
// Public Solana Program Security Assessment 08.05.2024 - 08.09.2024

Restaking
Solayer

Re st a k i n g - S o l aye r

Prepared by: HALBORN

Last Updated 08/13/2024

Date of Engagement by: August 5th, 2024 - August 9th, 2024

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS
3

CRITICAL
0

HIGH
0

MEDIUM
0

LOW
0

INFORMATIONAL
3

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Avoid using require! inside loops
7.2 Lack of zero amount validation
7.3 Outdated dependencies

8. Automated Testing

1 0 0%

https://t.me/share/url?url=https%3A%2F%2Fwww.halborn.com%2Faudits%2Fsolayer%2Frestaking&text=Restaking%20-%20Solayer
https://t.me/share/url?url=https%3A%2F%2Fwww.halborn.com%2Faudits%2Fsolayer%2Frestaking&text=Restaking%20-%20Solayer
https://t.me/share/url?url=https%3A%2F%2Fwww.halborn.com%2Faudits%2Fsolayer%2Frestaking&text=Restaking%20-%20Solayer
https://twitter.com/intent/tweet?text=Restaking%20-%20Solayer&url=https://www.halborn.com/audits/solayer/restaking
https://twitter.com/intent/tweet?text=Restaking%20-%20Solayer&url=https://www.halborn.com/audits/solayer/restaking
https://twitter.com/intent/tweet?text=Restaking%20-%20Solayer&url=https://www.halborn.com/audits/solayer/restaking
https://www.linkedin.com/shareArticle?mini=true&url=https://www.halborn.com/audits/solayer/restaking&title=Restaking%20-%20Solayer
https://www.linkedin.com/shareArticle?mini=true&url=https://www.halborn.com/audits/solayer/restaking&title=Restaking%20-%20Solayer
https://www.linkedin.com/shareArticle?mini=true&url=https://www.halborn.com/audits/solayer/restaking&title=Restaking%20-%20Solayer
https://www.reddit.com/submit?url=https://www.halborn.com/audits/solayer/restaking&title=Restaking%20-%20Solayer
https://www.reddit.com/submit?url=https://www.halborn.com/audits/solayer/restaking&title=Restaking%20-%20Solayer
https://www.reddit.com/submit?url=https://www.halborn.com/audits/solayer/restaking&title=Restaking%20-%20Solayer
mailto:?subject=Restaking%20-%20Solayer&body=https://www.halborn.com/audits/solayer/restaking
mailto:?subject=Restaking%20-%20Solayer&body=https://www.halborn.com/audits/solayer/restaking
mailto:?subject=Restaking%20-%20Solayer&body=https://www.halborn.com/audits/solayer/restaking

1 . I n t r o d u c t i o n

Solayer team engaged Halborn to conduct a security assessment on their Restaking Solana program
beginning on August 5th, 2024, and ending on August, 09th, 2024. The security assessment was scoped to
the Solana Program provided in solayer-labs/restaking-program GitHub repository. Commit hashes and
further details can be found in the Scope section of this report.

The Restaking program has both administrative and user-facing instructions, and the main purpose is to
allow the deposit of different LST assets (collaterals) in exchange of RST assets, which currently is
exclusively sSOL.

Administrative Instructions:

Initialize: Allows the initialization of a pool PDA, derived from the lst_mint (collateral) account
address, configures a protocol vault to receive the collateral LST, and defines the RST, which is the asset
the Solayer protocol gives back in exchange for collaterals.

Batch Unfreeze: Utility instruction, used to batch thaw accounts.

User-facing instructions:

Restake: Allows users to deposit their LST collateral in the respective pool and vault, in order to
receive (mint) RST tokens from the protocol in exchange. Performs CPI to mint_to method in the interfaced
token program.

Unrestake: Allows users to withdraw their LST collateral from the respective pool and vault, and give
back (burn) the RST. Performs CPI to burn method in the interfaced token program.

https://github.com/solayer-labs/restaking-program

2 . A s s e s s m e n t S u m m a r y

Halborn was provided 4 days for the engagement and assigned one full-time security engineer to review the
security of the Solana Program in scope. The engineer is a blockchain and smart contract security expert
with advanced smart contract hacking skills, and deep knowledge of multiple blockchain protocols.

The purpose of the assessment is to:

Identify potential security issues within the Restaking Solana Program.
Ensure that the program's functionality operates as intended.

In summary, Halborn identified some non-critical issues, that were addressed and acknowledged by the
Solayer team:

Avoid using require! inside loops
Lack of Zero Amount validation
Decimals should be enforced
Outdated dependencies

Overall, the program in-scope is adherent to Solana's best-practices and carries consistent code quality.

3 . Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of a manual review of the source code and automated security testing to
balance e�ciency, timeliness, practicality, and accuracy in regard to the scope of the program assessment.
While manual testing is recommended to uncover flaws in business logic, processes, and implementation;
automated testing techniques help enhance coverage of programs and can quickly identify items that do
not follow security best practices.

The following phases and associated tools were used throughout the term of the assessment:

Research into the architecture, purpose, and use of the platform.
Manual program source code review to identify business logic issues.
Mapping out possible attack vectors.
Thorough assessment of safety and usage of critical Rust variables and functions in scope that could

lead to arithmetic vulnerabilities.
Scanning dependencies for known vulnerabilities (cargo audit).
Local runtime testing (anchor test).

4 . R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coe�cient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means by
which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coe�cients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the highest
security risk. This provides an objective and accurate rating of the severity of security vulnerabilities in
smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk to
address the most critical issues in a timely manner.

4 .1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
Includes but is not limited to macro situation, available third-party liquidity and regulatory challenges.

M E T R I C S :

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

M E

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4 . 2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to a
successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly affecting
Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully exploited
vulnerability. This metric refers to smart contract features and functionality, not state. Availability impact
directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

M E

E

E = m ∏ e

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4 . 3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable contracts,
assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

M I

I

I = max(m) +I

4
m − max(m)∑ I I

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

Severity Coe�cient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

C

r

s

C

C = rs

S

S = min(10,EIC ∗ 10)

SEVERITY SCORE VALUE RANGE

Informational 0 - 1.9

5 . S C O P E

F ILES AND REPOSITORY

(a) Repository: restaking-program

(b) Assessed Commit ID: 2cf4745

(c) Items in scope:

./lib.rs

./errors.rs

./contexts/initialize.rs

./contexts/restaking.rs

./contexts/mod.rs

./contexts/batchunfreeze.rs

./constants.rs

./state/mod.rs

./state/restaking_pool.rs

Out-of-Scope:

REMEDIAT ION COMMIT ID :

46c0907

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL
0

HIGH
0

MEDIUM
0

LOW
0

INFORMATIONAL
3

https://github.com/solayer-labs/restaking-program/tree/master
https://github.com/solayer-labs/restaking-program/commit/46c09073a6dad390f435dc76f17e35849f2c6d1b

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

AVOID USING REQUIRE! INSIDE LOOPS INFORMATIONAL ACKNOWLEDGED

LACK OF ZERO AMOUNT VALIDATION INFORMATIONAL ACKNOWLEDGED

OUTDATED DEPENDENCIES INFORMATIONAL SOLVED - 08/12/2024

7. F I N D I N G S & T EC H D E TA I L S

7.1 AVO I D U S I N G R EQ U I R E ! I N S I D E LO O P S
// INFORMATIONAL

Description
The current implementation of the BatchUnfreeze instruction uses require! statements inside loops,
which can lead to ine�ciencies and potential failures. If a require! statement fails within a loop, the entire
loop will terminate, causing the entire operation to fail.
- programs/restaking-program/src/contexts/batchunfreeze.rs

 pubpub fnfn batch_thaw_lst_accountsbatch_thaw_lst_accounts((&&mutmut selfself,, lst_token_accounts lst_token_accounts:: &&[[AccouAccou
 ifif selfself..signersigner..keykey(()) !=!= PubkeyPubkey::::from_strfrom_str((SOLAYER_ADMINSOLAYER_ADMIN))..unwrapunwrap(())
 returnreturn ErrErr((ProgramErrorProgramError::::MissingRequiredSignatureMissingRequiredSignature..intointo(())));;
 }}
 forfor unchecked_lst_token_account unchecked_lst_token_account inin lst_token_accounts lst_token_accounts..iteriter(()) {{
 // check if the account is owned by the token program before // check if the account is owned by the token program before
 require!require!((unchecked_lst_token_accountunchecked_lst_token_account..ownerowner..keykey(()) ==== selfself..toketoke
 letlet token_account token_account == TokenAccountTokenAccount::::try_deserializetry_deserialize((&&mutmut &&uncheunche
 require!require!((token_accounttoken_account..mint mint ==== selfself..rst_mintrst_mint..keykey(()),, RestakingRestaking
 ifif !!token_accounttoken_account..is_frozenis_frozen(()) {{
 continuecontinue;;
 }}
 letlet bump bump == [[selfself..poolpool..bumpbump]];;

 letlet signer_seeds signer_seeds:: [[&&[[&&[[u8u8]]]];; 11]] == [[
 &&[[
 b"pool"b"pool",,
 selfself..lst_mintlst_mint..to_account_infoto_account_info(())..keykey..as_refas_ref(()),,
 &&bumpbump
]][[....]]
]];;

 letlet ctx ctx == CpiContextCpiContext::::new_with_signernew_with_signer((
 selfself..token_programtoken_program..to_account_infoto_account_info(()),,
 ThawAccountThawAccount {{
 account account:: unchecked_lst_token_account unchecked_lst_token_account..cloneclone(()),,
 authority authority :: selfself..poolpool..to_account_infoto_account_info(()),,
 mint mint:: selfself..rst_mintrst_mint..to_account_infoto_account_info(())
 }},,
 &&signer_seedssigner_seeds

4646
4747
4848
4949
5050
5151
5252
5353
5454
5555
5656
5757
5858
5959
6060
6161
6262
6363
6464
6565
6666
6767
6868
6969
7070
7171
7272
7373
7474
7575

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
It is recommended to avoid using require! statements inside loops, in order to prevent undesired failures.

R e m e d i a t i o n P l a n

ACKNOWLEDGED: The Solayer team acknowledged this issue.

));;

 thaw_accountthaw_account((ctxctx))??;;
 }}
 OkOk(((())))
 }}

7676
7777
7878
7979
8080
8181

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC

7. 2 L AC K O F Z E RO A M O U N T VA L I DAT I O N
// INFORMATIONAL

Description
The program in-scope does not prevent the restake and unrestake methods from being called with amount
== 0.

- programs/restaking-program/src/contexts/restaking.rs

The entry-point functions in lib.rs does not handle this verification either. While this condition does not
lead to immediate financial loss, it should be checked to keep overall consistency.

 pubpub fnfn restakerestake((ctxctx:: ContextContext<<RestakingRestaking>>,, amount amount:: u64u64)) ->-> ResultResult<<(())>> {{
 // Check if solayer_signer has signed the restake transaction// Check if solayer_signer has signed the restake transaction
 // since we will impose TVLs caps at different epochs// since we will impose TVLs caps at different epochs
 /*let solayer_signer: &UncheckedAccount<'_> = &ctx.accounts.solay/*let solayer_signer: &UncheckedAccount<'_> = &ctx.accounts.solay
 if !solayer_signer.is_signer { if !solayer_signer.is_signer {
 return Err(ProgramError::MissingRequiredSignature.into()); return Err(ProgramError::MissingRequiredSignature.into());
 }*/ }*/

 ctx ctx..accountsaccounts..thaw_rst_accountthaw_rst_account(())??;;
 ctx ctx..accountsaccounts..stakestake((amountamount))??;;
 ctx ctx..accountsaccounts..mint_rstmint_rst((amountamount))??;;
 // Check if RST mints should be frozen// Check if RST mints should be frozen
 ifif !!is_liquid_rst_mintsis_liquid_rst_mints((&&ctxctx..accountsaccounts..rst_mintrst_mint..keykey(()))) {{
 ctx ctx..accountsaccounts..freeze_rst_accountfreeze_rst_account(())??;;
 }}
 OkOk(((())))
 }}

 pubpub fnfn unrestakeunrestake((ctxctx:: ContextContext<<RestakingRestaking>>,, amount amount:: u64u64)) ->-> ResultResult<<(())>>
 ctx ctx..accountsaccounts..thaw_rst_accountthaw_rst_account(())??;;
 ctx ctx..accountsaccounts..unstakeunstake((amountamount))??;;
 ctx ctx..accountsaccounts..burn_rstburn_rst((amountamount))??;;
 // Check if RST mints should be frozen// Check if RST mints should be frozen
 ifif !!is_liquid_rst_mintsis_liquid_rst_mints((&&ctxctx..accountsaccounts..rst_mintrst_mint..keykey(()))) {{
 ctx ctx..accountsaccounts..freeze_rst_accountfreeze_rst_account(())??;;
 }}
 OkOk(((())))
 }}

2323
2424
2525
2626
2727
2828
2929
3030
3131
3232
3333
3434
3535
3636
3737
3838
3939
4040
4141
4242
4343
4444
4545
4646
4747
4848
4949
5050

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
Consider adding a verification before the execution of the restake and unrestake methods, blocking
operations with amount == 0.

R e m e d i a t i o n P l a n

ACKNOWLEDGED: The Solayer team acknowledged this issue.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC

7. 3 O U T DAT E D D E P E N D E N C I ES
// INFORMATIONAL

Description
It was identifying during the assessment of the program restaking in-scope that its dependencies for the
Anchor framework and also for Solana are not current.

[[package]]
name = "solana-program"
version = "1.18.7"

[[package]]
name = "anchor-lang"
version = "0.29.0"

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
It is recommended to update dependencies to their current versions, as specified:

Solana: v1.18.20
Anchor: v0.31.0

R e m e d i a t i o n P l a n

SOLVED: The Solayer team has solved this issue as recommended. The commit hash containing the
modification is 46c09073a6dad390f435dc76f17e35849f2c6d1b.

Remediation Hash
https://github.com/solayer-labs/restaking-program/commit/46c09073a6dad390f435dc76f17e35849f2c6d
1b

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://github.com/solayer-labs/restaking-program/commit/46c09073a6dad390f435dc76f17e35849f2c6d1b
https://github.com/solayer-labs/restaking-program/commit/46c09073a6dad390f435dc76f17e35849f2c6d1b

8 . AU TO M AT E D T EST I N G

STAT I C A N A LYS I S R E P O RT

Description
Halborn used automated security scanners to assist with detection of well-known security issues and
vulnerabilities. Among the tools used was cargo audit, a security scanner for vulnerabilities reported to
the RustSec Advisory Database. All vulnerabilities published in https://crates.io are stored in a
repository named The RustSec Advisory Database. cargo audit is a human-readable version of the advisory
database which performs a scanning on Cargo.lock. Security Detections are only in scope. All vulnerabilities
shown here were already disclosed in the above report. However, to better assist the developers maintaining
this code, the auditors are including the output with the dependencies tree, and this is included in the cargo
audit output to better know the dependencies affected by unmaintained and vulnerable crates.

Cargo Audit Results

ID CRATE DESCCRIPTION

RUSTSEC-2022-0093 ed25519-dalek Double Public Key Signing Function Oracle Attack on ed255109-dalek

RUSTSEC-2024-0344 curve25519-dalek Timing variability in curve25519-dalek's Scalar29::sub/Scalar52::sub

RUSTSEC-2021-0145 atty Potential unaligned read

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

