
Low-Light Light Field (LF)
Restoration

Snehal Singh Tomar
Aqil K H

Subhankar Chakraborty

June 12, 2021

The Story So Far...

● A LF camera offers unique advantages such as post-capture refocusing &

aperture control, but low-light conditions severely limit these capabilities

● We need to decode raw LFs captured using lenslet based plenoptic cameras

● This problem has been successfully addressed in [1], and its MATLAB code is

publicly available

● Restoring LFs captured in low-light is not possible with single-frame low-light

enhancement techniques designed for smartphones and DSLR cameras

[1] Dansereau, Donald G., Oscar Pizarro, and Stefan B. Williams. "Decoding, calibration and
rectification for lenselet-based plenoptic cameras." Proceedings of the IEEE conference on
computer vision and pattern recognition. 2013.

Stage I
Decoding LFs using Python

● PlenoptiCam [2] is an open-source software for scientific light field

computation

● Completely Python based and comes with a GUI

● It has the ability to calibrate an image taken by a plenoptic camera and extract

sub-aperture images or synthetically focused photographs

● Our Implementation using plenopticam can be found here.

PlenoptiCam

[2] Hahne, Christopher, and Amar Aggoun. "PlenoptiCam v1.0: A light-field imaging framework."
arXiv preprint arXiv:2010.11687 (2020).

https://github.com/snehalstomar/Lf-project

Plenopticam V/S MATLAB LF toolbox

IMG_1219.lfr from the L3F Dataset - Decoded and
Post-Processed using Plenopticam2

IMG_1219.lfr from the L3F Dataset - Decoded using
MATLAB LF Toolbox1

Plenopticam V/S MATLAB LF toolbox

IMG_1468.lfr from the L3F Dataset - Decoded and
Post-Processed using Plenopticam2

IMG_1468.lfr from the L3F Dataset - Decoded using
MATLAB LF Toolbox1

Plenopticam V/S MATLAB LF Toolbox

IMG_1544.lfr from the L3F Dataset - Decoded and
Post-Processed using Plenopticam2

IMG_1544.lfr from the L3F Dataset - Decoded using
MATLAB LF Toolbox1

Stage II
Rectifying Low-Light LFs, decoded using Plenoticam based

Python Implementation

L3FNet: Introduction

[3] Lamba, Mohit, Kranthi Kumar Rachavarapu, and Kaushik Mitra. "Harnessing multi-view perspective
of light fields for low-light imaging." IEEE Transactions on Image Processing 30 (2020): 1501-1513.

● L3FNet [3] is a deep neural network for Low-Light Light Field (L3F) restoration

● It not only performs visual enhancement of each LF view but also preserves

the epipolar geometry across views

● This is achieved by adopting a two-stage architecture
○ Stage-I looks at all the LF views to encode the LF geometry

○ This encoded information is then used in Stage-II to reconstruct each LF view

● Four LFs of different scenes, with different light settings varying from optimal

to extreme low-light are captured using the Lytro Illum Camera to generate a

dataset

We use a modified version of the below architecture

Previous Results

● The training data contains 18 pairs of well lit and their corresponding L3Fs

● The test set contains 8 pairs of well lit and their corresponding L3Fs

● A view from the ground-truth image from each scene is compared to the

corresponding view in the rectified L3F image

● The image on the left is the rectified image after training L3FNet for 8000

iterations, and the one on the right is the ground-truth image

● Note: All images so far were the saved JPEGs using MATLAB

Restored Image Ground-Truth Image

Ground-Truth ImageRestored Image

Experiment Ideas

1. Perform rectification on L3F images with preprocessing without saving them

as JPEG

2. Perform rectification on L3F images after removing all preprocessing without

saving them as JPEG

3. Perform rectification on L3F images saved as JPEG after being decoded by

MATLAB

4. Perform rectification on images which have not even been demosaiced

5. Try with different combinations of the loss functions

Implementation Details

● We are using a variant of L3FNet

● We restore only the central 3×3 views

● Combinations of losses used
○ L1 loss

○ L1 loss and gradient loss

● The model did not train well upon incorporating the perceptual loss

● Trained for 20,000 iterations on GTX 1080 or GTX 1080 Ti

Decoded L3F ViewDecoded L3F View

Experiment 1

● Post-processing (auto white balance, color correction, contrast equalization)

performed on both the low-light as well as the well-lit decoded LFs

● The decoded LFs are saved as NumPy arrays instead of JPEG images to

preserve the complete data

● Loss used is the L1 loss

● Quantitative Results
○ PSNR: 17.34235191345215

○ SSIM: 0.4914553463459015

Restored Image Ground-Truth Image

Ground-Truth ImageRestored Image

Experiment 2

● Post-processing (auto white balance, color correction, contrast equalization)

performed only on the well-lit decoded LFs

● The decoded LFs are saved as NumPy arrays instead of JPEG images to

preserve the complete data

● Loss used is the L1 loss

● Quantitative Results
○ PSNR: 17.882638931274414

○ SSIM: 0.521033525466919

Restored Image Ground-Truth Image

Ground-Truth ImageRestored Image

Experiment 3

● Post-processing (auto white balance, color correction, contrast equalization)

performed on both the low-light as well as the well-lit decoded LFs

● The decoded LFs are saved as JPEG images

● Loss used is the L1 loss

● Quantitative Results
○ PSNR: 17.960960388183594

○ SSIM: 0.5644765496253967

Restored Image Ground-Truth Image

Ground-Truth ImageRestored Image

Decoded L3F ViewDecoded L3F View

Experiment 4

● Post-processing (auto white balance, color correction, contrast equalization)

performed only on the well-lit decoded LFs

● The decoded LFs are saved as NumPy arrays instead of JPEG images to

preserve the complete data

● Loss used is the L1 loss along with the Perceptual loss

● Quantitative Results
○ PSNR: 5.234211444854736

○ SSIM: 0.12238209694623947

Experiment 5

● Post-processing (auto white balance, color correction, contrast equalization)

performed on both the low-light as well as the well-lit decoded LFs

● The decoded LFs are saved as JPEG images

● Loss used is the L1 loss along with the Perceptual loss

● Quantitative Results
○ PSNR: 5.286728382110596

○ SSIM: 0.08754804730415344

Experiment 6

● Post-processing (auto white balance, color correction, contrast equalization)

performed on both the low-light as well as the well-lit decoded LFs

● The decoded LFs are saved as NumPy arrays instead of JPEG images to

preserve the complete data

● Loss used is the L1 loss along with the Gradient loss

● Quantitative Results
○ PSNR: 17.932992935180664

○ SSIM: 0.5531979203224182

Restored Image Ground-Truth Image

Ground-Truth ImageRestored Image

Experiment 7

● Post-processing (auto white balance, color correction, contrast equalization)

performed only on the well-lit decoded LFs

● The decoded LFs are saved as NumPy arrays instead of JPEG images to

preserve the complete data

● Loss used is the L1 loss along with the Gradient loss

● Quantitative Results
○ PSNR: 8.891327857971191

○ SSIM: 0.35679861903190613

Restored Image Ground-Truth Image

Ground-Truth ImageRestored Image

Experiment Metrics (Stage II)
Experiment Post Processing

Applied To..
Decoded Images

saved as..
Loss function
used during

training

PSNR(dB) SSIM

Expt. 1 Inputs, GTs .npy files L1 17.3424 0.4915

Expt. 2 GTs .npy files L1 17.883 0.521

Expt. 3 Inputs, GTs .jpeg files L1 17.96 0.564

Expt. 4 GTs .npy files L1 + Perceptual 5.234 0.122

Expt. 5 Inputs, GTs .npy files L1 + Gradient 5.287 0.088

Expt. 6 Inputs, GTs .npy files L1 + Gradient 17.933 0.553

Expt. 7 GTs .npy files L1 + Gradient 8.891 0.357

Observations and Inferences

● The network does not train upon incorporating Perceptual loss.

● Training when L3F decoded images are not post-processed gives better

PSNR than those being post-processed

● Training on images saved as JPEG gives marginally better PSNR and SSIM

than training on the entire data without any quantization

● Adding just the gradient loss does not seem to help much over using just the

L1 loss. Rather, it does not train properly in one case.

Stage III
Rectifying LFs decoded using our Python Implementation without performing

Demosaicing and other post processing

Demosaicing Removal

● Changed the source code of Plenopticam to decode LFs without demosaicing

● Demosaicing removed only for the L3Fs and saved as NumPy arrays

● The decoded array is split into 4 channels corresponding to the ‘rggb’ CFA

● The array after passing through the model is upsampled at the end using

bilinear-interpolation

● Rest of the model architecture is the same as in the previous experiments

● Trained for 100,000 iterations instead of 20,000 as in the previous cases

Decoded L3F View Decoded L3F View

Experiment 8

● Demosaicing removed from the L3Fs

● Post-processing (auto white balance, color correction, contrast equalization)

performed on the well-lit decoded LFs

● The decoded LFs are saved as NumPy arrays instead of JPEG images to

preserve the complete data

● Loss used is a combination of L1, Gradient, DFT and Perceptual loss

● Quantitative Results
○ PSNR: 12.430688858032227

○ SSIM: 0.4996431767940521

Restored Image Ground-Truth Image

Ground-Truth ImageRestored Image

Experiment 9

● Demosaicing removed from the L3Fs

● Post-processing (auto white balance, color correction, contrast equalization)

performed on the well-lit decoded LFs

● The decoded LFs are saved as NumPy arrays instead of JPEG images to

preserve the complete data

● Loss used is a combination of L1 and Gradient loss

● Quantitative Results
○ PSNR: 7.4789557456970215

○ SSIM: 0.2725219428539276

Restored Image Ground-Truth Image

Ground-Truth ImageRestored Image

Experiment Metrics (Stage III)

Experiment Post Processing
Applied To..

Decoded Images
saved as..

Loss function used
during training

PSNR(dB) SSIM

Expt. 8 GTs .npy files L1+Gradient+DFT
+Perceptual

12.43 0.499

Expt. 9 GTs .npy files L1+Gradient 7.479 0.273

Inferences

● The perceptual loss function seems to be a better objective function for the

rectification of non-demosaiced and decoded L3F images as compared to

rectification of demosaiced and decoded L3F images using the

L3Fnet-variant. It is actually hard to infer why this is happening.

● The information lost due to JPEG compression does not seem to make a

considerable difference. This may be attributed to significant features being

learnt by the network irrespective of the slight input compression.

Inferences

● The halo effect observed in rectified non-demosaiced L3Fs may be due to

random sampling of pixels taking place during training.

● At this stage, we can’t affirm whether non-demosaiced L3Fs can be better

rectified by the L3Fnet-variant or not.

● The fact that Plenopticam decoded L3Fs are harder to train can be attributed

to the fact that although they are brighter than their corresponding MATLAB

decoded L3Fs, they contain a lot of noise and artefacts which might be

throwing the model off.

Future Work

● Debug and make the training using perceptual loss work properly

● Try with different permutations of the input and ground truth, choosing

between the MATLAB and Plenopticam decoded LFs to check where the

training issue is coming from

● While training for decoded L3Fs without demosaicing, take care of the

sampling pattern to maintain the correct CFA configuration

● Explore the prospect of eliminating the python code used for generating

decoded images which are being given as training data to the L3Fnet-variant

Questions?

