
// Solana Program Security Assessment 09.25.2024 - 10.08.2024

USDC Pool
Solayer

U S D C Po o l - S o l aye r

Prepared by: HALBORN

Last Updated 10/14/2024

Date of Engagement by: September 25th, 2024 - October 8th, 2024

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS
3

CRITICAL
0

HIGH
0

MEDIUM
0

LOW
0

INFORMATIONAL
3

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Centralization risk
7.2 Use of 'msg!' consumes additional computational budget
7.3 Missing multi-step authority transfer mechanism

8. Automated Testing

1 0 0%

https://t.me/share/url?url=https%3A%2F%2Fwww.halborn.com%2Faudits%2Fsolayer%2Fusdc-pool&text=USDC%20Pool%20-%20Solayer
https://t.me/share/url?url=https%3A%2F%2Fwww.halborn.com%2Faudits%2Fsolayer%2Fusdc-pool&text=USDC%20Pool%20-%20Solayer
https://t.me/share/url?url=https%3A%2F%2Fwww.halborn.com%2Faudits%2Fsolayer%2Fusdc-pool&text=USDC%20Pool%20-%20Solayer
https://twitter.com/intent/tweet?text=USDC%20Pool%20-%20Solayer&url=https://www.halborn.com/audits/solayer/usdc-pool
https://twitter.com/intent/tweet?text=USDC%20Pool%20-%20Solayer&url=https://www.halborn.com/audits/solayer/usdc-pool
https://twitter.com/intent/tweet?text=USDC%20Pool%20-%20Solayer&url=https://www.halborn.com/audits/solayer/usdc-pool
https://www.linkedin.com/shareArticle?mini=true&url=https://www.halborn.com/audits/solayer/usdc-pool&title=USDC%20Pool%20-%20Solayer
https://www.linkedin.com/shareArticle?mini=true&url=https://www.halborn.com/audits/solayer/usdc-pool&title=USDC%20Pool%20-%20Solayer
https://www.linkedin.com/shareArticle?mini=true&url=https://www.halborn.com/audits/solayer/usdc-pool&title=USDC%20Pool%20-%20Solayer
https://www.reddit.com/submit?url=https://www.halborn.com/audits/solayer/usdc-pool&title=USDC%20Pool%20-%20Solayer
https://www.reddit.com/submit?url=https://www.halborn.com/audits/solayer/usdc-pool&title=USDC%20Pool%20-%20Solayer
https://www.reddit.com/submit?url=https://www.halborn.com/audits/solayer/usdc-pool&title=USDC%20Pool%20-%20Solayer
mailto:?subject=USDC%20Pool%20-%20Solayer&body=https://www.halborn.com/audits/solayer/usdc-pool
mailto:?subject=USDC%20Pool%20-%20Solayer&body=https://www.halborn.com/audits/solayer/usdc-pool
mailto:?subject=USDC%20Pool%20-%20Solayer&body=https://www.halborn.com/audits/solayer/usdc-pool

1 . I n t r o d u c t i o n

Solayer team engaged Halborn to conduct a security assessment on their USDC Pool Solana program
beginning on September 25th, 2024, and ending on October, 8th, 2024. The security assessment was
scoped to the Solana Program provided in solayer-labs/usdc-pool-program GitHub repository. Commit hashes
and further details can be found in the Scope section of this report.

The USDC Pool program has both administrative and user-facing instructions, and is a system designed to
be fully async from users' perspective. Users are provided with a proof of deposit or withdraw (PDA), and the
platform handles the withdraw and deposit requests in batch. As Solayer is currently leveraging the
OpenEden yield generation protocol, these batch transactions are essentially USDC and TBill token
transfers between Solayer and OpenEden ATAs, in order to be able to mint/burn the respective amount of
sUSD (Solayer USD).

The batch transactions are scheduled to occur once a day, and are handled by the Off-Chain Operator,
which is the signer for crucial operations of the USDC Pool program.

2 . A s s e s s m e n t S u m m a r y

Halborn was provided 2 weeks for the engagement and assigned one full-time security engineer to review
the security of the Solana Program in scope. The engineer is a blockchain and smart contract security
expert with advanced smart contract hacking skills, and deep knowledge of multiple blockchain protocols.

The purpose of the assessment is to:

Identify potential security issues within the USDC Pool Solana Program.
Ensure that the program's functionality operates as intended.

In summary, Halborn identified some non-critical issues, that were acknowledged by the Solayer team:

Centralization Risk.
Use of msg! consumes additional computational budget.
Missing two-step authority transfer mechanism.

Overall, the USDC Pool program in-scope is adherent to Solana's best-practices and carries consistent code
quality.

https://github.com/solayer-labs/usdc-pool-program/tree/main

3 . Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of a manual review of the source code and automated security testing to
balance efficiency, timeliness, practicality, and accuracy in regard to the scope of the program assessment.
While manual testing is recommended to uncover flaws in business logic, processes, and implementation;
automated testing techniques help enhance coverage of programs and can quickly identify items that do
not follow security best practices.

The following phases and associated tools were used throughout the term of the assessment:

Research into the architecture, purpose, and use of the platform.
Manual program source code review to identify business logic issues.
Mapping out possible attack vectors.
Thorough assessment of safety and usage of critical Rust variables and functions in scope that could

lead to arithmetic vulnerabilities.
Scanning dependencies for known vulnerabilities (cargo audit).
Local runtime testing (solana-test-framework).

4 . R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a Severity
Coefficient. This system is inspired by the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical means by
which vulnerabilities can be exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two factors:
Reversibility and Scope. These capture the impact of the vulnerability on the environment as well as the
number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to the highest
security risk. This provides an objective and accurate rating of the severity of security vulnerabilities in
smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level of risk to
address the most critical issues in a timely manner.

4 .1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a single
transaction on the relevant blockchain. Includes but is not limited to financial and computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the vulnerability.
Includes but is not limited to macro situation, available third-party liquidity and regulatory challenges.

M E T R I C S :

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

M ​E

EXPLOITABILIY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4 . 2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract due to a
successfully exploited vulnerability. Confidentiality refers to limiting access to authorized users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly affecting
Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully exploited
vulnerability. This metric refers to smart contract features and functionality, not state. Availability impact
directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

M ​E

E

E = m ​∏ e

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4 . 3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable contracts,
assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

M ​I

I

I = max(m ​) +I ​

4
m ​ − max(m ​)∑ I I

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

C

r

s

C

C = rs

S

S = min(10,EIC ∗ 10)

SEVERITY SCORE VALUE RANGE

Informational 0 - 1.9

5 . S C O P E

F ILES AND REPOSITORY

(a) Repository: usdc-pool-program

(b) Assessed Commit ID: d91a5d7

(c) Items in scope:

./Cargo.toml

./src/contexts/update_openeden_info.rs

./src/contexts/update_susd_metadata.rs

./src/contexts/initiate_batch_deposit.rs

./src/contexts/withdraw.rs

./src/contexts/update_susd_rate.rs

./src/contexts/initialize.rs

./src/contexts/deposit.rs

./src/contexts/set_operator.rs

./src/contexts/set_fee.rs

./src/contexts/resolve_batch_deposit.rs

./src/contexts/collect_fee.rs

./src/contexts/initiate_batch_withdraw.rs

./src/contexts/mod.rs

./src/contexts/set_rate_authority.rs

./src/contexts/emergency_transfer_rwa_token.rs

./src/contexts/resolve_batch_withdraw.rs

./src/constants.rs

./src/lib.rs

./src/state/depositproof.rs

./src/state/withdrawproof.rs

./src/state/mod.rs

./src/state/openeden_info.rs

./src/state/pool.rs

./src/errors.rs

./src/utils.rs

Out-of-Scope:

Out-of-Scope: New features/implementations after the remediation commit IDs.

https://github.com/solayer-labs/usdc-pool-program

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL
0

HIGH
0

MEDIUM
0

LOW
0

INFORMATIONAL
3

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

CENTRALIZATION RISK INFORMATIONAL
ACKNOWLEDGED -

10/10/2024

USE OF 'MSG!' CONSUMES ADDITIONAL COMPUTATIONAL
BUDGET

INFORMATIONAL
ACKNOWLEDGED -

10/10/2024

MISSING MULTI-STEP AUTHORITY TRANSFER
MECHANISM

INFORMATIONAL
ACKNOWLEDGED -

10/10/2024

7. F I N D I N G S & T EC H D E TA I L S

7.1 C E N T R A L I Z AT I O N R I S K
// INFORMATIONAL

Description

Currently, the operator account is the only signer of critical batch deposit and withdraw operations,
handling significant amount of tokens multiple tokens, such as USDC, TBill and sUSD (Solayer USD).
It is not mentioned in the documentation that it is a requirement for the operator account to be a multi-
signature, such as Squads, neither the instructions require more than one signer, in order to leverage
granularity.

In a scenario where the operator account gets compromised or the access to this account is lost, the
entire functionality of the platform is compromised.

- programs/usdc-pool-program/src/contexts/initiate_batch_deposit.rs

#[derive(Accounts)]#[derive(Accounts)]
pubpub structstruct InitiateBatchDepositInitiateBatchDeposit<<'info'info>> {{
 #[account(mut)]#[account(mut)]
 operator operator:: SignerSigner<<'info'info>>,,

- programs/usdc-pool-program/src/contexts/initiate_batch_withdraw.rs

#[derive(Accounts)]#[derive(Accounts)]
pubpub structstruct InitiateBatchWithdrawInitiateBatchWithdraw<<'info'info>> {{
 #[account(mut)]#[account(mut)]
 operator operator:: SignerSigner<<'info'info>>,,

- programs/usdc-pool-program/src/contexts/resolve_batch_deposit.rs

#[derive(Accounts)]#[derive(Accounts)]
pubpub structstruct ResolveBatchDepositResolveBatchDeposit<<'info'info>> {{
 #[account(mut)]#[account(mut)]
 operator operator:: SignerSigner<<'info'info>>,,

- programs/usdc-pool-program/src/contexts/resolve_batch_withdraw.rs

#[derive(Accounts)]#[derive(Accounts)]
pubpub structstruct ResolveBatchWithdrawResolveBatchWithdraw<<'info'info>> {{
 #[account(mut)]#[account(mut)]
 operator operator:: SignerSigner<<'info'info>>,,

- programs/usdc-pool-program/src/contexts/collect_fee.rs

#[derive(Accounts)]#[derive(Accounts)]
pubpub structstruct CollectFeeCollectFee<<'info'info>> {{
 #[account(mut)]#[account(mut)]
 operator operator:: SignerSigner<<'info'info>>,,

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:U (0.0)

Recommendation
It is recommended to add a more granular access-control mechanism to mission-critical functions, which
are currently relying on solely in the Operator account.
Consider utilizing a Multi-signature wallet for the Operator account. Alternatively, require more than a single
signature for the mentioned instructions.

Remediation

ACKNOWLEDGED: The Solayer team has acknowledged the issue.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AU

7. 2 U S E O F ' M S G ! ' C O N S U M ES A D D I T I O N A L C O M P U TAT I O N A L
B U D G E T
// INFORMATIONAL

Description
The usage of msg! is usually advisable during tests, and will incur in additional computational budget when
the instruction is processed in Mainnet.
In both resolve_batch_deposit and resolve_batch_withdraw instructions, it was observed logging
utilizing msg!.

- programs/usdc-pool-program/src/contexts/resolve_batch_deposit.rs

 msg!msg!(("expected_amount {:?}""expected_amount {:?}",, expected_amount expected_amount));;
 msg!msg!(("rwa_token_amount {:?}""rwa_token_amount {:?}",, rwa_token_amount rwa_token_amount));;
 msg!msg!(("susd_mint_amount {:?}""susd_mint_amount {:?}",, susd_mint_amount susd_mint_amount));;

- programs/usdc-pool-program/src/contexts/resolve_batch_withdraw.rs

 msg!msg!(("expected_amount {:?}""expected_amount {:?}",, expected_amount expected_amount));;
 msg!msg!(("usdc_withdraw_amount {:?}""usdc_withdraw_amount {:?}",, usdc_withdraw_amount usdc_withdraw_amount));;

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
Consider removing msg! logging before mainnet deployment for enhanced computational budget efficiency.

Remediation

ACKNOWLEDGED: The Solayer team has acknowledged the issue.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC

7. 3 M I S S I N G M U LT I - ST E P AU T H O R I T Y T R A N S F E R M EC H A N I S M
// INFORMATIONAL

Description
The existing implementation of the set_operator and set_rate_authority instructions employ an one-
step procedure for authority delegation, which presents a security concern. This method lacks a safeguard
against inadvertent delegations to undesired accounts.

- programs/usdc-pool-program/src/contexts/set_operator.rs

#[derive(Accounts)]#[derive(Accounts)]
pubpub structstruct SetOperatorSetOperator<<'info'info>> {{
 #[account(mut)]#[account(mut)]
 manager manager:: SignerSigner<<'info'info>>,,
 #[account(#[account(
 mut, mut,
 constraint = new_operator.key() != pool.operator.key() constraint = new_operator.key() != pool.operator.key()
)])]
 new_operator new_operator:: SignerSigner<<'info'info>>,,
 # #[[accountaccount((
 mutmut,,
 has_one has_one == manager manager,,
 seeds seeds == [[b"pool"b"pool",, USDC_MINTUSDC_MINT..as_refas_ref(()),, pool pool..susd_mintsusd_mint..as_refas_ref(())]],,
 bump bump == pool pool..bumpbump
))]]
 pool pool:: AccountAccount<<'info'info,, PoolPool>>,,
}}

implimpl<<'info'info>> SetOperatorSetOperator<<'info'info>> {{
 pubpub fnfn set_operatorset_operator((&&mutmut selfself)) ->-> ResultResult<<(())>> {{
 selfself..poolpool..operator operator == selfself..new_operatornew_operator..keykey(());;
 OkOk(((())))
 }}
}}

- programs/usdc-pool-program/src/contexts/set_rate_authority.rs

#[derive(Accounts)]#[derive(Accounts)]
pubpub structstruct SetRateAuthoritySetRateAuthority<<'info'info>> {{
 #[account(mut)]#[account(mut)]

 manager manager:: SignerSigner<<'info'info>>,,
 #[account(#[account(
 mut, mut,
 constraint = new_rate_authority.key() != pool.rate_authority.key() constraint = new_rate_authority.key() != pool.rate_authority.key()
)])]
 /// CHECK: The new rate authority account/// CHECK: The new rate authority account
 new_rate_authority new_rate_authority:: AccountInfoAccountInfo<<'info'info>>,,
 # #[[accountaccount((
 mutmut,,
 has_one has_one == manager manager,,
 seeds seeds == [[b"pool"b"pool",, USDC_MINTUSDC_MINT..as_refas_ref(()),, pool pool..susd_mintsusd_mint..as_refas_ref(())]],,
 bump bump == pool pool..bumpbump
))]]
 pool pool:: AccountAccount<<'info'info,, PoolPool>>,,
}}

implimpl<<'info'info>> SetRateAuthoritySetRateAuthority<<'info'info>> {{
 pubpub fnfn set_rate_authorityset_rate_authority((&&mutmut selfself)) ->-> ResultResult<<(())>> {{
 selfself..poolpool..rate_authority rate_authority == selfself..new_rate_authoritynew_rate_authority..keykey(());;
 OkOk(((())))
 }}
}}

Score

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:N/R:N/S:C (0.0)

Recommendation
To resolve this issue, it is advisable to establish a multi-step process for authority transfer (being
rate_authority or new_operator), thereby enhancing the security of the operation. The current authority
would first propose a new candidate authority, who would then need to formally accept the role.
This process would be structured as follows:
1. Proposal by Current Authority: The current signer proposes a new candidate signer. This action updates
the candidate_authority field in the account's state. This step assumes the prior creation of an additional
field candidate_authority the state.
2. Acceptance by New Authority: The proposed candidate_authority formally accepts the role. This step
transfers the authority status from the current authority to the candidate_authority.

Remediation

ACKNOWLEDGED: The Solayer team has acknowledged the issue.

https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC
https://www.halborn.com/bvss?q=AO%3AA%2FAC%3AL%2FAX%3AL%2FC%3AN%2FI%3AN%2FA%3AN%2FD%3AN%2FY%3AN%2FR%3AN%2FS%3AC

8 . AU TO M AT E D T EST I N G

STAT I C A N A LYS I S R E P O RT

Description
Halborn used automated security scanners to assist with detection of well-known security issues and
vulnerabilities. Among the tools used was cargo audit, a security scanner for vulnerabilities reported to
the RustSec Advisory Database. All vulnerabilities published in https://crates.io are stored in a
repository named The RustSec Advisory Database. cargo audit is a human-readable version of the advisory
database which performs a scanning on Cargo.lock. Security Detections are only in scope. All vulnerabilities
shown here were already disclosed in the above report. However, to better assist the developers maintaining
this code, the auditors are including the output with the dependencies tree, and this is included in the cargo
audit output to better know the dependencies affected by unmaintained and vulnerable crates.

Cargo Audit Results

ID CRATE DESCCRIPTION

RUSTSEC-2022-0093 ed25519-dalek Double Public Key Signing Function Oracle Attack on ed255109-dalek

RUSTSEC-2024-0344 curve25519-dalek Timing variability in curve25519-dalek's Scalar29::sub/Scalar52::sub

RUSTSEC-2021-0145 atty Potential unaligned read

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or immediately
following any material changes to the codebase, whichever comes first. This approach is crucial for maintaining the
project’s integrity and addressing potential vulnerabilities introduced by code modifications.

© Halborn 2024. All rights reserved.

