
1

12. May, 2022

Cairo Finance

Disclaimer	
3
Description	
5
Project Engagement	
5
Logo	
5
Contract Link	
5
Methodology	
7
Used Code from other Frameworks/Smart Contracts (direct imports)	
8
Tested Contract Files	
9
Source Lines	
10
Risk Level	
10
Capabilities	
11
Inheritance Graph	
12
CallGraph	
13
Scope of Work/Verify Claims	
14
Modifiers and public functions	
20
Source Units in Scope	
23
Critical issues	
24
High issues	
24
Medium issues	
24
Low issues	
24
Informational issues	
24
Commented Code exist	
28
Audit Comments	
28
SWC Attacks	 29

2

Disclaimer

SolidProof.io reports are not, nor should be considered, an “endorsement”
or “disapproval” of any particular project or team. These reports are not,
nor should be considered, an indication of the economics or value of any
“product” or “asset” created by any team. SolidProof.io do not cover
testing or auditing the integration with external contract or services (such
as Unicrypt, Uniswap, PancakeSwap etc’...)

SolidProof.io Audits do not provide any warranty or guarantee
regarding the absolute bug- free nature of the technology analyzed,
nor do they provide any indication of the technology proprietors.
SolidProof Audits should not be used in any way to make decisions
around investment or involvement with any particular project. These
reports in no way provide investment advice, nor should be leveraged
as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending to
help our customers increase the quality of their code while reducing the
high level of risk presented by cryptographic tokens and blockchain
technology. Blockchain technology and cryptographic assets present a
high level of ongoing risk. SolidProof’s position is that each company and
individual are responsible for their own due diligence and continuous
security. SolidProof in no way claims any guarantee of security or
functionality of the technology we agree to analyze.

Version Date Description

1.0 10. May 2022 • Layout project

• Automated- /Manual-Security Testing

• Summary

3

http://SolidProof.io

Network

Binance Smart Chain (BEP20)

Website

https://cairo.finance/

Telegram

https://t.me/cairofinance

Twitter

https://twitter.com/cairofinance?s=11

Instagram

https://instagram.com/cairo.finance.official

Youtube

https://www.youtube.com/channel/UCKqHSmte97IizdL1RtdabYw

4

https://cairo.finance/
https://t.me/cairofinance
https://twitter.com/cairofinance?s=11
https://instagram.com/cairo.finance.official
https://www.youtube.com/channel/UCKqHSmte97IizdL1RtdabYw

Description

Cairo is a Yield Optimizer with his own deflationary staking system that
focuses on safety and autocompounds crypto assets for the best APYs
through the Binance Smart Chain.

Project Engagement

During the 6th of May 2022, Cairo Finance Team engaged Solidproof.io to
audit smart contracts that they created. The engagement was technical
in nature and focused on identifying security flaws in the design and
implementation of the contracts. They provided Solidproof.io with access
to their code repository and whitepaper.

Logo

Contract Link

v1.0

• Github

• Token

• https://github.com/cairofinance/cairo-contracts/blob/

master/contracts/token/CairoToken.sol

• Commit: f8be3b5c866899a2604180673fbecb5dc422e4f9

• Maximizer

• https://github.com/cairofinance/cairo-contracts/blob/

master/contracts/maximizer/CairoMaximizer.sol

• Commit: ce4b5376654021e537ee3ef45bacd4dfaeda3bbc

5

https://github.com/cairofinance/cairo-contracts/blob/master/contracts/token/CairoToken.sol
https://github.com/cairofinance/cairo-contracts/blob/master/contracts/token/CairoToken.sol
https://github.com/cairofinance/cairo-contracts/blob/master/contracts/maximizer/CairoMaximizer.sol
https://github.com/cairofinance/cairo-contracts/blob/master/contracts/maximizer/CairoMaximizer.sol

Vulnerability & Risk Level
Risk represents the probability that a certain source-threat will exploit
vulnerability, and the impact of that event on the organization or system.
Risk Level is computed based on CVSS version 3.0.

Level Value Vulnerability Risk (Required Action)

Critical 9 - 10

A vulnerability that
can disrupt the
contract functioning
in a number of
scenarios, or creates a
risk that the contract
may be broken.

Immediate action to
reduce risk level.

High 7 – 8.9

A vulnerability that
affects the desired
outcome when using
a contract, or provides
the opportunity to
use a contract in an
unintended way.

Implementation of
corrective actions as

soon aspossible.

Medium 4 – 6.9

A vulnerability that
could affect the
desired outcome of
executing the
contract in a specific
scenario.

Implementation of
corrective actions in a

certain period.

Low 2 – 3.9

A vulnerability that
does not have a
significant impact on
possible scenarios for
the use of the
contract and is
probably subjective.

Implementation of
certain corrective

actions or accepting
the risk.

Informational 0 – 1.9

A vulnerability that
have informational
character but is not
effecting any of the
code.

An observation that
does not determine a

level of risk

6

Auditing Strategy and Techniques
Applied
Throughout the review process, care was taken to evaluate the repository
for security-related issues, code quality, and adherence to specification
and best practices. To do so, reviewed line-by-line by our team of expert
pentesters and smart contract developers, documenting any issues as
there were discovered.

Methodology

The auditing process follows a routine series of steps:

1. Code review that includes the following:

i) Review of the specifications, sources, and instructions provided to SolidProof
to make sure we understand the size, scope, and functionality of the smart
contract.

ii) Manual review of code, which is the process of reading source code line-by-
line in an attempt to identify potential vulnerabilities.

iii) Comparison to specification, which is the process of checking whether the
code does what the specifications, sources, and instructions provided to
SolidProof describe.

2. Testing and automated analysis that includes the following:

i) Test coverage analysis, which is the process of determining whether the test

cases are actually covering the code and how much code is exercised when
we run those test cases.

ii) Symbolic execution, which is analysing a program to determine what inputs
causes each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency,
effectiveness, clarify, maintainability, security, and control based on the established
industry and academic practices, recommendations, and research.

4. Specific, itemized, actionable recommendations to help you take steps to secure
your smart contracts.

7

Used Code from other Frameworks/Smart
Contracts (direct imports)

Imported packages:

 

8

Tested Contract Files

This audit covered the following files listed below with a SHA-1 Hash.

A file with a different Hash has been modified, intentionally or otherwise,
after the security review. A different Hash could be (but not necessarily)
an indication of a changed condition or potential vulnerability that was
not within the scope of this review.

v1.0

9

Metrics
Source Lines

v1.0

Risk Level

v1.0

10

Capabilities

Components

Exposed Functions

This section lists functions that are explicitly declared public or payable.
Please note that getter methods for public stateVars are not included.

State Variables

Capabilities

Version Contracts Libraries Interfaces Abstract

1.0 2 2 4 0

Version Public Payable

1.0 79 3

Version External Internal Private Pure View

1.0 49 86 0 11 29

Version Total Public

1.0 45 18

Version
Solidity
Versions
observed

Experim
ental
Features

 Can
Receive
Funds

Uses
Assembl
y

Has
Destroya
ble
Contract
s

1.0 ^0.8.4 yes

Version Transfer
s ETH

Low-
Level
Calls

Deleg
ateCa
ll

Uses
Hash
Function
s

EC
Rec
ove
r

New/
Create/
Create2

1.0 yes

11

Inheritance Graph

v1.0

12

CallGraph

v1.0

13

Scope of Work/Verify Claims

The above token Team provided us with the files that needs to be tested
(Github, Bscscan, Etherscan, files, etc.). The scope of the audit is the main
contract (usual the same name as team appended with .sol).

We will verify the following claims:

1. Correct implementation of Token standard

2. Deployer cannot mint any new tokens

3. Deployer cannot burn or lock user funds

4. Deployer cannot pause the contract

5. Overall checkup (Smart Contract Security)

Correct implementation of Token standard

ERC20

Function Description Exist Tested Verified

TotalSupply Provides information about the total
token supply ✓ ✓ ✓

BalanceOf Provides account balance of the
owner's account ✓ ✓ ✓

Transfer
Executes transfers of a specified
number of tokens to a specified

address
✓ ✓ ✓

TransferFrom
 Executes transfers of a specified

number of tokens from a specified
address

✓ ✓ ✓
Approve

Allow a spender to withdraw a set
number of tokens from a specified

account
✓ ✓ ✓

Allowance Returns a set number of tokens
from a spender to the owner ✓ ✓ ✓

14

Write functions of contract

v1.0

 

15

CairoToken CairoMaximizer

Deployer cannot mint any new tokens

Comments:

v1.0

• Owner mints new tokens in initialize function.

Name Exist Tested Status

Deployer cannot mint ✓ ✓ ✓
Max / Total Supply 100000000

16

Deployer cannot burn or lock user funds

Comments:

v1.0

• Owner can lock user funds by

• Setting a custom tax rate for individual address to a high value

• Owner cannot set _hasCustomTax variable per sender to

false after setting it to true. That means, that the owner
must set it manually back to 10 percent

• Tokens

• can be burned by msg.sender

• Can be burned by Cairo network without allowance from the

address

Name Exist Tested Status

Deployer cannot lock ✓ ✓ ✘

Deployer cannot burn ✓ ✓ ✘

17

Deployer cannot pause the contract

Comments:

v1.0

• Deployer implements PausableUpgradeable in the contracts to use

modifiers from the library. It is possible, that the owner can pause
contracts in an upgraded version of token. Do your own research here

Name Exist Tested Status

Deployer cannot pause ✓ ✓ ✓

18

Overall checkup (Smart Contract Security)

Legend

Tested Verified

✓ ✓

Attribute Symbol

Verfified / Checked ✓
Partly Verified ⚑
Unverified / Not checked ✘

Not available -

19

Modifiers and public functions

v1.0

Comments

• Deployer can set following state variables without any limitations

• CairoToken

• _customTaxRate

• CairoMaximizer

• payoutRate

• maximizerBurnPercent

• maximizerKeepAmount

• ref_depth

• ref_bonus

20

• minimumInitial

• max_payout_cap

• Deployer can enable/disable following state variables

• Token

• _excluded

• _isExcluded

• Deployer can set following addresses

• CairoToken

• router

• pancakeV2BNBPair

• pairs

• networkContracts

• allNetworkContracts

• taxFeeSplit1

• taxFeeSplit2

• CairoMaximizer

• cairoToken

• adminFeeAddress

• adminFeeAddress2

• Existing Modifiers

• CairoToken

• onlyNetwork

• CairoToken

• Cairo networks can

• transfer tokens without any allowance of the address

• burn tokens without any allowance of the address

• Owner can add any address to the networkContracts variable

• All addresses are possible, not only contract addresses

• Following functions cannot be called if contract is paused

• Burn

• Transfer

• Approve

• transferFrom

• increaseAllowance

• decreaseAllowance

• CairoMaximizer

• custody.last_checkin has no functionality except of showing the

time when the address interact with following functions

• Deposit

21

• Claim

• Roll

Please check if an OnlyOwner or similar restrictive modifier has been
forgotten.

22

Source Units in Scope

v1.0

Legend

Attribute Description

Lines total lines of the source unit

nLines normalized lines of the source unit (e.g. normalizes functions
spanning multiple lines)

nSLOC normalized source lines of code (only source-code lines; no
comments, no blank lines)

Comment Lines lines containing single or block comments

Complexity Score
a custom complexity score derived from code statements that
are known to introduce code complexity (branches, loops, calls,
external interfaces, ...)

23

Audit Results

Critical issues

High issues

Medium issues

Low issues

Informational issues

No critical issues

No high issues

No medium issues

Issue File Type Line Description

#1 CairoTo
ken

A floating pragma is set 3 The current pragma Solidity
directive is „“^0.8.4””.

#2 CairoMa
ximizer

A floating pragma is set 3 The current pragma Solidity
directive is „“^0.8.4””.

#3 CairoTo
ken

State variable visibility
is not set

135, 136, 139,
140

It is best practice to set the
visibility of state variables
explicitly

#4 CairoTo
ken

Local variables
shadowing

490, 256 Rename the local variables
that shadow another
component

#5 CairoMa
ximizer

Missing Events
Arithmetic

175, 170, 184,
145, 166, 162

Emit an event for critical
parameter changes

Issue File Type Line Description

24

AUDIT PASSED

#1 CairoMa
ximizer

Functions that are not
used

383 Remove unused functions

#2 CairoTo
ken

Functions that are not
used

504 Remove unused functions

#3 CairoTo
ken

Error message is
missing

103, 88, 89,
78, 79

Provide an error message for
require statement

#4 CairoMa
ximizer

Error message is
missing

179 Provide an error message for
require statement

#5 All NatSpec
documentation
missing

- If you started to comment
your code, also comment all
other functions, variables etc.

#6 CairoTo
ken

Wrong comment 594 “Transfer between two
wallets the 10% on buy/sell” is
a wrong comment. The
owner is able to set custom
percentage for an individual
address.

25

#9 CairoTo
ken

Fee Calculation 592, See
description

Modifiy following variable: 
 
uint256 halfFeeAmount =
amount.mul(taxPercent).div(
100).div(2);

To:

Uint256 fee =
amount.mul(taxPercent).div(
100);

uint256 halfFee = fee.div(2);

Uint256 otherHalfFee =
fee.sub(halfFee);

The reason is for example the
fees are an odd number (33)

The half of 33 is normally 16,5
but solidity will cut of the 0,5
and instead it will be 16 per
half. That means, that you are
only transferring 32 instead
of 33. So if you are calculate
the half of 33 now, you will
still get 16 because of solidity,
but if you are subtraction 16
from 33 you will take the rest
1 with into your first/second
taxFeeSplit.

The result per taxSplit will be
then:

taxFeeSplit1 = 16

taxFeeSplit1 = 17

Rest = 0

Instead of

taxFeeSplit1 = 16

taxFeeSplit1 = 16

Rest = 1

Same for

- adminHalfShare L237,

L426, L395

26

#10 CairoTo
ken

Unnecessary library See
description

You mustn’t import
SafeMath library into the
contracts above pragma
version 0.8.x anymore. It is
already imported by default.

You can use raw
mathematical operations
instead of library functions.

#11 CairoMa
ximizer

Unused local variable 199, 526 You are not using taxAmount
in the deposit function.
Remove the red marked text
and leave the comma to
solve this issue if you are not
going to use that variable:

(uint256 realizedDeposit,
uint256 taxAmount) =
cairoToken.calculateTransferT
axes(_addr, _amount);

You can also replace the blue
marked variable directly with
_total_amount instead of
setting _total_amount L200
to realizeDeposit

L526:

(uint256 _gross_payout,
uint256 _max_payout,
uint256 _to_payout) =
payoutOf(_addr);

#12 CairoMa
ximizer

Uninitialized variable 97, 105 minimumAmount will be 0,
so there is no minimum
deposit in deposit function

#13 CairoMa
ximizer

Variable with no effect 85 Remove variable if you are
not going to use it

#14 CairoMa
ximizer

Contract that locks
ether

- You are not able to withdraw
contract balance

#15 CairoMa
ximizer

Russian comment 477 Translate russian comment
into English

- Взгляды

- совместимость

- Пользователь в аплайне

-

27

Commented Code exist

There are some instances of code being commented out in the following
files that should be removed:

Recommendation

Remove the commented code, or address them properly.

Audit Comments

We recommend you to use the special form of comments (NatSpec
Format, Follow link for more information https://docs.soliditylang.org/en/
v0.5.10/natspec-format.html) for your contracts to provide rich
documentation for functions, return variables and more. This helps
investors to make clear what that variables, functions etc. do.

10. May 2022:

• Keep it in mind that the contracts are upgradeable

• Read whole report for more information

File Line Comment

CairoMax
imizer

312 // require(users[_addr].upline != address(0) || _addr == owner(),
"No upline");

628-630 // assert(b > 0); // Solidity automatically throws when dividing
by 0

// uint256 c = a / b;

// assert(a == b * c + a % b); // There is no case in which this
doesn't hold

28

https://docs.soliditylang.org/en/v0.5.10/natspec-format.html
https://docs.soliditylang.org/en/v0.5.10/natspec-format.html

SWC Attacks

ID Title Relationships Status

SW
C-1
36

Unencrypted
Private Data
On-Chain

CWE-767: Access to Critical
Private Variable via Public
Method

PASSED

SW
C-1
35

Code With No
Effects

CWE-1164: Irrelevant Code PASSED

SW
C-1
34

Message call
with
hardcoded
gas amount

CWE-655: Improper
Initialization

PASSED

SW
C-1
33

Hash
Collisions With
Multiple
Variable
Length
Arguments

CWE-294: Authentication
Bypass by Capture-replay

PASSED

SW
C-1
32

Unexpected
Ether balance

CWE-667: Improper Locking PASSED

SW
C-1
31

Presence of
unused
variables

CWE-1164: Irrelevant Code
NOT

PASSED

SW
C-1
30

Right-To-Left-
Override
control
character
(U+202E)

CWE-451: User Interface (UI)
Misrepresentation of Critical
Information

PASSED

SW
C-1
29

Typographical
Error

CWE-480: Use of Incorrect
Operator

PASSED

SW
C-1
28

DoS With
Block Gas
Limit

CWE-400: Uncontrolled
Resource Consumption

PASSED

29

https://swcregistry.io/docs/SWC-136
https://cwe.mitre.org/data/definitions/767.html
https://swcregistry.io/docs/SWC-135
https://cwe.mitre.org/data/definitions/1164.html
https://swcregistry.io/docs/SWC-134
https://cwe.mitre.org/data/definitions/665.html
https://swcregistry.io/docs/SWC-133
https://cwe.mitre.org/data/definitions/294.html
https://swcregistry.io/docs/SWC-132
https://cwe.mitre.org/data/definitions/667.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-131
https://cwe.mitre.org/data/definitions/1164.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-130
http://cwe.mitre.org/data/definitions/451.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-129
https://cwe.mitre.org/data/definitions/480.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-128
https://cwe.mitre.org/data/definitions/400.html

SW
C-1
27

Arbitrary
Jump with
Function Type
Variable

CWE-695: Use of Low-Level
Functionality

PASSED

SW
C-1
25

Incorrect
Inheritance
Order

CWE-696: Incorrect Behavior
Order

PASSED

SW
C-1
24

Write to
Arbitrary
Storage
Location

CWE-123: Write-what-where
Condition

PASSED

SW
C-1
23

Requirement
Violation

CWE-573: Improper Following
of Specification by Caller

PASSED

SW
C-1
22

Lack of Proper
Signature
Verification

CWE-345: Insufficient
Verification of Data
Authenticity

PASSED

SW
C-1
21

Missing
Protection
against
Signature
Replay Attacks

CWE-347: Improper
Verification of Cryptographic
Signature

PASSED

SW
C-1
20

Weak Sources
of
Randomness
from Chain
Attributes

CWE-330: Use of Insufficiently
Random Values

PASSED

SW
C-11
9

Shadowing
State Variables

CWE-710: Improper Adherence
to Coding Standards

NOT
PASSED

SW
C-11
8

Incorrect
Constructor
Name

CWE-665: Improper
Initialization

PASSED

SW
C-11
7

Signature
Malleability

CWE-347: Improper
Verification of Cryptographic
Signature

PASSED

30

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-127
https://cwe.mitre.org/data/definitions/695.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-125
https://cwe.mitre.org/data/definitions/696.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-124
https://cwe.mitre.org/data/definitions/123.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-123
https://cwe.mitre.org/data/definitions/573.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-122
https://cwe.mitre.org/data/definitions/345.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-121
https://cwe.mitre.org/data/definitions/347.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-120
https://cwe.mitre.org/data/definitions/330.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-119
http://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-118
http://cwe.mitre.org/data/definitions/665.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-117
https://cwe.mitre.org/data/definitions/347.html

SW
C-11
6

Timestamp
Dependence

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

PASSED

SW
C-11
5

Authorization
through
tx.origin

CWE-477: Use of Obsolete
Function

PASSED

SW
C-11
4

Transaction
Order
Dependence

CWE-362: Concurrent
Execution using Shared
Resource with Improper
Synchronization ('Race
Condition')

PASSED

SW
C-11
3

DoS with
Failed Call

CWE-703: Improper Check or
Handling of Exceptional
Conditions

PASSED

SW
C-11
2

Delegatecall
to Untrusted
Callee

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

PASSED

SW
C-11
1

Use of
Deprecated
Solidity
Functions

CWE-477: Use of Obsolete
Function

PASSED

SW
C-11
0

Assert
Violation

CWE-670: Always-Incorrect
Control Flow Implementation

PASSED

SW
C-1
09

Uninitialized
Storage
Pointer

CWE-824: Access of
Uninitialized Pointer

PASSED

SW
C-1
08

State Variable
Default
Visibility

CWE-710: Improper Adherence
to Coding Standards

NOT
PASSED

SW
C-1
07

Reentrancy
CWE-841: Improper
Enforcement of Behavioral
Workflow

PASSED

SW
C-1
06

Unprotected
SELFDESTRUC
T Instruction

CWE-284: Improper Access
Control

PASSED

31

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-116
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-115
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-114
https://cwe.mitre.org/data/definitions/362.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-113
https://cwe.mitre.org/data/definitions/703.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-112
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-111
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-110
https://cwe.mitre.org/data/definitions/670.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-109
https://cwe.mitre.org/data/definitions/824.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-108
https://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-107
https://cwe.mitre.org/data/definitions/841.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-106
https://cwe.mitre.org/data/definitions/284.html

SW
C-1
05

Unprotected
Ether
Withdrawal

CWE-284: Improper Access
Control

PASSED

SW
C-1
04

Unchecked
Call Return
Value

CWE-252: Unchecked Return
Value

PASSED

SW
C-1
03

Floating
Pragma

CWE-664: Improper Control of
a Resource Through its
Lifetime

NOT
PASSED

SW
C-1
02

Outdated
Compiler
Version

CWE-937: Using Components
with Known Vulnerabilities

PASSED

SW
C-1
01

Integer
Overflow and
Underflow

CWE-682: Incorrect
Calculation

PASSED

SW
C-1
00

Function
Default
Visibility

CWE-710: Improper Adherence
to Coding Standards

PASSED

32

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-105
https://cwe.mitre.org/data/definitions/284.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-104
https://cwe.mitre.org/data/definitions/252.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103
https://cwe.mitre.org/data/definitions/664.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-102
http://cwe.mitre.org/data/definitions/937.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-101
https://cwe.mitre.org/data/definitions/682.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-100
https://cwe.mitre.org/data/definitions/710.html

33

	Disclaimer
	Description
	Project Engagement
	Logo
	Contract Link
	Methodology
	Used Code from other Frameworks/Smart Contracts (direct imports)
	Tested Contract Files
	Source Lines
	Risk Level
	Capabilities
	Inheritance Graph
	CallGraph
	Scope of Work/Verify Claims
	Modifiers and public functions
	Source Units in Scope
	Critical issues
	High issues
	Medium issues
	Low issues
	Informational issues
	Commented Code exist
	Audit Comments
	SWC Attacks

