/] Public Solana Program Security Assessment 07.30.2024 - 08.02.2024

Endogenous AVS
Solayer

=/\LBLIRIN

Endogenous AVS - Solayer

Prepared by: HALBORN
Last Updated 08/13/2024
Date of Engagement by: July 30th, 2024 - August 2nd, 2024

Summary
100° ® OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS CRITICAL HIGH MEDIUM LOW INFORMATIONAL
9 o [(1 3 6

TABLE OF CONTENTS

. Introduction
. Assessment summary
. Test approach and methodology

1

2

3

4. Risk methodology
5. Scope

6. Assessment summary & findings overview
7

. Findings & Tech Details

7.1 System flooding and spamming

7.2 Missing uri and url prefix validation

7.3 Missing metadata size validation

7.4 Lack of two-step authority transfer

7.5 Missing event emissions

7.6 Lack of zero amount validation

7.7 Un-sanitized on-chain state can be used as attack vector
7.8 Use of 'msg!' consumes additional computational budget
7.9 Outdated dependencies

https://t.me/share/url?url=https%3A%2F%2Fwww.halborn.com%2Faudits%2Fsolayer%2Fendogenous-avs&text=Endogenous%20AVS%20-%20Solayer
https://t.me/share/url?url=https%3A%2F%2Fwww.halborn.com%2Faudits%2Fsolayer%2Fendogenous-avs&text=Endogenous%20AVS%20-%20Solayer
https://t.me/share/url?url=https%3A%2F%2Fwww.halborn.com%2Faudits%2Fsolayer%2Fendogenous-avs&text=Endogenous%20AVS%20-%20Solayer
https://twitter.com/intent/tweet?text=Endogenous%20AVS%20-%20Solayer&url=https://www.halborn.com/audits/solayer/endogenous-avs
https://twitter.com/intent/tweet?text=Endogenous%20AVS%20-%20Solayer&url=https://www.halborn.com/audits/solayer/endogenous-avs
https://twitter.com/intent/tweet?text=Endogenous%20AVS%20-%20Solayer&url=https://www.halborn.com/audits/solayer/endogenous-avs
https://www.linkedin.com/shareArticle?mini=true&url=https://www.halborn.com/audits/solayer/endogenous-avs&title=Endogenous%20AVS%20-%20Solayer
https://www.linkedin.com/shareArticle?mini=true&url=https://www.halborn.com/audits/solayer/endogenous-avs&title=Endogenous%20AVS%20-%20Solayer
https://www.linkedin.com/shareArticle?mini=true&url=https://www.halborn.com/audits/solayer/endogenous-avs&title=Endogenous%20AVS%20-%20Solayer
https://www.reddit.com/submit?url=https://www.halborn.com/audits/solayer/endogenous-avs&title=Endogenous%20AVS%20-%20Solayer
https://www.reddit.com/submit?url=https://www.halborn.com/audits/solayer/endogenous-avs&title=Endogenous%20AVS%20-%20Solayer
https://www.reddit.com/submit?url=https://www.halborn.com/audits/solayer/endogenous-avs&title=Endogenous%20AVS%20-%20Solayer
mailto:?subject=Endogenous%20AVS%20-%20Solayer&body=https://www.halborn.com/audits/solayer/endogenous-avs
mailto:?subject=Endogenous%20AVS%20-%20Solayer&body=https://www.halborn.com/audits/solayer/endogenous-avs
mailto:?subject=Endogenous%20AVS%20-%20Solayer&body=https://www.halborn.com/audits/solayer/endogenous-avs

8. Automated Testing

Solayer teamengaged Halborn to conduct a security assessment on their Endogenous AVS Solana
program beginning on July 30th, 2024, and ending on August, 5th, 2024. The security assessment was
scoped to the Solana Program provided in endoavs-program GitHub repository. Commit hashes and further
details can be found in the Scope section of this report.

The Endogenous AVS program takes the sSOL liquid mint and transforms it into a synthetic asset
representing the delegation to a particular project, using the delegate instruction. These mints can be
undelegated instantly if there is a need for trade, through the undelegate instruction.

Partners will be able to create an endoavs account through the create instruction, passing a mint address
which they can customize. The authority can customize the AVS token name, symbol, uri/url and

metadata of these assets through instructions. The authority can also transfer the authority to other
account, which is irrevocable.

These assets use the same liquidity as the underlying sSOL. Ultimately, the goal is to enable Solayer to
provide stake-weighted quality of service to the AVS.

https://github.com/solayer-labs/restaking-program/tree/feature/endoavs/programs/endoavs-program

2. Assessment Summary

Halborn was provided 6 days for the engagement and assigned one full-time security engineer to review the
security of the Solana Program in scope. The engineer is a blockchain and smart contract security expert
with advanced smart contract hacking skills, and deep knowledge of multiple blockchain protocols.

The purpose of the assessment is to:

- lIdentify potential security issues within the Endogenous AVS Solana Program.
« Ensure that the program's functionality operates as intended.

In summary, Halborn identified some low-severity and informational security issues, that were addressed
and acknowledged by the Solayer team. The main ones were the following:

« System Flooding and Spamming.

« Lack of two-step authority transfer.

« Decimals should be enforced.

« Missing URI and URL prefix validation.
« Missing Metadata size validation.

« Missing Event emissions.

« QOutdated dependencies.

Overall, the program in-scope is adherent to Solana's best-practices and carries consistent code quality.

3. Test Approach And Methodology

Halborn performed a combination of a manual review of the source code and automated security testing to
balance efficiency, timeliness, practicality, and accuracy in regard to the scope of the program assessment.
While manual testing is recommended to uncover flaws in business logic, processes, and implementation;
automated testing techniques help enhance coverage of programs and can quickly identify items that do
not follow security best practices.

The following phases and associated tools were used throughout the term of the assessment:

« Research into the architecture, purpose, and use of the platform.

« Manual program source code review to identify business logic issues.

« Mapping out possible attack vectors.

« Thorough assessment of safety and usage of critical Rust variables and functions in scope that could
lead to arithmetic vulnerabilities.

« Scanning dependencies for known vulnerabilities (cargo audit).

« Local runtime testing (anchor test).

4. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity

Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means by

which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the highest
security risk. This provides an objective and accurate rating of the severity of security vulnerabilities in
smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk to
address the most critical issues in a timely manner.

41 EXPLOITABILITY
ATTACK ORIGIN [AO):

Captures whether the attack requires compromising a specific account.

ATTACK COST (AC).

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

ATTACK COMPLEXITY (AX):

Describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
Includes but is not limited to macro situation, available third-party liquidity and regulatory challenges.

METRICS:

EXPLOITABILIY METRIC (ME) METRIC VALUE NUMERICAL VALUE

Arbitrary (AO:A) 1

Attack Origin (AO) Specific (AO:S) 0.2

EXPLOITABILIY METRIC (ME) METRIC VALUE NUMERICAL VALUE

Low (AC:L) 1
Attack Cost (AC) Medium (AC:M) 0.67
High (AC:H) 0.33

Low (AX:L) 1
Attack Complexity (AX) Medium (AX:M) 0.67
High (AX:H) 0.33

Exploitability F is calculated using the following formula:

E:Hme

4.2 IMPACT
CONFIDENTIALITY (C):

Measures the impact to the confidentiality of the information resources managed by the contract due to a
successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

INTEGRITY (I):

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly affecting
Deposit or Yield records is excluded.

AVAILABILITY ([(A):

Measures the impact to the availability of the impacted component resulting from a successfully exploited
vulnerability. This metric refers to smart contract features and functionality, not state. Availability impact
directly affecting Deposit or Yield is excluded.

DEPOSIT (D).

Measures the impact to the deposits made to the contract by either users or owners.
YIELD (Y):

Measures the impact to the yield generated by the contract for either users or owners.

METRICS:

IMPACT METRIC (M) METRIC VALUE NUMERICAL VALUE
None (I:N) 0
Low (I:L) 0.25
Confidentiality (C) Medium (I:M) 0.5
High (I:H) 0.75
Critical (I:C) 1
None (I:N) 0
Low (I:L) 0.25
Integrity (1) Medium (I:M) 0.5
High (I:H) 0.75
Critical (I:C) 1
None (A:N) 0
Low (A:L) 0.25
Availability (A) Medium (A:M) 0.5
High (A:H) 0.75
Critical (A:C) 1
None (D:N) 0
Low (D:L) 0.25
Deposit (D) Medium (D:M) 0.5
High (D:H) 0.75
Critical (D:C) 1
None (Y:N) 0
Low (Y:L) 0.25
Yield (Y) Medium (Y:M) 0.5
High (Y:H) 0.75
Critical (Y:C) 1

Impact I is calculated using the following formula:

> my — max(my)
4

I = maz(my) +

4.3 SEVERITY COEFFICIENT
REVERSIBILITY [R):

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable contracts,
assume the contract private key is available.

SCOPE (S):
Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

METRICS:

SEVERITY COEFFICIENT (C)

COEFFICIENT VALUE

NUMERICAL VALUE

None (R:N) 1
Reversibility () Partial (R:P) 0.5
Full (R:F) 0.25
S Changed (S:C) 1.25
cope () Unchanged (S:U) 1

Severity Coefficient C'is obtained by the following product:

C =rs

The Vulnerability Severity Score S is obtained by:

S = min(10, EIC % 10)

The score is rounded up to 1 decimal places.

SEVERITY

SCORE VALUE RANGE

Critical

45-6.9

SEVERITY

SCORE VALUE RANGE

FILES AND REPOSITORY ~

(a) Repository: restaking-program
(b) Assessed Commit ID: 547e66a

(c) Items in scope:

« src/contexts/delegate.rs
« src/contexts/metadata.rs
« src/contexts/create.rs

« src/contexts/mod.rs

« src/contexts/manage.rs
« src/constants.rs

« src/state/endoavs.rs

« src/state/mod.rs

« src/errors.rs

« src/lib.rs

Out-of-Scope:

REMEDIATION COMMIT ID: ~
« d379d78
« 46c0907

Out-of-Scope: New features/implementations after the remediation commit IDs.

6. ASSESSMENT SUMMARY & FINDINGS OVERVIEW

CRITICAL HIGH MEDIUM Low INFORMATIONAL
o o o 3 6

https://github.com/solayer-labs/restaking-program/tree/feature/endoavs/programs/endoavs-program
https://github.com/solayer-labs/restaking-program/commit/d379d7898a98d4403f8305896bc3faf7e162cf44
https://github.com/solayer-labs/restaking-program/commit/46c09073a6dad390f435dc76f17e35849f2c6d1b

SECURITY ANALYSIS RISK LEVEL

SYSTEM FLOODING AND SPAMMING

MISSING URI AND URL PREFIX VALIDATION

REMEDIATION DATE

SOLVED - 08/12/2024

RISK ACCEPTED

MISSING METADATA SIZE VALIDATION

RISK ACCEPTED

LACK OF TWO-STEP AUTHORITY TRANSFER INFORMATIONAL

ACKNOWLEDGED

MISSING EVENT EMISSIONS INFORMATIONAL

ACKNOWLEDGED

LACK OF ZERO AMOUNT VALIDATION INFORMATIONAL

ACKNOWLEDGED

UN-SANITIZED ON-CHAIN STATE CAN BE USED AS

INFORMATIONAL
ATTACK VECTOR

ACKNOWLEDGED

USE OF 'MSG!' CONSUMES ADDITIONAL COMPUTATIONAL

INFORMATIONAL
BUDGET

OUTDATED DEPENDENCIES INFORMATIONAL

ACKNOWLEDGED

SOLVED - 08/12/2024

7. FINDINGS 8 TECH DETAILS

7.1 SYSTEM FLOODING AND SPAMMING

/| LOW

Description

The current implementation of the endo_avs account creation process allows for the creation of multiple

accounts with the same AVS name and does not enforce a minimum delegate amount upon AVS's creation.

This combination can be exploited by malicious actors to flood the system with endo_avs accounts that use

the same name/symbol, for misleading and griefing purposes, effectively spamming the system with unvalid

accounts.

The endo_avs metadata is then initialized with default values for name, symbol and uri. These parameters

can be changed by the current endo_avs authority through the process described further.

- programs/endoavs—program/src/contexts/create.rs

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

#[derive(Accounts)]
pub struct CreateEndoAVS< > {
#[account(
init,
payer
seeds
bump,
space

authority,
[b"endo_avs", avs_token_mint.key().as_ref()],

8 + EndoAVS::

)]

pub endo_avs: Account< , EndoAVS>,
#[account(mut)]
pub authority: Signer< >,
#[account(
init,
payer = authority,
mint::decimals = delegated_token_mint.decimals,
mint: :authority = endo_avs,
mint: :freeze_authority = endo_avs
)]
pub avs_token_mint: Box<InterfaceAccount< , Mint>>,
#[account(
mut,
address=Metadata: : find_pda(&avs_token_mint.key()).0
)]
pub avs_token_metadata: UncheckedAccount< >,
#[account(

43

45
40
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
606
6/
68
09
/0
71
72
/3
74
75
76
77
/8
79
80
81
82
83
84
85
86

init_if_needed,
payer = authority,
associated_token::mint = delegated_token_mint,
associated_token: :authority = endo_avs,
associated_token: :token_program = token_program
)]
pub delegated_token_vault: Box<InterfaceAccount< , TokenAccount>>
#[account(
mint: :token_program = token_program,
constraint = allow_as_delegated_asset(&delegated_token_mint.key()
)]
pub delegated_token_mint: Box<InterfaceAccount< , Mint>>,
pub token_program: Interface< , TokenInterface>,
pub associated_token_program: Program< , AssociatedToken>,
pub token_metadata_program: Program< , Metaplex>,
pub system_program: Program< , System>,
pub rent: Sysvar< , Rent>,
}
impl< > CreateEndoAVS< > {
pub fn create(&mut self, bumps: CreateEndoAVSBumps, name: String) ->
1f name.len() > {
return Err(EndoAVSError::NameToolLong.into());
}
self.endo_avs.set_inner(EndoAVS {
name,
url: "".to_string(Q),
bump: bumps.endo_avs,
authority: self.authority.key(),
avs_token_mint: self.avs_token_mint.key(),
delegated_token_mint: self.delegated_token_mint.key(),
delegated_token_vault: self.delegated_token_vault.key(),
3)s;
let token_metadata = DataVZ2 {
name: DEFAULT_ENDO_AVS_NAME.to_string(),
symbol: DEFAULT_ENDO_AVS_SYMBOL.to_string(),
uri: DEFAULT_ENDO_AVS_URI.to_string(),
seller_fee_basis_points: 0,
creators: None,
collection: None,
uses: None,
};

87

88 let bump = [self.endo_avs.bump];

89 let signer_seeds: [&[&[u8]]; 1] = [&[

9 b"endo_avs",

91 self.avs_token_mint.to_account_info().key.as_ref(),

o2 &bump,

93 1C. .11;

9%

95 let metadata_ctx = CpiContext::new_with_signer(

9% self.token_metadata_program.to_account_info(),

97 CreateMetadataAccountsV3 {

98 payer: self.authority.to_account_info(),

99 update_authority: self.endo_avs.to_account_info(),
100 mint: self.avs_token_mint.to_account_info(),

101 metadata: self.avs_token_metadata.to_account_info(),
102 mint_authority: self.endo_avs.to_account_info(),

103 system_program: self.system_program.to_account_info(),
104 rent: self.rent.to_account_info(),

105 ¥y

106 &signer_seeds,

107 DK

108

109 create_metadata_accounts_v3(metadata_ctx, token_metadata, true, t
110

111 okCO)

112 }

113 | }

After properly initializing an endo_avs account, it is possible to change its name, symbol, uri and urtl
through the update_token_metadata and update_endoavs instructions.
— programs/endoavs—program/src/contexts/manage.rs

33 | #[derive(Accounts)]

34 | pub struct UpdateEndoAVSInfo< >{

35 pub authority: Signer< >,

36 #[account(

37 mut,

38 has_one = authority, // permission check

39 has_one = avs_token_mint,

40 seeds = [b"endo_avs", avs_token_mint.key().as_ref()],
41 bump = endo_avs.bump,

42)]

43 pub endo_avs: Account< , EndoAVS>,

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

pub avs_token_mint: Box<InterfaceAccount< , Mint>>,

pub system_program: Program< , System>,
ks
impl < > UpdateEndoAVSInfo< > {
pub fn update(&mut self, name: Option<String>, url: Option<String>) -
if let Some(name) = name {
require!(name.len() < MAX_ENDO_AVS_NAME_LENGTH, EndoAVSError:
self.endo_avs.name = name;
ks
if let SomeCurl) = url {
require!(url.len() < MAX_ENDO_AVS_URL_LENGTH, EndoAVSError::U
self.endo_avs.url = url;
ks
OkC()
ks
ks

programs/endoavs-program/src/contexts/metadata.rs

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Y4

#[derive(Accounts)]
pub struct AVSTokenMetadata< > {
#[account(
seeds = [b"endo_avs", avs_token_mint.key().as_ref()],
bump = endo_avs.bump,
has_one = avs_token_mint,
has_one = authority,
)]
pub endo_avs: Account< , EndoAVS>,
#[account(mut)]
pub authority: Signer< >,
pub avs_token_mint: Box<InterfaceAccount< , Mint>>,
#[account(
mut,
address=Metadata: : find_pda(&avs_token_mint.key()).0
)]
pub avs_token_metadata: UncheckedAccount< >,
pub token_metadata_program: Program< , Metaplex>,
pub system_program: Program< , System>,
pub rent: Sysvar< , Rent>,
}
impl< > AVSTokenMetadata< > {

38
39
40
41
42
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67
68
69
70
71
72
/3
74
/5
76
7
/8
79

pub fn update(&mut self, name: String, symbol: String, uri: String) -
1f !symbol.ends_with() o
return Err(EndoAVSError::InvalidTokenSymbol.into());

¥

let token_metadata = DataVz {
name,
symbol,
urti,

seller_fee_basis_points: 0,
creators: None,

collection: None,

uses: None,

bE

let bump = [self.endo_avs.bump];

let signer_seeds: [&[&[u8]]; 1] = [&[
b"endo_avs",
self.avs_token_mint.to_account_info().key.as_ref(),
&bump,

1C..11;

let metadata_ctx = CpiContext::new_with_signer(
self.token_metadata_program.to_account_info(),
anchor_spl: :metadata: :UpdateMetadataAccountsV2 {
metadata: self.avs_token_metadata.to_account_info(),
update_authority: self.endo_avs.to_account_info(),

1

&signer_seeds,

),

anchor_spl: :metadata: :update_metadata_accounts_v2(
metadata_ctx,

None,
token_metadata.into(),
None,
None,

D7,

0kC()

During the whole cycle, there are no mechanisms in place to prevent malicious users from creating a
significant high amount of dummy or fake Endo AVS accounts.This vulnerabhility has several negative
consequences:

1. System Flooding: Malicious actors can create a large number of invalid accounts, overwhelming the
system and potentially causing operational disruptions.

2. User Confusion: The presence of multiple spam accounts with the same symbol but invalid tokens can
confuse users, leading them to interact with illegitimate accounts, which can ultimately rug legitimate users
through abusing the mint authority. This confusion can result in permanent financial loss for users and
undermine trust in the platform.

3. Platform Legitimacy: The proliferation of spam or invalid accounts can erode the legitimacy of the
platform, as users may perceive it as unreliable or insecure.

Proof of Concept

In order to reproduce this vulnerabhility, the following test case can be used. It will use the same signer to
create multiple endo_avs accounts with the same name/symbol, without delegating any amount to these
newly created accounts.

PoC Code:

i1t.only("should fail to create multiple EndoAVS with same name/symbol", as
/// using User B in this test.
try {

await program.methods.create("mksSOL")

.accounts({
endoAvs: endo_avs_attacker,
authority: d34db33f_account.publicKey,
avsTokenMint: avs_token_mint_attacker.publicKey,
avsTokenMetadata: metaplex.nfts().pdas().metadata({ mint: avs.
delegatedTokenVault: getAssociatedTokenAddressSync(delegate_tc
delegatedTokenMint: delegate_token_mint,
tokenProgram: ,
associatedTokenProgram: ,
tokenMetadataProgram: metadata_program,
systemProgram: SystemProgram.programld,
rent: anchor.web3.

}).signers([d34db33f_account, avs_token_mint_attacker]).rpc(Q);

const endoavs_info = await program.account.endoAvs. fetch(endo_avs

assert.ok(endoavs_info);

console.log("endoavs_info is : ", .stringify(endoavs_info, nul

await program.methods.create("mksSOL")
.accounts({
endoAvs: endo_avs_attacker?2,
authority: d34db33f_account.publicKey,

avsTokenMint: avs_token_mint_attacker2.publicKey,
avsTokenMetadata: metaplex.nfts().pdas().metadata({ mint: avs.
delegatedTokenVault: getAssociatedTokenAddressSync(delegate_tc
delegatedTokenMint: delegate_token_mint,
tokenProgram: ,
associatedTokenProgram: ,
tokenMetadataProgram: metadata_program,
systemProgram: SystemProgram.programld,
rent: anchor.web3.
}).signers([d34db33f_account, avs_token_mint_attacker2]).rpc();
const endoavs_info2 = await program.account.endoAvs.fetch(endo_avs
assert.ok(endoavs_info2);
console.log("endoavs_info2 is : ", .stringify(endoavs_info2, r

await program.methods.create("mksSOL")
.accounts({
endoAvs: endo_avs_attacker3,
authority: d34db33f_account.publicKey,
avsTokenMint: avs_token_mint_attacker3.publicKey,
avsTokenMetadata: metaplex.nfts().pdas().metadata({ mint: avs.
delegatedTokenVault: getAssociatedTokenAddressSync(delegate_tc¢
delegatedTokenMint: delegate_token_mint,
tokenProgram: ,
associatedTokenProgram: ,
tokenMetadataProgram: metadata_program,
systemProgram: SystemProgram.programld,
rent: anchor.web3.
}).signers([d34db33f_account, avs_token_mint_attacker3]).rpc();
const endoavs_info3 = await program.account.endoAvs.fetch(endo_avs
assert.ok(endoavs_info3);
console.log("endoavs_info3 1is : ", .stringify(endoavs_info3, r

} catch (Cerror) {

}
s

Stack traces:

assert(error.message);
console.error(error);

1 endoavs-program: :
? | endoavs_info is : {

3

4 "bump": 255,

5 "authority": "FYTJAm73BmkAFDmOVgBAtsryAVkjUPge9EG7HSNjcqeq",

6 "avsTokenMint": "EzByfLuvkTaRdKSoafLGEZX2Pw2e433dx1Kuat3FcEsT",

7 "delegatedTokenMint": "sSol4endRuUbvQalS3dq36Q829a3A6BEfoeeRGIywEN",

8 "delegatedTokenVault": "CSiRqvu3nvzH4NQH1dWt11lwgwz8WMUS1A5JISMEGWD6GLG",
9 "name" : "mksSOL",

10 "url": ""

11 | }

12 | endoavs_info2 is : {

13 "bump": 253,

14 "authority": "FYTJAm73BmkAFDmOVgBAtsryAVkjUPge9EG7HSNjcqeq",

15 "avsTokenMint": "5pgkYdEh5xpsiaRBNxs6LTnsswGrw4U7NzxMRhgnGFKW" ,

16 "delegatedTokenMint": "sSol4endRuUbvQalS3dq36Q829a3A6BEfoeeRGIywEN",
17 "delegatedTokenVault": "135jLTgYrmMivNF2Eqx5qCYBp7eSvGRKYsmiM4tTFzeX",
18 "name" : "mksSOL",

19 "url": ""

20 | }

2?1 | endoavs_info3 is : {

22 "bump": 255,

23 "authority": "FYTjAm73BmkAFDmOVgBAtsryAVkjUPge9EG7HSNjcqgeq",

24 "avsTokenMint": "25LkCus9gAquyDMnpupDogWgUqosCU1QMIs6ruU3coKaC",

25 "delegatedTokenMint": "sSol4endRuUbvQalS3dq36Q829a3A6BEfoeeRGIywEN",
26 "delegatedTokenVault": "ED25CKR64L9gWo9Uvt71V64ZHUBEFSETUv4BMg4XzPtT",
27 "name": "mksSOL",

28 "url": ""

Execution:

endoavs—program: :

endoavs_info is : {
"bump': 255,
"authority": "FYTjAm73BmkAFDm9VqBAtsryAVkjUPge9EGTHSN]cqgeq”,
"avsTokenMint": "EzByfLuvkTaRdKSoafLGEZX2Pw2ed33dx1Kuat3FcEsT",
"delegatedTokenMint": "sSold4endRulbv(alS3dg360829a3A6BEfoeeRGIywER",
"delegatedTokenVault": "CSiRqvu3nvzHANQHidWt1llwgwz8WMUS1ASISMEGWDELG",
"name'": "mksSOL",

Ilur.'-Lll: mnn

}

endoavs_info2 is : {
"bump": 253,
"authority": "FYTjAm73BmkAFDm9VgBAtsryAVkjUPge9EGTHSN] cqeq”,
"avsTokenMint": "5pgkYdEh5xpsiaRBNxs6LTnsswGrwdU7NzxMRhgnGFKW',
"delegatedTokenMint": "sSold4endRuUbvQalS53dq360829a3A6BEfoeeRGIywER",
"delegatedTokenVault": "135jLTgYrmMivNF2Eqx5qCYBp7eSvGRKYsmiM4tTFzeX",
"name'": "mksSOL",
llurlll: mnn

}

endoavs_info3 is : {
"bump": 255,
"authority": "FYTjAm73BmkAFDm9VgBAts ryAVkjUPge9EGTHSN] cqeq”,
"avsTokenMint": "25LkCus9gAquyDMnpupDogWgUqosCUiQM9s6rU3cokGC",
"delegatedTokenMint": "sSold4endRuUbvQalS53dg360829a3A6BEfoeeRGIywER",
"delegatedTokenVault": "ED25CKR64L9gWo9Uvt71V64ZHUBEFSETUv4BMgaXzPtT",
"name'": "mksSOL",
Ilur.'Lll: nn

}

BVSS

AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:C (3.1)

Recommendation

1. Enforce Unique Symbols:

Create a PDA symbol_mapping to track existing symbols, with a boolean exists field. This PDA will use the
symbol as a seed to ensure uniqueness.

In the create instruction, add a symbol_mapping account (Program Derived Address). Use the init account
constraint and the symbol as a seed for the PDA derivation. This will effectively block duplicate symbols
from being used to create new endo_avs accounts, preventing system flooding. Additionally, the create
function should set the exists field of the provided PDA to true.

This approach ensures that each endo_avs account has a unique symbol, mitigating the risk of system
flooding and maintaining the integrity of the platform.

2. Enforce a Minimum delegation amount upon endo_avs_creation:

Implement a minimum delegation amount requirement upon the creation of endo_avs accounts. This will
discourage malicious users from creating numerous low-value accounts, as they will have no financial
incentive and will incur a direct loss of sSOL.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC

By enforcing a minimum delegation amount, you can deter malicious actors from flooding the system with
invalid accounts, thereby enhancing the security and reliability of the platform.

SOLVED: The Solayer team has solved this issue by enforcing a minimum deposit fee. The commit hash
containing the modifications is d379d7898a98d4403f8305896bc3faf7el62cf44.

Remediation Hash

https://github.com/solayer-labs/restaking-program/commit/d379d78982a98d4403f8305896bc3faf7e162cf4
4

https://github.com/solayer-labs/restaking-program/commit/d379d7898a98d4403f8305896bc3faf7e162cf44
https://github.com/solayer-labs/restaking-program/commit/d379d7898a98d4403f8305896bc3faf7e162cf44

7.2 MISSING URI AND URL PREFIX VALIDATION

/] LOW

Description

The authority of each endo_avs account is entitled to change the name and the url through the update

method, as follows:

— programs/endoavs—-program/src/contexts/manage.rs

48
49
50
51
52
53
54
55
56
57
58
59

impl <

> UpdateEndoAVSInfo< > {

pub fn update(&mut self, name: Option<String>, url: Option<String>) -

if let Some(name) = name {
(hame.len() <
self.endo_avs.name = name;
ks
if let SomeCurl) = url {
Curl.len(Q) <
self.endo_avs.url = url;

}
0kCOD

When updating the metadata, this verification is also missing.

- programs/endoavs—-program/src/contexts/metadata.rs

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

g)

impl<

> AVSTokenMetadata< > {

)

)

EndoAVSError:

EndoAVSError: :U

pub fn update(&mut self, name: String, symbol: String, uri: String) -

1f !symbol.ends_with(

) 1

return Err(EndoAVSError::InvalidTokenSymbol.into());

ks

let token_metadata = DataVZ2 {
name,
symbol,
uri,

seller_fee_basis_points: 0,
creators: None,

collection: None,

uses: None,

bE

54 let bump = [self.endo_avs.bump];
- let signer_seeds: [&[&[u8]]; 1] = [&[
56 b"endo_avs",
57 self.avs_token_mint.to_account_info().key.as_ref(),
58 &bump,
- 1C..11;
60 . . .
61 let metadata_ctx = CpiContext::new_with_signer(
2 self.token_metadata_program.to_account_info(),
63 anchor_spl: :metadata: :UpdateMetadataAccountsV2 {
o metadata: self.avs_token_metadata.to_account_info(),
65 update_authority: self.endo_avs.to_account_info(),
b
06 .
&signer_seeds,
67 3.
68 ’
69
-0 anchor_spl: :metadata: :update_metadata_accounts_v2(
metadata_ctx,
71
o None,
3 token_metadata.into(),
g o
75 37: ’
76 o’
77
OkC(D
78 1
79
ks

There are no verifications in place whether the provided url or uri starts with an expected format, such as
https://, what could lead to unintended behavior in off-chain premises and also pollute the account with
inaccurate information.

BVSS
AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:C (3.1)

Recommendation

It is recommended to add simple verifications to check whether the provided uri and url prefixes matches
pre-determined formats.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC

RISK ACCEPTED: The Solayer team has accepted the risk related to this finding.

7.3 MISSING METADATA SIZE VALIDATION

/] LOW

Description

The authority account of each endo_avs is entitled to update its metadata information, including name,

symbol and uri, as strings. However, there are no verifications in place to prevent those user-provided

inputs from being excessively large.

- programs/endoavs—-program/src/contexts/metadata.rs

37
38
39
49
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
Y
58
59
60
61
62
63
64
65
66
67
68

r—0O

impl< >

pub fn update(&mut self, name: String, symbol: String, uri:

AVSTokenMetadata< > {

if !symbol.ends_with() {

let

bE

let
let

1L.

let

s

return Err(EndoAVSError::InvalidTokenSymbol.into());

token_metadata = DataVZ2 {
name,

symbol,

uri,
seller_fee_basis_points: 0,
creators: None,

collection: None,

uses: None,

bump = [self.endo_avs.bump];

signer_seeds: [&[&[u8]]; 1] = [&[

b"endo_avs",
self.avs_token_mint.to_account_info().key.as_ref(),
&bump,

115

metadata_ctx = CpiContext: :new_with_signer(

self.token_metadata_program.to_account_info(),

anchor_spl: :metadata: :UpdateMetadataAccountsV2 {
metadata: self.avs_token_metadata.to_account_info(),
update_authority: self.endo_avs.to_account_info(),

1,

&signer_seeds,

String) -

-0 anchor_spl: :metadata: :update_metadata_accounts_v2(
metadata_ctx,
71
o None,
3 token_metadata.into(),
24 None,
None,
75
D7
76 ’
77
0kC()
78 3
)

The lack of validation of user-provided inputs for excessively large values can lead to unintended behavior in
off-chain premises, such as weird website rendering, and also pollute the system state with inadequate
data.

BVSS
AO:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:N/S:C (3.1)

Recommendation

It is recommended to check the length of user-provided inputs against a safe threshold.

RISK ACCEPTED: The Solayer team has accepted the risk related to this finding.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC

7.4 LACK OF TWO-STEP AUTHORITY TRANSFER
// INFORMATIONAL

Description

The endoavs program in-scope allows the current authority account of each Endogenous AVS to transfer
the authority to another account. Such action is permanent and irrevocable.

The existing implementation of the transfer_authority instruction employs a one-step procedure for
authority delegation, which presents a security concern. This method lacks a safequard against inadvertent
delegations or potential hostile takeovers.

— programs/endoavs—-program/src/contexts/manage.rs

25 | impl<'info> TransferAuthority<'info> {
26 pub fn transfer_authority(&mut self) -> Result<()> {
27 self.endo_avs.authority = self.new_authority.key();
28 msg!("Transferred authority to {}", self.new_authority.key());
29 0kCO)
30 ks
31 |}
BVSS

AO:S/AC:L/AX:L/C:N/I:H/A:N/D:N/Y:N/R:N/S:C (1.9)

Recommendation

To resolve this issue, it is advisable to establish a two-step process for authority transfer, thereby
enhancing the security of the operation. The current authority would first propose a new candidate
authority, who would then need to formally accept the role.

This process would be structured as follows:

1. Proposal by Current Authority: The current signer proposes a new candidate signer. This action updates
the candidate_authority field in the endo_avs account's state. This step assumes the prior creation of an
additional field candidate_authority on state/endoavs.rs.

2. Acceptance by New Authority: The proposed candidate_authority formally accepts the role. This step
transfers the authority status from the current authority to the candidate_authority.

ACKNOWLEDGED: The Solayer team has acknowledged this finding.

https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AS%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AH%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC

7.5 MISSING EVENT EMISSIONS
// INFORMATIONAL

Description

It is considered best practice when developing Solana programs to emit events when important

modifications to the state are performed, such as Metadata modifications and authority transfers.

— programs/endoavs—-program/src/contexts/manage.rs

25
26
27
28
29
30
31

impl< > TransferAuthority< > {
pub fn transfer_authority(&mut self) -> Result<()> {
self.endo_avs.authority = self.new_authority.key();
("Transferred authority to {}", self.new_authority.key());
0kCO)
}
}

— programs/endoavs—program/src/contexts/manage.rs

48
49
50
51
52
53
54
55
56
57
58
59
60

impl < > UpdateEndoAVSInfo< > {
pub fn update(&mut self, name: Option<String>, url: Option<String>) -
if let Some(name) = name {
(nhame.len() < , EndoAVSError:
self.endo_avs.name = name;

ks
if let SomeCurl) = url {
Curl.lenQ < , EndoAVSError: :U
self.endo_avs.url = url;
ks
0kCO)

- programs/endoavs—program/src/contexts/metadata.rs

37
38
39
40
41

A

impl< > AVSTokenMetadata< > {
pub fn update(&mut self, name: String, symbol: String, uri: String) -
if !symbol.ends_with() {
return Err(EndoAVSError::InvalidTokenSymbol.into());
ks

43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

65
06
67
68
69
70
71
72
73
74
/5
76
7
78
79

let

+s

let
let

1C.

let

),

token_metadata = DataV2 {
name,

symbol,

urti,
seller_fee_basis_points: 0,
creators: None,

collection: None,

uses: None,

bump = [self.endo_avs.bump];

signer_seeds: [&[&[u8]]; 1] = [&[

b"endo_avs",
self.avs_token_mint.to_account_info().key.as_ref(),
&bump,

115

metadata_ctx = CpiContext::new_with_signer(

self.token_metadata_program.to_account_info(),

anchor_spl: :metadata: :UpdateMetadataAccountsV2 {
metadata: self.avs_token_metadata.to_account_info(),
update_authority: self.endo_avs.to_account_info(),

1

&signer_seeds,

anchor_spl: :metadata: :update_metadata_accounts_v2(

metadata_ctx,

None,
token_metadata.into(),
None,
None,

)?;

OkC()

It was identified that events are not being emitted for the annotated important state operations.

BVSS

AQ:A/AC:L/AX:L/C:N/I:L/A:N/D:N/Y:N/R:P/S:U (1.3)

Recommendation

Ensure that all critical actions within the program emit corresponding events, such as when transferring the
authority or updating token information.

ACKNOWLEDGED: The Solayer team has acknowledged this finding.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AL%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AP%2FS%3AU

7.6 LACK OF ZERO AMOUNT VALIDATION
// INFORMATIONAL

Description

The program in-scope does not prevent the delegate and undelegate methods from being called with
amount ==
- programs/endoavs—-program/src/contexts/delegate.rs

87 pub fn delegate(&mut self, amount: u64) -> Result<()> {

88 // Transfer tokens from user to the delegated token vault

89 let transfer_accounts = TransferChecked {

90 from: self.staker_delegated_token_account.to_account_info(),
91 to: self.delegated_token_vault.to_account_info(),

o2 mint: self.delegated_token_mint.to_account_info(),

03 authority: self.staker.to_account_info(),

9% s

95 let transfer_ctx = CpiContext::new(self.token_program.to_account_
9% transfer_checked(transfer_ctx, amount, self.delegated_token_mint.
97

08 let bump = [self.endo_avs.bump];

99 let signer_seeds: [&[&[u8]]; 1] = [&[

100 b"endo_avs",

101 self.avs_token_mint.to_account_info().key.as_ref(),

102 &bump,

103 1C. .11;

104

105 let mint_ctx = CpiContext::new_with_signer(

106 self.token_program.to_account_info(),

107 MintTo {

108 to: self.staker_avs_token_account.to_account_info(),
109 mint: self.avs_token_mint.to_account_info(),

110 authority: self.endo_avs.to_account_info(),

111 }s

112 &signer_seeds[..],

113 DK

114 mint_to(mint_ctx, amount)?;

115

116 0kCO)

117 }

— programs/endoavs—program/src/contexts/delegate.rs

119 pub fn undelegate(&mut self, amount: u64) -> Result<()> {

120 // Burn EndoAVS tokens from the user

121 let burn_accounts = Burn {

122 from: self.staker_avs_token_account.to_account_info(),
123 mint: self.avs_token_mint.to_account_info(),

124 authority: self.staker.to_account_info(),

125 };

126 let burn_ctx = CpiContext::new(self.token_program.to_account_infc
127 burn(burn_ctx, amount)?;

128

129 let bump = [self.endo_avs.bump];

130 let signer_seeds: [&[&[u8]]; 1] = [&[

131 b"endo_avs",

132 self.avs_token_mint.to_account_info().key.as_ref(),
133 &bump,

134 JIEe o 11

135

136 let transfer_accounts = TransferChecked {

137 from: self.delegated_token_vault.to_account_info(),
138 to: self.staker_delegated_token_account.to_account_info(),
139 mint: self.delegated_token_mint.to_account_info(),

140 authority: self.endo_avs.to_account_info(),

141 };

142 let transfer_ctx = CpiContext::new_with_signer(

143 self.token_program.to_account_info(),

144 transfer_accounts,

145 &signer_seeds,

146 DK

147 transfer_checked(transfer_ctx, amount, self.delegated_token_mint.
148

149 OkCO

150 }

While this condition does not lead to immediate financial loss, it should be checked to keep overall
consistency.

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC

Recommendation
Consider adding a verification before the execution of the delegate and undelegate methods, blocking

those actions with amount ==

ACKNOWLEDGED: The Solayer team has acknowledged this finding.

7.7 UN-SANITIZED ON-CHAIN STATE CAN BE USED AS ATTACK
VECTOR

// INFORMATIONAL

Description

The current implementation of methods that change endo_avs token informations lacks proper input

validation, which can lead to security vulnerabilities.

Metadata, such as name, symbol, and uri, and also token name and symbo€l, can be freely provided by users

when creating or updating EndoAVS metadata. If not properly sanitized in the front-end, this metadata can

be used as an attack vector for Stored Cross-Site Scripting (XSS), and other well-known web vulnerabilities.

— programs/endoavs—program/src/contexts/manage.rs

48
49
50
51
52
53
54
55
56
57
58
59

37
38
39
40
41
42
43

45
46
47
48
49
50

1

impl < > UpdateEndoAVSInfo< > {

pub fn update(&mut self, name: Option<String>, url: Option<String>) -

if let Some(hame) = name {
(name.len() <
self.endo_avs.name = name
ks
if let SomeCurl) = url {
(url.len(Q) <
self.endo_avs.url = url;
ks
OkC()

impl< > AVSTokenMetadata< > {

)

)

)

EndoAVSError:

EndoAVSError: :U

pub fn update(&mut self, name: String, symbol: String, uri: String) -

1f !symbol.ends_with(

) 1

return Err(EndoAVSError::InvalidTokenSymbol.into());

ks

let token_metadata = DataVZ2 {
name,
symbol,
urti,

seller_fee_basis_points:
creators: None,
collection: None,

uses: None,

55 s
53
54 let bump = [self.endo_avs.bump];
55 let signer_seeds: [&[&[u8]]; 1] = [&[
56 b"endo_avs",
5 self.avs_token_mint.to_account_info().key.as_ref(),
58 &bump,
o 1C-.13;
60 . . .
61 let metadata_ctx = CpiContext::new_with_signer(
62 self.token_metadata_program.to_account_info(),
63 anchor_spl: :metadata: :UpdateMetadataAccountsV2 {
64 metadata: self.avs_token_metadata.to_account_info(),
65 update_authority: self.endo_avs.to_account_info(),
66 }’_
67 &signer_seeds,
68 DK
69
0 anchor_spl: :metadata: :update_metadata_accounts_v2(
21 metadata_ctx,
> None,
23 token_metadata.into(),
24 None,
75 None,
76)75
Va4
-8 OkC()
79 ¥
ks

If an attacker manages to successfully craft valid payloads using on-chain state to weaponize it, the attack
can ultimately lead to critical consequences such as account take-over and arbitrary script execution on
victim's browser.

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation

Given that on-chain primitives do not allow for proper sanitization of inputs, and considering the myriad of
payloads that can affect web applications, it is recommended to conduct a thorough examination of off-
chain components, such as back-end and front-end applications.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC

Ensure that malicious on-chain payloads are properly sanitized in off-chain premises to prevent payloads
from being rendered in a way that could execute arbitrary code in users' browsers.

ACKNOWLEDGED: The Solayer team has acknowledged this finding.

7.8 USE OF '"MSG!" CONSUMES ADDITIONAL COMPUTATIONAL
BUDGET

// INFORMATIONAL

Description

The usage of msg! is usually advisable during tests, and will incur in additional computational budget when
the instruction is processed in Mainnet.
— programs/endoavs—program/src/contexts/manage.rs

25 | 1mpl<'info> TransferAuthority<'info> {
26 pub fn transfer_authority(&mut self) -> Result<()> {
27 self.endo_avs.authority = self.new_authority.key();
28 msg! ("Transferred authority to {}", self.new_authority.key());
29 OkC()
30 ks
31 |}
Score

AOQ:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation

Consider removing debugging messages before Mainnet deployment.

ACKNOWLEDGED: The Solayer team has acknowledged this finding.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC

7.9 OUTDATED DEPENDENCIES
// INFORMATIONAL

Description

It was identifying during the assessment of the program endo_avs in-scope that its dependencies for the
Anchor framework and also for Solana are not current.

[[packagel]
name = '"solana-program"
version = "1.18.7"

[[packagel]
name = "anchor-lang"
version = "0.29.0"

Score

AQ:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation

It is recommended to update dependencies to their current versions, as specified:

e« Solana:v1.18.20
e Anchor:v0.31.0

SOLVED: The Solayer team has solved this issue as recommended. The commit hash containing the
modification is 46c09073a6dad390f435dc76f17e35849f2c6d1b

Remediation Hash

https://github.com/solayer-labs/restaking-program/commit/46c09073a6dad390f435dc76f17e35849f2¢6d
1b

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://github.com/solayer-labs/restaking-program/commit/46c09073a6dad390f435dc76f17e35849f2c6d1b
https://github.com/solayer-labs/restaking-program/commit/46c09073a6dad390f435dc76f17e35849f2c6d1b

8. AUTOMATED TESTING

STATIC ANALYSIS REPORT

Description

Halborn used automated security scanners to assist with detection of well-known security issues and
vulnerabilities. Among the tools used was cargo audit, a security scanner for vulnerabilities reported to
the RustSec Advisory Database. All vulnerabilities published in https://crates. io are stored in a
repository named The RustSec Advisory Database. cargo audit is a human-readable version of the advisory
database which performs a scanning on Cargo.lock. Security Detections are only in scope. All vulnerabilities
shown here were already disclosed in the above report. However, to better assist the developers maintaining
this code, the auditors are including the output with the dependencies tree, and this is included in the cargo
audit output to better know the dependencies affected by unmaintained and vulnerable crates.

Cargo Audit Results

1D CRATE DESCCRIPTION

RUSTSEC-2022-0093 | ed25519-dalek | Double Public Key Signing Function Oracle Attack on ed255109-dalek

RUSTSEC-2024-0344 | curve25519-dalek | Timing variability in curve25519-dalek's Scalar29::sub/Scalar52::sub

RUSTSEC-2021-0145 atty Potential unaligned read

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

