtual void visit(Book &b) = 0;
virtual void visit(CSBook &csb) = 0;
virtual void visit(ComicBook &cbh) = 0;
virtual ~BookVisitor();

1

#endif

Now, let's look at something else; consider the XWindow class:

#include <X11/x1lib.h>
class XWindow {
Display *d;
Window w;
int s;
GC gc;
unsigned long colours[10];
public:

¥

With regards to all of this private data; we can look at it, but do we know or care what it all means? What if | needed to
add or change a private member of XWindow? All clients who #included it would need to recompile. It would be better
to hide these implementation details away. Enter the "pimpl" idiom (this is the worse name I've ever seen). It means "ptr
to implementation". Create a struct to hold the private data.

xwindowimpl.h

#include <X11/xlib.h>
struct XWindowImpl {
Display td;
Window w;
int s;
GC gc;
unsigned long colours[10];

3
Now in window.h, theres no need to include xlib.h, just forward declare the implementation struct.

struct XWindowImpl;
class XWindow {
XWindowImpl *pImpl; // no compilation dependency on XWindowImpl.h
public: // clients also don’t depend on XWindowImpl.h

3
Now, in window. cc,

window.h

#include "window.h"”
#include "XWindowImpl.h"”
XWindow:: XWindow(...) : pImpl(new XWindowImpl(...)) {3}

In other methods, replace the fields d, w, s, etc with pImpl->d, pImpl->w, etc... Now if you need to change XWindow's
implementation only window. cc needs to be recompiled.

67

Fall 2013 OOP 3 C++

Generalization. What if there are several possible Window implementations, say XWindow and YWindow? Make the
Impl struct a superclass.

impl
Window : =1 Windowlmpl
ptr

XWindowimpl YWindowlimpl

This is called the Bridge Pattern: pimpl idiom with subclassing to accomodate alternate implementations.

Now, to change implementations, we just need to recompile Windows constructor and then relink.

3.41 Coupling and Cohesion
These are measures of design quality.

Definition 3.5 (coupling). The degree to which distinct program modules depend on or affect each other. For example,
interaction via function calls, shared data are considered low coupling. Additionally, suppose modules have access to each
other's implementation (friends), this indicates high coupling.

Low coupling usually reflects good structure and design.

Definition 3.6 (cohesion). The degree to which elements of a module belong together. That is, how much they cooperate
to achieve a common goal. For example, <algorithm> (the library) has a common theme, but otherwise it's a bunch
of unrelated algorithms; this is an example of low cohesion. Another example is <string> which is highly cohesive -
elements work together to support C++ strings.

High cohesion usually implies readability, and maintainability.

The goal is to have low coupling and high cohesion.

3.42 Casting
In C:

Node n;
int *i = (int *) &n; // C-style cast

It forces C++ to treat a Node* as an intx. Try to avoid using C-style casts in C++.

In C4++;

68

Fall 2013 OOP 3 C++

1. static_cast

— use this for "sensible" casts, when you know you have an object of a specific type
— no runtime checking is performed here
— for example,
1 double d = 0;
2 int i = static_cast<int> (d);
another example,
1 Book *b = new CSBook(...);
2 CSBook xcsb = static_cast<CSBook*>(b);
You are taking responsibility that b actually points to a CSBook.

2. reinterpret cast

— allows you to cast between any arbitrary types
— disregards type safety (unsafe, avoid or use at own risk)
— for example,

1 Vector v;
2 Student *s = reinterpret<Student *>(&v);

3. const_ cast

— allows you to convert between const and non-const
— can "cast away const"
— for example

1 void g(int *p); // doesn’t change *p
2 void f(const int *p) {

3 g(const_cast<intx>(p));

4 3

4. dynamic_cast
Is it safe to convert a Book* to a CSBook*? For example,

1 Book *pb;

N

3 static_cast<CSBook*>(pb)->getlLanguage(); // safe?

— depends on what pb actually points to
— better to do a tentative cast
— for example,

1 Book *pb = ...;
2 CSBook *pcsb = dynamic_cast<CSBookx*>(pb);
3 // dynamic_cast checks the dynamic type of the argument

If the cast works, (pb points to CSBook, or a subclass of it), pcsb points to the object. If the cast fails, pcsb
will be NULL. So we can do checks,

69

bk wWwN =

~N O

Fall 2013 OO0P 3 C++

1 if (pcsb) cout << pcsb->getLanguage() << endl;

2 else cout << "Not a CS Book” << endl;
You cna use dynamic casting to make decisions based on an objects runtime type. (RTTI = runtime type
information).

1 if (dynamic_cast<ComicBookx>(b))

2 else if (dynamic_cast<CSBook#*>(b))

3 else
Code like this is highly coupled to the Book class hierarchy and might indicate poor design. It is better to use
virtual functions or write a visitor (if possible). Dynamic casting aldo workd with references,

1 CSBook csb(...);

2 Book &b = csb;

3 CSBook &csb2 = dynamic_cast<CSBook&>(b);

if b is a reference to a CSBook then csb2 is a reference to the same CSBook. If not...? That's a problem (no
such thing as a null reference).

3.43 Exceptions

What happens when things go wrong in C++7

P OOND R

dynamic_cast on reference fails
new fails

vector: :at goes out of bounds (note that at is the checked version of vector::operator[]). For example,

vector<int> v;
v.push_back (1);
v.push_back(0);
vout << v.at(2); // out of range

What should happen? The problem is that

— vector’'s code can detect the error but doesn’t know what to do about it

— client can respond but can't detect the error

The solution is to raise an exception.

So what happens? By default, execution stops. But, we can write handlers to catch exceptions and deal with them,
allowing execution to continue. For example, vector: :at throws exception std: :out_of_range when it fails. We can
handle it as follows:

#include <stdexcept>
using namespace std;

try {

cout << v.at(2) << endl; // map statements that might lead to exceptions in the try <

block

} catch (out_of_range) {
cerr << "range error"” << endl;

}

Now consider our own example:

70

O 0O ~NO O WN -

B W N = N

B WN -

o wnN =

Fall 2013 OOP 3 C++

void f() {
throw out_of_range("f"); // raise an exception
3
void g() { fO; 1}
void h() { gOO; 1}
int main () {
try { hO; 32
catch(out_of_range) { ... }
3

What happens: main calls h, h calls g, g calls f, f throws out_of_range;

e control goes bck through the call chain (unwinds the stack) until a handler is found - in this case, all the way back
to main.

e the exception is handled in the catch block
e if no handler in the entire call chain, the program terminates

So what is out_of_range? It's a class.

throw out_of_range("f") // invokes its constructor with arg "f" (auxillary info) and <>
throws it

To examine that info:

catch (out_of_range ex) { // like param declaration
cout << ex.what() << endl;

}
A handler can do part of the recovery and throw another exception for further handling:

catch (SomeError s) {

throw someOtherError("...");

3

or even throw the same exception again:
catch (SomeError s) {

throw;
}

Note. s may be a subtype of SomeError. Then,
e throw; - throws the same exception retaining the actual type of s.
e throw s; - throws a new exception of type SomeError

Also, catch exceptions to avoid slicing.

A handler can act as a "catch-all":

try {

} catch (...) { // catches all exceptions (note these literally are ellipses)

3

71

OO N =

AW ND R BN =

SO

wo~NOOT R WN -

e e el
DO P~ WN - OO

17
18
19

Fall 2013

OOP

3 C++

We can even chain multiple handlers:

try {...}

catch (SomeError) {...}

catch (Some OtherError) {...}
catch(...) {...}

The first handler (only) accepts the exceptions.

3.44 Exceptions & Polymorphism

Suppose you have a DerivedExn class that inherits from a BaseExn class. Then,

try { throw DerivedExn(); 3}

catch (BaseExn ex) { // slicing (catching by value)
throw ex; // slicing (even if caught by reference)

b

To avoid slicing, catch by reference and use throw; (no arguments) to throw original exception as-is.

try { throw DerivedExn(); 3}
catch (const BaseExn &ex) {
throw;

}

Note. try {

DerivedExn d;

BaseExn &b = d;

throw b;
} catch (DerivedExn&) {...}
catch (BaseExn&) {...}

The BaseExn handler runs (the static type of the exception thrown determines the handler).

You can throw anything you want! (don't have to throw objects).

Example 3.27. lectures/c++/exceptions/exfib.cc

void fib(int n) {

if (n == 0) throw 0;
if (n == 1) throw 1;
try {

fib(n-1);
3
catch (int a) {

try {

fib(n-2);
3

catch (int b) {
throw (a + b);
3
3
3

int main() {
int n;
while (cin >> n) {

72

20
21
22
23
24
25
26
27

co~NOoOOolThWwWwnN -

= e
N = O ©

Fall 2013 OOP 3 C++

try {
fib(n);
3
catch (int m) {
cout << m << endl;
3
3
3

This is a recursive Fibonacci by throwing / catching ints. However, regular fibonacci is much faster.
Good Practice. Define exception classes, or use appropriate existing ones, to denote your error cases.

Example 3.28.

class BadInput {};

try {
while (true) {
int n;
if (!(cin >> n)) {
throw BadInput();

}

3
} catch (BadInput &) {
cerr << "Input not well formed” << endl;

b

3.45 Some Standard Exception Classes

e domain_error - for errors in mathematical domains (for eample, sqrt(-1))

length_error - attempting to resize strings or vectors that are too big

e bad_alloc - trying to allocate more memory than you have (e.g., new)
e bad_cast - invalid cast on reference
e ios_base::failure - 1/0O errors (e.g., cin.exceptions(istream::failbit) will throw exception on fail())

Example 3.29. Application of exceptions and a good use of dynamic casting: (recall : virtual operator=)

CSBook &CSBook::operator=(const Book &other) {
if (this == &other) return xthis;
CSBook &csbother = dynamic_cast<CSBook &>(other); // throws exn if fails
title = csbother.title;

language = csbother.language();
return *this;

73

SO WN =

Fall 2013 OOP 3 C++

3.46 Exception Safety

Consider:

void f() {
MyClass *p = new MyClass;
MyClass q;

g0);
delete p;

}

What if g raises an exception? During stack-unwinding, all stack-allocated data is cleaned up (destructors run, memory
reclaimed). But heap-allocated memory is not destroyed. Therefore if g throws, p is leaked. We could wrap g() in a
try-catch and put a delete p; in the handler, but that is tedious and error-prone.

Some languages have a "finally" clause for cleanup code - not in C++. When an exception is raised in C++, the only
guarantee is that destructors for stack-allocated data will run.

Therefore, use stack-allocated data with destructors as much as possible. But, never let a destructor throw an exception.
If the destructor runs during stack-unwinding while dealing with another exception, you now have two active unhandled
exceptions, and your program will abort.

C++ programming idiom : RATI (Resource Acquisition Is Initialization).

Every resource should be wrapped in a stack-allocated object whose job it is to release it. Resources are acquired during
initialization, and released during destruction. For example, in files

ifstream f("file"); // acquiring the resource "file" = initializing the object f
The file is guaranteed to be released when f is popped from the stack (f's destructor runs).
Can this be done with dynamic memory? Yes.

e class auto_ptr<T>

— takes a Tx in the constructor
— deletes the pointer in the destructor

— in between: can dereference just like a regular pointer

Example 3.30.
1 auto_ptr<MyClass> p (new MyClass);

— if exception is raised, then this will be destroyed during stack unwinding.

— otherwise it will be destroyed when p goes out of scope

auto_ptr copy semantics

e ownership gets passed on to the target (don't want to delete same pointer twice!)

e original owner becomes invalid (NULL)

Example 3.31.

74

~NOo b WwWwN

Fall 2013 OOP 3 C++

auto_ptr<MyClass> gq = p;

e auto_ptr was designed to help avoid memory leaks in the presence of exception handling, not as a general purppose
smart pointer.

3.47 How Virtual Methods Work

First, how are objects laid out in memory?
e data members stored in order of declaration
e methods are stored as ordinary functions, seperate from objects

Example 3.32.

Vector v(1,2);
cout << sizeof(v); // 8 (space for 2 ints)

but if Vector has virtual method(s), sizeof(v) increases to 16. Why the extra 8 bytes? Recall that

Book
Book *pb = new<{ CSBook
ComicBook

where isItHeavy() is a virtual method.

e choice of which implementation to run is based on type of actual object at runtime (compiler can’t know in
advance) How?

For each class with virtual methods, the compiler creates a table of function pointers called the vtable. Each instance of
the class stores a pointer (vptr) to this table.

Example 3.3B. class Book {
string title, author;
int numPages;
public:
string getTitle();
virtual book isItHeavy();

3

75

Fall 2013

OooP 3 C++
CSBook's viabl CSBook::isltH
Book's viable Book::isltHeavy avie isltHeavy
. — >
isltHeavy [——>
1
AnotherBook csb
CSBook csb nother
title title title
author
author author
numPages
numPages numPages
anotherField
> v language
vptr
vptr
isltHeavy |

For each virtual method, the class’ vtable has a pointer to the most derived version of the method accessible to the class.

Calling a virtual fu

nction (these all happen at runtime):

e follow objects vptr to vtable

e fetch pointer to actual method body

e follow function pointer and call the function

Therefore virtual function calls incur a small overhead cost.

Concretely, how should objects be laid out in memory? This is compiler-dependent.

vptr

o g++:

where the dots mean "fields".

Example 3.34.

class A {

virtual
35

class B

~NOo O W N

3

int a, c;

void f();

public A {

int b, d;

vptr

vptr a

c
c b
d

So a B looks like an A if you ignore the last two fields.

76

co~NOOT P WwN

O~NOOT A~ WN -

© O ~NOOoT P~ WN =

Fall 2013 OOP

3.48 Multiple Inheritance

A class can inherit from more than one class.

class A {
int a;

};

class B {
int b;
}

class C : public A, public B {
int c;
void f() ¢
cout << a << b < < ¢c;
3
1

The main challence is explicit repeated inheritance. For example is we have a class D that inherits from other classes B

and C which both inherit themselves from A. So,

// A A

/] A A

/] |

// B C

/] A

// \ /

// D

class D : public B, public C {
int d;
void g() {

cout << a; // which a? (ambiguous, compiler rejects)
3
1

We need to specify B::a or C: :a.

Note. If a were public,

D myD;
myD.B::a // or myD.C::a

But, if B and C inherit from A, should D have one A part ot two (default)?

(i.e., should B::a, C::a be the same a, or different a's?)

What if we want to employ virtual inheritance?

/7 A

// 8

// / \

// B C

// A A

// \ /

!/ D

class B : virtual public A { ... 3};
class C : virtual public A { ... 3};

7

N

Fall 2013 OOP 3 C++

This is sometimes known as the "deadly diamond", and sometimes programmers dress up as it for halloween.

Example 3.35. 10 Stream hierarchy: basically iostream is like D in our example, and ostream and istream are like B
and C, and ios like A. (do a Google search)

How would D be laid out? Maybe like this?

vptr
A fields
B fields
C fields
D fields

however the top three don't look like a C and the top two doesn't look like a B. The object should look the same whether
pointed to by A%, B*, Cx, Dx. This might work for Bx but not Cx. What g++ does:

vptr
B fields

vptr
C fields
D fields

vptr
A fields

then
e Bx points to the top
e Dx points to the top
e Cx points to the second vptr entry
e Ax points to the third vptr entry

The diagram doesn't look like all of A, B, C, D simultaneously, but pieces of it look like A's, B's, C's, D's. B needs to be
laid out so that we can find its A part, but how?

Solution. Store an offset to base class object stored in its part of the vtable. This means pointer assignment among A,
B, C, D could actually change the address stored in the pointer.

Example 3.36.
D *d;

A *a = d; // changes the address

Casting under multiple inheritance may also change the value of the pointer, except reinterpet_cast will not.

See: lectures/c++/vtable.

78

g wWwN =

B OON R

N =

1
2

Fall 2013 OOP 3 C++

3.49 Return Value Optimization (RVO)

Consider:

class C { ... 3};

c f() { return C(); }

int main () {
Cc="FQO;

3

Theoretically:
1. f() calls C's default constructor
2. C object is copied to a temporary object in main's stack frame when f returns
3. cis initialized via copy constructor (with the temporary object)

So, we have 1 default constructor and 2 copy constructors.

In practice: Just the default constructor runs. Why? These two temporaries are only for shuffling data around and are
otherwise unobservable.

The compiler has special permission to skip the copy constructors and let f write its return value directly into ¢, even
if the copy constructor has been implemented and even if it has observable side effects - this is called return value
optimization (RVO) (if you wan't this, compile with the -fno-elide-constructors flag).

For assignment operators, there is no such special license. Old data would need to be properly destroyed. So we can't
avoid copying:

int main() {
Cc=f(; // default constructor (RVO)

c = f(); // default constructor + operators=
}
Now, suppose C objects are large:
class C {
int xa; // array of 100’s of ints, say
};

Returning a C object from f by value (maybe copies to a tempt, then) copies to the receiving variable - expensive. Can
we avoid this expense? In C++11, yes, with rvalue refs.

The idea: rather than copying something that is going to be destroyed, just point to it and don't destroy it. Assignment
in C++ has the left side of the '=" operator as being an Ivalue and the right hand side an rvalue.

In C++03, a reference (&) must always refer to an Ivalue (unless const). In C+11 an rvalue reference(88&) lets you bind a
reference to an rvalue - a temp object.

X&& is an rvalue reference to type X. This provides a way to distinguish between temp and non-temp objects. So you
could write

C& c::operator=(C&& other) {
delete [] a; // releases current data

79

SOl W

Fall 2013 OOP 3 C++

a = other.a; // point at other’s data rather than deep-copying it
other.a = NULL; // so that the data won’t be destroyed when other’s destructor runs
return xthis;

b

This is called a move assignment operator since we are effectively moving the data rather than copying it.
Other C++ goodies:

e fixed nested templated

Example 3.37. In C++03 we need a space here: vector<vector<int> > v otherwise it's interpeted as the bitshift
operator.

e additions to std library
e automatic type deduction

e anonymous functions ("lambdas")

Everything discussed in class is fair game on the final, emphasis on the second half of the course, focus on fundamentals.

80

	Introduction
	The Linux Shell
	Linux File System
	Wildcard Matching / Globbing
	Variables
	Quoting
	Input/Output Redirection
	Pipes
	Command Substitution
	Grep - pattern matching in text files
	Permissions
	Shell Scripts
	Testing

	C++
	Introduction - Hello World
	C++ Input & Output
	Strings
	I/O Manipulation
	Working with files
	Default Function Parameters
	Overloading
	Declaration Before Use
	Pointers
	Arrays
	Constants
	Dynamic Memory Allocation
	Passing Parameters
	References
	Operator Overloading
	The Stack and the Heap
	The Preprocessor
	Seperate Compilation
	Classes
	Arrays of Objects
	Seperate Compilation for Classes
	Consts Again
	SE Topic - Design Patterns
	SE Topic - System Modelling
	Composition of Classes
	Aggregation
	Inheritance
	Destructor Revisited
	Tools: The make Utility
	Pure Virtual Methods and Abstract Classes
	Inheritance and the Copy Constructor, operator=
	Observer Pattern
	Decorator Pattern
	Factory Method Pattern
	Template Method Pattern
	Tools: DGB (GNU Debugger: gdb)
	Relationships Summary
	Templates
	The Standard Template Library (STL)
	Iterators
	Map

	The Visitor Pattern
	Compilation Dependencies
	Coupling and Cohesion
	Casting
	Exceptions
	Exceptions & Polymorphism
	Some Standard Exception Classes
	Exception Safety
	auto_ptr copy semantics

	How Virtual Methods Work
	Multiple Inheritance
	Return Value Optimization (RVO)

