/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s16 int16_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct device; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_38 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_38 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_39 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_40 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_39 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_40 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_41 { uid_t val ; }; typedef struct __anonstruct_kuid_t_41 kuid_t; struct __anonstruct_kgid_t_42 { gid_t val ; }; typedef struct __anonstruct_kgid_t_42 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_43 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_43 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_108 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_108 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion____missing_field_name_136 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_136 __annonCompField33 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_139 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_140 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_138 { struct __anonstruct____missing_field_name_139 __annonCompField35 ; struct __anonstruct____missing_field_name_140 __annonCompField36 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_141 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_143 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_147 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_146 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_147 __annonCompField40 ; int units ; }; struct __anonstruct____missing_field_name_145 { union __anonunion____missing_field_name_146 __annonCompField41 ; atomic_t _count ; }; union __anonunion____missing_field_name_144 { unsigned long counters ; struct __anonstruct____missing_field_name_145 __annonCompField42 ; unsigned int active ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField39 ; union __anonunion____missing_field_name_144 __annonCompField43 ; }; struct __anonstruct____missing_field_name_149 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_148 { struct list_head lru ; struct __anonstruct____missing_field_name_149 __annonCompField45 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_150 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_141 __annonCompField38 ; struct __anonstruct____missing_field_name_142 __annonCompField44 ; union __anonunion____missing_field_name_148 __annonCompField46 ; union __anonunion____missing_field_name_150 __annonCompField47 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_152 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_151 { struct __anonstruct_linear_152 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_151 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct mem_cgroup; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_154 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_155 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_153 { struct __anonstruct____missing_field_name_154 __annonCompField48 ; struct __anonstruct____missing_field_name_155 __annonCompField49 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_153 __annonCompField50 ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_157 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_156 { struct __anonstruct____missing_field_name_157 __annonCompField51 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_156 __annonCompField52 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct cred; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_162 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_162 __annonCompField53 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct exception_table_entry { int insn ; int fixup ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; typedef unsigned short __kernel_sa_family_t; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; enum ldv_21492 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_21492 socket_state; struct poll_table_struct; struct pipe_inode_info; struct net; struct fasync_struct; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct kiocb; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct sk_buff; typedef s32 dma_cookie_t; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_169 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_168 { __wsum csum ; struct __anonstruct____missing_field_name_169 __annonCompField56 ; }; union __anonunion____missing_field_name_170 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_171 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_168 __annonCompField57 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_170 __annonCompField58 ; __u32 secmark ; union __anonunion____missing_field_name_171 __annonCompField59 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ath10k; enum ath10k_htc_svc_id { ATH10K_HTC_SVC_ID_RESERVED = 0, ATH10K_HTC_SVC_ID_UNUSED = 0, ATH10K_HTC_SVC_ID_RSVD_CTRL = 1, ATH10K_HTC_SVC_ID_WMI_CONTROL = 256, ATH10K_HTC_SVC_ID_WMI_DATA_BE = 257, ATH10K_HTC_SVC_ID_WMI_DATA_BK = 258, ATH10K_HTC_SVC_ID_WMI_DATA_VI = 259, ATH10K_HTC_SVC_ID_WMI_DATA_VO = 260, ATH10K_HTC_SVC_ID_NMI_CONTROL = 512, ATH10K_HTC_SVC_ID_NMI_DATA = 513, ATH10K_HTC_SVC_ID_HTT_DATA_MSG = 768, ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS = 65024 } ; enum ath10k_htc_ep_id { ATH10K_HTC_EP_UNUSED = -1, ATH10K_HTC_EP_0 = 0, ATH10K_HTC_EP_1 = 1, ATH10K_HTC_EP_2 = 2, ATH10K_HTC_EP_3 = 3, ATH10K_HTC_EP_4 = 4, ATH10K_HTC_EP_5 = 5, ATH10K_HTC_EP_6 = 6, ATH10K_HTC_EP_7 = 7, ATH10K_HTC_EP_8 = 8, ATH10K_HTC_EP_COUNT = 9 } ; struct ath10k_htc_ops { void (*target_send_suspend_complete)(struct ath10k * ) ; }; struct ath10k_htc_ep_ops { void (*ep_tx_complete)(struct ath10k * , struct sk_buff * ) ; void (*ep_rx_complete)(struct ath10k * , struct sk_buff * ) ; void (*ep_tx_credits)(struct ath10k * ) ; }; struct ath10k_htc; struct ath10k_htc_ep { struct ath10k_htc *htc ; enum ath10k_htc_ep_id eid ; enum ath10k_htc_svc_id service_id ; struct ath10k_htc_ep_ops ep_ops ; int max_tx_queue_depth ; int max_ep_message_len ; u8 ul_pipe_id ; u8 dl_pipe_id ; int ul_is_polled ; int dl_is_polled ; u8 seq_no ; int tx_credits ; int tx_credit_size ; int tx_credits_per_max_message ; bool tx_credit_flow_enabled ; }; struct ath10k_htc_svc_tx_credits { u16 service_id ; u8 credit_allocation ; }; struct ath10k_htc { struct ath10k *ar ; struct ath10k_htc_ep endpoint[9U] ; spinlock_t tx_lock ; struct ath10k_htc_ops htc_ops ; u8 control_resp_buffer[256U] ; int control_resp_len ; struct completion ctl_resp ; int total_transmit_credits ; struct ath10k_htc_svc_tx_credits service_tx_alloc[9U] ; int target_credit_size ; bool stopped ; }; struct __anonstruct_alloc_idx_196 { __le32 *vaddr ; dma_addr_t paddr ; }; struct __anonstruct_sw_rd_idx_197 { unsigned int msdu_payld ; }; struct __anonstruct_rx_ring_195 { struct sk_buff **netbufs_ring ; __le32 *paddrs_ring ; dma_addr_t base_paddr ; int size ; unsigned int size_mask ; int fill_level ; int fill_cnt ; struct __anonstruct_alloc_idx_196 alloc_idx ; struct __anonstruct_sw_rd_idx_197 sw_rd_idx ; struct timer_list refill_retry_timer ; spinlock_t lock ; }; struct ath10k_htt { struct ath10k *ar ; enum ath10k_htc_ep_id eid ; int max_throughput_mbps ; u8 target_version_major ; u8 target_version_minor ; struct completion target_version_received ; struct __anonstruct_rx_ring_195 rx_ring ; unsigned int prefetch_len ; spinlock_t tx_lock ; int max_num_pending_tx ; int num_pending_tx ; struct sk_buff **pending_tx ; unsigned long *used_msdu_ids ; wait_queue_head_t empty_tx_wq ; bool rx_confused ; struct tasklet_struct rx_replenish_task ; }; struct ieee80211_p2p_noa_desc { u8 count ; __le32 duration ; __le32 interval ; __le32 start_time ; }; struct ieee80211_p2p_noa_attr { u8 index ; u8 oppps_ctwindow ; struct ieee80211_p2p_noa_desc desc[4U] ; }; struct ieee80211_mcs_info { u8 rx_mask[10U] ; __le16 rx_highest ; u8 tx_params ; u8 reserved[3U] ; }; struct ieee80211_ht_cap { __le16 cap_info ; u8 ampdu_params_info ; struct ieee80211_mcs_info mcs ; __le16 extended_ht_cap_info ; __le32 tx_BF_cap_info ; u8 antenna_selection_info ; }; struct ieee80211_vht_mcs_info { __le16 rx_mcs_map ; __le16 rx_highest ; __le16 tx_mcs_map ; __le16 tx_highest ; }; struct ieee80211_vht_cap { __le32 vht_cap_info ; struct ieee80211_vht_mcs_info supp_mcs ; }; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_236 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_236 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct __anonstruct_sync_serial_settings_237 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_237 sync_serial_settings; struct __anonstruct_te1_settings_238 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_238 te1_settings; struct __anonstruct_raw_hdlc_proto_239 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_239 raw_hdlc_proto; struct __anonstruct_fr_proto_240 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_240 fr_proto; struct __anonstruct_fr_proto_pvc_241 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_241 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_242 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_242 fr_proto_pvc_info; struct __anonstruct_cisco_proto_243 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_243 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_244 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_244 ifs_ifsu ; }; union __anonunion_ifr_ifrn_245 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_246 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_245 ifr_ifrn ; union __anonunion_ifr_ifru_246 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_249 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_248 { struct __anonstruct____missing_field_name_249 __annonCompField83 ; }; struct lockref { union __anonunion____missing_field_name_248 __annonCompField84 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_251 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_250 { struct __anonstruct____missing_field_name_251 __annonCompField85 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_250 __annonCompField86 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_252 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_252 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_254 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_254 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_255 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_255 __annonCompField87 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_257 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_256 { size_t written ; size_t count ; union __anonunion_arg_257 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_256 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_258 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_259 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_260 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_258 __annonCompField88 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_259 __annonCompField89 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_260 __annonCompField90 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_261 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_261 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct __anonstruct_afs_263 { struct list_head link ; int state ; }; union __anonunion_fl_u_262 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_263 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_262 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_264 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_264 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_266 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_267 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_268 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_269 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_270 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_271 { long _band ; int _fd ; }; struct __anonstruct__sigsys_272 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_265 { int _pad[28U] ; struct __anonstruct__kill_266 _kill ; struct __anonstruct__timer_267 _timer ; struct __anonstruct__rt_268 _rt ; struct __anonstruct__sigchld_269 _sigchld ; struct __anonstruct__sigfault_270 _sigfault ; struct __anonstruct__sigpoll_271 _sigpoll ; struct __anonstruct__sigsys_272 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_265 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_275 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_276 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_278 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_277 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_278 __annonCompField93 ; }; union __anonunion_type_data_279 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_281 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_280 { union __anonunion_payload_281 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_275 __annonCompField91 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_276 __annonCompField92 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_277 __annonCompField94 ; union __anonunion_type_data_279 type_data ; union __anonunion____missing_field_name_280 __annonCompField95 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_30606 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_30607 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_308 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_309 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_310 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_308 adj_list ; struct __anonstruct_all_adj_list_309 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_30606 reg_state : 8 ; bool dismantle ; enum ldv_30607 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_310 __annonCompField99 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; enum nl80211_iftype { NL80211_IFTYPE_UNSPECIFIED = 0, NL80211_IFTYPE_ADHOC = 1, NL80211_IFTYPE_STATION = 2, NL80211_IFTYPE_AP = 3, NL80211_IFTYPE_AP_VLAN = 4, NL80211_IFTYPE_WDS = 5, NL80211_IFTYPE_MONITOR = 6, NL80211_IFTYPE_MESH_POINT = 7, NL80211_IFTYPE_P2P_CLIENT = 8, NL80211_IFTYPE_P2P_GO = 9, NL80211_IFTYPE_P2P_DEVICE = 10, NUM_NL80211_IFTYPES = 11, NL80211_IFTYPE_MAX = 10 } ; enum nl80211_reg_initiator { NL80211_REGDOM_SET_BY_CORE = 0, NL80211_REGDOM_SET_BY_USER = 1, NL80211_REGDOM_SET_BY_DRIVER = 2, NL80211_REGDOM_SET_BY_COUNTRY_IE = 3 } ; enum nl80211_dfs_regions { NL80211_DFS_UNSET = 0, NL80211_DFS_FCC = 1, NL80211_DFS_ETSI = 2, NL80211_DFS_JP = 3 } ; enum nl80211_user_reg_hint_type { NL80211_USER_REG_HINT_USER = 0, NL80211_USER_REG_HINT_CELL_BASE = 1 } ; enum nl80211_chan_width { NL80211_CHAN_WIDTH_20_NOHT = 0, NL80211_CHAN_WIDTH_20 = 1, NL80211_CHAN_WIDTH_40 = 2, NL80211_CHAN_WIDTH_80 = 3, NL80211_CHAN_WIDTH_80P80 = 4, NL80211_CHAN_WIDTH_160 = 5, NL80211_CHAN_WIDTH_5 = 6, NL80211_CHAN_WIDTH_10 = 7 } ; enum nl80211_auth_type { NL80211_AUTHTYPE_OPEN_SYSTEM = 0, NL80211_AUTHTYPE_SHARED_KEY = 1, NL80211_AUTHTYPE_FT = 2, NL80211_AUTHTYPE_NETWORK_EAP = 3, NL80211_AUTHTYPE_SAE = 4, __NL80211_AUTHTYPE_NUM = 5, NL80211_AUTHTYPE_MAX = 4, NL80211_AUTHTYPE_AUTOMATIC = 5 } ; enum nl80211_mfp { NL80211_MFP_NO = 0, NL80211_MFP_REQUIRED = 1 } ; struct nl80211_wowlan_tcp_data_seq { __u32 start ; __u32 offset ; __u32 len ; }; struct nl80211_wowlan_tcp_data_token { __u32 offset ; __u32 len ; __u8 token_stream[] ; }; struct nl80211_wowlan_tcp_data_token_feature { __u32 min_len ; __u32 max_len ; __u32 bufsize ; }; enum nl80211_dfs_state { NL80211_DFS_USABLE = 0, NL80211_DFS_UNAVAILABLE = 1, NL80211_DFS_AVAILABLE = 2 } ; struct nl80211_vendor_cmd_info { __u32 vendor_id ; __u32 subcmd ; }; enum environment_cap { ENVIRON_ANY = 0, ENVIRON_INDOOR = 1, ENVIRON_OUTDOOR = 2 } ; struct regulatory_request { struct callback_head callback_head ; int wiphy_idx ; enum nl80211_reg_initiator initiator ; enum nl80211_user_reg_hint_type user_reg_hint_type ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; bool intersect ; bool processed ; enum environment_cap country_ie_env ; struct list_head list ; }; struct ieee80211_freq_range { u32 start_freq_khz ; u32 end_freq_khz ; u32 max_bandwidth_khz ; }; struct ieee80211_power_rule { u32 max_antenna_gain ; u32 max_eirp ; }; struct ieee80211_reg_rule { struct ieee80211_freq_range freq_range ; struct ieee80211_power_rule power_rule ; u32 flags ; }; struct ieee80211_regdomain { struct callback_head callback_head ; u32 n_reg_rules ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; struct ieee80211_reg_rule reg_rules[] ; }; struct wiphy; enum ieee80211_band { IEEE80211_BAND_2GHZ = 0, IEEE80211_BAND_5GHZ = 1, IEEE80211_BAND_60GHZ = 2, IEEE80211_NUM_BANDS = 3 } ; struct ieee80211_channel { enum ieee80211_band band ; u16 center_freq ; u16 hw_value ; u32 flags ; int max_antenna_gain ; int max_power ; int max_reg_power ; bool beacon_found ; u32 orig_flags ; int orig_mag ; int orig_mpwr ; enum nl80211_dfs_state dfs_state ; unsigned long dfs_state_entered ; }; struct ieee80211_rate { u32 flags ; u16 bitrate ; u16 hw_value ; u16 hw_value_short ; }; struct ieee80211_sta_ht_cap { u16 cap ; bool ht_supported ; u8 ampdu_factor ; u8 ampdu_density ; struct ieee80211_mcs_info mcs ; }; struct ieee80211_sta_vht_cap { bool vht_supported ; u32 cap ; struct ieee80211_vht_mcs_info vht_mcs ; }; struct ieee80211_supported_band { struct ieee80211_channel *channels ; struct ieee80211_rate *bitrates ; enum ieee80211_band band ; int n_channels ; int n_bitrates ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; }; struct cfg80211_chan_def { struct ieee80211_channel *chan ; enum nl80211_chan_width width ; u32 center_freq1 ; u32 center_freq2 ; }; struct survey_info { struct ieee80211_channel *channel ; u64 channel_time ; u64 channel_time_busy ; u64 channel_time_ext_busy ; u64 channel_time_rx ; u64 channel_time_tx ; u32 filled ; s8 noise ; }; struct cfg80211_crypto_settings { u32 wpa_versions ; u32 cipher_group ; int n_ciphers_pairwise ; u32 ciphers_pairwise[5U] ; int n_akm_suites ; u32 akm_suites[2U] ; bool control_port ; __be16 control_port_ethertype ; bool control_port_no_encrypt ; }; struct mac_address { u8 addr[6U] ; }; enum cfg80211_signal_type { CFG80211_SIGNAL_TYPE_NONE = 0, CFG80211_SIGNAL_TYPE_MBM = 1, CFG80211_SIGNAL_TYPE_UNSPEC = 2 } ; struct cfg80211_ibss_params { u8 *ssid ; u8 *bssid ; struct cfg80211_chan_def chandef ; u8 *ie ; u8 ssid_len ; u8 ie_len ; u16 beacon_interval ; u32 basic_rates ; bool channel_fixed ; bool privacy ; bool control_port ; bool userspace_handles_dfs ; int mcast_rate[3U] ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; }; struct cfg80211_connect_params { struct ieee80211_channel *channel ; u8 *bssid ; u8 *ssid ; size_t ssid_len ; enum nl80211_auth_type auth_type ; u8 *ie ; size_t ie_len ; bool privacy ; enum nl80211_mfp mfp ; struct cfg80211_crypto_settings crypto ; u8 const *key ; u8 key_len ; u8 key_idx ; u32 flags ; int bg_scan_period ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; struct ieee80211_vht_cap vht_capa ; struct ieee80211_vht_cap vht_capa_mask ; }; struct cfg80211_pkt_pattern { u8 *mask ; u8 *pattern ; int pattern_len ; int pkt_offset ; }; struct cfg80211_wowlan_tcp { struct socket *sock ; __be32 src ; __be32 dst ; u16 src_port ; u16 dst_port ; u8 dst_mac[6U] ; int payload_len ; u8 const *payload ; struct nl80211_wowlan_tcp_data_seq payload_seq ; u32 data_interval ; u32 wake_len ; u8 const *wake_data ; u8 const *wake_mask ; u32 tokens_size ; struct nl80211_wowlan_tcp_data_token payload_tok ; }; struct cfg80211_wowlan { bool any ; bool disconnect ; bool magic_pkt ; bool gtk_rekey_failure ; bool eap_identity_req ; bool four_way_handshake ; bool rfkill_release ; struct cfg80211_pkt_pattern *patterns ; struct cfg80211_wowlan_tcp *tcp ; int n_patterns ; }; struct ieee80211_iface_limit { u16 max ; u16 types ; }; struct ieee80211_iface_combination { struct ieee80211_iface_limit const *limits ; u32 num_different_channels ; u16 max_interfaces ; u8 n_limits ; bool beacon_int_infra_match ; u8 radar_detect_widths ; }; struct ieee80211_txrx_stypes { u16 tx ; u16 rx ; }; struct wiphy_wowlan_tcp_support { struct nl80211_wowlan_tcp_data_token_feature const *tok ; u32 data_payload_max ; u32 data_interval_max ; u32 wake_payload_max ; bool seq ; }; struct wiphy_wowlan_support { u32 flags ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; struct wiphy_wowlan_tcp_support const *tcp ; }; struct wiphy_coalesce_support { int n_rules ; int max_delay ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; }; struct wiphy_vendor_command { struct nl80211_vendor_cmd_info info ; u32 flags ; int (*doit)(struct wiphy * , struct wireless_dev * , void const * , int ) ; }; struct wiphy { u8 perm_addr[6U] ; u8 addr_mask[6U] ; struct mac_address *addresses ; struct ieee80211_txrx_stypes const *mgmt_stypes ; struct ieee80211_iface_combination const *iface_combinations ; int n_iface_combinations ; u16 software_iftypes ; u16 n_addresses ; u16 interface_modes ; u16 max_acl_mac_addrs ; u32 flags ; u32 regulatory_flags ; u32 features ; u32 ap_sme_capa ; enum cfg80211_signal_type signal_type ; int bss_priv_size ; u8 max_scan_ssids ; u8 max_sched_scan_ssids ; u8 max_match_sets ; u16 max_scan_ie_len ; u16 max_sched_scan_ie_len ; int n_cipher_suites ; u32 const *cipher_suites ; u8 retry_short ; u8 retry_long ; u32 frag_threshold ; u32 rts_threshold ; u8 coverage_class ; char fw_version[32U] ; u32 hw_version ; struct wiphy_wowlan_support const *wowlan ; struct cfg80211_wowlan *wowlan_config ; u16 max_remain_on_channel_duration ; u8 max_num_pmkids ; u32 available_antennas_tx ; u32 available_antennas_rx ; u32 probe_resp_offload ; u8 const *extended_capabilities ; u8 const *extended_capabilities_mask ; u8 extended_capabilities_len ; void const *privid ; struct ieee80211_supported_band *bands[3U] ; void (*reg_notifier)(struct wiphy * , struct regulatory_request * ) ; struct ieee80211_regdomain const *regd ; struct device dev ; bool registered ; struct dentry *debugfsdir ; struct ieee80211_ht_cap const *ht_capa_mod_mask ; struct ieee80211_vht_cap const *vht_capa_mod_mask ; struct net *_net ; struct iw_handler_def const *wext ; struct wiphy_coalesce_support const *coalesce ; struct wiphy_vendor_command const *vendor_commands ; struct nl80211_vendor_cmd_info const *vendor_events ; int n_vendor_commands ; int n_vendor_events ; char priv[0U] ; }; struct cfg80211_conn; struct cfg80211_internal_bss; struct cfg80211_cached_keys; struct __anonstruct_wext_312 { struct cfg80211_ibss_params ibss ; struct cfg80211_connect_params connect ; struct cfg80211_cached_keys *keys ; u8 *ie ; size_t ie_len ; u8 bssid[6U] ; u8 prev_bssid[6U] ; u8 ssid[32U] ; s8 default_key ; s8 default_mgmt_key ; bool prev_bssid_valid ; }; struct wireless_dev { struct wiphy *wiphy ; enum nl80211_iftype iftype ; struct list_head list ; struct net_device *netdev ; u32 identifier ; struct list_head mgmt_registrations ; spinlock_t mgmt_registrations_lock ; struct mutex mtx ; bool use_4addr ; bool p2p_started ; u8 address[6U] ; u8 ssid[32U] ; u8 ssid_len ; u8 mesh_id_len ; u8 mesh_id_up_len ; struct cfg80211_conn *conn ; struct cfg80211_cached_keys *connect_keys ; struct list_head event_list ; spinlock_t event_lock ; struct cfg80211_internal_bss *current_bss ; struct cfg80211_chan_def preset_chandef ; struct ieee80211_channel *channel ; bool ibss_fixed ; bool ibss_dfs_possible ; bool ps ; int ps_timeout ; int beacon_interval ; u32 ap_unexpected_nlportid ; bool cac_started ; unsigned long cac_start_time ; struct __anonstruct_wext_312 wext ; }; struct ieee80211_chanctx_conf { struct cfg80211_chan_def def ; struct cfg80211_chan_def min_def ; u8 rx_chains_static ; u8 rx_chains_dynamic ; bool radar_enabled ; u8 drv_priv[0U] ; }; struct ieee80211_bss_conf { u8 const *bssid ; bool assoc ; bool ibss_joined ; bool ibss_creator ; u16 aid ; bool use_cts_prot ; bool use_short_preamble ; bool use_short_slot ; bool enable_beacon ; u8 dtim_period ; u16 beacon_int ; u16 assoc_capability ; u64 sync_tsf ; u32 sync_device_ts ; u8 sync_dtim_count ; u32 basic_rates ; struct ieee80211_rate *beacon_rate ; int mcast_rate[3U] ; u16 ht_operation_mode ; s32 cqm_rssi_thold ; u32 cqm_rssi_hyst ; struct cfg80211_chan_def chandef ; __be32 arp_addr_list[4U] ; int arp_addr_cnt ; bool qos ; bool idle ; bool ps ; u8 ssid[32U] ; size_t ssid_len ; bool hidden_ssid ; int txpower ; struct ieee80211_p2p_noa_attr p2p_noa_attr ; }; struct ieee80211_tx_rate { s8 idx ; u16 count : 5 ; u16 flags : 11 ; }; struct __anonstruct____missing_field_name_316 { struct ieee80211_tx_rate rates[4U] ; s8 rts_cts_rate_idx ; u8 use_rts : 1 ; u8 use_cts_prot : 1 ; u8 short_preamble : 1 ; u8 skip_table : 1 ; }; union __anonunion____missing_field_name_315 { struct __anonstruct____missing_field_name_316 __annonCompField100 ; unsigned long jiffies ; }; struct ieee80211_vif; struct ieee80211_key_conf; struct __anonstruct_control_314 { union __anonunion____missing_field_name_315 __annonCompField101 ; struct ieee80211_vif *vif ; struct ieee80211_key_conf *hw_key ; u32 flags ; }; struct __anonstruct_status_317 { struct ieee80211_tx_rate rates[4U] ; int ack_signal ; u8 ampdu_ack_len ; u8 ampdu_len ; u8 antenna ; }; struct __anonstruct____missing_field_name_318 { struct ieee80211_tx_rate driver_rates[4U] ; u8 pad[4U] ; void *rate_driver_data[3U] ; }; union __anonunion____missing_field_name_313 { struct __anonstruct_control_314 control ; struct __anonstruct_status_317 status ; struct __anonstruct____missing_field_name_318 __annonCompField102 ; void *driver_data[5U] ; }; struct ieee80211_tx_info { u32 flags ; u8 band ; u8 hw_queue ; u16 ack_frame_id ; union __anonunion____missing_field_name_313 __annonCompField103 ; }; enum ieee80211_smps_mode { IEEE80211_SMPS_AUTOMATIC = 0, IEEE80211_SMPS_OFF = 1, IEEE80211_SMPS_STATIC = 2, IEEE80211_SMPS_DYNAMIC = 3, IEEE80211_SMPS_NUM_MODES = 4 } ; struct ieee80211_conf { u32 flags ; int power_level ; int dynamic_ps_timeout ; int max_sleep_period ; u16 listen_interval ; u8 ps_dtim_period ; u8 long_frame_max_tx_count ; u8 short_frame_max_tx_count ; struct cfg80211_chan_def chandef ; bool radar_enabled ; enum ieee80211_smps_mode smps_mode ; }; struct ieee80211_vif { enum nl80211_iftype type ; struct ieee80211_bss_conf bss_conf ; u8 addr[6U] ; bool p2p ; bool csa_active ; u8 cab_queue ; u8 hw_queue[4U] ; struct ieee80211_chanctx_conf *chanctx_conf ; u32 driver_flags ; struct dentry *debugfs_dir ; u8 drv_priv[0U] ; }; struct ieee80211_key_conf { u32 cipher ; u8 icv_len ; u8 iv_len ; u8 hw_key_idx ; u8 flags ; s8 keyidx ; u8 keylen ; u8 key[0U] ; }; struct ieee80211_cipher_scheme { u32 cipher ; u16 iftype ; u8 hdr_len ; u8 pn_len ; u8 pn_off ; u8 key_idx_off ; u8 key_idx_mask ; u8 key_idx_shift ; u8 mic_len ; }; struct ieee80211_hw { struct ieee80211_conf conf ; struct wiphy *wiphy ; char const *rate_control_algorithm ; void *priv ; u32 flags ; unsigned int extra_tx_headroom ; unsigned int extra_beacon_tailroom ; int vif_data_size ; int sta_data_size ; int chanctx_data_size ; int napi_weight ; u16 queues ; u16 max_listen_interval ; s8 max_signal ; u8 max_rates ; u8 max_report_rates ; u8 max_rate_tries ; u8 max_rx_aggregation_subframes ; u8 max_tx_aggregation_subframes ; u8 offchannel_tx_hw_queue ; u8 radiotap_mcs_details ; u16 radiotap_vht_details ; netdev_features_t netdev_features ; u8 uapsd_queues ; u8 uapsd_max_sp_len ; u8 n_cipher_schemes ; struct ieee80211_cipher_scheme const *cipher_schemes ; }; struct wmi_cmd_map { u32 init_cmdid ; u32 start_scan_cmdid ; u32 stop_scan_cmdid ; u32 scan_chan_list_cmdid ; u32 scan_sch_prio_tbl_cmdid ; u32 pdev_set_regdomain_cmdid ; u32 pdev_set_channel_cmdid ; u32 pdev_set_param_cmdid ; u32 pdev_pktlog_enable_cmdid ; u32 pdev_pktlog_disable_cmdid ; u32 pdev_set_wmm_params_cmdid ; u32 pdev_set_ht_cap_ie_cmdid ; u32 pdev_set_vht_cap_ie_cmdid ; u32 pdev_set_dscp_tid_map_cmdid ; u32 pdev_set_quiet_mode_cmdid ; u32 pdev_green_ap_ps_enable_cmdid ; u32 pdev_get_tpc_config_cmdid ; u32 pdev_set_base_macaddr_cmdid ; u32 vdev_create_cmdid ; u32 vdev_delete_cmdid ; u32 vdev_start_request_cmdid ; u32 vdev_restart_request_cmdid ; u32 vdev_up_cmdid ; u32 vdev_stop_cmdid ; u32 vdev_down_cmdid ; u32 vdev_set_param_cmdid ; u32 vdev_install_key_cmdid ; u32 peer_create_cmdid ; u32 peer_delete_cmdid ; u32 peer_flush_tids_cmdid ; u32 peer_set_param_cmdid ; u32 peer_assoc_cmdid ; u32 peer_add_wds_entry_cmdid ; u32 peer_remove_wds_entry_cmdid ; u32 peer_mcast_group_cmdid ; u32 bcn_tx_cmdid ; u32 pdev_send_bcn_cmdid ; u32 bcn_tmpl_cmdid ; u32 bcn_filter_rx_cmdid ; u32 prb_req_filter_rx_cmdid ; u32 mgmt_tx_cmdid ; u32 prb_tmpl_cmdid ; u32 addba_clear_resp_cmdid ; u32 addba_send_cmdid ; u32 addba_status_cmdid ; u32 delba_send_cmdid ; u32 addba_set_resp_cmdid ; u32 send_singleamsdu_cmdid ; u32 sta_powersave_mode_cmdid ; u32 sta_powersave_param_cmdid ; u32 sta_mimo_ps_mode_cmdid ; u32 pdev_dfs_enable_cmdid ; u32 pdev_dfs_disable_cmdid ; u32 roam_scan_mode ; u32 roam_scan_rssi_threshold ; u32 roam_scan_period ; u32 roam_scan_rssi_change_threshold ; u32 roam_ap_profile ; u32 ofl_scan_add_ap_profile ; u32 ofl_scan_remove_ap_profile ; u32 ofl_scan_period ; u32 p2p_dev_set_device_info ; u32 p2p_dev_set_discoverability ; u32 p2p_go_set_beacon_ie ; u32 p2p_go_set_probe_resp_ie ; u32 p2p_set_vendor_ie_data_cmdid ; u32 ap_ps_peer_param_cmdid ; u32 ap_ps_peer_uapsd_coex_cmdid ; u32 peer_rate_retry_sched_cmdid ; u32 wlan_profile_trigger_cmdid ; u32 wlan_profile_set_hist_intvl_cmdid ; u32 wlan_profile_get_profile_data_cmdid ; u32 wlan_profile_enable_profile_id_cmdid ; u32 wlan_profile_list_profile_id_cmdid ; u32 pdev_suspend_cmdid ; u32 pdev_resume_cmdid ; u32 add_bcn_filter_cmdid ; u32 rmv_bcn_filter_cmdid ; u32 wow_add_wake_pattern_cmdid ; u32 wow_del_wake_pattern_cmdid ; u32 wow_enable_disable_wake_event_cmdid ; u32 wow_enable_cmdid ; u32 wow_hostwakeup_from_sleep_cmdid ; u32 rtt_measreq_cmdid ; u32 rtt_tsf_cmdid ; u32 vdev_spectral_scan_configure_cmdid ; u32 vdev_spectral_scan_enable_cmdid ; u32 request_stats_cmdid ; u32 set_arp_ns_offload_cmdid ; u32 network_list_offload_config_cmdid ; u32 gtk_offload_cmdid ; u32 csa_offload_enable_cmdid ; u32 csa_offload_chanswitch_cmdid ; u32 chatter_set_mode_cmdid ; u32 peer_tid_addba_cmdid ; u32 peer_tid_delba_cmdid ; u32 sta_dtim_ps_method_cmdid ; u32 sta_uapsd_auto_trig_cmdid ; u32 sta_keepalive_cmd ; u32 echo_cmdid ; u32 pdev_utf_cmdid ; u32 dbglog_cfg_cmdid ; u32 pdev_qvit_cmdid ; u32 pdev_ftm_intg_cmdid ; u32 vdev_set_keepalive_cmdid ; u32 vdev_get_keepalive_cmdid ; u32 force_fw_hang_cmdid ; u32 gpio_config_cmdid ; u32 gpio_output_cmdid ; }; struct wmi_pdev_param_map { u32 tx_chain_mask ; u32 rx_chain_mask ; u32 txpower_limit2g ; u32 txpower_limit5g ; u32 txpower_scale ; u32 beacon_gen_mode ; u32 beacon_tx_mode ; u32 resmgr_offchan_mode ; u32 protection_mode ; u32 dynamic_bw ; u32 non_agg_sw_retry_th ; u32 agg_sw_retry_th ; u32 sta_kickout_th ; u32 ac_aggrsize_scaling ; u32 ltr_enable ; u32 ltr_ac_latency_be ; u32 ltr_ac_latency_bk ; u32 ltr_ac_latency_vi ; u32 ltr_ac_latency_vo ; u32 ltr_ac_latency_timeout ; u32 ltr_sleep_override ; u32 ltr_rx_override ; u32 ltr_tx_activity_timeout ; u32 l1ss_enable ; u32 dsleep_enable ; u32 pcielp_txbuf_flush ; u32 pcielp_txbuf_watermark ; u32 pcielp_txbuf_tmo_en ; u32 pcielp_txbuf_tmo_value ; u32 pdev_stats_update_period ; u32 vdev_stats_update_period ; u32 peer_stats_update_period ; u32 bcnflt_stats_update_period ; u32 pmf_qos ; u32 arp_ac_override ; u32 arpdhcp_ac_override ; u32 dcs ; u32 ani_enable ; u32 ani_poll_period ; u32 ani_listen_period ; u32 ani_ofdm_level ; u32 ani_cck_level ; u32 dyntxchain ; u32 proxy_sta ; u32 idle_ps_config ; u32 power_gating_sleep ; u32 fast_channel_reset ; u32 burst_dur ; u32 burst_enable ; }; struct wmi_wmm_params_arg { u32 cwmin ; u32 cwmax ; u32 aifs ; u32 txop ; u32 acm ; u32 no_ack ; }; struct wmi_pdev_set_wmm_params_arg { struct wmi_wmm_params_arg ac_be ; struct wmi_wmm_params_arg ac_bk ; struct wmi_wmm_params_arg ac_vi ; struct wmi_wmm_params_arg ac_vo ; }; struct wmi_vdev_param_map { u32 rts_threshold ; u32 fragmentation_threshold ; u32 beacon_interval ; u32 listen_interval ; u32 multicast_rate ; u32 mgmt_tx_rate ; u32 slot_time ; u32 preamble ; u32 swba_time ; u32 wmi_vdev_stats_update_period ; u32 wmi_vdev_pwrsave_ageout_time ; u32 wmi_vdev_host_swba_interval ; u32 dtim_period ; u32 wmi_vdev_oc_scheduler_air_time_limit ; u32 wds ; u32 atim_window ; u32 bmiss_count_max ; u32 bmiss_first_bcnt ; u32 bmiss_final_bcnt ; u32 feature_wmm ; u32 chwidth ; u32 chextoffset ; u32 disable_htprotection ; u32 sta_quickkickout ; u32 mgmt_rate ; u32 protection_mode ; u32 fixed_rate ; u32 sgi ; u32 ldpc ; u32 tx_stbc ; u32 rx_stbc ; u32 intra_bss_fwd ; u32 def_keyid ; u32 nss ; u32 bcast_data_rate ; u32 mcast_data_rate ; u32 mcast_indicate ; u32 dhcp_indicate ; u32 unknown_dest_indicate ; u32 ap_keepalive_min_idle_inactive_time_secs ; u32 ap_keepalive_max_idle_inactive_time_secs ; u32 ap_keepalive_max_unresponsive_time_secs ; u32 ap_enable_nawds ; u32 mcast2ucast_set ; u32 enable_rtscts ; u32 txbf ; u32 packet_powersave ; u32 drop_unencry ; u32 tx_encap_type ; u32 ap_detect_out_of_sync_sleeping_sta_time_secs ; }; struct ath_ani { bool caldone ; unsigned int longcal_timer ; unsigned int shortcal_timer ; unsigned int resetcal_timer ; unsigned int checkani_timer ; struct timer_list timer ; }; struct ath_cycle_counters { u32 cycles ; u32 rx_busy ; u32 rx_frame ; u32 tx_frame ; }; enum ath_device_state { ATH_HW_UNAVAILABLE = 0, ATH_HW_INITIALIZED = 1 } ; struct reg_dmn_pair_mapping { u16 regDmnEnum ; u16 reg_5ghz_ctl ; u16 reg_2ghz_ctl ; }; struct ath_regulatory { char alpha2[2U] ; u16 country_code ; u16 max_power_level ; u16 current_rd ; int16_t power_limit ; struct reg_dmn_pair_mapping *regpair ; }; enum ath_crypt_caps { ATH_CRYPT_CAP_CIPHER_AESCCM = 1, ATH_CRYPT_CAP_MIC_COMBINED = 2 } ; struct ath_ops { unsigned int (*read)(void * , u32 ) ; void (*multi_read)(void * , u32 * , u32 * , u16 ) ; void (*write)(void * , u32 , u32 ) ; void (*enable_write_buffer)(void * ) ; void (*write_flush)(void * ) ; u32 (*rmw)(void * , u32 , u32 , u32 ) ; }; struct ath_common; struct ath_bus_ops; struct ath_common { void *ah ; void *priv ; struct ieee80211_hw *hw ; int debug_mask ; enum ath_device_state state ; struct ath_ani ani ; u16 cachelsz ; u16 curaid ; u8 macaddr[6U] ; u8 curbssid[6U] ; u8 bssidmask[6U] ; u32 rx_bufsize ; u32 keymax ; unsigned long keymap[2U] ; unsigned long tkip_keymap[2U] ; unsigned long ccmp_keymap[2U] ; enum ath_crypt_caps crypt_caps ; unsigned int clockrate ; spinlock_t cc_lock ; struct ath_cycle_counters cc_ani ; struct ath_cycle_counters cc_survey ; struct ath_regulatory regulatory ; struct ath_regulatory reg_world_copy ; struct ath_ops const *ops ; struct ath_bus_ops const *bus_ops ; bool btcoex_enabled ; bool disable_ani ; bool bt_ant_diversity ; }; struct ath_dfs_pool_stats { u32 pool_reference ; u32 pulse_allocated ; u32 pulse_alloc_error ; u32 pulse_used ; u32 pseq_allocated ; u32 pseq_alloc_error ; u32 pseq_used ; }; struct pulse_event { u64 ts ; u16 freq ; u8 width ; u8 rssi ; }; struct radar_detector_specs { u8 type_id ; u8 width_min ; u8 width_max ; u16 pri_min ; u16 pri_max ; u8 num_pri ; u8 ppb ; u8 ppb_thresh ; u8 max_pri_tolerance ; }; struct dfs_pattern_detector { void (*exit)(struct dfs_pattern_detector * ) ; bool (*set_dfs_domain)(struct dfs_pattern_detector * , enum nl80211_dfs_regions ) ; bool (*add_pulse)(struct dfs_pattern_detector * , struct pulse_event * ) ; struct ath_dfs_pool_stats (*get_stats)(struct dfs_pattern_detector * ) ; enum nl80211_dfs_regions region ; u8 num_radar_types ; u64 last_pulse_ts ; struct ath_common *common ; struct radar_detector_specs const *radar_spec ; struct list_head channel_detectors ; }; struct __anonstruct_htt_334 { u8 tid ; bool is_offchan ; u8 frag_len ; u8 pad_len ; }; struct ath10k_skb_cb { dma_addr_t paddr ; bool is_mapped ; bool is_aborted ; u8 vdev_id ; struct __anonstruct_htt_334 htt ; }; struct ath10k_bmi { bool done_sent ; }; struct ath10k_mem_chunk { void *vaddr ; dma_addr_t paddr ; u32 len ; u32 req_id ; }; struct ath10k_wmi { enum ath10k_htc_ep_id eid ; struct completion service_ready ; struct completion unified_ready ; wait_queue_head_t tx_credits_wq ; struct wmi_cmd_map *cmd ; struct wmi_vdev_param_map *vdev_param ; struct wmi_pdev_param_map *pdev_param ; u32 num_mem_chunks ; struct ath10k_mem_chunk mem_chunks[16U] ; }; struct ath10k_peer_stat { u8 peer_macaddr[6U] ; u32 peer_rssi ; u32 peer_tx_rate ; }; struct ath10k_target_stats { s32 ch_noise_floor ; u32 tx_frame_count ; u32 rx_frame_count ; u32 rx_clear_count ; u32 cycle_count ; u32 phy_err_count ; u32 chan_tx_power ; s32 comp_queued ; s32 comp_delivered ; s32 msdu_enqued ; s32 mpdu_enqued ; s32 wmm_drop ; s32 local_enqued ; s32 local_freed ; s32 hw_queued ; s32 hw_reaped ; s32 underrun ; s32 tx_abort ; s32 mpdus_requed ; u32 tx_ko ; u32 data_rc ; u32 self_triggers ; u32 sw_retry_failure ; u32 illgl_rate_phy_err ; u32 pdev_cont_xretry ; u32 pdev_tx_timeout ; u32 pdev_resets ; u32 phy_underrun ; u32 txop_ovf ; s32 mid_ppdu_route_change ; s32 status_rcvd ; s32 r0_frags ; s32 r1_frags ; s32 r2_frags ; s32 r3_frags ; s32 htt_msdus ; s32 htt_mpdus ; s32 loc_msdus ; s32 loc_mpdus ; s32 oversize_amsdu ; s32 phy_errs ; s32 phy_err_drop ; s32 mpdu_errs ; u8 peers ; struct ath10k_peer_stat peer_stat[16U] ; }; struct ath10k_dfs_stats { u32 phy_errors ; u32 pulses_total ; u32 pulses_detected ; u32 pulses_discarded ; u32 radar_detected ; }; struct ath10k_debug { struct dentry *debugfs_phy ; struct ath10k_target_stats target_stats ; u32 wmi_service_bitmap[16U] ; struct completion event_stats_compl ; unsigned long htt_stats_mask ; struct delayed_work htt_stats_dwork ; struct ath10k_dfs_stats dfs_stats ; struct ath_dfs_pool_stats dfs_pool_stats ; u32 fw_dbglog_mask ; }; enum ath10k_state { ATH10K_STATE_OFF = 0, ATH10K_STATE_ON = 1, ATH10K_STATE_RESTARTING = 2, ATH10K_STATE_RESTARTED = 3, ATH10K_STATE_WEDGED = 4 } ; struct ath10k_hw_params_fw { char const *dir ; char const *fw ; char const *otp ; char const *board ; }; struct ath10k_hw_params { u32 id ; char const *name ; u32 patch_load_addr ; struct ath10k_hw_params_fw fw ; }; struct targetdef; struct hostdef; struct ath10k_hif_ops; struct __anonstruct_hif_339 { void *priv ; struct ath10k_hif_ops const *ops ; }; struct firmware; struct __anonstruct_scan_340 { struct completion started ; struct completion completed ; struct completion on_channel ; struct timer_list timeout ; bool is_roc ; bool in_progress ; bool aborting ; int vdev_id ; int roc_freq ; }; struct __anonstruct_mac_341 { struct ieee80211_supported_band sbands[3U] ; }; struct ath10k { struct ath_common ath_common ; struct ieee80211_hw *hw ; struct device *dev ; u8 mac_addr[6U] ; u32 chip_id ; u32 target_version ; u8 fw_version_major ; u32 fw_version_minor ; u16 fw_version_release ; u16 fw_version_build ; u32 phy_capability ; u32 hw_min_tx_power ; u32 hw_max_tx_power ; u32 ht_cap_info ; u32 vht_cap_info ; u32 num_rf_chains ; unsigned long fw_features[1U] ; struct targetdef *targetdef ; struct hostdef *hostdef ; bool p2p ; struct __anonstruct_hif_339 hif ; wait_queue_head_t event_queue ; bool is_target_paused ; struct ath10k_bmi bmi ; struct ath10k_wmi wmi ; struct ath10k_htc htc ; struct ath10k_htt htt ; struct ath10k_hw_params hw_params ; struct firmware const *board ; void const *board_data ; size_t board_len ; struct firmware const *otp ; void const *otp_data ; size_t otp_len ; struct firmware const *firmware ; void const *firmware_data ; size_t firmware_len ; int fw_api ; struct __anonstruct_scan_340 scan ; struct __anonstruct_mac_341 mac ; struct ieee80211_channel *rx_channel ; struct ieee80211_channel *scan_channel ; int free_vdev_map ; int monitor_vdev_id ; bool monitor_enabled ; bool monitor_present ; unsigned int filter_flags ; unsigned long dev_flags ; u32 dfs_block_radar_events ; struct wmi_pdev_set_wmm_params_arg wmm_params ; struct completion install_key_done ; struct completion vdev_setup_done ; struct workqueue_struct *workqueue ; struct mutex conf_mutex ; spinlock_t data_lock ; struct list_head arvifs ; struct list_head peers ; wait_queue_head_t peer_mapping_wq ; int num_peers ; struct work_struct offchan_tx_work ; struct sk_buff_head offchan_tx_queue ; struct completion offchan_tx_completed ; struct sk_buff *offchan_tx_skb ; struct work_struct wmi_mgmt_tx_work ; struct sk_buff_head wmi_mgmt_tx_queue ; enum ath10k_state state ; struct work_struct restart_work ; u32 survey_last_rx_clear_count ; u32 survey_last_cycle_count ; struct survey_info survey[38U] ; struct dfs_pattern_detector *dfs_detector ; struct ath10k_debug debug ; }; enum ath10k_debug_mask { ATH10K_DBG_PCI = 1, ATH10K_DBG_WMI = 2, ATH10K_DBG_HTC = 4, ATH10K_DBG_HTT = 8, ATH10K_DBG_MAC = 16, ATH10K_DBG_BOOT = 32, ATH10K_DBG_PCI_DUMP = 64, ATH10K_DBG_HTT_DUMP = 128, ATH10K_DBG_MGMT = 256, ATH10K_DBG_DATA = 512, ATH10K_DBG_BMI = 1024, ATH10K_DBG_REGULATORY = 2048, ATH10K_DBG_ANY = 4294967295U } ; struct ath10k_hif_cb { int (*tx_completion)(struct ath10k * , struct sk_buff * , unsigned int ) ; int (*rx_completion)(struct ath10k * , struct sk_buff * , u8 ) ; }; struct ath10k_hif_ops { int (*send_head)(struct ath10k * , u8 , unsigned int , unsigned int , struct sk_buff * ) ; int (*exchange_bmi_msg)(struct ath10k * , void * , u32 , void * , u32 * ) ; int (*start)(struct ath10k * ) ; void (*stop)(struct ath10k * ) ; int (*map_service_to_pipe)(struct ath10k * , u16 , u8 * , u8 * , int * , int * ) ; void (*get_default_pipe)(struct ath10k * , u8 * , u8 * ) ; void (*send_complete_check)(struct ath10k * , u8 , int ) ; void (*set_callbacks)(struct ath10k * , struct ath10k_hif_cb * ) ; u16 (*get_free_queue_number)(struct ath10k * , u8 ) ; int (*power_up)(struct ath10k * ) ; void (*power_down)(struct ath10k * ) ; int (*suspend)(struct ath10k * ) ; int (*resume)(struct ath10k * ) ; }; struct ath10k_ce_pipe; struct ce_desc { __le32 addr ; __le16 nbytes ; __le16 flags ; }; struct ath10k_ce_ring { unsigned int nentries ; unsigned int nentries_mask ; unsigned int sw_index ; unsigned int write_index ; unsigned int hw_index ; void *base_addr_owner_space_unaligned ; u32 base_addr_ce_space_unaligned ; void *base_addr_owner_space ; u32 base_addr_ce_space ; void *shadow_base_unaligned ; struct ce_desc *shadow_base ; void **per_transfer_context ; }; struct ath10k_ce_pipe { struct ath10k *ar ; unsigned int id ; unsigned int attr_flags ; u32 ctrl_addr ; void (*send_cb)(struct ath10k_ce_pipe * ) ; void (*recv_cb)(struct ath10k_ce_pipe * ) ; unsigned int src_sz_max ; struct ath10k_ce_ring *src_ring ; struct ath10k_ce_ring *dest_ring ; }; struct ce_attr; struct ce_attr { unsigned int flags ; unsigned int src_nentries ; unsigned int src_sz_max ; unsigned int dest_nentries ; }; struct bmi_xfer { struct completion done ; bool wait_for_resp ; u32 resp_len ; }; enum ath10k_pci_compl_state { ATH10K_PCI_COMPL_FREE = 0, ATH10K_PCI_COMPL_SEND = 1, ATH10K_PCI_COMPL_RECV = 2 } ; struct ath10k_pci_pipe; struct ath10k_pci_compl { struct list_head list ; enum ath10k_pci_compl_state state ; struct ath10k_ce_pipe *ce_state ; struct ath10k_pci_pipe *pipe_info ; struct sk_buff *skb ; unsigned int nbytes ; unsigned int transfer_id ; unsigned int flags ; }; struct ce_pipe_config { u32 pipenum ; u32 pipedir ; u32 nentries ; u32 nbytes_max ; u32 flags ; u32 reserved ; }; struct service_to_pipe { u32 service_id ; u32 pipedir ; u32 pipenum ; }; struct ath10k_pci; struct ath10k_pci_pipe { struct ath10k_ce_pipe *ce_hdl ; u8 pipe_num ; struct ath10k *hif_ce_state ; size_t buf_sz ; spinlock_t pipe_lock ; struct list_head compl_free ; struct ath10k_pci *ar_pci ; struct tasklet_struct intr ; }; struct ath10k_pci { struct pci_dev *pdev ; struct device *dev ; struct ath10k *ar ; void *mem ; unsigned long features[1U] ; int num_msi_intrs ; struct tasklet_struct intr_tq ; struct tasklet_struct msi_fw_err ; struct tasklet_struct early_irq_tasklet ; int started ; atomic_t keep_awake_count ; bool verified_awake ; struct list_head compl_process ; spinlock_t compl_lock ; bool compl_processing ; struct ath10k_pci_pipe pipe_info[8U] ; struct ath10k_hif_cb msg_callbacks_current ; u32 fw_indicator_address ; struct ath10k_ce_pipe *ce_diag ; spinlock_t ce_lock ; struct ath10k_ce_pipe ce_states[8U] ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; enum hrtimer_restart; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; long ldv__builtin_expect(long exp , long c ) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; void ldv_check_final_state(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_malloc_unknown_size(void) ; int ldv_undef_int(void) ; void ldv_check_alloc_flags(gfp_t flags ) ; extern void ldv_after_alloc(void * ) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; extern struct module __this_module ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { { __list_add(new, head->prev, head); } return; } } extern void list_del(struct list_head * ) ; __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static int variable_test_bit(long nr , unsigned long const volatile *addr ) { int oldbit ; { __asm__ volatile ("bt %2,%1\n\tsbb %0,%0": "=r" (oldbit): "m" (*((unsigned long *)addr)), "Ir" (nr)); return (oldbit); } } extern void __might_sleep(char const * , int , int ) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern void *kmemdup(void const * , size_t , gfp_t ) ; extern void warn_slowpath_fmt(char const * , int const , char const * , ...) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/de2fed6/linux-alloc-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { { __asm__ volatile ("":); return (0); return (1); } } void ldv_spin_lock_compl_lock_of_ath10k_pci(void) ; void ldv_spin_unlock_compl_lock_of_ath10k_pci(void) ; void ldv_spin_lock_pipe_lock_of_ath10k_pci_pipe(void) ; void ldv_spin_unlock_pipe_lock_of_ath10k_pci_pipe(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock_bh(raw_spinlock_t * ) ; extern void _raw_spin_unlock_bh(raw_spinlock_t * ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock_bh(spinlock_t *lock ) { { { _raw_spin_lock_bh(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_bh_85(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_87(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_87(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_87(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_87(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_85(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_87(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_87(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_85(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_87(spinlock_t *lock ) ; __inline static void spin_unlock_bh(spinlock_t *lock ) { { { _raw_spin_unlock_bh(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_bh_86(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_88(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_88(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_88(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_88(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_86(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_88(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_88(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_88(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_88(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_86(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_88(spinlock_t *lock ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; __inline static void init_completion(struct completion *x ) { struct lock_class_key __key ; { { x->done = 0U; __init_waitqueue_head(& x->wait, "&x->wait", & __key); } return; } } extern bool completion_done(struct completion * ) ; extern void complete(struct completion * ) ; extern unsigned long volatile jiffies ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } extern unsigned int ioread32(void * ) ; extern void iowrite32(u32 , void * ) ; extern void pci_iounmap(struct pci_dev * , void * ) ; extern void *pci_iomap(struct pci_dev * , int , unsigned long ) ; static void *ldv_dev_get_drvdata_37(struct device const *dev ) ; static int ldv_dev_set_drvdata_38(struct device *dev , void *data ) ; extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; extern int pci_bus_write_config_dword(struct pci_bus * , unsigned int , int , u32 ) ; __inline static int pci_read_config_dword(struct pci_dev const *dev , int where , u32 *val ) { int tmp ; { { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_write_config_dword(struct pci_dev const *dev , int where , u32 val ) { int tmp ; { { tmp = pci_bus_write_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern void pci_clear_master(struct pci_dev * ) ; extern int pci_assign_resource(struct pci_dev * , int ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_request_region(struct pci_dev * , int , char const * ) ; extern void pci_release_region(struct pci_dev * , int ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_114(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_115(struct pci_driver *ldv_func_arg1 ) ; extern int pci_enable_msi_block(struct pci_dev * , int ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern void kfree(void const * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern void debug_dma_sync_single_for_device(struct device * , dma_addr_t , size_t , int ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static void dma_sync_single_for_device(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (115), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_device))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_device(dev, addr, size, (int )dir); } return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/de2fed6/linux-alloc-spinlock/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); } return; } } __inline static void pci_dma_sync_single_for_device(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { { dma_sync_single_for_device((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); } return; } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_37((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_38(& pdev->dev, data); } return; } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_83(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_107(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_108(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_111(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_112(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_84(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_109(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_110(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_113(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void __tasklet_schedule(struct tasklet_struct * ) ; __inline static void tasklet_schedule(struct tasklet_struct *t ) { int tmp ; { { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& t->state)); } if (tmp == 0) { { __tasklet_schedule(t); } } else { } return; } } extern void tasklet_kill(struct tasklet_struct * ) ; extern void tasklet_init(struct tasklet_struct * , void (*)(unsigned long ) , unsigned long ) ; __inline static bool skb_is_nonlinear(struct sk_buff const *skb ) { { return ((unsigned int )skb->data_len != 0U); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static int skb_tailroom(struct sk_buff const *skb ) { bool tmp ; { { tmp = skb_is_nonlinear(skb); } return ((int )tmp ? 0 : (int )((unsigned int )skb->end - (unsigned int )skb->tail)); } } extern void skb_trim(struct sk_buff * , unsigned int ) ; static struct sk_buff *ldv___netdev_alloc_skb_46(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = ldv___netdev_alloc_skb_46(dev, length, 32U); } return (tmp); } } __inline static struct sk_buff *dev_alloc_skb(unsigned int length ) { struct sk_buff *tmp ; { { tmp = netdev_alloc_skb((struct net_device *)0, length); } return (tmp); } } extern void __udelay(unsigned long ) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; extern void schedule(void) ; extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { { __dev_kfree_skb_any(skb, 1); } return; } } __inline static struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb ) { { return ((struct ieee80211_tx_info *)(& skb->cb)); } } extern void __compiletime_assert_69(void) ; __inline static struct ath10k_skb_cb *ATH10K_SKB_CB(struct sk_buff *skb ) { bool __cond ; struct ieee80211_tx_info *tmp ; { __cond = 0; if ((int )__cond) { { __compiletime_assert_69(); } } else { } { tmp = IEEE80211_SKB_CB(skb); } return ((struct ath10k_skb_cb *)(& tmp->__annonCompField103.driver_data)); } } __inline static u32 host_interest_item_address(u32 item_offset ) { { return (item_offset + 4196352U); } } extern struct ath10k *ath10k_core_create(void * , struct device * , struct ath10k_hif_ops const * ) ; extern void ath10k_core_destroy(struct ath10k * ) ; extern int ath10k_core_register(struct ath10k * , u32 ) ; extern void ath10k_core_unregister(struct ath10k * ) ; extern int ath10k_info(char const * , ...) ; extern int ath10k_err(char const * , ...) ; extern int ath10k_warn(char const * , ...) ; extern void ath10k_dbg(enum ath10k_debug_mask , char const * , ...) ; extern void ath10k_dbg_dump(enum ath10k_debug_mask , char const * , char const * , void const * , size_t ) ; int ath10k_ce_send(struct ath10k_ce_pipe *ce_state , void *per_transfer_context , u32 buffer , unsigned int nbytes , unsigned int transfer_id , unsigned int flags ) ; void ath10k_ce_send_cb_register(struct ath10k_ce_pipe *ce_state , void (*send_cb)(struct ath10k_ce_pipe * ) , int disable_interrupts ) ; int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe ) ; int ath10k_ce_recv_buf_enqueue(struct ath10k_ce_pipe *ce_state , void *per_recv_context , u32 buffer ) ; void ath10k_ce_recv_cb_register(struct ath10k_ce_pipe *ce_state , void (*recv_cb)(struct ath10k_ce_pipe * ) ) ; int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state , void **per_transfer_contextp , u32 *bufferp , unsigned int *nbytesp , unsigned int *transfer_idp , unsigned int *flagsp ) ; int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state , void **per_transfer_contextp , u32 *bufferp , unsigned int *nbytesp , unsigned int *transfer_idp ) ; struct ath10k_ce_pipe *ath10k_ce_init(struct ath10k *ar , unsigned int ce_id , struct ce_attr const *attr ) ; int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state , void **per_transfer_contextp , u32 *bufferp ) ; int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state , void **per_transfer_contextp , u32 *bufferp , unsigned int *nbytesp , unsigned int *transfer_idp ) ; void ath10k_ce_deinit(struct ath10k_ce_pipe *ce_state ) ; void ath10k_ce_per_engine_service_any(struct ath10k *ar ) ; void ath10k_ce_per_engine_service(struct ath10k *ar , unsigned int ce_id ) ; int ath10k_ce_disable_interrupts(struct ath10k *ar ) ; __inline static struct ath10k_pci *ath10k_pci_priv(struct ath10k *ar ) { { return ((struct ath10k_pci *)ar->hif.priv); } } __inline static u32 ath10k_pci_reg_read32(struct ath10k *ar , u32 addr ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; unsigned int tmp___0 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; tmp___0 = ioread32(ar_pci->mem + ((unsigned long )addr + 524288UL)); } return (tmp___0); } } __inline static void ath10k_pci_reg_write32(struct ath10k *ar , u32 addr , u32 val ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; iowrite32(val, ar_pci->mem + ((unsigned long )addr + 524288UL)); } return; } } __inline static void ath10k_pci_write32(struct ath10k *ar , u32 offset , u32 value ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; iowrite32(value, ar_pci->mem + (unsigned long )offset); } return; } } __inline static u32 ath10k_pci_read32(struct ath10k *ar , u32 offset ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; unsigned int tmp___0 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; tmp___0 = ioread32(ar_pci->mem + (unsigned long )offset); } return (tmp___0); } } __inline static u32 ath10k_pci_soc_read32(struct ath10k *ar , u32 addr ) { u32 tmp ; { { tmp = ath10k_pci_read32(ar, addr + 16384U); } return (tmp); } } int ath10k_do_pci_wake(struct ath10k *ar ) ; void ath10k_do_pci_sleep(struct ath10k *ar ) ; __inline static int ath10k_pci_wake(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int tmp___0 ; int tmp___1 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& ar_pci->features)); } if (tmp___1 != 0) { { tmp___0 = ath10k_do_pci_wake(ar); } return (tmp___0); } else { } return (0); } } __inline static void ath10k_pci_sleep(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int tmp___0 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& ar_pci->features)); } if (tmp___0 != 0) { { ath10k_do_pci_sleep(ar); } } else { } return; } } static unsigned int ath10k_target_ps ; static unsigned int ath10k_pci_irq_mode = 0U; static struct pci_device_id const ath10k_pci_id_table[2U] = { {5772U, 60U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; static int ath10k_pci_diag_read_access(struct ath10k *ar , u32 address , u32 *data ) ; static void ath10k_pci_process_ce(struct ath10k *ar ) ; static int ath10k_pci_post_rx(struct ath10k *ar ) ; static int ath10k_pci_post_rx_pipe(struct ath10k_pci_pipe *pipe_info , int num ) ; static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info ) ; static void ath10k_pci_stop_ce(struct ath10k *ar ) ; static int ath10k_pci_device_reset(struct ath10k *ar ) ; static int ath10k_pci_wait_for_target_init(struct ath10k *ar ) ; static int ath10k_pci_init_irq(struct ath10k *ar ) ; static int ath10k_pci_deinit_irq(struct ath10k *ar ) ; static int ath10k_pci_request_irq(struct ath10k *ar ) ; static void ath10k_pci_free_irq(struct ath10k *ar ) ; static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe , struct ath10k_ce_pipe *rx_pipe , struct bmi_xfer *xfer ) ; static void ath10k_pci_cleanup_ce(struct ath10k *ar ) ; static struct ce_attr const host_ce_config_wlan[8U] = { {0U, 16U, 256U, 0U}, {0U, 0U, 512U, 512U}, {0U, 0U, 2048U, 32U}, {0U, 32U, 2048U, 0U}, {8U, 2048U, 256U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 2U, 2048U, 2U}}; static struct ce_pipe_config const target_ce_config_wlan[7U] = { {0U, 2U, 32U, 256U, 0U, 0U}, {1U, 1U, 32U, 512U, 0U, 0U}, {2U, 1U, 32U, 2048U, 0U, 0U}, {3U, 2U, 32U, 2048U, 0U, 0U}, {4U, 2U, 256U, 256U, 0U, 0U}, {5U, 2U, 32U, 2048U, 0U, 0U}, {6U, 3U, 32U, 4096U, 0U, 0U}}; static bool ath10k_pci_irq_pending(struct ath10k *ar ) { u32 cause ; { { cause = ath10k_pci_read32(ar, 36876U); } if ((cause & 523264U) != 0U) { return (1); } else { } return (0); } } static void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar ) { { { ath10k_pci_write32(ar, 36872U, 0U); ath10k_pci_write32(ar, 36884U, 523264U); ath10k_pci_read32(ar, 36872U); } return; } } static void ath10k_pci_enable_legacy_irq(struct ath10k *ar ) { { { ath10k_pci_write32(ar, 36872U, 523264U); ath10k_pci_read32(ar, 36872U); } return; } } static irqreturn_t ath10k_pci_early_irq_handler(int irq , void *arg ) { struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; bool tmp___0 ; int tmp___1 ; { { ar = (struct ath10k *)arg; tmp = ath10k_pci_priv(ar); ar_pci = tmp; } if (ar_pci->num_msi_intrs == 0) { { tmp___0 = ath10k_pci_irq_pending(ar); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (0); } else { } { ath10k_pci_disable_and_clear_legacy_irq(ar); } } else { } { tasklet_schedule(& ar_pci->early_irq_tasklet); } return (1); } } static int ath10k_pci_request_early_irq(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int ret ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; ret = ldv_request_irq_83((ar_pci->pdev)->irq, & ath10k_pci_early_irq_handler, 128UL, "ath10k_pci (early)", (void *)ar); } if (ret != 0) { { ath10k_warn("failed to request early irq: %d\n", ret); } return (ret); } else { } return (0); } } static void ath10k_pci_free_early_irq(struct ath10k *ar ) { struct ath10k_pci *tmp ; { { tmp = ath10k_pci_priv(ar); ldv_free_irq_84((tmp->pdev)->irq, (void *)ar); } return; } } static int ath10k_pci_diag_read_mem(struct ath10k *ar , u32 address , void *data , int nbytes ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int ret ; u32 buf ; unsigned int completed_nbytes ; unsigned int orig_nbytes ; unsigned int remaining_bytes ; unsigned int id ; unsigned int flags ; struct ath10k_ce_pipe *ce_diag ; u32 ce_data ; dma_addr_t ce_data_base ; void *data_buf ; int i ; unsigned int __min1 ; unsigned int __min2 ; unsigned int tmp___0 ; unsigned long __ms ; unsigned long tmp___1 ; int tmp___2 ; int tmp___3 ; unsigned long __ms___0 ; unsigned long tmp___4 ; int tmp___5 ; int tmp___6 ; bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp___7 ; long tmp___8 ; long tmp___9 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; ret = 0; ce_data_base = 0ULL; data_buf = (void *)0; } if (address <= 4194303U) { if ((address & 3U) != 0U || ((unsigned long )data & 3UL) != 0UL) { return (-5); } else { } goto ldv_53072; ldv_53071: nbytes = (int )((unsigned int )nbytes - 4U); address = address + 4U; data = data + 4UL; ldv_53072: ; if (nbytes > 3) { { ret = ath10k_pci_diag_read_access(ar, address, (u32 *)data); } if (ret == 0) { goto ldv_53071; } else { goto ldv_53073; } } else { } ldv_53073: ; return (ret); } else { } { ce_diag = ar_pci->ce_diag; orig_nbytes = (unsigned int )nbytes; data_buf = pci_alloc_consistent(ar_pci->pdev, (size_t )orig_nbytes, & ce_data_base); } if ((unsigned long )data_buf == (unsigned long )((void *)0)) { ret = -12; goto done; } else { } { memset(data_buf, 0, (size_t )orig_nbytes); remaining_bytes = orig_nbytes; ce_data = (u32 )ce_data_base; } goto ldv_53093; ldv_53092: { __min1 = remaining_bytes; __min2 = 2048U; nbytes = (int )(__min1 < __min2 ? __min1 : __min2); ret = ath10k_ce_recv_buf_enqueue(ce_diag, (void *)0, ce_data); } if (ret != 0) { goto done; } else { } { ath10k_pci_wake(ar); tmp___0 = ioread32(ar_pci->mem + 36864UL); address = ((tmp___0 << 21) | (address & 1048575U)) | 1048576U; ath10k_pci_sleep(ar); ret = ath10k_ce_send(ce_diag, (void *)0, address, (unsigned int )nbytes, 0U, 0U); } if (ret != 0) { goto done; } else { } i = 0; goto ldv_53083; ldv_53082: ; if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_53080; ldv_53079: { __const_udelay(4295000UL); } ldv_53080: tmp___1 = __ms; __ms = __ms - 1UL; if (tmp___1 != 0UL) { goto ldv_53079; } else { } } tmp___2 = i; i = i + 1; if (tmp___2 > 10) { ret = -16; goto done; } else { } ldv_53083: { tmp___3 = ath10k_ce_completed_send_next(ce_diag, (void **)0, & buf, & completed_nbytes, & id); } if (tmp___3 != 0) { goto ldv_53082; } else { } if ((unsigned int )nbytes != completed_nbytes) { ret = -5; goto done; } else { } if (buf != address) { ret = -5; goto done; } else { } i = 0; goto ldv_53090; ldv_53089: ; if (1) { { __const_udelay(4295000UL); } } else { __ms___0 = 1UL; goto ldv_53087; ldv_53086: { __const_udelay(4295000UL); } ldv_53087: tmp___4 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___4 != 0UL) { goto ldv_53086; } else { } } tmp___5 = i; i = i + 1; if (tmp___5 > 10) { ret = -16; goto done; } else { } ldv_53090: { tmp___6 = ath10k_ce_completed_recv_next(ce_diag, (void **)0, & buf, & completed_nbytes, & id, & flags); } if (tmp___6 != 0) { goto ldv_53089; } else { } if ((unsigned int )nbytes != completed_nbytes) { ret = -5; goto done; } else { } if (buf != ce_data) { ret = -5; goto done; } else { } remaining_bytes = remaining_bytes - (unsigned int )nbytes; address = address + (u32 )nbytes; ce_data = ce_data + (u32 )nbytes; ldv_53093: ; if (remaining_bytes != 0U) { goto ldv_53092; } else { } done: ; if (ret == 0) { { __ret_warn_once = (orig_nbytes & 3U) != 0U; tmp___9 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___9 != 0L) { { __ret_warn_on = ! __warned; tmp___7 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___7 != 0L) { { warn_slowpath_null("drivers/net/wireless/ath/ath10k/pci.c", 441); } } else { } { tmp___8 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___8 != 0L) { __warned = 1; } else { } } else { } { ldv__builtin_expect(__ret_warn_once != 0, 0L); i = 0; } goto ldv_53101; ldv_53100: *((u32 *)data + (unsigned long )i) = *((__le32 *)data_buf + (unsigned long )i); i = i + 1; ldv_53101: ; if ((unsigned long )i < (unsigned long )(orig_nbytes / 4U)) { goto ldv_53100; } else { } } else { { ath10k_dbg(1, "%s failure (0x%x)\n", "ath10k_pci_diag_read_mem", address); } } if ((unsigned long )data_buf != (unsigned long )((void *)0)) { { pci_free_consistent(ar_pci->pdev, (size_t )orig_nbytes, data_buf, ce_data_base); } } else { } return (ret); } } static int ath10k_pci_diag_read_access(struct ath10k *ar , u32 address , u32 *data ) { int tmp ; { if (address > 4194303U) { { tmp = ath10k_pci_diag_read_mem(ar, address, (void *)data, 4); } return (tmp); } else { } { ath10k_pci_wake(ar); *data = ath10k_pci_read32(ar, address); ath10k_pci_sleep(ar); } return (0); } } static int ath10k_pci_diag_write_mem(struct ath10k *ar , u32 address , void const *data , int nbytes ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int ret ; u32 buf ; unsigned int completed_nbytes ; unsigned int orig_nbytes ; unsigned int remaining_bytes ; unsigned int id ; unsigned int flags ; struct ath10k_ce_pipe *ce_diag ; void *data_buf ; u32 ce_data ; dma_addr_t ce_data_base ; int i ; bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp___0 ; long tmp___1 ; long tmp___2 ; unsigned int tmp___3 ; int __min1 ; int __min2 ; unsigned long __ms ; unsigned long tmp___4 ; int tmp___5 ; int tmp___6 ; unsigned long __ms___0 ; unsigned long tmp___7 ; int tmp___8 ; int tmp___9 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; ret = 0; data_buf = (void *)0; ce_data_base = 0ULL; ce_diag = ar_pci->ce_diag; orig_nbytes = (unsigned int )nbytes; data_buf = pci_alloc_consistent(ar_pci->pdev, (size_t )orig_nbytes, & ce_data_base); } if ((unsigned long )data_buf == (unsigned long )((void *)0)) { ret = -12; goto done; } else { } { __ret_warn_once = (orig_nbytes & 3U) != 0U; tmp___2 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___2 != 0L) { { __ret_warn_on = ! __warned; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/ath/ath10k/pci.c", 504); } } else { } { tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { __warned = 1; } else { } } else { } { ldv__builtin_expect(__ret_warn_once != 0, 0L); i = 0; } goto ldv_53135; ldv_53134: *((__le32 *)data_buf + (unsigned long )i) = *((u32 *)data + (unsigned long )i); i = i + 1; ldv_53135: ; if ((unsigned long )i < (unsigned long )(orig_nbytes / 4U)) { goto ldv_53134; } else { } { ath10k_pci_wake(ar); tmp___3 = ioread32(ar_pci->mem + 36864UL); address = ((tmp___3 << 21) | (address & 1048575U)) | 1048576U; ath10k_pci_sleep(ar); remaining_bytes = orig_nbytes; ce_data = (u32 )ce_data_base; } goto ldv_53155; ldv_53154: { __min1 = (int )remaining_bytes; __min2 = 2048; nbytes = __min1 < __min2 ? __min1 : __min2; ret = ath10k_ce_recv_buf_enqueue(ce_diag, (void *)0, address); } if (ret != 0) { goto done; } else { } { ret = ath10k_ce_send(ce_diag, (void *)0, ce_data, (unsigned int )nbytes, 0U, 0U); } if (ret != 0) { goto done; } else { } i = 0; goto ldv_53145; ldv_53144: ; if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_53142; ldv_53141: { __const_udelay(4295000UL); } ldv_53142: tmp___4 = __ms; __ms = __ms - 1UL; if (tmp___4 != 0UL) { goto ldv_53141; } else { } } tmp___5 = i; i = i + 1; if (tmp___5 > 10) { ret = -16; goto done; } else { } ldv_53145: { tmp___6 = ath10k_ce_completed_send_next(ce_diag, (void **)0, & buf, & completed_nbytes, & id); } if (tmp___6 != 0) { goto ldv_53144; } else { } if ((unsigned int )nbytes != completed_nbytes) { ret = -5; goto done; } else { } if (buf != ce_data) { ret = -5; goto done; } else { } i = 0; goto ldv_53152; ldv_53151: ; if (1) { { __const_udelay(4295000UL); } } else { __ms___0 = 1UL; goto ldv_53149; ldv_53148: { __const_udelay(4295000UL); } ldv_53149: tmp___7 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___7 != 0UL) { goto ldv_53148; } else { } } tmp___8 = i; i = i + 1; if (tmp___8 > 10) { ret = -16; goto done; } else { } ldv_53152: { tmp___9 = ath10k_ce_completed_recv_next(ce_diag, (void **)0, & buf, & completed_nbytes, & id, & flags); } if (tmp___9 != 0) { goto ldv_53151; } else { } if ((unsigned int )nbytes != completed_nbytes) { ret = -5; goto done; } else { } if (buf != address) { ret = -5; goto done; } else { } remaining_bytes = remaining_bytes - (unsigned int )nbytes; address = address + (u32 )nbytes; ce_data = ce_data + (u32 )nbytes; ldv_53155: ; if (remaining_bytes != 0U) { goto ldv_53154; } else { } done: ; if ((unsigned long )data_buf != (unsigned long )((void *)0)) { { pci_free_consistent(ar_pci->pdev, (size_t )orig_nbytes, data_buf, ce_data_base); } } else { } if (ret != 0) { { ath10k_dbg(1, "%s failure (0x%x)\n", "ath10k_pci_diag_write_mem", address); } } else { } return (ret); } } static int ath10k_pci_diag_write_access(struct ath10k *ar , u32 address , u32 data ) { int tmp ; { if (address > 4194303U) { { tmp = ath10k_pci_diag_write_mem(ar, address, (void const *)(& data), 4); } return (tmp); } else { } { ath10k_pci_wake(ar); ath10k_pci_write32(ar, address, data); ath10k_pci_sleep(ar); } return (0); } } static bool ath10k_pci_target_is_awake(struct ath10k *ar ) { void *mem ; struct ath10k_pci *tmp ; u32 val ; { { tmp = ath10k_pci_priv(ar); mem = tmp->mem; val = ioread32(mem + 524288UL); } return ((val & 7U) == 3U); } } int ath10k_do_pci_wake(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; void *pci_addr ; int tot_delay ; int curr_delay ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; pci_addr = ar_pci->mem; tot_delay = 0; curr_delay = 5; tmp___0 = atomic_read((atomic_t const *)(& ar_pci->keep_awake_count)); } if (tmp___0 == 0) { { iowrite32(1U, pci_addr + 524292U); } } else { } { atomic_inc(& ar_pci->keep_awake_count); } if ((int )ar_pci->verified_awake) { return (0); } else { } ldv_53175: { tmp___1 = ath10k_pci_target_is_awake(ar); } if ((int )tmp___1) { ar_pci->verified_awake = 1; return (0); } else { } if (tot_delay > 5000) { { tmp___2 = atomic_read((atomic_t const *)(& ar_pci->keep_awake_count)); ath10k_warn("target took longer %d us to wake up (awake count %d)\n", 5000, tmp___2); } return (-110); } else { } { __udelay((unsigned long )curr_delay); tot_delay = tot_delay + curr_delay; } if (curr_delay <= 49) { curr_delay = curr_delay + 5; } else { } goto ldv_53175; } } void ath10k_do_pci_sleep(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; void *pci_addr ; int tmp___0 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; pci_addr = ar_pci->mem; tmp___0 = atomic_dec_and_test(& ar_pci->keep_awake_count); } if (tmp___0 != 0) { { ar_pci->verified_awake = 0; iowrite32(0U, pci_addr + 524292U); } } else { } return; } } __inline static struct ath10k_pci_compl *get_free_compl(struct ath10k_pci_pipe *pipe_info ) { struct ath10k_pci_compl *compl ; int tmp ; struct list_head const *__mptr ; { { compl = (struct ath10k_pci_compl *)0; ldv_spin_lock_bh_85(& pipe_info->pipe_lock); tmp = list_empty((struct list_head const *)(& pipe_info->compl_free)); } if (tmp != 0) { { ath10k_warn("Completion buffers are full\n"); } goto exit; } else { } { __mptr = (struct list_head const *)pipe_info->compl_free.next; compl = (struct ath10k_pci_compl *)__mptr; list_del(& compl->list); } exit: { ldv_spin_unlock_bh_86(& pipe_info->pipe_lock); } return (compl); } } static void ath10k_pci_ce_send_done(struct ath10k_ce_pipe *ce_state ) { struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; struct ath10k_pci_pipe *pipe_info ; struct ath10k_pci_compl *compl ; void *transfer_context ; u32 ce_data ; unsigned int nbytes ; unsigned int transfer_id ; int tmp___0 ; { { ar = ce_state->ar; tmp = ath10k_pci_priv(ar); ar_pci = tmp; pipe_info = (struct ath10k_pci_pipe *)(& ar_pci->pipe_info) + (unsigned long )ce_state->id; } goto ldv_53201; ldv_53200: { compl = get_free_compl(pipe_info); } if ((unsigned long )compl == (unsigned long )((struct ath10k_pci_compl *)0)) { goto ldv_53199; } else { } { compl->state = 1; compl->ce_state = ce_state; compl->pipe_info = pipe_info; compl->skb = (struct sk_buff *)transfer_context; compl->nbytes = nbytes; compl->transfer_id = transfer_id; compl->flags = 0U; ldv_spin_lock_bh_87(& ar_pci->compl_lock); list_add_tail(& compl->list, & ar_pci->compl_process); ldv_spin_unlock_bh_88(& ar_pci->compl_lock); } ldv_53201: { tmp___0 = ath10k_ce_completed_send_next(ce_state, & transfer_context, & ce_data, & nbytes, & transfer_id); } if (tmp___0 == 0) { goto ldv_53200; } else { } ldv_53199: { ath10k_pci_process_ce(ar); } return; } } static void ath10k_pci_ce_recv_data(struct ath10k_ce_pipe *ce_state ) { struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; struct ath10k_pci_pipe *pipe_info ; struct ath10k_pci_compl *compl ; struct sk_buff *skb ; void *transfer_context ; u32 ce_data ; unsigned int nbytes ; unsigned int transfer_id ; unsigned int flags ; int tmp___0 ; struct ath10k_skb_cb *tmp___1 ; int tmp___2 ; { { ar = ce_state->ar; tmp = ath10k_pci_priv(ar); ar_pci = tmp; pipe_info = (struct ath10k_pci_pipe *)(& ar_pci->pipe_info) + (unsigned long )ce_state->id; } goto ldv_53217; ldv_53216: { compl = get_free_compl(pipe_info); } if ((unsigned long )compl == (unsigned long )((struct ath10k_pci_compl *)0)) { goto ldv_53215; } else { } { compl->state = 2; compl->ce_state = ce_state; compl->pipe_info = pipe_info; compl->skb = (struct sk_buff *)transfer_context; compl->nbytes = nbytes; compl->transfer_id = transfer_id; compl->flags = flags; skb = (struct sk_buff *)transfer_context; tmp___0 = skb_tailroom((struct sk_buff const *)skb); tmp___1 = ATH10K_SKB_CB(skb); dma_unmap_single_attrs(ar->dev, tmp___1->paddr, (size_t )(skb->len + (unsigned int )tmp___0), 2, (struct dma_attrs *)0); ldv_spin_lock_bh_87(& ar_pci->compl_lock); list_add_tail(& compl->list, & ar_pci->compl_process); ldv_spin_unlock_bh_88(& ar_pci->compl_lock); } ldv_53217: { tmp___2 = ath10k_ce_completed_recv_next(ce_state, & transfer_context, & ce_data, & nbytes, & transfer_id, & flags); } if (tmp___2 == 0) { goto ldv_53216; } else { } ldv_53215: { ath10k_pci_process_ce(ar); } return; } } static int ath10k_pci_hif_send_head(struct ath10k *ar , u8 pipe_id , unsigned int transfer_id , unsigned int bytes , struct sk_buff *nbuf ) { struct ath10k_skb_cb *skb_cb ; struct ath10k_skb_cb *tmp ; struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp___0 ; struct ath10k_pci_pipe *pipe_info ; struct ath10k_ce_pipe *ce_hdl ; unsigned int len ; u32 flags ; int ret ; unsigned int _min1 ; unsigned int _min2 ; { { tmp = ATH10K_SKB_CB(nbuf); skb_cb = tmp; tmp___0 = ath10k_pci_priv(ar); ar_pci = tmp___0; pipe_info = (struct ath10k_pci_pipe *)(& ar_pci->pipe_info) + (unsigned long )pipe_id; ce_hdl = pipe_info->ce_hdl; flags = 0U; _min1 = bytes; _min2 = nbuf->len; len = _min1 < _min2 ? _min1 : _min2; bytes = bytes - len; } if ((len & 3U) != 0U) { { ath10k_warn("skb not aligned to 4-byte boundary (%d)\n", len); } } else { } { ath10k_dbg(1, "pci send data vaddr %p paddr 0x%llx len %d as %d bytes\n", nbuf->data, skb_cb->paddr, nbuf->len, len); ath10k_dbg_dump(64, (char const *)0, "ath10k tx: data: ", (void const *)nbuf->data, (size_t )nbuf->len); ret = ath10k_ce_send(ce_hdl, (void *)nbuf, (u32 )skb_cb->paddr, len, transfer_id, flags); } if (ret != 0) { { ath10k_warn("failed to send sk_buff to CE: %p\n", nbuf); } } else { } return (ret); } } static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar , u8 pipe ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int tmp___0 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; tmp___0 = ath10k_ce_num_free_src_entries(ar_pci->pipe_info[(int )pipe].ce_hdl); } return ((u16 )tmp___0); } } extern void __compiletime_assert_858(void) ; static void ath10k_pci_hif_dump_area(struct ath10k *ar ) { u32 reg_dump_area ; u32 reg_dump_values[60U] ; u32 host_addr ; int ret ; u32 i ; bool __cond ; { { reg_dump_area = 0U; reg_dump_values[0] = 0U; reg_dump_values[1] = 0U; reg_dump_values[2] = 0U; reg_dump_values[3] = 0U; reg_dump_values[4] = 0U; reg_dump_values[5] = 0U; reg_dump_values[6] = 0U; reg_dump_values[7] = 0U; reg_dump_values[8] = 0U; reg_dump_values[9] = 0U; reg_dump_values[10] = 0U; reg_dump_values[11] = 0U; reg_dump_values[12] = 0U; reg_dump_values[13] = 0U; reg_dump_values[14] = 0U; reg_dump_values[15] = 0U; reg_dump_values[16] = 0U; reg_dump_values[17] = 0U; reg_dump_values[18] = 0U; reg_dump_values[19] = 0U; reg_dump_values[20] = 0U; reg_dump_values[21] = 0U; reg_dump_values[22] = 0U; reg_dump_values[23] = 0U; reg_dump_values[24] = 0U; reg_dump_values[25] = 0U; reg_dump_values[26] = 0U; reg_dump_values[27] = 0U; reg_dump_values[28] = 0U; reg_dump_values[29] = 0U; reg_dump_values[30] = 0U; reg_dump_values[31] = 0U; reg_dump_values[32] = 0U; reg_dump_values[33] = 0U; reg_dump_values[34] = 0U; reg_dump_values[35] = 0U; reg_dump_values[36] = 0U; reg_dump_values[37] = 0U; reg_dump_values[38] = 0U; reg_dump_values[39] = 0U; reg_dump_values[40] = 0U; reg_dump_values[41] = 0U; reg_dump_values[42] = 0U; reg_dump_values[43] = 0U; reg_dump_values[44] = 0U; reg_dump_values[45] = 0U; reg_dump_values[46] = 0U; reg_dump_values[47] = 0U; reg_dump_values[48] = 0U; reg_dump_values[49] = 0U; reg_dump_values[50] = 0U; reg_dump_values[51] = 0U; reg_dump_values[52] = 0U; reg_dump_values[53] = 0U; reg_dump_values[54] = 0U; reg_dump_values[55] = 0U; reg_dump_values[56] = 0U; reg_dump_values[57] = 0U; reg_dump_values[58] = 0U; reg_dump_values[59] = 0U; ath10k_err("firmware crashed!\n"); ath10k_err("hardware name %s version 0x%x\n", ar->hw_params.name, ar->target_version); ath10k_err("firmware version: %u.%u.%u.%u\n", (int )ar->fw_version_major, ar->fw_version_minor, (int )ar->fw_version_release, (int )ar->fw_version_build); host_addr = host_interest_item_address(4U); ret = ath10k_pci_diag_read_mem(ar, host_addr, (void *)(& reg_dump_area), 4); } if (ret != 0) { { ath10k_err("failed to read FW dump area address: %d\n", ret); } return; } else { } { ath10k_err("target register Dump Location: 0x%08X\n", reg_dump_area); ret = ath10k_pci_diag_read_mem(ar, reg_dump_area, (void *)(& reg_dump_values), 240); } if (ret != 0) { { ath10k_err("failed to read FW dump area: %d\n", ret); } return; } else { } __cond = 0; if ((int )__cond) { { __compiletime_assert_858(); } } else { } { ath10k_err("target Register Dump\n"); i = 0U; } goto ldv_53253; ldv_53252: { ath10k_err("[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n", i, reg_dump_values[i], reg_dump_values[i + 1U], reg_dump_values[i + 2U], reg_dump_values[i + 3U]); i = i + 4U; } ldv_53253: ; if (i <= 59U) { goto ldv_53252; } else { } { queue_work(ar->workqueue, & ar->restart_work); } return; } } static void ath10k_pci_hif_send_complete_check(struct ath10k *ar , u8 pipe , int force ) { int resources ; u16 tmp ; { if (force == 0) { { tmp = ath10k_pci_hif_get_free_queue_number(ar, (int )pipe); resources = (int )tmp; } if ((unsigned int )resources > (unsigned int )(host_ce_config_wlan[(int )pipe].src_nentries >> 1)) { return; } else { } } else { } { ath10k_ce_per_engine_service(ar, (unsigned int )pipe); } return; } } static void ath10k_pci_hif_set_callbacks(struct ath10k *ar , struct ath10k_hif_cb *callbacks ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; ath10k_dbg(1, "%s\n", "ath10k_pci_hif_set_callbacks"); memcpy((void *)(& ar_pci->msg_callbacks_current), (void const *)callbacks, 16UL); } return; } } static int ath10k_pci_alloc_compl(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; struct ce_attr const *attr ; struct ath10k_pci_pipe *pipe_info ; struct ath10k_pci_compl *compl ; int i ; int pipe_num ; int completions ; struct lock_class_key __key ; struct lock_class_key __key___0 ; void *tmp___0 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; spinlock_check(& ar_pci->compl_lock); __raw_spin_lock_init(& ar_pci->compl_lock.__annonCompField19.rlock, "&(&ar_pci->compl_lock)->rlock", & __key); INIT_LIST_HEAD(& ar_pci->compl_process); pipe_num = 0; } goto ldv_53284; ldv_53283: { pipe_info = (struct ath10k_pci_pipe *)(& ar_pci->pipe_info) + (unsigned long )pipe_num; spinlock_check(& pipe_info->pipe_lock); __raw_spin_lock_init(& pipe_info->pipe_lock.__annonCompField19.rlock, "&(&pipe_info->pipe_lock)->rlock", & __key___0); INIT_LIST_HEAD(& pipe_info->compl_free); } if ((unsigned long )pipe_info->ce_hdl == (unsigned long )ar_pci->ce_diag) { goto ldv_53279; } else { } attr = (struct ce_attr const *)(& host_ce_config_wlan) + (unsigned long )pipe_num; completions = 0; if ((unsigned int )attr->src_nentries != 0U) { completions = (int )((unsigned int )completions + (unsigned int )attr->src_nentries); } else { } if ((unsigned int )attr->dest_nentries != 0U) { completions = (int )((unsigned int )completions + (unsigned int )attr->dest_nentries); } else { } i = 0; goto ldv_53281; ldv_53280: { tmp___0 = kmalloc(64UL, 208U); compl = (struct ath10k_pci_compl *)tmp___0; } if ((unsigned long )compl == (unsigned long )((struct ath10k_pci_compl *)0)) { { ath10k_warn("No memory for completion state\n"); ath10k_pci_cleanup_ce(ar); } return (-12); } else { } { compl->state = 0; list_add_tail(& compl->list, & pipe_info->compl_free); i = i + 1; } ldv_53281: ; if (i < completions) { goto ldv_53280; } else { } ldv_53279: pipe_num = pipe_num + 1; ldv_53284: ; if (pipe_num <= 7) { goto ldv_53283; } else { } return (0); } } static int ath10k_pci_setup_ce_irq(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; struct ce_attr const *attr ; struct ath10k_pci_pipe *pipe_info ; int pipe_num ; int disable_interrupts ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; pipe_num = 0; } goto ldv_53296; ldv_53295: pipe_info = (struct ath10k_pci_pipe *)(& ar_pci->pipe_info) + (unsigned long )pipe_num; if ((unsigned long )pipe_info->ce_hdl == (unsigned long )ar_pci->ce_diag) { goto ldv_53294; } else { } attr = (struct ce_attr const *)(& host_ce_config_wlan) + (unsigned long )pipe_num; if ((unsigned int )attr->src_nentries != 0U) { { disable_interrupts = (int )attr->flags & 8; ath10k_ce_send_cb_register(pipe_info->ce_hdl, & ath10k_pci_ce_send_done, disable_interrupts); } } else { } if ((unsigned int )attr->dest_nentries != 0U) { { ath10k_ce_recv_cb_register(pipe_info->ce_hdl, & ath10k_pci_ce_recv_data); } } else { } ldv_53294: pipe_num = pipe_num + 1; ldv_53296: ; if (pipe_num <= 7) { goto ldv_53295; } else { } return (0); } } static void ath10k_pci_kill_tasklet(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int i ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; tasklet_kill(& ar_pci->intr_tq); tasklet_kill(& ar_pci->msi_fw_err); tasklet_kill(& ar_pci->early_irq_tasklet); i = 0; } goto ldv_53304; ldv_53303: { tasklet_kill(& ar_pci->pipe_info[i].intr); i = i + 1; } ldv_53304: ; if (i <= 7) { goto ldv_53303; } else { } return; } } static void ath10k_pci_stop_ce(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; struct ath10k_pci_compl *compl ; struct sk_buff *skb ; struct list_head const *__mptr ; struct ath10k_skb_cb *tmp___0 ; struct list_head const *__mptr___0 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; ldv_spin_lock_bh_87(& ar_pci->compl_lock); __mptr = (struct list_head const *)ar_pci->compl_process.next; compl = (struct ath10k_pci_compl *)__mptr; } goto ldv_53317; ldv_53316: { skb = compl->skb; tmp___0 = ATH10K_SKB_CB(skb); tmp___0->is_aborted = 1; __mptr___0 = (struct list_head const *)compl->list.next; compl = (struct ath10k_pci_compl *)__mptr___0; } ldv_53317: ; if ((unsigned long )(& compl->list) != (unsigned long )(& ar_pci->compl_process)) { goto ldv_53316; } else { } { ldv_spin_unlock_bh_88(& ar_pci->compl_lock); } return; } } static void ath10k_pci_cleanup_ce(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; struct ath10k_pci_compl *compl ; struct ath10k_pci_compl *tmp___0 ; struct ath10k_pci_pipe *pipe_info ; struct sk_buff *netbuf ; int pipe_num ; int tmp___1 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; struct list_head const *__mptr___3 ; struct list_head const *__mptr___4 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; ldv_spin_lock_bh_87(& ar_pci->compl_lock); tmp___1 = list_empty((struct list_head const *)(& ar_pci->compl_process)); } if (tmp___1 == 0) { { ath10k_warn("pending completions still present! possible memory leaks.\n"); } } else { } __mptr = (struct list_head const *)ar_pci->compl_process.next; compl = (struct ath10k_pci_compl *)__mptr; __mptr___0 = (struct list_head const *)compl->list.next; tmp___0 = (struct ath10k_pci_compl *)__mptr___0; goto ldv_53335; ldv_53334: { list_del(& compl->list); netbuf = compl->skb; dev_kfree_skb_any(netbuf); kfree((void const *)compl); compl = tmp___0; __mptr___1 = (struct list_head const *)tmp___0->list.next; tmp___0 = (struct ath10k_pci_compl *)__mptr___1; } ldv_53335: ; if ((unsigned long )(& compl->list) != (unsigned long )(& ar_pci->compl_process)) { goto ldv_53334; } else { } { ldv_spin_unlock_bh_88(& ar_pci->compl_lock); pipe_num = 0; } goto ldv_53347; ldv_53346: { pipe_info = (struct ath10k_pci_pipe *)(& ar_pci->pipe_info) + (unsigned long )pipe_num; ldv_spin_lock_bh_85(& pipe_info->pipe_lock); __mptr___2 = (struct list_head const *)pipe_info->compl_free.next; compl = (struct ath10k_pci_compl *)__mptr___2; __mptr___3 = (struct list_head const *)compl->list.next; tmp___0 = (struct ath10k_pci_compl *)__mptr___3; } goto ldv_53344; ldv_53343: { list_del(& compl->list); kfree((void const *)compl); compl = tmp___0; __mptr___4 = (struct list_head const *)tmp___0->list.next; tmp___0 = (struct ath10k_pci_compl *)__mptr___4; } ldv_53344: ; if ((unsigned long )(& compl->list) != (unsigned long )(& pipe_info->compl_free)) { goto ldv_53343; } else { } { ldv_spin_unlock_bh_86(& pipe_info->pipe_lock); pipe_num = pipe_num + 1; } ldv_53347: ; if (pipe_num <= 7) { goto ldv_53346; } else { } return; } } static void ath10k_pci_process_ce(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_hif_cb *cb ; struct ath10k_pci_compl *compl ; struct sk_buff *skb ; unsigned int nbytes ; int ret ; int send_done ; int tmp ; struct list_head const *__mptr ; int tmp___0 ; int tmp___1 ; { { ar_pci = (struct ath10k_pci *)ar->hif.priv; cb = & ar_pci->msg_callbacks_current; send_done = 0; ldv_spin_lock_bh_87(& ar_pci->compl_lock); } if ((int )ar_pci->compl_processing) { { ldv_spin_unlock_bh_88(& ar_pci->compl_lock); } return; } else { } { ar_pci->compl_processing = 1; ldv_spin_unlock_bh_88(& ar_pci->compl_lock); } ldv_53367: { ldv_spin_lock_bh_87(& ar_pci->compl_lock); tmp = list_empty((struct list_head const *)(& ar_pci->compl_process)); } if (tmp != 0) { { ldv_spin_unlock_bh_88(& ar_pci->compl_lock); } goto ldv_53359; } else { } { __mptr = (struct list_head const *)ar_pci->compl_process.next; compl = (struct ath10k_pci_compl *)__mptr; list_del(& compl->list); ldv_spin_unlock_bh_88(& ar_pci->compl_lock); } { if ((unsigned int )compl->state == 1U) { goto case_1; } else { } if ((unsigned int )compl->state == 2U) { goto case_2; } else { } if ((unsigned int )compl->state == 0U) { goto case_0; } else { } goto switch_default; case_1: /* CIL Label */ { (*(cb->tx_completion))(ar, compl->skb, compl->transfer_id); send_done = 1; } goto ldv_53363; case_2: /* CIL Label */ { ret = ath10k_pci_post_rx_pipe(compl->pipe_info, 1); } if (ret != 0) { { ath10k_warn("failed to post RX buffer for pipe %d: %d\n", (int )(compl->pipe_info)->pipe_num, ret); } goto ldv_53363; } else { } { skb = compl->skb; nbytes = compl->nbytes; ath10k_dbg(1, "ath10k_pci_ce_recv_data netbuf=%p nbytes=%d\n", skb, nbytes); ath10k_dbg_dump(64, (char const *)0, "ath10k rx: ", (void const *)skb->data, (size_t )nbytes); tmp___1 = skb_tailroom((struct sk_buff const *)skb); } if (skb->len + (unsigned int )tmp___1 >= nbytes) { { skb_trim(skb, 0U); skb_put(skb, nbytes); (*(cb->rx_completion))(ar, skb, (int )(compl->pipe_info)->pipe_num); } } else { { tmp___0 = skb_tailroom((struct sk_buff const *)skb); ath10k_warn("rxed more than expected (nbytes %d, max %d)", nbytes, skb->len + (unsigned int )tmp___0); } } goto ldv_53363; case_0: /* CIL Label */ { ath10k_warn("free completion cannot be processed\n"); } goto ldv_53363; switch_default: /* CIL Label */ { ath10k_warn("invalid completion state (%d)\n", (unsigned int )compl->state); } goto ldv_53363; switch_break: /* CIL Label */ ; } ldv_53363: { compl->state = 0; ldv_spin_lock_bh_85(& (compl->pipe_info)->pipe_lock); list_add_tail(& compl->list, & (compl->pipe_info)->compl_free); ldv_spin_unlock_bh_86(& (compl->pipe_info)->pipe_lock); } goto ldv_53367; ldv_53359: { ldv_spin_lock_bh_87(& ar_pci->compl_lock); ar_pci->compl_processing = 0; ldv_spin_unlock_bh_88(& ar_pci->compl_lock); } return; } } static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar , u16 service_id , u8 *ul_pipe , u8 *dl_pipe , int *ul_is_polled , int *dl_is_polled ) { int ret ; { ret = 0; *dl_is_polled = 0; { if ((int )service_id == 768) { goto case_768; } else { } if ((int )service_id == 1) { goto case_1; } else { } if ((int )service_id == 65024) { goto case_65024; } else { } if ((int )service_id == 258) { goto case_258; } else { } if ((int )service_id == 257) { goto case_257; } else { } if ((int )service_id == 259) { goto case_259; } else { } if ((int )service_id == 260) { goto case_260; } else { } if ((int )service_id == 256) { goto case_256; } else { } goto switch_default; case_768: /* CIL Label */ *ul_pipe = 4U; *dl_pipe = 1U; goto ldv_53378; case_1: /* CIL Label */ ; case_65024: /* CIL Label */ *ul_pipe = 0U; *dl_pipe = 1U; goto ldv_53378; case_258: /* CIL Label */ ; case_257: /* CIL Label */ ; case_259: /* CIL Label */ ; case_260: /* CIL Label */ ; case_256: /* CIL Label */ *ul_pipe = 3U; *dl_pipe = 2U; goto ldv_53378; switch_default: /* CIL Label */ ret = -1; goto ldv_53378; switch_break: /* CIL Label */ ; } ldv_53378: *ul_is_polled = ((unsigned int )host_ce_config_wlan[(int )*ul_pipe].flags & 8U) != 0U; return (ret); } } static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar , u8 *ul_pipe , u8 *dl_pipe ) { int ul_is_polled ; int dl_is_polled ; { { ath10k_pci_hif_map_service_to_pipe(ar, 1, ul_pipe, dl_pipe, & ul_is_polled, & dl_is_polled); } return; } } static int ath10k_pci_post_rx_pipe(struct ath10k_pci_pipe *pipe_info , int num ) { struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; struct ath10k_ce_pipe *ce_state ; struct sk_buff *skb ; dma_addr_t ce_data ; int i ; int ret ; bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp___0 ; long tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; struct ath10k_skb_cb *tmp___6 ; { { ar = pipe_info->hif_ce_state; tmp = ath10k_pci_priv(ar); ar_pci = tmp; ce_state = pipe_info->ce_hdl; ret = 0; } if (pipe_info->buf_sz == 0UL) { return (0); } else { } i = 0; goto ldv_53412; ldv_53411: { skb = dev_alloc_skb((unsigned int )pipe_info->buf_sz); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { ath10k_warn("failed to allocate skbuff for pipe %d\n", num); ret = -12; } goto err; } else { } { __ret_warn_once = ((unsigned long )skb->data & 3UL) != 0UL; tmp___2 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___2 != 0L) { { __ret_warn_on = ! __warned; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_fmt("drivers/net/wireless/ath/ath10k/pci.c", 1235, "unaligned skb"); } } else { } { tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { __warned = 1; } else { } } else { } { ldv__builtin_expect(__ret_warn_once != 0, 0L); tmp___3 = skb_tailroom((struct sk_buff const *)skb); ce_data = dma_map_single_attrs(ar->dev, (void *)skb->data, (size_t )(skb->len + (unsigned int )tmp___3), 2, (struct dma_attrs *)0); tmp___4 = dma_mapping_error(ar->dev, ce_data); tmp___5 = ldv__builtin_expect(tmp___4 != 0, 0L); } if (tmp___5 != 0L) { { ath10k_warn("failed to DMA map sk_buff\n"); dev_kfree_skb_any(skb); ret = -5; } goto err; } else { } { tmp___6 = ATH10K_SKB_CB(skb); tmp___6->paddr = ce_data; pci_dma_sync_single_for_device(ar_pci->pdev, ce_data, pipe_info->buf_sz, 2); ret = ath10k_ce_recv_buf_enqueue(ce_state, (void *)skb, (u32 )ce_data); } if (ret != 0) { { ath10k_warn("failed to enqueue to pipe %d: %d\n", num, ret); } goto err; } else { } i = i + 1; ldv_53412: ; if (i < num) { goto ldv_53411; } else { } return (ret); err: { ath10k_pci_rx_pipe_cleanup(pipe_info); } return (ret); } } static int ath10k_pci_post_rx(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; struct ath10k_pci_pipe *pipe_info ; struct ce_attr const *attr ; int pipe_num ; int ret ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; ret = 0; pipe_num = 0; } goto ldv_53427; ldv_53426: pipe_info = (struct ath10k_pci_pipe *)(& ar_pci->pipe_info) + (unsigned long )pipe_num; attr = (struct ce_attr const *)(& host_ce_config_wlan) + (unsigned long )pipe_num; if ((unsigned int )attr->dest_nentries == 0U) { goto ldv_53422; } else { } { ret = ath10k_pci_post_rx_pipe(pipe_info, (int )((unsigned int )attr->dest_nentries - 1U)); } if (ret != 0) { { ath10k_warn("failed to post RX buffer for pipe %d: %d\n", pipe_num, ret); } goto ldv_53424; ldv_53423: { pipe_info = (struct ath10k_pci_pipe *)(& ar_pci->pipe_info) + (unsigned long )pipe_num; ath10k_pci_rx_pipe_cleanup(pipe_info); pipe_num = pipe_num - 1; } ldv_53424: ; if (pipe_num >= 0) { goto ldv_53423; } else { } return (ret); } else { } ldv_53422: pipe_num = pipe_num + 1; ldv_53427: ; if (pipe_num <= 7) { goto ldv_53426; } else { } return (0); } } static int ath10k_pci_hif_start(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int ret ; int ret_early ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; ath10k_pci_free_early_irq(ar); ath10k_pci_kill_tasklet(ar); ret = ath10k_pci_alloc_compl(ar); } if (ret != 0) { { ath10k_warn("failed to allocate CE completions: %d\n", ret); } goto err_early_irq; } else { } { ret = ath10k_pci_request_irq(ar); } if (ret != 0) { { ath10k_warn("failed to post RX buffers for all pipes: %d\n", ret); } goto err_free_compl; } else { } { ret = ath10k_pci_setup_ce_irq(ar); } if (ret != 0) { { ath10k_warn("failed to setup CE interrupts: %d\n", ret); } goto err_stop; } else { } { ret = ath10k_pci_post_rx(ar); } if (ret != 0) { { ath10k_warn("failed to post RX buffers for all pipes: %d\n", ret); } goto err_stop; } else { } ar_pci->started = 1; return (0); err_stop: { ath10k_ce_disable_interrupts(ar); ath10k_pci_free_irq(ar); ath10k_pci_kill_tasklet(ar); ath10k_pci_stop_ce(ar); ath10k_pci_process_ce(ar); } err_free_compl: { ath10k_pci_cleanup_ce(ar); } err_early_irq: { ret_early = ath10k_pci_request_early_irq(ar); } if (ret_early != 0) { { ath10k_warn("failed to re-enable early irq: %d\n", ret_early); } } else { } return (ret); } } static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info ) { struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ath10k_ce_pipe *ce_hdl ; u32 buf_sz ; struct sk_buff *netbuf ; u32 ce_data ; int tmp ; struct ath10k_skb_cb *tmp___0 ; int tmp___1 ; { buf_sz = (u32 )pipe_info->buf_sz; if (buf_sz == 0U) { return; } else { } { ar = pipe_info->hif_ce_state; ar_pci = ath10k_pci_priv(ar); } if (ar_pci->started == 0) { return; } else { } ce_hdl = pipe_info->ce_hdl; goto ldv_53448; ldv_53447: { tmp = skb_tailroom((struct sk_buff const *)netbuf); tmp___0 = ATH10K_SKB_CB(netbuf); dma_unmap_single_attrs(ar->dev, tmp___0->paddr, (size_t )(netbuf->len + (unsigned int )tmp), 2, (struct dma_attrs *)0); dev_kfree_skb_any(netbuf); } ldv_53448: { tmp___1 = ath10k_ce_revoke_recv_next(ce_hdl, (void **)(& netbuf), & ce_data); } if (tmp___1 == 0) { goto ldv_53447; } else { } return; } } static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info ) { struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ath10k_ce_pipe *ce_hdl ; struct sk_buff *netbuf ; u32 ce_data ; unsigned int nbytes ; unsigned int id ; u32 buf_sz ; struct ath10k_skb_cb *tmp ; int tmp___0 ; { buf_sz = (u32 )pipe_info->buf_sz; if (buf_sz == 0U) { return; } else { } { ar = pipe_info->hif_ce_state; ar_pci = ath10k_pci_priv(ar); } if (ar_pci->started == 0) { return; } else { } ce_hdl = pipe_info->ce_hdl; goto ldv_53461; ldv_53462: ; if ((unsigned long )netbuf == (unsigned long )((struct sk_buff *)0)) { { ath10k_warn("invalid sk_buff on CE %d - NULL pointer. firmware crashed?\n", ce_hdl->id); } goto ldv_53461; } else { } { tmp = ATH10K_SKB_CB(netbuf); tmp->is_aborted = 1; (*(ar_pci->msg_callbacks_current.tx_completion))(ar, netbuf, id); } ldv_53461: { tmp___0 = ath10k_ce_cancel_send_next(ce_hdl, (void **)(& netbuf), & ce_data, & nbytes, & id); } if (tmp___0 == 0) { goto ldv_53462; } else { } return; } } static void ath10k_pci_buffer_cleanup(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int pipe_num ; struct ath10k_pci_pipe *pipe_info ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; pipe_num = 0; } goto ldv_53471; ldv_53470: { pipe_info = (struct ath10k_pci_pipe *)(& ar_pci->pipe_info) + (unsigned long )pipe_num; ath10k_pci_rx_pipe_cleanup(pipe_info); ath10k_pci_tx_pipe_cleanup(pipe_info); pipe_num = pipe_num + 1; } ldv_53471: ; if (pipe_num <= 7) { goto ldv_53470; } else { } return; } } static void ath10k_pci_ce_deinit(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; struct ath10k_pci_pipe *pipe_info ; int pipe_num ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; pipe_num = 0; } goto ldv_53480; ldv_53479: pipe_info = (struct ath10k_pci_pipe *)(& ar_pci->pipe_info) + (unsigned long )pipe_num; if ((unsigned long )pipe_info->ce_hdl != (unsigned long )((struct ath10k_ce_pipe *)0)) { { ath10k_ce_deinit(pipe_info->ce_hdl); pipe_info->ce_hdl = (struct ath10k_ce_pipe *)0; pipe_info->buf_sz = 0UL; } } else { } pipe_num = pipe_num + 1; ldv_53480: ; if (pipe_num <= 7) { goto ldv_53479; } else { } return; } } static void ath10k_pci_hif_stop(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int ret ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; ath10k_dbg(1, "%s\n", "ath10k_pci_hif_stop"); ret = ath10k_ce_disable_interrupts(ar); } if (ret != 0) { { ath10k_warn("failed to disable CE interrupts: %d\n", ret); } } else { } { ath10k_pci_free_irq(ar); ath10k_pci_kill_tasklet(ar); ath10k_pci_stop_ce(ar); ret = ath10k_pci_request_early_irq(ar); } if (ret != 0) { { ath10k_warn("failed to re-enable early irq: %d\n", ret); } } else { } { ath10k_pci_process_ce(ar); ath10k_pci_cleanup_ce(ar); ath10k_pci_buffer_cleanup(ar); ath10k_pci_device_reset(ar); ar_pci->started = 0; } return; } } static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar , void *req , u32 req_len , void *resp , u32 *resp_len ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; struct ath10k_pci_pipe *pci_tx ; struct ath10k_pci_pipe *pci_rx ; struct ath10k_ce_pipe *ce_tx ; struct ath10k_ce_pipe *ce_rx ; dma_addr_t req_paddr ; dma_addr_t resp_paddr ; struct bmi_xfer xfer ; void *treq ; void *tresp ; int ret ; u32 unused_buffer ; unsigned int unused_nbytes ; unsigned int unused_id ; u32 unused_buffer___0 ; u32 _min1 ; u32 _min2 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; pci_tx = (struct ath10k_pci_pipe *)(& ar_pci->pipe_info); pci_rx = (struct ath10k_pci_pipe *)(& ar_pci->pipe_info) + 1UL; ce_tx = pci_tx->ce_hdl; ce_rx = pci_rx->ce_hdl; req_paddr = 0ULL; resp_paddr = 0ULL; xfer.done.done = 0U; xfer.done.wait.lock.__annonCompField19.rlock.raw_lock.__annonCompField4.head_tail = 0U; xfer.done.wait.lock.__annonCompField19.rlock.magic = 0U; xfer.done.wait.lock.__annonCompField19.rlock.owner_cpu = 0U; xfer.done.wait.lock.__annonCompField19.rlock.owner = 0; xfer.done.wait.lock.__annonCompField19.rlock.dep_map.key = 0; xfer.done.wait.lock.__annonCompField19.rlock.dep_map.class_cache[0] = 0; xfer.done.wait.lock.__annonCompField19.rlock.dep_map.class_cache[1] = 0; xfer.done.wait.lock.__annonCompField19.rlock.dep_map.name = 0; xfer.done.wait.lock.__annonCompField19.rlock.dep_map.cpu = 0; xfer.done.wait.lock.__annonCompField19.rlock.dep_map.ip = 0UL; xfer.done.wait.task_list.next = 0; xfer.done.wait.task_list.prev = 0; xfer.wait_for_resp = (_Bool)0; xfer.resp_len = 0U; tresp = (void *)0; ret = 0; __might_sleep("drivers/net/wireless/ath/ath10k/pci.c", 1525, 0); } if ((unsigned long )resp != (unsigned long )((void *)0) && (unsigned long )resp_len == (unsigned long )((u32 *)0U)) { return (-22); } else { } if (((unsigned long )resp != (unsigned long )((void *)0) && (unsigned long )resp_len != (unsigned long )((u32 *)0U)) && *resp_len == 0U) { return (-22); } else { } { treq = kmemdup((void const *)req, (size_t )req_len, 208U); } if ((unsigned long )treq == (unsigned long )((void *)0)) { return (-12); } else { } { req_paddr = dma_map_single_attrs(ar->dev, treq, (size_t )req_len, 1, (struct dma_attrs *)0); ret = dma_mapping_error(ar->dev, req_paddr); } if (ret != 0) { goto err_dma; } else { } if ((unsigned long )resp != (unsigned long )((void *)0) && (unsigned long )resp_len != (unsigned long )((u32 *)0U)) { { tresp = kzalloc((size_t )*resp_len, 208U); } if ((unsigned long )tresp == (unsigned long )((void *)0)) { ret = -12; goto err_req; } else { } { resp_paddr = dma_map_single_attrs(ar->dev, tresp, (size_t )*resp_len, 2, (struct dma_attrs *)0); ret = dma_mapping_error(ar->dev, resp_paddr); } if (ret != 0) { goto err_req; } else { } { xfer.wait_for_resp = 1; xfer.resp_len = 0U; ath10k_ce_recv_buf_enqueue(ce_rx, (void *)(& xfer), (u32 )resp_paddr); } } else { } { init_completion(& xfer.done); ret = ath10k_ce_send(ce_tx, (void *)(& xfer), (u32 )req_paddr, req_len, 4294967295U, 0U); } if (ret != 0) { goto err_resp; } else { } { ret = ath10k_pci_bmi_wait(ce_tx, ce_rx, & xfer); } if (ret != 0) { { ath10k_ce_cancel_send_next(ce_tx, (void **)0, & unused_buffer, & unused_nbytes, & unused_id); } } else { ret = 0; } err_resp: ; if ((unsigned long )resp != (unsigned long )((void *)0)) { { ath10k_ce_revoke_recv_next(ce_rx, (void **)0, & unused_buffer___0); dma_unmap_single_attrs(ar->dev, resp_paddr, (size_t )*resp_len, 2, (struct dma_attrs *)0); } } else { } err_req: { dma_unmap_single_attrs(ar->dev, req_paddr, (size_t )req_len, 1, (struct dma_attrs *)0); } if (ret == 0 && (unsigned long )resp_len != (unsigned long )((u32 *)0U)) { { _min1 = *resp_len; _min2 = xfer.resp_len; *resp_len = _min1 < _min2 ? _min1 : _min2; memcpy(resp, (void const *)tresp, (size_t )xfer.resp_len); } } else { } err_dma: { kfree((void const *)treq); kfree((void const *)tresp); } return (ret); } } static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state ) { struct bmi_xfer *xfer ; u32 ce_data ; unsigned int nbytes ; unsigned int transfer_id ; int tmp ; { { tmp = ath10k_ce_completed_send_next(ce_state, (void **)(& xfer), & ce_data, & nbytes, & transfer_id); } if (tmp != 0) { return; } else { } if ((int )xfer->wait_for_resp) { return; } else { } { complete(& xfer->done); } return; } } static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state ) { struct bmi_xfer *xfer ; u32 ce_data ; unsigned int nbytes ; unsigned int transfer_id ; unsigned int flags ; int tmp ; { { tmp = ath10k_ce_completed_recv_next(ce_state, (void **)(& xfer), & ce_data, & nbytes, & transfer_id, & flags); } if (tmp != 0) { return; } else { } if (! xfer->wait_for_resp) { { ath10k_warn("unexpected: BMI data received; ignoring\n"); } return; } else { } { xfer->resp_len = nbytes; complete(& xfer->done); } return; } } static int ath10k_pci_bmi_wait(struct ath10k_ce_pipe *tx_pipe , struct ath10k_ce_pipe *rx_pipe , struct bmi_xfer *xfer ) { unsigned long timeout ; bool tmp ; { timeout = (unsigned long )jiffies + 250UL; goto ldv_53544; ldv_53543: { ath10k_pci_bmi_send_done(tx_pipe); ath10k_pci_bmi_recv_data(rx_pipe); tmp = completion_done(& xfer->done); } if ((int )tmp) { return (0); } else { } { schedule(); } ldv_53544: ; if ((long )(timeout - (unsigned long )jiffies) >= 0L) { goto ldv_53543; } else { } return (-110); } } static struct service_to_pipe const target_service_to_ce_map_wlan[17U] = { {260U, 2U, 3U}, {260U, 1U, 2U}, {258U, 2U, 3U}, {258U, 1U, 2U}, {257U, 2U, 3U}, {257U, 1U, 2U}, {259U, 2U, 3U}, {259U, 1U, 2U}, {256U, 2U, 3U}, {256U, 1U, 2U}, {1U, 2U, 0U}, {1U, 1U, 1U}, {65024U, 2U, 0U}, {65024U, 1U, 1U}, {768U, 2U, 4U}, {768U, 1U, 1U}, {0U, 0U, 0U}}; static int ath10k_pci_wake_target_cpu(struct ath10k *ar ) { int ret ; u32 core_ctrl ; { { ret = ath10k_pci_diag_read_access(ar, 36864U, & core_ctrl); } if (ret != 0) { { ath10k_warn("failed to read core_ctrl: %d\n", ret); } return (ret); } else { } { core_ctrl = core_ctrl | 8192U; ret = ath10k_pci_diag_write_access(ar, 36864U, core_ctrl); } if (ret != 0) { { ath10k_warn("failed to set target CPU interrupt mask: %d\n", ret); } return (ret); } else { } return (0); } } static int ath10k_pci_init_config(struct ath10k *ar ) { u32 interconnect_targ_addr ; u32 pcie_state_targ_addr ; u32 pipe_cfg_targ_addr ; u32 svc_to_pipe_map ; u32 pcie_config_flags ; u32 ealloc_value ; u32 ealloc_targ_addr ; u32 flag2_value ; u32 flag2_targ_addr ; int ret ; { { pcie_state_targ_addr = 0U; pipe_cfg_targ_addr = 0U; svc_to_pipe_map = 0U; pcie_config_flags = 0U; ret = 0; interconnect_targ_addr = host_interest_item_address(248U); ret = ath10k_pci_diag_read_access(ar, interconnect_targ_addr, & pcie_state_targ_addr); } if (ret != 0) { { ath10k_err("Failed to get pcie state addr: %d\n", ret); } return (ret); } else { } if (pcie_state_targ_addr == 0U) { { ret = -5; ath10k_err("Invalid pcie state addr\n"); } return (ret); } else { } { ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr, & pipe_cfg_targ_addr); } if (ret != 0) { { ath10k_err("Failed to get pipe cfg addr: %d\n", ret); } return (ret); } else { } if (pipe_cfg_targ_addr == 0U) { { ret = -5; ath10k_err("Invalid pipe cfg addr\n"); } return (ret); } else { } { ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr, (void const *)(& target_ce_config_wlan), 168); } if (ret != 0) { { ath10k_err("Failed to write pipe cfg: %d\n", ret); } return (ret); } else { } { ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr + 4U, & svc_to_pipe_map); } if (ret != 0) { { ath10k_err("Failed to get svc/pipe map: %d\n", ret); } return (ret); } else { } if (svc_to_pipe_map == 0U) { { ret = -5; ath10k_err("Invalid svc_to_pipe map\n"); } return (ret); } else { } { ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map, (void const *)(& target_service_to_ce_map_wlan), 204); } if (ret != 0) { { ath10k_err("Failed to write svc/pipe map: %d\n", ret); } return (ret); } else { } { ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr + 32U, & pcie_config_flags); } if (ret != 0) { { ath10k_err("Failed to get pcie config_flags: %d\n", ret); } return (ret); } else { } { pcie_config_flags = pcie_config_flags & 4294967294U; ret = ath10k_pci_diag_write_mem(ar, pcie_state_targ_addr + 32U, (void const *)(& pcie_config_flags), 4); } if (ret != 0) { { ath10k_err("Failed to write pcie config_flags: %d\n", ret); } return (ret); } else { } { ealloc_targ_addr = host_interest_item_address(256U); ret = ath10k_pci_diag_read_access(ar, ealloc_targ_addr, & ealloc_value); } if (ret != 0) { { ath10k_err("Faile to get early alloc val: %d\n", ret); } return (ret); } else { } { ealloc_value = ealloc_value | 1837760512U; ealloc_value = ealloc_value | 1U; ret = ath10k_pci_diag_write_access(ar, ealloc_targ_addr, ealloc_value); } if (ret != 0) { { ath10k_err("Failed to set early alloc val: %d\n", ret); } return (ret); } else { } { flag2_targ_addr = host_interest_item_address(204U); ret = ath10k_pci_diag_read_access(ar, flag2_targ_addr, & flag2_value); } if (ret != 0) { { ath10k_err("Failed to get option val: %d\n", ret); } return (ret); } else { } { flag2_value = flag2_value | 16U; ret = ath10k_pci_diag_write_access(ar, flag2_targ_addr, flag2_value); } if (ret != 0) { { ath10k_err("Failed to set option val: %d\n", ret); } return (ret); } else { } return (0); } } static int ath10k_pci_ce_init(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; struct ath10k_pci_pipe *pipe_info ; struct ce_attr const *attr ; int pipe_num ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; pipe_num = 0; } goto ldv_53574; ldv_53573: { pipe_info = (struct ath10k_pci_pipe *)(& ar_pci->pipe_info) + (unsigned long )pipe_num; pipe_info->pipe_num = (u8 )pipe_num; pipe_info->hif_ce_state = ar; attr = (struct ce_attr const *)(& host_ce_config_wlan) + (unsigned long )pipe_num; pipe_info->ce_hdl = ath10k_ce_init(ar, (unsigned int )pipe_num, attr); } if ((unsigned long )pipe_info->ce_hdl == (unsigned long )((struct ath10k_ce_pipe *)0)) { { ath10k_err("failed to initialize CE for pipe: %d\n", pipe_num); ath10k_pci_ce_deinit(ar); } return (-1); } else { } if (pipe_num == 7) { ar_pci->ce_diag = pipe_info->ce_hdl; goto ldv_53572; } else { } pipe_info->buf_sz = (unsigned long )attr->src_sz_max; ldv_53572: pipe_num = pipe_num + 1; ldv_53574: ; if (pipe_num <= 7) { goto ldv_53573; } else { } return (0); } } static void ath10k_pci_fw_interrupt_handler(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; u32 fw_indicator_address ; u32 fw_indicator ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; ath10k_pci_wake(ar); fw_indicator_address = ar_pci->fw_indicator_address; fw_indicator = ath10k_pci_read32(ar, fw_indicator_address); } if ((int )fw_indicator & 1) { { ath10k_pci_write32(ar, fw_indicator_address, fw_indicator & 4294967294U); } if (ar_pci->started != 0) { { ath10k_pci_hif_dump_area(ar); } } else { { ath10k_warn("early firmware event indicated\n"); } } } else { } { ath10k_pci_sleep(ar); } return; } } static int ath10k_pci_hif_power_up(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; char const *irq_mode ; int ret ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; ret = ath10k_pci_device_reset(ar); } if (ret != 0) { { ath10k_err("failed to reset target: %d\n", ret); } goto err; } else { } { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& ar_pci->features)); } if (tmp___0 == 0) { { ath10k_do_pci_wake(ar); } } else { } { ret = ath10k_pci_ce_init(ar); } if (ret != 0) { { ath10k_err("failed to initialize CE: %d\n", ret); } goto err_ps; } else { } { ret = ath10k_ce_disable_interrupts(ar); } if (ret != 0) { { ath10k_err("failed to disable CE interrupts: %d\n", ret); } goto err_ce; } else { } { ret = ath10k_pci_init_irq(ar); } if (ret != 0) { { ath10k_err("failed to init irqs: %d\n", ret); } goto err_ce; } else { } { ret = ath10k_pci_request_early_irq(ar); } if (ret != 0) { { ath10k_err("failed to request early irq: %d\n", ret); } goto err_deinit_irq; } else { } { ret = ath10k_pci_wait_for_target_init(ar); } if (ret != 0) { { ath10k_err("failed to wait for target to init: %d\n", ret); } goto err_free_early_irq; } else { } { ret = ath10k_pci_init_config(ar); } if (ret != 0) { { ath10k_err("failed to setup init config: %d\n", ret); } goto err_free_early_irq; } else { } { ret = ath10k_pci_wake_target_cpu(ar); } if (ret != 0) { { ath10k_err("could not wake up target CPU: %d\n", ret); } goto err_free_early_irq; } else { } if (ar_pci->num_msi_intrs > 1) { irq_mode = "MSI-X"; } else if (ar_pci->num_msi_intrs == 1) { irq_mode = "MSI"; } else { irq_mode = "legacy"; } { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->dev_flags)); } if (tmp___1 == 0) { { ath10k_info("pci irq %s\n", irq_mode); } } else { } return (0); err_free_early_irq: { ath10k_pci_free_early_irq(ar); } err_deinit_irq: { ath10k_pci_deinit_irq(ar); } err_ce: { ath10k_pci_ce_deinit(ar); ath10k_pci_device_reset(ar); } err_ps: { tmp___2 = constant_test_bit(1L, (unsigned long const volatile *)(& ar_pci->features)); } if (tmp___2 == 0) { { ath10k_do_pci_sleep(ar); } } else { } err: ; return (ret); } } static void ath10k_pci_hif_power_down(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int tmp___0 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; ath10k_pci_free_early_irq(ar); ath10k_pci_kill_tasklet(ar); ath10k_pci_deinit_irq(ar); ath10k_pci_device_reset(ar); ath10k_pci_ce_deinit(ar); tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& ar_pci->features)); } if (tmp___0 == 0) { { ath10k_do_pci_sleep(ar); } } else { } return; } } static int ath10k_pci_hif_suspend(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; struct pci_dev *pdev ; u32 val ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; pdev = ar_pci->pdev; pci_read_config_dword((struct pci_dev const *)pdev, 68, & val); } if ((val & 255U) != 3U) { { pci_save_state(pdev); pci_disable_device(pdev); pci_write_config_dword((struct pci_dev const *)pdev, 68, (val & 4294967040U) | 3U); } } else { } return (0); } } static int ath10k_pci_hif_resume(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; struct pci_dev *pdev ; u32 val ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; pdev = ar_pci->pdev; pci_read_config_dword((struct pci_dev const *)pdev, 68, & val); } if ((val & 255U) != 0U) { { pci_restore_state(pdev); pci_write_config_dword((struct pci_dev const *)pdev, 68, val & 4294967040U); pci_read_config_dword((struct pci_dev const *)pdev, 64, & val); } if ((val & 65280U) != 0U) { { pci_write_config_dword((struct pci_dev const *)pdev, 64, val & 4294902015U); } } else { } } else { } return (0); } } static struct ath10k_hif_ops const ath10k_pci_hif_ops = {& ath10k_pci_hif_send_head, & ath10k_pci_hif_exchange_bmi_msg, & ath10k_pci_hif_start, & ath10k_pci_hif_stop, & ath10k_pci_hif_map_service_to_pipe, & ath10k_pci_hif_get_default_pipe, & ath10k_pci_hif_send_complete_check, & ath10k_pci_hif_set_callbacks, & ath10k_pci_hif_get_free_queue_number, & ath10k_pci_hif_power_up, & ath10k_pci_hif_power_down, & ath10k_pci_hif_suspend, & ath10k_pci_hif_resume}; static void ath10k_pci_ce_tasklet(unsigned long ptr ) { struct ath10k_pci_pipe *pipe ; struct ath10k_pci *ar_pci ; { { pipe = (struct ath10k_pci_pipe *)ptr; ar_pci = pipe->ar_pci; ath10k_ce_per_engine_service(ar_pci->ar, (unsigned int )pipe->pipe_num); } return; } } static void ath10k_msi_err_tasklet(unsigned long data ) { struct ath10k *ar ; { { ar = (struct ath10k *)data; ath10k_pci_fw_interrupt_handler(ar); } return; } } static irqreturn_t ath10k_pci_per_engine_handler(int irq , void *arg ) { struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int ce_id ; { { ar = (struct ath10k *)arg; tmp = ath10k_pci_priv(ar); ar_pci = tmp; ce_id = (int )(((unsigned int )irq - (ar_pci->pdev)->irq) - 1U); } if ((unsigned int )ce_id > 7U) { { ath10k_warn("unexpected/invalid irq %d ce_id %d\n", irq, ce_id); } return (1); } else { } { tasklet_schedule(& ar_pci->pipe_info[ce_id].intr); } return (1); } } static irqreturn_t ath10k_pci_msi_fw_handler(int irq , void *arg ) { struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; { { ar = (struct ath10k *)arg; tmp = ath10k_pci_priv(ar); ar_pci = tmp; tasklet_schedule(& ar_pci->msi_fw_err); } return (1); } } static irqreturn_t ath10k_pci_interrupt_handler(int irq , void *arg ) { struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; bool tmp___0 ; int tmp___1 ; { { ar = (struct ath10k *)arg; tmp = ath10k_pci_priv(ar); ar_pci = tmp; } if (ar_pci->num_msi_intrs == 0) { { tmp___0 = ath10k_pci_irq_pending(ar); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (0); } else { } { ath10k_pci_disable_and_clear_legacy_irq(ar); } } else { } { tasklet_schedule(& ar_pci->intr_tq); } return (1); } } static void ath10k_pci_early_irq_tasklet(unsigned long data ) { struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; u32 fw_ind ; int ret ; { { ar = (struct ath10k *)data; tmp = ath10k_pci_priv(ar); ar_pci = tmp; ret = ath10k_pci_wake(ar); } if (ret != 0) { { ath10k_warn("failed to wake target in early irq tasklet: %d\n", ret); } return; } else { } { fw_ind = ath10k_pci_read32(ar, ar_pci->fw_indicator_address); } if ((int )fw_ind & 1) { { ath10k_pci_write32(ar, ar_pci->fw_indicator_address, fw_ind & 4294967294U); ath10k_warn("device crashed - no diagnostics available\n"); } } else { } { ath10k_pci_sleep(ar); ath10k_pci_enable_legacy_irq(ar); } return; } } static void ath10k_pci_tasklet(unsigned long data ) { struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; { { ar = (struct ath10k *)data; tmp = ath10k_pci_priv(ar); ar_pci = tmp; ath10k_pci_fw_interrupt_handler(ar); ath10k_ce_per_engine_service_any(ar); } if (ar_pci->num_msi_intrs == 0) { { ath10k_pci_enable_legacy_irq(ar); } } else { } return; } } static int ath10k_pci_request_irq_msix(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int ret ; int i ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; ret = ldv_request_irq_107((ar_pci->pdev)->irq, & ath10k_pci_msi_fw_handler, 128UL, "ath10k_pci", (void *)ar); } if (ret != 0) { { ath10k_warn("failed to request MSI-X fw irq %d: %d\n", (ar_pci->pdev)->irq, ret); } return (ret); } else { } i = 1; goto ldv_53662; ldv_53661: { ret = ldv_request_irq_108((ar_pci->pdev)->irq + (unsigned int )i, & ath10k_pci_per_engine_handler, 128UL, "ath10k_pci", (void *)ar); } if (ret != 0) { { ath10k_warn("failed to request MSI-X ce irq %d: %d\n", (ar_pci->pdev)->irq + (unsigned int )i, ret); i = i - 1; } goto ldv_53659; ldv_53658: { ldv_free_irq_109((ar_pci->pdev)->irq + (unsigned int )i, (void *)ar); i = i - 1; } ldv_53659: ; if (i > 0) { goto ldv_53658; } else { } { ldv_free_irq_110((ar_pci->pdev)->irq, (void *)ar); } return (ret); } else { } i = i + 1; ldv_53662: ; if (i <= 7) { goto ldv_53661; } else { } return (0); } } static int ath10k_pci_request_irq_msi(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int ret ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; ret = ldv_request_irq_111((ar_pci->pdev)->irq, & ath10k_pci_interrupt_handler, 128UL, "ath10k_pci", (void *)ar); } if (ret != 0) { { ath10k_warn("failed to request MSI irq %d: %d\n", (ar_pci->pdev)->irq, ret); } return (ret); } else { } return (0); } } static int ath10k_pci_request_irq_legacy(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int ret ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; ret = ldv_request_irq_112((ar_pci->pdev)->irq, & ath10k_pci_interrupt_handler, 128UL, "ath10k_pci", (void *)ar); } if (ret != 0) { { ath10k_warn("failed to request legacy irq %d: %d\n", (ar_pci->pdev)->irq, ret); } return (ret); } else { } return (0); } } static int ath10k_pci_request_irq(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; } { if (ar_pci->num_msi_intrs == 0) { goto case_0; } else { } if (ar_pci->num_msi_intrs == 1) { goto case_1; } else { } if (ar_pci->num_msi_intrs == 8) { goto case_8; } else { } goto switch_break; case_0: /* CIL Label */ { tmp___0 = ath10k_pci_request_irq_legacy(ar); } return (tmp___0); case_1: /* CIL Label */ { tmp___1 = ath10k_pci_request_irq_msi(ar); } return (tmp___1); case_8: /* CIL Label */ { tmp___2 = ath10k_pci_request_irq_msix(ar); } return (tmp___2); switch_break: /* CIL Label */ ; } { ath10k_warn("unknown irq configuration upon request\n"); } return (-22); } } static void ath10k_pci_free_irq(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int i ; int _max1 ; int _max2 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; i = 0; } goto ldv_53690; ldv_53689: { ldv_free_irq_113((ar_pci->pdev)->irq + (unsigned int )i, (void *)ar); i = i + 1; } ldv_53690: _max1 = 1; _max2 = ar_pci->num_msi_intrs; if (i < (_max1 > _max2 ? _max1 : _max2)) { goto ldv_53689; } else { } return; } } static void ath10k_pci_init_irq_tasklets(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int i ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; tasklet_init(& ar_pci->intr_tq, & ath10k_pci_tasklet, (unsigned long )ar); tasklet_init(& ar_pci->msi_fw_err, & ath10k_msi_err_tasklet, (unsigned long )ar); tasklet_init(& ar_pci->early_irq_tasklet, & ath10k_pci_early_irq_tasklet, (unsigned long )ar); i = 0; } goto ldv_53698; ldv_53697: { ar_pci->pipe_info[i].ar_pci = ar_pci; tasklet_init(& ar_pci->pipe_info[i].intr, & ath10k_pci_ce_tasklet, (unsigned long )((struct ath10k_pci_pipe *)(& ar_pci->pipe_info) + (unsigned long )i)); i = i + 1; } ldv_53698: ; if (i <= 7) { goto ldv_53697; } else { } return; } } static int ath10k_pci_init_irq(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; bool msix_supported ; int tmp___0 ; int ret ; int tmp___1 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; tmp___0 = constant_test_bit(0L, (unsigned long const volatile *)(& ar_pci->features)); msix_supported = tmp___0 != 0; ath10k_pci_init_irq_tasklets(ar); } if (ath10k_pci_irq_mode != 0U) { { tmp___1 = constant_test_bit(1L, (unsigned long const volatile *)(& ar->dev_flags)); } if (tmp___1 == 0) { { ath10k_info("limiting irq mode to: %d\n", ath10k_pci_irq_mode); } } else { } } else { } if (ath10k_pci_irq_mode == 0U && (int )msix_supported) { { ar_pci->num_msi_intrs = 8; ret = pci_enable_msi_block(ar_pci->pdev, ar_pci->num_msi_intrs); } if (ret == 0) { return (0); } else { } if (ret > 0) { { pci_disable_msi(ar_pci->pdev); } } else { } } else { } if (ath10k_pci_irq_mode != 1U) { { ar_pci->num_msi_intrs = 1; ret = pci_enable_msi_block(ar_pci->pdev, 1); } if (ret == 0) { return (0); } else { } } else { } { ar_pci->num_msi_intrs = 0; ret = ath10k_pci_wake(ar); } if (ret != 0) { { ath10k_warn("failed to wake target: %d\n", ret); } return (ret); } else { } { ath10k_pci_write32(ar, 36872U, 523264U); ath10k_pci_sleep(ar); } return (0); } } static int ath10k_pci_deinit_irq_legacy(struct ath10k *ar ) { int ret ; { { ret = ath10k_pci_wake(ar); } if (ret != 0) { { ath10k_warn("failed to wake target: %d\n", ret); } return (ret); } else { } { ath10k_pci_write32(ar, 36872U, 0U); ath10k_pci_sleep(ar); } return (0); } } static int ath10k_pci_deinit_irq(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int tmp___0 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; } { if (ar_pci->num_msi_intrs == 0) { goto case_0; } else { } if (ar_pci->num_msi_intrs == 1) { goto case_1; } else { } if (ar_pci->num_msi_intrs == 8) { goto case_8; } else { } goto switch_break; case_0: /* CIL Label */ { tmp___0 = ath10k_pci_deinit_irq_legacy(ar); } return (tmp___0); case_1: /* CIL Label */ ; case_8: /* CIL Label */ { pci_disable_msi(ar_pci->pdev); } return (0); switch_break: /* CIL Label */ ; } { ath10k_warn("unknown irq configuration upon deinit\n"); } return (-22); } } static int ath10k_pci_wait_for_target_init(struct ath10k *ar ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int wait_limit ; int ret ; unsigned long __ms ; unsigned long tmp___0 ; int tmp___1 ; unsigned int tmp___2 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; wait_limit = 300; ret = ath10k_pci_wake(ar); } if (ret != 0) { { ath10k_err("failed to wake up target: %d\n", ret); } return (ret); } else { } goto ldv_53728; ldv_53727: ; if (ar_pci->num_msi_intrs == 0) { { iowrite32(523264U, ar_pci->mem + 36872UL); } } else { } __ms = 10UL; goto ldv_53725; ldv_53724: { __const_udelay(4295000UL); } ldv_53725: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_53724; } else { } ldv_53728: tmp___1 = wait_limit; wait_limit = wait_limit - 1; if (tmp___1 != 0) { { tmp___2 = ioread32(ar_pci->mem + 36912UL); } if ((tmp___2 & 2U) == 0U) { goto ldv_53727; } else { goto ldv_53729; } } else { } ldv_53729: ; if (wait_limit < 0) { { ath10k_err("target stalled\n"); ret = -5; } goto out; } else { } out: { ath10k_pci_sleep(ar); } return (ret); } } static int ath10k_pci_device_reset(struct ath10k *ar ) { int i ; int ret ; u32 val ; u32 tmp ; u32 tmp___0 ; { { ret = ath10k_do_pci_wake(ar); } if (ret != 0) { { ath10k_err("failed to wake up target: %d\n", ret); } return (ret); } else { } { val = ath10k_pci_reg_read32(ar, 8U); val = val | 1U; ath10k_pci_reg_write32(ar, 8U, val); i = 0; } goto ldv_53739; ldv_53738: { tmp = ath10k_pci_reg_read32(ar, 0U); } if ((tmp & 1024U) != 0U) { goto ldv_53737; } else { } { msleep(1U); i = i + 1; } ldv_53739: ; if (i <= 9) { goto ldv_53738; } else { } ldv_53737: { val = val & 4294967294U; ath10k_pci_reg_write32(ar, 8U, val); i = 0; } goto ldv_53742; ldv_53741: { tmp___0 = ath10k_pci_reg_read32(ar, 0U); } if ((tmp___0 & 1024U) == 0U) { goto ldv_53740; } else { } { msleep(1U); i = i + 1; } ldv_53742: ; if (i <= 9) { goto ldv_53741; } else { } ldv_53740: { ath10k_do_pci_sleep(ar); } return (0); } } static void ath10k_pci_dump_features(struct ath10k_pci *ar_pci ) { int i ; int tmp___0 ; { i = 0; goto ldv_53752; ldv_53751: { tmp___0 = variable_test_bit((long )i, (unsigned long const volatile *)(& ar_pci->features)); } if (tmp___0 == 0) { goto ldv_53747; } else { } { if (i == 0) { goto case_0; } else { } if (i == 1) { goto case_1; } else { } goto switch_break; case_0: /* CIL Label */ { ath10k_dbg(32, "device supports MSI-X\n"); } goto ldv_53749; case_1: /* CIL Label */ { ath10k_dbg(32, "QCA98XX SoC power save enabled\n"); } goto ldv_53749; switch_break: /* CIL Label */ ; } ldv_53749: ; ldv_53747: i = i + 1; ldv_53752: ; if (i <= 1) { goto ldv_53751; } else { } return; } } static int ath10k_pci_probe(struct pci_dev *pdev , struct pci_device_id const *pci_dev ) { void *mem ; int ret ; struct ath10k *ar ; struct ath10k_pci *ar_pci ; u32 lcr_val ; u32 chip_id ; void *tmp ; struct lock_class_key __key ; { { ret = 0; ath10k_dbg(1, "%s\n", "ath10k_pci_probe"); tmp = kzalloc(2240UL, 208U); ar_pci = (struct ath10k_pci *)tmp; } if ((unsigned long )ar_pci == (unsigned long )((struct ath10k_pci *)0)) { return (-12); } else { } ar_pci->pdev = pdev; ar_pci->dev = & pdev->dev; { if (pci_dev->device == 60U) { goto case_60; } else { } goto switch_default; case_60: /* CIL Label */ { set_bit(0L, (unsigned long volatile *)(& ar_pci->features)); } goto ldv_53766; switch_default: /* CIL Label */ { ret = -19; ath10k_err("Unknown device ID: %d\n", pci_dev->device); } goto err_ar_pci; switch_break: /* CIL Label */ ; } ldv_53766: ; if (ath10k_target_ps != 0U) { { set_bit(1L, (unsigned long volatile *)(& ar_pci->features)); } } else { } { ath10k_pci_dump_features(ar_pci); ar = ath10k_core_create((void *)ar_pci, ar_pci->dev, & ath10k_pci_hif_ops); } if ((unsigned long )ar == (unsigned long )((struct ath10k *)0)) { { ath10k_err("failed to create driver core\n"); ret = -22; } goto err_ar_pci; } else { } { ar_pci->ar = ar; ar_pci->fw_indicator_address = 36912U; atomic_set(& ar_pci->keep_awake_count, 0); pci_set_drvdata(pdev, (void *)ar); ret = pci_assign_resource(pdev, 0); } if (ret != 0) { { ath10k_err("failed to assign PCI space: %d\n", ret); } goto err_ar; } else { } { ret = pci_enable_device(pdev); } if (ret != 0) { { ath10k_err("failed to enable PCI device: %d\n", ret); } goto err_ar; } else { } { ret = pci_request_region(pdev, 0, "ath"); } if (ret != 0) { { ath10k_err("failed to request MMIO region: %d\n", ret); } goto err_device; } else { } { ret = pci_set_dma_mask(pdev, 4294967295ULL); } if (ret != 0) { { ath10k_err("failed to set DMA mask to 32-bit: %d\n", ret); } goto err_region; } else { } { ret = pci_set_consistent_dma_mask(pdev, 4294967295ULL); } if (ret != 0) { { ath10k_err("failed to set consistent DMA mask to 32-bit\n"); } goto err_region; } else { } { pci_set_master(pdev); pci_read_config_dword((struct pci_dev const *)pdev, 128, & lcr_val); pci_write_config_dword((struct pci_dev const *)pdev, 128, lcr_val & 4294967040U); mem = pci_iomap(pdev, 0, 0UL); } if ((unsigned long )mem == (unsigned long )((void *)0)) { { ath10k_err("failed to perform IOMAP for BAR%d\n", 0); ret = -5; } goto err_master; } else { } { ar_pci->mem = mem; spinlock_check(& ar_pci->ce_lock); __raw_spin_lock_init(& ar_pci->ce_lock.__annonCompField19.rlock, "&(&ar_pci->ce_lock)->rlock", & __key); ret = ath10k_do_pci_wake(ar); } if (ret != 0) { { ath10k_err("Failed to get chip id: %d\n", ret); } goto err_iomap; } else { } { chip_id = ath10k_pci_soc_read32(ar, 236U); ath10k_do_pci_sleep(ar); ath10k_dbg(32, "boot pci_mem 0x%p\n", ar_pci->mem); ret = ath10k_core_register(ar, chip_id); } if (ret != 0) { { ath10k_err("failed to register driver core: %d\n", ret); } goto err_iomap; } else { } return (0); err_iomap: { pci_iounmap(pdev, mem); } err_master: { pci_clear_master(pdev); } err_region: { pci_release_region(pdev, 0); } err_device: { pci_disable_device(pdev); } err_ar: { ath10k_core_destroy(ar); } err_ar_pci: { kfree((void const *)ar_pci); } return (ret); } } static void ath10k_pci_remove(struct pci_dev *pdev ) { struct ath10k *ar ; void *tmp ; struct ath10k_pci *ar_pci ; { { tmp = pci_get_drvdata(pdev); ar = (struct ath10k *)tmp; ath10k_dbg(1, "%s\n", "ath10k_pci_remove"); } if ((unsigned long )ar == (unsigned long )((struct ath10k *)0)) { return; } else { } { ar_pci = ath10k_pci_priv(ar); } if ((unsigned long )ar_pci == (unsigned long )((struct ath10k_pci *)0)) { return; } else { } { tasklet_kill(& ar_pci->msi_fw_err); ath10k_core_unregister(ar); pci_iounmap(pdev, ar_pci->mem); pci_release_region(pdev, 0); pci_clear_master(pdev); pci_disable_device(pdev); ath10k_core_destroy(ar); kfree((void const *)ar_pci); } return; } } struct pci_device_id const __mod_pci_device_table ; static struct pci_driver ath10k_pci_driver = {{0, 0}, "ath10k_pci", (struct pci_device_id const *)(& ath10k_pci_id_table), & ath10k_pci_probe, & ath10k_pci_remove, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int ath10k_pci_init(void) { int ret ; { { ret = ldv___pci_register_driver_114(& ath10k_pci_driver, & __this_module, "ath10k_pci"); } if (ret != 0) { { ath10k_err("failed to register PCI driver: %d\n", ret); } } else { } return (ret); } } static void ath10k_pci_exit(void) { { { ldv_pci_unregister_driver_115(& ath10k_pci_driver); } return; } } void ldv_EMGentry_exit_ath10k_pci_exit_13_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_ath10k_pci_init_13_9(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_allocate_external_0(void) ; void ldv_base_instance_callback_5_24(void (*arg0)(struct ath10k * , unsigned char * , unsigned char * ) , struct ath10k *arg1 , unsigned char *arg2 , unsigned char *arg3 ) ; void ldv_base_instance_callback_5_27(unsigned short (*arg0)(struct ath10k * , unsigned char ) , struct ath10k *arg1 , unsigned char arg2 ) ; void ldv_base_instance_callback_5_30(int (*arg0)(struct ath10k * , unsigned short , unsigned char * , unsigned char * , int * , int * ) , struct ath10k *arg1 , unsigned short arg2 , unsigned char *arg3 , unsigned char *arg4 , int *arg5 , int *arg6 ) ; void ldv_base_instance_callback_5_33(void (*arg0)(struct ath10k * ) , struct ath10k *arg1 ) ; void ldv_base_instance_callback_5_34(int (*arg0)(struct ath10k * ) , struct ath10k *arg1 ) ; void ldv_base_instance_callback_5_35(void (*arg0)(struct ath10k * , unsigned char , int ) , struct ath10k *arg1 , unsigned char arg2 , int arg3 ) ; void ldv_base_instance_callback_5_38(int (*arg0)(struct ath10k * , unsigned char , unsigned int , unsigned int , struct sk_buff * ) , struct ath10k *arg1 , unsigned char arg2 , unsigned int arg3 , unsigned int arg4 , struct sk_buff *arg5 ) ; void ldv_base_instance_callback_5_41(void (*arg0)(struct ath10k * , struct ath10k_hif_cb * ) , struct ath10k *arg1 , struct ath10k_hif_cb *arg2 ) ; void ldv_base_instance_callback_5_9(int (*arg0)(struct ath10k * , void * , unsigned int , void * , unsigned int * ) , struct ath10k *arg1 , void *arg2 , unsigned int arg3 , void *arg4 , unsigned int *arg5 ) ; int ldv_base_instance_probe_5_16(int (*arg0)(struct ath10k * ) , struct ath10k *arg1 ) ; void ldv_base_instance_release_5_2(void (*arg0)(struct ath10k * ) , struct ath10k *arg1 ) ; void ldv_base_instance_resume_5_5(int (*arg0)(struct ath10k * ) , struct ath10k *arg1 ) ; int ldv_base_instance_suspend_5_7(int (*arg0)(struct ath10k * ) , struct ath10k *arg1 ) ; void ldv_dispatch_deregister_11_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_base_instance_7_13_4(void) ; void ldv_dispatch_irq_deregister_6_1(int arg0 ) ; void ldv_dispatch_irq_register_10_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_7_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_8_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_9_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_12_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_base_instance_7_13_5(void) ; void ldv_entry_EMGentry_13(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_initialize_external_data(void) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_2_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_3_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_2_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_3_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_interrupt_interrupt_instance_1(void *arg0 ) ; void ldv_interrupt_interrupt_instance_2(void *arg0 ) ; void ldv_interrupt_interrupt_instance_3(void *arg0 ) ; int ldv_pci_instance_probe_4_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_4_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_4_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_4_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_4_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_4_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_4_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_4(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_struct_ath10k_hif_ops_base_instance_5(void *arg0 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; int ldv_switch_2(void) ; void ldv_switch_automaton_state_0_1(void) ; void ldv_switch_automaton_state_0_6(void) ; void ldv_switch_automaton_state_1_1(void) ; void ldv_switch_automaton_state_1_6(void) ; void ldv_switch_automaton_state_2_1(void) ; void ldv_switch_automaton_state_2_6(void) ; void ldv_switch_automaton_state_3_1(void) ; void ldv_switch_automaton_state_3_6(void) ; void ldv_switch_automaton_state_4_11(void) ; void ldv_switch_automaton_state_4_20(void) ; void ldv_switch_automaton_state_5_10(void) ; void ldv_switch_automaton_state_5_19(void) ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; void (*ldv_13_exit_ath10k_pci_exit_default)(void) ; int (*ldv_13_init_ath10k_pci_init_default)(void) ; int ldv_13_ret_default ; enum irqreturn (*ldv_1_callback_handler)(int , void * ) ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; enum irqreturn (*ldv_2_callback_handler)(int , void * ) ; void *ldv_2_data_data ; int ldv_2_line_line ; enum irqreturn ldv_2_ret_val_default ; enum irqreturn (*ldv_2_thread_thread)(int , void * ) ; enum irqreturn (*ldv_3_callback_handler)(int , void * ) ; void *ldv_3_data_data ; int ldv_3_line_line ; enum irqreturn ldv_3_ret_val_default ; enum irqreturn (*ldv_3_thread_thread)(int , void * ) ; struct pci_driver *ldv_4_container_pci_driver ; struct pci_dev *ldv_4_resource_dev ; struct pm_message ldv_4_resource_pm_message ; struct pci_device_id *ldv_4_resource_struct_pci_device_id_ptr ; int ldv_4_ret_default ; int (*ldv_5_callback_exchange_bmi_msg)(struct ath10k * , void * , unsigned int , void * , unsigned int * ) ; void (*ldv_5_callback_get_default_pipe)(struct ath10k * , unsigned char * , unsigned char * ) ; unsigned short (*ldv_5_callback_get_free_queue_number)(struct ath10k * , unsigned char ) ; int (*ldv_5_callback_map_service_to_pipe)(struct ath10k * , unsigned short , unsigned char * , unsigned char * , int * , int * ) ; void (*ldv_5_callback_power_down)(struct ath10k * ) ; int (*ldv_5_callback_power_up)(struct ath10k * ) ; void (*ldv_5_callback_send_complete_check)(struct ath10k * , unsigned char , int ) ; int (*ldv_5_callback_send_head)(struct ath10k * , unsigned char , unsigned int , unsigned int , struct sk_buff * ) ; void (*ldv_5_callback_set_callbacks)(struct ath10k * , struct ath10k_hif_cb * ) ; struct ath10k_hif_ops *ldv_5_container_struct_ath10k_hif_ops ; unsigned char *ldv_5_ldv_param_24_1_default ; unsigned char *ldv_5_ldv_param_24_2_default ; unsigned char ldv_5_ldv_param_27_1_default ; unsigned short ldv_5_ldv_param_30_1_default ; unsigned char *ldv_5_ldv_param_30_2_default ; unsigned char *ldv_5_ldv_param_30_3_default ; int *ldv_5_ldv_param_30_4_default ; int *ldv_5_ldv_param_30_5_default ; unsigned char ldv_5_ldv_param_35_1_default ; int ldv_5_ldv_param_35_2_default ; unsigned char ldv_5_ldv_param_38_1_default ; unsigned int ldv_5_ldv_param_38_2_default ; unsigned int ldv_5_ldv_param_38_3_default ; unsigned int ldv_5_ldv_param_9_2_default ; unsigned int *ldv_5_ldv_param_9_4_default ; struct ath10k_hif_cb *ldv_5_resource_struct_ath10k_hif_cb_ptr ; struct ath10k *ldv_5_resource_struct_ath10k_ptr ; struct sk_buff *ldv_5_resource_struct_sk_buff_ptr ; int ldv_5_ret_default ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_13 ; int ldv_statevar_2 ; int ldv_statevar_3 ; int ldv_statevar_4 ; int ldv_statevar_5 ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) = & ath10k_pci_early_irq_handler; void (*ldv_13_exit_ath10k_pci_exit_default)(void) = & ath10k_pci_exit; int (*ldv_13_init_ath10k_pci_init_default)(void) = & ath10k_pci_init; enum irqreturn (*ldv_1_callback_handler)(int , void * ) = & ath10k_pci_interrupt_handler; enum irqreturn (*ldv_2_callback_handler)(int , void * ) = & ath10k_pci_msi_fw_handler; enum irqreturn (*ldv_3_callback_handler)(int , void * ) = & ath10k_pci_per_engine_handler; int (*ldv_5_callback_exchange_bmi_msg)(struct ath10k * , void * , unsigned int , void * , unsigned int * ) = & ath10k_pci_hif_exchange_bmi_msg; void (*ldv_5_callback_get_default_pipe)(struct ath10k * , unsigned char * , unsigned char * ) = & ath10k_pci_hif_get_default_pipe; unsigned short (*ldv_5_callback_get_free_queue_number)(struct ath10k * , unsigned char ) = & ath10k_pci_hif_get_free_queue_number; int (*ldv_5_callback_map_service_to_pipe)(struct ath10k * , unsigned short , unsigned char * , unsigned char * , int * , int * ) = & ath10k_pci_hif_map_service_to_pipe; void (*ldv_5_callback_power_down)(struct ath10k * ) = & ath10k_pci_hif_power_down; int (*ldv_5_callback_power_up)(struct ath10k * ) = & ath10k_pci_hif_power_up; void (*ldv_5_callback_send_complete_check)(struct ath10k * , unsigned char , int ) = & ath10k_pci_hif_send_complete_check; int (*ldv_5_callback_send_head)(struct ath10k * , unsigned char , unsigned int , unsigned int , struct sk_buff * ) = & ath10k_pci_hif_send_head; void (*ldv_5_callback_set_callbacks)(struct ath10k * , struct ath10k_hif_cb * ) = & ath10k_pci_hif_set_callbacks; void ldv_EMGentry_exit_ath10k_pci_exit_13_2(void (*arg0)(void) ) { { { ath10k_pci_exit(); } return; } } int ldv_EMGentry_init_ath10k_pci_init_13_9(int (*arg0)(void) ) { int tmp ; { { tmp = ath10k_pci_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_12_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_12_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_4 == 20); ldv_dispatch_register_12_2(ldv_12_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_allocate_external_0(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; void *tmp___13 ; { { ldv_0_data_data = external_allocated_data(); tmp = external_allocated_data(); ldv_0_thread_thread = (enum irqreturn (*)(int , void * ))tmp; ldv_1_data_data = external_allocated_data(); tmp___0 = external_allocated_data(); ldv_1_thread_thread = (enum irqreturn (*)(int , void * ))tmp___0; ldv_2_data_data = external_allocated_data(); tmp___1 = external_allocated_data(); ldv_2_thread_thread = (enum irqreturn (*)(int , void * ))tmp___1; ldv_3_data_data = external_allocated_data(); tmp___2 = external_allocated_data(); ldv_3_thread_thread = (enum irqreturn (*)(int , void * ))tmp___2; tmp___3 = external_allocated_data(); ldv_4_resource_dev = (struct pci_dev *)tmp___3; tmp___4 = external_allocated_data(); ldv_5_ldv_param_24_1_default = (unsigned char *)tmp___4; tmp___5 = external_allocated_data(); ldv_5_ldv_param_24_2_default = (unsigned char *)tmp___5; tmp___6 = external_allocated_data(); ldv_5_ldv_param_30_2_default = (unsigned char *)tmp___6; tmp___7 = external_allocated_data(); ldv_5_ldv_param_30_3_default = (unsigned char *)tmp___7; tmp___8 = external_allocated_data(); ldv_5_ldv_param_30_4_default = (int *)tmp___8; tmp___9 = external_allocated_data(); ldv_5_ldv_param_30_5_default = (int *)tmp___9; tmp___10 = external_allocated_data(); ldv_5_ldv_param_9_4_default = (unsigned int *)tmp___10; tmp___11 = external_allocated_data(); ldv_5_resource_struct_ath10k_hif_cb_ptr = (struct ath10k_hif_cb *)tmp___11; tmp___12 = external_allocated_data(); ldv_5_resource_struct_ath10k_ptr = (struct ath10k *)tmp___12; tmp___13 = external_allocated_data(); ldv_5_resource_struct_sk_buff_ptr = (struct sk_buff *)tmp___13; } return; } } void ldv_base_instance_callback_5_24(void (*arg0)(struct ath10k * , unsigned char * , unsigned char * ) , struct ath10k *arg1 , unsigned char *arg2 , unsigned char *arg3 ) { { { ath10k_pci_hif_get_default_pipe(arg1, arg2, arg3); } return; } } void ldv_base_instance_callback_5_27(unsigned short (*arg0)(struct ath10k * , unsigned char ) , struct ath10k *arg1 , unsigned char arg2 ) { { { ath10k_pci_hif_get_free_queue_number(arg1, (int )arg2); } return; } } void ldv_base_instance_callback_5_30(int (*arg0)(struct ath10k * , unsigned short , unsigned char * , unsigned char * , int * , int * ) , struct ath10k *arg1 , unsigned short arg2 , unsigned char *arg3 , unsigned char *arg4 , int *arg5 , int *arg6 ) { { { ath10k_pci_hif_map_service_to_pipe(arg1, (int )arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_base_instance_callback_5_33(void (*arg0)(struct ath10k * ) , struct ath10k *arg1 ) { { { ath10k_pci_hif_power_down(arg1); } return; } } void ldv_base_instance_callback_5_34(int (*arg0)(struct ath10k * ) , struct ath10k *arg1 ) { { { ath10k_pci_hif_power_up(arg1); } return; } } void ldv_base_instance_callback_5_35(void (*arg0)(struct ath10k * , unsigned char , int ) , struct ath10k *arg1 , unsigned char arg2 , int arg3 ) { { { ath10k_pci_hif_send_complete_check(arg1, (int )arg2, arg3); } return; } } void ldv_base_instance_callback_5_38(int (*arg0)(struct ath10k * , unsigned char , unsigned int , unsigned int , struct sk_buff * ) , struct ath10k *arg1 , unsigned char arg2 , unsigned int arg3 , unsigned int arg4 , struct sk_buff *arg5 ) { { { ath10k_pci_hif_send_head(arg1, (int )arg2, arg3, arg4, arg5); } return; } } void ldv_base_instance_callback_5_41(void (*arg0)(struct ath10k * , struct ath10k_hif_cb * ) , struct ath10k *arg1 , struct ath10k_hif_cb *arg2 ) { { { ath10k_pci_hif_set_callbacks(arg1, arg2); } return; } } void ldv_base_instance_callback_5_9(int (*arg0)(struct ath10k * , void * , unsigned int , void * , unsigned int * ) , struct ath10k *arg1 , void *arg2 , unsigned int arg3 , void *arg4 , unsigned int *arg5 ) { { { ath10k_pci_hif_exchange_bmi_msg(arg1, arg2, arg3, arg4, arg5); } return; } } int ldv_base_instance_probe_5_16(int (*arg0)(struct ath10k * ) , struct ath10k *arg1 ) { int tmp ; { { tmp = ath10k_pci_hif_start(arg1); } return (tmp); } } void ldv_base_instance_release_5_2(void (*arg0)(struct ath10k * ) , struct ath10k *arg1 ) { { { ath10k_pci_hif_stop(arg1); } return; } } void ldv_base_instance_resume_5_5(int (*arg0)(struct ath10k * ) , struct ath10k *arg1 ) { { { ath10k_pci_hif_resume(arg1); } return; } } int ldv_base_instance_suspend_5_7(int (*arg0)(struct ath10k * ) , struct ath10k *arg1 ) { int tmp ; { { tmp = ath10k_pci_hif_suspend(arg1); } return (tmp); } } void ldv_dispatch_deregister_11_1(struct pci_driver *arg0 ) { { { ldv_4_container_pci_driver = arg0; ldv_switch_automaton_state_4_11(); } return; } } void ldv_dispatch_deregister_base_instance_7_13_4(void) { { { ldv_switch_automaton_state_5_10(); } return; } } void ldv_dispatch_irq_deregister_6_1(int arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_0_line_line = arg0; ldv_switch_automaton_state_0_1(); } goto ldv_54396; case_1: /* CIL Label */ { ldv_1_line_line = arg0; ldv_switch_automaton_state_1_1(); } goto ldv_54396; case_2: /* CIL Label */ { ldv_2_line_line = arg0; ldv_switch_automaton_state_2_1(); } goto ldv_54396; case_3: /* CIL Label */ { ldv_3_line_line = arg0; ldv_switch_automaton_state_3_1(); } goto ldv_54396; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_54396: ; return; } } void ldv_dispatch_irq_register_10_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } goto ldv_54413; case_1: /* CIL Label */ { ldv_1_line_line = arg0; ldv_1_callback_handler = arg1; ldv_1_thread_thread = arg2; ldv_1_data_data = arg3; ldv_switch_automaton_state_1_6(); } goto ldv_54413; case_2: /* CIL Label */ { ldv_2_line_line = arg0; ldv_2_callback_handler = arg1; ldv_2_thread_thread = arg2; ldv_2_data_data = arg3; ldv_switch_automaton_state_2_6(); } goto ldv_54413; case_3: /* CIL Label */ { ldv_3_line_line = arg0; ldv_3_callback_handler = arg1; ldv_3_thread_thread = arg2; ldv_3_data_data = arg3; ldv_switch_automaton_state_3_6(); } goto ldv_54413; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_54413: ; return; } } void ldv_dispatch_irq_register_7_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } goto ldv_54430; case_1: /* CIL Label */ { ldv_1_line_line = arg0; ldv_1_callback_handler = arg1; ldv_1_thread_thread = arg2; ldv_1_data_data = arg3; ldv_switch_automaton_state_1_6(); } goto ldv_54430; case_2: /* CIL Label */ { ldv_2_line_line = arg0; ldv_2_callback_handler = arg1; ldv_2_thread_thread = arg2; ldv_2_data_data = arg3; ldv_switch_automaton_state_2_6(); } goto ldv_54430; case_3: /* CIL Label */ { ldv_3_line_line = arg0; ldv_3_callback_handler = arg1; ldv_3_thread_thread = arg2; ldv_3_data_data = arg3; ldv_switch_automaton_state_3_6(); } goto ldv_54430; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_54430: ; return; } } void ldv_dispatch_irq_register_8_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } goto ldv_54447; case_1: /* CIL Label */ { ldv_1_line_line = arg0; ldv_1_callback_handler = arg1; ldv_1_thread_thread = arg2; ldv_1_data_data = arg3; ldv_switch_automaton_state_1_6(); } goto ldv_54447; case_2: /* CIL Label */ { ldv_2_line_line = arg0; ldv_2_callback_handler = arg1; ldv_2_thread_thread = arg2; ldv_2_data_data = arg3; ldv_switch_automaton_state_2_6(); } goto ldv_54447; case_3: /* CIL Label */ { ldv_3_line_line = arg0; ldv_3_callback_handler = arg1; ldv_3_thread_thread = arg2; ldv_3_data_data = arg3; ldv_switch_automaton_state_3_6(); } goto ldv_54447; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_54447: ; return; } } void ldv_dispatch_irq_register_9_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } goto ldv_54464; case_1: /* CIL Label */ { ldv_1_line_line = arg0; ldv_1_callback_handler = arg1; ldv_1_thread_thread = arg2; ldv_1_data_data = arg3; ldv_switch_automaton_state_1_6(); } goto ldv_54464; case_2: /* CIL Label */ { ldv_2_line_line = arg0; ldv_2_callback_handler = arg1; ldv_2_thread_thread = arg2; ldv_2_data_data = arg3; ldv_switch_automaton_state_2_6(); } goto ldv_54464; case_3: /* CIL Label */ { ldv_3_line_line = arg0; ldv_3_callback_handler = arg1; ldv_3_thread_thread = arg2; ldv_3_data_data = arg3; ldv_switch_automaton_state_3_6(); } goto ldv_54464; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_54464: ; return; } } void ldv_dispatch_register_12_2(struct pci_driver *arg0 ) { { { ldv_4_container_pci_driver = arg0; ldv_switch_automaton_state_4_20(); } return; } } void ldv_dispatch_register_base_instance_7_13_5(void) { { { ldv_switch_automaton_state_5_19(); } return; } } void ldv_entry_EMGentry_13(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_13 == 2) { goto case_2; } else { } if (ldv_statevar_13 == 3) { goto case_3; } else { } if (ldv_statevar_13 == 4) { goto case_4; } else { } if (ldv_statevar_13 == 5) { goto case_5; } else { } if (ldv_statevar_13 == 6) { goto case_6; } else { } if (ldv_statevar_13 == 8) { goto case_8; } else { } if (ldv_statevar_13 == 9) { goto case_9; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 12); ldv_EMGentry_exit_ath10k_pci_exit_13_2(ldv_13_exit_ath10k_pci_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_13 = 9; } goto ldv_54480; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 12); ldv_EMGentry_exit_ath10k_pci_exit_13_2(ldv_13_exit_ath10k_pci_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_13 = 9; } goto ldv_54480; case_4: /* CIL Label */ { ldv_assume(ldv_statevar_5 == 11); ldv_dispatch_deregister_base_instance_7_13_4(); ldv_statevar_13 = 2; } goto ldv_54480; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_5 == 19); ldv_dispatch_register_base_instance_7_13_5(); ldv_statevar_13 = 4; } goto ldv_54480; case_6: /* CIL Label */ { ldv_assume(ldv_13_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_13 = 3; } else { ldv_statevar_13 = 5; } goto ldv_54480; case_8: /* CIL Label */ { ldv_assume(ldv_13_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_13 = 9; } goto ldv_54480; case_9: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 20); ldv_13_ret_default = ldv_EMGentry_init_ath10k_pci_init_13_9(ldv_13_init_ath10k_pci_init_default); ldv_13_ret_default = ldv_post_init(ldv_13_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_13 = 6; } else { ldv_statevar_13 = 8; } goto ldv_54480; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54480: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_13 = 9; ldv_statevar_0 = 6; ldv_statevar_1 = 6; ldv_statevar_2 = 6; ldv_statevar_3 = 6; ldv_4_ret_default = 1; ldv_statevar_4 = 20; ldv_5_ret_default = 1; ldv_statevar_5 = 19; } ldv_54499: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_13((void *)0); } goto ldv_54491; case_1: /* CIL Label */ { ldv_interrupt_interrupt_instance_0((void *)0); } goto ldv_54491; case_2: /* CIL Label */ { ldv_interrupt_interrupt_instance_1((void *)0); } goto ldv_54491; case_3: /* CIL Label */ { ldv_interrupt_interrupt_instance_2((void *)0); } goto ldv_54491; case_4: /* CIL Label */ { ldv_interrupt_interrupt_instance_3((void *)0); } goto ldv_54491; case_5: /* CIL Label */ { ldv_pci_pci_instance_4((void *)0); } goto ldv_54491; case_6: /* CIL Label */ { ldv_struct_ath10k_hif_ops_base_instance_5((void *)0); } goto ldv_54491; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_54491: ; goto ldv_54499; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_6_line_line ; { { ldv_6_line_line = arg1; ldv_assume(((ldv_statevar_0 == 2 || ldv_statevar_1 == 2) || ldv_statevar_2 == 2) || ldv_statevar_3 == 2); ldv_dispatch_irq_deregister_6_1(ldv_6_line_line); } return; return; } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = ath10k_pci_early_irq_handler(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = ath10k_pci_interrupt_handler(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_2_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = ath10k_pci_msi_fw_handler(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_3_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = ath10k_pci_per_engine_handler(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_2_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_3_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { int tmp ; { { if (ldv_statevar_0 == 2) { goto case_2; } else { } if (ldv_statevar_0 == 4) { goto case_4; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); ldv_statevar_0 = 6; } goto ldv_54568; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } ldv_statevar_0 = 6; goto ldv_54568; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 2; } else { ldv_statevar_0 = 4; } goto ldv_54568; case_6: /* CIL Label */ ; goto ldv_54568; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54568: ; return; } } void ldv_interrupt_interrupt_instance_1(void *arg0 ) { int tmp ; { { if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_1_ret_val_default != 2U); ldv_statevar_1 = 6; } goto ldv_54577; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_1_ret_val_default == 2U); } if ((unsigned long )ldv_1_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_1_3(ldv_1_thread_thread, ldv_1_line_line, ldv_1_data_data); } } else { } ldv_statevar_1 = 6; goto ldv_54577; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_1_ret_val_default = ldv_interrupt_instance_handler_1_5(ldv_1_callback_handler, ldv_1_line_line, ldv_1_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_1 = 2; } else { ldv_statevar_1 = 4; } goto ldv_54577; case_6: /* CIL Label */ ; goto ldv_54577; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54577: ; return; } } void ldv_interrupt_interrupt_instance_2(void *arg0 ) { int tmp ; { { if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 4) { goto case_4; } else { } if (ldv_statevar_2 == 5) { goto case_5; } else { } if (ldv_statevar_2 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_2_ret_val_default != 2U); ldv_statevar_2 = 6; } goto ldv_54586; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_2_ret_val_default == 2U); } if ((unsigned long )ldv_2_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_2_3(ldv_2_thread_thread, ldv_2_line_line, ldv_2_data_data); } } else { } ldv_statevar_2 = 6; goto ldv_54586; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_2_ret_val_default = ldv_interrupt_instance_handler_2_5(ldv_2_callback_handler, ldv_2_line_line, ldv_2_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_2 = 2; } else { ldv_statevar_2 = 4; } goto ldv_54586; case_6: /* CIL Label */ ; goto ldv_54586; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54586: ; return; } } void ldv_interrupt_interrupt_instance_3(void *arg0 ) { int tmp ; { { if (ldv_statevar_3 == 2) { goto case_2; } else { } if (ldv_statevar_3 == 4) { goto case_4; } else { } if (ldv_statevar_3 == 5) { goto case_5; } else { } if (ldv_statevar_3 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_3_ret_val_default != 2U); ldv_statevar_3 = 6; } goto ldv_54595; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_3_ret_val_default == 2U); } if ((unsigned long )ldv_3_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_3_3(ldv_3_thread_thread, ldv_3_line_line, ldv_3_data_data); } } else { } ldv_statevar_3 = 6; goto ldv_54595; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_3_ret_val_default = ldv_interrupt_instance_handler_3_5(ldv_3_callback_handler, ldv_3_line_line, ldv_3_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_3 = 2; } else { ldv_statevar_3 = 4; } goto ldv_54595; case_6: /* CIL Label */ ; goto ldv_54595; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54595: ; return; } } int ldv_pci_instance_probe_4_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = ath10k_pci_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_4_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { ath10k_pci_remove(arg1); } return; } } void ldv_pci_instance_resume_4_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_4_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_4_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_4_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_4_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_4(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_4 == 1) { goto case_1; } else { } if (ldv_statevar_4 == 2) { goto case_2; } else { } if (ldv_statevar_4 == 3) { goto case_3; } else { } if (ldv_statevar_4 == 4) { goto case_4; } else { } if (ldv_statevar_4 == 5) { goto case_5; } else { } if (ldv_statevar_4 == 6) { goto case_6; } else { } if (ldv_statevar_4 == 7) { goto case_7; } else { } if (ldv_statevar_4 == 8) { goto case_8; } else { } if (ldv_statevar_4 == 9) { goto case_9; } else { } if (ldv_statevar_4 == 10) { goto case_10; } else { } if (ldv_statevar_4 == 12) { goto case_12; } else { } if (ldv_statevar_4 == 14) { goto case_14; } else { } if (ldv_statevar_4 == 16) { goto case_16; } else { } if (ldv_statevar_4 == 17) { goto case_17; } else { } if (ldv_statevar_4 == 19) { goto case_19; } else { } if (ldv_statevar_4 == 20) { goto case_20; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_4 = 12; } else { ldv_statevar_4 = 17; } goto ldv_54645; case_2: /* CIL Label */ { ldv_pci_instance_release_4_2(ldv_4_container_pci_driver->remove, ldv_4_resource_dev); ldv_statevar_4 = 1; } goto ldv_54645; case_3: /* CIL Label */ ; if ((unsigned long )ldv_4_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_4_3(ldv_4_container_pci_driver->shutdown, ldv_4_resource_dev); } } else { } ldv_statevar_4 = 2; goto ldv_54645; case_4: /* CIL Label */ { ldv_statevar_4 = ldv_switch_0(); } goto ldv_54645; case_5: /* CIL Label */ ; if ((unsigned long )ldv_4_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_4_5(ldv_4_container_pci_driver->resume, ldv_4_resource_dev); } } else { } ldv_statevar_4 = 4; goto ldv_54645; case_6: /* CIL Label */ ; if ((unsigned long )ldv_4_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_4_6(ldv_4_container_pci_driver->resume_early, ldv_4_resource_dev); } } else { } ldv_statevar_4 = 5; goto ldv_54645; case_7: /* CIL Label */ ; if ((unsigned long )ldv_4_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_4_ret_default = ldv_pci_instance_suspend_late_4_7(ldv_4_container_pci_driver->suspend_late, ldv_4_resource_dev, ldv_4_resource_pm_message); } } else { } { ldv_4_ret_default = ldv_filter_err_code(ldv_4_ret_default); ldv_statevar_4 = 6; } goto ldv_54645; case_8: /* CIL Label */ ; if ((unsigned long )ldv_4_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_4_ret_default = ldv_pci_instance_suspend_4_8(ldv_4_container_pci_driver->suspend, ldv_4_resource_dev, ldv_4_resource_pm_message); } } else { } { ldv_4_ret_default = ldv_filter_err_code(ldv_4_ret_default); ldv_statevar_4 = 7; } goto ldv_54645; case_9: /* CIL Label */ { ldv_statevar_4 = ldv_switch_0(); } goto ldv_54645; case_10: /* CIL Label */ ldv_statevar_4 = 9; goto ldv_54645; case_12: /* CIL Label */ { ldv_free((void *)ldv_4_resource_dev); ldv_free((void *)ldv_4_resource_struct_pci_device_id_ptr); ldv_4_ret_default = 1; ldv_statevar_4 = 20; } goto ldv_54645; case_14: /* CIL Label */ { ldv_assume(ldv_4_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_4 = 12; } else { ldv_statevar_4 = 17; } goto ldv_54645; case_16: /* CIL Label */ { ldv_assume(ldv_4_ret_default == 0); ldv_statevar_4 = ldv_switch_0(); } goto ldv_54645; case_17: /* CIL Label */ { ldv_pre_probe(); ldv_4_ret_default = ldv_pci_instance_probe_4_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_4_container_pci_driver->probe, ldv_4_resource_dev, ldv_4_resource_struct_pci_device_id_ptr); ldv_4_ret_default = ldv_post_probe(ldv_4_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_4 = 14; } else { ldv_statevar_4 = 16; } goto ldv_54645; case_19: /* CIL Label */ { tmp___2 = ldv_xmalloc(2936UL); ldv_4_resource_dev = (struct pci_dev *)tmp___2; tmp___3 = ldv_xmalloc(32UL); ldv_4_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___3; tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_4 = 12; } else { ldv_statevar_4 = 17; } goto ldv_54645; case_20: /* CIL Label */ ; goto ldv_54645; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54645: ; return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_11_pci_driver_pci_driver ; { { ldv_11_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_4 == 12); ldv_dispatch_deregister_11_1(ldv_11_pci_driver_pci_driver); } return; return; } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_10_callback_handler)(int , void * ) ; void *ldv_10_data_data ; int ldv_10_line_line ; enum irqreturn (*ldv_10_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_10_line_line = (int )arg1; ldv_10_callback_handler = arg2; ldv_10_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_10_data_data = arg5; ldv_assume(((ldv_statevar_0 == 6 || ldv_statevar_1 == 6) || ldv_statevar_2 == 6) || ldv_statevar_3 == 6); ldv_dispatch_irq_register_10_2(ldv_10_line_line, ldv_10_callback_handler, ldv_10_thread_thread, ldv_10_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_struct_ath10k_hif_ops_base_instance_5(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; int tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; void *tmp___13 ; { { if (ldv_statevar_5 == 1) { goto case_1; } else { } if (ldv_statevar_5 == 2) { goto case_2; } else { } if (ldv_statevar_5 == 3) { goto case_3; } else { } if (ldv_statevar_5 == 4) { goto case_4; } else { } if (ldv_statevar_5 == 6) { goto case_6; } else { } if (ldv_statevar_5 == 7) { goto case_7; } else { } if (ldv_statevar_5 == 8) { goto case_8; } else { } if (ldv_statevar_5 == 9) { goto case_9; } else { } if (ldv_statevar_5 == 11) { goto case_11; } else { } if (ldv_statevar_5 == 13) { goto case_13; } else { } if (ldv_statevar_5 == 15) { goto case_15; } else { } if (ldv_statevar_5 == 16) { goto case_16; } else { } if (ldv_statevar_5 == 18) { goto case_18; } else { } if (ldv_statevar_5 == 19) { goto case_19; } else { } if (ldv_statevar_5 == 22) { goto case_22; } else { } if (ldv_statevar_5 == 25) { goto case_25; } else { } if (ldv_statevar_5 == 28) { goto case_28; } else { } if (ldv_statevar_5 == 31) { goto case_31; } else { } if (ldv_statevar_5 == 33) { goto case_33; } else { } if (ldv_statevar_5 == 34) { goto case_34; } else { } if (ldv_statevar_5 == 36) { goto case_36; } else { } if (ldv_statevar_5 == 39) { goto case_39; } else { } if (ldv_statevar_5 == 41) { goto case_41; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_5 = 11; } else { ldv_statevar_5 = 16; } goto ldv_54689; case_2: /* CIL Label */ { ldv_assume(((((((ldv_statevar_0 == 6 || ldv_statevar_0 == 2) || ldv_statevar_1 == 2) || ldv_statevar_1 == 6) || ldv_statevar_2 == 2) || ldv_statevar_2 == 6) || ldv_statevar_3 == 2) || ldv_statevar_3 == 6); ldv_base_instance_release_5_2(ldv_5_container_struct_ath10k_hif_ops->stop, ldv_5_resource_struct_ath10k_ptr); ldv_statevar_5 = 1; } goto ldv_54689; case_3: /* CIL Label */ { ldv_statevar_5 = ldv_switch_1(); } goto ldv_54689; case_4: /* CIL Label */ { ldv_assume(ldv_5_ret_default != 0); ldv_statevar_5 = ldv_switch_1(); } goto ldv_54689; case_6: /* CIL Label */ { ldv_assume(ldv_5_ret_default == 0); ldv_base_instance_resume_5_5(ldv_5_container_struct_ath10k_hif_ops->resume, ldv_5_resource_struct_ath10k_ptr); ldv_statevar_5 = 3; } goto ldv_54689; case_7: /* CIL Label */ { ldv_5_ret_default = ldv_base_instance_suspend_5_7(ldv_5_container_struct_ath10k_hif_ops->suspend, ldv_5_resource_struct_ath10k_ptr); ldv_5_ret_default = ldv_filter_err_code(ldv_5_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_5 = 4; } else { ldv_statevar_5 = 6; } goto ldv_54689; case_8: /* CIL Label */ { ldv_statevar_5 = ldv_switch_1(); } goto ldv_54689; case_9: /* CIL Label */ { ldv_base_instance_callback_5_9(ldv_5_callback_exchange_bmi_msg, ldv_5_resource_struct_ath10k_ptr, (void *)ldv_5_resource_struct_ath10k_hif_cb_ptr, ldv_5_ldv_param_9_2_default, (void *)ldv_5_resource_struct_sk_buff_ptr, ldv_5_ldv_param_9_4_default); ldv_free((void *)ldv_5_ldv_param_9_4_default); ldv_statevar_5 = 8; } goto ldv_54689; case_11: /* CIL Label */ { ldv_free((void *)ldv_5_resource_struct_ath10k_hif_cb_ptr); ldv_free((void *)ldv_5_resource_struct_ath10k_ptr); ldv_free((void *)ldv_5_resource_struct_sk_buff_ptr); ldv_5_ret_default = 1; ldv_statevar_5 = 19; } goto ldv_54689; case_13: /* CIL Label */ { ldv_assume(ldv_5_ret_default != 0); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_5 = 11; } else { ldv_statevar_5 = 16; } goto ldv_54689; case_15: /* CIL Label */ { ldv_assume(ldv_5_ret_default == 0); ldv_statevar_5 = ldv_switch_1(); } goto ldv_54689; case_16: /* CIL Label */ { ldv_assume(((((((ldv_statevar_0 == 6 || ldv_statevar_0 == 2) || ldv_statevar_1 == 2) || ldv_statevar_1 == 6) || ldv_statevar_2 == 2) || ldv_statevar_2 == 6) || ldv_statevar_3 == 2) || ldv_statevar_3 == 6); ldv_5_ret_default = ldv_base_instance_probe_5_16(ldv_5_container_struct_ath10k_hif_ops->start, ldv_5_resource_struct_ath10k_ptr); ldv_5_ret_default = ldv_filter_err_code(ldv_5_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { ldv_statevar_5 = 13; } else { ldv_statevar_5 = 15; } goto ldv_54689; case_18: /* CIL Label */ { tmp___3 = ldv_xmalloc(16UL); ldv_5_resource_struct_ath10k_hif_cb_ptr = (struct ath10k_hif_cb *)tmp___3; tmp___4 = ldv_xmalloc(8280UL); ldv_5_resource_struct_ath10k_ptr = (struct ath10k *)tmp___4; tmp___5 = ldv_xmalloc(232UL); ldv_5_resource_struct_sk_buff_ptr = (struct sk_buff *)tmp___5; tmp___6 = ldv_undef_int(); } if (tmp___6 != 0) { ldv_statevar_5 = 11; } else { ldv_statevar_5 = 16; } goto ldv_54689; case_19: /* CIL Label */ ; goto ldv_54689; case_22: /* CIL Label */ { tmp___7 = ldv_xmalloc(4UL); ldv_5_ldv_param_9_4_default = (unsigned int *)tmp___7; ldv_statevar_5 = ldv_switch_2(); } goto ldv_54689; case_25: /* CIL Label */ { tmp___8 = ldv_xmalloc(1UL); ldv_5_ldv_param_24_1_default = (unsigned char *)tmp___8; tmp___9 = ldv_xmalloc(1UL); ldv_5_ldv_param_24_2_default = (unsigned char *)tmp___9; ldv_base_instance_callback_5_24(ldv_5_callback_get_default_pipe, ldv_5_resource_struct_ath10k_ptr, ldv_5_ldv_param_24_1_default, ldv_5_ldv_param_24_2_default); ldv_free((void *)ldv_5_ldv_param_24_1_default); ldv_free((void *)ldv_5_ldv_param_24_2_default); ldv_free((void *)ldv_5_ldv_param_9_4_default); ldv_statevar_5 = 8; } goto ldv_54689; case_28: /* CIL Label */ { ldv_base_instance_callback_5_27(ldv_5_callback_get_free_queue_number, ldv_5_resource_struct_ath10k_ptr, (int )ldv_5_ldv_param_27_1_default); ldv_free((void *)ldv_5_ldv_param_9_4_default); ldv_statevar_5 = 8; } goto ldv_54689; case_31: /* CIL Label */ { tmp___10 = ldv_xmalloc(1UL); ldv_5_ldv_param_30_2_default = (unsigned char *)tmp___10; tmp___11 = ldv_xmalloc(1UL); ldv_5_ldv_param_30_3_default = (unsigned char *)tmp___11; tmp___12 = ldv_xmalloc(4UL); ldv_5_ldv_param_30_4_default = (int *)tmp___12; tmp___13 = ldv_xmalloc(4UL); ldv_5_ldv_param_30_5_default = (int *)tmp___13; ldv_base_instance_callback_5_30(ldv_5_callback_map_service_to_pipe, ldv_5_resource_struct_ath10k_ptr, (int )ldv_5_ldv_param_30_1_default, ldv_5_ldv_param_30_2_default, ldv_5_ldv_param_30_3_default, ldv_5_ldv_param_30_4_default, ldv_5_ldv_param_30_5_default); ldv_free((void *)ldv_5_ldv_param_30_2_default); ldv_free((void *)ldv_5_ldv_param_30_3_default); ldv_free((void *)ldv_5_ldv_param_30_4_default); ldv_free((void *)ldv_5_ldv_param_30_5_default); ldv_free((void *)ldv_5_ldv_param_9_4_default); ldv_statevar_5 = 8; } goto ldv_54689; case_33: /* CIL Label */ { ldv_assume(((ldv_statevar_0 == 2 || ldv_statevar_1 == 2) || ldv_statevar_2 == 2) || ldv_statevar_3 == 2); ldv_base_instance_callback_5_33(ldv_5_callback_power_down, ldv_5_resource_struct_ath10k_ptr); ldv_free((void *)ldv_5_ldv_param_9_4_default); ldv_statevar_5 = 8; } goto ldv_54689; case_34: /* CIL Label */ { ldv_assume(((((((ldv_statevar_0 == 6 || ldv_statevar_0 == 2) || ldv_statevar_1 == 2) || ldv_statevar_1 == 6) || ldv_statevar_2 == 2) || ldv_statevar_2 == 6) || ldv_statevar_3 == 2) || ldv_statevar_3 == 6); ldv_base_instance_callback_5_34(ldv_5_callback_power_up, ldv_5_resource_struct_ath10k_ptr); ldv_free((void *)ldv_5_ldv_param_9_4_default); ldv_statevar_5 = 8; } goto ldv_54689; case_36: /* CIL Label */ { ldv_base_instance_callback_5_35(ldv_5_callback_send_complete_check, ldv_5_resource_struct_ath10k_ptr, (int )ldv_5_ldv_param_35_1_default, ldv_5_ldv_param_35_2_default); ldv_free((void *)ldv_5_ldv_param_9_4_default); ldv_statevar_5 = 8; } goto ldv_54689; case_39: /* CIL Label */ { ldv_base_instance_callback_5_38(ldv_5_callback_send_head, ldv_5_resource_struct_ath10k_ptr, (int )ldv_5_ldv_param_38_1_default, ldv_5_ldv_param_38_2_default, ldv_5_ldv_param_38_3_default, ldv_5_resource_struct_sk_buff_ptr); ldv_free((void *)ldv_5_ldv_param_9_4_default); ldv_statevar_5 = 8; } goto ldv_54689; case_41: /* CIL Label */ { ldv_base_instance_callback_5_41(ldv_5_callback_set_callbacks, ldv_5_resource_struct_ath10k_ptr, ldv_5_resource_struct_ath10k_hif_cb_ptr); ldv_free((void *)ldv_5_ldv_param_9_4_default); ldv_statevar_5 = 8; } goto ldv_54689; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54689: ; return; } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (8); case_2: /* CIL Label */ ; return (10); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (2); case_1: /* CIL Label */ ; return (7); case_2: /* CIL Label */ ; return (22); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_2(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } goto switch_default; case_0: /* CIL Label */ ; return (9); case_1: /* CIL Label */ ; return (25); case_2: /* CIL Label */ ; return (28); case_3: /* CIL Label */ ; return (31); case_4: /* CIL Label */ ; return (33); case_5: /* CIL Label */ ; return (34); case_6: /* CIL Label */ ; return (36); case_7: /* CIL Label */ ; return (39); case_8: /* CIL Label */ ; return (41); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_0_1(void) { { ldv_statevar_0 = 6; return; } } void ldv_switch_automaton_state_0_6(void) { { ldv_statevar_0 = 5; return; } } void ldv_switch_automaton_state_1_1(void) { { ldv_statevar_1 = 6; return; } } void ldv_switch_automaton_state_1_6(void) { { ldv_statevar_1 = 5; return; } } void ldv_switch_automaton_state_2_1(void) { { ldv_statevar_2 = 6; return; } } void ldv_switch_automaton_state_2_6(void) { { ldv_statevar_2 = 5; return; } } void ldv_switch_automaton_state_3_1(void) { { ldv_statevar_3 = 6; return; } } void ldv_switch_automaton_state_3_6(void) { { ldv_statevar_3 = 5; return; } } void ldv_switch_automaton_state_4_11(void) { { ldv_4_ret_default = 1; ldv_statevar_4 = 20; return; } } void ldv_switch_automaton_state_4_20(void) { { ldv_statevar_4 = 19; return; } } void ldv_switch_automaton_state_5_10(void) { { ldv_5_ret_default = 1; ldv_statevar_5 = 19; return; } } void ldv_switch_automaton_state_5_19(void) { { ldv_statevar_5 = 18; return; } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static void *ldv_dev_get_drvdata_37(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_38(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } static struct sk_buff *ldv___netdev_alloc_skb_46(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct sk_buff *)tmp); } } __inline static int ldv_request_irq_83(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_84(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static void ldv_spin_lock_bh_85(spinlock_t *lock ) { { { ldv_spin_lock_pipe_lock_of_ath10k_pci_pipe(); spin_lock_bh(lock); } return; } } __inline static void ldv_spin_unlock_bh_86(spinlock_t *lock ) { { { ldv_spin_unlock_pipe_lock_of_ath10k_pci_pipe(); spin_unlock_bh(lock); } return; } } __inline static void ldv_spin_lock_bh_87(spinlock_t *lock ) { { { ldv_spin_lock_compl_lock_of_ath10k_pci(); spin_lock_bh(lock); } return; } } __inline static void ldv_spin_unlock_bh_88(spinlock_t *lock ) { { { ldv_spin_unlock_compl_lock_of_ath10k_pci(); spin_unlock_bh(lock); } return; } } __inline static int ldv_request_irq_107(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_108(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_109(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_110(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static int ldv_request_irq_111(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_112(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_113(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static int ldv___pci_register_driver_114(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_115(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } __inline static int fls64(__u64 x ) { int bitpos ; { bitpos = -1; __asm__ ("bsrq %1,%q0": "+r" (bitpos): "rm" (x)); return (bitpos + 1); } } __inline static unsigned int fls_long(unsigned long l ) { int tmp___0 ; { { tmp___0 = fls64((__u64 )l); } return ((unsigned int )tmp___0); } } __inline static unsigned long __roundup_pow_of_two(unsigned long n ) { unsigned int tmp ; { { tmp = fls_long(n - 1UL); } return (1UL << (int )tmp); } } void ldv_spin_lock_ce_lock_of_ath10k_pci(void) ; void ldv_spin_unlock_ce_lock_of_ath10k_pci(void) ; __inline static void ldv_spin_lock_bh_83(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_83(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_83(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_83(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_83(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_83(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_83(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_83(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_83(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_83(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_83(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_83(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_84(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_84(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_84(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_84(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_84(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_84(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_84(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_84(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_84(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_84(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_84(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_84(spinlock_t *lock ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static u32 ath10k_ce_base_address(unsigned int ce_id ) { { return ((ce_id + 349U) * 1024U); } } __inline static void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar , u32 ce_ctrl_addr , unsigned int n ) { { { ath10k_pci_write32(ar, ce_ctrl_addr + 64U, n); } return; } } __inline static u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar , u32 ce_ctrl_addr ) { u32 tmp ; { { tmp = ath10k_pci_read32(ar, ce_ctrl_addr + 64U); } return (tmp); } } __inline static void ath10k_ce_src_ring_write_index_set(struct ath10k *ar , u32 ce_ctrl_addr , unsigned int n ) { { { ath10k_pci_write32(ar, ce_ctrl_addr + 60U, n); } return; } } __inline static u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar , u32 ce_ctrl_addr ) { u32 tmp ; { { tmp = ath10k_pci_read32(ar, ce_ctrl_addr + 60U); } return (tmp); } } __inline static u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar , u32 ce_ctrl_addr ) { u32 tmp ; { { tmp = ath10k_pci_read32(ar, ce_ctrl_addr + 68U); } return (tmp); } } __inline static void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar , u32 ce_ctrl_addr , unsigned int addr ) { { { ath10k_pci_write32(ar, ce_ctrl_addr, addr); } return; } } __inline static void ath10k_ce_src_ring_size_set(struct ath10k *ar , u32 ce_ctrl_addr , unsigned int n ) { { { ath10k_pci_write32(ar, ce_ctrl_addr + 4U, n); } return; } } __inline static void ath10k_ce_src_ring_dmax_set(struct ath10k *ar , u32 ce_ctrl_addr , unsigned int n ) { u32 ctrl1_addr ; u32 tmp ; { { tmp = ath10k_pci_read32(ar, ce_ctrl_addr + 16U); ctrl1_addr = tmp; ath10k_pci_write32(ar, ce_ctrl_addr + 16U, (ctrl1_addr & 4294901760U) | (n & 65535U)); } return; } } __inline static void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar , u32 ce_ctrl_addr , unsigned int n ) { u32 ctrl1_addr ; u32 tmp ; { { tmp = ath10k_pci_read32(ar, ce_ctrl_addr + 16U); ctrl1_addr = tmp; ath10k_pci_write32(ar, ce_ctrl_addr + 16U, (ctrl1_addr & 4294901759U) | ((n << 16) & 65536U)); } return; } } __inline static void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar , u32 ce_ctrl_addr , unsigned int n ) { u32 ctrl1_addr ; u32 tmp ; { { tmp = ath10k_pci_read32(ar, ce_ctrl_addr + 16U); ctrl1_addr = tmp; ath10k_pci_write32(ar, ce_ctrl_addr + 16U, (ctrl1_addr & 4294836223U) | ((n << 17) & 131072U)); } return; } } __inline static u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar , u32 ce_ctrl_addr ) { u32 tmp ; { { tmp = ath10k_pci_read32(ar, ce_ctrl_addr + 72U); } return (tmp); } } __inline static void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar , u32 ce_ctrl_addr , u32 addr ) { { { ath10k_pci_write32(ar, ce_ctrl_addr + 8U, addr); } return; } } __inline static void ath10k_ce_dest_ring_size_set(struct ath10k *ar , u32 ce_ctrl_addr , unsigned int n ) { { { ath10k_pci_write32(ar, ce_ctrl_addr + 12U, n); } return; } } __inline static void ath10k_ce_src_ring_highmark_set(struct ath10k *ar , u32 ce_ctrl_addr , unsigned int n ) { u32 addr ; u32 tmp ; { { tmp = ath10k_pci_read32(ar, ce_ctrl_addr + 76U); addr = tmp; ath10k_pci_write32(ar, ce_ctrl_addr + 76U, (addr & 4294901760U) | (n & 65535U)); } return; } } __inline static void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar , u32 ce_ctrl_addr , unsigned int n ) { u32 addr ; u32 tmp ; { { tmp = ath10k_pci_read32(ar, ce_ctrl_addr + 76U); addr = tmp; ath10k_pci_write32(ar, ce_ctrl_addr + 76U, (addr & 65535U) | (n << 16)); } return; } } __inline static void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar , u32 ce_ctrl_addr , unsigned int n ) { u32 addr ; u32 tmp ; { { tmp = ath10k_pci_read32(ar, ce_ctrl_addr + 80U); addr = tmp; ath10k_pci_write32(ar, ce_ctrl_addr + 80U, (addr & 4294901760U) | (n & 65535U)); } return; } } __inline static void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar , u32 ce_ctrl_addr , unsigned int n ) { u32 addr ; u32 tmp ; { { tmp = ath10k_pci_read32(ar, ce_ctrl_addr + 80U); addr = tmp; ath10k_pci_write32(ar, ce_ctrl_addr + 80U, (addr & 65535U) | (n << 16)); } return; } } __inline static void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar , u32 ce_ctrl_addr ) { u32 host_ie_addr ; u32 tmp ; { { tmp = ath10k_pci_read32(ar, ce_ctrl_addr + 44U); host_ie_addr = tmp; ath10k_pci_write32(ar, ce_ctrl_addr + 44U, host_ie_addr | 1U); } return; } } __inline static void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar , u32 ce_ctrl_addr ) { u32 host_ie_addr ; u32 tmp ; { { tmp = ath10k_pci_read32(ar, ce_ctrl_addr + 44U); host_ie_addr = tmp; ath10k_pci_write32(ar, ce_ctrl_addr + 44U, host_ie_addr & 4294967294U); } return; } } __inline static void ath10k_ce_watermark_intr_disable(struct ath10k *ar , u32 ce_ctrl_addr ) { u32 host_ie_addr ; u32 tmp ; { { tmp = ath10k_pci_read32(ar, ce_ctrl_addr + 44U); host_ie_addr = tmp; ath10k_pci_write32(ar, ce_ctrl_addr + 44U, host_ie_addr & 4294967265U); } return; } } __inline static void ath10k_ce_error_intr_disable(struct ath10k *ar , u32 ce_ctrl_addr ) { u32 misc_ie_addr ; u32 tmp ; { { tmp = ath10k_pci_read32(ar, ce_ctrl_addr + 52U); misc_ie_addr = tmp; ath10k_pci_write32(ar, ce_ctrl_addr + 52U, misc_ie_addr & 4294965279U); } return; } } __inline static void ath10k_ce_engine_int_status_clear(struct ath10k *ar , u32 ce_ctrl_addr , unsigned int mask ) { { { ath10k_pci_write32(ar, ce_ctrl_addr + 48U, mask); } return; } } static int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state , void *per_transfer_context , u32 buffer , unsigned int nbytes , unsigned int transfer_id , unsigned int flags ) { struct ath10k *ar ; struct ath10k_ce_ring *src_ring ; struct ce_desc *desc ; struct ce_desc *sdesc ; unsigned int nentries_mask ; unsigned int sw_index ; unsigned int write_index ; u32 ctrl_addr ; u32 desc_flags ; int ret ; long tmp ; { ar = ce_state->ar; src_ring = ce_state->src_ring; nentries_mask = src_ring->nentries_mask; sw_index = src_ring->sw_index; write_index = src_ring->write_index; ctrl_addr = ce_state->ctrl_addr; desc_flags = 0U; ret = 0; if (nbytes > ce_state->src_sz_max) { { ath10k_warn("%s: send more we can (nbytes: %d, max: %d)\n", "ath10k_ce_send_nolock", nbytes, ce_state->src_sz_max); } } else { } { ret = ath10k_pci_wake(ar); } if (ret != 0) { return (ret); } else { } { tmp = ldv__builtin_expect(((unsigned int )((int )(sw_index - 1U) - (int )write_index) & nentries_mask) == 0U, 0L); } if (tmp != 0L) { ret = -63; goto exit; } else { } desc = (struct ce_desc *)src_ring->base_addr_owner_space + (unsigned long )write_index; sdesc = src_ring->shadow_base + (unsigned long )write_index; desc_flags = desc_flags | ((transfer_id << 3) & 65535U); if ((flags & 65536U) != 0U) { desc_flags = desc_flags | 1U; } else { } if ((int )flags & 1) { desc_flags = desc_flags | 2U; } else { } sdesc->addr = buffer; sdesc->nbytes = (unsigned short )nbytes; sdesc->flags = (unsigned short )desc_flags; *desc = *sdesc; *(src_ring->per_transfer_context + (unsigned long )write_index) = per_transfer_context; write_index = (write_index + 1U) & nentries_mask; if ((flags & 65536U) == 0U) { { ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index); } } else { } src_ring->write_index = write_index; exit: { ath10k_pci_sleep(ar); } return (ret); } } int ath10k_ce_send(struct ath10k_ce_pipe *ce_state , void *per_transfer_context , u32 buffer , unsigned int nbytes , unsigned int transfer_id , unsigned int flags ) { struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int ret ; { { ar = ce_state->ar; tmp = ath10k_pci_priv(ar); ar_pci = tmp; ldv_spin_lock_bh_83(& ar_pci->ce_lock); ret = ath10k_ce_send_nolock(ce_state, per_transfer_context, buffer, nbytes, transfer_id, flags); ldv_spin_unlock_bh_84(& ar_pci->ce_lock); } return (ret); } } int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe ) { struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int delta ; { { ar = pipe->ar; tmp = ath10k_pci_priv(ar); ar_pci = tmp; ldv_spin_lock_bh_83(& ar_pci->ce_lock); delta = (int )((unsigned int )((int )((pipe->src_ring)->sw_index - 1U) - (int )(pipe->src_ring)->write_index) & (pipe->src_ring)->nentries_mask); ldv_spin_unlock_bh_84(& ar_pci->ce_lock); } return (delta); } } int ath10k_ce_recv_buf_enqueue(struct ath10k_ce_pipe *ce_state , void *per_recv_context , u32 buffer ) { struct ath10k_ce_ring *dest_ring ; u32 ctrl_addr ; struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; unsigned int nentries_mask ; unsigned int write_index ; unsigned int sw_index ; int ret ; struct ce_desc *base ; struct ce_desc *desc ; { { dest_ring = ce_state->dest_ring; ctrl_addr = ce_state->ctrl_addr; ar = ce_state->ar; tmp = ath10k_pci_priv(ar); ar_pci = tmp; nentries_mask = dest_ring->nentries_mask; ldv_spin_lock_bh_83(& ar_pci->ce_lock); write_index = dest_ring->write_index; sw_index = dest_ring->sw_index; ret = ath10k_pci_wake(ar); } if (ret != 0) { goto out; } else { } if (((unsigned int )((int )(sw_index - 1U) - (int )write_index) & nentries_mask) != 0U) { { base = (struct ce_desc *)dest_ring->base_addr_owner_space; desc = base + (unsigned long )write_index; desc->addr = buffer; desc->nbytes = 0U; *(dest_ring->per_transfer_context + (unsigned long )write_index) = per_recv_context; write_index = (write_index + 1U) & nentries_mask; ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index); dest_ring->write_index = write_index; ret = 0; } } else { ret = -5; } { ath10k_pci_sleep(ar); } out: { ldv_spin_unlock_bh_84(& ar_pci->ce_lock); } return (ret); } } static int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state , void **per_transfer_contextp , u32 *bufferp , unsigned int *nbytesp , unsigned int *transfer_idp , unsigned int *flagsp ) { struct ath10k_ce_ring *dest_ring ; unsigned int nentries_mask ; unsigned int sw_index ; struct ce_desc *base ; struct ce_desc *desc ; struct ce_desc sdesc ; u16 nbytes ; { dest_ring = ce_state->dest_ring; nentries_mask = dest_ring->nentries_mask; sw_index = dest_ring->sw_index; base = (struct ce_desc *)dest_ring->base_addr_owner_space; desc = base + (unsigned long )sw_index; sdesc = *desc; nbytes = sdesc.nbytes; if ((unsigned int )nbytes == 0U) { return (-5); } else { } desc->nbytes = 0U; *bufferp = sdesc.addr; *nbytesp = (unsigned int )nbytes; *transfer_idp = (unsigned int )((int )sdesc.flags >> 3); if (((int )sdesc.flags & 2) != 0) { *flagsp = 1U; } else { *flagsp = 0U; } if ((unsigned long )per_transfer_contextp != (unsigned long )((void **)0)) { *per_transfer_contextp = *(dest_ring->per_transfer_context + (unsigned long )sw_index); } else { } *(dest_ring->per_transfer_context + (unsigned long )sw_index) = (void *)0; sw_index = (sw_index + 1U) & nentries_mask; dest_ring->sw_index = sw_index; return (0); } } int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state , void **per_transfer_contextp , u32 *bufferp , unsigned int *nbytesp , unsigned int *transfer_idp , unsigned int *flagsp ) { struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int ret ; { { ar = ce_state->ar; tmp = ath10k_pci_priv(ar); ar_pci = tmp; ldv_spin_lock_bh_83(& ar_pci->ce_lock); ret = ath10k_ce_completed_recv_next_nolock(ce_state, per_transfer_contextp, bufferp, nbytesp, transfer_idp, flagsp); ldv_spin_unlock_bh_84(& ar_pci->ce_lock); } return (ret); } } int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state , void **per_transfer_contextp , u32 *bufferp ) { struct ath10k_ce_ring *dest_ring ; unsigned int nentries_mask ; unsigned int sw_index ; unsigned int write_index ; int ret ; struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ce_desc *base ; struct ce_desc *desc ; { dest_ring = ce_state->dest_ring; if ((unsigned long )dest_ring == (unsigned long )((struct ath10k_ce_ring *)0)) { return (-5); } else { } { ar = ce_state->ar; ar_pci = ath10k_pci_priv(ar); ldv_spin_lock_bh_83(& ar_pci->ce_lock); nentries_mask = dest_ring->nentries_mask; sw_index = dest_ring->sw_index; write_index = dest_ring->write_index; } if (write_index != sw_index) { base = (struct ce_desc *)dest_ring->base_addr_owner_space; desc = base + (unsigned long )sw_index; *bufferp = desc->addr; if ((unsigned long )per_transfer_contextp != (unsigned long )((void **)0)) { *per_transfer_contextp = *(dest_ring->per_transfer_context + (unsigned long )sw_index); } else { } *(dest_ring->per_transfer_context + (unsigned long )sw_index) = (void *)0; sw_index = (sw_index + 1U) & nentries_mask; dest_ring->sw_index = sw_index; ret = 0; } else { ret = -5; } { ldv_spin_unlock_bh_84(& ar_pci->ce_lock); } return (ret); } } static int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state , void **per_transfer_contextp , u32 *bufferp , unsigned int *nbytesp , unsigned int *transfer_idp ) { struct ath10k_ce_ring *src_ring ; u32 ctrl_addr ; struct ath10k *ar ; unsigned int nentries_mask ; unsigned int sw_index ; struct ce_desc *sdesc ; struct ce_desc *sbase ; unsigned int read_index ; int ret ; { src_ring = ce_state->src_ring; ctrl_addr = ce_state->ctrl_addr; ar = ce_state->ar; nentries_mask = src_ring->nentries_mask; sw_index = src_ring->sw_index; if (src_ring->hw_index == sw_index) { { ret = ath10k_pci_wake(ar); } if (ret != 0) { return (ret); } else { } { src_ring->hw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr); src_ring->hw_index = src_ring->hw_index & nentries_mask; ath10k_pci_sleep(ar); } } else { } read_index = src_ring->hw_index; if (read_index == sw_index || read_index == 4294967295U) { return (-5); } else { } sbase = src_ring->shadow_base; sdesc = sbase + (unsigned long )sw_index; *bufferp = sdesc->addr; *nbytesp = (unsigned int )sdesc->nbytes; *transfer_idp = (unsigned int )((int )sdesc->flags >> 3); if ((unsigned long )per_transfer_contextp != (unsigned long )((void **)0)) { *per_transfer_contextp = *(src_ring->per_transfer_context + (unsigned long )sw_index); } else { } *(src_ring->per_transfer_context + (unsigned long )sw_index) = (void *)0; sw_index = (sw_index + 1U) & nentries_mask; src_ring->sw_index = sw_index; return (0); } } int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state , void **per_transfer_contextp , u32 *bufferp , unsigned int *nbytesp , unsigned int *transfer_idp ) { struct ath10k_ce_ring *src_ring ; unsigned int nentries_mask ; unsigned int sw_index ; unsigned int write_index ; int ret ; struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ce_desc *base ; struct ce_desc *desc ; { src_ring = ce_state->src_ring; if ((unsigned long )src_ring == (unsigned long )((struct ath10k_ce_ring *)0)) { return (-5); } else { } { ar = ce_state->ar; ar_pci = ath10k_pci_priv(ar); ldv_spin_lock_bh_83(& ar_pci->ce_lock); nentries_mask = src_ring->nentries_mask; sw_index = src_ring->sw_index; write_index = src_ring->write_index; } if (write_index != sw_index) { base = (struct ce_desc *)src_ring->base_addr_owner_space; desc = base + (unsigned long )sw_index; *bufferp = desc->addr; *nbytesp = (unsigned int )desc->nbytes; *transfer_idp = (unsigned int )((int )desc->flags >> 3); if ((unsigned long )per_transfer_contextp != (unsigned long )((void **)0)) { *per_transfer_contextp = *(src_ring->per_transfer_context + (unsigned long )sw_index); } else { } *(src_ring->per_transfer_context + (unsigned long )sw_index) = (void *)0; sw_index = (sw_index + 1U) & nentries_mask; src_ring->sw_index = sw_index; ret = 0; } else { ret = -5; } { ldv_spin_unlock_bh_84(& ar_pci->ce_lock); } return (ret); } } int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state , void **per_transfer_contextp , u32 *bufferp , unsigned int *nbytesp , unsigned int *transfer_idp ) { struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; int ret ; { { ar = ce_state->ar; tmp = ath10k_pci_priv(ar); ar_pci = tmp; ldv_spin_lock_bh_83(& ar_pci->ce_lock); ret = ath10k_ce_completed_send_next_nolock(ce_state, per_transfer_contextp, bufferp, nbytesp, transfer_idp); ldv_spin_unlock_bh_84(& ar_pci->ce_lock); } return (ret); } } void ath10k_ce_per_engine_service(struct ath10k *ar , unsigned int ce_id ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; struct ath10k_ce_pipe *ce_state ; u32 ctrl_addr ; int ret ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; ce_state = (struct ath10k_ce_pipe *)(& ar_pci->ce_states) + (unsigned long )ce_id; ctrl_addr = ce_state->ctrl_addr; ret = ath10k_pci_wake(ar); } if (ret != 0) { return; } else { } { ldv_spin_lock_bh_83(& ar_pci->ce_lock); ath10k_ce_engine_int_status_clear(ar, ctrl_addr, 1U); ldv_spin_unlock_bh_84(& ar_pci->ce_lock); } if ((unsigned long )ce_state->recv_cb != (unsigned long )((void (*)(struct ath10k_ce_pipe * ))0)) { { (*(ce_state->recv_cb))(ce_state); } } else { } if ((unsigned long )ce_state->send_cb != (unsigned long )((void (*)(struct ath10k_ce_pipe * ))0)) { { (*(ce_state->send_cb))(ce_state); } } else { } { ldv_spin_lock_bh_83(& ar_pci->ce_lock); ath10k_ce_engine_int_status_clear(ar, ctrl_addr, 30U); ldv_spin_unlock_bh_84(& ar_pci->ce_lock); ath10k_pci_sleep(ar); } return; } } void ath10k_ce_per_engine_service_any(struct ath10k *ar ) { int ce_id ; int ret ; u32 intr_summary ; u32 tmp ; { { ret = ath10k_pci_wake(ar); } if (ret != 0) { return; } else { } { tmp = ath10k_pci_read32(ar, 356352U); intr_summary = (tmp & 65280U) >> 8; ce_id = 0; } goto ldv_52211; ldv_52210: ; if ((intr_summary & (u32 )(1 << ce_id)) != 0U) { intr_summary = intr_summary & (u32 )(~ (1 << ce_id)); } else { goto ldv_52209; } { ath10k_ce_per_engine_service(ar, (unsigned int )ce_id); } ldv_52209: ce_id = ce_id + 1; ldv_52211: ; if (intr_summary != 0U && ce_id <= 7) { goto ldv_52210; } else { } { ath10k_pci_sleep(ar); } return; } } static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state , int disable_copy_compl_intr ) { u32 ctrl_addr ; struct ath10k *ar ; int ret ; { { ctrl_addr = ce_state->ctrl_addr; ar = ce_state->ar; ret = ath10k_pci_wake(ar); } if (ret != 0) { return; } else { } if (disable_copy_compl_intr == 0 && ((unsigned long )ce_state->send_cb != (unsigned long )((void (*)(struct ath10k_ce_pipe * ))0) || (unsigned long )ce_state->recv_cb != (unsigned long )((void (*)(struct ath10k_ce_pipe * ))0))) { { ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr); } } else { { ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr); } } { ath10k_ce_watermark_intr_disable(ar, ctrl_addr); ath10k_pci_sleep(ar); } return; } } int ath10k_ce_disable_interrupts(struct ath10k *ar ) { int ce_id ; int ret ; u32 ctrl_addr ; u32 tmp ; { { ret = ath10k_pci_wake(ar); } if (ret != 0) { return (ret); } else { } ce_id = 0; goto ldv_52227; ldv_52226: { tmp = ath10k_ce_base_address((unsigned int )ce_id); ctrl_addr = tmp; ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr); ath10k_ce_error_intr_disable(ar, ctrl_addr); ath10k_ce_watermark_intr_disable(ar, ctrl_addr); ce_id = ce_id + 1; } ldv_52227: ; if (ce_id <= 7) { goto ldv_52226; } else { } { ath10k_pci_sleep(ar); } return (0); } } void ath10k_ce_send_cb_register(struct ath10k_ce_pipe *ce_state , void (*send_cb)(struct ath10k_ce_pipe * ) , int disable_interrupts ) { struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; { { ar = ce_state->ar; tmp = ath10k_pci_priv(ar); ar_pci = tmp; ldv_spin_lock_bh_83(& ar_pci->ce_lock); ce_state->send_cb = send_cb; ath10k_ce_per_engine_handler_adjust(ce_state, disable_interrupts); ldv_spin_unlock_bh_84(& ar_pci->ce_lock); } return; } } void ath10k_ce_recv_cb_register(struct ath10k_ce_pipe *ce_state , void (*recv_cb)(struct ath10k_ce_pipe * ) ) { struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; { { ar = ce_state->ar; tmp = ath10k_pci_priv(ar); ar_pci = tmp; ldv_spin_lock_bh_83(& ar_pci->ce_lock); ce_state->recv_cb = recv_cb; ath10k_ce_per_engine_handler_adjust(ce_state, 0); ldv_spin_unlock_bh_84(& ar_pci->ce_lock); } return; } } static int ath10k_ce_init_src_ring(struct ath10k *ar , unsigned int ce_id , struct ath10k_ce_pipe *ce_state , struct ce_attr const *attr ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; struct ath10k_ce_ring *src_ring ; unsigned int nentries ; unsigned int ce_nbytes ; u32 ctrl_addr ; u32 tmp___0 ; dma_addr_t base_addr ; char *ptr ; unsigned long tmp___69 ; int __ret_warn_on ; long tmp___70 ; void *tmp___71 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; nentries = attr->src_nentries; tmp___0 = ath10k_ce_base_address(ce_id); ctrl_addr = tmp___0; tmp___69 = __roundup_pow_of_two((unsigned long )nentries); nentries = (unsigned int )tmp___69; } if ((unsigned long )ce_state->src_ring != (unsigned long )((struct ath10k_ce_ring *)0)) { { __ret_warn_on = (ce_state->src_ring)->nentries != nentries; tmp___70 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___70 != 0L) { { warn_slowpath_null("drivers/net/wireless/ath/ath10k/ce.c", 857); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } return (0); } else { } { ce_nbytes = (unsigned int )((unsigned long )nentries + 10UL) * 8U; tmp___71 = kzalloc((size_t )ce_nbytes, 208U); ptr = (char *)tmp___71; } if ((unsigned long )ptr == (unsigned long )((char *)0)) { return (-12); } else { } { ce_state->src_ring = (struct ath10k_ce_ring *)ptr; src_ring = ce_state->src_ring; ptr = ptr + 80UL; src_ring->nentries = nentries; src_ring->nentries_mask = nentries - 1U; src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr); src_ring->sw_index = src_ring->sw_index & src_ring->nentries_mask; src_ring->hw_index = src_ring->sw_index; src_ring->write_index = ath10k_ce_src_ring_write_index_get(ar, ctrl_addr); src_ring->write_index = src_ring->write_index & src_ring->nentries_mask; src_ring->per_transfer_context = (void **)ptr; src_ring->base_addr_owner_space_unaligned = pci_alloc_consistent(ar_pci->pdev, ((unsigned long )nentries + 1UL) * 8UL, & base_addr); } if ((unsigned long )src_ring->base_addr_owner_space_unaligned == (unsigned long )((void *)0)) { { kfree((void const *)ce_state->src_ring); ce_state->src_ring = (struct ath10k_ce_ring *)0; } return (-12); } else { } { src_ring->base_addr_ce_space_unaligned = (u32 )base_addr; src_ring->base_addr_owner_space = (void *)(((unsigned long )src_ring->base_addr_owner_space_unaligned + 7UL) & 0xfffffffffffffff8UL); src_ring->base_addr_ce_space = (src_ring->base_addr_ce_space_unaligned + 7U) & 4294967288U; src_ring->shadow_base_unaligned = kmalloc(((unsigned long )nentries + 1UL) * 8UL, 208U); } if ((unsigned long )src_ring->shadow_base_unaligned == (unsigned long )((void *)0)) { { pci_free_consistent(ar_pci->pdev, ((unsigned long )nentries + 1UL) * 8UL, src_ring->base_addr_owner_space, (dma_addr_t )src_ring->base_addr_ce_space); kfree((void const *)ce_state->src_ring); ce_state->src_ring = (struct ath10k_ce_ring *)0; } return (-12); } else { } { src_ring->shadow_base = (struct ce_desc *)(((unsigned long )src_ring->shadow_base_unaligned + 7UL) & 0xfffffffffffffff8UL); ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, src_ring->base_addr_ce_space); ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries); ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max); ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0U); ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0U); ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries); ath10k_dbg(32, "boot ce src ring id %d entries %d base_addr %p\n", ce_id, nentries, src_ring->base_addr_owner_space); } return (0); } } static int ath10k_ce_init_dest_ring(struct ath10k *ar , unsigned int ce_id , struct ath10k_ce_pipe *ce_state , struct ce_attr const *attr ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; struct ath10k_ce_ring *dest_ring ; unsigned int nentries ; unsigned int ce_nbytes ; u32 ctrl_addr ; u32 tmp___0 ; dma_addr_t base_addr ; char *ptr ; unsigned long tmp___69 ; int __ret_warn_on ; long tmp___70 ; void *tmp___71 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; nentries = attr->dest_nentries; tmp___0 = ath10k_ce_base_address(ce_id); ctrl_addr = tmp___0; tmp___69 = __roundup_pow_of_two((unsigned long )nentries); nentries = (unsigned int )tmp___69; } if ((unsigned long )ce_state->dest_ring != (unsigned long )((struct ath10k_ce_ring *)0)) { { __ret_warn_on = (ce_state->dest_ring)->nentries != nentries; tmp___70 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___70 != 0L) { { warn_slowpath_null("drivers/net/wireless/ath/ath10k/ce.c", 960); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } return (0); } else { } { ce_nbytes = (unsigned int )((unsigned long )nentries + 10UL) * 8U; tmp___71 = kzalloc((size_t )ce_nbytes, 208U); ptr = (char *)tmp___71; } if ((unsigned long )ptr == (unsigned long )((char *)0)) { return (-12); } else { } { ce_state->dest_ring = (struct ath10k_ce_ring *)ptr; dest_ring = ce_state->dest_ring; ptr = ptr + 80UL; dest_ring->nentries = nentries; dest_ring->nentries_mask = nentries - 1U; dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr); dest_ring->sw_index = dest_ring->sw_index & dest_ring->nentries_mask; dest_ring->write_index = ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr); dest_ring->write_index = dest_ring->write_index & dest_ring->nentries_mask; dest_ring->per_transfer_context = (void **)ptr; dest_ring->base_addr_owner_space_unaligned = pci_alloc_consistent(ar_pci->pdev, ((unsigned long )nentries + 1UL) * 8UL, & base_addr); } if ((unsigned long )dest_ring->base_addr_owner_space_unaligned == (unsigned long )((void *)0)) { { kfree((void const *)ce_state->dest_ring); ce_state->dest_ring = (struct ath10k_ce_ring *)0; } return (-12); } else { } { dest_ring->base_addr_ce_space_unaligned = (u32 )base_addr; memset(dest_ring->base_addr_owner_space_unaligned, 0, ((unsigned long )nentries + 1UL) * 8UL); dest_ring->base_addr_owner_space = (void *)(((unsigned long )dest_ring->base_addr_owner_space_unaligned + 7UL) & 0xfffffffffffffff8UL); dest_ring->base_addr_ce_space = (dest_ring->base_addr_ce_space_unaligned + 7U) & 4294967288U; ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, dest_ring->base_addr_ce_space); ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries); ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0U); ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0U); ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries); ath10k_dbg(32, "boot ce dest ring id %d entries %d base_addr %p\n", ce_id, nentries, dest_ring->base_addr_owner_space); } return (0); } } static struct ath10k_ce_pipe *ath10k_ce_init_state(struct ath10k *ar , unsigned int ce_id , struct ce_attr const *attr ) { struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; struct ath10k_ce_pipe *ce_state ; u32 ctrl_addr ; u32 tmp___0 ; { { tmp = ath10k_pci_priv(ar); ar_pci = tmp; ce_state = (struct ath10k_ce_pipe *)(& ar_pci->ce_states) + (unsigned long )ce_id; tmp___0 = ath10k_ce_base_address(ce_id); ctrl_addr = tmp___0; ldv_spin_lock_bh_83(& ar_pci->ce_lock); ce_state->ar = ar; ce_state->id = ce_id; ce_state->ctrl_addr = ctrl_addr; ce_state->attr_flags = attr->flags; ce_state->src_sz_max = attr->src_sz_max; ldv_spin_unlock_bh_84(& ar_pci->ce_lock); } return (ce_state); } } extern void __compiletime_assert_1071(void) ; extern void __compiletime_assert_1073(void) ; struct ath10k_ce_pipe *ath10k_ce_init(struct ath10k *ar , unsigned int ce_id , struct ce_attr const *attr ) { struct ath10k_ce_pipe *ce_state ; int ret ; bool __cond ; bool __cond___0 ; { __cond = 0; if ((int )__cond) { { __compiletime_assert_1071(); } } else { } __cond___0 = 0; if ((int )__cond___0) { { __compiletime_assert_1073(); } } else { } { ret = ath10k_pci_wake(ar); } if (ret != 0) { return ((struct ath10k_ce_pipe *)0); } else { } { ce_state = ath10k_ce_init_state(ar, ce_id, attr); } if ((unsigned long )ce_state == (unsigned long )((struct ath10k_ce_pipe *)0)) { { ath10k_err("Failed to initialize CE state for ID: %d\n", ce_id); } goto out; } else { } if ((unsigned int )attr->src_nentries != 0U) { { ret = ath10k_ce_init_src_ring(ar, ce_id, ce_state, attr); } if (ret != 0) { { ath10k_err("Failed to initialize CE src ring for ID: %d (%d)\n", ce_id, ret); ath10k_ce_deinit(ce_state); ce_state = (struct ath10k_ce_pipe *)0; } goto out; } else { } } else { } if ((unsigned int )attr->dest_nentries != 0U) { { ret = ath10k_ce_init_dest_ring(ar, ce_id, ce_state, attr); } if (ret != 0) { { ath10k_err("Failed to initialize CE dest ring for ID: %d (%d)\n", ce_id, ret); ath10k_ce_deinit(ce_state); ce_state = (struct ath10k_ce_pipe *)0; } goto out; } else { } } else { } out: { ath10k_pci_sleep(ar); } return (ce_state); } } void ath10k_ce_deinit(struct ath10k_ce_pipe *ce_state ) { struct ath10k *ar ; struct ath10k_pci *ar_pci ; struct ath10k_pci *tmp ; { { ar = ce_state->ar; tmp = ath10k_pci_priv(ar); ar_pci = tmp; } if ((unsigned long )ce_state->src_ring != (unsigned long )((struct ath10k_ce_ring *)0)) { { kfree((void const *)(ce_state->src_ring)->shadow_base_unaligned); pci_free_consistent(ar_pci->pdev, ((unsigned long )(ce_state->src_ring)->nentries + 1UL) * 8UL, (ce_state->src_ring)->base_addr_owner_space, (dma_addr_t )(ce_state->src_ring)->base_addr_ce_space); kfree((void const *)ce_state->src_ring); } } else { } if ((unsigned long )ce_state->dest_ring != (unsigned long )((struct ath10k_ce_ring *)0)) { { pci_free_consistent(ar_pci->pdev, ((unsigned long )(ce_state->dest_ring)->nentries + 1UL) * 8UL, (ce_state->dest_ring)->base_addr_owner_space, (dma_addr_t )(ce_state->dest_ring)->base_addr_ce_space); kfree((void const *)ce_state->dest_ring); } } else { } ce_state->src_ring = (struct ath10k_ce_ring *)0; ce_state->dest_ring = (struct ath10k_ce_ring *)0; return; } } __inline static void ldv_spin_lock_bh_83(spinlock_t *lock ) { { { ldv_spin_lock_ce_lock_of_ath10k_pci(); spin_lock_bh(lock); } return; } } __inline static void ldv_spin_unlock_bh_84(spinlock_t *lock ) { { { ldv_spin_unlock_ce_lock_of_ath10k_pci(); spin_unlock_bh(lock); } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_ce_lock_of_ath10k_pci = 1; void ldv_spin_lock_ce_lock_of_ath10k_pci(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_ce_lock_of_ath10k_pci == 1); ldv_assume(ldv_spin_ce_lock_of_ath10k_pci == 1); ldv_spin_ce_lock_of_ath10k_pci = 2; } return; } } void ldv_spin_unlock_ce_lock_of_ath10k_pci(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_ce_lock_of_ath10k_pci == 2); ldv_assume(ldv_spin_ce_lock_of_ath10k_pci == 2); ldv_spin_ce_lock_of_ath10k_pci = 1; } return; } } int ldv_spin_trylock_ce_lock_of_ath10k_pci(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ce_lock_of_ath10k_pci == 1); ldv_assume(ldv_spin_ce_lock_of_ath10k_pci == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ce_lock_of_ath10k_pci = 2; return (1); } } } void ldv_spin_unlock_wait_ce_lock_of_ath10k_pci(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ce_lock_of_ath10k_pci == 1); ldv_assume(ldv_spin_ce_lock_of_ath10k_pci == 1); } return; } } int ldv_spin_is_locked_ce_lock_of_ath10k_pci(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ce_lock_of_ath10k_pci == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ce_lock_of_ath10k_pci(void) { int tmp ; { { tmp = ldv_spin_is_locked_ce_lock_of_ath10k_pci(); } return (tmp == 0); } } int ldv_spin_is_contended_ce_lock_of_ath10k_pci(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ce_lock_of_ath10k_pci(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ce_lock_of_ath10k_pci == 1); ldv_assume(ldv_spin_ce_lock_of_ath10k_pci == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ce_lock_of_ath10k_pci = 2; return (1); } else { } return (0); } } static int ldv_spin_compl_lock_of_ath10k_pci = 1; void ldv_spin_lock_compl_lock_of_ath10k_pci(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_compl_lock_of_ath10k_pci == 1); ldv_assume(ldv_spin_compl_lock_of_ath10k_pci == 1); ldv_spin_compl_lock_of_ath10k_pci = 2; } return; } } void ldv_spin_unlock_compl_lock_of_ath10k_pci(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_compl_lock_of_ath10k_pci == 2); ldv_assume(ldv_spin_compl_lock_of_ath10k_pci == 2); ldv_spin_compl_lock_of_ath10k_pci = 1; } return; } } int ldv_spin_trylock_compl_lock_of_ath10k_pci(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_compl_lock_of_ath10k_pci == 1); ldv_assume(ldv_spin_compl_lock_of_ath10k_pci == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_compl_lock_of_ath10k_pci = 2; return (1); } } } void ldv_spin_unlock_wait_compl_lock_of_ath10k_pci(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_compl_lock_of_ath10k_pci == 1); ldv_assume(ldv_spin_compl_lock_of_ath10k_pci == 1); } return; } } int ldv_spin_is_locked_compl_lock_of_ath10k_pci(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_compl_lock_of_ath10k_pci == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_compl_lock_of_ath10k_pci(void) { int tmp ; { { tmp = ldv_spin_is_locked_compl_lock_of_ath10k_pci(); } return (tmp == 0); } } int ldv_spin_is_contended_compl_lock_of_ath10k_pci(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_compl_lock_of_ath10k_pci(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_compl_lock_of_ath10k_pci == 1); ldv_assume(ldv_spin_compl_lock_of_ath10k_pci == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_compl_lock_of_ath10k_pci = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_pipe_lock_of_ath10k_pci_pipe = 1; void ldv_spin_lock_pipe_lock_of_ath10k_pci_pipe(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_pipe_lock_of_ath10k_pci_pipe == 1); ldv_assume(ldv_spin_pipe_lock_of_ath10k_pci_pipe == 1); ldv_spin_pipe_lock_of_ath10k_pci_pipe = 2; } return; } } void ldv_spin_unlock_pipe_lock_of_ath10k_pci_pipe(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_pipe_lock_of_ath10k_pci_pipe == 2); ldv_assume(ldv_spin_pipe_lock_of_ath10k_pci_pipe == 2); ldv_spin_pipe_lock_of_ath10k_pci_pipe = 1; } return; } } int ldv_spin_trylock_pipe_lock_of_ath10k_pci_pipe(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_pipe_lock_of_ath10k_pci_pipe == 1); ldv_assume(ldv_spin_pipe_lock_of_ath10k_pci_pipe == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_pipe_lock_of_ath10k_pci_pipe = 2; return (1); } } } void ldv_spin_unlock_wait_pipe_lock_of_ath10k_pci_pipe(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_pipe_lock_of_ath10k_pci_pipe == 1); ldv_assume(ldv_spin_pipe_lock_of_ath10k_pci_pipe == 1); } return; } } int ldv_spin_is_locked_pipe_lock_of_ath10k_pci_pipe(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_pipe_lock_of_ath10k_pci_pipe == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_pipe_lock_of_ath10k_pci_pipe(void) { int tmp ; { { tmp = ldv_spin_is_locked_pipe_lock_of_ath10k_pci_pipe(); } return (tmp == 0); } } int ldv_spin_is_contended_pipe_lock_of_ath10k_pci_pipe(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_pipe_lock_of_ath10k_pci_pipe(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_pipe_lock_of_ath10k_pci_pipe == 1); ldv_assume(ldv_spin_pipe_lock_of_ath10k_pci_pipe == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_pipe_lock_of_ath10k_pci_pipe = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_ce_lock_of_ath10k_pci == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_compl_lock_of_ath10k_pci == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_i_lock_of_inode == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_pipe_lock_of_ath10k_pci_pipe == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_ptl == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_siglock_of_sighand_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_ce_lock_of_ath10k_pci == 2) { return (1); } else { } if (ldv_spin_compl_lock_of_ath10k_pci == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_pipe_lock_of_ath10k_pci_pipe == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }