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The Story So Far...

● A LF camera offers unique advantages such as post-capture refocusing & 

aperture control, but low-light conditions severely limit these capabilities

● We need to decode raw LFs captured using lenslet based plenoptic cameras

● This problem has been successfully addressed in [1], and its MATLAB code is 

publicly available

● Restoring LFs captured in low-light is not possible with single-frame low-light 

enhancement techniques designed for smartphones and DSLR cameras

[1] Dansereau, Donald G., Oscar Pizarro, and Stefan B. Williams. "Decoding, calibration and 
rectification for lenselet-based plenoptic cameras." Proceedings of the IEEE conference on 
computer vision and pattern recognition. 2013.



Stage I
Decoding LFs using Python



● PlenoptiCam [2] is an open-source software for scientific light field 

computation

● Completely Python based and comes with a GUI

● It has the ability to calibrate an image taken by a plenoptic camera and extract 

sub-aperture images or synthetically focused photographs

● Our Implementation using plenopticam can be found here. 

PlenoptiCam

[2] Hahne, Christopher, and Amar Aggoun. "PlenoptiCam v1.0: A light-field imaging framework." 
arXiv preprint arXiv:2010.11687 (2020).

https://github.com/snehalstomar/Lf-project


Plenopticam V/S MATLAB LF toolbox

IMG_1219.lfr from the L3F Dataset - Decoded and 
Post-Processed using Plenopticam2

IMG_1219.lfr from the L3F Dataset - Decoded using 
MATLAB LF Toolbox1



Plenopticam V/S MATLAB LF toolbox

IMG_1468.lfr from the L3F Dataset - Decoded and 
Post-Processed using Plenopticam2

IMG_1468.lfr from the L3F Dataset - Decoded using 
MATLAB LF Toolbox1



Plenopticam V/S MATLAB LF Toolbox

IMG_1544.lfr from the L3F Dataset - Decoded and 
Post-Processed using Plenopticam2

IMG_1544.lfr from the L3F Dataset - Decoded using 
MATLAB LF Toolbox1



Stage II
Rectifying Low-Light LFs, decoded using Plenoticam based 

Python Implementation 



L3FNet: Introduction

[3] Lamba, Mohit, Kranthi Kumar Rachavarapu, and Kaushik Mitra. "Harnessing multi-view perspective 
of light fields for low-light imaging." IEEE Transactions on Image Processing 30 (2020): 1501-1513.

● L3FNet [3] is a deep neural network for Low-Light Light Field (L3F) restoration

● It not only performs visual enhancement of each LF view but also preserves 

the epipolar geometry across views

● This is achieved by adopting a two-stage architecture
○ Stage-I looks at all the LF views to encode the LF geometry

○ This encoded information is then used in Stage-II to reconstruct each LF view

● Four LFs of different scenes, with different light settings varying from optimal 

to extreme low-light are captured using the Lytro Illum Camera to generate a 

dataset



We use a modified version of the below architecture



Previous Results

● The training data contains 18 pairs of well lit and their corresponding L3Fs

● The test set contains 8 pairs of well lit and their corresponding L3Fs

● A view from the ground-truth image from each scene is compared to the 

corresponding view in the rectified L3F image

● The image on the left is the rectified image after training L3FNet for 8000 

iterations, and the one on the right is the ground-truth image

● Note: All images so far were the saved JPEGs using MATLAB



Restored Image Ground-Truth Image



Ground-Truth ImageRestored Image



Experiment Ideas

1. Perform rectification on L3F images with preprocessing without saving them 

as JPEG

2. Perform rectification on L3F images after removing all preprocessing without 

saving them as JPEG

3. Perform rectification on L3F images saved as JPEG after being decoded by 

MATLAB

4. Perform rectification on images which have not even been demosaiced

5. Try with different combinations of the loss functions



Implementation Details

● We are using a variant of L3FNet

● We restore only the central 3×3 views

● Combinations of losses used
○ L1 loss

○ L1 loss and  gradient loss

● The model did not train well upon incorporating the perceptual loss

● Trained for 20,000 iterations on GTX 1080 or GTX 1080 Ti



Decoded L3F ViewDecoded L3F View



Experiment 1

● Post-processing (auto white balance, color correction, contrast equalization) 

performed on both the low-light as well as the well-lit decoded LFs

● The decoded LFs are saved as NumPy arrays instead of JPEG images to 

preserve the complete data

● Loss used is the L1 loss

● Quantitative Results
○ PSNR: 17.34235191345215 

○ SSIM: 0.4914553463459015



Restored Image Ground-Truth Image



Ground-Truth ImageRestored Image



Experiment 2

● Post-processing (auto white balance, color correction, contrast equalization) 

performed only on the well-lit decoded LFs

● The decoded LFs are saved as NumPy arrays instead of JPEG images to 

preserve the complete data

● Loss used is the L1 loss

● Quantitative Results
○ PSNR: 17.882638931274414  

○ SSIM: 0.521033525466919



Restored Image Ground-Truth Image



Ground-Truth ImageRestored Image



Experiment 3

● Post-processing (auto white balance, color correction, contrast equalization) 

performed on both the low-light as well as the well-lit decoded LFs

● The decoded LFs are saved as JPEG images

● Loss used is the L1 loss

● Quantitative Results
○ PSNR: 17.960960388183594 

○ SSIM: 0.5644765496253967 



Restored Image Ground-Truth Image



Ground-Truth ImageRestored Image



Decoded L3F ViewDecoded L3F View



Experiment 4

● Post-processing (auto white balance, color correction, contrast equalization) 

performed only on the well-lit decoded LFs

● The decoded LFs are saved as NumPy arrays instead of JPEG images to 

preserve the complete data

● Loss used is the L1 loss along with the Perceptual loss

● Quantitative Results
○ PSNR: 5.234211444854736

○ SSIM: 0.12238209694623947



Experiment 5

● Post-processing (auto white balance, color correction, contrast equalization) 

performed on both the low-light as well as the well-lit decoded LFs

● The decoded LFs are saved as JPEG images

● Loss used is the L1 loss along with the Perceptual loss

● Quantitative Results
○ PSNR: 5.286728382110596 

○ SSIM: 0.08754804730415344 



Experiment 6 

● Post-processing (auto white balance, color correction, contrast equalization) 

performed on both the low-light as well as the well-lit decoded LFs

● The decoded LFs are saved as NumPy arrays instead of JPEG images to 

preserve the complete data

● Loss used is the L1 loss along with the Gradient loss

● Quantitative Results
○ PSNR: 17.932992935180664 

○ SSIM: 0.5531979203224182 



Restored Image Ground-Truth Image



Ground-Truth ImageRestored Image



Experiment 7

● Post-processing (auto white balance, color correction, contrast equalization) 

performed only on the well-lit decoded LFs

● The decoded LFs are saved as NumPy arrays instead of JPEG images to 

preserve the complete data

● Loss used is the L1 loss along with the Gradient loss

● Quantitative Results
○ PSNR: 8.891327857971191 

○ SSIM: 0.35679861903190613 



Restored Image Ground-Truth Image



Ground-Truth ImageRestored Image



Experiment Metrics (Stage II)
Experiment Post Processing 

Applied To..
Decoded Images 

saved as..
Loss function 
used during 

training

PSNR(dB) SSIM

Expt. 1 Inputs, GTs .npy files L1 17.3424 0.4915

Expt. 2 GTs .npy files L1 17.883 0.521

Expt. 3 Inputs, GTs .jpeg files L1 17.96 0.564

Expt. 4 GTs .npy files L1 + Perceptual 5.234 0.122

Expt. 5 Inputs, GTs .npy files L1 + Gradient 5.287 0.088

Expt. 6 Inputs, GTs .npy files L1 + Gradient 17.933 0.553

Expt. 7 GTs .npy files L1 + Gradient 8.891 0.357



Observations and Inferences

● The network does not train upon incorporating Perceptual loss. 

● Training when L3F decoded images are not post-processed gives better 

PSNR than those being post-processed

● Training on images saved as JPEG gives marginally better PSNR and SSIM 

than training on the entire data without any quantization

● Adding just the gradient loss does not seem to help much over using just the 

L1 loss. Rather, it does not train properly in one case.



Stage III
Rectifying LFs decoded using our Python Implementation without performing 

Demosaicing and other post processing



Demosaicing Removal

● Changed the source code of Plenopticam to decode LFs without demosaicing 

● Demosaicing removed only for the L3Fs and saved as NumPy arrays

● The decoded array is split into 4 channels corresponding to the ‘rggb’ CFA

● The array after passing through the model is upsampled at the end using 

bilinear-interpolation

● Rest of the model architecture is the same as in the previous experiments 

● Trained for 100,000 iterations instead of 20,000 as in the previous cases



Decoded L3F View Decoded L3F View



Experiment 8

● Demosaicing removed from the L3Fs

● Post-processing (auto white balance, color correction, contrast equalization) 

performed on the well-lit decoded LFs

● The decoded LFs are saved as NumPy arrays instead of JPEG images to 

preserve the complete data

● Loss used is a combination of L1, Gradient, DFT and Perceptual loss

● Quantitative Results
○ PSNR: 12.430688858032227

○ SSIM: 0.4996431767940521 



Restored Image Ground-Truth Image



Ground-Truth ImageRestored Image



Experiment 9

● Demosaicing removed from the L3Fs

● Post-processing (auto white balance, color correction, contrast equalization) 

performed on the well-lit decoded LFs

● The decoded LFs are saved as NumPy arrays instead of JPEG images to 

preserve the complete data

● Loss used is a combination of L1 and Gradient loss

● Quantitative Results
○ PSNR: 7.4789557456970215 

○ SSIM: 0.2725219428539276 



Restored Image Ground-Truth Image



Ground-Truth ImageRestored Image



Experiment Metrics (Stage III)

Experiment Post Processing 
Applied To..

Decoded Images 
saved as..

Loss function used 
during training

PSNR(dB) SSIM

Expt. 8 GTs .npy files L1+Gradient+DFT
+Perceptual

12.43 0.499

Expt. 9 GTs .npy files L1+Gradient 7.479 0.273



Inferences

● The perceptual loss function seems to be a better objective function for the  

rectification of non-demosaiced and decoded L3F images as compared to  

rectification of demosaiced and decoded L3F images using the 

L3Fnet-variant. It is actually hard to infer why this is happening.

● The information lost due to JPEG compression does not seem to make a 

considerable difference. This may be attributed to significant features being 

learnt by the network irrespective of the slight input compression.



Inferences

● The halo effect observed in rectified non-demosaiced L3Fs may be due to 

random sampling of pixels taking place during training.

● At this stage, we can’t affirm whether non-demosaiced L3Fs can be better 

rectified by the L3Fnet-variant or not.

● The fact that Plenopticam decoded L3Fs are harder to train can be attributed 

to the fact that although they are brighter than their corresponding MATLAB 

decoded L3Fs, they contain a lot of noise and artefacts which might be 

throwing the model off. 



Future Work

● Debug and make the training using perceptual loss work properly

● Try with different permutations of the input and ground truth, choosing 

between the MATLAB and Plenopticam decoded LFs to check where the 

training issue is coming from

● While training for decoded L3Fs without demosaicing, take care of the 

sampling pattern to maintain the correct CFA configuration 

● Explore the prospect of eliminating the python code used for generating 

decoded images which are being given as training data to the L3Fnet-variant



Questions?


