/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u16 __sum16; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct device; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; struct arch_spinlock; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_15 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_15 __annonCompField7 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_17 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_16 { s64 lock ; struct __anonstruct____missing_field_name_17 __annonCompField8 ; }; typedef union __anonunion_arch_rwlock_t_16 arch_rwlock_t; typedef void (*ctor_fn_t)(void); struct net_device; struct file_operations; struct completion; struct pid; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct lockdep_map; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_133 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_133 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_136 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_137 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_135 { struct __anonstruct____missing_field_name_136 __annonCompField34 ; struct __anonstruct____missing_field_name_137 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_135 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_138 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_144 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_143 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_144 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_141 { unsigned long counters ; struct __anonstruct____missing_field_name_142 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_139 { union __anonunion____missing_field_name_140 __annonCompField38 ; union __anonunion____missing_field_name_141 __annonCompField42 ; }; struct __anonstruct____missing_field_name_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_145 { struct list_head lru ; struct __anonstruct____missing_field_name_146 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_147 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct __anonstruct____missing_field_name_139 __annonCompField43 ; union __anonunion____missing_field_name_145 __annonCompField45 ; union __anonunion____missing_field_name_147 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_151 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_151 sync_serial_settings; struct __anonstruct_te1_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_152 te1_settings; struct __anonstruct_raw_hdlc_proto_153 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_153 raw_hdlc_proto; struct __anonstruct_fr_proto_154 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_154 fr_proto; struct __anonstruct_fr_proto_pvc_155 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_155 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_156 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_156 fr_proto_pvc_info; struct __anonstruct_cisco_proto_157 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_157 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_158 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_158 ifs_ifsu ; }; union __anonunion_ifr_ifrn_159 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_160 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_159 ifr_ifrn ; union __anonunion_ifr_ifru_160 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_163 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_162 { struct __anonstruct____missing_field_name_163 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_162 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_165 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_164 { struct __anonstruct____missing_field_name_165 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_164 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_166 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_168 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_168 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_169 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_169 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_171 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_170 { size_t written ; size_t count ; union __anonunion_arg_171 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_170 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_172 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_173 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_174 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_172 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_173 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_174 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_175 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_175 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_177 { struct list_head link ; int state ; }; union __anonunion_fl_u_176 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_177 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_176 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_178 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_178 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_180 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_181 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_184 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_185 { long _band ; int _fd ; }; struct __anonstruct__sigsys_186 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_179 { int _pad[28U] ; struct __anonstruct__kill_180 _kill ; struct __anonstruct__timer_181 _timer ; struct __anonstruct__rt_182 _rt ; struct __anonstruct__sigchld_183 _sigchld ; struct __anonstruct__sigfault_184 _sigfault ; struct __anonstruct__sigpoll_185 _sigpoll ; struct __anonstruct__sigsys_186 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_179 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_190 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_189 { struct __anonstruct____missing_field_name_190 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_189 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_191 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_192 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_194 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_193 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; union __anonunion_type_data_195 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_197 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_196 { union __anonunion_payload_197 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_191 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_192 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_193 __annonCompField60 ; union __anonunion_type_data_195 type_data ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_21634 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_21634 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_214 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_215 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField63 ; struct __anonstruct____missing_field_name_215 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_213 __annonCompField65 ; }; struct exception_table_entry { int insn ; int fixup ; }; struct in6_addr; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_217 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_217 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_219 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_218 { __wsum csum ; struct __anonstruct____missing_field_name_219 __annonCompField67 ; }; union __anonunion____missing_field_name_220 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_221 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_218 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_221 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6_mib_device { atomic_long_t mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6msg_mib_device { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; union __anonunion_in6_u_224 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_224 in6_u ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_27992 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_27993 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_27992 reg_state : 8 ; bool dismantle ; enum ldv_27993 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct msix_entry { u32 vector ; u16 entry ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_246 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_246 __annonCompField76 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct iphdr { __u8 ihl : 4 ; __u8 version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct res_counter { unsigned long long usage ; unsigned long long max_usage ; unsigned long long limit ; unsigned long long soft_limit ; unsigned long long failcnt ; spinlock_t lock ; struct res_counter *parent ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * ); union __anonunion_ki_obj_251 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void *private ; union __anonunion_ki_obj_251 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; size_t ki_nbytes ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; union __anonunion____missing_field_name_252 { struct sock_filter insns[0U] ; struct work_struct work ; }; struct sk_filter { atomic_t refcnt ; unsigned int len ; struct callback_head rcu ; unsigned int (*bpf_func)(struct sk_buff const * , struct sock_filter const * ) ; union __anonunion____missing_field_name_252 __annonCompField77 ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct neigh_parms *next ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { struct neigh_table *next ; int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_254 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_254 __annonCompField78 ; }; struct __anonstruct_socket_lock_t_255 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_255 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_257 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_256 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_257 __annonCompField79 ; }; union __anonunion____missing_field_name_258 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_260 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_259 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_260 __annonCompField82 ; }; union __anonunion____missing_field_name_261 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_262 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_256 __annonCompField80 ; union __anonunion____missing_field_name_258 __annonCompField81 ; union __anonunion____missing_field_name_259 __annonCompField83 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 4 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_261 __annonCompField84 ; struct proto *skc_prot ; struct net *skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_262 __annonCompField85 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_263 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_263 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned int sk_shutdown : 2 ; unsigned int sk_no_check : 2 ; unsigned int sk_userlocks : 4 ; unsigned int sk_protocol : 8 ; unsigned int sk_type : 16 ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * , int ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_264 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*mtu_reduced)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_264 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct res_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct sock_common __req_common ; struct request_sock *dl_next ; u16 mss ; u8 num_retrans ; u8 cookie_ts : 1 ; u8 num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; struct tcphdr { __be16 source ; __be16 dest ; __be32 seq ; __be32 ack_seq ; __u16 res1 : 4 ; __u16 doff : 4 ; __u16 fin : 1 ; __u16 syn : 1 ; __u16 rst : 1 ; __u16 psh : 1 ; __u16 ack : 1 ; __u16 urg : 1 ; __u16 ece : 1 ; __u16 cwr : 1 ; __be16 window ; __sum16 check ; __be16 urg_ptr ; }; struct ipv6_devconf { __s32 forwarding ; __s32 hop_limit ; __s32 mtu6 ; __s32 accept_ra ; __s32 accept_redirects ; __s32 autoconf ; __s32 dad_transmits ; __s32 rtr_solicits ; __s32 rtr_solicit_interval ; __s32 rtr_solicit_delay ; __s32 force_mld_version ; __s32 mldv1_unsolicited_report_interval ; __s32 mldv2_unsolicited_report_interval ; __s32 use_tempaddr ; __s32 temp_valid_lft ; __s32 temp_prefered_lft ; __s32 regen_max_retry ; __s32 max_desync_factor ; __s32 max_addresses ; __s32 accept_ra_defrtr ; __s32 accept_ra_pinfo ; __s32 accept_ra_rtr_pref ; __s32 rtr_probe_interval ; __s32 accept_ra_rt_info_max_plen ; __s32 proxy_ndp ; __s32 accept_source_route ; __s32 optimistic_dad ; __s32 mc_forwarding ; __s32 disable_ipv6 ; __s32 accept_dad ; __s32 force_tllao ; __s32 ndisc_notify ; __s32 suppress_frag_ndisc ; void *sysctl ; }; struct ip6_sf_list { struct ip6_sf_list *sf_next ; struct in6_addr sf_addr ; unsigned long sf_count[2U] ; unsigned char sf_gsresp ; unsigned char sf_oldin ; unsigned char sf_crcount ; }; struct ifmcaddr6 { struct in6_addr mca_addr ; struct inet6_dev *idev ; struct ifmcaddr6 *next ; struct ip6_sf_list *mca_sources ; struct ip6_sf_list *mca_tomb ; unsigned int mca_sfmode ; unsigned char mca_crcount ; unsigned long mca_sfcount[2U] ; struct timer_list mca_timer ; unsigned int mca_flags ; int mca_users ; atomic_t mca_refcnt ; spinlock_t mca_lock ; unsigned long mca_cstamp ; unsigned long mca_tstamp ; }; struct ifacaddr6 { struct in6_addr aca_addr ; struct inet6_dev *aca_idev ; struct rt6_info *aca_rt ; struct ifacaddr6 *aca_next ; int aca_users ; atomic_t aca_refcnt ; spinlock_t aca_lock ; unsigned long aca_cstamp ; unsigned long aca_tstamp ; }; struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry ; struct ipstats_mib *ipv6[1U] ; struct icmpv6_mib_device *icmpv6dev ; struct icmpv6msg_mib_device *icmpv6msgdev ; }; struct inet6_dev { struct net_device *dev ; struct list_head addr_list ; struct ifmcaddr6 *mc_list ; struct ifmcaddr6 *mc_tomb ; spinlock_t mc_lock ; unsigned char mc_qrv ; unsigned char mc_gq_running ; unsigned char mc_ifc_count ; unsigned char mc_dad_count ; unsigned long mc_v1_seen ; unsigned long mc_qi ; unsigned long mc_qri ; unsigned long mc_maxdelay ; struct timer_list mc_gq_timer ; struct timer_list mc_ifc_timer ; struct timer_list mc_dad_timer ; struct ifacaddr6 *ac_list ; rwlock_t lock ; atomic_t refcnt ; __u32 if_flags ; int dead ; u8 rndid[8U] ; struct timer_list regen_timer ; struct list_head tempaddr_list ; struct in6_addr token ; struct neigh_parms *nd_parms ; struct ipv6_devconf cnf ; struct ipv6_devstat stats ; struct timer_list rs_timer ; __u8 rs_probes ; unsigned long tstamp ; struct callback_head rcu ; }; union __anonunion____missing_field_name_278 { __be32 a4 ; __be32 a6[4U] ; }; struct inetpeer_addr_base { union __anonunion____missing_field_name_278 __annonCompField86 ; }; struct inetpeer_addr { struct inetpeer_addr_base addr ; __u16 family ; }; union __anonunion____missing_field_name_279 { struct list_head gc_list ; struct callback_head gc_rcu ; }; struct __anonstruct____missing_field_name_281 { atomic_t rid ; atomic_t ip_id_count ; }; union __anonunion____missing_field_name_280 { struct __anonstruct____missing_field_name_281 __annonCompField88 ; struct callback_head rcu ; struct inet_peer *gc_next ; }; struct inet_peer { struct inet_peer *avl_left ; struct inet_peer *avl_right ; struct inetpeer_addr daddr ; __u32 avl_height ; u32 metrics[15U] ; u32 rate_tokens ; unsigned long rate_last ; union __anonunion____missing_field_name_279 __annonCompField87 ; union __anonunion____missing_field_name_280 __annonCompField89 ; __u32 dtime ; atomic_t refcnt ; }; struct inet_peer_base { struct inet_peer *root ; seqlock_t lock ; u32 flush_seq ; int total ; }; struct rtable { struct dst_entry dst ; int rt_genid ; unsigned int rt_flags ; __u16 rt_type ; __u8 rt_is_input ; __u8 rt_uses_gateway ; int rt_iif ; __be32 rt_gateway ; u32 rt_pmtu ; struct list_head rt_uncached ; }; struct inet_ehash_bucket { struct hlist_nulls_head chain ; }; struct inet_bind_hashbucket { spinlock_t lock ; struct hlist_head chain ; }; struct inet_listen_hashbucket { spinlock_t lock ; struct hlist_nulls_head head ; }; struct inet_hashinfo { struct inet_ehash_bucket *ehash ; spinlock_t *ehash_locks ; unsigned int ehash_mask ; unsigned int ehash_locks_mask ; struct inet_bind_hashbucket *bhash ; unsigned int bhash_size ; struct kmem_cache *bind_bucket_cachep ; struct inet_listen_hashbucket listening_hash[32U] ; atomic_t bsockets ; }; struct swStat { unsigned long long single_ecc_errs ; unsigned long long double_ecc_errs ; unsigned long long parity_err_cnt ; unsigned long long serious_err_cnt ; unsigned long long soft_reset_cnt ; unsigned long long fifo_full_cnt ; unsigned long long ring_full_cnt[8U] ; unsigned long long clubbed_frms_cnt ; unsigned long long sending_both ; unsigned long long outof_sequence_pkts ; unsigned long long flush_max_pkts ; unsigned long long sum_avg_pkts_aggregated ; unsigned long long num_aggregations ; unsigned long long mem_alloc_fail_cnt ; unsigned long long pci_map_fail_cnt ; unsigned long long watchdog_timer_cnt ; unsigned long long mem_allocated ; unsigned long long mem_freed ; unsigned long long link_up_cnt ; unsigned long long link_down_cnt ; unsigned long long link_up_time ; unsigned long long link_down_time ; unsigned long long tx_buf_abort_cnt ; unsigned long long tx_desc_abort_cnt ; unsigned long long tx_parity_err_cnt ; unsigned long long tx_link_loss_cnt ; unsigned long long tx_list_proc_err_cnt ; unsigned long long rx_parity_err_cnt ; unsigned long long rx_abort_cnt ; unsigned long long rx_parity_abort_cnt ; unsigned long long rx_rda_fail_cnt ; unsigned long long rx_unkn_prot_cnt ; unsigned long long rx_fcs_err_cnt ; unsigned long long rx_buf_size_err_cnt ; unsigned long long rx_rxd_corrupt_cnt ; unsigned long long rx_unkn_err_cnt ; unsigned long long tda_err_cnt ; unsigned long long pfc_err_cnt ; unsigned long long pcc_err_cnt ; unsigned long long tti_err_cnt ; unsigned long long lso_err_cnt ; unsigned long long tpa_err_cnt ; unsigned long long sm_err_cnt ; unsigned long long mac_tmac_err_cnt ; unsigned long long mac_rmac_err_cnt ; unsigned long long xgxs_txgxs_err_cnt ; unsigned long long xgxs_rxgxs_err_cnt ; unsigned long long rc_err_cnt ; unsigned long long prc_pcix_err_cnt ; unsigned long long rpa_err_cnt ; unsigned long long rda_err_cnt ; unsigned long long rti_err_cnt ; unsigned long long mc_err_cnt ; }; struct xpakStat { u64 alarm_transceiver_temp_high ; u64 alarm_transceiver_temp_low ; u64 alarm_laser_bias_current_high ; u64 alarm_laser_bias_current_low ; u64 alarm_laser_output_power_high ; u64 alarm_laser_output_power_low ; u64 warn_transceiver_temp_high ; u64 warn_transceiver_temp_low ; u64 warn_laser_bias_current_high ; u64 warn_laser_bias_current_low ; u64 warn_laser_output_power_high ; u64 warn_laser_output_power_low ; u64 xpak_regs_stat ; u32 xpak_timer_count ; }; struct stat_block { __le32 tmac_data_octets ; __le32 tmac_frms ; __le64 tmac_drop_frms ; __le32 tmac_bcst_frms ; __le32 tmac_mcst_frms ; __le64 tmac_pause_ctrl_frms ; __le32 tmac_ucst_frms ; __le32 tmac_ttl_octets ; __le32 tmac_any_err_frms ; __le32 tmac_nucst_frms ; __le64 tmac_ttl_less_fb_octets ; __le64 tmac_vld_ip_octets ; __le32 tmac_drop_ip ; __le32 tmac_vld_ip ; __le32 tmac_rst_tcp ; __le32 tmac_icmp ; __le64 tmac_tcp ; __le32 reserved_0 ; __le32 tmac_udp ; __le32 rmac_data_octets ; __le32 rmac_vld_frms ; __le64 rmac_fcs_err_frms ; __le64 rmac_drop_frms ; __le32 rmac_vld_bcst_frms ; __le32 rmac_vld_mcst_frms ; __le32 rmac_out_rng_len_err_frms ; __le32 rmac_in_rng_len_err_frms ; __le64 rmac_long_frms ; __le64 rmac_pause_ctrl_frms ; __le64 rmac_unsup_ctrl_frms ; __le32 rmac_accepted_ucst_frms ; __le32 rmac_ttl_octets ; __le32 rmac_discarded_frms ; __le32 rmac_accepted_nucst_frms ; __le32 reserved_1 ; __le32 rmac_drop_events ; __le64 rmac_ttl_less_fb_octets ; __le64 rmac_ttl_frms ; __le64 reserved_2 ; __le32 rmac_usized_frms ; __le32 reserved_3 ; __le32 rmac_frag_frms ; __le32 rmac_osized_frms ; __le32 reserved_4 ; __le32 rmac_jabber_frms ; __le64 rmac_ttl_64_frms ; __le64 rmac_ttl_65_127_frms ; __le64 reserved_5 ; __le64 rmac_ttl_128_255_frms ; __le64 rmac_ttl_256_511_frms ; __le64 reserved_6 ; __le64 rmac_ttl_512_1023_frms ; __le64 rmac_ttl_1024_1518_frms ; __le32 rmac_ip ; __le32 reserved_7 ; __le64 rmac_ip_octets ; __le32 rmac_drop_ip ; __le32 rmac_hdr_err_ip ; __le32 reserved_8 ; __le32 rmac_icmp ; __le64 rmac_tcp ; __le32 rmac_err_drp_udp ; __le32 rmac_udp ; __le64 rmac_xgmii_err_sym ; __le64 rmac_frms_q0 ; __le64 rmac_frms_q1 ; __le64 rmac_frms_q2 ; __le64 rmac_frms_q3 ; __le64 rmac_frms_q4 ; __le64 rmac_frms_q5 ; __le64 rmac_frms_q6 ; __le64 rmac_frms_q7 ; __le16 rmac_full_q3 ; __le16 rmac_full_q2 ; __le16 rmac_full_q1 ; __le16 rmac_full_q0 ; __le16 rmac_full_q7 ; __le16 rmac_full_q6 ; __le16 rmac_full_q5 ; __le16 rmac_full_q4 ; __le32 reserved_9 ; __le32 rmac_pause_cnt ; __le64 rmac_xgmii_data_err_cnt ; __le64 rmac_xgmii_ctrl_err_cnt ; __le32 rmac_err_tcp ; __le32 rmac_accepted_ip ; __le32 new_rd_req_cnt ; __le32 rd_req_cnt ; __le32 rd_rtry_cnt ; __le32 new_rd_req_rtry_cnt ; __le32 wr_req_cnt ; __le32 wr_rtry_rd_ack_cnt ; __le32 new_wr_req_rtry_cnt ; __le32 new_wr_req_cnt ; __le32 wr_disc_cnt ; __le32 wr_rtry_cnt ; __le32 txp_wr_cnt ; __le32 rd_rtry_wr_ack_cnt ; __le32 txd_wr_cnt ; __le32 txd_rd_cnt ; __le32 rxd_wr_cnt ; __le32 rxd_rd_cnt ; __le32 rxf_wr_cnt ; __le32 txf_rd_cnt ; __le32 tmac_data_octets_oflow ; __le32 tmac_frms_oflow ; __le32 tmac_bcst_frms_oflow ; __le32 tmac_mcst_frms_oflow ; __le32 tmac_ucst_frms_oflow ; __le32 tmac_ttl_octets_oflow ; __le32 tmac_any_err_frms_oflow ; __le32 tmac_nucst_frms_oflow ; __le64 tmac_vlan_frms ; __le32 tmac_drop_ip_oflow ; __le32 tmac_vld_ip_oflow ; __le32 tmac_rst_tcp_oflow ; __le32 tmac_icmp_oflow ; __le32 tpa_unknown_protocol ; __le32 tmac_udp_oflow ; __le32 reserved_10 ; __le32 tpa_parse_failure ; __le32 rmac_data_octets_oflow ; __le32 rmac_vld_frms_oflow ; __le32 rmac_vld_bcst_frms_oflow ; __le32 rmac_vld_mcst_frms_oflow ; __le32 rmac_accepted_ucst_frms_oflow ; __le32 rmac_ttl_octets_oflow ; __le32 rmac_discarded_frms_oflow ; __le32 rmac_accepted_nucst_frms_oflow ; __le32 rmac_usized_frms_oflow ; __le32 rmac_drop_events_oflow ; __le32 rmac_frag_frms_oflow ; __le32 rmac_osized_frms_oflow ; __le32 rmac_ip_oflow ; __le32 rmac_jabber_frms_oflow ; __le32 rmac_icmp_oflow ; __le32 rmac_drop_ip_oflow ; __le32 rmac_err_drp_udp_oflow ; __le32 rmac_udp_oflow ; __le32 reserved_11 ; __le32 rmac_pause_cnt_oflow ; __le64 rmac_ttl_1519_4095_frms ; __le64 rmac_ttl_4096_8191_frms ; __le64 rmac_ttl_8192_max_frms ; __le64 rmac_ttl_gt_max_frms ; __le64 rmac_osized_alt_frms ; __le64 rmac_jabber_alt_frms ; __le64 rmac_gt_max_alt_frms ; __le64 rmac_vlan_frms ; __le32 rmac_len_discard ; __le32 rmac_fcs_discard ; __le32 rmac_pf_discard ; __le32 rmac_da_discard ; __le32 rmac_red_discard ; __le32 rmac_rts_discard ; __le32 reserved_12 ; __le32 rmac_ingm_full_discard ; __le32 reserved_13 ; __le32 rmac_accepted_ip_oflow ; __le32 reserved_14 ; __le32 link_fault_cnt ; u8 buffer[20U] ; struct swStat sw_stat ; struct xpakStat xpak_stat ; }; struct tx_fifo_config { u32 fifo_len ; u8 fifo_priority ; u8 f_no_snoop ; }; struct rx_ring_config { u32 num_rxd ; u8 ring_priority ; u8 ring_org ; u8 f_no_snoop ; }; struct config_param { u32 tx_fifo_num ; u8 tx_steering_type ; u8 fifo_mapping[8U] ; struct tx_fifo_config tx_cfg[8U] ; u32 max_txds ; u64 tx_intr_type ; u8 intr_type ; u8 napi ; u32 rx_ring_num ; struct rx_ring_config rx_cfg[8U] ; u16 bus_speed ; int max_mc_addr ; int max_mac_addr ; int mc_start_offset ; u8 multiq ; }; struct mac_addr { u8 mac_addr[6U] ; }; struct TxFIFO_element { u64 TxDL_Pointer ; u64 List_Control ; }; struct TxD { u64 Control_1 ; u64 Control_2 ; u64 Buffer_Pointer ; u64 Host_Control ; }; struct list_info_hold { dma_addr_t list_phy_addr ; void *list_virt_addr ; }; struct RxD_t { u64 Host_Control ; u64 Control_1 ; u64 Control_2 ; }; struct RxD1 { struct RxD_t h ; u64 Buffer0_ptr ; }; struct RxD3 { struct RxD_t h ; u64 Buffer0_ptr ; u64 Buffer1_ptr ; u64 Buffer2_ptr ; }; struct RxD_block { struct RxD1 rxd[127U] ; u64 reserved_0 ; u64 reserved_1 ; u64 reserved_2_pNext_RxD_block ; u64 pNext_RxD_Blk_physical ; }; struct buffAdd { void *ba_0_org ; void *ba_1_org ; void *ba_0 ; void *ba_1 ; }; struct rx_curr_get_info { u32 block_index ; u32 offset ; u32 ring_len ; }; struct rx_curr_put_info { u32 block_index ; u32 offset ; u32 ring_len ; }; struct tx_curr_get_info { u32 offset ; u32 fifo_len ; }; struct tx_curr_put_info { u32 offset ; u32 fifo_len ; }; struct rxd_info { void *virt_addr ; dma_addr_t dma_addr ; }; struct rx_block_info { void *block_virt_addr ; dma_addr_t block_dma_addr ; struct rxd_info *rxds ; }; struct lro { struct sk_buff *parent ; struct sk_buff *last_frag ; u8 *l2h ; struct iphdr *iph ; struct tcphdr *tcph ; u32 tcp_next_seq ; __be32 tcp_ack ; int total_len ; int frags_len ; int sg_num ; int in_use ; __be16 window ; u16 vlan_tag ; u32 cur_tsval ; __be32 cur_tsecr ; u8 saw_ts ; }; struct s2io_nic; struct ring_info { int ring_no ; u32 rx_bufs_left ; struct lro lro0_n[32U] ; u8 lro ; int rxd_mode ; int rxd_count ; struct s2io_nic *nic ; struct net_device *dev ; struct pci_dev *pdev ; struct napi_struct napi ; unsigned long interrupt_count ; struct rx_block_info rx_blocks[150U] ; int block_count ; int pkt_cnt ; struct rx_curr_put_info rx_curr_put_info ; struct rx_curr_get_info rx_curr_get_info ; unsigned int mtu ; struct buffAdd **ba ; }; struct fifo_info { int fifo_no ; int max_txds ; struct list_info_hold *list_info ; struct tx_curr_put_info tx_curr_put_info ; struct tx_curr_get_info tx_curr_get_info ; int queue_state ; struct net_device *dev ; u8 multiq ; spinlock_t tx_lock ; u64 *ufo_in_band_v ; struct s2io_nic *nic ; }; struct mac_info { struct TxFIFO_element *tx_FIFO_start[8U] ; struct fifo_info fifos[8U] ; void *zerodma_virt_addr ; struct ring_info rings[8U] ; u16 rmac_pause_time ; u16 mc_pause_threshold_q0q3 ; u16 mc_pause_threshold_q4q7 ; void *stats_mem ; dma_addr_t stats_mem_phy ; u32 stats_mem_sz ; struct stat_block *stats_info ; }; struct s2io_msix_entry { u16 vector ; u16 entry ; void *arg ; u8 type ; u8 in_use ; }; struct msix_info_st { u64 addr ; u64 data ; }; struct s2io_nic { int rxd_mode ; int pkts_to_process ; struct net_device *dev ; struct mac_info mac_control ; struct config_param config ; struct pci_dev *pdev ; void *bar0 ; void *bar1 ; struct mac_addr def_mac_addr[256U] ; struct net_device_stats stats ; int high_dma_flag ; int device_enabled_once ; char name[60U] ; struct timer_list alarm_timer ; u32 config_space[64U] ; u16 mc_addr_count ; u16 m_cast_flg ; u16 all_multi_pos ; u16 promisc_flg ; struct work_struct rst_timer_task ; struct work_struct set_link_task ; int rx_csum ; u16 fifo_selector[8U] ; u8 total_tcp_fifos ; u8 udp_fifo_idx ; u8 total_udp_fifos ; u8 other_fifo_idx ; struct napi_struct napi ; u64 adapt_ctrl_org ; u16 last_link_state ; int task_flag ; unsigned long long start_time ; int vlan_strip_flag ; int num_entries ; struct msix_entry *entries ; int msi_detected ; wait_queue_head_t msi_wait ; struct s2io_msix_entry *s2io_entries ; char desc[9U][25U] ; int avail_msix_vectors ; struct msix_info_st msix_info[63U] ; u8 device_type ; unsigned long clubbed_frms_cnt ; unsigned long sending_both ; u16 lro_max_aggr_per_sess ; unsigned long volatile state ; u64 general_int_mask ; u8 product_name[80U] ; u8 serial_num[80U] ; }; struct XENA_dev_config { u64 general_int_status ; u64 general_int_mask ; u8 unused0[240U] ; u64 sw_reset ; u64 adapter_status ; u64 adapter_control ; u64 serr_source ; u64 pci_mode ; u8 unused_0[1752U] ; u64 pic_int_status ; u64 pic_int_mask ; u64 txpic_int_reg ; u64 txpic_int_mask ; u64 txpic_alarms ; u64 rxpic_int_reg ; u64 rxpic_int_mask ; u64 rxpic_alarms ; u64 flsh_int_reg ; u64 flsh_int_mask ; u64 flash_alarms ; u64 mdio_int_reg ; u64 mdio_int_mask ; u64 mdio_alarms ; u64 iic_int_reg ; u64 iic_int_mask ; u64 iic_alarms ; u8 unused4[8U] ; u64 gpio_int_reg ; u64 gpio_int_mask ; u64 gpio_alarms ; u8 unused5[56U] ; u64 tx_traffic_int ; u64 tx_traffic_mask ; u64 rx_traffic_int ; u64 rx_traffic_mask ; u64 pic_control ; u64 swapper_ctrl ; u64 pif_rd_swapper_fb ; u64 scheduled_int_ctrl ; u64 txreqtimeout ; u64 statsreqtimeout ; u64 read_retry_delay ; u64 read_retry_acceleration ; u64 write_retry_delay ; u64 write_retry_acceleration ; u64 xmsi_control ; u64 xmsi_access ; u64 xmsi_address ; u64 xmsi_data ; u64 rx_mat ; u8 unused6[8U] ; u64 tx_mat0_n[8U] ; u64 xmsi_mask_reg ; u64 stat_byte_cnt ; u64 stat_cfg ; u64 stat_addr ; u64 mdio_control ; u64 dtx_control ; u64 i2c_control ; u64 gpio_control ; u64 misc_control ; u8 unused7_1[40U] ; u64 pic_control2 ; u64 ini_dperr_ctrl ; u64 wreq_split_mask ; u8 unused7_2[1464U] ; u64 txdma_int_status ; u64 txdma_int_mask ; u64 pfc_err_reg ; u64 pfc_err_mask ; u64 pfc_err_alarm ; u64 tda_err_reg ; u64 tda_err_mask ; u64 tda_err_alarm ; u64 pcc_err_reg ; u64 pcc_err_mask ; u64 pcc_err_alarm ; u64 tti_err_reg ; u64 tti_err_mask ; u64 tti_err_alarm ; u64 lso_err_reg ; u64 lso_err_mask ; u64 lso_err_alarm ; u64 tpa_err_reg ; u64 tpa_err_mask ; u64 tpa_err_alarm ; u64 sm_err_reg ; u64 sm_err_mask ; u64 sm_err_alarm ; u8 unused8[72U] ; u64 tx_dma_wrap_stat ; u64 tx_fifo_partition_0 ; u64 tx_fifo_partition_1 ; u64 tx_fifo_partition_2 ; u64 tx_fifo_partition_3 ; u64 tx_w_round_robin_0 ; u64 tx_w_round_robin_1 ; u64 tx_w_round_robin_2 ; u64 tx_w_round_robin_3 ; u64 tx_w_round_robin_4 ; u64 tti_command_mem ; u64 tti_data1_mem ; u64 tti_data2_mem ; u64 tx_pa_cfg ; u64 pcc_enable ; u8 unused9[1416U] ; u64 txdma_debug_ctrl ; u8 unused10[248U] ; u64 rxdma_int_status ; u64 rxdma_int_mask ; u64 rda_err_reg ; u64 rda_err_mask ; u64 rda_err_alarm ; u64 rc_err_reg ; u64 rc_err_mask ; u64 rc_err_alarm ; u64 prc_pcix_err_reg ; u64 prc_pcix_err_mask ; u64 prc_pcix_err_alarm ; u64 rpa_err_reg ; u64 rpa_err_mask ; u64 rpa_err_alarm ; u64 rti_err_reg ; u64 rti_err_mask ; u64 rti_err_alarm ; u8 unused11[120U] ; u64 rx_queue_priority ; u64 rx_w_round_robin_0 ; u64 rx_w_round_robin_1 ; u64 rx_w_round_robin_2 ; u64 rx_w_round_robin_3 ; u64 rx_w_round_robin_4 ; u64 prc_rxd0_n[8U] ; u64 prc_ctrl_n[8U] ; u64 prc_alarm_action ; u64 rti_command_mem ; u64 rti_data1_mem ; u64 rti_data2_mem ; u64 rx_pa_cfg ; u64 unused_11_1 ; u64 ring_bump_counter1 ; u64 ring_bump_counter2 ; u8 unused12[1296U] ; u64 rxdma_debug_ctrl ; u8 unused13[248U] ; u64 mac_int_status ; u64 mac_int_mask ; u64 mac_tmac_err_reg ; u64 mac_tmac_err_mask ; u64 mac_tmac_err_alarm ; u64 mac_rmac_err_reg ; u64 mac_rmac_err_mask ; u64 mac_rmac_err_alarm ; u8 unused14[192U] ; u64 mac_cfg ; u64 tmac_avg_ipg ; u64 rmac_max_pyld_len ; u64 rmac_err_cfg ; u64 rmac_cfg_key ; u64 rmac_addr_cmd_mem ; u64 rmac_addr_data0_mem ; u64 rmac_addr_data1_mem ; u8 unused15[8U] ; u64 tmac_ipg_cfg ; u64 rmac_pause_cfg ; u64 rmac_red_cfg ; u64 rmac_red_rate_q0q3 ; u64 rmac_red_rate_q4q7 ; u64 mac_link_util ; u64 rmac_invalid_ipg ; u64 rts_frm_len_n[8U] ; u64 rts_qos_steering ; u64 rts_dix_map_n[4U] ; u64 rts_q_alternates ; u64 rts_default_q ; u64 rts_ctrl ; u64 rts_pn_cam_ctrl ; u64 rts_pn_cam_data ; u64 rts_ds_mem_ctrl ; u64 rts_ds_mem_data ; u8 unused16[1248U] ; u64 mac_debug_ctrl ; u8 unused17[248U] ; u64 mc_int_status ; u64 mc_int_mask ; u64 mc_err_reg ; u64 mc_err_mask ; u64 mc_err_alarm ; u8 unused18[216U] ; u64 rx_queue_cfg ; u64 mc_rldram_mrs ; u64 mc_rldram_interleave ; u64 mc_pause_thresh_q0q3 ; u64 mc_pause_thresh_q4q7 ; u64 mc_red_thresh_q[8U] ; u8 unused19[152U] ; u64 mc_rldram_ref_per ; u8 unused20[24U] ; u64 mc_rldram_test_ctrl ; u8 unused21[24U] ; u64 mc_rldram_test_add ; u8 unused22[24U] ; u64 mc_rldram_test_d0 ; u8 unused23[24U] ; u64 mc_rldram_test_d1 ; u8 unused24[120U] ; u64 mc_rldram_test_d2 ; u8 unused24_1[88U] ; u64 mc_rldram_ctrl ; u8 unused24_2[728U] ; u64 mc_rldram_ref_per_herc ; u8 unused24_3[24U] ; u64 mc_rldram_mrs_herc ; u8 unused25[152U] ; u64 mc_debug_ctrl ; u8 unused26[248U] ; u64 xgxs_int_status ; u64 xgxs_int_mask ; u64 xgxs_txgxs_err_reg ; u64 xgxs_txgxs_err_mask ; u64 xgxs_txgxs_err_alarm ; u64 xgxs_rxgxs_err_reg ; u64 xgxs_rxgxs_err_mask ; u64 xgxs_rxgxs_err_alarm ; u8 unused27[192U] ; u64 xgxs_cfg ; u64 xgxs_status ; u64 xgxs_cfg_key ; u64 xgxs_efifo_cfg ; u64 rxgxs_ber_0 ; u64 rxgxs_ber_1 ; u64 spi_control ; u64 spi_data ; }; typedef int ldv_func_ret_type; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; typedef struct net_device *ldv_func_ret_type___6; typedef struct net_device *ldv_func_ret_type___7; typedef int ldv_func_ret_type___8; typedef int ldv_func_ret_type___9; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; typedef int ldv_map; struct usb_device; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; void __builtin_prefetch(void const * , ...) ; long ldv__builtin_expect(long exp , long c ) ; void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_check_return_value_probe(int retval ) ; void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_37(int ldv_func_arg1 ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; int ldv_undef_int(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void *external_allocated_data(void) ; extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u32 __fswab32(__u32 val ) { int tmp ; { { tmp = __builtin_bswap32(val); } return ((__u32 )tmp); } } extern int printk(char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; extern int sprintf(char * , char const * , ...) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __bad_percpu_size(void) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern char *strcpy(char * , char const * ) ; extern size_t strlcpy(char * , char const * , size_t ) ; extern char *strstr(char const * , char const * ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/a068ef8/linux-usb-dev/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static void arch_local_irq_restore(unsigned long f ) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.restore_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/a068ef8/linux-usb-dev/lkbce/arch/x86/include/asm/paravirt.h"), "i" (809), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (45UL), [paravirt_opptr] "i" (& pv_irq_ops.restore_fl.func), [paravirt_clobber] "i" (1), "D" (f): "memory", "cc"); return; } } __inline static void arch_local_irq_disable(void) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.irq_disable.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/a068ef8/linux-usb-dev/lkbce/arch/x86/include/asm/paravirt.h"), "i" (814), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (46UL), [paravirt_opptr] "i" (& pv_irq_ops.irq_disable.func), [paravirt_clobber] "i" (1): "memory", "cc"); return; } } __inline static unsigned long arch_local_irq_save(void) { unsigned long f ; { { f = arch_local_save_flags(); arch_local_irq_disable(); } return (f); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void trace_hardirqs_on(void) ; extern void trace_hardirqs_off(void) ; extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_6341; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6341; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6341; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6341; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6341: ; return (pfo_ret__ & 2147483647); } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern unsigned long _raw_spin_lock_irqsave(raw_spinlock_t * ) ; extern int _raw_spin_trylock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern long prepare_to_wait_event(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; extern unsigned long volatile jiffies ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern int mod_timer(struct timer_list * , unsigned long ) ; static int ldv_mod_timer_22(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_27(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_26(struct timer_list *ldv_func_arg1 ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool cancel_work_sync(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static unsigned char readb(void const volatile *addr ) { unsigned char ret ; { __asm__ volatile ("movb %1,%0": "=q" (ret): "m" (*((unsigned char volatile *)addr)): "memory"); return (ret); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writeb(unsigned char val , void volatile *addr ) { { __asm__ volatile ("movb %0,%1": : "q" (val), "m" (*((unsigned char volatile *)addr)): "memory"); return; } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } __inline static unsigned long readq(void const volatile *addr ) { unsigned long ret ; { __asm__ volatile ("movq %1,%0": "=r" (ret): "m" (*((unsigned long volatile *)addr)): "memory"); return (ret); } } __inline static void writeq(unsigned long val , void volatile *addr ) { { __asm__ volatile ("movq %0,%1": : "r" (val), "m" (*((unsigned long volatile *)addr)): "memory"); return; } } extern void iounmap(void volatile * ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } static void *ldv_dev_get_drvdata_16(struct device const *dev ) ; static int ldv_dev_set_drvdata_17(struct device *dev , void *data ) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } extern long schedule_timeout(long ) ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void kfree(void const * ) ; extern void *__kmalloc(size_t , gfp_t ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { { tmp___2 = __kmalloc(size, flags); } return (tmp___2); } } __inline static void *kmalloc_array(size_t n , size_t size , gfp_t flags ) { void *tmp ; { if (size != 0UL && n > 0xffffffffffffffffUL / size) { return ((void *)0); } else { } { tmp = __kmalloc(n * size, flags); } return (tmp); } } __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *tmp ; { { tmp = kmalloc_array(n, size, flags | 32768U); } return (tmp); } } __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static __sum16 csum_fold(__wsum sum ) { { __asm__ (" addl %1,%0\n adcl $0xffff,%0": "=r" (sum): "r" (sum << 16), "0" (sum & 4294901760U)); return ((__sum16 )(~ sum >> 16)); } } extern __wsum csum_partial(void const * , int , __wsum ) ; __inline static __wsum csum_unfold(__sum16 n ) { { return ((__wsum )n); } } __inline static void csum_replace4(__sum16 *sum , __be32 from , __be32 to ) { __be32 diff[2U] ; __wsum tmp ; __wsum tmp___0 ; { { diff[0] = ~ from; diff[1] = to; tmp = csum_unfold((int )*sum); tmp___0 = csum_partial((void const *)(& diff), 8, ~ tmp); *sum = csum_fold(tmp___0); } return; } } __inline static void csum_replace2(__sum16 *sum , __be16 from , __be16 to ) { { { csum_replace4(sum, (unsigned int )from, (unsigned int )to); } return; } } __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern void debug_dma_sync_single_for_device(struct device * , dma_addr_t , size_t , int ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (79), "i" (12UL)); __builtin_unreachable(); } } else { } { addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); } return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (91), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 0); } return; } } __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (103), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); } return; } } __inline static void dma_sync_single_for_device(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (115), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_device))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_device(dev, addr, size, (int )dir); } return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/a068ef8/linux-usb-dev/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } extern void consume_skb(struct sk_buff * ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } __inline static void skb_reset_tail_pointer(struct sk_buff *skb ) { { skb->tail = (sk_buff_data_t )((long )skb->data) - (sk_buff_data_t )((long )skb->head); return; } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_push(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_pull(struct sk_buff * , unsigned int ) ; __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } __inline static unsigned char *skb_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->network_header); } } extern struct sk_buff *__netdev_alloc_skb(struct net_device * , unsigned int , gfp_t ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb(dev, length, 32U); } return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); } return (tmp___0); } } __inline static void skb_record_rx_queue(struct sk_buff *skb , u16 rx_queue ) { { skb->queue_mapping = (unsigned int )rx_queue + 1U; return; } } __inline static void skb_checksum_none_assert(struct sk_buff const *skb ) { { return; } } __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } __inline static __u32 ethtool_cmd_speed(struct ethtool_cmd const *ep ) { { return ((__u32 )(((int )ep->speed_hi << 16) | (int )ep->speed)); } } extern u32 ethtool_op_get_link(struct net_device * ) ; extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); } return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = napi_disable_pending(n); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } __inline static void napi_schedule(struct napi_struct *n ) { bool tmp ; { { tmp = napi_schedule_prep(n); } if ((int )tmp) { { __napi_schedule(n); } } else { } return; } } extern void napi_complete(struct napi_struct * ) ; __inline static void napi_disable(struct napi_struct *n ) { int tmp ; { { __might_sleep("include/linux/netdevice.h", 486, 0); set_bit(1L, (unsigned long volatile *)(& n->state)); } goto ldv_37724; ldv_37723: { msleep(1U); } ldv_37724: { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp != 0) { goto ldv_37723; } else { } { clear_bit(1L, (unsigned long volatile *)(& n->state)); } return; } } __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (502), "i" (12UL)); __builtin_unreachable(); } } else { } { __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_32(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_34(struct net_device *ldv_func_arg1 ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_tx_start_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_38619; ldv_38618: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_start_queue(txq); i = i + 1U; } ldv_38619: ; if (i < dev->num_tx_queues) { goto ldv_38618; } else { } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); } return; } } __inline static void netif_tx_wake_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_38633; ldv_38632: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_wake_queue(txq); i = i + 1U; } ldv_38633: ; if (i < dev->num_tx_queues) { goto ldv_38632; } else { } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_tx_stop_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_38649; ldv_38648: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_stop_queue(txq); i = i + 1U; } ldv_38649: ; if (i < dev->num_tx_queues) { goto ldv_38648; } else { } return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); } return (tmp != 0); } } __inline static bool netif_queue_stopped(struct net_device const *dev ) { struct netdev_queue *tmp ; bool tmp___0 ; { { tmp = netdev_get_tx_queue(dev, 0U); tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)tmp); } return (tmp___0); } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } __inline static bool __netif_subqueue_stopped(struct net_device const *dev , u16 queue_index ) { struct netdev_queue *txq ; struct netdev_queue *tmp ; bool tmp___0 ; { { tmp = netdev_get_tx_queue(dev, (unsigned int )queue_index); txq = tmp; tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)txq); } return (tmp___0); } } __inline static void netif_wake_subqueue(struct net_device *dev , u16 queue_index ) { struct netdev_queue *txq ; struct netdev_queue *tmp ; int tmp___0 ; int tmp___1 ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, (unsigned int )queue_index); txq = tmp; tmp___0 = netpoll_trap(); } if (tmp___0 != 0) { return; } else { } { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& txq->state)); } if (tmp___1 != 0) { { __netif_schedule(txq->qdisc); } } else { } return; } } extern void __dev_kfree_skb_irq(struct sk_buff * , enum skb_free_reason ) ; extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_irq(struct sk_buff *skb ) { { { __dev_kfree_skb_irq(skb, 1); } return; } } __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { { __dev_kfree_skb_any(skb, 1); } return; } } extern int netif_rx(struct sk_buff * ) ; extern int netif_receive_skb(struct sk_buff * ) ; __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& dev->state)); } return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_30(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_31(struct net_device *ldv_func_arg1 ) ; static void ldv_unregister_netdev_33(struct net_device *ldv_func_arg1 ) ; __inline static int pci_channel_offline(struct pci_dev *pdev ) { { return (pdev->error_state != 1U); } } extern void pci_dev_put(struct pci_dev * ) ; extern struct pci_dev *pci_get_device(unsigned int , unsigned int , struct pci_dev * ) ; extern int pci_bus_read_config_byte(struct pci_bus * , unsigned int , int , u8 * ) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; extern int pci_bus_write_config_byte(struct pci_bus * , unsigned int , int , u8 ) ; extern int pci_bus_write_config_word(struct pci_bus * , unsigned int , int , u16 ) ; extern int pci_bus_write_config_dword(struct pci_bus * , unsigned int , int , u32 ) ; __inline static int pci_read_config_byte(struct pci_dev const *dev , int where , u8 *val ) { int tmp ; { { tmp = pci_bus_read_config_byte(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_read_config_dword(struct pci_dev const *dev , int where , u32 *val ) { int tmp ; { { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_write_config_byte(struct pci_dev const *dev , int where , u8 val ) { int tmp ; { { tmp = pci_bus_write_config_byte(dev->bus, dev->devfn, where, (int )val); } return (tmp); } } __inline static int pci_write_config_word(struct pci_dev const *dev , int where , u16 val ) { int tmp ; { { tmp = pci_bus_write_config_word(dev->bus, dev->devfn, where, (int )val); } return (tmp); } } __inline static int pci_write_config_dword(struct pci_dev const *dev , int where , u32 val ) { int tmp ; { { tmp = pci_bus_write_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_35(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_36(struct pci_driver *ldv_func_arg1 ) ; extern int pci_enable_msix(struct pci_dev * , struct msix_entry * , int ) ; extern void pci_disable_msix(struct pci_dev * ) ; __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); } return; } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } __inline static void pci_unmap_page(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) { { { dma_unmap_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_address, size, (enum dma_data_direction )direction); } return; } } __inline static void pci_dma_sync_single_for_cpu(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { { dma_sync_single_for_cpu((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); } return; } } __inline static void pci_dma_sync_single_for_device(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { { dma_sync_single_for_device((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); } return; } } __inline static int pci_dma_mapping_error(struct pci_dev *pdev , dma_addr_t dma_addr ) { int tmp ; { { tmp = dma_mapping_error(& pdev->dev, dma_addr); } return (tmp); } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_16((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_17(& pdev->dev, data); } return; } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } extern void *pci_ioremap_bar(struct pci_dev * , int ) ; extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_28(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; static struct net_device *ldv_alloc_etherdev_mqs_29(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } extern void rtnl_lock(void) ; extern void rtnl_unlock(void) ; __inline static struct sk_buff *__vlan_hwaccel_put_tag(struct sk_buff *skb , __be16 vlan_proto , u16 vlan_tci ) { { skb->vlan_proto = vlan_proto; skb->vlan_tci = (__u16 )((unsigned int )vlan_tci | 4096U); return (skb); } } __inline static struct iphdr *ip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct iphdr *)tmp); } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_18(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_23(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_24(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_25(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_19(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_20(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_21(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void disable_irq(unsigned int ) ; extern void enable_irq(unsigned int ) ; __inline static bool ip_is_fragment(struct iphdr const *iph ) { { return (((int )iph->frag_off & 65343) != 0); } } __inline static __u8 ipv4_get_dsfield(struct iphdr const *iph ) { { return ((__u8 )iph->tos); } } __inline static int INET_ECN_is_ce(__u8 dsfield ) { { return (((int )dsfield & 3) == 3); } } static int debug_level = 0; static int const fifo_map[8U][8U] = { { 0, 0, 0, 0, 0, 0, 0, 0}, { 0, 0, 0, 0, 1, 1, 1, 1}, { 0, 0, 0, 1, 1, 1, 2, 2}, { 0, 0, 1, 1, 2, 2, 3, 3}, { 0, 0, 1, 1, 2, 2, 3, 4}, { 0, 0, 1, 1, 2, 3, 4, 5}, { 0, 0, 1, 2, 3, 4, 5, 6}, { 0, 1, 2, 3, 4, 5, 6, 7}}; static u16 const fifo_selector[8U] = { 0U, 1U, 3U, 3U, 7U, 7U, 7U, 7U}; __inline static void SPECIAL_REG_WRITE(u64 val , void *addr , int order ) { { if (order == 2) { { writel((unsigned int )val, (void volatile *)addr); readl((void const volatile *)addr); writel((unsigned int )(val >> 32), (void volatile *)addr + 4U); readl((void const volatile *)addr + 4U); } } else { { writel((unsigned int )(val >> 32), (void volatile *)addr + 4U); readl((void const volatile *)addr + 4U); writel((unsigned int )val, (void volatile *)addr); readl((void const volatile *)addr); } } return; } } static int s2io_init_nic(struct pci_dev *pdev , struct pci_device_id const *pre ) ; static void s2io_rem_nic(struct pci_dev *pdev ) ; static int init_shared_mem(struct s2io_nic *nic ) ; static void free_shared_mem(struct s2io_nic *nic ) ; static int init_nic(struct s2io_nic *nic ) ; static int rx_intr_handler(struct ring_info *ring_data , int budget ) ; static void s2io_txpic_intr_handle(struct s2io_nic *sp ) ; static void tx_intr_handler(struct fifo_info *fifo_data ) ; static void s2io_handle_errors(void *dev_id ) ; static int s2io_starter(void) ; static void s2io_closer(void) ; static void s2io_tx_watchdog(struct net_device *dev ) ; static void s2io_set_multicast(struct net_device *dev ) ; static int rx_osm_handler(struct ring_info *ring_data , struct RxD_t *rxdp ) ; static void s2io_link(struct s2io_nic *sp , int link ) ; static void s2io_reset(struct s2io_nic *sp ) ; static int s2io_poll_msix(struct napi_struct *napi___0 , int budget ) ; static int s2io_poll_inta(struct napi_struct *napi___0 , int budget ) ; static void s2io_init_pci(struct s2io_nic *sp ) ; static int do_s2io_prog_unicast(struct net_device *dev , u8 *addr ) ; static void s2io_alarm_handle(unsigned long data ) ; static irqreturn_t s2io_msix_ring_handle(int irq , void *dev_id ) ; static irqreturn_t s2io_msix_fifo_handle(int irq , void *dev_id ) ; static irqreturn_t s2io_isr(int irq , void *dev_id ) ; static int verify_xena_quiescence(struct s2io_nic *sp ) ; static struct ethtool_ops const netdev_ethtool_ops ; static void s2io_set_link(struct work_struct *work ) ; static int s2io_set_swapper(struct s2io_nic *sp ) ; static void s2io_card_down(struct s2io_nic *sp ) ; static int s2io_card_up(struct s2io_nic *sp ) ; static int wait_for_cmd_complete(void *addr , u64 busy_bit , int bit_state ) ; static int s2io_add_isr(struct s2io_nic *sp ) ; static void s2io_rem_isr(struct s2io_nic *sp ) ; static void restore_xmsi_data(struct s2io_nic *nic ) ; static void do_s2io_store_unicast_mc(struct s2io_nic *sp ) ; static void do_s2io_restore_unicast_mc(struct s2io_nic *sp ) ; static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp , int offset ) ; static int do_s2io_add_mc(struct s2io_nic *sp , u8 *addr ) ; static int do_s2io_add_mac(struct s2io_nic *sp , u64 addr , int off ) ; static int do_s2io_delete_unicast_mc(struct s2io_nic *sp , u64 addr ) ; static int s2io_club_tcp_session(struct ring_info *ring_data , u8 *buffer , u8 **tcp , u32 *tcp_len , struct lro **lro , struct RxD_t *rxdp , struct s2io_nic *sp ) ; static void clear_lro_session(struct lro *lro ) ; static void queue_rx_frame(struct sk_buff *skb , u16 vlan_tag ) ; static void update_L3L4_header(struct s2io_nic *sp , struct lro *lro ) ; static void lro_append_pkt(struct s2io_nic *sp , struct lro *lro , struct sk_buff *skb , u32 tcp_len ) ; static int rts_ds_steer(struct s2io_nic *nic , u8 ds_codepoint , u8 ring ) ; static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev , pci_channel_state_t state ) ; static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev ) ; static void s2io_io_resume(struct pci_dev *pdev ) ; static char const s2io_driver_name[9U] = { 'N', 'e', 't', 'e', 'r', 'i', 'o', 'n', '\000'}; static char const s2io_driver_version[10U] = { '2', '.', '0', '.', '2', '6', '.', '2', '8', '\000'}; static int const rxd_size[2U] = { 32, 48}; static int const rxd_count[2U] = { 127, 85}; __inline static int RXD_IS_UP2DT(struct RxD_t *rxdp ) { int ret ; { ret = (rxdp->Control_1 & 72057594037927936ULL) == 0ULL && rxdp->Control_2 >> 62 != 3ULL; return (ret); } } __inline static int is_s2io_card_up(struct s2io_nic const *sp ) { int tmp ; { { tmp = constant_test_bit(1L, & sp->state); } return (tmp); } } static char const s2io_gstrings[5U][32U] = { { 'R', 'e', 'g', 'i', 's', 't', 'e', 'r', ' ', 't', 'e', 's', 't', '\t', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}, { 'E', 'e', 'p', 'r', 'o', 'm', ' ', 't', 'e', 's', 't', '\t', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}, { 'L', 'i', 'n', 'k', ' ', 't', 'e', 's', 't', '\t', '(', 'o', 'n', 'l', 'i', 'n', 'e', ')', '\000'}, { 'R', 'L', 'D', 'R', 'A', 'M', ' ', 't', 'e', 's', 't', '\t', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}, { 'B', 'I', 'S', 'T', ' ', 'T', 'e', 's', 't', '\t', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}}; static char const ethtool_xena_stats_keys[94U][32U] = { { 't', 'm', 'a', 'c', '_', 'f', 'r', 'm', 's', '\000'}, { 't', 'm', 'a', 'c', '_', 'd', 'a', 't', 'a', '_', 'o', 'c', 't', 'e', 't', 's', '\000'}, { 't', 'm', 'a', 'c', '_', 'd', 'r', 'o', 'p', '_', 'f', 'r', 'm', 's', '\000'}, { 't', 'm', 'a', 'c', '_', 'm', 'c', 's', 't', '_', 'f', 'r', 'm', 's', '\000'}, { 't', 'm', 'a', 'c', '_', 'b', 'c', 's', 't', '_', 'f', 'r', 'm', 's', '\000'}, { 't', 'm', 'a', 'c', '_', 'p', 'a', 'u', 's', 'e', '_', 'c', 't', 'r', 'l', '_', 'f', 'r', 'm', 's', '\000'}, { 't', 'm', 'a', 'c', '_', 't', 't', 'l', '_', 'o', 'c', 't', 'e', 't', 's', '\000'}, { 't', 'm', 'a', 'c', '_', 'u', 'c', 's', 't', '_', 'f', 'r', 'm', 's', '\000'}, { 't', 'm', 'a', 'c', '_', 'n', 'u', 'c', 's', 't', '_', 'f', 'r', 'm', 's', '\000'}, { 't', 'm', 'a', 'c', '_', 'a', 'n', 'y', '_', 'e', 'r', 'r', '_', 'f', 'r', 'm', 's', '\000'}, { 't', 'm', 'a', 'c', '_', 't', 't', 'l', '_', 'l', 'e', 's', 's', '_', 'f', 'b', '_', 'o', 'c', 't', 'e', 't', 's', '\000'}, { 't', 'm', 'a', 'c', '_', 'v', 'l', 'd', '_', 'i', 'p', '_', 'o', 'c', 't', 'e', 't', 's', '\000'}, { 't', 'm', 'a', 'c', '_', 'v', 'l', 'd', '_', 'i', 'p', '\000'}, { 't', 'm', 'a', 'c', '_', 'd', 'r', 'o', 'p', '_', 'i', 'p', '\000'}, { 't', 'm', 'a', 'c', '_', 'i', 'c', 'm', 'p', '\000'}, { 't', 'm', 'a', 'c', '_', 'r', 's', 't', '_', 't', 'c', 'p', '\000'}, { 't', 'm', 'a', 'c', '_', 't', 'c', 'p', '\000'}, { 't', 'm', 'a', 'c', '_', 'u', 'd', 'p', '\000'}, { 'r', 'm', 'a', 'c', '_', 'v', 'l', 'd', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'd', 'a', 't', 'a', '_', 'o', 'c', 't', 'e', 't', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'f', 'c', 's', '_', 'e', 'r', 'r', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'd', 'r', 'o', 'p', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'v', 'l', 'd', '_', 'm', 'c', 's', 't', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'v', 'l', 'd', '_', 'b', 'c', 's', 't', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'i', 'n', '_', 'r', 'n', 'g', '_', 'l', 'e', 'n', '_', 'e', 'r', 'r', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'o', 'u', 't', '_', 'r', 'n', 'g', '_', 'l', 'e', 'n', '_', 'e', 'r', 'r', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'l', 'o', 'n', 'g', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'p', 'a', 'u', 's', 'e', '_', 'c', 't', 'r', 'l', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'u', 'n', 's', 'u', 'p', '_', 'c', 't', 'r', 'l', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 't', 't', 'l', '_', 'o', 'c', 't', 'e', 't', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'a', 'c', 'c', 'e', 'p', 't', 'e', 'd', '_', 'u', 'c', 's', 't', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'a', 'c', 'c', 'e', 'p', 't', 'e', 'd', '_', 'n', 'u', 'c', 's', 't', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'd', 'i', 's', 'c', 'a', 'r', 'd', 'e', 'd', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'd', 'r', 'o', 'p', '_', 'e', 'v', 'e', 'n', 't', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 't', 't', 'l', '_', 'l', 'e', 's', 's', '_', 'f', 'b', '_', 'o', 'c', 't', 'e', 't', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 't', 't', 'l', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'u', 's', 'i', 'z', 'e', 'd', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'o', 's', 'i', 'z', 'e', 'd', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'f', 'r', 'a', 'g', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'j', 'a', 'b', 'b', 'e', 'r', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 't', 't', 'l', '_', '6', '4', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 't', 't', 'l', '_', '6', '5', '_', '1', '2', '7', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 't', 't', 'l', '_', '1', '2', '8', '_', '2', '5', '5', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 't', 't', 'l', '_', '2', '5', '6', '_', '5', '1', '1', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 't', 't', 'l', '_', '5', '1', '2', '_', '1', '0', '2', '3', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 't', 't', 'l', '_', '1', '0', '2', '4', '_', '1', '5', '1', '8', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'i', 'p', '\000'}, { 'r', 'm', 'a', 'c', '_', 'i', 'p', '_', 'o', 'c', 't', 'e', 't', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'h', 'd', 'r', '_', 'e', 'r', 'r', '_', 'i', 'p', '\000'}, { 'r', 'm', 'a', 'c', '_', 'd', 'r', 'o', 'p', '_', 'i', 'p', '\000'}, { 'r', 'm', 'a', 'c', '_', 'i', 'c', 'm', 'p', '\000'}, { 'r', 'm', 'a', 'c', '_', 't', 'c', 'p', '\000'}, { 'r', 'm', 'a', 'c', '_', 'u', 'd', 'p', '\000'}, { 'r', 'm', 'a', 'c', '_', 'e', 'r', 'r', '_', 'd', 'r', 'p', '_', 'u', 'd', 'p', '\000'}, { 'r', 'm', 'a', 'c', '_', 'x', 'g', 'm', 'i', 'i', '_', 'e', 'r', 'r', '_', 's', 'y', 'm', '\000'}, { 'r', 'm', 'a', 'c', '_', 'f', 'r', 'm', 's', '_', 'q', '0', '\000'}, { 'r', 'm', 'a', 'c', '_', 'f', 'r', 'm', 's', '_', 'q', '1', '\000'}, { 'r', 'm', 'a', 'c', '_', 'f', 'r', 'm', 's', '_', 'q', '2', '\000'}, { 'r', 'm', 'a', 'c', '_', 'f', 'r', 'm', 's', '_', 'q', '3', '\000'}, { 'r', 'm', 'a', 'c', '_', 'f', 'r', 'm', 's', '_', 'q', '4', '\000'}, { 'r', 'm', 'a', 'c', '_', 'f', 'r', 'm', 's', '_', 'q', '5', '\000'}, { 'r', 'm', 'a', 'c', '_', 'f', 'r', 'm', 's', '_', 'q', '6', '\000'}, { 'r', 'm', 'a', 'c', '_', 'f', 'r', 'm', 's', '_', 'q', '7', '\000'}, { 'r', 'm', 'a', 'c', '_', 'f', 'u', 'l', 'l', '_', 'q', '0', '\000'}, { 'r', 'm', 'a', 'c', '_', 'f', 'u', 'l', 'l', '_', 'q', '1', '\000'}, { 'r', 'm', 'a', 'c', '_', 'f', 'u', 'l', 'l', '_', 'q', '2', '\000'}, { 'r', 'm', 'a', 'c', '_', 'f', 'u', 'l', 'l', '_', 'q', '3', '\000'}, { 'r', 'm', 'a', 'c', '_', 'f', 'u', 'l', 'l', '_', 'q', '4', '\000'}, { 'r', 'm', 'a', 'c', '_', 'f', 'u', 'l', 'l', '_', 'q', '5', '\000'}, { 'r', 'm', 'a', 'c', '_', 'f', 'u', 'l', 'l', '_', 'q', '6', '\000'}, { 'r', 'm', 'a', 'c', '_', 'f', 'u', 'l', 'l', '_', 'q', '7', '\000'}, { 'r', 'm', 'a', 'c', '_', 'p', 'a', 'u', 's', 'e', '_', 'c', 'n', 't', '\000'}, { 'r', 'm', 'a', 'c', '_', 'x', 'g', 'm', 'i', 'i', '_', 'd', 'a', 't', 'a', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 'r', 'm', 'a', 'c', '_', 'x', 'g', 'm', 'i', 'i', '_', 'c', 't', 'r', 'l', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 'r', 'm', 'a', 'c', '_', 'a', 'c', 'c', 'e', 'p', 't', 'e', 'd', '_', 'i', 'p', '\000'}, { 'r', 'm', 'a', 'c', '_', 'e', 'r', 'r', '_', 't', 'c', 'p', '\000'}, { 'r', 'd', '_', 'r', 'e', 'q', '_', 'c', 'n', 't', '\000'}, { 'n', 'e', 'w', '_', 'r', 'd', '_', 'r', 'e', 'q', '_', 'c', 'n', 't', '\000'}, { 'n', 'e', 'w', '_', 'r', 'd', '_', 'r', 'e', 'q', '_', 'r', 't', 'r', 'y', '_', 'c', 'n', 't', '\000'}, { 'r', 'd', '_', 'r', 't', 'r', 'y', '_', 'c', 'n', 't', '\000'}, { 'w', 'r', '_', 'r', 't', 'r', 'y', '_', 'r', 'd', '_', 'a', 'c', 'k', '_', 'c', 'n', 't', '\000'}, { 'w', 'r', '_', 'r', 'e', 'q', '_', 'c', 'n', 't', '\000'}, { 'n', 'e', 'w', '_', 'w', 'r', '_', 'r', 'e', 'q', '_', 'c', 'n', 't', '\000'}, { 'n', 'e', 'w', '_', 'w', 'r', '_', 'r', 'e', 'q', '_', 'r', 't', 'r', 'y', '_', 'c', 'n', 't', '\000'}, { 'w', 'r', '_', 'r', 't', 'r', 'y', '_', 'c', 'n', 't', '\000'}, { 'w', 'r', '_', 'd', 'i', 's', 'c', '_', 'c', 'n', 't', '\000'}, { 'r', 'd', '_', 'r', 't', 'r', 'y', '_', 'w', 'r', '_', 'a', 'c', 'k', '_', 'c', 'n', 't', '\000'}, { 't', 'x', 'p', '_', 'w', 'r', '_', 'c', 'n', 't', '\000'}, { 't', 'x', 'd', '_', 'r', 'd', '_', 'c', 'n', 't', '\000'}, { 't', 'x', 'd', '_', 'w', 'r', '_', 'c', 'n', 't', '\000'}, { 'r', 'x', 'd', '_', 'r', 'd', '_', 'c', 'n', 't', '\000'}, { 'r', 'x', 'd', '_', 'w', 'r', '_', 'c', 'n', 't', '\000'}, { 't', 'x', 'f', '_', 'r', 'd', '_', 'c', 'n', 't', '\000'}, { 'r', 'x', 'f', '_', 'w', 'r', '_', 'c', 'n', 't', '\000'}}; static char const ethtool_enhanced_stats_keys[16U][32U] = { { 'r', 'm', 'a', 'c', '_', 't', 't', 'l', '_', '1', '5', '1', '9', '_', '4', '0', '9', '5', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 't', 't', 'l', '_', '4', '0', '9', '6', '_', '8', '1', '9', '1', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 't', 't', 'l', '_', '8', '1', '9', '2', '_', 'm', 'a', 'x', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 't', 't', 'l', '_', 'g', 't', '_', 'm', 'a', 'x', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'o', 's', 'i', 'z', 'e', 'd', '_', 'a', 'l', 't', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'j', 'a', 'b', 'b', 'e', 'r', '_', 'a', 'l', 't', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'g', 't', '_', 'm', 'a', 'x', '_', 'a', 'l', 't', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'v', 'l', 'a', 'n', '_', 'f', 'r', 'm', 's', '\000'}, { 'r', 'm', 'a', 'c', '_', 'l', 'e', 'n', '_', 'd', 'i', 's', 'c', 'a', 'r', 'd', '\000'}, { 'r', 'm', 'a', 'c', '_', 'f', 'c', 's', '_', 'd', 'i', 's', 'c', 'a', 'r', 'd', '\000'}, { 'r', 'm', 'a', 'c', '_', 'p', 'f', '_', 'd', 'i', 's', 'c', 'a', 'r', 'd', '\000'}, { 'r', 'm', 'a', 'c', '_', 'd', 'a', '_', 'd', 'i', 's', 'c', 'a', 'r', 'd', '\000'}, { 'r', 'm', 'a', 'c', '_', 'r', 'e', 'd', '_', 'd', 'i', 's', 'c', 'a', 'r', 'd', '\000'}, { 'r', 'm', 'a', 'c', '_', 'r', 't', 's', '_', 'd', 'i', 's', 'c', 'a', 'r', 'd', '\000'}, { 'r', 'm', 'a', 'c', '_', 'i', 'n', 'g', 'm', '_', 'f', 'u', 'l', 'l', '_', 'd', 'i', 's', 'c', 'a', 'r', 'd', '\000'}, { 'l', 'i', 'n', 'k', '_', 'f', 'a', 'u', 'l', 't', '_', 'c', 'n', 't', '\000'}}; static char const ethtool_driver_stats_keys[72U][32U] = { { '\n', ' ', 'D', 'R', 'I', 'V', 'E', 'R', ' ', 'S', 'T', 'A', 'T', 'I', 'S', 'T', 'I', 'C', 'S', '\000'}, { 's', 'i', 'n', 'g', 'l', 'e', '_', 'b', 'i', 't', '_', 'e', 'c', 'c', '_', 'e', 'r', 'r', 's', '\000'}, { 'd', 'o', 'u', 'b', 'l', 'e', '_', 'b', 'i', 't', '_', 'e', 'c', 'c', '_', 'e', 'r', 'r', 's', '\000'}, { 'p', 'a', 'r', 'i', 't', 'y', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 's', 'e', 'r', 'i', 'o', 'u', 's', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 's', 'o', 'f', 't', '_', 'r', 'e', 's', 'e', 't', '_', 'c', 'n', 't', '\000'}, { 'f', 'i', 'f', 'o', '_', 'f', 'u', 'l', 'l', '_', 'c', 'n', 't', '\000'}, { 'r', 'i', 'n', 'g', '_', '0', '_', 'f', 'u', 'l', 'l', '_', 'c', 'n', 't', '\000'}, { 'r', 'i', 'n', 'g', '_', '1', '_', 'f', 'u', 'l', 'l', '_', 'c', 'n', 't', '\000'}, { 'r', 'i', 'n', 'g', '_', '2', '_', 'f', 'u', 'l', 'l', '_', 'c', 'n', 't', '\000'}, { 'r', 'i', 'n', 'g', '_', '3', '_', 'f', 'u', 'l', 'l', '_', 'c', 'n', 't', '\000'}, { 'r', 'i', 'n', 'g', '_', '4', '_', 'f', 'u', 'l', 'l', '_', 'c', 'n', 't', '\000'}, { 'r', 'i', 'n', 'g', '_', '5', '_', 'f', 'u', 'l', 'l', '_', 'c', 'n', 't', '\000'}, { 'r', 'i', 'n', 'g', '_', '6', '_', 'f', 'u', 'l', 'l', '_', 'c', 'n', 't', '\000'}, { 'r', 'i', 'n', 'g', '_', '7', '_', 'f', 'u', 'l', 'l', '_', 'c', 'n', 't', '\000'}, { 'a', 'l', 'a', 'r', 'm', '_', 't', 'r', 'a', 'n', 's', 'c', 'e', 'i', 'v', 'e', 'r', '_', 't', 'e', 'm', 'p', '_', 'h', 'i', 'g', 'h', '\000'}, { 'a', 'l', 'a', 'r', 'm', '_', 't', 'r', 'a', 'n', 's', 'c', 'e', 'i', 'v', 'e', 'r', '_', 't', 'e', 'm', 'p', '_', 'l', 'o', 'w', '\000'}, { 'a', 'l', 'a', 'r', 'm', '_', 'l', 'a', 's', 'e', 'r', '_', 'b', 'i', 'a', 's', '_', 'c', 'u', 'r', 'r', 'e', 'n', 't', '_', 'h', 'i', 'g', 'h', '\000'}, { 'a', 'l', 'a', 'r', 'm', '_', 'l', 'a', 's', 'e', 'r', '_', 'b', 'i', 'a', 's', '_', 'c', 'u', 'r', 'r', 'e', 'n', 't', '_', 'l', 'o', 'w', '\000'}, { 'a', 'l', 'a', 'r', 'm', '_', 'l', 'a', 's', 'e', 'r', '_', 'o', 'u', 't', 'p', 'u', 't', '_', 'p', 'o', 'w', 'e', 'r', '_', 'h', 'i', 'g', 'h', '\000'}, { 'a', 'l', 'a', 'r', 'm', '_', 'l', 'a', 's', 'e', 'r', '_', 'o', 'u', 't', 'p', 'u', 't', '_', 'p', 'o', 'w', 'e', 'r', '_', 'l', 'o', 'w', '\000'}, { 'w', 'a', 'r', 'n', '_', 't', 'r', 'a', 'n', 's', 'c', 'e', 'i', 'v', 'e', 'r', '_', 't', 'e', 'm', 'p', '_', 'h', 'i', 'g', 'h', '\000'}, { 'w', 'a', 'r', 'n', '_', 't', 'r', 'a', 'n', 's', 'c', 'e', 'i', 'v', 'e', 'r', '_', 't', 'e', 'm', 'p', '_', 'l', 'o', 'w', '\000'}, { 'w', 'a', 'r', 'n', '_', 'l', 'a', 's', 'e', 'r', '_', 'b', 'i', 'a', 's', '_', 'c', 'u', 'r', 'r', 'e', 'n', 't', '_', 'h', 'i', 'g', 'h', '\000'}, { 'w', 'a', 'r', 'n', '_', 'l', 'a', 's', 'e', 'r', '_', 'b', 'i', 'a', 's', '_', 'c', 'u', 'r', 'r', 'e', 'n', 't', '_', 'l', 'o', 'w', '\000'}, { 'w', 'a', 'r', 'n', '_', 'l', 'a', 's', 'e', 'r', '_', 'o', 'u', 't', 'p', 'u', 't', '_', 'p', 'o', 'w', 'e', 'r', '_', 'h', 'i', 'g', 'h', '\000'}, { 'w', 'a', 'r', 'n', '_', 'l', 'a', 's', 'e', 'r', '_', 'o', 'u', 't', 'p', 'u', 't', '_', 'p', 'o', 'w', 'e', 'r', '_', 'l', 'o', 'w', '\000'}, { 'l', 'r', 'o', '_', 'a', 'g', 'g', 'r', 'e', 'g', 'a', 't', 'e', 'd', '_', 'p', 'k', 't', 's', '\000'}, { 'l', 'r', 'o', '_', 'f', 'l', 'u', 's', 'h', '_', 'b', 'o', 't', 'h', '_', 'c', 'o', 'u', 'n', 't', '\000'}, { 'l', 'r', 'o', '_', 'o', 'u', 't', '_', 'o', 'f', '_', 's', 'e', 'q', 'u', 'e', 'n', 'c', 'e', '_', 'p', 'k', 't', 's', '\000'}, { 'l', 'r', 'o', '_', 'f', 'l', 'u', 's', 'h', '_', 'd', 'u', 'e', '_', 't', 'o', '_', 'm', 'a', 'x', '_', 'p', 'k', 't', 's', '\000'}, { 'l', 'r', 'o', '_', 'a', 'v', 'g', '_', 'a', 'g', 'g', 'r', '_', 'p', 'k', 't', 's', '\000'}, { 'm', 'e', 'm', '_', 'a', 'l', 'l', 'o', 'c', '_', 'f', 'a', 'i', 'l', '_', 'c', 'n', 't', '\000'}, { 'p', 'c', 'i', '_', 'm', 'a', 'p', '_', 'f', 'a', 'i', 'l', '_', 'c', 'n', 't', '\000'}, { 'w', 'a', 't', 'c', 'h', 'd', 'o', 'g', '_', 't', 'i', 'm', 'e', 'r', '_', 'c', 'n', 't', '\000'}, { 'm', 'e', 'm', '_', 'a', 'l', 'l', 'o', 'c', 'a', 't', 'e', 'd', '\000'}, { 'm', 'e', 'm', '_', 'f', 'r', 'e', 'e', 'd', '\000'}, { 'l', 'i', 'n', 'k', '_', 'u', 'p', '_', 'c', 'n', 't', '\000'}, { 'l', 'i', 'n', 'k', '_', 'd', 'o', 'w', 'n', '_', 'c', 'n', 't', '\000'}, { 'l', 'i', 'n', 'k', '_', 'u', 'p', '_', 't', 'i', 'm', 'e', '\000'}, { 'l', 'i', 'n', 'k', '_', 'd', 'o', 'w', 'n', '_', 't', 'i', 'm', 'e', '\000'}, { 't', 'x', '_', 't', 'c', 'o', 'd', 'e', '_', 'b', 'u', 'f', '_', 'a', 'b', 'o', 'r', 't', '_', 'c', 'n', 't', '\000'}, { 't', 'x', '_', 't', 'c', 'o', 'd', 'e', '_', 'd', 'e', 's', 'c', '_', 'a', 'b', 'o', 'r', 't', '_', 'c', 'n', 't', '\000'}, { 't', 'x', '_', 't', 'c', 'o', 'd', 'e', '_', 'p', 'a', 'r', 'i', 't', 'y', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 't', 'x', '_', 't', 'c', 'o', 'd', 'e', '_', 'l', 'i', 'n', 'k', '_', 'l', 'o', 's', 's', '_', 'c', 'n', 't', '\000'}, { 't', 'x', '_', 't', 'c', 'o', 'd', 'e', '_', 'l', 'i', 's', 't', '_', 'p', 'r', 'o', 'c', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 'r', 'x', '_', 't', 'c', 'o', 'd', 'e', '_', 'p', 'a', 'r', 'i', 't', 'y', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 'r', 'x', '_', 't', 'c', 'o', 'd', 'e', '_', 'a', 'b', 'o', 'r', 't', '_', 'c', 'n', 't', '\000'}, { 'r', 'x', '_', 't', 'c', 'o', 'd', 'e', '_', 'p', 'a', 'r', 'i', 't', 'y', '_', 'a', 'b', 'o', 'r', 't', '_', 'c', 'n', 't', '\000'}, { 'r', 'x', '_', 't', 'c', 'o', 'd', 'e', '_', 'r', 'd', 'a', '_', 'f', 'a', 'i', 'l', '_', 'c', 'n', 't', '\000'}, { 'r', 'x', '_', 't', 'c', 'o', 'd', 'e', '_', 'u', 'n', 'k', 'n', '_', 'p', 'r', 'o', 't', '_', 'c', 'n', 't', '\000'}, { 'r', 'x', '_', 't', 'c', 'o', 'd', 'e', '_', 'f', 'c', 's', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 'r', 'x', '_', 't', 'c', 'o', 'd', 'e', '_', 'b', 'u', 'f', '_', 's', 'i', 'z', 'e', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 'r', 'x', '_', 't', 'c', 'o', 'd', 'e', '_', 'r', 'x', 'd', '_', 'c', 'o', 'r', 'r', 'u', 'p', 't', '_', 'c', 'n', 't', '\000'}, { 'r', 'x', '_', 't', 'c', 'o', 'd', 'e', '_', 'u', 'n', 'k', 'n', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 't', 'd', 'a', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 'p', 'f', 'c', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 'p', 'c', 'c', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 't', 't', 'i', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 't', 'p', 'a', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 's', 'm', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 'l', 's', 'o', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 'm', 'a', 'c', '_', 't', 'm', 'a', 'c', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 'm', 'a', 'c', '_', 'r', 'm', 'a', 'c', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 'x', 'g', 'x', 's', '_', 't', 'x', 'g', 'x', 's', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 'x', 'g', 'x', 's', '_', 'r', 'x', 'g', 'x', 's', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 'r', 'c', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 'p', 'r', 'c', '_', 'p', 'c', 'i', 'x', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 'r', 'p', 'a', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 'r', 'd', 'a', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 'r', 't', 'i', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}, { 'm', 'c', '_', 'e', 'r', 'r', '_', 'c', 'n', 't', '\000'}}; static void do_s2io_copy_mac_addr(struct s2io_nic *sp , int offset , u64 mac_addr ) { { sp->def_mac_addr[offset].mac_addr[5] = (unsigned char )mac_addr; sp->def_mac_addr[offset].mac_addr[4] = (unsigned char )(mac_addr >> 8); sp->def_mac_addr[offset].mac_addr[3] = (unsigned char )(mac_addr >> 16); sp->def_mac_addr[offset].mac_addr[2] = (unsigned char )(mac_addr >> 24); sp->def_mac_addr[offset].mac_addr[1] = (unsigned char )(mac_addr >> 32); sp->def_mac_addr[offset].mac_addr[0] = (unsigned char )(mac_addr >> 40); return; } } static u64 const herc_act_dtx_cfg[17U] = { 0x8000051536750000ULL, 0x80000515367500e0ULL, 0x8000051536750004ULL, 0x80000515367500e4ULL, 0x80010515003f0000ULL, 0x80010515003f00e0ULL, 0x80010515003f0004ULL, 0x80010515003f00e4ULL, 0x801205150d440000ULL, 0x801205150d4400e0ULL, 0x801205150d440004ULL, 0x801205150d4400e4ULL, 0x80020515f2100000ULL, 0x80020515f21000e0ULL, 0x80020515f2100004ULL, 0x80020515f21000e4ULL, 0ULL}; static u64 const xena_dtx_cfg[13U] = { 0x8000051500000000ULL, 0x80000515000000e0ULL, 0x80000515d9350004ULL, 0x80000515d93500e4ULL, 0x8001051500000000ULL, 0x80010515000000e0ULL, 0x80010515001e0004ULL, 0x80010515001e00e4ULL, 0x8002051500000000ULL, 0x80020515000000e0ULL, 0x80020515f2100004ULL, 0x80020515f21000e4ULL, 0ULL}; static u64 const fix_mac[29U] = { 27021597764222976ULL, 27127150880489472ULL, 18119951625748480ULL, 105553116266496ULL, 9112752371007488ULL, 27127150880489472ULL, 9112752371007488ULL, 27127150880489472ULL, 9112752371007488ULL, 27127150880489472ULL, 9112752371007488ULL, 27127150880489472ULL, 9112752371007488ULL, 27127150880489472ULL, 9112752371007488ULL, 27127150880489472ULL, 9112752371007488ULL, 27127150880489472ULL, 9112752371007488ULL, 27127150880489472ULL, 9112752371007488ULL, 27127150880489472ULL, 9112752371007488ULL, 27127150880489472ULL, 9112752371007488ULL, 105553116266496ULL, 18119951625748480ULL, 27127150880489472ULL, 0ULL}; static unsigned int tx_fifo_num = 5U; static unsigned int rx_ring_num = 1U; static unsigned int multiq = 0U; static unsigned int rx_ring_mode = 1U; static unsigned int use_continuous_tx_intrs = 1U; static unsigned int rmac_pause_time = 256U; static unsigned int mc_pause_threshold_q0q3 = 187U; static unsigned int mc_pause_threshold_q4q7 = 187U; static unsigned int shared_splits = 0U; static unsigned int tmac_util_period = 5U; static unsigned int rmac_util_period = 5U; static unsigned int tx_steering_type = 2U; static unsigned int rxsync_frequency = 3U; static unsigned int intr_type = 2U; static unsigned int lro_max_pkts = 65535U; static unsigned int indicate_max_pkts = 0U; static unsigned int napi = 1U; static unsigned int ufo = 0U; static unsigned int vlan_tag_strip = 2U; static unsigned int tx_fifo_len[8U] = { 4096U, 512U, 512U, 512U, 512U, 512U, 512U, 512U}; static unsigned int rx_ring_sz[8U] = { 30U, 30U, 30U, 30U, 30U, 30U, 30U, 30U}; static unsigned int rts_frm_len[8U] = { 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}; static struct pci_device_id const s2io_tbl[5U] = { {6101U, 22321U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {6101U, 22577U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {6101U, 22322U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {6101U, 22578U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; static struct pci_error_handlers const s2io_err_handler = {(pci_ers_result_t (*)(struct pci_dev * , enum pci_channel_state ))(& s2io_io_error_detected), 0, 0, & s2io_io_slot_reset, & s2io_io_resume}; static struct pci_driver s2io_driver = {{0, 0}, "S2IO", (struct pci_device_id const *)(& s2io_tbl), & s2io_init_nic, & s2io_rem_nic, 0, 0, 0, 0, 0, 0, & s2io_err_handler, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; __inline static void s2io_stop_all_tx_queue(struct s2io_nic *sp ) { int i ; { if ((unsigned int )sp->config.multiq == 0U) { i = 0; goto ldv_52906; ldv_52905: sp->mac_control.fifos[i].queue_state = 1; i = i + 1; ldv_52906: ; if ((u32 )i < sp->config.tx_fifo_num) { goto ldv_52905; } else { } } else { } { netif_tx_stop_all_queues(sp->dev); } return; } } __inline static void s2io_stop_tx_queue(struct s2io_nic *sp , int fifo_no ) { { if ((unsigned int )sp->config.multiq == 0U) { sp->mac_control.fifos[fifo_no].queue_state = 1; } else { } { netif_tx_stop_all_queues(sp->dev); } return; } } __inline static void s2io_start_all_tx_queue(struct s2io_nic *sp ) { int i ; { if ((unsigned int )sp->config.multiq == 0U) { i = 0; goto ldv_52917; ldv_52916: sp->mac_control.fifos[i].queue_state = 0; i = i + 1; ldv_52917: ; if ((u32 )i < sp->config.tx_fifo_num) { goto ldv_52916; } else { } } else { } { netif_tx_start_all_queues(sp->dev); } return; } } __inline static void s2io_wake_all_tx_queue(struct s2io_nic *sp ) { int i ; { if ((unsigned int )sp->config.multiq == 0U) { i = 0; goto ldv_52928; ldv_52927: sp->mac_control.fifos[i].queue_state = 0; i = i + 1; ldv_52928: ; if ((u32 )i < sp->config.tx_fifo_num) { goto ldv_52927; } else { } } else { } { netif_tx_wake_all_queues(sp->dev); } return; } } __inline static void s2io_wake_tx_queue(struct fifo_info *fifo , int cnt , u8 multiq___0 ) { bool tmp ; bool tmp___0 ; { if ((unsigned int )multiq___0 != 0U) { if (cnt != 0) { { tmp = __netif_subqueue_stopped((struct net_device const *)fifo->dev, (int )((u16 )fifo->fifo_no)); } if ((int )tmp) { { netif_wake_subqueue(fifo->dev, (int )((u16 )fifo->fifo_no)); } } else { } } else { } } else if (cnt != 0 && fifo->queue_state == 1) { { tmp___0 = netif_queue_stopped((struct net_device const *)fifo->dev); } if ((int )tmp___0) { { fifo->queue_state = 0; netif_wake_queue(fifo->dev); } } else { } } else { } return; } } static int init_shared_mem(struct s2io_nic *nic ) { u32 size ; void *tmp_v_addr ; void *tmp_v_addr_next ; dma_addr_t tmp_p_addr ; dma_addr_t tmp_p_addr_next ; struct RxD_block *pre_rxd_blk ; int i ; int j ; int blk_cnt ; int lst_size ; int lst_per_page ; struct net_device *dev ; unsigned long tmp ; struct buffAdd *ba ; struct config_param *config ; struct mac_info *mac_control ; unsigned long long mem_allocated ; struct tx_fifo_config *tx_cfg ; struct tx_fifo_config *tx_cfg___0 ; struct fifo_info *fifo ; struct tx_fifo_config *tx_cfg___1 ; int fifo_len ; int list_holder_size ; void *tmp___0 ; int page_num ; struct fifo_info *fifo___0 ; struct tx_fifo_config *tx_cfg___2 ; int k ; dma_addr_t tmp_p ; void *tmp_v ; int l ; struct fifo_info *fifo___1 ; struct tx_fifo_config *tx_cfg___3 ; void *tmp___1 ; struct rx_ring_config *rx_cfg ; struct ring_info *ring ; struct rx_ring_config *rx_cfg___0 ; struct ring_info *ring___0 ; struct rx_block_info *rx_blocks ; int l___0 ; void *tmp___2 ; int next ; struct rx_ring_config *rx_cfg___1 ; struct ring_info *ring___1 ; void *tmp___3 ; int k___0 ; void *tmp___4 ; char const *tmp___5 ; { pre_rxd_blk = (struct RxD_block *)0; dev = nic->dev; config = & nic->config; mac_control = & nic->mac_control; mem_allocated = 0ULL; size = 0U; i = 0; goto ldv_52957; ldv_52956: tx_cfg = (struct tx_fifo_config *)(& config->tx_cfg) + (unsigned long )i; size = size + tx_cfg->fifo_len; i = i + 1; ldv_52957: ; if ((u32 )i < config->tx_fifo_num) { goto ldv_52956; } else { } if (size > 8192U) { if (debug_level >= 0) { { printk("\016s2io: Too many TxDs requested: %d, max supported: %d\n", size, 8192); } } else { } return (-22); } else { } size = 0U; i = 0; goto ldv_52961; ldv_52960: tx_cfg___0 = (struct tx_fifo_config *)(& config->tx_cfg) + (unsigned long )i; size = tx_cfg___0->fifo_len; if (size <= 1U) { if (debug_level >= 0) { { printk("\016s2io: Fifo %d: Invalid length (%d) - Valid lengths are 2 through 8192\n", i, size); } } else { } return (-22); } else { } i = i + 1; ldv_52961: ; if ((u32 )i < config->tx_fifo_num) { goto ldv_52960; } else { } lst_size = (int )(config->max_txds * 32U); lst_per_page = (int )(4096UL / (unsigned long )lst_size); i = 0; goto ldv_52968; ldv_52967: { fifo = (struct fifo_info *)(& mac_control->fifos) + (unsigned long )i; tx_cfg___1 = (struct tx_fifo_config *)(& config->tx_cfg) + (unsigned long )i; fifo_len = (int )tx_cfg___1->fifo_len; list_holder_size = (int )((unsigned int )fifo_len * 16U); tmp___0 = kzalloc((size_t )list_holder_size, 208U); fifo->list_info = (struct list_info_hold *)tmp___0; } if ((unsigned long )fifo->list_info == (unsigned long )((struct list_info_hold *)0)) { if (debug_level > 1) { { printk("\016s2io: Malloc failed for list_info\n"); } } else { } return (-12); } else { } mem_allocated = mem_allocated + (unsigned long long )list_holder_size; i = i + 1; ldv_52968: ; if ((u32 )i < config->tx_fifo_num) { goto ldv_52967; } else { } i = 0; goto ldv_52984; ldv_52983: page_num = (int )(((config->tx_cfg[i].fifo_len + (u32 )lst_per_page) - 1U) / (u32 )lst_per_page); fifo___0 = (struct fifo_info *)(& mac_control->fifos) + (unsigned long )i; tx_cfg___2 = (struct tx_fifo_config *)(& config->tx_cfg) + (unsigned long )i; fifo___0->tx_curr_put_info.offset = 0U; fifo___0->tx_curr_put_info.fifo_len = tx_cfg___2->fifo_len - 1U; fifo___0->tx_curr_get_info.offset = 0U; fifo___0->tx_curr_get_info.fifo_len = tx_cfg___2->fifo_len - 1U; fifo___0->fifo_no = i; fifo___0->nic = nic; fifo___0->max_txds = 19; fifo___0->dev = dev; j = 0; goto ldv_52981; ldv_52980: { k = 0; tmp_v = pci_alloc_consistent(nic->pdev, 4096UL, & tmp_p); } if ((unsigned long )tmp_v == (unsigned long )((void *)0)) { if (debug_level > 1) { { printk("\016s2io: pci_alloc_consistent failed for TxDL\n"); } } else { } return (-12); } else { } if (tmp_p == 0ULL) { mac_control->zerodma_virt_addr = tmp_v; if (debug_level > 0) { { printk("\016s2io: %s: Zero DMA address for TxDL. Virtual address %p\n", (char *)(& dev->name), tmp_v); } } else { } { tmp_v = pci_alloc_consistent(nic->pdev, 4096UL, & tmp_p); } if ((unsigned long )tmp_v == (unsigned long )((void *)0)) { if (debug_level > 1) { { printk("\016s2io: pci_alloc_consistent failed for TxDL\n"); } } else { } return (-12); } else { } mem_allocated = mem_allocated + 4096ULL; } else { } goto ldv_52979; ldv_52978: l = j * lst_per_page + k; if ((u32 )l == tx_cfg___2->fifo_len) { goto ldv_52977; } else { } (fifo___0->list_info + (unsigned long )l)->list_virt_addr = tmp_v + (unsigned long )(k * lst_size); (fifo___0->list_info + (unsigned long )l)->list_phy_addr = tmp_p + (dma_addr_t )(k * lst_size); k = k + 1; ldv_52979: ; if (k < lst_per_page) { goto ldv_52978; } else { } ldv_52977: j = j + 1; ldv_52981: ; if (j < page_num) { goto ldv_52980; } else { } i = i + 1; ldv_52984: ; if ((u32 )i < config->tx_fifo_num) { goto ldv_52983; } else { } i = 0; goto ldv_52989; ldv_52988: { fifo___1 = (struct fifo_info *)(& mac_control->fifos) + (unsigned long )i; tx_cfg___3 = (struct tx_fifo_config *)(& config->tx_cfg) + (unsigned long )i; size = tx_cfg___3->fifo_len; tmp___1 = kcalloc((size_t )size, 8UL, 208U); fifo___1->ufo_in_band_v = (u64 *)tmp___1; } if ((unsigned long )fifo___1->ufo_in_band_v == (unsigned long )((u64 *)0ULL)) { return (-12); } else { } mem_allocated = mem_allocated + (unsigned long long )((unsigned long )size * 8UL); i = i + 1; ldv_52989: ; if ((u32 )i < config->tx_fifo_num) { goto ldv_52988; } else { } size = 0U; i = 0; goto ldv_52994; ldv_52993: rx_cfg = (struct rx_ring_config *)(& config->rx_cfg) + (unsigned long )i; ring = (struct ring_info *)(& mac_control->rings) + (unsigned long )i; if (rx_cfg->num_rxd % (u32 )((int )rxd_count[nic->rxd_mode] + 1) != 0U) { if (debug_level >= 0) { { printk("\016s2io: %s: Ring%d RxD count is not a multiple of RxDs per Block\n", (char *)(& dev->name), i); } } else { } return (-1); } else { } size = size + rx_cfg->num_rxd; ring->block_count = (int )(rx_cfg->num_rxd / (u32 )((int )rxd_count[nic->rxd_mode] + 1)); ring->pkt_cnt = (int )(rx_cfg->num_rxd - (u32 )ring->block_count); i = i + 1; ldv_52994: ; if ((u32 )i < config->rx_ring_num) { goto ldv_52993; } else { } if (nic->rxd_mode == 0) { size = size * 32U; } else { size = size * 48U; } i = 0; goto ldv_53011; ldv_53010: rx_cfg___0 = (struct rx_ring_config *)(& config->rx_cfg) + (unsigned long )i; ring___0 = (struct ring_info *)(& mac_control->rings) + (unsigned long )i; ring___0->rx_curr_get_info.block_index = 0U; ring___0->rx_curr_get_info.offset = 0U; ring___0->rx_curr_get_info.ring_len = rx_cfg___0->num_rxd - 1U; ring___0->rx_curr_put_info.block_index = 0U; ring___0->rx_curr_put_info.offset = 0U; ring___0->rx_curr_put_info.ring_len = rx_cfg___0->num_rxd - 1U; ring___0->nic = nic; ring___0->ring_no = i; blk_cnt = (int )(rx_cfg___0->num_rxd / (u32 )((int )rxd_count[nic->rxd_mode] + 1)); j = 0; goto ldv_53004; ldv_53003: { rx_blocks = (struct rx_block_info *)(& ring___0->rx_blocks) + (unsigned long )j; size = 4096U; tmp_v_addr = pci_alloc_consistent(nic->pdev, (size_t )size, & tmp_p_addr); } if ((unsigned long )tmp_v_addr == (unsigned long )((void *)0)) { rx_blocks->block_virt_addr = tmp_v_addr; return (-12); } else { } { mem_allocated = mem_allocated + (unsigned long long )size; memset(tmp_v_addr, 0, (size_t )size); size = (u32 )((unsigned long )rxd_count[nic->rxd_mode]) * 16U; rx_blocks->block_virt_addr = tmp_v_addr; rx_blocks->block_dma_addr = tmp_p_addr; tmp___2 = kmalloc((size_t )size, 208U); rx_blocks->rxds = (struct rxd_info *)tmp___2; } if ((unsigned long )rx_blocks->rxds == (unsigned long )((struct rxd_info *)0)) { return (-12); } else { } mem_allocated = mem_allocated + (unsigned long long )size; l___0 = 0; goto ldv_53001; ldv_53000: (rx_blocks->rxds + (unsigned long )l___0)->virt_addr = rx_blocks->block_virt_addr + (unsigned long )((int )rxd_size[nic->rxd_mode] * l___0); (rx_blocks->rxds + (unsigned long )l___0)->dma_addr = rx_blocks->block_dma_addr + (dma_addr_t )((int )rxd_size[nic->rxd_mode] * l___0); l___0 = l___0 + 1; ldv_53001: ; if (l___0 < (int )rxd_count[nic->rxd_mode]) { goto ldv_53000; } else { } j = j + 1; ldv_53004: ; if (j < blk_cnt) { goto ldv_53003; } else { } j = 0; goto ldv_53008; ldv_53007: next = (j + 1) % blk_cnt; tmp_v_addr = ring___0->rx_blocks[j].block_virt_addr; tmp_v_addr_next = ring___0->rx_blocks[next].block_virt_addr; tmp_p_addr = ring___0->rx_blocks[j].block_dma_addr; tmp_p_addr_next = ring___0->rx_blocks[next].block_dma_addr; pre_rxd_blk = (struct RxD_block *)tmp_v_addr; pre_rxd_blk->reserved_2_pNext_RxD_block = (u64 )tmp_v_addr_next; pre_rxd_blk->pNext_RxD_Blk_physical = tmp_p_addr_next; j = j + 1; ldv_53008: ; if (j < blk_cnt) { goto ldv_53007; } else { } i = i + 1; ldv_53011: ; if ((u32 )i < config->rx_ring_num) { goto ldv_53010; } else { } if (nic->rxd_mode == 1) { i = 0; goto ldv_53023; ldv_53022: { rx_cfg___1 = (struct rx_ring_config *)(& config->rx_cfg) + (unsigned long )i; ring___1 = (struct ring_info *)(& mac_control->rings) + (unsigned long )i; blk_cnt = (int )(rx_cfg___1->num_rxd / (u32 )((int )rxd_count[nic->rxd_mode] + 1)); size = (u32 )((unsigned long )blk_cnt) * 8U; tmp___3 = kmalloc((size_t )size, 208U); ring___1->ba = (struct buffAdd **)tmp___3; } if ((unsigned long )ring___1->ba == (unsigned long )((struct buffAdd **)0)) { return (-12); } else { } mem_allocated = mem_allocated + (unsigned long long )size; j = 0; goto ldv_53020; ldv_53019: { k___0 = 0; size = (u32 )((unsigned long )((int )rxd_count[nic->rxd_mode] + 1)) * 32U; tmp___4 = kmalloc((size_t )size, 208U); *(ring___1->ba + (unsigned long )j) = (struct buffAdd *)tmp___4; } if ((unsigned long )*(ring___1->ba + (unsigned long )j) == (unsigned long )((struct buffAdd *)0)) { return (-12); } else { } mem_allocated = mem_allocated + (unsigned long long )size; goto ldv_53017; ldv_53016: { ba = *(ring___1->ba + (unsigned long )j) + (unsigned long )k___0; size = 167U; ba->ba_0_org = kmalloc((size_t )size, 208U); } if ((unsigned long )ba->ba_0_org == (unsigned long )((void *)0)) { return (-12); } else { } { mem_allocated = mem_allocated + (unsigned long long )size; tmp = (unsigned long )ba->ba_0_org; tmp = tmp + 127UL; tmp = tmp & 0xffffffffffffff80UL; ba->ba_0 = (void *)tmp; size = 128U; ba->ba_1_org = kmalloc((size_t )size, 208U); } if ((unsigned long )ba->ba_1_org == (unsigned long )((void *)0)) { return (-12); } else { } mem_allocated = mem_allocated + (unsigned long long )size; tmp = (unsigned long )ba->ba_1_org; tmp = tmp + 127UL; tmp = tmp & 0xffffffffffffff80UL; ba->ba_1 = (void *)tmp; k___0 = k___0 + 1; ldv_53017: ; if (k___0 != (int )rxd_count[nic->rxd_mode]) { goto ldv_53016; } else { } j = j + 1; ldv_53020: ; if (j < blk_cnt) { goto ldv_53019; } else { } i = i + 1; ldv_53023: ; if ((u32 )i < config->rx_ring_num) { goto ldv_53022; } else { } } else { } { size = 1416U; mac_control->stats_mem = pci_alloc_consistent(nic->pdev, (size_t )size, & mac_control->stats_mem_phy); } if ((unsigned long )mac_control->stats_mem == (unsigned long )((void *)0)) { return (-12); } else { } { mem_allocated = mem_allocated + (unsigned long long )size; mac_control->stats_mem_sz = size; tmp_v_addr = mac_control->stats_mem; mac_control->stats_info = (struct stat_block *)tmp_v_addr; memset(tmp_v_addr, 0, (size_t )size); } if (debug_level > 0) { { tmp___5 = dev_name((struct device const *)(& (nic->pdev)->dev)); printk("\016s2io: %s: Ring Mem PHY: 0x%llx\n", tmp___5, tmp_p_addr); } } else { } (mac_control->stats_info)->sw_stat.mem_allocated = (mac_control->stats_info)->sw_stat.mem_allocated + mem_allocated; return (0); } } static void free_shared_mem(struct s2io_nic *nic ) { int i ; int j ; int blk_cnt ; int size ; void *tmp_v_addr ; dma_addr_t tmp_p_addr ; int lst_size ; int lst_per_page ; struct net_device *dev ; int page_num ; struct config_param *config ; struct mac_info *mac_control ; struct stat_block *stats ; struct swStat *swstats ; struct fifo_info *fifo ; struct tx_fifo_config *tx_cfg ; int mem_blks ; struct list_info_hold *fli ; struct ring_info *ring ; struct rx_ring_config *rx_cfg ; struct ring_info *ring___0 ; int k ; struct buffAdd *ba ; struct fifo_info *fifo___0 ; struct tx_fifo_config *tx_cfg___0 ; { page_num = 0; if ((unsigned long )nic == (unsigned long )((struct s2io_nic *)0)) { return; } else { } dev = nic->dev; config = & nic->config; mac_control = & nic->mac_control; stats = mac_control->stats_info; swstats = & stats->sw_stat; lst_size = (int )(config->max_txds * 32U); lst_per_page = (int )(4096UL / (unsigned long )lst_size); i = 0; goto ldv_53050; ldv_53049: fifo = (struct fifo_info *)(& mac_control->fifos) + (unsigned long )i; tx_cfg = (struct tx_fifo_config *)(& config->tx_cfg) + (unsigned long )i; page_num = (int )(((tx_cfg->fifo_len + (u32 )lst_per_page) - 1U) / (u32 )lst_per_page); j = 0; goto ldv_53048; ldv_53047: mem_blks = j * lst_per_page; if ((unsigned long )fifo->list_info == (unsigned long )((struct list_info_hold *)0)) { return; } else { } fli = fifo->list_info + (unsigned long )mem_blks; if ((unsigned long )fli->list_virt_addr == (unsigned long )((void *)0)) { goto ldv_53046; } else { } { pci_free_consistent(nic->pdev, 4096UL, fli->list_virt_addr, fli->list_phy_addr); swstats->mem_freed = swstats->mem_freed + 4096ULL; j = j + 1; } ldv_53048: ; if (j < page_num) { goto ldv_53047; } else { } ldv_53046: ; if ((unsigned long )mac_control->zerodma_virt_addr != (unsigned long )((void *)0)) { { pci_free_consistent(nic->pdev, 4096UL, mac_control->zerodma_virt_addr, 0ULL); } if (debug_level > 0) { { printk("\016s2io: %s: Freeing TxDL with zero DMA address. Virtual address %p\n", (char *)(& dev->name), mac_control->zerodma_virt_addr); } } else { } swstats->mem_freed = swstats->mem_freed + 4096ULL; } else { } { kfree((void const *)fifo->list_info); swstats->mem_freed = swstats->mem_freed + (unsigned long long )((unsigned long )tx_cfg->fifo_len * 16UL); i = i + 1; } ldv_53050: ; if ((u32 )i < config->tx_fifo_num) { goto ldv_53049; } else { } size = 4096; i = 0; goto ldv_53057; ldv_53056: ring = (struct ring_info *)(& mac_control->rings) + (unsigned long )i; blk_cnt = ring->block_count; j = 0; goto ldv_53055; ldv_53054: tmp_v_addr = ring->rx_blocks[j].block_virt_addr; tmp_p_addr = ring->rx_blocks[j].block_dma_addr; if ((unsigned long )tmp_v_addr == (unsigned long )((void *)0)) { goto ldv_53053; } else { } { pci_free_consistent(nic->pdev, (size_t )size, tmp_v_addr, tmp_p_addr); swstats->mem_freed = swstats->mem_freed + (unsigned long long )size; kfree((void const *)ring->rx_blocks[j].rxds); swstats->mem_freed = swstats->mem_freed + (unsigned long long )((unsigned long )rxd_count[nic->rxd_mode] * 16UL); j = j + 1; } ldv_53055: ; if (j < blk_cnt) { goto ldv_53054; } else { } ldv_53053: i = i + 1; ldv_53057: ; if ((u32 )i < config->rx_ring_num) { goto ldv_53056; } else { } if (nic->rxd_mode == 1) { i = 0; goto ldv_53071; ldv_53070: rx_cfg = (struct rx_ring_config *)(& config->rx_cfg) + (unsigned long )i; ring___0 = (struct ring_info *)(& mac_control->rings) + (unsigned long )i; blk_cnt = (int )(rx_cfg->num_rxd / (u32 )((int )rxd_count[nic->rxd_mode] + 1)); j = 0; goto ldv_53068; ldv_53067: k = 0; if ((unsigned long )*(ring___0->ba + (unsigned long )j) == (unsigned long )((struct buffAdd *)0)) { goto ldv_53062; } else { } goto ldv_53065; ldv_53064: { ba = *(ring___0->ba + (unsigned long )j) + (unsigned long )k; kfree((void const *)ba->ba_0_org); swstats->mem_freed = swstats->mem_freed + 167ULL; kfree((void const *)ba->ba_1_org); swstats->mem_freed = swstats->mem_freed + 128ULL; k = k + 1; } ldv_53065: ; if (k != (int )rxd_count[nic->rxd_mode]) { goto ldv_53064; } else { } { kfree((void const *)*(ring___0->ba + (unsigned long )j)); swstats->mem_freed = swstats->mem_freed + (unsigned long long )((unsigned long )((int )rxd_count[nic->rxd_mode] + 1) * 32UL); } ldv_53062: j = j + 1; ldv_53068: ; if (j < blk_cnt) { goto ldv_53067; } else { } { kfree((void const *)ring___0->ba); swstats->mem_freed = swstats->mem_freed + (unsigned long long )((unsigned long )blk_cnt * 8UL); i = i + 1; } ldv_53071: ; if ((u32 )i < config->rx_ring_num) { goto ldv_53070; } else { } } else { } i = 0; goto ldv_53076; ldv_53075: fifo___0 = (struct fifo_info *)(& mac_control->fifos) + (unsigned long )i; tx_cfg___0 = (struct tx_fifo_config *)(& config->tx_cfg) + (unsigned long )i; if ((unsigned long )fifo___0->ufo_in_band_v != (unsigned long )((u64 *)0ULL)) { { swstats->mem_freed = swstats->mem_freed + (unsigned long long )((unsigned long )tx_cfg___0->fifo_len * 8UL); kfree((void const *)fifo___0->ufo_in_band_v); } } else { } i = i + 1; ldv_53076: ; if ((u32 )i < nic->config.tx_fifo_num) { goto ldv_53075; } else { } if ((unsigned long )mac_control->stats_mem != (unsigned long )((void *)0)) { { swstats->mem_freed = swstats->mem_freed + (unsigned long long )mac_control->stats_mem_sz; pci_free_consistent(nic->pdev, (size_t )mac_control->stats_mem_sz, mac_control->stats_mem, mac_control->stats_mem_phy); } } else { } return; } } static int s2io_verify_pci_mode(struct s2io_nic *nic ) { struct XENA_dev_config *bar0 ; register u64 val64 ; int mode ; unsigned long tmp ; { { bar0 = (struct XENA_dev_config *)nic->bar0; val64 = 0ULL; tmp = readq((void const volatile *)(& bar0->pci_mode)); val64 = (u64 )tmp; mode = (int )((unsigned char )(val64 >> 60)); } if ((val64 & 18014398509481984ULL) != 0ULL) { return (-1); } else { } return (mode); } } static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev ) { struct pci_dev *tdev ; { tdev = (struct pci_dev *)0; goto ldv_53089; ldv_53088: ; if (*((unsigned int *)tdev + 15UL) == 19206195U) { if ((unsigned long )tdev->bus == (unsigned long )(s2io_pdev->bus)->parent) { { pci_dev_put(tdev); } return (1); } else { } } else { } ldv_53089: { tdev = pci_get_device(4294967295U, 4294967295U, tdev); } if ((unsigned long )tdev != (unsigned long )((struct pci_dev *)0)) { goto ldv_53088; } else { } return (0); } } static int bus_speed[8U] = { 33, 133, 133, 200, 266, 133, 200, 266}; static int s2io_print_pci_mode(struct s2io_nic *nic ) { struct XENA_dev_config *bar0 ; register u64 val64 ; int mode ; struct config_param *config ; char const *pcimode ; unsigned long tmp ; int tmp___0 ; { { bar0 = (struct XENA_dev_config *)nic->bar0; val64 = 0ULL; config = & nic->config; tmp = readq((void const volatile *)(& bar0->pci_mode)); val64 = (u64 )tmp; mode = (int )((unsigned char )(val64 >> 60)); } if ((val64 & 18014398509481984ULL) != 0ULL) { return (-1); } else { } { config->bus_speed = (u16 )bus_speed[mode]; tmp___0 = s2io_on_nec_bridge(nic->pdev); } if (tmp___0 != 0) { if (debug_level >= 0) { { printk("\016s2io: %s: Device is on PCI-E bus\n", (char *)(& (nic->dev)->name)); } } else { } return (mode); } else { } { if (mode == 0) { goto case_0; } else { } if (mode == 1) { goto case_1; } else { } if (mode == 2) { goto case_2; } else { } if (mode == 3) { goto case_3; } else { } if (mode == 4) { goto case_4; } else { } if (mode == 5) { goto case_5; } else { } if (mode == 6) { goto case_6; } else { } if (mode == 7) { goto case_7; } else { } goto switch_default; case_0: /* CIL Label */ pcimode = "33MHz PCI bus"; goto ldv_53101; case_1: /* CIL Label */ pcimode = "66MHz PCI bus"; goto ldv_53101; case_2: /* CIL Label */ pcimode = "66MHz PCIX(M1) bus"; goto ldv_53101; case_3: /* CIL Label */ pcimode = "100MHz PCIX(M1) bus"; goto ldv_53101; case_4: /* CIL Label */ pcimode = "133MHz PCIX(M1) bus"; goto ldv_53101; case_5: /* CIL Label */ pcimode = "133MHz PCIX(M2) bus"; goto ldv_53101; case_6: /* CIL Label */ pcimode = "200MHz PCIX(M2) bus"; goto ldv_53101; case_7: /* CIL Label */ pcimode = "266MHz PCIX(M2) bus"; goto ldv_53101; switch_default: /* CIL Label */ pcimode = "unsupported bus!"; mode = -1; switch_break: /* CIL Label */ ; } ldv_53101: ; if (debug_level >= 0) { { printk("\016s2io: %s: Device is on %d bit %s\n", (char *)(& (nic->dev)->name), (val64 & 36028797018963968ULL) != 0ULL ? 32 : 64, pcimode); } } else { } return (mode); } } static int init_tti(struct s2io_nic *nic , int link ) { struct XENA_dev_config *bar0 ; register u64 val64 ; int i ; struct config_param *config ; int count ; int tmp ; { bar0 = (struct XENA_dev_config *)nic->bar0; val64 = 0ULL; config = & nic->config; i = 0; goto ldv_53120; ldv_53119: ; if ((unsigned int )nic->device_type == 2U) { count = ((int )nic->config.bus_speed * 125) / 2; val64 = (unsigned long long )count << 32; } else { val64 = 35699768164352ULL; } val64 = val64 | 34213936ULL; if (i == 0) { if (use_continuous_tx_intrs != 0U && link == 2) { val64 = val64 | 16777216ULL; } else { } } else { } { writeq((unsigned long )val64, (void volatile *)(& bar0->tti_data1_mem)); } if ((unsigned int )nic->config.intr_type == 2U) { val64 = 4504699172553472ULL; } else if ((((unsigned int )nic->config.tx_steering_type == 2U && config->tx_fifo_num > 1U) && i >= (int )nic->udp_fifo_idx) && i < (int )nic->udp_fifo_idx + (int )nic->total_udp_fifos) { val64 = 22518547909443872ULL; } else { val64 = 4503737070518400ULL; } { writeq((unsigned long )val64, (void volatile *)(& bar0->tti_data2_mem)); val64 = ((unsigned long long )i << 32) | 72339069014638592ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tti_command_mem)); tmp = wait_for_cmd_complete((void *)(& bar0->tti_command_mem), 281474976710656ULL, 1); } if (tmp != 0) { return (-1); } else { } i = i + 1; ldv_53120: ; if ((u32 )i < config->tx_fifo_num) { goto ldv_53119; } else { } return (0); } } static int init_nic(struct s2io_nic *nic ) { struct XENA_dev_config *bar0 ; struct net_device *dev ; register u64 val64 ; void *add ; u32 time ; int i ; int j ; int dtx_cnt ; unsigned long long mem_share ; int mem_size ; struct config_param *config ; struct mac_info *mac_control ; int tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; unsigned long tmp___4 ; unsigned long tmp___5 ; unsigned long tmp___6 ; unsigned long tmp___7 ; struct tx_fifo_config *tx_cfg ; unsigned long tmp___8 ; unsigned long tmp___9 ; struct rx_ring_config *rx_cfg ; unsigned long tmp___10 ; int tmp___11 ; int tmp___12 ; int count ; unsigned long tmp___13 ; unsigned long tmp___14 ; unsigned long tmp___15 ; unsigned long tmp___16 ; unsigned long tmp___17 ; unsigned long tmp___18 ; unsigned long tmp___19 ; char *tmp___20 ; { { bar0 = (struct XENA_dev_config *)nic->bar0; dev = nic->dev; val64 = 0ULL; dtx_cnt = 0; config = & nic->config; mac_control = & nic->mac_control; tmp = s2io_set_swapper(nic); } if (tmp != 0) { if (debug_level >= 0) { { printk("\016s2io: ERROR: Setting Swapper failed\n"); } } else { } return (-5); } else { } if (((int )nic->device_type & 2) != 0) { { val64 = 708669603840ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->sw_reset)); msleep(500U); tmp___0 = readq((void const volatile *)(& bar0->sw_reset)); val64 = (u64 )tmp___0; } } else { } { val64 = 0ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->sw_reset)); msleep(500U); tmp___1 = readq((void const volatile *)(& bar0->sw_reset)); val64 = (u64 )tmp___1; } if ((unsigned int )nic->device_type == 2U) { i = 0; goto ldv_53139; ldv_53138: { tmp___2 = readq((void const volatile *)(& bar0->adapter_status)); val64 = (u64 )tmp___2; } if ((val64 & 137438953472ULL) == 0ULL) { goto ldv_53137; } else { } { msleep(10U); i = i + 1; } ldv_53139: ; if (i <= 49) { goto ldv_53138; } else { } ldv_53137: ; if (i == 50) { return (-19); } else { } } else { } { add = (void *)(& bar0->mac_cfg); tmp___3 = readq((void const volatile *)(& bar0->mac_cfg)); val64 = (u64 )tmp___3; val64 = val64 | 18014398509481984ULL; writeq(5480036321579761664UL, (void volatile *)(& bar0->rmac_cfg_key)); writel((unsigned int )val64, (void volatile *)add); writeq(5480036321579761664UL, (void volatile *)(& bar0->rmac_cfg_key)); writel((unsigned int )(val64 >> 32), (void volatile *)add + 4U); tmp___4 = readq((void const volatile *)(& bar0->mac_int_mask)); val64 = (u64 )tmp___4; tmp___5 = readq((void const volatile *)(& bar0->mc_int_mask)); val64 = (u64 )tmp___5; tmp___6 = readq((void const volatile *)(& bar0->xgxs_int_mask)); val64 = (u64 )tmp___6; val64 = (u64 )dev->mtu; writeq((unsigned long )(val64 << 48), (void volatile *)(& bar0->rmac_max_pyld_len)); } if (((int )nic->device_type & 2) != 0) { goto ldv_53141; ldv_53140: { SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt], (void *)(& bar0->dtx_control), 1); } if (dtx_cnt & 1) { { msleep(1U); } } else { } dtx_cnt = dtx_cnt + 1; ldv_53141: ; if ((unsigned long long )herc_act_dtx_cfg[dtx_cnt] != 0ULL) { goto ldv_53140; } else { } } else { goto ldv_53144; ldv_53143: { SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt], (void *)(& bar0->dtx_control), 1); tmp___7 = readq((void const volatile *)(& bar0->dtx_control)); val64 = (u64 )tmp___7; dtx_cnt = dtx_cnt + 1; } ldv_53144: ; if ((unsigned long long )xena_dtx_cfg[dtx_cnt] != 0ULL) { goto ldv_53143; } else { } } { val64 = 0ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_fifo_partition_0)); writeq((unsigned long )val64, (void volatile *)(& bar0->tx_fifo_partition_1)); writeq((unsigned long )val64, (void volatile *)(& bar0->tx_fifo_partition_2)); writeq((unsigned long )val64, (void volatile *)(& bar0->tx_fifo_partition_3)); i = 0; j = 0; } goto ldv_53154; ldv_53153: tx_cfg = (struct tx_fifo_config *)(& config->tx_cfg) + (unsigned long )i; val64 = val64 | ((((unsigned long long )tx_cfg->fifo_len - 1ULL) << (j * -32 + 32)) | ((unsigned long long )tx_cfg->fifo_priority << (j * -32 + 56))); if ((u32 )i == config->tx_fifo_num - 1U) { if (((unsigned int )i & 1U) == 0U) { i = i + 1; } else { } } else { } { if (i == 1) { goto case_1; } else { } if (i == 3) { goto case_3; } else { } if (i == 5) { goto case_5; } else { } if (i == 7) { goto case_7; } else { } goto switch_default; case_1: /* CIL Label */ { writeq((unsigned long )val64, (void volatile *)(& bar0->tx_fifo_partition_0)); val64 = 0ULL; j = 0; } goto ldv_53148; case_3: /* CIL Label */ { writeq((unsigned long )val64, (void volatile *)(& bar0->tx_fifo_partition_1)); val64 = 0ULL; j = 0; } goto ldv_53148; case_5: /* CIL Label */ { writeq((unsigned long )val64, (void volatile *)(& bar0->tx_fifo_partition_2)); val64 = 0ULL; j = 0; } goto ldv_53148; case_7: /* CIL Label */ { writeq((unsigned long )val64, (void volatile *)(& bar0->tx_fifo_partition_3)); val64 = 0ULL; j = 0; } goto ldv_53148; switch_default: /* CIL Label */ j = j + 1; goto ldv_53148; switch_break: /* CIL Label */ ; } ldv_53148: i = i + 1; ldv_53154: ; if ((u32 )i < config->tx_fifo_num) { goto ldv_53153; } else { } if ((unsigned int )nic->device_type == 1U && (unsigned int )(nic->pdev)->revision <= 3U) { { writeq(1080863910568919040UL, (void volatile *)(& bar0->pcc_enable)); } } else { } { tmp___8 = readq((void const volatile *)(& bar0->tx_fifo_partition_0)); val64 = (u64 )tmp___8; } if (debug_level > 0) { { printk("\016s2io: Fifo partition at: 0x%p is: 0x%llx\n", & bar0->tx_fifo_partition_0, val64); } } else { } { tmp___9 = readq((void const volatile *)(& bar0->tx_pa_cfg)); val64 = (u64 )tmp___9; val64 = val64 | 8214565720323784704ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_pa_cfg)); val64 = 0ULL; i = 0; } goto ldv_53158; ldv_53157: rx_cfg = (struct rx_ring_config *)(& config->rx_cfg) + (unsigned long )i; val64 = val64 | ((unsigned long long )rx_cfg->ring_priority << (7 - i) * 8); i = i + 1; ldv_53158: ; if ((u32 )i < config->rx_ring_num) { goto ldv_53157; } else { } { writeq((unsigned long )val64, (void volatile *)(& bar0->rx_queue_priority)); val64 = 0ULL; } if (((int )nic->device_type & 2) != 0) { mem_size = 32; } else { mem_size = 64; } i = 0; goto ldv_53170; ldv_53169: ; { if (i == 0) { goto case_0; } else { } if (i == 1) { goto case_1___0; } else { } if (i == 2) { goto case_2; } else { } if (i == 3) { goto case_3___0; } else { } if (i == 4) { goto case_4; } else { } if (i == 5) { goto case_5___0; } else { } if (i == 6) { goto case_6; } else { } if (i == 7) { goto case_7___0; } else { } goto switch_break___0; case_0: /* CIL Label */ mem_share = (unsigned long long )((u32 )mem_size / config->rx_ring_num + (u32 )mem_size % config->rx_ring_num); val64 = val64 | (mem_share << 56); goto ldv_53161; case_1___0: /* CIL Label */ mem_share = (unsigned long long )((u32 )mem_size / config->rx_ring_num); val64 = val64 | (mem_share << 48); goto ldv_53161; case_2: /* CIL Label */ mem_share = (unsigned long long )((u32 )mem_size / config->rx_ring_num); val64 = val64 | (mem_share << 40); goto ldv_53161; case_3___0: /* CIL Label */ mem_share = (unsigned long long )((u32 )mem_size / config->rx_ring_num); val64 = val64 | (mem_share << 32); goto ldv_53161; case_4: /* CIL Label */ mem_share = (unsigned long long )((u32 )mem_size / config->rx_ring_num); val64 = val64 | (mem_share << 24); goto ldv_53161; case_5___0: /* CIL Label */ mem_share = (unsigned long long )((u32 )mem_size / config->rx_ring_num); val64 = val64 | (mem_share << 16); goto ldv_53161; case_6: /* CIL Label */ mem_share = (unsigned long long )((u32 )mem_size / config->rx_ring_num); val64 = val64 | (mem_share << 8); goto ldv_53161; case_7___0: /* CIL Label */ mem_share = (unsigned long long )((u32 )mem_size / config->rx_ring_num); val64 = val64 | mem_share; goto ldv_53161; switch_break___0: /* CIL Label */ ; } ldv_53161: i = i + 1; ldv_53170: ; if ((u32 )i < config->rx_ring_num) { goto ldv_53169; } else { } { writeq((unsigned long )val64, (void volatile *)(& bar0->rx_queue_cfg)); } { if (config->tx_fifo_num == 1U) { goto case_1___1; } else { } if (config->tx_fifo_num == 2U) { goto case_2___0; } else { } if (config->tx_fifo_num == 3U) { goto case_3___1; } else { } if (config->tx_fifo_num == 4U) { goto case_4___0; } else { } if (config->tx_fifo_num == 5U) { goto case_5___1; } else { } if (config->tx_fifo_num == 6U) { goto case_6___0; } else { } if (config->tx_fifo_num == 7U) { goto case_7___1; } else { } if (config->tx_fifo_num == 8U) { goto case_8; } else { } goto switch_break___1; case_1___1: /* CIL Label */ { val64 = 0ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_0)); writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_1)); writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_2)); writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_3)); writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_4)); } goto ldv_53173; case_2___0: /* CIL Label */ { val64 = 281479271743489ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_0)); writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_1)); writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_2)); writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_3)); val64 = 281479271677952ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_4)); } goto ldv_53173; case_3___1: /* CIL Label */ { val64 = 283674016874497ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_0)); val64 = 144116296177484288ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_1)); val64 = 72620548319871234ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_2)); val64 = 283674016874497ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_3)); val64 = 144116296177418240ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_4)); } goto ldv_53173; case_4___0: /* CIL Label */ { val64 = 283686884934147ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_0)); writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_1)); writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_2)); writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_3)); val64 = 283686884868096ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_4)); } goto ldv_53173; case_5___1: /* CIL Label */ { val64 = 283686951977218ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_0)); val64 = 217298686349345792ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_1)); val64 = 72623859706167811ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_2)); val64 = 288231484303867905ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_3)); val64 = 144964011052498944ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_4)); } goto ldv_53173; case_6___0: /* CIL Label */ { val64 = 283686952304641ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_0)); val64 = 144964032527401475ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_1)); val64 = 289637755363984389ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_2)); val64 = 283686952304641ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_3)); val64 = 144964032527335424ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_4)); } goto ldv_53173; case_7___1: /* CIL Label */ { val64 = 283686952306176ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_0)); val64 = 72623859790381057ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_1)); val64 = 144964032627998978ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_2)); val64 = 217304205348635139ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_3)); val64 = 289644348105031680ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_4)); } goto ldv_53173; case_8: /* CIL Label */ { val64 = 283686952306183ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_0)); writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_1)); writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_2)); writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_3)); val64 = 283686884868096ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_w_round_robin_4)); } goto ldv_53173; switch_break___1: /* CIL Label */ ; } ldv_53173: { tmp___10 = readq((void const volatile *)(& bar0->tx_fifo_partition_0)); val64 = (u64 )tmp___10; val64 = val64 | 0x8000000000000000ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tx_fifo_partition_0)); } { if (config->rx_ring_num == 1U) { goto case_1___2; } else { } if (config->rx_ring_num == 2U) { goto case_2___1; } else { } if (config->rx_ring_num == 3U) { goto case_3___2; } else { } if (config->rx_ring_num == 4U) { goto case_4___1; } else { } if (config->rx_ring_num == 5U) { goto case_5___2; } else { } if (config->rx_ring_num == 6U) { goto case_6___1; } else { } if (config->rx_ring_num == 7U) { goto case_7___2; } else { } if (config->rx_ring_num == 8U) { goto case_8___0; } else { } goto switch_break___2; case_1___2: /* CIL Label */ { val64 = 0ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_0)); writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_1)); writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_2)); writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_3)); writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_4)); val64 = 0x8080808080808080ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rts_qos_steering)); } goto ldv_53182; case_2___1: /* CIL Label */ { val64 = 281479271743489ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_0)); writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_1)); writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_2)); writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_3)); val64 = 281479271677952ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_4)); val64 = 0x8080808040404040ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rts_qos_steering)); } goto ldv_53182; case_3___2: /* CIL Label */ { val64 = 283674016874497ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_0)); val64 = 144116296177484288ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_1)); val64 = 72620548319871234ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_2)); val64 = 283674016874497ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_3)); val64 = 144116296177418240ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_4)); val64 = 0x8080804040402020ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rts_qos_steering)); } goto ldv_53182; case_4___1: /* CIL Label */ { val64 = 283686884934147ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_0)); writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_1)); writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_2)); writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_3)); val64 = 283686884868096ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_4)); val64 = 0x8080404020201010ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rts_qos_steering)); } goto ldv_53182; case_5___2: /* CIL Label */ { val64 = 283686951977218ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_0)); val64 = 217298686349345792ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_1)); val64 = 72623859706167811ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_2)); val64 = 288231484303867905ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_3)); val64 = 144964011052498944ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_4)); val64 = 0x8080404020201008ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rts_qos_steering)); } goto ldv_53182; case_6___1: /* CIL Label */ { val64 = 283686952304641ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_0)); val64 = 144964032527401475ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_1)); val64 = 289637755363984389ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_2)); val64 = 283686952304641ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_3)); val64 = 144964032527335424ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_4)); val64 = 0x8080404020100804ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rts_qos_steering)); } goto ldv_53182; case_7___2: /* CIL Label */ { val64 = 283686952306176ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_0)); val64 = 72623859790381057ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_1)); val64 = 144964032627998978ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_2)); val64 = 217304205348635139ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_3)); val64 = 289644348105031680ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_4)); val64 = 0x8080402010080402ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rts_qos_steering)); } goto ldv_53182; case_8___0: /* CIL Label */ { val64 = 283686952306183ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_0)); writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_1)); writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_2)); writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_3)); val64 = 283686884868096ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_w_round_robin_4)); val64 = 0x8040201008040201ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rts_qos_steering)); } goto ldv_53182; switch_break___2: /* CIL Label */ ; } ldv_53182: val64 = 0ULL; i = 0; goto ldv_53191; ldv_53190: { writeq((unsigned long )val64, (void volatile *)(& bar0->rts_frm_len_n) + (unsigned long )i); i = i + 1; } ldv_53191: ; if (i <= 7) { goto ldv_53190; } else { } val64 = ((unsigned long long )dev->mtu + 22ULL) << 48; i = 0; goto ldv_53194; ldv_53193: { writeq((unsigned long )val64, (void volatile *)(& bar0->rts_frm_len_n) + (unsigned long )i); i = i + 1; } ldv_53194: ; if ((u32 )i < config->rx_ring_num) { goto ldv_53193; } else { } i = 0; goto ldv_53197; ldv_53196: ; if (rts_frm_len[i] != 0U) { { writeq((unsigned long )((unsigned long long )rts_frm_len[i] << 48), (void volatile *)(& bar0->rts_frm_len_n) + (unsigned long )i); } } else { } i = i + 1; ldv_53197: ; if ((u32 )i < config->rx_ring_num) { goto ldv_53196; } else { } i = 0; goto ldv_53200; ldv_53199: { tmp___11 = rts_ds_steer(nic, (int )((u8 )i), 0); } if (tmp___11 == -1) { if (debug_level >= 0) { { printk("\016s2io: %s: rts_ds_steer failed on codepoint %d\n", (char *)(& dev->name), i); } } else { } return (-19); } else { } i = i + 1; ldv_53200: ; if (i <= 63) { goto ldv_53199; } else { } { writeq((unsigned long )mac_control->stats_mem_phy, (void volatile *)(& bar0->stat_addr)); } if ((unsigned int )nic->device_type == 2U) { { val64 = 225179981368524800ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->stat_byte_cnt)); } } else { } { val64 = ((unsigned long long )tmac_util_period << 52) | ((unsigned long long )rmac_util_period << 20); writeq((unsigned long )val64, (void volatile *)(& bar0->mac_link_util)); tmp___12 = init_tti(nic, (int )nic->last_link_state); } if (tmp___12 != 0) { return (-19); } else { } if ((unsigned int )nic->device_type == 2U) { count = ((int )nic->config.bus_speed * 125) / 4; val64 = (unsigned long long )count << 32; } else { val64 = 17587891077120ULL; } { val64 = val64 | 34213936ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rti_data1_mem)); val64 = 281483566645248ULL; } if ((unsigned int )nic->config.intr_type == 2U) { val64 = val64 | 2097216ULL; } else { val64 = val64 | 4194432ULL; } { writeq((unsigned long )val64, (void volatile *)(& bar0->rti_data2_mem)); i = 0; } goto ldv_53206; ldv_53205: { val64 = ((unsigned long long )i << 32) | 72339069014638592ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rti_command_mem)); time = 0U; } ldv_53204: { tmp___13 = readq((void const volatile *)(& bar0->rti_command_mem)); val64 = (u64 )tmp___13; } if ((val64 & 281474976710656ULL) == 0ULL) { goto ldv_53203; } else { } if (time > 10U) { if (debug_level >= 0) { { printk("\016s2io: %s: RTI init failed\n", (char *)(& dev->name)); } } else { } return (-19); } else { } { time = time + 1U; msleep(50U); } goto ldv_53204; ldv_53203: i = i + 1; ldv_53206: ; if ((u32 )i < config->rx_ring_num) { goto ldv_53205; } else { } { writeq(0xffbbffbbffbbffbbUL, (void volatile *)(& bar0->mc_pause_thresh_q0q3)); writeq(0xffbbffbbffbbffbbUL, (void volatile *)(& bar0->mc_pause_thresh_q4q7)); add = (void *)(& bar0->mac_cfg); tmp___14 = readq((void const volatile *)(& bar0->mac_cfg)); val64 = (u64 )tmp___14; val64 = val64 & 0xfdffffffffffffffULL; writeq(5480036321579761664UL, (void volatile *)(& bar0->rmac_cfg_key)); writel((unsigned int )val64, (void volatile *)add); writeq(5480036321579761664UL, (void volatile *)(& bar0->rmac_cfg_key)); writel((unsigned int )(val64 >> 32), (void volatile *)add + 4U); tmp___15 = readq((void const volatile *)(& bar0->mac_cfg)); val64 = (u64 )tmp___15; add = (void *)(& bar0->mac_cfg); tmp___16 = readq((void const volatile *)(& bar0->mac_cfg)); val64 = (u64 )tmp___16; val64 = val64 | 288230376151711744ULL; } if ((unsigned int )nic->device_type == 2U) { { writeq((unsigned long )val64, (void volatile *)(& bar0->mac_cfg)); } } else { { writeq(5480036321579761664UL, (void volatile *)(& bar0->rmac_cfg_key)); writel((unsigned int )val64, (void volatile *)add); writeq(5480036321579761664UL, (void volatile *)(& bar0->rmac_cfg_key)); writel((unsigned int )(val64 >> 32), (void volatile *)add + 4U); } } { tmp___17 = readq((void const volatile *)(& bar0->rmac_pause_cfg)); val64 = (u64 )tmp___17; val64 = val64 & 0xffff0000ffffffffULL; val64 = val64 | ((unsigned long long )nic->mac_control.rmac_pause_time << 32); writeq((unsigned long )val64, (void volatile *)(& bar0->rmac_pause_cfg)); val64 = 0ULL; i = 0; } goto ldv_53209; ldv_53208: val64 = val64 | ((unsigned long long )((unsigned int )nic->mac_control.mc_pause_threshold_q0q3 | 65280U) << i * 16); i = i + 1; ldv_53209: ; if (i <= 3) { goto ldv_53208; } else { } { writeq((unsigned long )val64, (void volatile *)(& bar0->mc_pause_thresh_q0q3)); val64 = 0ULL; i = 0; } goto ldv_53212; ldv_53211: val64 = val64 | ((unsigned long long )((unsigned int )nic->mac_control.mc_pause_threshold_q4q7 | 65280U) << i * 16); i = i + 1; ldv_53212: ; if (i <= 3) { goto ldv_53211; } else { } { writeq((unsigned long )val64, (void volatile *)(& bar0->mc_pause_thresh_q4q7)); tmp___18 = readq((void const volatile *)(& bar0->pic_control)); val64 = (u64 )tmp___18; val64 = val64 | ((unsigned long long )shared_splits << 48); writeq((unsigned long )val64, (void volatile *)(& bar0->pic_control)); } if ((unsigned int )nic->config.bus_speed == 266U) { { writeq(545460846593UL, (void volatile *)(& bar0->txreqtimeout)); writeq(0UL, (void volatile *)(& bar0->read_retry_delay)); writeq(0UL, (void volatile *)(& bar0->write_retry_delay)); } } else { } if ((unsigned int )nic->device_type == 2U) { { val64 = 0xc000000300000000ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->misc_control)); tmp___19 = readq((void const volatile *)(& bar0->pic_control2)); val64 = (u64 )tmp___19; val64 = val64 & 0xfff8ffffffffffffULL; writeq((unsigned long )val64, (void volatile *)(& bar0->pic_control2)); } } else { } { tmp___20 = strstr((char const *)(& nic->product_name), "CX4"); } if ((unsigned long )tmp___20 != (unsigned long )((char *)0)) { { val64 = 1657324662872342528ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->tmac_avg_ipg)); } } else { } return (0); } } static int s2io_link_fault_indication(struct s2io_nic *nic ) { { if ((unsigned int )nic->device_type == 2U) { return (1); } else { return (2); } } } static void do_s2io_write_bits(u64 value , int flag , void *addr ) { u64 temp64 ; unsigned long tmp ; { { tmp = readq((void const volatile *)addr); temp64 = (u64 )tmp; } if (flag == 1) { temp64 = temp64 & ~ value; } else { temp64 = temp64 | value; } { writeq((unsigned long )temp64, (void volatile *)addr); } return; } } static void en_dis_err_alarms(struct s2io_nic *nic , u16 mask , int flag ) { struct XENA_dev_config *bar0 ; register u64 gen_int_mask ; u64 interruptible ; int tmp ; { { bar0 = (struct XENA_dev_config *)nic->bar0; gen_int_mask = 0ULL; writeq(0xffffffffffffffffUL, (void volatile *)(& bar0->general_int_mask)); } if (((int )mask & 2) != 0) { { gen_int_mask = gen_int_mask | 4611686018427387904ULL; do_s2io_write_bits(0xfe00000000000000ULL, flag, (void *)(& bar0->txdma_int_mask)); do_s2io_write_bits(72340174985494528ULL, flag, (void *)(& bar0->pfc_err_mask)); do_s2io_write_bits(0xffff030001000000ULL, flag, (void *)(& bar0->tda_err_mask)); do_s2io_write_bits(0xfffffffffffffff0ULL, flag, (void *)(& bar0->pcc_err_mask)); do_s2io_write_bits(72340168526266368ULL, flag, (void *)(& bar0->tti_err_mask)); do_s2io_write_bits(4225423185543168ULL, flag, (void *)(& bar0->lso_err_mask)); do_s2io_write_bits(72058693549555712ULL, flag, (void *)(& bar0->tpa_err_mask)); do_s2io_write_bits(281474976710656ULL, flag, (void *)(& bar0->sm_err_mask)); } } else { } if (((int )mask & 4) != 0) { { gen_int_mask = gen_int_mask | 2305843009213693952ULL; do_s2io_write_bits(0x8000000000000000ULL, flag, (void *)(& bar0->mac_int_mask)); do_s2io_write_bits(72340168543109376ULL, flag, (void *)(& bar0->mac_tmac_err_mask)); } } else { } if (((int )mask & 8) != 0) { { gen_int_mask = gen_int_mask | 1152921504606846976ULL; do_s2io_write_bits(0x8000000000000000ULL, flag, (void *)(& bar0->xgxs_int_mask)); do_s2io_write_bits(72339073326383104ULL, flag, (void *)(& bar0->xgxs_txgxs_err_mask)); } } else { } if (((int )mask & 64) != 0) { { gen_int_mask = gen_int_mask | 1073741824ULL; do_s2io_write_bits(0xf000000000000000ULL, flag, (void *)(& bar0->rxdma_int_mask)); do_s2io_write_bits(0xffff0101ff01ff00ULL, flag, (void *)(& bar0->rc_err_mask)); do_s2io_write_bits(0xffffffffffff0000ULL, flag, (void *)(& bar0->prc_pcix_err_mask)); do_s2io_write_bits(72340172821233664ULL, flag, (void *)(& bar0->rpa_err_mask)); do_s2io_write_bits(0xffff010103010101ULL, flag, (void *)(& bar0->rda_err_mask)); do_s2io_write_bits(72340168526266368ULL, flag, (void *)(& bar0->rti_err_mask)); } } else { } if (((int )mask & 128) != 0) { { gen_int_mask = gen_int_mask | 536870912ULL; do_s2io_write_bits(4611686018427387904ULL, flag, (void *)(& bar0->mac_int_mask)); interruptible = 0xa7f7f00001000000ULL; tmp = s2io_link_fault_indication(nic); } if (tmp == 2) { interruptible = interruptible | 4294967296ULL; } else { } { do_s2io_write_bits(interruptible, flag, (void *)(& bar0->mac_rmac_err_mask)); } } else { } if (((int )mask & 256) != 0) { { gen_int_mask = gen_int_mask | 134217728ULL; do_s2io_write_bits(4611686018427387904ULL, flag, (void *)(& bar0->xgxs_int_mask)); do_s2io_write_bits(72057594054705152ULL, flag, (void *)(& bar0->xgxs_rxgxs_err_mask)); } } else { } if (((int )mask & 1024) != 0) { { gen_int_mask = gen_int_mask | 268435456ULL; do_s2io_write_bits(0x8000000000000000ULL, flag, (void *)(& bar0->mc_int_mask)); do_s2io_write_bits(4340476086585393152ULL, flag, (void *)(& bar0->mc_err_mask)); } } else { } nic->general_int_mask = gen_int_mask; nic->general_int_mask = 0ULL; return; } } static void en_dis_able_nic_intrs(struct s2io_nic *nic , u16 mask , int flag ) { struct XENA_dev_config *bar0 ; register u64 temp64 ; register u64 intr_mask ; int tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; { bar0 = (struct XENA_dev_config *)nic->bar0; temp64 = 0ULL; intr_mask = 0ULL; intr_mask = nic->general_int_mask; if ((int )mask & 1) { intr_mask = intr_mask | 0x8000000000000000ULL; if (flag == 1) { { tmp = s2io_link_fault_indication(nic); } if (tmp == 1) { { do_s2io_write_bits(576460752303423488ULL, flag, (void *)(& bar0->pic_int_mask)); do_s2io_write_bits(2305843009213693952ULL, flag, (void *)(& bar0->gpio_int_mask)); } } else { { writeq(0xffffffffffffffffUL, (void volatile *)(& bar0->pic_int_mask)); } } } else if (flag == 2) { { writeq(0xffffffffffffffffUL, (void volatile *)(& bar0->pic_int_mask)); } } else { } } else { } if (((int )mask & 16) != 0) { intr_mask = intr_mask | 36028797018963968ULL; if (flag == 1) { { writeq(0UL, (void volatile *)(& bar0->tx_traffic_mask)); } } else if (flag == 2) { { writeq(0xffffffffffffffffUL, (void volatile *)(& bar0->tx_traffic_mask)); } } else { } } else { } if (((int )mask & 512) != 0) { intr_mask = intr_mask | 8388608ULL; if (flag == 1) { { writeq(0UL, (void volatile *)(& bar0->rx_traffic_mask)); } } else if (flag == 2) { { writeq(0xffffffffffffffffUL, (void volatile *)(& bar0->rx_traffic_mask)); } } else { } } else { } { tmp___0 = readq((void const volatile *)(& bar0->general_int_mask)); temp64 = (u64 )tmp___0; } if (flag == 1) { temp64 = temp64 & ~ intr_mask; } else { temp64 = 0xffffffffffffffffULL; } { writeq((unsigned long )temp64, (void volatile *)(& bar0->general_int_mask)); tmp___1 = readq((void const volatile *)(& bar0->general_int_mask)); nic->general_int_mask = (u64 )tmp___1; } return; } } static int verify_pcc_quiescent(struct s2io_nic *sp , int flag ) { int ret ; int herc ; struct XENA_dev_config *bar0 ; u64 val64 ; unsigned long tmp ; { { ret = 0; bar0 = (struct XENA_dev_config *)sp->bar0; tmp = readq((void const volatile *)(& bar0->adapter_status)); val64 = (u64 )tmp; herc = (unsigned int )sp->device_type == 2U; } if (flag == 0) { if ((herc == 0 && (unsigned int )(sp->pdev)->revision > 3U) || herc != 0) { if ((val64 & 71776119061217280ULL) == 0ULL) { ret = 1; } else { } } else if ((val64 & 4222124650659840ULL) == 0ULL) { ret = 1; } else { } } else if ((herc == 0 && (unsigned int )(sp->pdev)->revision > 3U) || herc != 0) { if ((val64 & 71776119061217280ULL) == 71776119061217280ULL) { ret = 1; } else { } } else if ((val64 & 4222124650659840ULL) == 4222124650659840ULL) { ret = 1; } else { } return (ret); } } static int verify_xena_quiescence(struct s2io_nic *sp ) { int mode ; struct XENA_dev_config *bar0 ; u64 val64 ; unsigned long tmp ; { { bar0 = (struct XENA_dev_config *)sp->bar0; tmp = readq((void const volatile *)(& bar0->adapter_status)); val64 = (u64 )tmp; mode = s2io_verify_pci_mode(sp); } if ((long )val64 >= 0L) { if (debug_level >= 0) { { printk("\016s2io: TDMA is not ready!\n"); } } else { } return (0); } else { } if ((val64 & 4611686018427387904ULL) == 0ULL) { if (debug_level >= 0) { { printk("\016s2io: RDMA is not ready!\n"); } } else { } return (0); } else { } if ((val64 & 2305843009213693952ULL) == 0ULL) { if (debug_level >= 0) { { printk("\016s2io: PFC is not ready!\n"); } } else { } return (0); } else { } if ((val64 & 1152921504606846976ULL) == 0ULL) { if (debug_level >= 0) { { printk("\016s2io: TMAC BUF is not empty!\n"); } } else { } return (0); } else { } if ((val64 & 288230376151711744ULL) == 0ULL) { if (debug_level >= 0) { { printk("\016s2io: PIC is not QUIESCENT!\n"); } } else { } return (0); } else { } if ((val64 & 549755813888ULL) == 0ULL) { if (debug_level >= 0) { { printk("\016s2io: MC_DRAM is not ready!\n"); } } else { } return (0); } else { } if ((val64 & 274877906944ULL) == 0ULL) { if (debug_level >= 0) { { printk("\016s2io: MC_QUEUES is not ready!\n"); } } else { } return (0); } else { } if ((val64 & 8589934592ULL) == 0ULL) { if (debug_level >= 0) { { printk("\016s2io: M_PLL is not locked!\n"); } } else { } return (0); } else { } if ((val64 & 4294967296ULL) == 0ULL && ((unsigned int )sp->device_type == 2U && mode != 0)) { if (debug_level >= 0) { { printk("\016s2io: P_PLL is not locked!\n"); } } else { } return (0); } else { } if ((val64 & 280375465082880ULL) != 280375465082880ULL) { if (debug_level >= 0) { { printk("\016s2io: RC_PRC is not QUIESCENT!\n"); } } else { } return (0); } else { } return (1); } } static void fix_mac_address(struct s2io_nic *sp ) { struct XENA_dev_config *bar0 ; int i ; int tmp ; { bar0 = (struct XENA_dev_config *)sp->bar0; i = 0; goto ldv_53259; ldv_53258: { tmp = i; i = i + 1; writeq((unsigned long )fix_mac[tmp], (void volatile *)(& bar0->gpio_control)); __const_udelay(42950UL); readq((void const volatile *)(& bar0->gpio_control)); } ldv_53259: ; if ((unsigned long long )fix_mac[i] != 0ULL) { goto ldv_53258; } else { } return; } } static int start_nic(struct s2io_nic *nic ) { struct XENA_dev_config *bar0 ; struct net_device *dev ; register u64 val64 ; u16 subid ; u16 i ; struct config_param *config ; struct mac_info *mac_control ; struct ring_info *ring ; unsigned long tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; unsigned long tmp___4 ; unsigned long tmp___5 ; int tmp___6 ; unsigned long tmp___7 ; int tmp___8 ; unsigned long tmp___9 ; { bar0 = (struct XENA_dev_config *)nic->bar0; dev = nic->dev; val64 = 0ULL; config = & nic->config; mac_control = & nic->mac_control; i = 0U; goto ldv_53273; ldv_53272: { ring = (struct ring_info *)(& mac_control->rings) + (unsigned long )i; writeq((unsigned long )ring->rx_blocks[0].block_dma_addr, (void volatile *)(& bar0->prc_rxd0_n) + (unsigned long )i); tmp = readq((void const volatile *)(& bar0->prc_ctrl_n) + (unsigned long )i); val64 = (u64 )tmp; } if (nic->rxd_mode == 0) { val64 = val64 | 72057594037927936ULL; } else { val64 = val64 | 72339069014638592ULL; } if ((unsigned int )nic->device_type == 2U) { val64 = val64 | 33554432ULL; } else { } { val64 = val64 & 0xffffffffff000000ULL; val64 = val64 | 4096ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->prc_ctrl_n) + (unsigned long )i); i = (u16 )((int )i + 1); } ldv_53273: ; if ((u32 )i < config->rx_ring_num) { goto ldv_53272; } else { } if (nic->rxd_mode == 1) { { tmp___0 = readq((void const volatile *)(& bar0->rx_pa_cfg)); val64 = (u64 )tmp___0; val64 = val64 | 144115188075855872ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_pa_cfg)); } } else { } if (vlan_tag_strip == 0U) { { tmp___1 = readq((void const volatile *)(& bar0->rx_pa_cfg)); val64 = (u64 )tmp___1; val64 = val64 & 0xfffeffffffffffffULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_pa_cfg)); nic->vlan_strip_flag = 0; } } else { } { tmp___2 = readq((void const volatile *)(& bar0->mc_rldram_mrs)); val64 = (u64 )tmp___2; val64 = val64 | 16842752ULL; SPECIAL_REG_WRITE(val64, (void *)(& bar0->mc_rldram_mrs), 1); tmp___3 = readq((void const volatile *)(& bar0->mc_rldram_mrs)); val64 = (u64 )tmp___3; msleep(100U); tmp___4 = readq((void const volatile *)(& bar0->adapter_control)); val64 = (u64 )tmp___4; val64 = val64 & 0xfffffffffffffeffULL; writeq((unsigned long )val64, (void volatile *)(& bar0->adapter_control)); tmp___5 = readq((void const volatile *)(& bar0->adapter_status)); val64 = (u64 )tmp___5; tmp___6 = verify_xena_quiescence(nic); } if (tmp___6 == 0) { if (debug_level >= 0) { { printk("\016s2io: %s: device is not ready, Adapter status reads: 0x%llx\n", (char *)(& dev->name), val64); } } else { } return (-1); } else { } { tmp___7 = readq((void const volatile *)(& bar0->adapter_control)); val64 = (u64 )tmp___7; val64 = val64 | 281474976710656ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->adapter_control)); tmp___8 = s2io_link_fault_indication(nic); } if (tmp___8 == 2) { { schedule_work(& nic->set_link_task); } } else { } subid = (nic->pdev)->subsystem_device; if (((int )subid & 255) > 6 && (unsigned int )nic->device_type == 1U) { { tmp___9 = readq((void const volatile *)(& bar0->gpio_control)); val64 = (u64 )tmp___9; val64 = val64 | 140737488355328ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->gpio_control)); val64 = 293019865982173184ULL; writeq((unsigned long )val64, (void volatile *)bar0 + 9984U); } } else { } return (0); } } static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data , struct TxD *txdlp , int get_off ) { struct s2io_nic *nic ; struct sk_buff *skb ; struct TxD *txds ; u16 j ; u16 frg_cnt ; unsigned int tmp ; unsigned char *tmp___0 ; skb_frag_t const *frag ; unsigned char *tmp___1 ; unsigned int tmp___2 ; { nic = fifo_data->nic; txds = txdlp; if (txds->Host_Control == (unsigned long long )fifo_data->ufo_in_band_v) { { pci_unmap_single(nic->pdev, txds->Buffer_Pointer, 8UL, 1); txds = txds + 1; } } else { } skb = (struct sk_buff *)txds->Host_Control; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { memset((void *)txdlp, 0, (unsigned long )fifo_data->max_txds * 32UL); } return ((struct sk_buff *)0); } else { } { tmp = skb_headlen((struct sk_buff const *)skb); pci_unmap_single(nic->pdev, txds->Buffer_Pointer, (size_t )tmp, 1); tmp___0 = skb_end_pointer((struct sk_buff const *)skb); frg_cnt = (u16 )((struct skb_shared_info *)tmp___0)->nr_frags; } if ((unsigned int )frg_cnt != 0U) { txds = txds + 1; j = 0U; goto ldv_53288; ldv_53287: { tmp___1 = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t const *)(& ((struct skb_shared_info *)tmp___1)->frags) + (unsigned long )j; } if (txds->Buffer_Pointer == 0ULL) { goto ldv_53286; } else { } { tmp___2 = skb_frag_size(frag); pci_unmap_page(nic->pdev, txds->Buffer_Pointer, (size_t )tmp___2, 1); j = (u16 )((int )j + 1); txds = txds + 1; } ldv_53288: ; if ((int )j < (int )frg_cnt) { goto ldv_53287; } else { } ldv_53286: ; } else { } { memset((void *)txdlp, 0, (unsigned long )fifo_data->max_txds * 32UL); } return (skb); } } static void free_tx_buffers(struct s2io_nic *nic ) { struct net_device *dev ; struct sk_buff *skb ; struct TxD *txdp ; int i ; int j ; int cnt ; struct config_param *config ; struct mac_info *mac_control ; struct stat_block *stats ; struct swStat *swstats ; struct tx_fifo_config *tx_cfg ; struct fifo_info *fifo ; unsigned long flags ; raw_spinlock_t *tmp ; { dev = nic->dev; cnt = 0; config = & nic->config; mac_control = & nic->mac_control; stats = mac_control->stats_info; swstats = & stats->sw_stat; i = 0; goto ldv_53312; ldv_53311: { tx_cfg = (struct tx_fifo_config *)(& config->tx_cfg) + (unsigned long )i; fifo = (struct fifo_info *)(& mac_control->fifos) + (unsigned long )i; tmp = spinlock_check(& fifo->tx_lock); flags = _raw_spin_lock_irqsave(tmp); j = 0; } goto ldv_53309; ldv_53308: { txdp = (struct TxD *)(fifo->list_info + (unsigned long )j)->list_virt_addr; skb = s2io_txdl_getskb((struct fifo_info *)(& mac_control->fifos) + (unsigned long )i, txdp, j); } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { { swstats->mem_freed = swstats->mem_freed + (unsigned long long )skb->truesize; consume_skb(skb); cnt = cnt + 1; } } else { } j = j + 1; ldv_53309: ; if ((u32 )j < tx_cfg->fifo_len) { goto ldv_53308; } else { } if (debug_level > 3) { { printk("\016s2io: %s: forcibly freeing %d skbs on FIFO%d\n", (char *)(& dev->name), cnt, i); } } else { } { fifo->tx_curr_get_info.offset = 0U; fifo->tx_curr_put_info.offset = 0U; spin_unlock_irqrestore(& fifo->tx_lock, flags); i = i + 1; } ldv_53312: ; if ((u32 )i < config->tx_fifo_num) { goto ldv_53311; } else { } return; } } static void stop_nic(struct s2io_nic *nic ) { struct XENA_dev_config *bar0 ; register u64 val64 ; u16 interruptible ; unsigned long tmp ; { { bar0 = (struct XENA_dev_config *)nic->bar0; val64 = 0ULL; en_dis_err_alarms(nic, 2047, 2); interruptible = 528U; interruptible = (u16 )((unsigned int )interruptible | 1U); en_dis_able_nic_intrs(nic, (int )interruptible, 2); tmp = readq((void const volatile *)(& bar0->adapter_control)); val64 = (u64 )tmp; val64 = val64 & 0xfeffffffffffffffULL; writeq((unsigned long )val64, (void volatile *)(& bar0->adapter_control)); } return; } } static int fill_rx_buffers(struct s2io_nic *nic , struct ring_info *ring , int from_card_up ) { struct sk_buff *skb ; struct RxD_t *rxdp ; int off ; int size ; int block_no ; int block_no1 ; u32 alloc_tab ; u32 alloc_cnt ; u64 tmp ; struct buffAdd *ba ; struct RxD_t *first_rxdp ; u64 Buffer0_ptr ; u64 Buffer1_ptr ; int rxd_index ; struct RxD1 *rxdp1 ; struct RxD3 *rxdp3 ; struct swStat *swstats ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { alloc_tab = 0U; first_rxdp = (struct RxD_t *)0; Buffer0_ptr = 0ULL; Buffer1_ptr = 0ULL; rxd_index = 0; swstats = & ((ring->nic)->mac_control.stats_info)->sw_stat; alloc_cnt = (u32 )ring->pkt_cnt - ring->rx_bufs_left; block_no1 = (int )ring->rx_curr_get_info.block_index; goto ldv_53345; ldv_53344: block_no = (int )ring->rx_curr_put_info.block_index; off = (int )ring->rx_curr_put_info.offset; rxdp = (struct RxD_t *)(ring->rx_blocks[block_no].rxds + (unsigned long )off)->virt_addr; rxd_index = off + 1; if (block_no != 0) { rxd_index = rxd_index + block_no * ring->rxd_count; } else { } if ((block_no == block_no1 && (u32 )off == ring->rx_curr_get_info.offset) && rxdp->Host_Control != 0ULL) { if (debug_level > 3) { { printk("\016s2io: %s: Get and Put info equated\n", (char *)(& (ring->dev)->name)); } } else { } goto end; } else { } if (off != 0 && off == ring->rxd_count) { ring->rx_curr_put_info.block_index = ring->rx_curr_put_info.block_index + 1U; if (ring->rx_curr_put_info.block_index == (u32 )ring->block_count) { ring->rx_curr_put_info.block_index = 0U; } else { } block_no = (int )ring->rx_curr_put_info.block_index; off = 0; ring->rx_curr_put_info.offset = (u32 )off; rxdp = (struct RxD_t *)ring->rx_blocks[block_no].block_virt_addr; if (debug_level > 3) { { printk("\016s2io: %s: Next block at: %p\n", (char *)(& (ring->dev)->name), rxdp); } } else { } } else { } if ((rxdp->Control_1 & 72057594037927936ULL) != 0ULL && (ring->rxd_mode == 1 && (long )rxdp->Control_2 < 0L)) { ring->rx_curr_put_info.offset = (u32 )off; goto end; } else { } size = (int )(ring->mtu + 22U); if (ring->rxd_mode == 0) { size = size; } else { size = (int )(ring->mtu + 171U); } { skb = netdev_alloc_skb(nic->dev, (unsigned int )size); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { if (debug_level > 1) { { printk("\016s2io: %s: Could not allocate skb\n", (char *)(& (ring->dev)->name)); } } else { } if ((unsigned long )first_rxdp != (unsigned long )((struct RxD_t *)0)) { __asm__ volatile ("sfence": : : "memory"); first_rxdp->Control_1 = first_rxdp->Control_1 | 72057594037927936ULL; } else { } swstats->mem_alloc_fail_cnt = swstats->mem_alloc_fail_cnt + 1ULL; return (-12); } else { } swstats->mem_allocated = swstats->mem_allocated + (unsigned long long )skb->truesize; if (ring->rxd_mode == 0) { { rxdp1 = (struct RxD1 *)rxdp; memset((void *)rxdp, 0, 32UL); skb_reserve(skb, 0); rxdp1->Buffer0_ptr = pci_map_single(ring->pdev, (void *)skb->data, (size_t )size, 2); tmp___0 = pci_dma_mapping_error(nic->pdev, rxdp1->Buffer0_ptr); } if (tmp___0 != 0) { goto pci_map_failed; } else { } rxdp->Control_2 = (unsigned long long )size << 48; rxdp->Host_Control = (u64 )skb; } else if (ring->rxd_mode == 1) { { rxdp3 = (struct RxD3 *)rxdp; Buffer0_ptr = rxdp3->Buffer0_ptr; Buffer1_ptr = rxdp3->Buffer1_ptr; memset((void *)rxdp, 0, 48UL); rxdp3->Buffer0_ptr = Buffer0_ptr; rxdp3->Buffer1_ptr = Buffer1_ptr; ba = *(ring->ba + (unsigned long )block_no) + (unsigned long )off; skb_reserve(skb, 40); tmp = (unsigned long long )skb->data; tmp = tmp + 127ULL; tmp = tmp & 0xffffffffffffff80ULL; skb->data = (unsigned char *)tmp; skb_reset_tail_pointer(skb); } if (from_card_up != 0) { { rxdp3->Buffer0_ptr = pci_map_single(ring->pdev, ba->ba_0, 40UL, 2); tmp___1 = pci_dma_mapping_error(nic->pdev, rxdp3->Buffer0_ptr); } if (tmp___1 != 0) { goto pci_map_failed; } else { } } else { { pci_dma_sync_single_for_device(ring->pdev, rxdp3->Buffer0_ptr, 40UL, 2); } } rxdp->Control_2 = 11258999068426240ULL; if (ring->rxd_mode == 1) { { rxdp3->Buffer2_ptr = pci_map_single(ring->pdev, (void *)skb->data, (size_t )(ring->mtu + 4U), 2); tmp___2 = pci_dma_mapping_error(nic->pdev, rxdp3->Buffer2_ptr); } if (tmp___2 != 0) { goto pci_map_failed; } else { } if (from_card_up != 0) { { rxdp3->Buffer1_ptr = pci_map_single(ring->pdev, ba->ba_1, 1UL, 2); tmp___3 = pci_dma_mapping_error(nic->pdev, rxdp3->Buffer1_ptr); } if (tmp___3 != 0) { { pci_unmap_single(ring->pdev, (unsigned long long )skb->data, (size_t )(ring->mtu + 4U), 2); } goto pci_map_failed; } else { } } else { } rxdp->Control_2 = rxdp->Control_2 | 4294967296ULL; rxdp->Control_2 = rxdp->Control_2 | (((unsigned long long )ring->mtu + 4ULL) << 16); } else { } rxdp->Control_2 = rxdp->Control_2 | 0x8000000000000000ULL; rxdp->Host_Control = (u64 )skb; } else { } if ((alloc_tab & (u32 )((1 << (int )rxsync_frequency) + -1)) != 0U) { rxdp->Control_1 = rxdp->Control_1 | 72057594037927936ULL; } else { } off = off + 1; if (off == ring->rxd_count + 1) { off = 0; } else { } ring->rx_curr_put_info.offset = (u32 )off; rxdp->Control_2 = rxdp->Control_2 | 0xc000000000000000ULL; if ((alloc_tab & (u32 )((1 << (int )rxsync_frequency) + -1)) == 0U) { if ((unsigned long )first_rxdp != (unsigned long )((struct RxD_t *)0)) { __asm__ volatile ("sfence": : : "memory"); first_rxdp->Control_1 = first_rxdp->Control_1 | 72057594037927936ULL; } else { } first_rxdp = rxdp; } else { } ring->rx_bufs_left = ring->rx_bufs_left + 1U; alloc_tab = alloc_tab + 1U; ldv_53345: ; if (alloc_tab < alloc_cnt) { goto ldv_53344; } else { } end: ; if ((unsigned long )first_rxdp != (unsigned long )((struct RxD_t *)0)) { __asm__ volatile ("sfence": : : "memory"); first_rxdp->Control_1 = first_rxdp->Control_1 | 72057594037927936ULL; } else { } return (0); pci_map_failed: { swstats->pci_map_fail_cnt = swstats->pci_map_fail_cnt + 1ULL; swstats->mem_freed = swstats->mem_freed + (unsigned long long )skb->truesize; dev_kfree_skb_irq(skb); } return (-12); } } static void free_rxd_blk(struct s2io_nic *sp , int ring_no , int blk ) { struct net_device *dev ; int j ; struct sk_buff *skb ; struct RxD_t *rxdp ; struct RxD1 *rxdp1 ; struct RxD3 *rxdp3 ; struct mac_info *mac_control ; struct stat_block *stats ; struct swStat *swstats ; { dev = sp->dev; mac_control = & sp->mac_control; stats = mac_control->stats_info; swstats = & stats->sw_stat; j = 0; goto ldv_53363; ldv_53362: rxdp = (struct RxD_t *)(mac_control->rings[ring_no].rx_blocks[blk].rxds + (unsigned long )j)->virt_addr; skb = (struct sk_buff *)rxdp->Host_Control; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto ldv_53361; } else { } if (sp->rxd_mode == 0) { { rxdp1 = (struct RxD1 *)rxdp; pci_unmap_single(sp->pdev, rxdp1->Buffer0_ptr, (size_t )(dev->mtu + 22U), 2); memset((void *)rxdp, 0, 32UL); } } else if (sp->rxd_mode == 1) { { rxdp3 = (struct RxD3 *)rxdp; pci_unmap_single(sp->pdev, rxdp3->Buffer0_ptr, 40UL, 2); pci_unmap_single(sp->pdev, rxdp3->Buffer1_ptr, 1UL, 2); pci_unmap_single(sp->pdev, rxdp3->Buffer2_ptr, (size_t )(dev->mtu + 4U), 2); memset((void *)rxdp, 0, 48UL); } } else { } { swstats->mem_freed = swstats->mem_freed + (unsigned long long )skb->truesize; consume_skb(skb); mac_control->rings[ring_no].rx_bufs_left = mac_control->rings[ring_no].rx_bufs_left - 1U; } ldv_53361: j = j + 1; ldv_53363: ; if (j < (int )rxd_count[sp->rxd_mode]) { goto ldv_53362; } else { } return; } } static void free_rx_buffers(struct s2io_nic *sp ) { struct net_device *dev ; int i ; int blk ; int buf_cnt ; struct config_param *config ; struct mac_info *mac_control ; struct ring_info *ring ; { dev = sp->dev; blk = 0; buf_cnt = 0; config = & sp->config; mac_control = & sp->mac_control; i = 0; goto ldv_53379; ldv_53378: ring = (struct ring_info *)(& mac_control->rings) + (unsigned long )i; blk = 0; goto ldv_53376; ldv_53375: { free_rxd_blk(sp, i, blk); blk = blk + 1; } ldv_53376: ; if ((unsigned int )blk < rx_ring_sz[i]) { goto ldv_53375; } else { } ring->rx_curr_put_info.block_index = 0U; ring->rx_curr_get_info.block_index = 0U; ring->rx_curr_put_info.offset = 0U; ring->rx_curr_get_info.offset = 0U; ring->rx_bufs_left = 0U; if (debug_level > 0) { { printk("\016s2io: %s: Freed 0x%x Rx Buffers on ring%d\n", (char *)(& dev->name), buf_cnt, i); } } else { } i = i + 1; ldv_53379: ; if ((u32 )i < config->rx_ring_num) { goto ldv_53378; } else { } return; } } static int s2io_chk_rx_buffers(struct s2io_nic *nic , struct ring_info *ring ) { int tmp ; { { tmp = fill_rx_buffers(nic, ring, 0); } if (tmp == -12) { if (debug_level > 1) { { printk("\016s2io: %s: Out of memory in Rx Intr!!\n", (char *)(& (ring->dev)->name)); } } else { } } else { } return (0); } } static int s2io_poll_msix(struct napi_struct *napi___0 , int budget ) { struct ring_info *ring ; struct napi_struct const *__mptr ; struct net_device *dev ; int pkts_processed ; u8 *addr ; u8 val8 ; struct s2io_nic *nic ; void *tmp ; struct XENA_dev_config *bar0 ; int budget_org ; int tmp___0 ; long tmp___1 ; { { __mptr = (struct napi_struct const *)napi___0; ring = (struct ring_info *)__mptr + 0xffffffffffffef98UL; dev = ring->dev; pkts_processed = 0; addr = (u8 *)0U; val8 = 0U; tmp = netdev_priv((struct net_device const *)dev); nic = (struct s2io_nic *)tmp; bar0 = (struct XENA_dev_config *)nic->bar0; budget_org = budget; tmp___0 = is_s2io_card_up((struct s2io_nic const *)nic); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { return (0); } else { } { pkts_processed = rx_intr_handler(ring, budget); s2io_chk_rx_buffers(nic, ring); } if (pkts_processed < budget_org) { { napi_complete(napi___0); addr = (u8 *)(& bar0->xmsi_mask_reg); addr = addr + (unsigned long )(7 - ring->ring_no); val8 = ring->ring_no == 0 ? 63U : 191U; writeb((int )val8, (void volatile *)addr); val8 = readb((void const volatile *)addr); } } else { } return (pkts_processed); } } static int s2io_poll_inta(struct napi_struct *napi___0 , int budget ) { struct s2io_nic *nic ; struct napi_struct const *__mptr ; int pkts_processed ; int ring_pkts_processed ; int i ; struct XENA_dev_config *bar0 ; int budget_org ; struct config_param *config ; struct mac_info *mac_control ; int tmp ; long tmp___0 ; struct ring_info *ring ; { { __mptr = (struct napi_struct const *)napi___0; nic = (struct s2io_nic *)__mptr + 0xfffffffffffef2e8UL; pkts_processed = 0; bar0 = (struct XENA_dev_config *)nic->bar0; budget_org = budget; config = & nic->config; mac_control = & nic->mac_control; tmp = is_s2io_card_up((struct s2io_nic const *)nic); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { return (0); } else { } i = 0; goto ldv_53416; ldv_53415: { ring = (struct ring_info *)(& mac_control->rings) + (unsigned long )i; ring_pkts_processed = rx_intr_handler(ring, budget); s2io_chk_rx_buffers(nic, ring); pkts_processed = pkts_processed + ring_pkts_processed; budget = budget - ring_pkts_processed; } if (budget <= 0) { goto ldv_53414; } else { } i = i + 1; ldv_53416: ; if ((u32 )i < config->rx_ring_num) { goto ldv_53415; } else { } ldv_53414: ; if (pkts_processed < budget_org) { { napi_complete(napi___0); writeq(0UL, (void volatile *)(& bar0->rx_traffic_mask)); readl((void const volatile *)(& bar0->rx_traffic_mask)); } } else { } return (pkts_processed); } } static void s2io_netpoll(struct net_device *dev ) { struct s2io_nic *nic ; void *tmp ; int irq ; struct XENA_dev_config *bar0 ; u64 val64 ; int i ; struct config_param *config ; struct mac_info *mac_control ; int tmp___0 ; struct ring_info *ring ; struct ring_info *ring___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); nic = (struct s2io_nic *)tmp; irq = (int const )(nic->pdev)->irq; bar0 = (struct XENA_dev_config *)nic->bar0; val64 = 0xffffffffffffffffULL; config = & nic->config; mac_control = & nic->mac_control; tmp___0 = pci_channel_offline(nic->pdev); } if (tmp___0 != 0) { return; } else { } { disable_irq((unsigned int )irq); writeq((unsigned long )val64, (void volatile *)(& bar0->rx_traffic_int)); writeq((unsigned long )val64, (void volatile *)(& bar0->tx_traffic_int)); i = 0; } goto ldv_53428; ldv_53427: { tx_intr_handler((struct fifo_info *)(& mac_control->fifos) + (unsigned long )i); i = i + 1; } ldv_53428: ; if ((u32 )i < config->tx_fifo_num) { goto ldv_53427; } else { } i = 0; goto ldv_53432; ldv_53431: { ring = (struct ring_info *)(& mac_control->rings) + (unsigned long )i; rx_intr_handler(ring, 0); i = i + 1; } ldv_53432: ; if ((u32 )i < config->rx_ring_num) { goto ldv_53431; } else { } i = 0; goto ldv_53437; ldv_53436: { ring___0 = (struct ring_info *)(& mac_control->rings) + (unsigned long )i; tmp___1 = fill_rx_buffers(nic, ring___0, 0); } if (tmp___1 == -12) { if (debug_level > 1) { { printk("\016s2io: %s: Out of memory in Rx Netpoll!!\n", (char *)(& dev->name)); } } else { } goto ldv_53435; } else { } i = i + 1; ldv_53437: ; if ((u32 )i < config->rx_ring_num) { goto ldv_53436; } else { } ldv_53435: { enable_irq((unsigned int )irq); } return; } } static int rx_intr_handler(struct ring_info *ring_data , int budget ) { int get_block ; int put_block ; struct rx_curr_get_info get_info ; struct rx_curr_get_info put_info ; struct RxD_t *rxdp ; struct sk_buff *skb ; int pkt_cnt ; int napi_pkts ; int i ; struct RxD1 *rxdp1 ; struct RxD3 *rxdp3 ; int tmp ; struct lro *lro ; { { pkt_cnt = 0; napi_pkts = 0; get_info = ring_data->rx_curr_get_info; get_block = (int )get_info.block_index; memcpy((void *)(& put_info), (void const *)(& ring_data->rx_curr_put_info), 12UL); put_block = (int )put_info.block_index; rxdp = (struct RxD_t *)(ring_data->rx_blocks[get_block].rxds + (unsigned long )get_info.offset)->virt_addr; } goto ldv_53455; ldv_53454: ; if (get_block == put_block && get_info.offset + 1U == put_info.offset) { if (debug_level > 3) { { printk("\016s2io: %s: Ring Full\n", (char *)(& (ring_data->dev)->name)); } } else { } goto ldv_53453; } else { } skb = (struct sk_buff *)rxdp->Host_Control; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { if (debug_level >= 0) { { printk("\016s2io: %s: NULL skb in Rx Intr\n", (char *)(& (ring_data->dev)->name)); } } else { } return (0); } else { } if (ring_data->rxd_mode == 0) { { rxdp1 = (struct RxD1 *)rxdp; pci_unmap_single(ring_data->pdev, rxdp1->Buffer0_ptr, (size_t )(ring_data->mtu + 22U), 2); } } else if (ring_data->rxd_mode == 1) { { rxdp3 = (struct RxD3 *)rxdp; pci_dma_sync_single_for_cpu(ring_data->pdev, rxdp3->Buffer0_ptr, 40UL, 2); pci_unmap_single(ring_data->pdev, rxdp3->Buffer2_ptr, (size_t )(ring_data->mtu + 4U), 2); } } else { } { __builtin_prefetch((void const *)skb->data); rx_osm_handler(ring_data, rxdp); get_info.offset = get_info.offset + 1U; ring_data->rx_curr_get_info.offset = get_info.offset; rxdp = (struct RxD_t *)(ring_data->rx_blocks[get_block].rxds + (unsigned long )get_info.offset)->virt_addr; } if (get_info.offset == (u32 )rxd_count[ring_data->rxd_mode]) { get_info.offset = 0U; ring_data->rx_curr_get_info.offset = get_info.offset; get_block = get_block + 1; if (get_block == ring_data->block_count) { get_block = 0; } else { } ring_data->rx_curr_get_info.block_index = (u32 )get_block; rxdp = (struct RxD_t *)ring_data->rx_blocks[get_block].block_virt_addr; } else { } if ((unsigned int )(ring_data->nic)->config.napi != 0U) { budget = budget - 1; napi_pkts = napi_pkts + 1; if (budget == 0) { goto ldv_53453; } else { } } else { } pkt_cnt = pkt_cnt + 1; if (indicate_max_pkts != 0U && (unsigned int )pkt_cnt > indicate_max_pkts) { goto ldv_53453; } else { } ldv_53455: { tmp = RXD_IS_UP2DT(rxdp); } if (tmp != 0) { goto ldv_53454; } else { } ldv_53453: ; if ((unsigned int )ring_data->lro != 0U) { i = 0; goto ldv_53458; ldv_53457: lro = (struct lro *)(& ring_data->lro0_n) + (unsigned long )i; if (lro->in_use != 0) { { update_L3L4_header(ring_data->nic, lro); queue_rx_frame(lro->parent, (int )lro->vlan_tag); clear_lro_session(lro); } } else { } i = i + 1; ldv_53458: ; if (i <= 31) { goto ldv_53457; } else { } } else { } return (napi_pkts); } } static void tx_intr_handler(struct fifo_info *fifo_data ) { struct s2io_nic *nic ; struct tx_curr_get_info get_info ; struct tx_curr_get_info put_info ; struct sk_buff *skb ; struct TxD *txdlp ; int pkt_cnt ; unsigned long flags ; u8 err_mask ; struct stat_block *stats ; struct swStat *swstats ; int tmp___1 ; int tmp___2 ; raw_spinlock_t *tmp___3 ; int tmp___4 ; unsigned long long err ; { { nic = fifo_data->nic; skb = (struct sk_buff *)0; pkt_cnt = 0; flags = 0UL; stats = nic->mac_control.stats_info; swstats = & stats->sw_stat; flags = arch_local_irq_save(); trace_hardirqs_off(); tmp___3 = spinlock_check(& fifo_data->tx_lock); tmp___4 = _raw_spin_trylock(tmp___3); } if (tmp___4 == 0) { { tmp___1 = arch_irqs_disabled_flags(flags); } if (tmp___1 != 0) { { arch_local_irq_restore(flags); trace_hardirqs_off(); } } else { { trace_hardirqs_on(); arch_local_irq_restore(flags); } } tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2 == 0) { return; } else { } { get_info = fifo_data->tx_curr_get_info; memcpy((void *)(& put_info), (void const *)(& fifo_data->tx_curr_put_info), 8UL); txdlp = (struct TxD *)(fifo_data->list_info + (unsigned long )get_info.offset)->list_virt_addr; } goto ldv_53497; ldv_53496: ; if ((txdlp->Control_1 & 4222124650659840ULL) != 0ULL) { err = txdlp->Control_1 & 4222124650659840ULL; if ((int )err & 1) { swstats->parity_err_cnt = swstats->parity_err_cnt + 1ULL; } else { } err_mask = (u8 )(err >> 48); { if ((int )err_mask == 2) { goto case_2; } else { } if ((int )err_mask == 3) { goto case_3; } else { } if ((int )err_mask == 7) { goto case_7; } else { } if ((int )err_mask == 10) { goto case_10; } else { } if ((int )err_mask == 15) { goto case_15; } else { } goto switch_break; case_2: /* CIL Label */ swstats->tx_buf_abort_cnt = swstats->tx_buf_abort_cnt + 1ULL; goto ldv_53490; case_3: /* CIL Label */ swstats->tx_desc_abort_cnt = swstats->tx_desc_abort_cnt + 1ULL; goto ldv_53490; case_7: /* CIL Label */ swstats->tx_parity_err_cnt = swstats->tx_parity_err_cnt + 1ULL; goto ldv_53490; case_10: /* CIL Label */ swstats->tx_link_loss_cnt = swstats->tx_link_loss_cnt + 1ULL; goto ldv_53490; case_15: /* CIL Label */ swstats->tx_list_proc_err_cnt = swstats->tx_list_proc_err_cnt + 1ULL; goto ldv_53490; switch_break: /* CIL Label */ ; } ldv_53490: ; } else { } { skb = s2io_txdl_getskb(fifo_data, txdlp, (int )get_info.offset); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { spin_unlock_irqrestore(& fifo_data->tx_lock, flags); } if (debug_level >= 0) { { printk("\016s2io: %s: NULL skb in Tx Free Intr\n", "tx_intr_handler"); } } else { } return; } else { } { pkt_cnt = pkt_cnt + 1; swstats->mem_freed = swstats->mem_freed + (unsigned long long )skb->truesize; dev_kfree_skb_irq(skb); get_info.offset = get_info.offset + 1U; } if (get_info.offset == get_info.fifo_len + 1U) { get_info.offset = 0U; } else { } txdlp = (struct TxD *)(fifo_data->list_info + (unsigned long )get_info.offset)->list_virt_addr; fifo_data->tx_curr_get_info.offset = get_info.offset; ldv_53497: ; if (((txdlp->Control_1 & 72057594037927936ULL) == 0ULL && get_info.offset != put_info.offset) && txdlp->Host_Control != 0ULL) { goto ldv_53496; } else { } { s2io_wake_tx_queue(fifo_data, pkt_cnt, (int )nic->config.multiq); spin_unlock_irqrestore(& fifo_data->tx_lock, flags); } return; } } static void s2io_mdio_write(u32 mmd_type , u64 addr , u16 value , struct net_device *dev ) { u64 val64 ; struct s2io_nic *sp ; void *tmp ; struct XENA_dev_config *bar0 ; { { tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; bar0 = (struct XENA_dev_config *)sp->bar0; val64 = (addr << 48) | ((unsigned long long )mmd_type << 40); writeq((unsigned long )val64, (void volatile *)(& bar0->mdio_control)); val64 = val64 | 224ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->mdio_control)); __const_udelay(429500UL); val64 = (((addr << 48) | ((unsigned long long )mmd_type << 40)) | ((unsigned long long )value << 16)) | 4ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->mdio_control)); val64 = val64 | 224ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->mdio_control)); __const_udelay(429500UL); val64 = ((addr << 48) | ((unsigned long long )mmd_type << 40)) | 12ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->mdio_control)); val64 = val64 | 224ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->mdio_control)); __const_udelay(429500UL); } return; } } static u64 s2io_mdio_read(u32 mmd_type , u64 addr , struct net_device *dev ) { u64 val64 ; u64 rval64 ; struct s2io_nic *sp ; void *tmp ; struct XENA_dev_config *bar0 ; unsigned long tmp___0 ; { { val64 = 0ULL; rval64 = 0ULL; tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; bar0 = (struct XENA_dev_config *)sp->bar0; val64 = val64 | ((addr << 48) | ((unsigned long long )mmd_type << 40)); writeq((unsigned long )val64, (void volatile *)(& bar0->mdio_control)); val64 = val64 | 224ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->mdio_control)); __const_udelay(429500UL); val64 = ((addr << 48) | ((unsigned long long )mmd_type << 40)) | 12ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->mdio_control)); val64 = val64 | 224ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->mdio_control)); __const_udelay(429500UL); tmp___0 = readq((void const volatile *)(& bar0->mdio_control)); rval64 = (u64 )tmp___0; rval64 = rval64 & 4294901760ULL; rval64 = rval64 >> 16; } return (rval64); } } static void s2io_chk_xpak_counter(u64 *counter , u64 *regs_stat , u32 index , u16 flag , u16 type ) { u64 mask ; u64 val64 ; int i ; { mask = 3ULL; i = 0; goto ldv_53528; ldv_53527: mask = mask << 2; i = i + 1; ldv_53528: ; if ((u32 )i < index) { goto ldv_53527; } else { } if ((unsigned int )flag != 0U) { *counter = *counter + 1ULL; val64 = *regs_stat & mask; val64 = val64 >> (int )(index * 2U); val64 = val64 + 1ULL; if (val64 == 3ULL) { { if ((int )type == 1) { goto case_1; } else { } if ((int )type == 2) { goto case_2; } else { } if ((int )type == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; if (debug_level >= 0) { { printk("\016s2io: Take Xframe NIC out of service.\n"); } } else { } if (debug_level >= 0) { { printk("\016s2io: Excessive temperatures may result in premature transceiver failure.\n"); } } else { } goto ldv_53531; case_2: /* CIL Label */ ; if (debug_level >= 0) { { printk("\016s2io: Take Xframe NIC out of service.\n"); } } else { } if (debug_level >= 0) { { printk("\016s2io: Excessive bias currents may indicate imminent laser diode failure.\n"); } } else { } goto ldv_53531; case_3: /* CIL Label */ ; if (debug_level >= 0) { { printk("\016s2io: Take Xframe NIC out of service.\n"); } } else { } if (debug_level >= 0) { { printk("\016s2io: Excessive laser output power may saturate far-end receiver.\n"); } } else { } goto ldv_53531; switch_default: /* CIL Label */ ; if (debug_level >= 0) { { printk("\016s2io: Incorrect XPAK Alarm type\n"); } } else { } switch_break: /* CIL Label */ ; } ldv_53531: val64 = 0ULL; } else { } val64 = val64 << (int )(index * 2U); *regs_stat = (*regs_stat & ~ mask) | val64; } else { *regs_stat = *regs_stat & ~ mask; } return; } } static void s2io_updt_xpak_counter(struct net_device *dev ) { u16 flag ; u16 type ; u16 val16 ; u64 val64 ; u64 addr ; struct s2io_nic *sp ; void *tmp ; struct stat_block *stats ; struct xpakStat *xstats ; { { flag = 0U; type = 0U; val16 = 0U; val64 = 0ULL; addr = 0ULL; tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; stats = sp->mac_control.stats_info; xstats = & stats->xpak_stat; addr = 0ULL; val64 = 0ULL; val64 = s2io_mdio_read(1U, addr, dev); } if (val64 == 65535ULL || val64 == 0ULL) { if (debug_level >= 0) { { printk("\016s2io: ERR: MDIO slave access failed - Returned %llx\n", val64); } } else { } return; } else { } if (val64 != 8256ULL) { if (debug_level >= 0) { { printk("\016s2io: Incorrect value at PMA address 0x0000 - Returned: %llx- Expected: 0x%x\n", val64, 8256); } } else { } return; } else { } { addr = 41216ULL; s2io_mdio_write(1U, addr, (int )val16, dev); val64 = s2io_mdio_read(1U, addr, dev); addr = 41072ULL; val64 = 0ULL; val64 = s2io_mdio_read(1U, addr, dev); flag = (unsigned int )((u16 )val64) & 128U; type = 1U; s2io_chk_xpak_counter(& xstats->alarm_transceiver_temp_high, & xstats->xpak_regs_stat, 0U, (int )flag, (int )type); } if ((val64 & 64ULL) != 0ULL) { xstats->alarm_transceiver_temp_low = xstats->alarm_transceiver_temp_low + 1ULL; } else { } { flag = (unsigned int )((u16 )val64) & 8U; type = 2U; s2io_chk_xpak_counter(& xstats->alarm_laser_bias_current_high, & xstats->xpak_regs_stat, 2U, (int )flag, (int )type); } if ((val64 & 4ULL) != 0ULL) { xstats->alarm_laser_bias_current_low = xstats->alarm_laser_bias_current_low + 1ULL; } else { } { flag = (unsigned int )((u16 )val64) & 2U; type = 3U; s2io_chk_xpak_counter(& xstats->alarm_laser_output_power_high, & xstats->xpak_regs_stat, 4U, (int )flag, (int )type); } if ((int )val64 & 1) { xstats->alarm_laser_output_power_low = xstats->alarm_laser_output_power_low + 1ULL; } else { } { addr = 41076ULL; val64 = 0ULL; val64 = s2io_mdio_read(1U, addr, dev); } if ((val64 & 128ULL) != 0ULL) { xstats->warn_transceiver_temp_high = xstats->warn_transceiver_temp_high + 1ULL; } else { } if ((val64 & 64ULL) != 0ULL) { xstats->warn_transceiver_temp_low = xstats->warn_transceiver_temp_low + 1ULL; } else { } if ((val64 & 8ULL) != 0ULL) { xstats->warn_laser_bias_current_high = xstats->warn_laser_bias_current_high + 1ULL; } else { } if ((val64 & 4ULL) != 0ULL) { xstats->warn_laser_bias_current_low = xstats->warn_laser_bias_current_low + 1ULL; } else { } if ((val64 & 2ULL) != 0ULL) { xstats->warn_laser_output_power_high = xstats->warn_laser_output_power_high + 1ULL; } else { } if ((int )val64 & 1) { xstats->warn_laser_output_power_low = xstats->warn_laser_output_power_low + 1ULL; } else { } return; } } static int wait_for_cmd_complete(void *addr , u64 busy_bit , int bit_state ) { int ret ; int cnt ; int delay ; u64 val64 ; unsigned long tmp ; unsigned long __ms ; unsigned long tmp___0 ; int tmp___1 ; { ret = -1; cnt = 0; delay = 1; if ((unsigned int )bit_state - 1U > 1U) { return (-1); } else { } ldv_53560: { tmp = readq((void const volatile *)addr); val64 = (u64 )tmp; } if (bit_state == 1) { if ((val64 & busy_bit) == 0ULL) { ret = 0; goto ldv_53555; } else { } } else if ((val64 & busy_bit) != 0ULL) { ret = 0; goto ldv_53555; } else { } { tmp___1 = preempt_count(); } if (((unsigned long )tmp___1 & 2096896UL) != 0UL) { __ms = (unsigned long )delay; goto ldv_53558; ldv_53557: { __const_udelay(4295000UL); } ldv_53558: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_53557; } else { } } else { { msleep((unsigned int )delay); } } cnt = cnt + 1; if (cnt > 9) { delay = 50; } else { } if (cnt <= 19) { goto ldv_53560; } else { } ldv_53555: ; return (ret); } } static u16 check_pci_device_id(u16 id ) { { { if ((int )id == 22322) { goto case_22322; } else { } if ((int )id == 22578) { goto case_22578; } else { } if ((int )id == 22577) { goto case_22577; } else { } if ((int )id == 22321) { goto case_22321; } else { } goto switch_default; case_22322: /* CIL Label */ ; case_22578: /* CIL Label */ ; return (2U); case_22577: /* CIL Label */ ; case_22321: /* CIL Label */ ; return (1U); switch_default: /* CIL Label */ ; return (65535U); switch_break: /* CIL Label */ ; } } } static void s2io_reset(struct s2io_nic *sp ) { struct XENA_dev_config *bar0 ; u64 val64 ; u16 subid ; u16 pci_cmd ; int i ; u16 val16 ; unsigned long long up_cnt ; unsigned long long down_cnt ; unsigned long long up_time ; unsigned long long down_time ; unsigned long long reset_cnt ; unsigned long long mem_alloc_cnt ; unsigned long long mem_free_cnt ; unsigned long long watchdog_cnt ; struct stat_block *stats ; struct swStat *swstats ; char const *tmp ; char *tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; unsigned long tmp___3 ; unsigned long tmp___4 ; { bar0 = (struct XENA_dev_config *)sp->bar0; if (debug_level > 0) { { tmp = pci_name((struct pci_dev const *)sp->pdev); printk("\016s2io: %s: Resetting XFrame card %s\n", "s2io_reset", tmp); } } else { } { pci_read_config_word((struct pci_dev const *)sp->pdev, 98, & pci_cmd); val64 = 0xa5a5a50000000000ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->sw_reset)); tmp___0 = strstr((char const *)(& sp->product_name), "CX4"); } if ((unsigned long )tmp___0 != (unsigned long )((char *)0)) { { msleep(750U); } } else { } { msleep(250U); i = 0; } goto ldv_53591; ldv_53590: { pci_restore_state(sp->pdev); pci_save_state(sp->pdev); pci_read_config_word((struct pci_dev const *)sp->pdev, 2, & val16); tmp___1 = check_pci_device_id((int )val16); } if ((unsigned int )tmp___1 != 65535U) { goto ldv_53589; } else { } { msleep(200U); i = i + 1; } ldv_53591: ; if (i <= 99) { goto ldv_53590; } else { } ldv_53589: { tmp___2 = check_pci_device_id((int )val16); } if ((unsigned int )tmp___2 == 65535U) { if (debug_level >= 0) { { printk("\016s2io: %s SW_Reset failed!\n", "s2io_reset"); } } else { } } else { } { pci_write_config_word((struct pci_dev const *)sp->pdev, 98, (int )pci_cmd); s2io_init_pci(sp); s2io_set_swapper(sp); do_s2io_restore_unicast_mc(sp); restore_xmsi_data(sp); } if ((unsigned int )sp->device_type == 2U) { { pci_write_config_word((struct pci_dev const *)sp->pdev, 6, 32768); pci_write_config_dword((struct pci_dev const *)sp->pdev, 104, 124U); writeq(2UL, (void volatile *)(& bar0->txpic_int_reg)); } } else { } { memset((void *)(& sp->stats), 0, 184UL); stats = sp->mac_control.stats_info; swstats = & stats->sw_stat; up_cnt = swstats->link_up_cnt; down_cnt = swstats->link_down_cnt; up_time = swstats->link_up_time; down_time = swstats->link_down_time; reset_cnt = swstats->soft_reset_cnt; mem_alloc_cnt = swstats->mem_allocated; mem_free_cnt = swstats->mem_freed; watchdog_cnt = swstats->watchdog_timer_cnt; memset((void *)stats, 0, 1416UL); swstats->link_up_cnt = up_cnt; swstats->link_down_cnt = down_cnt; swstats->link_up_time = up_time; swstats->link_down_time = down_time; swstats->soft_reset_cnt = reset_cnt; swstats->mem_allocated = mem_alloc_cnt; swstats->mem_freed = mem_free_cnt; swstats->watchdog_timer_cnt = watchdog_cnt; subid = (sp->pdev)->subsystem_device; } if (((int )subid & 255) > 6 && (unsigned int )sp->device_type == 1U) { { tmp___3 = readq((void const volatile *)(& bar0->gpio_control)); val64 = (u64 )tmp___3; val64 = val64 | 140737488355328ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->gpio_control)); val64 = 293019865982173184ULL; writeq((unsigned long )val64, (void volatile *)bar0 + 9984U); } } else { } if ((unsigned int )sp->device_type == 2U) { { tmp___4 = readq((void const volatile *)(& bar0->pcc_err_reg)); val64 = (u64 )tmp___4; writeq((unsigned long )val64, (void volatile *)(& bar0->pcc_err_reg)); } } else { } sp->device_enabled_once = 0; return; } } static int s2io_set_swapper(struct s2io_nic *sp ) { struct net_device *dev ; struct XENA_dev_config *bar0 ; u64 val64 ; u64 valt ; u64 valr ; unsigned long tmp ; int i ; u64 value[4U] ; unsigned long tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; int i___0 ; u64 value___0[4U] ; unsigned long tmp___3 ; unsigned long long x ; unsigned long tmp___4 ; unsigned long tmp___5 ; unsigned long tmp___6 ; { { dev = sp->dev; bar0 = (struct XENA_dev_config *)sp->bar0; tmp = readq((void const volatile *)(& bar0->pif_rd_swapper_fb)); val64 = (u64 )tmp; } if (val64 != 81985529216486895ULL) { i = 0; value[0] = 0xc30000c3c30000c3ULL; value[1] = 0x8100008181000081ULL; value[2] = 4755801491078381634ULL; value[3] = 0ULL; goto ldv_53604; ldv_53603: { writeq((unsigned long )value[i], (void volatile *)(& bar0->swapper_ctrl)); tmp___0 = readq((void const volatile *)(& bar0->pif_rd_swapper_fb)); val64 = (u64 )tmp___0; } if (val64 == 81985529216486895ULL) { goto ldv_53602; } else { } i = i + 1; ldv_53604: ; if (i <= 3) { goto ldv_53603; } else { } ldv_53602: ; if (i == 4) { if (debug_level >= 0) { { printk("\016s2io: %s: Endian settings are wrong, feedback read %llx\n", (char *)(& dev->name), val64); } } else { } return (-1); } else { } valr = value[i]; } else { { tmp___1 = readq((void const volatile *)(& bar0->swapper_ctrl)); valr = (u64 )tmp___1; } } { valt = 81985529216486895ULL; writeq((unsigned long )valt, (void volatile *)(& bar0->xmsi_address)); tmp___2 = readq((void const volatile *)(& bar0->xmsi_address)); val64 = (u64 )tmp___2; } if (val64 != valt) { i___0 = 0; value___0[0] = 55102025238823680ULL; value___0[1] = 36452109004144896ULL; value___0[2] = 18649916234678784ULL; value___0[3] = 0ULL; goto ldv_53609; ldv_53608: { writeq((unsigned long )(value___0[i___0] | valr), (void volatile *)(& bar0->swapper_ctrl)); writeq((unsigned long )valt, (void volatile *)(& bar0->xmsi_address)); tmp___3 = readq((void const volatile *)(& bar0->xmsi_address)); val64 = (u64 )tmp___3; } if (val64 == valt) { goto ldv_53607; } else { } i___0 = i___0 + 1; ldv_53609: ; if (i___0 <= 3) { goto ldv_53608; } else { } ldv_53607: ; if (i___0 == 4) { x = val64; if (debug_level >= 0) { { printk("\016s2io: Write failed, Xmsi_addr reads:0x%llx\n", x); } } else { } return (-1); } else { } } else { } { tmp___4 = readq((void const volatile *)(& bar0->swapper_ctrl)); val64 = (u64 )tmp___4; val64 = val64 & 0xffff000000000000ULL; val64 = val64 | 279280122642432ULL; } if ((unsigned int )sp->config.intr_type == 0U) { val64 = val64 | 4194304ULL; } else { } { writeq((unsigned long )val64, (void volatile *)(& bar0->swapper_ctrl)); tmp___5 = readq((void const volatile *)(& bar0->swapper_ctrl)); val64 = (u64 )tmp___5; tmp___6 = readq((void const volatile *)(& bar0->pif_rd_swapper_fb)); val64 = (u64 )tmp___6; } if (val64 != 81985529216486895ULL) { if (debug_level >= 0) { { printk("\016s2io: %s: Endian settings are wrong, feedback read %llx\n", (char *)(& dev->name), val64); } } else { } return (-1); } else { } return (0); } } static int wait_for_msix_trans(struct s2io_nic *nic , int i ) { struct XENA_dev_config *bar0 ; u64 val64 ; int ret ; int cnt ; unsigned long tmp ; unsigned long __ms ; unsigned long tmp___0 ; { bar0 = (struct XENA_dev_config *)nic->bar0; ret = 0; cnt = 0; ldv_53624: { tmp = readq((void const volatile *)(& bar0->xmsi_access)); val64 = (u64 )tmp; } if ((val64 & 281474976710656ULL) == 0ULL) { goto ldv_53619; } else { } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_53622; ldv_53621: { __const_udelay(4295000UL); } ldv_53622: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_53621; } else { } } cnt = cnt + 1; if (cnt <= 4) { goto ldv_53624; } else { } ldv_53619: ; if (cnt == 5) { if (debug_level >= 0) { { printk("\016s2io: XMSI # %d Access failed\n", i); } } else { } ret = 1; } else { } return (ret); } } static void restore_xmsi_data(struct s2io_nic *nic ) { struct XENA_dev_config *bar0 ; u64 val64 ; int i ; int msix_index ; int tmp ; { bar0 = (struct XENA_dev_config *)nic->bar0; if ((unsigned int )nic->device_type == 1U) { return; } else { } i = 0; goto ldv_53635; ldv_53634: { msix_index = i != 0 ? (i + -1) * 8 + 1 : 0; writeq((unsigned long )nic->msix_info[i].addr, (void volatile *)(& bar0->xmsi_address)); writeq((unsigned long )nic->msix_info[i].data, (void volatile *)(& bar0->xmsi_data)); val64 = ((unsigned long long )msix_index << 32) | 72339069014638592ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->xmsi_access)); tmp = wait_for_msix_trans(nic, msix_index); } if (tmp != 0) { if (debug_level >= 0) { { printk("\016s2io: %s: index: %d failed\n", "restore_xmsi_data", msix_index); } } else { } goto ldv_53633; } else { } ldv_53633: i = i + 1; ldv_53635: ; if (i <= 8) { goto ldv_53634; } else { } return; } } static void store_xmsi_data(struct s2io_nic *nic ) { struct XENA_dev_config *bar0 ; u64 val64 ; u64 addr ; u64 data ; int i ; int msix_index ; int tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; { bar0 = (struct XENA_dev_config *)nic->bar0; if ((unsigned int )nic->device_type == 1U) { return; } else { } i = 0; goto ldv_53649; ldv_53648: { msix_index = i != 0 ? (i + -1) * 8 + 1 : 0; val64 = ((unsigned long long )msix_index << 32) | 281474976710656ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->xmsi_access)); tmp = wait_for_msix_trans(nic, msix_index); } if (tmp != 0) { if (debug_level >= 0) { { printk("\016s2io: %s: index: %d failed\n", "store_xmsi_data", msix_index); } } else { } goto ldv_53647; } else { } { tmp___0 = readq((void const volatile *)(& bar0->xmsi_address)); addr = (u64 )tmp___0; tmp___1 = readq((void const volatile *)(& bar0->xmsi_data)); data = (u64 )tmp___1; } if (addr != 0ULL && data != 0ULL) { nic->msix_info[i].addr = addr; nic->msix_info[i].data = data; } else { } ldv_53647: i = i + 1; ldv_53649: ; if (i <= 8) { goto ldv_53648; } else { } return; } } static int s2io_enable_msi_x(struct s2io_nic *nic ) { struct XENA_dev_config *bar0 ; u64 rx_mat ; u16 msi_control ; int ret ; int i ; int j ; int msix_indx ; int size ; struct stat_block *stats ; struct swStat *swstats ; void *tmp ; void *tmp___0 ; unsigned long tmp___1 ; { { bar0 = (struct XENA_dev_config *)nic->bar0; msix_indx = 1; stats = nic->mac_control.stats_info; swstats = & stats->sw_stat; size = (int )((unsigned int )nic->num_entries * 8U); tmp = kzalloc((size_t )size, 208U); nic->entries = (struct msix_entry *)tmp; } if ((unsigned long )nic->entries == (unsigned long )((struct msix_entry *)0)) { if (debug_level > 1) { { printk("\016s2io: %s: Memory allocation failed\n", "s2io_enable_msi_x"); } } else { } swstats->mem_alloc_fail_cnt = swstats->mem_alloc_fail_cnt + 1ULL; return (-12); } else { } { swstats->mem_allocated = swstats->mem_allocated + (unsigned long long )size; size = (int )((unsigned int )nic->num_entries * 24U); tmp___0 = kzalloc((size_t )size, 208U); nic->s2io_entries = (struct s2io_msix_entry *)tmp___0; } if ((unsigned long )nic->s2io_entries == (unsigned long )((struct s2io_msix_entry *)0)) { if (debug_level > 1) { { printk("\016s2io: %s: Memory allocation failed\n", "s2io_enable_msi_x"); } } else { } { swstats->mem_alloc_fail_cnt = swstats->mem_alloc_fail_cnt + 1ULL; kfree((void const *)nic->entries); swstats->mem_freed = swstats->mem_freed + (unsigned long long )((unsigned long )nic->num_entries * 8UL); } return (-12); } else { } swstats->mem_allocated = swstats->mem_allocated + (unsigned long long )size; (nic->entries)->entry = 0U; (nic->s2io_entries)->entry = 0U; (nic->s2io_entries)->in_use = 165U; (nic->s2io_entries)->type = 1U; (nic->s2io_entries)->arg = (void *)(& nic->mac_control.fifos); i = 1; goto ldv_53666; ldv_53665: (nic->entries + (unsigned long )i)->entry = (unsigned int )((u16 )(i + -1)) * 8U + 1U; (nic->s2io_entries + (unsigned long )i)->entry = (unsigned int )((u16 )(i + -1)) * 8U + 1U; (nic->s2io_entries + (unsigned long )i)->arg = (void *)0; (nic->s2io_entries + (unsigned long )i)->in_use = 0U; i = i + 1; ldv_53666: ; if (i < nic->num_entries) { goto ldv_53665; } else { } { tmp___1 = readq((void const volatile *)(& bar0->rx_mat)); rx_mat = (u64 )tmp___1; j = 0; } goto ldv_53669; ldv_53668: rx_mat = rx_mat | ((unsigned long long )msix_indx << (7 - j) * 8); (nic->s2io_entries + ((unsigned long )j + 1UL))->arg = (void *)(& nic->mac_control.rings) + (unsigned long )j; (nic->s2io_entries + ((unsigned long )j + 1UL))->type = 2U; (nic->s2io_entries + ((unsigned long )j + 1UL))->in_use = 165U; msix_indx = msix_indx + 8; j = j + 1; ldv_53669: ; if ((u32 )j < nic->config.rx_ring_num) { goto ldv_53668; } else { } { writeq((unsigned long )rx_mat, (void volatile *)(& bar0->rx_mat)); readq((void const volatile *)(& bar0->rx_mat)); ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries); } if (ret != 0) { if (debug_level >= 0) { { printk("\016s2io: Enabling MSI-X failed\n"); } } else { } { kfree((void const *)nic->entries); swstats->mem_freed = swstats->mem_freed + (unsigned long long )((unsigned long )nic->num_entries * 8UL); kfree((void const *)nic->s2io_entries); swstats->mem_freed = swstats->mem_freed + (unsigned long long )((unsigned long )nic->num_entries * 24UL); nic->entries = (struct msix_entry *)0; nic->s2io_entries = (struct s2io_msix_entry *)0; } return (-12); } else { } { pci_read_config_word((struct pci_dev const *)nic->pdev, 66, & msi_control); msi_control = (u16 )((unsigned int )msi_control | 1U); pci_write_config_word((struct pci_dev const *)nic->pdev, 66, (int )msi_control); } return (0); } } static irqreturn_t s2io_test_intr(int irq , void *dev_id ) { struct s2io_nic *sp ; { { sp = (struct s2io_nic *)dev_id; sp->msi_detected = 1; __wake_up(& sp->msi_wait, 3U, 1, (void *)0); } return (1); } } static int s2io_test_msi(struct s2io_nic *sp ) { struct pci_dev *pdev ; struct XENA_dev_config *bar0 ; int err ; u64 val64 ; u64 saved64 ; char const *tmp ; struct lock_class_key __key ; unsigned long tmp___0 ; long __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp___1 ; bool __cond ; bool __cond___0 ; char const *tmp___2 ; { { pdev = sp->pdev; bar0 = (struct XENA_dev_config *)sp->bar0; err = ldv_request_irq_18((sp->entries + 1UL)->vector, & s2io_test_intr, 0UL, (char const *)(& sp->name), (void *)sp); } if (err != 0) { if (debug_level >= 0) { { tmp = pci_name((struct pci_dev const *)pdev); printk("\016s2io: %s: PCI %s: cannot assign irq %d\n", (char *)(& (sp->dev)->name), tmp, pdev->irq); } } else { } return (err); } else { } { __init_waitqueue_head(& sp->msi_wait, "&sp->msi_wait", & __key); sp->msi_detected = 0; tmp___0 = readq((void const volatile *)(& bar0->scheduled_int_ctrl)); val64 = (u64 )tmp___0; saved64 = val64; val64 = val64 | 4611686018427387904ULL; val64 = val64 | 0x8000000000000000ULL; val64 = val64 | 281474976710656ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->scheduled_int_ctrl)); __ret = 25L; __cond___0 = sp->msi_detected != 0; } if ((int )__cond___0 && __ret == 0L) { __ret = 1L; } else { } if (((int )__cond___0 || __ret == 0L) == 0) { { __ret___0 = 25L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_53695: { tmp___1 = prepare_to_wait_event(& sp->msi_wait, & __wait, 2); __int = tmp___1; __cond = sp->msi_detected != 0; } if ((int )__cond && __ret___0 == 0L) { __ret___0 = 1L; } else { } if (((int )__cond || __ret___0 == 0L) != 0) { goto ldv_53694; } else { } { __ret___0 = schedule_timeout(__ret___0); } goto ldv_53695; ldv_53694: { finish_wait(& sp->msi_wait, & __wait); } __ret = __ret___0; } else { } if (sp->msi_detected == 0) { if (debug_level >= 0) { { tmp___2 = pci_name((struct pci_dev const *)pdev); printk("\016s2io: %s: PCI %s: No interrupt was generated using MSI(X) during test\n", (char *)(& (sp->dev)->name), tmp___2); } } else { } err = -95; } else { } { ldv_free_irq_19((sp->entries + 1UL)->vector, (void *)sp); writeq((unsigned long )saved64, (void volatile *)(& bar0->scheduled_int_ctrl)); } return (err); } } static void remove_msix_isr(struct s2io_nic *sp ) { int i ; u16 msi_control ; int vector ; void *arg ; { i = 0; goto ldv_53706; ldv_53705: ; if ((unsigned int )(sp->s2io_entries + (unsigned long )i)->in_use == 170U) { { vector = (int )(sp->entries + (unsigned long )i)->vector; arg = (sp->s2io_entries + (unsigned long )i)->arg; ldv_free_irq_20((unsigned int )vector, arg); } } else { } i = i + 1; ldv_53706: ; if (i < sp->num_entries) { goto ldv_53705; } else { } { kfree((void const *)sp->entries); kfree((void const *)sp->s2io_entries); sp->entries = (struct msix_entry *)0; sp->s2io_entries = (struct s2io_msix_entry *)0; pci_read_config_word((struct pci_dev const *)sp->pdev, 66, & msi_control); msi_control = (unsigned int )msi_control & 65534U; pci_write_config_word((struct pci_dev const *)sp->pdev, 66, (int )msi_control); pci_disable_msix(sp->pdev); } return; } } static void remove_inta_isr(struct s2io_nic *sp ) { { { ldv_free_irq_21((sp->pdev)->irq, (void *)sp->dev); } return; } } static int s2io_open(struct net_device *dev ) { struct s2io_nic *sp ; void *tmp ; struct swStat *swstats ; int err ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; swstats = & (sp->mac_control.stats_info)->sw_stat; err = 0; netif_carrier_off(dev); sp->last_link_state = 0U; err = s2io_card_up(sp); } if (err != 0) { if (debug_level >= 0) { { printk("\016s2io: %s: H/W initialization failed\n", (char *)(& dev->name)); } } else { } goto hw_init_failed; } else { } { tmp___0 = do_s2io_prog_unicast(dev, dev->dev_addr); } if (tmp___0 == -1) { if (debug_level >= 0) { { printk("\016s2io: Set Mac Address Failed\n"); } } else { } { s2io_card_down(sp); err = -19; } goto hw_init_failed; } else { } { s2io_start_all_tx_queue(sp); } return (0); hw_init_failed: ; if ((unsigned int )sp->config.intr_type == 2U) { if ((unsigned long )sp->entries != (unsigned long )((struct msix_entry *)0)) { { kfree((void const *)sp->entries); swstats->mem_freed = swstats->mem_freed + (unsigned long long )((unsigned long )sp->num_entries * 8UL); } } else { } if ((unsigned long )sp->s2io_entries != (unsigned long )((struct s2io_msix_entry *)0)) { { kfree((void const *)sp->s2io_entries); swstats->mem_freed = swstats->mem_freed + (unsigned long long )((unsigned long )sp->num_entries * 24UL); } } else { } } else { } return (err); } } static int s2io_close(struct net_device *dev ) { struct s2io_nic *sp ; void *tmp ; struct config_param *config ; u64 tmp64 ; int offset ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; config = & sp->config; tmp___0 = is_s2io_card_up((struct s2io_nic const *)sp); } if (tmp___0 == 0) { return (0); } else { } { s2io_stop_all_tx_queue(sp); offset = 1; } goto ldv_53726; ldv_53725: { tmp64 = do_s2io_read_unicast_mc(sp, offset); } if (tmp64 != 281474976710655ULL) { { do_s2io_delete_unicast_mc(sp, tmp64); } } else { } offset = offset + 1; ldv_53726: ; if (offset < config->max_mc_addr) { goto ldv_53725; } else { } { s2io_card_down(sp); } return (0); } } static netdev_tx_t s2io_xmit(struct sk_buff *skb , struct net_device *dev ) { struct s2io_nic *sp ; void *tmp ; u16 frg_cnt ; u16 frg_len ; u16 i ; u16 queue ; u16 queue_len ; u16 put_off ; u16 get_off ; register u64 val64 ; struct TxD *txdp ; struct TxFIFO_element *tx_fifo ; unsigned long flags ; u16 vlan_tag ; struct fifo_info *fifo ; int do_spin_lock ; int offload_type ; int enable_per_list_interrupt ; struct config_param *config ; struct mac_info *mac_control ; struct stat_block *stats ; struct swStat *swstats ; long tmp___0 ; int tmp___1 ; struct iphdr *ip ; struct tcphdr *th ; __u16 tmp___2 ; __u16 tmp___3 ; __u16 tmp___4 ; __u16 tmp___5 ; bool tmp___6 ; int tmp___7 ; raw_spinlock_t *tmp___8 ; int tmp___11 ; int tmp___12 ; raw_spinlock_t *tmp___13 ; int tmp___14 ; long tmp___15 ; bool tmp___16 ; bool tmp___17 ; long tmp___18 ; unsigned char *tmp___19 ; unsigned char *tmp___20 ; unsigned int tmp___21 ; int ufo_size ; unsigned char *tmp___22 ; unsigned char *tmp___23 ; int tmp___24 ; int tmp___25 ; unsigned char *tmp___26 ; skb_frag_t const *frag ; unsigned char *tmp___27 ; unsigned int tmp___28 ; unsigned int tmp___29 ; unsigned int tmp___30 ; { { tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; flags = 0UL; vlan_tag = 0U; fifo = (struct fifo_info *)0; do_spin_lock = 1; enable_per_list_interrupt = 0; config = & sp->config; mac_control = & sp->mac_control; stats = mac_control->stats_info; swstats = & stats->sw_stat; } if (debug_level > 2) { { printk("\016s2io: %s: In Neterion Tx routine\n", (char *)(& dev->name)); } } else { } { tmp___0 = ldv__builtin_expect(skb->len == 0U, 0L); } if (tmp___0 != 0L) { if (debug_level > 2) { { printk("\016s2io: %s: Buffer has no data..\n", (char *)(& dev->name)); } } else { } { dev_kfree_skb_any(skb); } return (0); } else { } { tmp___1 = is_s2io_card_up((struct s2io_nic const *)sp); } if (tmp___1 == 0) { if (debug_level > 2) { { printk("\016s2io: %s: Card going down for reset\n", (char *)(& dev->name)); } } else { } { consume_skb(skb); } return (0); } else { } queue = 0U; if (((int )skb->vlan_tci & 4096) != 0) { vlan_tag = (unsigned int )skb->vlan_tci & 61439U; } else { } if ((unsigned int )sp->config.tx_steering_type == 2U) { if ((unsigned int )skb->protocol == 8U) { { ip = ip_hdr((struct sk_buff const *)skb); tmp___6 = ip_is_fragment((struct iphdr const *)ip); } if (tmp___6) { tmp___7 = 0; } else { tmp___7 = 1; } if (tmp___7) { th = (struct tcphdr *)ip + (unsigned long )((int )ip->ihl * 4); if ((unsigned int )ip->protocol == 6U) { { queue_len = (u16 )sp->total_tcp_fifos; tmp___2 = __fswab16((int )th->source); tmp___3 = __fswab16((int )th->dest); queue = (u16 )((int )((short )(tmp___2 + tmp___3)) & (int )((short )sp->fifo_selector[(int )queue_len + -1])); } if ((int )queue >= (int )queue_len) { queue = (unsigned int )queue_len + 65535U; } else { } } else if ((unsigned int )ip->protocol == 17U) { { queue_len = (u16 )sp->total_udp_fifos; tmp___4 = __fswab16((int )th->source); tmp___5 = __fswab16((int )th->dest); queue = (u16 )((int )((short )(tmp___4 + tmp___5)) & (int )((short )sp->fifo_selector[(int )queue_len + -1])); } if ((int )queue >= (int )queue_len) { queue = (unsigned int )queue_len + 65535U; } else { } queue = (int )queue + (int )((u16 )sp->udp_fifo_idx); if (skb->len > 1024U) { enable_per_list_interrupt = 1; } else { } do_spin_lock = 0; } else { } } else { } } else { } } else if ((unsigned int )sp->config.tx_steering_type == 1U) { queue = (u16 )config->fifo_mapping[skb->priority & 7U]; } else { } fifo = (struct fifo_info *)(& mac_control->fifos) + (unsigned long )queue; if (do_spin_lock != 0) { { tmp___8 = spinlock_check(& fifo->tx_lock); flags = _raw_spin_lock_irqsave(tmp___8); } } else { { flags = arch_local_irq_save(); trace_hardirqs_off(); tmp___13 = spinlock_check(& fifo->tx_lock); tmp___14 = _raw_spin_trylock(tmp___13); } if (tmp___14 == 0) { { tmp___11 = arch_irqs_disabled_flags(flags); } if (tmp___11 != 0) { { arch_local_irq_restore(flags); trace_hardirqs_off(); } } else { { trace_hardirqs_on(); arch_local_irq_restore(flags); } } tmp___12 = 0; } else { tmp___12 = 1; } { tmp___15 = ldv__builtin_expect(tmp___12 == 0, 0L); } if (tmp___15 != 0L) { return (32); } else { } } if ((unsigned int )sp->config.multiq != 0U) { { tmp___16 = __netif_subqueue_stopped((struct net_device const *)dev, (int )((u16 )fifo->fifo_no)); } if ((int )tmp___16) { { spin_unlock_irqrestore(& fifo->tx_lock, flags); } return (16); } else { } } else { { tmp___18 = ldv__builtin_expect(fifo->queue_state == 1, 0L); } if (tmp___18 != 0L) { { tmp___17 = netif_queue_stopped((struct net_device const *)dev); } if ((int )tmp___17) { { spin_unlock_irqrestore(& fifo->tx_lock, flags); } return (16); } else { } } else { } } put_off = (unsigned short )fifo->tx_curr_put_info.offset; get_off = (unsigned short )fifo->tx_curr_get_info.offset; txdp = (struct TxD *)(fifo->list_info + (unsigned long )put_off)->list_virt_addr; queue_len = (unsigned int )((u16 )fifo->tx_curr_put_info.fifo_len) + 1U; if (txdp->Host_Control != 0ULL || ((int )put_off + 1 != (int )queue_len ? (int )put_off + 1 : 0) == (int )get_off) { if (debug_level > 2) { { printk("\016s2io: Error in xmit, No free TXDs.\n"); } } else { } { s2io_stop_tx_queue(sp, fifo->fifo_no); consume_skb(skb); spin_unlock_irqrestore(& fifo->tx_lock, flags); } return (0); } else { } { tmp___19 = skb_end_pointer((struct sk_buff const *)skb); offload_type = (int )((struct skb_shared_info *)tmp___19)->gso_type; } if ((offload_type & 17) != 0) { { txdp->Control_1 = txdp->Control_1 | 8589934592ULL; tmp___20 = skb_end_pointer((struct sk_buff const *)skb); txdp->Control_1 = txdp->Control_1 | ((unsigned long long )((struct skb_shared_info *)tmp___20)->gso_size << 16); } } else { } if ((unsigned int )*((unsigned char *)skb + 124UL) == 12U) { txdp->Control_2 = txdp->Control_2 | 504403158265495552ULL; } else { } txdp->Control_1 = txdp->Control_1 | 2199023255552ULL; txdp->Control_1 = txdp->Control_1 | 72057594037927936ULL; txdp->Control_2 = txdp->Control_2 | ((unsigned long long )fifo->fifo_no << 24); if (enable_per_list_interrupt != 0) { if ((unsigned int )((int )put_off & ((int )queue_len >> 5)) != 0U) { txdp->Control_2 = txdp->Control_2 | 65536ULL; } else { } } else { } if ((unsigned int )vlan_tag != 0U) { txdp->Control_2 = txdp->Control_2 | 281474976710656ULL; txdp->Control_2 = txdp->Control_2 | ((unsigned long long )vlan_tag << 32); } else { } { tmp___21 = skb_headlen((struct sk_buff const *)skb); frg_len = (u16 )tmp___21; } if (offload_type == 2) { { tmp___22 = skb_end_pointer((struct sk_buff const *)skb); ufo_size = (int )((struct skb_shared_info *)tmp___22)->gso_size; ufo_size = ufo_size & -8; txdp->Control_1 = txdp->Control_1 | 12884901888ULL; txdp->Control_1 = txdp->Control_1 | ((unsigned long long )ufo_size << 16); txdp->Control_1 = txdp->Control_1 | 8ULL; tmp___23 = skb_end_pointer((struct sk_buff const *)skb); *(fifo->ufo_in_band_v + (unsigned long )put_off) = (unsigned long long )((struct skb_shared_info *)tmp___23)->ip6_frag_id << 32; txdp->Host_Control = (u64 )fifo->ufo_in_band_v; txdp->Buffer_Pointer = pci_map_single(sp->pdev, (void *)fifo->ufo_in_band_v, 8UL, 1); tmp___24 = pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer); } if (tmp___24 != 0) { goto pci_map_failed; } else { } txdp = txdp + 1; } else { } { txdp->Buffer_Pointer = pci_map_single(sp->pdev, (void *)skb->data, (size_t )frg_len, 1); tmp___25 = pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer); } if (tmp___25 != 0) { goto pci_map_failed; } else { } txdp->Host_Control = (u64 )skb; txdp->Control_1 = txdp->Control_1 | (unsigned long long )frg_len; if (offload_type == 2) { txdp->Control_1 = txdp->Control_1 | 12884901888ULL; } else { } { tmp___26 = skb_end_pointer((struct sk_buff const *)skb); frg_cnt = (u16 )((struct skb_shared_info *)tmp___26)->nr_frags; i = 0U; } goto ldv_53778; ldv_53777: { tmp___27 = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t const *)(& ((struct skb_shared_info *)tmp___27)->frags) + (unsigned long )i; tmp___28 = skb_frag_size(frag); } if (tmp___28 == 0U) { goto ldv_53776; } else { } { txdp = txdp + 1; tmp___29 = skb_frag_size(frag); txdp->Buffer_Pointer = skb_frag_dma_map(& (sp->pdev)->dev, frag, 0UL, (size_t )tmp___29, 1); tmp___30 = skb_frag_size(frag); txdp->Control_1 = (unsigned long long )tmp___30; } if (offload_type == 2) { txdp->Control_1 = txdp->Control_1 | 12884901888ULL; } else { } ldv_53776: i = (u16 )((int )i + 1); ldv_53778: ; if ((int )i < (int )frg_cnt) { goto ldv_53777; } else { } txdp->Control_1 = txdp->Control_1 | 1099511627776ULL; if (offload_type == 2) { frg_cnt = (u16 )((int )frg_cnt + 1); } else { } { tx_fifo = mac_control->tx_FIFO_start[(int )queue]; val64 = (fifo->list_info + (unsigned long )put_off)->list_phy_addr; writeq((unsigned long )val64, (void volatile *)(& tx_fifo->TxDL_Pointer)); val64 = ((unsigned long long )frg_cnt << 56) | 844424930131968ULL; } if (offload_type != 0) { val64 = val64 | 1099511627776ULL; } else { } { writeq((unsigned long )val64, (void volatile *)(& tx_fifo->List_Control)); __asm__ volatile ("": : : "memory"); put_off = (u16 )((int )put_off + 1); } if ((u32 )put_off == fifo->tx_curr_put_info.fifo_len + 1U) { put_off = 0U; } else { } fifo->tx_curr_put_info.offset = (u32 )put_off; if (((int )put_off + 1 != (int )queue_len ? (int )put_off + 1 : 0) == (int )get_off) { swstats->fifo_full_cnt = swstats->fifo_full_cnt + 1ULL; if (debug_level > 2) { { printk("\016s2io: No free TxDs for xmit, Put: 0x%x Get:0x%x\n", (int )put_off, (int )get_off); } } else { } { s2io_stop_tx_queue(sp, fifo->fifo_no); } } else { } { swstats->mem_allocated = swstats->mem_allocated + (unsigned long long )skb->truesize; spin_unlock_irqrestore(& fifo->tx_lock, flags); } if ((unsigned int )sp->config.intr_type == 2U) { { tx_intr_handler(fifo); } } else { } return (0); pci_map_failed: { swstats->pci_map_fail_cnt = swstats->pci_map_fail_cnt + 1ULL; s2io_stop_tx_queue(sp, fifo->fifo_no); swstats->mem_freed = swstats->mem_freed + (unsigned long long )skb->truesize; consume_skb(skb); spin_unlock_irqrestore(& fifo->tx_lock, flags); } return (0); } } static void s2io_alarm_handle(unsigned long data ) { struct s2io_nic *sp ; struct net_device *dev ; { { sp = (struct s2io_nic *)data; dev = sp->dev; s2io_handle_errors((void *)dev); ldv_mod_timer_22(& sp->alarm_timer, (unsigned long )jiffies + 125UL); } return; } } static irqreturn_t s2io_msix_ring_handle(int irq , void *dev_id ) { struct ring_info *ring ; struct s2io_nic *sp ; struct XENA_dev_config *bar0 ; int tmp ; long tmp___0 ; u8 *addr ; u8 val8 ; { { ring = (struct ring_info *)dev_id; sp = ring->nic; bar0 = (struct XENA_dev_config *)sp->bar0; tmp = is_s2io_card_up((struct s2io_nic const *)sp); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { return (1); } else { } if ((unsigned int )sp->config.napi != 0U) { { addr = (u8 *)0U; val8 = 0U; addr = (u8 *)(& bar0->xmsi_mask_reg); addr = addr + (unsigned long )(7 - ring->ring_no); val8 = ring->ring_no == 0 ? 127U : 255U; writeb((int )val8, (void volatile *)addr); val8 = readb((void const volatile *)addr); napi_schedule(& ring->napi); } } else { { rx_intr_handler(ring, 0); s2io_chk_rx_buffers(sp, ring); } } return (1); } } static irqreturn_t s2io_msix_fifo_handle(int irq , void *dev_id ) { int i ; struct fifo_info *fifos ; struct s2io_nic *sp ; struct XENA_dev_config *bar0 ; struct config_param *config ; u64 reason ; int tmp ; long tmp___0 ; unsigned long tmp___1 ; long tmp___2 ; { { fifos = (struct fifo_info *)dev_id; sp = fifos->nic; bar0 = (struct XENA_dev_config *)sp->bar0; config = & sp->config; tmp = is_s2io_card_up((struct s2io_nic const *)sp); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { return (0); } else { } { tmp___1 = readq((void const volatile *)(& bar0->general_int_status)); reason = (u64 )tmp___1; tmp___2 = ldv__builtin_expect(reason == 0xffffffffffffffffULL, 0L); } if (tmp___2 != 0L) { return (1); } else { } if ((reason & 0x8080000000000000ULL) != 0ULL) { { writeq(0xffffffffffffffffUL, (void volatile *)(& bar0->general_int_mask)); } if ((long )reason < 0L) { { s2io_txpic_intr_handle(sp); } } else { } if ((reason & 36028797018963968ULL) != 0ULL) { { writeq(0xffffffffffffffffUL, (void volatile *)(& bar0->tx_traffic_int)); } } else { } i = 0; goto ldv_53805; ldv_53804: { tx_intr_handler(fifos + (unsigned long )i); i = i + 1; } ldv_53805: ; if ((u32 )i < config->tx_fifo_num) { goto ldv_53804; } else { } { writeq((unsigned long )sp->general_int_mask, (void volatile *)(& bar0->general_int_mask)); readl((void const volatile *)(& bar0->general_int_status)); } return (1); } else { } return (0); } } static void s2io_txpic_intr_handle(struct s2io_nic *sp ) { struct XENA_dev_config *bar0 ; u64 val64 ; unsigned long tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; unsigned long tmp___4 ; unsigned long tmp___5 ; unsigned long tmp___6 ; unsigned long tmp___7 ; unsigned long tmp___8 ; { { bar0 = (struct XENA_dev_config *)sp->bar0; tmp = readq((void const volatile *)(& bar0->pic_int_status)); val64 = (u64 )tmp; } if ((val64 & 576460752303423488ULL) != 0ULL) { { tmp___0 = readq((void const volatile *)(& bar0->gpio_int_reg)); val64 = (u64 )tmp___0; } if (((unsigned long )val64 & 6917529027641081856UL) == 6917529027641081856UL) { { val64 = val64 | 4611686018427387904ULL; val64 = val64 | 2305843009213693952ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->gpio_int_reg)); tmp___1 = readq((void const volatile *)(& bar0->gpio_int_mask)); val64 = (u64 )tmp___1; val64 = val64 & 0x9fffffffffffffffULL; writeq((unsigned long )val64, (void volatile *)(& bar0->gpio_int_mask)); } } else if ((val64 & 2305843009213693952ULL) != 0ULL) { { tmp___2 = readq((void const volatile *)(& bar0->adapter_status)); val64 = (u64 )tmp___2; tmp___3 = readq((void const volatile *)(& bar0->adapter_control)); val64 = (u64 )tmp___3; val64 = val64 | 72057594037927936ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->adapter_control)); val64 = val64 | 1099511627776ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->adapter_control)); } if (sp->device_enabled_once == 0) { sp->device_enabled_once = 1; } else { } { s2io_link(sp, 2); tmp___4 = readq((void const volatile *)(& bar0->gpio_int_mask)); val64 = (u64 )tmp___4; val64 = val64 & 0xbfffffffffffffffULL; val64 = val64 | 2305843009213693952ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->gpio_int_mask)); } } else if ((val64 & 4611686018427387904ULL) != 0ULL) { { tmp___5 = readq((void const volatile *)(& bar0->adapter_status)); val64 = (u64 )tmp___5; s2io_link(sp, 1); tmp___6 = readq((void const volatile *)(& bar0->gpio_int_mask)); val64 = (u64 )tmp___6; val64 = val64 & 0xdfffffffffffffffULL; val64 = val64 | 4611686018427387904ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->gpio_int_mask)); tmp___7 = readq((void const volatile *)(& bar0->adapter_control)); val64 = (u64 )tmp___7; val64 = val64 & 0xfffffeffffffffffULL; writeq((unsigned long )val64, (void volatile *)(& bar0->adapter_control)); } } else { } } else { } { tmp___8 = readq((void const volatile *)(& bar0->gpio_int_mask)); val64 = (u64 )tmp___8; } return; } } static int do_s2io_chk_alarm_bit(u64 value , void *addr , unsigned long long *cnt ) { u64 val64 ; unsigned long tmp ; { { tmp = readq((void const volatile *)addr); val64 = (u64 )tmp; } if ((val64 & value) != 0ULL) { { writeq((unsigned long )val64, (void volatile *)addr); *cnt = *cnt + 1ULL; } return (1); } else { } return (0); } } static void s2io_handle_errors(void *dev_id ) { struct net_device *dev ; struct s2io_nic *sp ; void *tmp ; struct XENA_dev_config *bar0 ; u64 temp64 ; u64 val64 ; int i ; struct swStat *sw_stat ; struct xpakStat *stats ; int tmp___0 ; int tmp___1 ; unsigned long tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; unsigned long tmp___6 ; unsigned long tmp___7 ; unsigned long tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; unsigned long tmp___16 ; int tmp___17 ; unsigned long tmp___18 ; int tmp___19 ; unsigned long tmp___20 ; int tmp___21 ; int tmp___22 ; int tmp___23 ; int tmp___24 ; int tmp___25 ; unsigned long tmp___26 ; int tmp___27 ; unsigned long tmp___28 ; int tmp___29 ; unsigned long tmp___30 ; int tmp___31 ; { { dev = (struct net_device *)dev_id; tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; bar0 = (struct XENA_dev_config *)sp->bar0; temp64 = 0ULL; val64 = 0ULL; i = 0; sw_stat = & (sp->mac_control.stats_info)->sw_stat; stats = & (sp->mac_control.stats_info)->xpak_stat; tmp___0 = is_s2io_card_up((struct s2io_nic const *)sp); } if (tmp___0 == 0) { return; } else { } { tmp___1 = pci_channel_offline(sp->pdev); } if (tmp___1 != 0) { return; } else { } { memset((void *)(& sw_stat->ring_full_cnt), 0, 64UL); } if (stats->xpak_timer_count <= 71999U) { stats->xpak_timer_count = stats->xpak_timer_count + 1U; } else { { s2io_updt_xpak_counter(dev); stats->xpak_timer_count = 0U; } } { tmp___3 = s2io_link_fault_indication(sp); } if (tmp___3 == 2) { { tmp___2 = readq((void const volatile *)(& bar0->mac_rmac_err_reg)); val64 = (u64 )tmp___2; writeq((unsigned long )val64, (void volatile *)(& bar0->mac_rmac_err_reg)); } if ((val64 & 4294967296ULL) != 0ULL) { { schedule_work(& sp->set_link_task); } } else { } } else { } { tmp___4 = do_s2io_chk_alarm_bit(0xfc00000000000000ULL, (void *)(& bar0->serr_source), & sw_stat->serious_err_cnt); } if (tmp___4 != 0) { goto reset; } else { } { tmp___5 = do_s2io_chk_alarm_bit(0x8000000000000000ULL, (void *)(& bar0->gpio_int_reg), & sw_stat->parity_err_cnt); } if (tmp___5 != 0) { goto reset; } else { } if ((unsigned int )sp->device_type == 2U) { { tmp___6 = readq((void const volatile *)(& bar0->ring_bump_counter1)); val64 = (u64 )tmp___6; i = 0; } goto ldv_53831; ldv_53830: temp64 = val64 & (65535ULL << (3 - i) * 16); temp64 = temp64 >> (~ i + 4) * 16; sw_stat->ring_full_cnt[i] = sw_stat->ring_full_cnt[i] + temp64; i = i + 1; ldv_53831: ; if (i <= 3) { goto ldv_53830; } else { } { tmp___7 = readq((void const volatile *)(& bar0->ring_bump_counter2)); val64 = (u64 )tmp___7; i = 0; } goto ldv_53834; ldv_53833: temp64 = val64 & (65535ULL << (3 - i) * 16); temp64 = temp64 >> (~ i + 4) * 16; sw_stat->ring_full_cnt[i + 4] = sw_stat->ring_full_cnt[i + 4] + temp64; i = i + 1; ldv_53834: ; if (i <= 3) { goto ldv_53833; } else { } } else { } { tmp___8 = readq((void const volatile *)(& bar0->txdma_int_status)); val64 = (u64 )tmp___8; } if ((long )val64 < 0L) { { tmp___9 = do_s2io_chk_alarm_bit(282580947566592ULL, (void *)(& bar0->pfc_err_reg), & sw_stat->pfc_err_cnt); } if (tmp___9 != 0) { goto reset; } else { } { do_s2io_chk_alarm_bit(72057594037927936ULL, (void *)(& bar0->pfc_err_reg), & sw_stat->pfc_err_cnt); } } else { } if ((val64 & 4611686018427387904ULL) != 0ULL) { { tmp___10 = do_s2io_chk_alarm_bit(71779417596100608ULL, (void *)(& bar0->tda_err_reg), & sw_stat->tda_err_cnt); } if (tmp___10 != 0) { goto reset; } else { } { do_s2io_chk_alarm_bit(0xff00000001000000ULL, (void *)(& bar0->tda_err_reg), & sw_stat->tda_err_cnt); } } else { } if ((val64 & 2305843009213693952ULL) != 0ULL) { { tmp___11 = do_s2io_chk_alarm_bit(281474976710640ULL, (void *)(& bar0->pcc_err_reg), & sw_stat->pcc_err_cnt); } if (tmp___11 != 0) { goto reset; } else { } { do_s2io_chk_alarm_bit(0xffff000000000000ULL, (void *)(& bar0->pcc_err_reg), & sw_stat->pcc_err_cnt); } } else { } if ((val64 & 1152921504606846976ULL) != 0ULL) { { tmp___12 = do_s2io_chk_alarm_bit(1099511627776ULL, (void *)(& bar0->tti_err_reg), & sw_stat->tti_err_cnt); } if (tmp___12 != 0) { goto reset; } else { } { do_s2io_chk_alarm_bit(72339069014638592ULL, (void *)(& bar0->tti_err_reg), & sw_stat->tti_err_cnt); } } else { } if ((val64 & 576460752303423488ULL) != 0ULL) { { tmp___13 = do_s2io_chk_alarm_bit(847723465015296ULL, (void *)(& bar0->lso_err_reg), & sw_stat->lso_err_cnt); } if (tmp___13 != 0) { goto reset; } else { } { do_s2io_chk_alarm_bit(3377699720527872ULL, (void *)(& bar0->lso_err_reg), & sw_stat->lso_err_cnt); } } else { } if ((val64 & 288230376151711744ULL) != 0ULL) { { tmp___14 = do_s2io_chk_alarm_bit(1099511627776ULL, (void *)(& bar0->tpa_err_reg), & sw_stat->tpa_err_cnt); } if (tmp___14 != 0) { goto reset; } else { } { do_s2io_chk_alarm_bit(72057594037927936ULL, (void *)(& bar0->tpa_err_reg), & sw_stat->tpa_err_cnt); } } else { } if ((val64 & 144115188075855872ULL) != 0ULL) { { tmp___15 = do_s2io_chk_alarm_bit(281474976710656ULL, (void *)(& bar0->sm_err_reg), & sw_stat->sm_err_cnt); } if (tmp___15 != 0) { goto reset; } else { } } else { } { tmp___16 = readq((void const volatile *)(& bar0->mac_int_status)); val64 = (u64 )tmp___16; } if ((long )val64 < 0L) { { tmp___17 = do_s2io_chk_alarm_bit(1099528404992ULL, (void *)(& bar0->mac_tmac_err_reg), & sw_stat->mac_tmac_err_cnt); } if (tmp___17 != 0) { goto reset; } else { } { do_s2io_chk_alarm_bit(72339069014704384ULL, (void *)(& bar0->mac_tmac_err_reg), & sw_stat->mac_tmac_err_cnt); } } else { } { tmp___18 = readq((void const volatile *)(& bar0->xgxs_int_status)); val64 = (u64 )tmp___18; } if ((long )val64 < 0L) { { tmp___19 = do_s2io_chk_alarm_bit(4311744512ULL, (void *)(& bar0->xgxs_txgxs_err_reg), & sw_stat->xgxs_txgxs_err_cnt); } if (tmp___19 != 0) { goto reset; } else { } { do_s2io_chk_alarm_bit(72339069014638592ULL, (void *)(& bar0->xgxs_txgxs_err_reg), & sw_stat->xgxs_txgxs_err_cnt); } } else { } { tmp___20 = readq((void const volatile *)(& bar0->rxdma_int_status)); val64 = (u64 )tmp___20; } if ((long )val64 < 0L) { { tmp___21 = do_s2io_chk_alarm_bit(71776127634440192ULL, (void *)(& bar0->rc_err_reg), & sw_stat->rc_err_cnt); } if (tmp___21 != 0) { goto reset; } else { } { do_s2io_chk_alarm_bit(0xff0001000000ff00ULL, (void *)(& bar0->rc_err_reg), & sw_stat->rc_err_cnt); tmp___22 = do_s2io_chk_alarm_bit(0xff00ff00ff000000ULL, (void *)(& bar0->prc_pcix_err_reg), & sw_stat->prc_pcix_err_cnt); } if (tmp___22 != 0) { goto reset; } else { } { do_s2io_chk_alarm_bit(71777214294589440ULL, (void *)(& bar0->prc_pcix_err_reg), & sw_stat->prc_pcix_err_cnt); } } else { } if ((val64 & 4611686018427387904ULL) != 0ULL) { { tmp___23 = do_s2io_chk_alarm_bit(1103806595072ULL, (void *)(& bar0->rpa_err_reg), & sw_stat->rpa_err_cnt); } if (tmp___23 != 0) { goto reset; } else { } { do_s2io_chk_alarm_bit(72339069014638592ULL, (void *)(& bar0->rpa_err_reg), & sw_stat->rpa_err_cnt); } } else { } if ((val64 & 2305843009213693952ULL) != 0ULL) { { tmp___24 = do_s2io_chk_alarm_bit(71776123406516225ULL, (void *)(& bar0->rda_err_reg), & sw_stat->rda_err_cnt); } if (tmp___24 != 0) { goto reset; } else { } { do_s2io_chk_alarm_bit(0xff00010000010100ULL, (void *)(& bar0->rda_err_reg), & sw_stat->rda_err_cnt); } } else { } if ((val64 & 1152921504606846976ULL) != 0ULL) { { tmp___25 = do_s2io_chk_alarm_bit(1099511627776ULL, (void *)(& bar0->rti_err_reg), & sw_stat->rti_err_cnt); } if (tmp___25 != 0) { goto reset; } else { } { do_s2io_chk_alarm_bit(72339069014638592ULL, (void *)(& bar0->rti_err_reg), & sw_stat->rti_err_cnt); } } else { } { tmp___26 = readq((void const volatile *)(& bar0->mac_int_status)); val64 = (u64 )tmp___26; } if ((val64 & 4611686018427387904ULL) != 0ULL) { { tmp___27 = do_s2io_chk_alarm_bit(0x8000000001000000ULL, (void *)(& bar0->mac_rmac_err_reg), & sw_stat->mac_rmac_err_cnt); } if (tmp___27 != 0) { goto reset; } else { } { do_s2io_chk_alarm_bit(2880034369517387776ULL, (void *)(& bar0->mac_rmac_err_reg), & sw_stat->mac_rmac_err_cnt); } } else { } { tmp___28 = readq((void const volatile *)(& bar0->xgxs_int_status)); val64 = (u64 )tmp___28; } if ((val64 & 4611686018427387904ULL) != 0ULL) { { tmp___29 = do_s2io_chk_alarm_bit(72057594054705152ULL, (void *)(& bar0->xgxs_rxgxs_err_reg), & sw_stat->xgxs_rxgxs_err_cnt); } if (tmp___29 != 0) { goto reset; } else { } } else { } { tmp___30 = readq((void const volatile *)(& bar0->mc_int_status)); val64 = (u64 )tmp___30; } if ((long )val64 < 0L) { { tmp___31 = do_s2io_chk_alarm_bit(4294967296ULL, (void *)(& bar0->mc_err_reg), & sw_stat->mc_err_cnt); } if (tmp___31 != 0) { goto reset; } else { } if ((val64 & 4340476082273648640ULL) != 0ULL) { { writeq((unsigned long )val64, (void volatile *)(& bar0->mc_err_reg)); } if ((val64 & 16932479067750400ULL) != 0ULL) { sw_stat->double_ecc_errs = sw_stat->double_ecc_errs + 1ULL; if ((unsigned int )sp->device_type != 2U) { if ((val64 & 43980465111040ULL) != 0ULL) { goto reset; } else { } } else { } } else { sw_stat->single_ecc_errs = sw_stat->single_ecc_errs + 1ULL; } } else { } } else { } return; reset: { s2io_stop_all_tx_queue(sp); schedule_work(& sp->rst_timer_task); sw_stat->soft_reset_cnt = sw_stat->soft_reset_cnt + 1ULL; } return; } } static irqreturn_t s2io_isr(int irq , void *dev_id ) { struct net_device *dev ; struct s2io_nic *sp ; void *tmp ; struct XENA_dev_config *bar0 ; int i ; u64 reason ; struct mac_info *mac_control ; struct config_param *config ; int tmp___0 ; int tmp___1 ; unsigned long tmp___2 ; long tmp___3 ; struct ring_info *ring ; struct ring_info *ring___0 ; { { dev = (struct net_device *)dev_id; tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; bar0 = (struct XENA_dev_config *)sp->bar0; reason = 0ULL; tmp___0 = pci_channel_offline(sp->pdev); } if (tmp___0 != 0) { return (0); } else { } { tmp___1 = is_s2io_card_up((struct s2io_nic const *)sp); } if (tmp___1 == 0) { return (0); } else { } { config = & sp->config; mac_control = & sp->mac_control; tmp___2 = readq((void const volatile *)(& bar0->general_int_status)); reason = (u64 )tmp___2; tmp___3 = ldv__builtin_expect(reason == 0xffffffffffffffffULL, 0L); } if (tmp___3 != 0L) { return (1); } else { } if ((reason & 0x8080000000800000ULL) != 0ULL) { { writeq(0xffffffffffffffffUL, (void volatile *)(& bar0->general_int_mask)); } if ((unsigned int )config->napi != 0U) { if ((reason & 8388608ULL) != 0ULL) { { napi_schedule(& sp->napi); writeq(0xffffffffffffffffUL, (void volatile *)(& bar0->rx_traffic_mask)); writeq(0xffffffffffffffffUL, (void volatile *)(& bar0->rx_traffic_int)); readl((void const volatile *)(& bar0->rx_traffic_int)); } } else { } } else { if ((reason & 8388608ULL) != 0ULL) { { writeq(0xffffffffffffffffUL, (void volatile *)(& bar0->rx_traffic_int)); } } else { } i = 0; goto ldv_53849; ldv_53848: { ring = (struct ring_info *)(& mac_control->rings) + (unsigned long )i; rx_intr_handler(ring, 0); i = i + 1; } ldv_53849: ; if ((u32 )i < config->rx_ring_num) { goto ldv_53848; } else { } } if ((reason & 36028797018963968ULL) != 0ULL) { { writeq(0xffffffffffffffffUL, (void volatile *)(& bar0->tx_traffic_int)); } } else { } i = 0; goto ldv_53852; ldv_53851: { tx_intr_handler((struct fifo_info *)(& mac_control->fifos) + (unsigned long )i); i = i + 1; } ldv_53852: ; if ((u32 )i < config->tx_fifo_num) { goto ldv_53851; } else { } if ((long )reason < 0L) { { s2io_txpic_intr_handle(sp); } } else { } if ((unsigned int )config->napi == 0U) { i = 0; goto ldv_53856; ldv_53855: { ring___0 = (struct ring_info *)(& mac_control->rings) + (unsigned long )i; s2io_chk_rx_buffers(sp, ring___0); i = i + 1; } ldv_53856: ; if ((u32 )i < config->rx_ring_num) { goto ldv_53855; } else { } } else { } { writeq((unsigned long )sp->general_int_mask, (void volatile *)(& bar0->general_int_mask)); readl((void const volatile *)(& bar0->general_int_status)); } return (1); } else if (reason == 0ULL) { return (0); } else { } return (1); } } static void s2io_updt_stats(struct s2io_nic *sp ) { struct XENA_dev_config *bar0 ; u64 val64 ; int cnt ; unsigned long tmp ; int tmp___0 ; { { bar0 = (struct XENA_dev_config *)sp->bar0; cnt = 0; tmp___0 = is_s2io_card_up((struct s2io_nic const *)sp); } if (tmp___0 != 0) { { val64 = 0xc00000000000000aULL; writeq((unsigned long )val64, (void volatile *)(& bar0->stat_cfg)); } ldv_53865: { __const_udelay(429500UL); tmp = readq((void const volatile *)(& bar0->stat_cfg)); val64 = (u64 )tmp; } if ((long )val64 >= 0L) { goto ldv_53864; } else { } cnt = cnt + 1; if (cnt == 5) { goto ldv_53864; } else { } goto ldv_53865; ldv_53864: ; } else { } return; } } static struct net_device_stats *s2io_get_stats(struct net_device *dev ) { struct s2io_nic *sp ; void *tmp ; struct mac_info *mac_control ; struct stat_block *stats ; u64 delta ; { { tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; mac_control = & sp->mac_control; stats = mac_control->stats_info; s2io_updt_stats(sp); delta = (((unsigned long long )stats->rmac_vld_frms_oflow << 32) | (unsigned long long )stats->rmac_vld_frms) - (unsigned long long )sp->stats.rx_packets; sp->stats.rx_packets = (unsigned long )((unsigned long long )sp->stats.rx_packets + delta); dev->stats.rx_packets = (unsigned long )((unsigned long long )dev->stats.rx_packets + delta); delta = (((unsigned long long )stats->tmac_frms_oflow << 32) | (unsigned long long )stats->tmac_frms) - (unsigned long long )sp->stats.tx_packets; sp->stats.tx_packets = (unsigned long )((unsigned long long )sp->stats.tx_packets + delta); dev->stats.tx_packets = (unsigned long )((unsigned long long )dev->stats.tx_packets + delta); delta = (((unsigned long long )stats->rmac_data_octets_oflow << 32) | (unsigned long long )stats->rmac_data_octets) - (unsigned long long )sp->stats.rx_bytes; sp->stats.rx_bytes = (unsigned long )((unsigned long long )sp->stats.rx_bytes + delta); dev->stats.rx_bytes = (unsigned long )((unsigned long long )dev->stats.rx_bytes + delta); delta = (((unsigned long long )stats->tmac_data_octets_oflow << 32) | (unsigned long long )stats->tmac_data_octets) - (unsigned long long )sp->stats.tx_bytes; sp->stats.tx_bytes = (unsigned long )((unsigned long long )sp->stats.tx_bytes + delta); dev->stats.tx_bytes = (unsigned long )((unsigned long long )dev->stats.tx_bytes + delta); delta = stats->rmac_drop_frms - (unsigned long long )sp->stats.rx_errors; sp->stats.rx_errors = (unsigned long )((unsigned long long )sp->stats.rx_errors + delta); dev->stats.rx_errors = (unsigned long )((unsigned long long )dev->stats.rx_errors + delta); delta = (((unsigned long long )stats->tmac_any_err_frms_oflow << 32) | (unsigned long long )stats->tmac_any_err_frms) - (unsigned long long )sp->stats.tx_errors; sp->stats.tx_errors = (unsigned long )((unsigned long long )sp->stats.tx_errors + delta); dev->stats.tx_errors = (unsigned long )((unsigned long long )dev->stats.tx_errors + delta); delta = stats->rmac_drop_frms - (unsigned long long )sp->stats.rx_dropped; sp->stats.rx_dropped = (unsigned long )((unsigned long long )sp->stats.rx_dropped + delta); dev->stats.rx_dropped = (unsigned long )((unsigned long long )dev->stats.rx_dropped + delta); delta = stats->tmac_drop_frms - (unsigned long long )sp->stats.tx_dropped; sp->stats.tx_dropped = (unsigned long )((unsigned long long )sp->stats.tx_dropped + delta); dev->stats.tx_dropped = (unsigned long )((unsigned long long )dev->stats.tx_dropped + delta); delta = ((unsigned long long )stats->rmac_vld_mcst_frms_oflow << 32) | (unsigned long long )stats->rmac_vld_mcst_frms; delta = delta - stats->rmac_pause_ctrl_frms; delta = delta - (unsigned long long )sp->stats.multicast; sp->stats.multicast = (unsigned long )((unsigned long long )sp->stats.multicast + delta); dev->stats.multicast = (unsigned long )((unsigned long long )dev->stats.multicast + delta); delta = ((((unsigned long long )stats->rmac_usized_frms_oflow << 32) | (unsigned long long )stats->rmac_usized_frms) + stats->rmac_long_frms) - (unsigned long long )sp->stats.rx_length_errors; sp->stats.rx_length_errors = (unsigned long )((unsigned long long )sp->stats.rx_length_errors + delta); dev->stats.rx_length_errors = (unsigned long )((unsigned long long )dev->stats.rx_length_errors + delta); delta = stats->rmac_fcs_err_frms - (unsigned long long )sp->stats.rx_crc_errors; sp->stats.rx_crc_errors = (unsigned long )((unsigned long long )sp->stats.rx_crc_errors + delta); dev->stats.rx_crc_errors = (unsigned long )((unsigned long long )dev->stats.rx_crc_errors + delta); } return (& dev->stats); } } static void s2io_set_multicast(struct net_device *dev ) { int i ; int j ; int prev_cnt ; struct netdev_hw_addr *ha ; struct s2io_nic *sp ; void *tmp ; struct XENA_dev_config *bar0 ; u64 val64 ; u64 multi_mac ; u64 mask ; u64 dis_addr ; u64 mac_addr ; void *add ; struct config_param *config ; unsigned long tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; unsigned long tmp___4 ; unsigned long tmp___5 ; int tmp___6 ; struct list_head const *__mptr ; int tmp___7 ; struct list_head const *__mptr___0 ; { { tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; bar0 = (struct XENA_dev_config *)sp->bar0; val64 = 0ULL; multi_mac = 1108152157446ULL; mask = 280375465082879ULL; dis_addr = 281474976710655ULL; mac_addr = 0ULL; config = & sp->config; } if ((dev->flags & 512U) != 0U && (unsigned int )sp->m_cast_flg == 0U) { { writeq((unsigned long )(multi_mac << 16), (void volatile *)(& bar0->rmac_addr_data0_mem)); writeq((unsigned long )(mask << 16), (void volatile *)(& bar0->rmac_addr_data1_mem)); val64 = (((unsigned long long )config->max_mc_addr - 1ULL) << 32) | 72339069014638592ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rmac_addr_cmd_mem)); wait_for_cmd_complete((void *)(& bar0->rmac_addr_cmd_mem), 281474976710656ULL, 1); sp->m_cast_flg = 1U; sp->all_multi_pos = (unsigned int )((u16 )config->max_mc_addr) + 65535U; } } else if ((dev->flags & 512U) != 0U && (unsigned int )sp->m_cast_flg != 0U) { { writeq((unsigned long )(dis_addr << 16), (void volatile *)(& bar0->rmac_addr_data0_mem)); writeq(0UL, (void volatile *)(& bar0->rmac_addr_data1_mem)); val64 = ((unsigned long long )sp->all_multi_pos << 32) | 72339069014638592ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rmac_addr_cmd_mem)); wait_for_cmd_complete((void *)(& bar0->rmac_addr_cmd_mem), 281474976710656ULL, 1); sp->m_cast_flg = 0U; sp->all_multi_pos = 0U; } } else { } if ((dev->flags & 256U) != 0U && (unsigned int )sp->promisc_flg == 0U) { { add = (void *)(& bar0->mac_cfg); tmp___0 = readq((void const volatile *)(& bar0->mac_cfg)); val64 = (u64 )tmp___0; val64 = val64 | 72057594037927936ULL; writeq(5480036321579761664UL, (void volatile *)(& bar0->rmac_cfg_key)); writel((unsigned int )val64, (void volatile *)add); writeq(5480036321579761664UL, (void volatile *)(& bar0->rmac_cfg_key)); writel((unsigned int )(val64 >> 32), (void volatile *)add + 4U); } if (vlan_tag_strip != 1U) { { tmp___1 = readq((void const volatile *)(& bar0->rx_pa_cfg)); val64 = (u64 )tmp___1; val64 = val64 & 0xfffeffffffffffffULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_pa_cfg)); sp->vlan_strip_flag = 0; } } else { } { tmp___2 = readq((void const volatile *)(& bar0->mac_cfg)); val64 = (u64 )tmp___2; sp->promisc_flg = 1U; } if (debug_level > 1) { { printk("\016s2io: %s: entered promiscuous mode\n", (char *)(& dev->name)); } } else { } } else if ((dev->flags & 256U) == 0U && (unsigned int )sp->promisc_flg != 0U) { { add = (void *)(& bar0->mac_cfg); tmp___3 = readq((void const volatile *)(& bar0->mac_cfg)); val64 = (u64 )tmp___3; val64 = val64 & 0xfeffffffffffffffULL; writeq(5480036321579761664UL, (void volatile *)(& bar0->rmac_cfg_key)); writel((unsigned int )val64, (void volatile *)add); writeq(5480036321579761664UL, (void volatile *)(& bar0->rmac_cfg_key)); writel((unsigned int )(val64 >> 32), (void volatile *)add + 4U); } if (vlan_tag_strip != 0U) { { tmp___4 = readq((void const volatile *)(& bar0->rx_pa_cfg)); val64 = (u64 )tmp___4; val64 = val64 | 281474976710656ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rx_pa_cfg)); sp->vlan_strip_flag = 1; } } else { } { tmp___5 = readq((void const volatile *)(& bar0->mac_cfg)); val64 = (u64 )tmp___5; sp->promisc_flg = 0U; } if (debug_level > 1) { { printk("\016s2io: %s: left promiscuous mode\n", (char *)(& dev->name)); } } else { } } else { } if ((unsigned int )sp->m_cast_flg == 0U && dev->mc.count != 0) { if (dev->mc.count > config->max_mc_addr - config->max_mac_addr) { if (debug_level >= 0) { { printk("\016s2io: %s: No more Rx filters can be added - please enable ALL_MULTI instead\n", (char *)(& dev->name)); } } else { } return; } else { } prev_cnt = (int )sp->mc_addr_count; sp->mc_addr_count = (u16 )dev->mc.count; i = 0; goto ldv_53890; ldv_53889: { writeq((unsigned long )(dis_addr << 16), (void volatile *)(& bar0->rmac_addr_data0_mem)); writeq(0UL, (void volatile *)(& bar0->rmac_addr_data1_mem)); val64 = (((unsigned long long )config->mc_start_offset + (unsigned long long )i) << 32) | 72339069014638592ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rmac_addr_cmd_mem)); tmp___6 = wait_for_cmd_complete((void *)(& bar0->rmac_addr_cmd_mem), 281474976710656ULL, 1); } if (tmp___6 != 0) { if (debug_level >= 0) { { printk("\016s2io: %s: Adding Multicasts failed\n", (char *)(& dev->name)); } } else { } return; } else { } i = i + 1; ldv_53890: ; if (i < prev_cnt) { goto ldv_53889; } else { } i = 0; __mptr = (struct list_head const *)dev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_53900; ldv_53899: mac_addr = 0ULL; j = 0; goto ldv_53897; ldv_53896: mac_addr = mac_addr | (u64 )ha->addr[j]; mac_addr = mac_addr << 8; j = j + 1; ldv_53897: ; if (j <= 5) { goto ldv_53896; } else { } { mac_addr = mac_addr >> 8; writeq((unsigned long )(mac_addr << 16), (void volatile *)(& bar0->rmac_addr_data0_mem)); writeq(0UL, (void volatile *)(& bar0->rmac_addr_data1_mem)); val64 = (((unsigned long long )i + (unsigned long long )config->mc_start_offset) << 32) | 72339069014638592ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rmac_addr_cmd_mem)); tmp___7 = wait_for_cmd_complete((void *)(& bar0->rmac_addr_cmd_mem), 281474976710656ULL, 1); } if (tmp___7 != 0) { if (debug_level >= 0) { { printk("\016s2io: %s: Adding Multicasts failed\n", (char *)(& dev->name)); } } else { } return; } else { } i = i + 1; __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; ldv_53900: ; if ((unsigned long )(& ha->list) != (unsigned long )(& dev->mc.list)) { goto ldv_53899; } else { } } else { } return; } } static void do_s2io_store_unicast_mc(struct s2io_nic *sp ) { int offset ; u64 mac_addr ; struct config_param *config ; { mac_addr = 0ULL; config = & sp->config; offset = 0; goto ldv_53909; ldv_53908: { mac_addr = do_s2io_read_unicast_mc(sp, offset); } if (mac_addr == 0xffffffffffffffffULL) { mac_addr = 281474976710655ULL; } else { } { do_s2io_copy_mac_addr(sp, offset, mac_addr); offset = offset + 1; } ldv_53909: ; if (offset < config->max_mc_addr) { goto ldv_53908; } else { } return; } } static void do_s2io_restore_unicast_mc(struct s2io_nic *sp ) { int offset ; struct config_param *config ; { config = & sp->config; offset = 0; goto ldv_53917; ldv_53916: { do_s2io_prog_unicast(sp->dev, (u8 *)(& sp->def_mac_addr[offset].mac_addr)); offset = offset + 1; } ldv_53917: ; if (offset < config->max_mac_addr) { goto ldv_53916; } else { } offset = config->mc_start_offset; goto ldv_53920; ldv_53919: { do_s2io_add_mc(sp, (u8 *)(& sp->def_mac_addr[offset].mac_addr)); offset = offset + 1; } ldv_53920: ; if (offset < config->max_mc_addr) { goto ldv_53919; } else { } return; } } static int do_s2io_add_mc(struct s2io_nic *sp , u8 *addr ) { int i ; u64 mac_addr ; struct config_param *config ; u64 tmp64 ; int tmp ; { mac_addr = 0ULL; config = & sp->config; i = 0; goto ldv_53930; ldv_53929: mac_addr = mac_addr << 8; mac_addr = mac_addr | (u64 )*(addr + (unsigned long )i); i = i + 1; ldv_53930: ; if (i <= 5) { goto ldv_53929; } else { } if (mac_addr == 0ULL || mac_addr == 281474976710655ULL) { return (0); } else { } i = config->mc_start_offset; goto ldv_53935; ldv_53934: { tmp64 = do_s2io_read_unicast_mc(sp, i); } if (tmp64 == 281474976710655ULL) { goto ldv_53933; } else { } if (tmp64 == mac_addr) { return (0); } else { } i = i + 1; ldv_53935: ; if (i < config->max_mc_addr) { goto ldv_53934; } else { } ldv_53933: ; if (i == config->max_mc_addr) { if (debug_level >= 0) { { printk("\016s2io: CAM full no space left for multicast MAC\n"); } } else { } return (-1); } else { } { do_s2io_copy_mac_addr(sp, i, mac_addr); tmp = do_s2io_add_mac(sp, mac_addr, i); } return (tmp); } } static int do_s2io_add_mac(struct s2io_nic *sp , u64 addr , int off ) { u64 val64 ; struct XENA_dev_config *bar0 ; int tmp ; { { bar0 = (struct XENA_dev_config *)sp->bar0; writeq((unsigned long )(addr << 16), (void volatile *)(& bar0->rmac_addr_data0_mem)); val64 = ((unsigned long long )off << 32) | 72339069014638592ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rmac_addr_cmd_mem)); tmp = wait_for_cmd_complete((void *)(& bar0->rmac_addr_cmd_mem), 281474976710656ULL, 1); } if (tmp != 0) { if (debug_level > 1) { { printk("\016s2io: do_s2io_add_mac failed\n"); } } else { } return (-1); } else { } return (0); } } static int do_s2io_delete_unicast_mc(struct s2io_nic *sp , u64 addr ) { int offset ; u64 dis_addr ; u64 tmp64 ; struct config_param *config ; int tmp ; { dis_addr = 281474976710655ULL; config = & sp->config; offset = 1; goto ldv_53952; ldv_53951: { tmp64 = do_s2io_read_unicast_mc(sp, offset); } if (tmp64 == addr) { { tmp = do_s2io_add_mac(sp, dis_addr, offset); } if (tmp == -1) { return (-1); } else { } { do_s2io_store_unicast_mc(sp); } return (0); } else { } offset = offset + 1; ldv_53952: ; if (offset < config->max_mc_addr) { goto ldv_53951; } else { } if (debug_level >= 0) { { printk("\016s2io: MAC address 0x%llx not found in CAM\n", addr); } } else { } return (-1); } } static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp , int offset ) { u64 tmp64 ; u64 val64 ; struct XENA_dev_config *bar0 ; int tmp ; unsigned long tmp___0 ; { { tmp64 = 0xffffffffffff0000ULL; bar0 = (struct XENA_dev_config *)sp->bar0; val64 = ((unsigned long long )offset << 32) | 281474976710656ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rmac_addr_cmd_mem)); tmp = wait_for_cmd_complete((void *)(& bar0->rmac_addr_cmd_mem), 281474976710656ULL, 1); } if (tmp != 0) { if (debug_level > 1) { { printk("\016s2io: do_s2io_read_unicast_mc failed\n"); } } else { } return (0xffffffffffffffffULL); } else { } { tmp___0 = readq((void const volatile *)(& bar0->rmac_addr_data0_mem)); tmp64 = (u64 )tmp___0; } return (tmp64 >> 16); } } static int s2io_set_mac_addr(struct net_device *dev , void *p ) { struct sockaddr *addr ; bool tmp ; int tmp___0 ; int tmp___1 ; { { addr = (struct sockaddr *)p; tmp = is_valid_ether_addr((u8 const *)(& addr->sa_data)); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-99); } else { } { memcpy((void *)dev->dev_addr, (void const *)(& addr->sa_data), (size_t )dev->addr_len); tmp___1 = do_s2io_prog_unicast(dev, dev->dev_addr); } return (tmp___1); } } static int do_s2io_prog_unicast(struct net_device *dev , u8 *addr ) { struct s2io_nic *sp ; void *tmp ; register u64 mac_addr ; register u64 perm_addr ; int i ; u64 tmp64 ; struct config_param *config ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; mac_addr = 0ULL; perm_addr = 0ULL; config = & sp->config; i = 0; } goto ldv_53977; ldv_53976: mac_addr = mac_addr << 8; mac_addr = mac_addr | (u64 )*(addr + (unsigned long )i); perm_addr = perm_addr << 8; perm_addr = perm_addr | (u64 )sp->def_mac_addr[0].mac_addr[i]; i = i + 1; ldv_53977: ; if (i <= 5) { goto ldv_53976; } else { } if (mac_addr == perm_addr) { return (0); } else { } i = 1; goto ldv_53981; ldv_53980: { tmp64 = do_s2io_read_unicast_mc(sp, i); } if (tmp64 == 281474976710655ULL) { goto ldv_53979; } else { } if (tmp64 == mac_addr) { if (debug_level > 1) { { printk("\016s2io: MAC addr:0x%llx already present in CAM\n", mac_addr); } } else { } return (0); } else { } i = i + 1; ldv_53981: ; if (i < config->max_mac_addr) { goto ldv_53980; } else { } ldv_53979: ; if (i == config->max_mac_addr) { if (debug_level >= 0) { { printk("\016s2io: CAM full no space left for Unicast MAC\n"); } } else { } return (-1); } else { } { do_s2io_copy_mac_addr(sp, i, mac_addr); tmp___0 = do_s2io_add_mac(sp, mac_addr, i); } return (tmp___0); } } static int s2io_ethtool_sset(struct net_device *dev , struct ethtool_cmd *info ) { struct s2io_nic *sp ; void *tmp ; __u32 tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; } if ((unsigned int )info->autoneg == 1U) { return (-22); } else { { tmp___0 = ethtool_cmd_speed((struct ethtool_cmd const *)info); } if (tmp___0 != 10000U) { return (-22); } else if ((unsigned int )info->duplex != 1U) { return (-22); } else { { s2io_close(sp->dev); s2io_open(sp->dev); } } } return (0); } } static int s2io_ethtool_gset(struct net_device *dev , struct ethtool_cmd *info ) { struct s2io_nic *sp ; void *tmp ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; info->supported = 5120U; info->advertising = 5120U; info->port = 3U; info->transceiver = 1U; tmp___0 = netif_carrier_ok((struct net_device const *)sp->dev); } if ((int )tmp___0) { { ethtool_cmd_speed_set(info, 10000U); info->duplex = 1U; } } else { { ethtool_cmd_speed_set(info, 4294967295U); info->duplex = 255U; } } info->autoneg = 0U; return (0); } } static void s2io_ethtool_gdrvinfo(struct net_device *dev , struct ethtool_drvinfo *info ) { struct s2io_nic *sp ; void *tmp ; char const *tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; strlcpy((char *)(& info->driver), (char const *)(& s2io_driver_name), 32UL); strlcpy((char *)(& info->version), (char const *)(& s2io_driver_version), 32UL); tmp___0 = pci_name((struct pci_dev const *)sp->pdev); strlcpy((char *)(& info->bus_info), tmp___0, 32UL); info->regdump_len = 12608U; info->eedump_len = 2048U; } return; } } static void s2io_ethtool_gregs(struct net_device *dev , struct ethtool_regs *regs , void *space ) { int i ; u64 reg ; u8 *reg_space ; struct s2io_nic *sp ; void *tmp ; unsigned long tmp___0 ; { { reg_space = (u8 *)space; tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; regs->len = 12608U; regs->version = (__u32 )(sp->pdev)->subsystem_device; i = 0; } goto ldv_54007; ldv_54006: { tmp___0 = readq((void const volatile *)sp->bar0 + (unsigned long )i); reg = (u64 )tmp___0; memcpy((void *)reg_space + (unsigned long )i, (void const *)(& reg), 8UL); i = i + 8; } ldv_54007: ; if ((__u32 )i < regs->len) { goto ldv_54006; } else { } return; } } static void s2io_set_led(struct s2io_nic *sp , bool on ) { struct XENA_dev_config *bar0 ; u16 subid ; u64 val64 ; unsigned long tmp ; unsigned long tmp___0 ; { bar0 = (struct XENA_dev_config *)sp->bar0; subid = (sp->pdev)->subsystem_device; if ((unsigned int )sp->device_type == 2U || ((int )subid & 255) > 6) { { tmp = readq((void const volatile *)(& bar0->gpio_control)); val64 = (u64 )tmp; } if ((int )on) { val64 = val64 | 36028797018963968ULL; } else { val64 = val64 & 0xff7fffffffffffffULL; } { writeq((unsigned long )val64, (void volatile *)(& bar0->gpio_control)); } } else { { tmp___0 = readq((void const volatile *)(& bar0->adapter_control)); val64 = (u64 )tmp___0; } if ((int )on) { val64 = val64 | 1099511627776ULL; } else { val64 = val64 & 0xfffffeffffffffffULL; } { writeq((unsigned long )val64, (void volatile *)(& bar0->adapter_control)); } } return; } } static int s2io_ethtool_set_led(struct net_device *dev , enum ethtool_phys_id_state state ) { struct s2io_nic *sp ; void *tmp ; struct XENA_dev_config *bar0 ; u16 subid ; u64 val64 ; unsigned long tmp___0 ; unsigned long tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; bar0 = (struct XENA_dev_config *)sp->bar0; subid = (sp->pdev)->subsystem_device; } if ((unsigned int )sp->device_type == 1U && ((int )subid & 255) <= 6) { { tmp___0 = readq((void const volatile *)(& bar0->adapter_control)); val64 = (u64 )tmp___0; } if ((val64 & 72057594037927936ULL) == 0ULL) { { printk("\vs2io: Adapter Link down, cannot blink LED\n"); } return (-11); } else { } } else { } { if ((unsigned int )state == 1U) { goto case_1; } else { } if ((unsigned int )state == 2U) { goto case_2; } else { } if ((unsigned int )state == 3U) { goto case_3; } else { } if ((unsigned int )state == 0U) { goto case_0; } else { } goto switch_break; case_1: /* CIL Label */ { tmp___1 = readq((void const volatile *)(& bar0->gpio_control)); sp->adapt_ctrl_org = (u64 )tmp___1; } return (1); case_2: /* CIL Label */ { s2io_set_led(sp, 1); } goto ldv_54026; case_3: /* CIL Label */ { s2io_set_led(sp, 0); } goto ldv_54026; case_0: /* CIL Label */ ; if ((unsigned int )sp->device_type == 1U && ((unsigned int )subid - 24587U <= 2U || (unsigned int )subid - 25611U <= 2U)) { { writeq((unsigned long )sp->adapt_ctrl_org, (void volatile *)(& bar0->gpio_control)); } } else { } switch_break: /* CIL Label */ ; } ldv_54026: ; return (0); } } static void s2io_ethtool_gringparam(struct net_device *dev , struct ethtool_ringparam *ering ) { struct s2io_nic *sp ; void *tmp ; int i ; int tx_desc_count ; int rx_desc_count ; { { tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; tx_desc_count = 0; rx_desc_count = 0; } if (sp->rxd_mode == 0) { ering->rx_max_pending = 153600U; ering->rx_jumbo_max_pending = 153600U; } else { ering->rx_max_pending = 103200U; ering->rx_jumbo_max_pending = 103200U; } ering->tx_max_pending = 8192U; i = 0; goto ldv_54038; ldv_54037: rx_desc_count = (int )((u32 )rx_desc_count + sp->config.rx_cfg[i].num_rxd); i = i + 1; ldv_54038: ; if ((u32 )i < sp->config.rx_ring_num) { goto ldv_54037; } else { } ering->rx_pending = (__u32 )rx_desc_count; ering->rx_jumbo_pending = (__u32 )rx_desc_count; i = 0; goto ldv_54041; ldv_54040: tx_desc_count = (int )((u32 )tx_desc_count + sp->config.tx_cfg[i].fifo_len); i = i + 1; ldv_54041: ; if ((u32 )i < sp->config.tx_fifo_num) { goto ldv_54040; } else { } ering->tx_pending = (__u32 )tx_desc_count; if (debug_level > 1) { { printk("\016s2io: max txds: %d\n", sp->config.max_txds); } } else { } return; } } static void s2io_ethtool_getpause_data(struct net_device *dev , struct ethtool_pauseparam *ep ) { u64 val64 ; struct s2io_nic *sp ; void *tmp ; struct XENA_dev_config *bar0 ; unsigned long tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; bar0 = (struct XENA_dev_config *)sp->bar0; tmp___0 = readq((void const volatile *)(& bar0->rmac_pause_cfg)); val64 = (u64 )tmp___0; } if ((long )val64 < 0L) { ep->tx_pause = 1U; } else { } if ((val64 & 4611686018427387904ULL) != 0ULL) { ep->rx_pause = 1U; } else { } ep->autoneg = 0U; return; } } static int s2io_ethtool_setpause_data(struct net_device *dev , struct ethtool_pauseparam *ep ) { u64 val64 ; struct s2io_nic *sp ; void *tmp ; struct XENA_dev_config *bar0 ; unsigned long tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; bar0 = (struct XENA_dev_config *)sp->bar0; tmp___0 = readq((void const volatile *)(& bar0->rmac_pause_cfg)); val64 = (u64 )tmp___0; } if (ep->tx_pause != 0U) { val64 = val64 | 0x8000000000000000ULL; } else { val64 = val64 & 9223372036854775807ULL; } if (ep->rx_pause != 0U) { val64 = val64 | 4611686018427387904ULL; } else { val64 = val64 & 0xbfffffffffffffffULL; } { writeq((unsigned long )val64, (void volatile *)(& bar0->rmac_pause_cfg)); } return (0); } } static int read_eeprom(struct s2io_nic *sp , int off , u64 *data ) { int ret ; u32 exit_cnt ; u64 val64 ; struct XENA_dev_config *bar0 ; unsigned long tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; { ret = -1; exit_cnt = 0U; bar0 = (struct XENA_dev_config *)sp->bar0; if ((unsigned int )sp->device_type == 1U) { { val64 = ((unsigned long long )off << 48) | 5764611431454474240ULL; SPECIAL_REG_WRITE(val64, (void *)(& bar0->i2c_control), 2); } goto ldv_54068; ldv_54067: { tmp = readq((void const volatile *)(& bar0->i2c_control)); val64 = (u64 )tmp; } if ((val64 & 4294967296ULL) != 0ULL) { *data = (u64 )((unsigned int )val64); ret = 0; goto ldv_54066; } else { } { msleep(50U); exit_cnt = exit_cnt + 1U; } ldv_54068: ; if (exit_cnt <= 4U) { goto ldv_54067; } else { } ldv_54066: ; } else { } if ((unsigned int )sp->device_type == 2U) { { val64 = (unsigned long long )off | 0x9800000303000000ULL; SPECIAL_REG_WRITE(val64, (void *)(& bar0->spi_control), 2); val64 = val64 | 72057594037927936ULL; SPECIAL_REG_WRITE(val64, (void *)(& bar0->spi_control), 2); } goto ldv_54071; ldv_54070: { tmp___0 = readq((void const volatile *)(& bar0->spi_control)); val64 = (u64 )tmp___0; } if ((val64 & 288230376151711744ULL) != 0ULL) { ret = 1; goto ldv_54069; } else if ((val64 & 144115188075855872ULL) != 0ULL) { { tmp___1 = readq((void const volatile *)(& bar0->spi_data)); *data = (u64 )tmp___1; *data = *data & 16777215ULL; ret = 0; } goto ldv_54069; } else { } { msleep(50U); exit_cnt = exit_cnt + 1U; } ldv_54071: ; if (exit_cnt <= 4U) { goto ldv_54070; } else { } ldv_54069: ; } else { } return (ret); } } static int write_eeprom(struct s2io_nic *sp , int off , u64 data , int cnt ) { int exit_cnt ; int ret ; u64 val64 ; struct XENA_dev_config *bar0 ; unsigned long tmp ; int write_cnt ; unsigned long tmp___0 ; { exit_cnt = 0; ret = -1; bar0 = (struct XENA_dev_config *)sp->bar0; if ((unsigned int )sp->device_type == 1U) { { val64 = ((((unsigned long long )off << 48) | ((unsigned long long )cnt << 40)) | (unsigned long long )((unsigned int )data)) | 5764607583163777024ULL; SPECIAL_REG_WRITE(val64, (void *)(& bar0->i2c_control), 2); } goto ldv_54084; ldv_54083: { tmp = readq((void const volatile *)(& bar0->i2c_control)); val64 = (u64 )tmp; } if ((val64 & 4294967296ULL) != 0ULL) { if ((val64 & 274877906944ULL) == 0ULL) { ret = 0; } else { } goto ldv_54082; } else { } { msleep(50U); exit_cnt = exit_cnt + 1; } ldv_54084: ; if (exit_cnt <= 4) { goto ldv_54083; } else { } ldv_54082: ; } else { } if ((unsigned int )sp->device_type == 2U) { { write_cnt = cnt != 8 ? cnt : 0; writeq((unsigned long )(data << (64 - (cnt << 3))), (void volatile *)(& bar0->spi_data)); val64 = (((unsigned long long )write_cnt << 32) | (unsigned long long )off) | 0x9800000002000000ULL; SPECIAL_REG_WRITE(val64, (void *)(& bar0->spi_control), 2); val64 = val64 | 72057594037927936ULL; SPECIAL_REG_WRITE(val64, (void *)(& bar0->spi_control), 2); } goto ldv_54088; ldv_54087: { tmp___0 = readq((void const volatile *)(& bar0->spi_control)); val64 = (u64 )tmp___0; } if ((val64 & 288230376151711744ULL) != 0ULL) { ret = 1; goto ldv_54086; } else if ((val64 & 144115188075855872ULL) != 0ULL) { ret = 0; goto ldv_54086; } else { } { msleep(50U); exit_cnt = exit_cnt + 1; } ldv_54088: ; if (exit_cnt <= 4) { goto ldv_54087; } else { } ldv_54086: ; } else { } return (ret); } } static void s2io_vpd_read(struct s2io_nic *nic ) { u8 *vpd_data ; u8 data ; int i ; int cnt ; int len ; int fail ; int vpd_addr ; struct swStat *swstats ; void *tmp ; int _min1 ; int _min2 ; { i = 0; fail = 0; vpd_addr = 128; swstats = & (nic->mac_control.stats_info)->sw_stat; if ((unsigned int )nic->device_type == 2U) { { strcpy((char *)(& nic->product_name), "Xframe II 10GbE network adapter"); vpd_addr = 128; } } else { { strcpy((char *)(& nic->product_name), "Xframe I 10GbE network adapter"); vpd_addr = 80; } } { strcpy((char *)(& nic->serial_num), "NOT AVAILABLE"); tmp = kmalloc(256UL, 208U); vpd_data = (u8 *)tmp; } if ((unsigned long )vpd_data == (unsigned long )((u8 *)0U)) { swstats->mem_alloc_fail_cnt = swstats->mem_alloc_fail_cnt + 1ULL; return; } else { } swstats->mem_allocated = swstats->mem_allocated + 256ULL; i = 0; goto ldv_54105; ldv_54104: { pci_write_config_byte((struct pci_dev const *)nic->pdev, vpd_addr + 2, (int )((u8 )i)); pci_read_config_byte((struct pci_dev const *)nic->pdev, vpd_addr + 2, & data); pci_write_config_byte((struct pci_dev const *)nic->pdev, vpd_addr + 3, 0); cnt = 0; } goto ldv_54102; ldv_54101: { msleep(2U); pci_read_config_byte((struct pci_dev const *)nic->pdev, vpd_addr + 3, & data); } if ((unsigned int )data == 128U) { goto ldv_54100; } else { } cnt = cnt + 1; ldv_54102: ; if (cnt <= 4) { goto ldv_54101; } else { } ldv_54100: ; if (cnt > 4) { if (debug_level >= 0) { { printk("\016s2io: Read of VPD data failed\n"); } } else { } fail = 1; goto ldv_54103; } else { } { pci_read_config_dword((struct pci_dev const *)nic->pdev, vpd_addr + 4, (u32 *)vpd_data + (unsigned long )i); i = i + 4; } ldv_54105: ; if (i <= 255) { goto ldv_54104; } else { } ldv_54103: ; if (fail == 0) { cnt = 0; goto ldv_54111; ldv_54110: ; if ((unsigned int )*(vpd_data + (unsigned long )cnt) == 83U && (unsigned int )*(vpd_data + ((unsigned long )cnt + 1UL)) == 78U) { len = (int )*(vpd_data + ((unsigned long )cnt + 2UL)); _min1 = 80; _min2 = 254 - cnt; if (len < (_min1 < _min2 ? _min1 : _min2)) { { memcpy((void *)(& nic->serial_num), (void const *)(vpd_data + ((unsigned long )cnt + 3UL)), (size_t )len); memset((void *)(& nic->serial_num) + (unsigned long )len, 0, (size_t )(80 - len)); } goto ldv_54109; } else { } } else { } cnt = cnt + 1; ldv_54111: ; if (cnt <= 251) { goto ldv_54110; } else { } ldv_54109: ; } else { } if (fail == 0 && (unsigned int )*(vpd_data + 1UL) <= 79U) { { len = (int )*(vpd_data + 1UL); memcpy((void *)(& nic->product_name), (void const *)vpd_data + 3U, (size_t )len); nic->product_name[len] = 0U; } } else { } { kfree((void const *)vpd_data); swstats->mem_freed = swstats->mem_freed + 256ULL; } return; } } static int s2io_ethtool_geeprom(struct net_device *dev , struct ethtool_eeprom *eeprom , u8 *data_buf ) { u32 i ; u32 valid ; u64 data ; struct s2io_nic *sp ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; eeprom->magic = (__u32 )((int )(sp->pdev)->vendor | ((int )(sp->pdev)->device << 16)); } if (eeprom->offset + eeprom->len > 2048U) { eeprom->len = 2048U - eeprom->offset; } else { } i = 0U; goto ldv_54122; ldv_54121: { tmp___0 = read_eeprom(sp, (int )(eeprom->offset + i), & data); } if (tmp___0 != 0) { if (debug_level >= 0) { { printk("\016s2io: Read of EEPROM failed\n"); } } else { } return (-14); } else { } { valid = ((((u32 )data << 24U) | (((u32 )(data >> 8) & 255U) << 16U)) | (((u32 )(data >> 16) << 8U) & 65535U)) | ((u32 )(data >> 24) & 255U); memcpy((void *)data_buf + (unsigned long )i, (void const *)(& valid), 4UL); i = i + 4U; } ldv_54122: ; if (i < eeprom->len) { goto ldv_54121; } else { } return (0); } } static int s2io_ethtool_seeprom(struct net_device *dev , struct ethtool_eeprom *eeprom , u8 *data_buf ) { int len ; int cnt ; u64 valid ; u64 data ; struct s2io_nic *sp ; void *tmp ; int tmp___0 ; { { len = (int )eeprom->len; cnt = 0; valid = 0ULL; tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; } if (eeprom->magic != (__u32 )((int )(sp->pdev)->vendor | ((int )(sp->pdev)->device << 16))) { if (debug_level >= 0) { { printk("\016s2io: ETHTOOL_WRITE_EEPROM Err: Magic value is wrong, it is 0x%x should be 0x%x\n", (int )(sp->pdev)->vendor | ((int )(sp->pdev)->device << 16), eeprom->magic); } } else { } return (-14); } else { } goto ldv_54135; ldv_54134: data = (u64 )*(data_buf + (unsigned long )cnt); if (data != 0ULL) { valid = (u64 )((unsigned int )data << 24U); } else { valid = data; } { tmp___0 = write_eeprom(sp, (int )(eeprom->offset + (__u32 )cnt), valid, 0); } if (tmp___0 != 0) { if (debug_level >= 0) { { printk("\016s2io: ETHTOOL_WRITE_EEPROM Err: Cannot write into the specified offset\n"); } } else { } return (-14); } else { } cnt = cnt + 1; len = len - 1; ldv_54135: ; if (len != 0) { goto ldv_54134; } else { } return (0); } } static int s2io_register_test(struct s2io_nic *sp , uint64_t *data ) { struct XENA_dev_config *bar0 ; u64 val64 ; u64 exp_val ; int fail ; unsigned long tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; unsigned long tmp___4 ; { { bar0 = (struct XENA_dev_config *)sp->bar0; val64 = 0ULL; fail = 0; tmp = readq((void const volatile *)(& bar0->pif_rd_swapper_fb)); val64 = (u64 )tmp; } if (val64 != 81985529216486895ULL) { fail = 1; if (debug_level > 1) { { printk("\016s2io: Read Test level %d fails\n", 1); } } else { } } else { } { tmp___0 = readq((void const volatile *)(& bar0->rmac_pause_cfg)); val64 = (u64 )tmp___0; } if (val64 != 0xc000ffff00000000ULL) { fail = 1; if (debug_level > 1) { { printk("\016s2io: Read Test level %d fails\n", 2); } } else { } } else { } { tmp___1 = readq((void const volatile *)(& bar0->rx_queue_cfg)); val64 = (u64 )tmp___1; } if ((unsigned int )sp->device_type == 2U) { exp_val = 289360691352306692ULL; } else { exp_val = 578721382704613384ULL; } if (val64 != exp_val) { fail = 1; if (debug_level > 1) { { printk("\016s2io: Read Test level %d fails\n", 3); } } else { } } else { } { tmp___2 = readq((void const volatile *)(& bar0->xgxs_efifo_cfg)); val64 = (u64 )tmp___2; } if (val64 != 421729310ULL) { fail = 1; if (debug_level > 1) { { printk("\016s2io: Read Test level %d fails\n", 4); } } else { } } else { } { val64 = 6510615555426900570ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->xmsi_data)); tmp___3 = readq((void const volatile *)(& bar0->xmsi_data)); val64 = (u64 )tmp___3; } if (val64 != 6510615555426900570ULL) { fail = 1; if (debug_level >= 0) { { printk("\016s2io: Write Test level %d fails\n", 1); } } else { } } else { } { val64 = 0xa5a5a5a5a5a5a5a5ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->xmsi_data)); tmp___4 = readq((void const volatile *)(& bar0->xmsi_data)); val64 = (u64 )tmp___4; } if (val64 != 0xa5a5a5a5a5a5a5a5ULL) { fail = 1; if (debug_level >= 0) { { printk("\016s2io: Write Test level %d fails\n", 2); } } else { } } else { } *data = (uint64_t )fail; return (fail); } } static int s2io_eeprom_test(struct s2io_nic *sp , uint64_t *data ) { int fail ; u64 ret_data ; u64 org_4F0 ; u64 org_7F0 ; u8 saved_4F0 ; u8 saved_7F0 ; struct net_device *dev ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; { fail = 0; saved_4F0 = 0U; saved_7F0 = 0U; dev = sp->dev; if ((unsigned int )sp->device_type == 1U) { { tmp = write_eeprom(sp, 0, 0ULL, 3); } if (tmp == 0) { fail = 1; } else { } } else { } { tmp___0 = read_eeprom(sp, 1264, & org_4F0); } if (tmp___0 == 0) { saved_4F0 = 1U; } else { } { tmp___1 = read_eeprom(sp, 2032, & org_7F0); } if (tmp___1 == 0) { saved_7F0 = 1U; } else { } { tmp___2 = write_eeprom(sp, 1264, 74565ULL, 3); } if (tmp___2 != 0) { fail = 1; } else { } { tmp___3 = read_eeprom(sp, 1264, & ret_data); } if (tmp___3 != 0) { fail = 1; } else { } if (ret_data != 74565ULL) { if (debug_level >= 0) { { printk("\016s2io: %s: eeprom test error at offset 0x4F0. Data written %llx Data read %llx\n", (char *)(& dev->name), 74565ULL, ret_data); } } else { } fail = 1; } else { } { write_eeprom(sp, 1264, 16777215ULL, 3); } if ((unsigned int )sp->device_type == 1U) { { tmp___4 = write_eeprom(sp, 124, 0ULL, 3); } if (tmp___4 == 0) { fail = 1; } else { } } else { } { tmp___5 = write_eeprom(sp, 2032, 74565ULL, 3); } if (tmp___5 != 0) { fail = 1; } else { } { tmp___6 = read_eeprom(sp, 2032, & ret_data); } if (tmp___6 != 0) { fail = 1; } else { } if (ret_data != 74565ULL) { if (debug_level >= 0) { { printk("\016s2io: %s: eeprom test error at offset 0x7F0. Data written %llx Data read %llx\n", (char *)(& dev->name), 74565ULL, ret_data); } } else { } fail = 1; } else { } { write_eeprom(sp, 2032, 16777215ULL, 3); } if ((unsigned int )sp->device_type == 1U) { { tmp___7 = write_eeprom(sp, 128, 0ULL, 3); } if (tmp___7 == 0) { fail = 1; } else { } { tmp___8 = write_eeprom(sp, 252, 0ULL, 3); } if (tmp___8 == 0) { fail = 1; } else { } { tmp___9 = write_eeprom(sp, 256, 0ULL, 3); } if (tmp___9 == 0) { fail = 1; } else { } { tmp___10 = write_eeprom(sp, 1260, 0ULL, 3); } if (tmp___10 == 0) { fail = 1; } else { } } else { } if ((unsigned int )saved_4F0 != 0U) { { write_eeprom(sp, 1264, org_4F0, 3); } } else { } if ((unsigned int )saved_7F0 != 0U) { { write_eeprom(sp, 2032, org_7F0, 3); } } else { } *data = (uint64_t )fail; return (fail); } } static int s2io_bist_test(struct s2io_nic *sp , uint64_t *data ) { u8 bist ; int cnt ; int ret ; { { bist = 0U; cnt = 0; ret = -1; pci_read_config_byte((struct pci_dev const *)sp->pdev, 15, & bist); bist = (u8 )((unsigned int )bist | 64U); pci_write_config_word((struct pci_dev const *)sp->pdev, 15, (int )bist); } goto ldv_54165; ldv_54164: { pci_read_config_byte((struct pci_dev const *)sp->pdev, 15, & bist); } if (((int )bist & 64) == 0) { *data = (uint64_t )bist & 15ULL; ret = 0; goto ldv_54163; } else { } { msleep(100U); cnt = cnt + 1; } ldv_54165: ; if (cnt <= 19) { goto ldv_54164; } else { } ldv_54163: ; return (ret); } } static int s2io_link_test(struct s2io_nic *sp , uint64_t *data ) { struct XENA_dev_config *bar0 ; u64 val64 ; unsigned long tmp ; { { bar0 = (struct XENA_dev_config *)sp->bar0; tmp = readq((void const volatile *)(& bar0->adapter_status)); val64 = (u64 )tmp; } if ((val64 & 216172782113783808ULL) != 0ULL) { *data = 1ULL; } else { *data = 0ULL; } return ((int )*data); } } static int s2io_rldram_test(struct s2io_nic *sp , uint64_t *data ) { struct XENA_dev_config *bar0 ; u64 val64 ; int cnt ; int iteration ; int test_fail ; unsigned long tmp ; unsigned long tmp___0 ; unsigned long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; unsigned long tmp___4 ; { { bar0 = (struct XENA_dev_config *)sp->bar0; iteration = 0; test_fail = 0; tmp = readq((void const volatile *)(& bar0->adapter_control)); val64 = (u64 )tmp; val64 = val64 & 0xfffffffffffffeffULL; writeq((unsigned long )val64, (void volatile *)(& bar0->adapter_control)); tmp___0 = readq((void const volatile *)(& bar0->mc_rldram_test_ctrl)); val64 = (u64 )tmp___0; val64 = val64 | 65536ULL; SPECIAL_REG_WRITE(val64, (void *)(& bar0->mc_rldram_test_ctrl), 2); tmp___1 = readq((void const volatile *)(& bar0->mc_rldram_mrs)); val64 = (u64 )tmp___1; val64 = val64 | 16777216ULL; SPECIAL_REG_WRITE(val64, (void *)(& bar0->mc_rldram_mrs), 1); val64 = val64 | 65536ULL; SPECIAL_REG_WRITE(val64, (void *)(& bar0->mc_rldram_mrs), 1); } goto ldv_54189; ldv_54188: val64 = 6148914692668129280ULL; if (iteration == 1) { val64 = val64 ^ 0xffffffffffff0000ULL; } else { } { writeq((unsigned long )val64, (void volatile *)(& bar0->mc_rldram_test_d0)); val64 = 0xaaaa5a5555550000ULL; } if (iteration == 1) { val64 = val64 ^ 0xffffffffffff0000ULL; } else { } { writeq((unsigned long )val64, (void volatile *)(& bar0->mc_rldram_test_d1)); val64 = 6172933889243873280ULL; } if (iteration == 1) { val64 = val64 ^ 0xffffffffffff0000ULL; } else { } { writeq((unsigned long )val64, (void volatile *)(& bar0->mc_rldram_test_d2)); val64 = 274877776128ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->mc_rldram_test_add)); val64 = 72339069014704128ULL; SPECIAL_REG_WRITE(val64, (void *)(& bar0->mc_rldram_test_ctrl), 2); cnt = 0; } goto ldv_54183; ldv_54182: { tmp___2 = readq((void const volatile *)(& bar0->mc_rldram_test_ctrl)); val64 = (u64 )tmp___2; } if ((val64 & 1099511627776ULL) != 0ULL) { goto ldv_54181; } else { } { msleep(200U); cnt = cnt + 1; } ldv_54183: ; if (cnt <= 4) { goto ldv_54182; } else { } ldv_54181: ; if (cnt == 5) { goto ldv_54184; } else { } { val64 = 281474976776192ULL; SPECIAL_REG_WRITE(val64, (void *)(& bar0->mc_rldram_test_ctrl), 2); cnt = 0; } goto ldv_54187; ldv_54186: { tmp___3 = readq((void const volatile *)(& bar0->mc_rldram_test_ctrl)); val64 = (u64 )tmp___3; } if ((val64 & 1099511627776ULL) != 0ULL) { goto ldv_54185; } else { } { msleep(500U); cnt = cnt + 1; } ldv_54187: ; if (cnt <= 4) { goto ldv_54186; } else { } ldv_54185: ; if (cnt == 5) { goto ldv_54184; } else { } { tmp___4 = readq((void const volatile *)(& bar0->mc_rldram_test_ctrl)); val64 = (u64 )tmp___4; } if ((val64 & 4294967296ULL) == 0ULL) { test_fail = 1; } else { } iteration = iteration + 1; ldv_54189: ; if (iteration <= 1) { goto ldv_54188; } else { } ldv_54184: { *data = (uint64_t )test_fail; SPECIAL_REG_WRITE(0ULL, (void *)(& bar0->mc_rldram_test_ctrl), 2); } return (test_fail); } } static void s2io_ethtool_test(struct net_device *dev , struct ethtool_test *ethtest , uint64_t *data ) { struct s2io_nic *sp ; void *tmp ; int orig_state ; bool tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { { tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; tmp___0 = netif_running((struct net_device const *)sp->dev); orig_state = (int )tmp___0; } if (ethtest->flags == 1U) { if (orig_state != 0) { { s2io_close(sp->dev); } } else { } { tmp___1 = s2io_register_test(sp, data); } if (tmp___1 != 0) { ethtest->flags = ethtest->flags | 2U; } else { } { s2io_reset(sp); tmp___2 = s2io_rldram_test(sp, data + 3UL); } if (tmp___2 != 0) { ethtest->flags = ethtest->flags | 2U; } else { } { s2io_reset(sp); tmp___3 = s2io_eeprom_test(sp, data + 1UL); } if (tmp___3 != 0) { ethtest->flags = ethtest->flags | 2U; } else { } { tmp___4 = s2io_bist_test(sp, data + 4UL); } if (tmp___4 != 0) { ethtest->flags = ethtest->flags | 2U; } else { } if (orig_state != 0) { { s2io_open(sp->dev); } } else { } *(data + 2UL) = 0ULL; } else { if (orig_state == 0) { if (debug_level >= 0) { { printk("\016s2io: %s: is not up, cannot run test\n", (char *)(& dev->name)); } } else { } *data = 0xffffffffffffffffULL; *(data + 1UL) = 0xffffffffffffffffULL; *(data + 2UL) = 0xffffffffffffffffULL; *(data + 3UL) = 0xffffffffffffffffULL; *(data + 4UL) = 0xffffffffffffffffULL; } else { } { tmp___5 = s2io_link_test(sp, data + 2UL); } if (tmp___5 != 0) { ethtest->flags = ethtest->flags | 2U; } else { } *data = 0ULL; *(data + 1UL) = 0ULL; *(data + 3UL) = 0ULL; *(data + 4UL) = 0ULL; } return; } } static void s2io_get_ethtool_stats(struct net_device *dev , struct ethtool_stats *estats , u64 *tmp_stats ) { int i ; int k ; struct s2io_nic *sp ; void *tmp ; struct stat_block *stats ; struct swStat *swstats ; struct xpakStat *xstats ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; int tmp___20 ; int tmp___21 ; int tmp___22 ; int tmp___23 ; int tmp___24 ; int tmp___25 ; int tmp___26 ; int tmp___27 ; int tmp___28 ; int tmp___29 ; int tmp___30 ; int tmp___31 ; int tmp___32 ; int tmp___33 ; int tmp___34 ; int tmp___35 ; int tmp___36 ; int tmp___37 ; int tmp___38 ; int tmp___39 ; int tmp___40 ; int tmp___41 ; int tmp___42 ; int tmp___43 ; int tmp___44 ; int tmp___45 ; int tmp___46 ; int tmp___47 ; int tmp___48 ; int tmp___49 ; int tmp___50 ; int tmp___51 ; int tmp___52 ; int tmp___53 ; int tmp___54 ; int tmp___55 ; int tmp___56 ; int tmp___57 ; int tmp___58 ; int tmp___59 ; int tmp___60 ; int tmp___61 ; int tmp___62 ; int tmp___63 ; int tmp___64 ; int tmp___65 ; int tmp___66 ; int tmp___67 ; int tmp___68 ; int tmp___69 ; int tmp___70 ; int tmp___71 ; int tmp___72 ; int tmp___73 ; int tmp___74 ; int tmp___75 ; int tmp___76 ; int tmp___77 ; int tmp___78 ; int tmp___79 ; int tmp___80 ; int tmp___81 ; int tmp___82 ; int tmp___83 ; int tmp___84 ; int tmp___85 ; int tmp___86 ; int tmp___87 ; int tmp___88 ; int tmp___89 ; int tmp___90 ; int tmp___91 ; int tmp___92 ; int tmp___93 ; int tmp___94 ; int tmp___95 ; int tmp___96 ; int tmp___97 ; int tmp___98 ; int tmp___99 ; int tmp___100 ; int tmp___101 ; int tmp___102 ; int tmp___103 ; int tmp___104 ; int tmp___105 ; int tmp___106 ; int tmp___107 ; int tmp___108 ; int tmp___109 ; int tmp___110 ; int tmp___111 ; int tmp___112 ; int tmp___113 ; int tmp___114 ; int tmp___115 ; int tmp___116 ; int tmp___117 ; int tmp___118 ; int tmp___119 ; int tmp___120 ; int tmp___121 ; int tmp___122 ; int tmp___123 ; int tmp___124 ; int tmp___125 ; int tmp___126 ; int tmp___127 ; int tmp___128 ; int tmp___129 ; int tmp___130 ; int tmp___131 ; int tmp___132 ; int tmp___133 ; u64 tmp___134 ; int count ; int tmp___135 ; int tmp___136 ; int tmp___137 ; int tmp___138 ; int tmp___139 ; int tmp___140 ; int tmp___141 ; int tmp___142 ; int tmp___143 ; int tmp___144 ; int tmp___145 ; int tmp___146 ; int tmp___147 ; int tmp___148 ; int tmp___149 ; int tmp___150 ; int tmp___151 ; int tmp___152 ; int tmp___153 ; int tmp___154 ; int tmp___155 ; int tmp___156 ; int tmp___157 ; int tmp___158 ; int tmp___159 ; int tmp___160 ; int tmp___161 ; int tmp___162 ; int tmp___163 ; int tmp___164 ; int tmp___165 ; int tmp___166 ; int tmp___167 ; int tmp___168 ; int tmp___169 ; int tmp___170 ; int tmp___171 ; int tmp___172 ; int tmp___173 ; int tmp___174 ; int tmp___175 ; int tmp___176 ; { { i = 0; tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; stats = sp->mac_control.stats_info; swstats = & stats->sw_stat; xstats = & stats->xpak_stat; s2io_updt_stats(sp); tmp___0 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___0) = ((unsigned long long )stats->tmac_frms_oflow << 32) | (unsigned long long )stats->tmac_frms; tmp___1 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___1) = ((unsigned long long )stats->tmac_data_octets_oflow << 32) | (unsigned long long )stats->tmac_data_octets; tmp___2 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___2) = stats->tmac_drop_frms; tmp___3 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___3) = ((unsigned long long )stats->tmac_mcst_frms_oflow << 32) | (unsigned long long )stats->tmac_mcst_frms; tmp___4 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___4) = ((unsigned long long )stats->tmac_bcst_frms_oflow << 32) | (unsigned long long )stats->tmac_bcst_frms; tmp___5 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___5) = stats->tmac_pause_ctrl_frms; tmp___6 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___6) = ((unsigned long long )stats->tmac_ttl_octets_oflow << 32) | (unsigned long long )stats->tmac_ttl_octets; tmp___7 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___7) = ((unsigned long long )stats->tmac_ucst_frms_oflow << 32) | (unsigned long long )stats->tmac_ucst_frms; tmp___8 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___8) = ((unsigned long long )stats->tmac_nucst_frms_oflow << 32) | (unsigned long long )stats->tmac_nucst_frms; tmp___9 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___9) = ((unsigned long long )stats->tmac_any_err_frms_oflow << 32) | (unsigned long long )stats->tmac_any_err_frms; tmp___10 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___10) = stats->tmac_ttl_less_fb_octets; tmp___11 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___11) = stats->tmac_vld_ip_octets; tmp___12 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___12) = ((unsigned long long )stats->tmac_vld_ip_oflow << 32) | (unsigned long long )stats->tmac_vld_ip; tmp___13 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___13) = ((unsigned long long )stats->tmac_drop_ip_oflow << 32) | (unsigned long long )stats->tmac_drop_ip; tmp___14 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___14) = ((unsigned long long )stats->tmac_icmp_oflow << 32) | (unsigned long long )stats->tmac_icmp; tmp___15 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___15) = ((unsigned long long )stats->tmac_rst_tcp_oflow << 32) | (unsigned long long )stats->tmac_rst_tcp; tmp___16 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___16) = stats->tmac_tcp; tmp___17 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___17) = ((unsigned long long )stats->tmac_udp_oflow << 32) | (unsigned long long )stats->tmac_udp; tmp___18 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___18) = ((unsigned long long )stats->rmac_vld_frms_oflow << 32) | (unsigned long long )stats->rmac_vld_frms; tmp___19 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___19) = ((unsigned long long )stats->rmac_data_octets_oflow << 32) | (unsigned long long )stats->rmac_data_octets; tmp___20 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___20) = stats->rmac_fcs_err_frms; tmp___21 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___21) = stats->rmac_drop_frms; tmp___22 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___22) = ((unsigned long long )stats->rmac_vld_mcst_frms_oflow << 32) | (unsigned long long )stats->rmac_vld_mcst_frms; tmp___23 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___23) = ((unsigned long long )stats->rmac_vld_bcst_frms_oflow << 32) | (unsigned long long )stats->rmac_vld_bcst_frms; tmp___24 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___24) = (u64 )stats->rmac_in_rng_len_err_frms; tmp___25 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___25) = (u64 )stats->rmac_out_rng_len_err_frms; tmp___26 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___26) = stats->rmac_long_frms; tmp___27 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___27) = stats->rmac_pause_ctrl_frms; tmp___28 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___28) = stats->rmac_unsup_ctrl_frms; tmp___29 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___29) = ((unsigned long long )stats->rmac_ttl_octets_oflow << 32) | (unsigned long long )stats->rmac_ttl_octets; tmp___30 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___30) = ((unsigned long long )stats->rmac_accepted_ucst_frms_oflow << 32) | (unsigned long long )stats->rmac_accepted_ucst_frms; tmp___31 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___31) = ((unsigned long long )stats->rmac_accepted_nucst_frms_oflow << 32) | (unsigned long long )stats->rmac_accepted_nucst_frms; tmp___32 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___32) = ((unsigned long long )stats->rmac_discarded_frms_oflow << 32) | (unsigned long long )stats->rmac_discarded_frms; tmp___33 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___33) = ((unsigned long long )stats->rmac_drop_events_oflow << 32) | (unsigned long long )stats->rmac_drop_events; tmp___34 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___34) = stats->rmac_ttl_less_fb_octets; tmp___35 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___35) = stats->rmac_ttl_frms; tmp___36 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___36) = ((unsigned long long )stats->rmac_usized_frms_oflow << 32) | (unsigned long long )stats->rmac_usized_frms; tmp___37 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___37) = ((unsigned long long )stats->rmac_osized_frms_oflow << 32) | (unsigned long long )stats->rmac_osized_frms; tmp___38 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___38) = ((unsigned long long )stats->rmac_frag_frms_oflow << 32) | (unsigned long long )stats->rmac_frag_frms; tmp___39 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___39) = ((unsigned long long )stats->rmac_jabber_frms_oflow << 32) | (unsigned long long )stats->rmac_jabber_frms; tmp___40 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___40) = stats->rmac_ttl_64_frms; tmp___41 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___41) = stats->rmac_ttl_65_127_frms; tmp___42 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___42) = stats->rmac_ttl_128_255_frms; tmp___43 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___43) = stats->rmac_ttl_256_511_frms; tmp___44 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___44) = stats->rmac_ttl_512_1023_frms; tmp___45 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___45) = stats->rmac_ttl_1024_1518_frms; tmp___46 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___46) = ((unsigned long long )stats->rmac_ip_oflow << 32) | (unsigned long long )stats->rmac_ip; tmp___47 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___47) = stats->rmac_ip_octets; tmp___48 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___48) = (u64 )stats->rmac_hdr_err_ip; tmp___49 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___49) = ((unsigned long long )stats->rmac_drop_ip_oflow << 32) | (unsigned long long )stats->rmac_drop_ip; tmp___50 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___50) = ((unsigned long long )stats->rmac_icmp_oflow << 32) | (unsigned long long )stats->rmac_icmp; tmp___51 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___51) = stats->rmac_tcp; tmp___52 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___52) = ((unsigned long long )stats->rmac_udp_oflow << 32) | (unsigned long long )stats->rmac_udp; tmp___53 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___53) = ((unsigned long long )stats->rmac_err_drp_udp_oflow << 32) | (unsigned long long )stats->rmac_err_drp_udp; tmp___54 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___54) = stats->rmac_xgmii_err_sym; tmp___55 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___55) = stats->rmac_frms_q0; tmp___56 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___56) = stats->rmac_frms_q1; tmp___57 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___57) = stats->rmac_frms_q2; tmp___58 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___58) = stats->rmac_frms_q3; tmp___59 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___59) = stats->rmac_frms_q4; tmp___60 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___60) = stats->rmac_frms_q5; tmp___61 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___61) = stats->rmac_frms_q6; tmp___62 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___62) = stats->rmac_frms_q7; tmp___63 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___63) = (u64 )stats->rmac_full_q0; tmp___64 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___64) = (u64 )stats->rmac_full_q1; tmp___65 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___65) = (u64 )stats->rmac_full_q2; tmp___66 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___66) = (u64 )stats->rmac_full_q3; tmp___67 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___67) = (u64 )stats->rmac_full_q4; tmp___68 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___68) = (u64 )stats->rmac_full_q5; tmp___69 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___69) = (u64 )stats->rmac_full_q6; tmp___70 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___70) = (u64 )stats->rmac_full_q7; tmp___71 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___71) = ((unsigned long long )stats->rmac_pause_cnt_oflow << 32) | (unsigned long long )stats->rmac_pause_cnt; tmp___72 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___72) = stats->rmac_xgmii_data_err_cnt; tmp___73 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___73) = stats->rmac_xgmii_ctrl_err_cnt; tmp___74 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___74) = ((unsigned long long )stats->rmac_accepted_ip_oflow << 32) | (unsigned long long )stats->rmac_accepted_ip; tmp___75 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___75) = (u64 )stats->rmac_err_tcp; tmp___76 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___76) = (u64 )stats->rd_req_cnt; tmp___77 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___77) = (u64 )stats->new_rd_req_cnt; tmp___78 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___78) = (u64 )stats->new_rd_req_rtry_cnt; tmp___79 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___79) = (u64 )stats->rd_rtry_cnt; tmp___80 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___80) = (u64 )stats->wr_rtry_rd_ack_cnt; tmp___81 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___81) = (u64 )stats->wr_req_cnt; tmp___82 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___82) = (u64 )stats->new_wr_req_cnt; tmp___83 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___83) = (u64 )stats->new_wr_req_rtry_cnt; tmp___84 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___84) = (u64 )stats->wr_rtry_cnt; tmp___85 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___85) = (u64 )stats->wr_disc_cnt; tmp___86 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___86) = (u64 )stats->rd_rtry_wr_ack_cnt; tmp___87 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___87) = (u64 )stats->txp_wr_cnt; tmp___88 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___88) = (u64 )stats->txd_rd_cnt; tmp___89 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___89) = (u64 )stats->txd_wr_cnt; tmp___90 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___90) = (u64 )stats->rxd_rd_cnt; tmp___91 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___91) = (u64 )stats->rxd_wr_cnt; tmp___92 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___92) = (u64 )stats->txf_rd_cnt; tmp___93 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___93) = (u64 )stats->rxf_wr_cnt; } if ((unsigned int )sp->device_type == 2U) { tmp___94 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___94) = stats->rmac_ttl_1519_4095_frms; tmp___95 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___95) = stats->rmac_ttl_4096_8191_frms; tmp___96 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___96) = stats->rmac_ttl_8192_max_frms; tmp___97 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___97) = stats->rmac_ttl_gt_max_frms; tmp___98 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___98) = stats->rmac_osized_alt_frms; tmp___99 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___99) = stats->rmac_jabber_alt_frms; tmp___100 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___100) = stats->rmac_gt_max_alt_frms; tmp___101 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___101) = stats->rmac_vlan_frms; tmp___102 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___102) = (u64 )stats->rmac_len_discard; tmp___103 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___103) = (u64 )stats->rmac_fcs_discard; tmp___104 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___104) = (u64 )stats->rmac_pf_discard; tmp___105 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___105) = (u64 )stats->rmac_da_discard; tmp___106 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___106) = (u64 )stats->rmac_red_discard; tmp___107 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___107) = (u64 )stats->rmac_rts_discard; tmp___108 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___108) = (u64 )stats->rmac_ingm_full_discard; tmp___109 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___109) = (u64 )stats->link_fault_cnt; } else { } tmp___110 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___110) = 0ULL; tmp___111 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___111) = swstats->single_ecc_errs; tmp___112 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___112) = swstats->double_ecc_errs; tmp___113 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___113) = swstats->parity_err_cnt; tmp___114 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___114) = swstats->serious_err_cnt; tmp___115 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___115) = swstats->soft_reset_cnt; tmp___116 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___116) = swstats->fifo_full_cnt; k = 0; goto ldv_54209; ldv_54208: tmp___117 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___117) = swstats->ring_full_cnt[k]; k = k + 1; ldv_54209: ; if (k <= 7) { goto ldv_54208; } else { } tmp___118 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___118) = xstats->alarm_transceiver_temp_high; tmp___119 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___119) = xstats->alarm_transceiver_temp_low; tmp___120 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___120) = xstats->alarm_laser_bias_current_high; tmp___121 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___121) = xstats->alarm_laser_bias_current_low; tmp___122 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___122) = xstats->alarm_laser_output_power_high; tmp___123 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___123) = xstats->alarm_laser_output_power_low; tmp___124 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___124) = xstats->warn_transceiver_temp_high; tmp___125 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___125) = xstats->warn_transceiver_temp_low; tmp___126 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___126) = xstats->warn_laser_bias_current_high; tmp___127 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___127) = xstats->warn_laser_bias_current_low; tmp___128 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___128) = xstats->warn_laser_output_power_high; tmp___129 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___129) = xstats->warn_laser_output_power_low; tmp___130 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___130) = swstats->clubbed_frms_cnt; tmp___131 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___131) = swstats->sending_both; tmp___132 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___132) = swstats->outof_sequence_pkts; tmp___133 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___133) = swstats->flush_max_pkts; if (swstats->num_aggregations != 0ULL) { tmp___134 = swstats->sum_avg_pkts_aggregated; count = 0; goto ldv_54214; ldv_54213: tmp___134 = tmp___134 - swstats->num_aggregations; count = count + 1; ldv_54214: ; if (tmp___134 >= swstats->num_aggregations) { goto ldv_54213; } else { } tmp___135 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___135) = (u64 )count; } else { tmp___136 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___136) = 0ULL; } tmp___137 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___137) = swstats->mem_alloc_fail_cnt; tmp___138 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___138) = swstats->pci_map_fail_cnt; tmp___139 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___139) = swstats->watchdog_timer_cnt; tmp___140 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___140) = swstats->mem_allocated; tmp___141 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___141) = swstats->mem_freed; tmp___142 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___142) = swstats->link_up_cnt; tmp___143 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___143) = swstats->link_down_cnt; tmp___144 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___144) = swstats->link_up_time; tmp___145 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___145) = swstats->link_down_time; tmp___146 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___146) = swstats->tx_buf_abort_cnt; tmp___147 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___147) = swstats->tx_desc_abort_cnt; tmp___148 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___148) = swstats->tx_parity_err_cnt; tmp___149 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___149) = swstats->tx_link_loss_cnt; tmp___150 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___150) = swstats->tx_list_proc_err_cnt; tmp___151 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___151) = swstats->rx_parity_err_cnt; tmp___152 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___152) = swstats->rx_abort_cnt; tmp___153 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___153) = swstats->rx_parity_abort_cnt; tmp___154 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___154) = swstats->rx_rda_fail_cnt; tmp___155 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___155) = swstats->rx_unkn_prot_cnt; tmp___156 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___156) = swstats->rx_fcs_err_cnt; tmp___157 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___157) = swstats->rx_buf_size_err_cnt; tmp___158 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___158) = swstats->rx_rxd_corrupt_cnt; tmp___159 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___159) = swstats->rx_unkn_err_cnt; tmp___160 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___160) = swstats->tda_err_cnt; tmp___161 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___161) = swstats->pfc_err_cnt; tmp___162 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___162) = swstats->pcc_err_cnt; tmp___163 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___163) = swstats->tti_err_cnt; tmp___164 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___164) = swstats->tpa_err_cnt; tmp___165 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___165) = swstats->sm_err_cnt; tmp___166 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___166) = swstats->lso_err_cnt; tmp___167 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___167) = swstats->mac_tmac_err_cnt; tmp___168 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___168) = swstats->mac_rmac_err_cnt; tmp___169 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___169) = swstats->xgxs_txgxs_err_cnt; tmp___170 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___170) = swstats->xgxs_rxgxs_err_cnt; tmp___171 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___171) = swstats->rc_err_cnt; tmp___172 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___172) = swstats->prc_pcix_err_cnt; tmp___173 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___173) = swstats->rpa_err_cnt; tmp___174 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___174) = swstats->rda_err_cnt; tmp___175 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___175) = swstats->rti_err_cnt; tmp___176 = i; i = i + 1; *(tmp_stats + (unsigned long )tmp___176) = swstats->mc_err_cnt; return; } } static int s2io_ethtool_get_regs_len(struct net_device *dev ) { { return (12608); } } static int s2io_get_eeprom_len(struct net_device *dev ) { { return (2048); } } static int s2io_get_sset_count(struct net_device *dev , int sset ) { struct s2io_nic *sp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; } { if (sset == 0) { goto case_0; } else { } if (sset == 1) { goto case_1; } else { } goto switch_default___0; case_0: /* CIL Label */ ; return (5); case_1: /* CIL Label */ ; { if ((int )sp->device_type == 1) { goto case_1___0; } else { } if ((int )sp->device_type == 2) { goto case_2; } else { } goto switch_default; case_1___0: /* CIL Label */ ; return (166); case_2: /* CIL Label */ ; return (182); switch_default: /* CIL Label */ ; return (0); switch_break___0: /* CIL Label */ ; } switch_default___0: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } } } static void s2io_ethtool_get_strings(struct net_device *dev , u32 stringset , u8 *data ) { int stat_size ; struct s2io_nic *sp ; void *tmp ; { { stat_size = 0; tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; } { if (stringset == 0U) { goto case_0; } else { } if (stringset == 1U) { goto case_1; } else { } goto switch_break; case_0: /* CIL Label */ { memcpy((void *)data, (void const *)(& s2io_gstrings), 160UL); } goto ldv_54255; case_1: /* CIL Label */ { stat_size = 3008; memcpy((void *)data, (void const *)(& ethtool_xena_stats_keys), (size_t )stat_size); } if ((unsigned int )sp->device_type == 2U) { { memcpy((void *)data + (unsigned long )stat_size, (void const *)(& ethtool_enhanced_stats_keys), 512UL); stat_size = (int )((unsigned int )stat_size + 512U); } } else { } { memcpy((void *)data + (unsigned long )stat_size, (void const *)(& ethtool_driver_stats_keys), 2304UL); } switch_break: /* CIL Label */ ; } ldv_54255: ; return; } } static int s2io_set_features(struct net_device *dev , netdev_features_t features ) { struct s2io_nic *sp ; void *tmp ; netdev_features_t changed ; int rc ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; changed = (features ^ dev->features) & 32768ULL; } if (changed != 0ULL) { { tmp___0 = netif_running((struct net_device const *)dev); } if ((int )tmp___0) { { s2io_stop_all_tx_queue(sp); s2io_card_down(sp); dev->features = features; rc = s2io_card_up(sp); } if (rc != 0) { { s2io_reset(sp); } } else { { s2io_start_all_tx_queue(sp); } } return (rc != 0 ? rc : 1); } else { } } else { } return (0); } } static struct ethtool_ops const netdev_ethtool_ops = {& s2io_ethtool_gset, & s2io_ethtool_sset, & s2io_ethtool_gdrvinfo, & s2io_ethtool_get_regs_len, & s2io_ethtool_gregs, 0, 0, 0, 0, 0, & ethtool_op_get_link, & s2io_get_eeprom_len, & s2io_ethtool_geeprom, & s2io_ethtool_seeprom, 0, 0, & s2io_ethtool_gringparam, 0, & s2io_ethtool_getpause_data, & s2io_ethtool_setpause_data, & s2io_ethtool_test, & s2io_ethtool_get_strings, & s2io_ethtool_set_led, & s2io_get_ethtool_stats, 0, 0, 0, 0, & s2io_get_sset_count, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int s2io_ioctl(struct net_device *dev , struct ifreq *rq , int cmd ) { { return (-95); } } static int s2io_change_mtu(struct net_device *dev , int new_mtu ) { struct s2io_nic *sp ; void *tmp ; int ret ; struct XENA_dev_config *bar0 ; u64 val64 ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; ret = 0; } if ((unsigned int )new_mtu - 46U > 9554U) { if (debug_level >= 0) { { printk("\016s2io: %s: MTU size is invalid.\n", (char *)(& dev->name)); } } else { } return (-1); } else { } { dev->mtu = (unsigned int )new_mtu; tmp___0 = netif_running((struct net_device const *)dev); } if ((int )tmp___0) { { s2io_stop_all_tx_queue(sp); s2io_card_down(sp); ret = s2io_card_up(sp); } if (ret != 0) { if (debug_level >= 0) { { printk("\016s2io: %s: Device bring up failed\n", "s2io_change_mtu"); } } else { } return (ret); } else { } { s2io_wake_all_tx_queue(sp); } } else { { bar0 = (struct XENA_dev_config *)sp->bar0; val64 = (u64 )new_mtu; writeq((unsigned long )(val64 << 48), (void volatile *)(& bar0->rmac_max_pyld_len)); } } return (ret); } } static void s2io_set_link(struct work_struct *work ) { struct s2io_nic *nic ; struct work_struct const *__mptr ; struct net_device *dev ; struct XENA_dev_config *bar0 ; register u64 val64 ; u16 subid ; bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; unsigned long tmp___3 ; unsigned long tmp___4 ; unsigned long tmp___5 ; unsigned long tmp___6 ; int tmp___7 ; unsigned long tmp___8 ; unsigned long tmp___9 ; unsigned long tmp___10 ; unsigned long tmp___11 ; unsigned long tmp___12 ; { { __mptr = (struct work_struct const *)work; nic = (struct s2io_nic *)__mptr + 0xfffffffffffef350UL; dev = nic->dev; bar0 = (struct XENA_dev_config *)nic->bar0; rtnl_lock(); tmp = netif_running((struct net_device const *)dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { goto out_unlock; } else { } { tmp___1 = test_and_set_bit(0L, & nic->state); } if (tmp___1 != 0) { goto out_unlock; } else { } { subid = (nic->pdev)->subsystem_device; tmp___2 = s2io_link_fault_indication(nic); } if (tmp___2 == 2) { { msleep(100U); } } else { } { tmp___3 = readq((void const volatile *)(& bar0->adapter_status)); val64 = (u64 )tmp___3; } if ((val64 & 216172782113783808ULL) == 0ULL) { { tmp___8 = readq((void const volatile *)(& bar0->adapter_control)); } if (((unsigned long long )tmp___8 & 72057594037927936ULL) == 0ULL) { { tmp___7 = verify_xena_quiescence(nic); } if (tmp___7 != 0) { { tmp___4 = readq((void const volatile *)(& bar0->adapter_control)); val64 = (u64 )tmp___4; val64 = val64 | 72057594037927936ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->adapter_control)); } if ((unsigned int )nic->device_type == 1U && ((unsigned int )subid - 24587U <= 2U || (unsigned int )subid - 25611U <= 2U)) { { tmp___5 = readq((void const volatile *)(& bar0->gpio_control)); val64 = (u64 )tmp___5; val64 = val64 | 36028797018963968ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->gpio_control)); tmp___6 = readq((void const volatile *)(& bar0->gpio_control)); val64 = (u64 )tmp___6; } } else { { val64 = val64 | 1099511627776ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->adapter_control)); } } nic->device_enabled_once = 1; } else { if (debug_level >= 0) { { printk("\016s2io: %s: Error: device is not Quiescent\n", (char *)(& dev->name)); } } else { } { s2io_stop_all_tx_queue(nic); } } } else { } { tmp___9 = readq((void const volatile *)(& bar0->adapter_control)); val64 = (u64 )tmp___9; val64 = val64 | 1099511627776ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->adapter_control)); s2io_link(nic, 2); } } else { if ((unsigned int )nic->device_type == 1U && ((unsigned int )subid - 24587U <= 2U || (unsigned int )subid - 25611U <= 2U)) { { tmp___10 = readq((void const volatile *)(& bar0->gpio_control)); val64 = (u64 )tmp___10; val64 = val64 & 0xff7fffffffffffffULL; writeq((unsigned long )val64, (void volatile *)(& bar0->gpio_control)); tmp___11 = readq((void const volatile *)(& bar0->gpio_control)); val64 = (u64 )tmp___11; } } else { } { tmp___12 = readq((void const volatile *)(& bar0->adapter_control)); val64 = (u64 )tmp___12; val64 = val64 & 0xfffffeffffffffffULL; writeq((unsigned long )val64, (void volatile *)(& bar0->adapter_control)); s2io_link(nic, 1); } } { clear_bit(0L, & nic->state); } out_unlock: { rtnl_unlock(); } return; } } static int set_rxd_buffer_pointer(struct s2io_nic *sp , struct RxD_t *rxdp , struct buffAdd *ba , struct sk_buff **skb , u64 *temp0 , u64 *temp1 , u64 *temp2 , int size ) { struct net_device *dev ; struct swStat *stats ; struct RxD1 *rxdp1 ; u64 tmp ; int tmp___0 ; struct RxD3 *rxdp3 ; u64 tmp___1 ; int tmp___2 ; u64 tmp___3 ; int tmp___4 ; u64 tmp___5 ; int tmp___6 ; { dev = sp->dev; stats = & (sp->mac_control.stats_info)->sw_stat; if (sp->rxd_mode == 0 && rxdp->Host_Control == 0ULL) { rxdp1 = (struct RxD1 *)rxdp; if ((unsigned long )*skb != (unsigned long )((struct sk_buff *)0)) { if (debug_level > 1) { { printk("\016s2io: SKB is not NULL\n"); } } else { } rxdp1->Buffer0_ptr = *temp0; } else { { *skb = netdev_alloc_skb(dev, (unsigned int )size); } if ((unsigned long )*skb == (unsigned long )((struct sk_buff *)0)) { if (debug_level > 1) { { printk("\016s2io: %s: Out of memory to allocate %s\n", (char *)(& dev->name), (char *)"1 buf mode SKBs"); } } else { } stats->mem_alloc_fail_cnt = stats->mem_alloc_fail_cnt + 1ULL; return (-12); } else { } { stats->mem_allocated = stats->mem_allocated + (unsigned long long )(*skb)->truesize; tmp = pci_map_single(sp->pdev, (void *)(*skb)->data, (size_t )size, 2); *temp0 = tmp; rxdp1->Buffer0_ptr = tmp; tmp___0 = pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr); } if (tmp___0 != 0) { goto memalloc_failed; } else { } rxdp->Host_Control = (u64 )*skb; } } else if (sp->rxd_mode == 1 && rxdp->Host_Control == 0ULL) { rxdp3 = (struct RxD3 *)rxdp; if ((unsigned long )*skb != (unsigned long )((struct sk_buff *)0)) { rxdp3->Buffer2_ptr = *temp2; rxdp3->Buffer0_ptr = *temp0; rxdp3->Buffer1_ptr = *temp1; } else { { *skb = netdev_alloc_skb(dev, (unsigned int )size); } if ((unsigned long )*skb == (unsigned long )((struct sk_buff *)0)) { if (debug_level > 1) { { printk("\016s2io: %s: Out of memory to allocate %s\n", (char *)(& dev->name), (char *)"2 buf mode SKBs"); } } else { } stats->mem_alloc_fail_cnt = stats->mem_alloc_fail_cnt + 1ULL; return (-12); } else { } { stats->mem_allocated = stats->mem_allocated + (unsigned long long )(*skb)->truesize; tmp___1 = pci_map_single(sp->pdev, (void *)(*skb)->data, (size_t )(dev->mtu + 4U), 2); *temp2 = tmp___1; rxdp3->Buffer2_ptr = tmp___1; tmp___2 = pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr); } if (tmp___2 != 0) { goto memalloc_failed; } else { } { tmp___3 = pci_map_single(sp->pdev, ba->ba_0, 40UL, 2); *temp0 = tmp___3; rxdp3->Buffer0_ptr = tmp___3; tmp___4 = pci_dma_mapping_error(sp->pdev, rxdp3->Buffer0_ptr); } if (tmp___4 != 0) { { pci_unmap_single(sp->pdev, rxdp3->Buffer2_ptr, (size_t )(dev->mtu + 4U), 2); } goto memalloc_failed; } else { } { rxdp->Host_Control = (u64 )*skb; tmp___5 = pci_map_single(sp->pdev, ba->ba_1, 1UL, 2); *temp1 = tmp___5; rxdp3->Buffer1_ptr = tmp___5; tmp___6 = pci_dma_mapping_error(sp->pdev, rxdp3->Buffer1_ptr); } if (tmp___6 != 0) { { pci_unmap_single(sp->pdev, rxdp3->Buffer0_ptr, 40UL, 2); pci_unmap_single(sp->pdev, rxdp3->Buffer2_ptr, (size_t )(dev->mtu + 4U), 2); } goto memalloc_failed; } else { } } } else { } return (0); memalloc_failed: { stats->pci_map_fail_cnt = stats->pci_map_fail_cnt + 1ULL; stats->mem_freed = stats->mem_freed + (unsigned long long )(*skb)->truesize; consume_skb(*skb); } return (-12); } } static void set_rxd_buffer_size(struct s2io_nic *sp , struct RxD_t *rxdp , int size ) { struct net_device *dev ; { dev = sp->dev; if (sp->rxd_mode == 0) { rxdp->Control_2 = (unsigned long long )size << 48; } else if (sp->rxd_mode == 1) { rxdp->Control_2 = 11258999068426240ULL; rxdp->Control_2 = rxdp->Control_2 | 4294967296ULL; rxdp->Control_2 = rxdp->Control_2 | (((unsigned long long )dev->mtu + 4ULL) << 16); } else { } return; } } static int rxd_owner_bit_reset(struct s2io_nic *sp ) { int i ; int j ; int k ; int blk_cnt ; int size ; struct config_param *config ; struct mac_info *mac_control ; struct net_device *dev ; struct RxD_t *rxdp ; struct sk_buff *skb ; struct buffAdd *ba ; u64 temp0_64 ; u64 temp1_64 ; u64 temp2_64 ; struct rx_ring_config *rx_cfg ; struct ring_info *ring ; int tmp ; { blk_cnt = 0; config = & sp->config; mac_control = & sp->mac_control; dev = sp->dev; rxdp = (struct RxD_t *)0; skb = (struct sk_buff *)0; ba = (struct buffAdd *)0; temp0_64 = 0ULL; temp1_64 = 0ULL; temp2_64 = 0ULL; size = (int )(dev->mtu + 22U); if (sp->rxd_mode == 0) { size = size; } else if (sp->rxd_mode == 1) { size = (int )(dev->mtu + 171U); } else { } i = 0; goto ldv_54337; ldv_54336: rx_cfg = (struct rx_ring_config *)(& config->rx_cfg) + (unsigned long )i; ring = (struct ring_info *)(& mac_control->rings) + (unsigned long )i; blk_cnt = (int )(rx_cfg->num_rxd / (u32 )((int )rxd_count[sp->rxd_mode] + 1)); j = 0; goto ldv_54334; ldv_54333: k = 0; goto ldv_54331; ldv_54330: rxdp = (struct RxD_t *)(ring->rx_blocks[j].rxds + (unsigned long )k)->virt_addr; if (sp->rxd_mode == 1) { ba = *(ring->ba + (unsigned long )j) + (unsigned long )k; } else { } { tmp = set_rxd_buffer_pointer(sp, rxdp, ba, & skb, & temp0_64, & temp1_64, & temp2_64, size); } if (tmp == -12) { return (0); } else { } { set_rxd_buffer_size(sp, rxdp, size); __asm__ volatile ("sfence": : : "memory"); rxdp->Control_1 = rxdp->Control_1 | 72057594037927936ULL; k = k + 1; } ldv_54331: ; if (k < (int )rxd_count[sp->rxd_mode]) { goto ldv_54330; } else { } j = j + 1; ldv_54334: ; if (j < blk_cnt) { goto ldv_54333; } else { } i = i + 1; ldv_54337: ; if ((u32 )i < config->rx_ring_num) { goto ldv_54336; } else { } return (0); } } static int s2io_add_isr(struct s2io_nic *sp ) { int ret ; struct net_device *dev ; int err ; int i ; int msix_rx_cnt ; __u32 tmp ; { ret = 0; dev = sp->dev; err = 0; if ((unsigned int )sp->config.intr_type == 2U) { { ret = s2io_enable_msi_x(sp); } } else { } if (ret != 0) { if (debug_level >= 0) { { printk("\016s2io: %s: Defaulting to INTA\n", (char *)(& dev->name)); } } else { } sp->config.intr_type = 0U; } else { } { store_xmsi_data(sp); } if ((unsigned int )sp->config.intr_type == 2U) { msix_rx_cnt = 0; i = 0; goto ldv_54349; ldv_54348: ; if ((unsigned int )(sp->s2io_entries + (unsigned long )i)->in_use == 165U) { if ((unsigned int )(sp->s2io_entries + (unsigned long )i)->type == 2U) { { sprintf((char *)(& sp->desc) + (unsigned long )i, "%s:MSI-X-%d-RX", (char *)(& dev->name), i); err = ldv_request_irq_23((sp->entries + (unsigned long )i)->vector, & s2io_msix_ring_handle, 0UL, (char const *)(& sp->desc) + (unsigned long )i, (sp->s2io_entries + (unsigned long )i)->arg); } } else if ((unsigned int )(sp->s2io_entries + (unsigned long )i)->type == 1U) { { sprintf((char *)(& sp->desc) + (unsigned long )i, "%s:MSI-X-%d-TX", (char *)(& dev->name), i); err = ldv_request_irq_24((sp->entries + (unsigned long )i)->vector, & s2io_msix_fifo_handle, 0UL, (char const *)(& sp->desc) + (unsigned long )i, (sp->s2io_entries + (unsigned long )i)->arg); } } else { } if (sp->msix_info[i].addr == 0ULL || sp->msix_info[i].data == 0ULL) { if (debug_level >= 0) { { tmp = __fswab32((unsigned int )sp->msix_info[i].data); printk("\016s2io: %s @Addr:0x%llx Data:0x%llx\n", (char *)(& sp->desc) + (unsigned long )i, sp->msix_info[i].addr, (unsigned long long )tmp); } } else { } } else { msix_rx_cnt = msix_rx_cnt + 1; } if (err != 0) { { remove_msix_isr(sp); } if (debug_level >= 0) { { printk("\016s2io: %s:MSI-X-%d registration failed\n", (char *)(& dev->name), i); } } else { } if (debug_level >= 0) { { printk("\016s2io: %s: Defaulting to INTA\n", (char *)(& dev->name)); } } else { } sp->config.intr_type = 0U; goto ldv_54347; } else { } (sp->s2io_entries + (unsigned long )i)->in_use = 170U; } else { } i = i + 1; ldv_54349: ; if (i < sp->num_entries) { goto ldv_54348; } else { } ldv_54347: ; if (err == 0) { { msix_rx_cnt = msix_rx_cnt - 1; printk("\016s2io: MSI-X-RX %d entries enabled\n", msix_rx_cnt); } if (debug_level > 1) { { printk("\016s2io: MSI-X-TX entries enabled through alarm vector\n"); } } else { } } else { } } else { } if ((unsigned int )sp->config.intr_type == 0U) { { err = ldv_request_irq_25((sp->pdev)->irq, & s2io_isr, 128UL, (char const *)(& sp->name), (void *)dev); } if (err != 0) { if (debug_level >= 0) { { printk("\016s2io: %s: ISR registration failed\n", (char *)(& dev->name)); } } else { } return (-1); } else { } } else { } return (0); } } static void s2io_rem_isr(struct s2io_nic *sp ) { { if ((unsigned int )sp->config.intr_type == 2U) { { remove_msix_isr(sp); } } else { { remove_inta_isr(sp); } } return; } } static void do_s2io_card_down(struct s2io_nic *sp , int do_io ) { int cnt ; struct XENA_dev_config *bar0 ; register u64 val64 ; struct config_param *config ; int tmp ; int tmp___0 ; int off ; unsigned long tmp___1 ; int tmp___2 ; int tmp___3 ; { { cnt = 0; bar0 = (struct XENA_dev_config *)sp->bar0; val64 = 0ULL; config = & sp->config; tmp = is_s2io_card_up((struct s2io_nic const *)sp); } if (tmp == 0) { return; } else { } { ldv_del_timer_sync_26(& sp->alarm_timer); } goto ldv_54362; ldv_54361: { msleep(50U); } ldv_54362: { tmp___0 = test_and_set_bit(0L, & sp->state); } if (tmp___0 != 0) { goto ldv_54361; } else { } { clear_bit(1L, & sp->state); } if ((unsigned int )sp->config.napi != 0U) { off = 0; if ((unsigned int )config->intr_type == 2U) { goto ldv_54366; ldv_54365: { napi_disable(& sp->mac_control.rings[off].napi); off = off + 1; } ldv_54366: ; if ((u32 )off < sp->config.rx_ring_num) { goto ldv_54365; } else { } } else { { napi_disable(& sp->napi); } } } else { } if (do_io != 0) { { stop_nic(sp); } } else { } { s2io_rem_isr(sp); s2io_link(sp, 1); } goto ldv_54370; ldv_54369: { rxd_owner_bit_reset(sp); tmp___1 = readq((void const volatile *)(& bar0->adapter_status)); val64 = (u64 )tmp___1; tmp___3 = verify_xena_quiescence(sp); } if (tmp___3 != 0) { { tmp___2 = verify_pcc_quiescent(sp, sp->device_enabled_once); } if (tmp___2 != 0) { goto ldv_54368; } else { } } else { } { msleep(50U); cnt = cnt + 1; } if (cnt == 10) { if (debug_level >= 0) { { printk("\016s2io: Device not Quiescent - adapter status reads 0x%llx\n", val64); } } else { } goto ldv_54368; } else { } ldv_54370: ; if (do_io != 0) { goto ldv_54369; } else { } ldv_54368: ; if (do_io != 0) { { s2io_reset(sp); } } else { } { free_tx_buffers(sp); free_rx_buffers(sp); clear_bit(0L, & sp->state); } return; } } static void s2io_card_down(struct s2io_nic *sp ) { { { do_s2io_card_down(sp, 1); } return; } } static int s2io_card_up(struct s2io_nic *sp ) { int i ; int ret ; struct config_param *config ; struct mac_info *mac_control ; struct net_device *dev ; u16 interruptible ; struct ring_info *ring ; int tmp ; int tmp___0 ; struct lock_class_key __key ; { { ret = 0; dev = sp->dev; ret = init_nic(sp); } if (ret != 0) { if (debug_level >= 0) { { printk("\016s2io: %s: H/W initialization failed\n", (char *)(& dev->name)); } } else { } if (ret != -5) { { s2io_reset(sp); } } else { } return (ret); } else { } config = & sp->config; mac_control = & sp->mac_control; i = 0; goto ldv_54385; ldv_54384: { ring = (struct ring_info *)(& mac_control->rings) + (unsigned long )i; ring->mtu = dev->mtu; ring->lro = (dev->features & 32768ULL) != 0ULL; ret = fill_rx_buffers(sp, ring, 1); } if (ret != 0) { if (debug_level >= 0) { { printk("\016s2io: %s: Out of memory in Open\n", (char *)(& dev->name)); } } else { } { s2io_reset(sp); free_rx_buffers(sp); } return (-12); } else { } if (debug_level > 1) { { printk("\016s2io: Buf in ring:%d is %d:\n", i, ring->rx_bufs_left); } } else { } i = i + 1; ldv_54385: ; if ((u32 )i < config->rx_ring_num) { goto ldv_54384; } else { } if ((unsigned int )config->napi != 0U) { if ((unsigned int )config->intr_type == 2U) { i = 0; goto ldv_54388; ldv_54387: { napi_enable(& sp->mac_control.rings[i].napi); i = i + 1; } ldv_54388: ; if ((u32 )i < sp->config.rx_ring_num) { goto ldv_54387; } else { } } else { { napi_enable(& sp->napi); } } } else { } if ((unsigned int )sp->promisc_flg != 0U) { sp->promisc_flg = 0U; } else { } if ((unsigned int )sp->m_cast_flg != 0U) { sp->m_cast_flg = 0U; sp->all_multi_pos = 0U; } else { } { s2io_set_multicast(dev); } if ((dev->features & 32768ULL) != 0ULL) { sp->lro_max_aggr_per_sess = (u16 )(65535U / dev->mtu); if (lro_max_pkts < (unsigned int )sp->lro_max_aggr_per_sess) { sp->lro_max_aggr_per_sess = (u16 )lro_max_pkts; } else { } } else { } { tmp = start_nic(sp); } if (tmp != 0) { if (debug_level >= 0) { { printk("\016s2io: %s: Starting NIC failed\n", (char *)(& dev->name)); } } else { } { s2io_reset(sp); free_rx_buffers(sp); } return (-19); } else { } { tmp___0 = s2io_add_isr(sp); } if (tmp___0 != 0) { if ((unsigned int )sp->config.intr_type == 2U) { { s2io_rem_isr(sp); } } else { } { s2io_reset(sp); free_rx_buffers(sp); } return (-19); } else { } { init_timer_key(& sp->alarm_timer, 0U, "(&sp->alarm_timer)", & __key); sp->alarm_timer.function = & s2io_alarm_handle; sp->alarm_timer.data = (unsigned long )sp; ldv_mod_timer_27(& sp->alarm_timer, (unsigned long )jiffies + 125UL); set_bit(1L, & sp->state); en_dis_err_alarms(sp, 2047, 1); } if ((unsigned int )sp->config.intr_type != 0U) { { interruptible = 17U; en_dis_able_nic_intrs(sp, (int )interruptible, 1); } } else { { interruptible = 528U; interruptible = (u16 )((unsigned int )interruptible | 1U); en_dis_able_nic_intrs(sp, (int )interruptible, 1); } } return (0); } } static void s2io_restart_nic(struct work_struct *work ) { struct s2io_nic *sp ; struct work_struct const *__mptr ; struct net_device *dev ; bool tmp ; int tmp___0 ; int tmp___1 ; { { __mptr = (struct work_struct const *)work; sp = (struct s2io_nic *)__mptr + 0xfffffffffffef3a0UL; dev = sp->dev; rtnl_lock(); tmp = netif_running((struct net_device const *)dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { goto out_unlock; } else { } { s2io_card_down(sp); tmp___1 = s2io_card_up(sp); } if (tmp___1 != 0) { if (debug_level >= 0) { { printk("\016s2io: %s: Device bring up failed\n", (char *)(& dev->name)); } } else { } } else { } { s2io_wake_all_tx_queue(sp); } if (debug_level >= 0) { { printk("\016s2io: %s: was reset by Tx watchdog timer\n", (char *)(& dev->name)); } } else { } out_unlock: { rtnl_unlock(); } return; } } static void s2io_tx_watchdog(struct net_device *dev ) { struct s2io_nic *sp ; void *tmp ; struct swStat *swstats ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; swstats = & (sp->mac_control.stats_info)->sw_stat; tmp___0 = netif_carrier_ok((struct net_device const *)dev); } if ((int )tmp___0) { { swstats->watchdog_timer_cnt = swstats->watchdog_timer_cnt + 1ULL; schedule_work(& sp->rst_timer_task); swstats->soft_reset_cnt = swstats->soft_reset_cnt + 1ULL; } } else { } return; } } static int rx_osm_handler(struct ring_info *ring_data , struct RxD_t *rxdp ) { struct s2io_nic *sp ; struct net_device *dev ; struct sk_buff *skb ; int ring_no ; u16 l3_csum ; u16 l4_csum ; unsigned long long err ; struct lro *lro ; u8 err_mask ; struct swStat *swstats ; int len ; int get_block ; int get_off ; int buf0_len ; int buf2_len ; unsigned char *buff ; unsigned char *tmp ; struct buffAdd *ba ; u32 tcp_len ; u8 *tcp ; int ret ; { sp = ring_data->nic; dev = ring_data->dev; skb = (struct sk_buff *)rxdp->Host_Control; ring_no = ring_data->ring_no; err = rxdp->Control_1 & 4222124650659840ULL; lro = lro; swstats = & (sp->mac_control.stats_info)->sw_stat; skb->dev = dev; if (err != 0ULL) { if ((int )err & 1) { swstats->parity_err_cnt = swstats->parity_err_cnt + 1ULL; } else { } err_mask = (u8 )(err >> 48); { if ((int )err_mask == 1) { goto case_1; } else { } if ((int )err_mask == 2) { goto case_2; } else { } if ((int )err_mask == 3) { goto case_3; } else { } if ((int )err_mask == 4) { goto case_4; } else { } if ((int )err_mask == 5) { goto case_5; } else { } if ((int )err_mask == 6) { goto case_6; } else { } if ((int )err_mask == 7) { goto case_7; } else { } if ((int )err_mask == 8) { goto case_8; } else { } if ((int )err_mask == 15) { goto case_15; } else { } goto switch_break; case_1: /* CIL Label */ swstats->rx_parity_err_cnt = swstats->rx_parity_err_cnt + 1ULL; goto ldv_54419; case_2: /* CIL Label */ swstats->rx_abort_cnt = swstats->rx_abort_cnt + 1ULL; goto ldv_54419; case_3: /* CIL Label */ swstats->rx_parity_abort_cnt = swstats->rx_parity_abort_cnt + 1ULL; goto ldv_54419; case_4: /* CIL Label */ swstats->rx_rda_fail_cnt = swstats->rx_rda_fail_cnt + 1ULL; goto ldv_54419; case_5: /* CIL Label */ swstats->rx_unkn_prot_cnt = swstats->rx_unkn_prot_cnt + 1ULL; goto ldv_54419; case_6: /* CIL Label */ swstats->rx_fcs_err_cnt = swstats->rx_fcs_err_cnt + 1ULL; goto ldv_54419; case_7: /* CIL Label */ swstats->rx_buf_size_err_cnt = swstats->rx_buf_size_err_cnt + 1ULL; goto ldv_54419; case_8: /* CIL Label */ swstats->rx_rxd_corrupt_cnt = swstats->rx_rxd_corrupt_cnt + 1ULL; goto ldv_54419; case_15: /* CIL Label */ swstats->rx_unkn_err_cnt = swstats->rx_unkn_err_cnt + 1ULL; goto ldv_54419; switch_break: /* CIL Label */ ; } ldv_54419: ; if ((unsigned int )err_mask != 5U) { if (debug_level >= 0) { { printk("\016s2io: %s: Rx error Value: 0x%x\n", (char *)(& dev->name), (int )err_mask); } } else { } { dev->stats.rx_crc_errors = dev->stats.rx_crc_errors + 1UL; swstats->mem_freed = swstats->mem_freed + (unsigned long long )skb->truesize; consume_skb(skb); ring_data->rx_bufs_left = ring_data->rx_bufs_left - 1U; rxdp->Host_Control = 0ULL; } return (0); } else { } } else { } rxdp->Host_Control = 0ULL; if (sp->rxd_mode == 0) { { len = (int )((unsigned short )((rxdp->Control_2 & 4611404543450677248ULL) >> 48)); skb_put(skb, (unsigned int )len); } } else if (sp->rxd_mode == 1) { { get_block = (int )ring_data->rx_curr_get_info.block_index; get_off = (int )ring_data->rx_curr_get_info.offset; buf0_len = (int )((unsigned char )((rxdp->Control_2 & 71776119061217280ULL) >> 48)); buf2_len = (int )((unsigned short )((rxdp->Control_2 & 4294901760ULL) >> 16)); tmp = skb_push(skb, (unsigned int )buf0_len); buff = tmp; ba = *(ring_data->ba + (unsigned long )get_block) + (unsigned long )get_off; memcpy((void *)buff, (void const *)ba->ba_0, (size_t )buf0_len); skb_put(skb, (unsigned int )buf2_len); } } else { } if (((rxdp->Control_1 & 12884901888ULL) != 0ULL && ((unsigned int )ring_data->lro == 0U || (rxdp->Control_1 & 17179869184ULL) == 0ULL)) && (dev->features & 4294967296ULL) != 0ULL) { l3_csum = (u16 )(rxdp->Control_1 >> 16); l4_csum = (u16 )rxdp->Control_1; if ((unsigned int )l3_csum == 65535U && (unsigned int )l4_csum == 65535U) { skb->ip_summed = 1U; if ((unsigned int )ring_data->lro != 0U) { { tcp_len = 0U; ret = 0; ret = s2io_club_tcp_session(ring_data, skb->data, & tcp, & tcp_len, & lro, rxdp, sp); } { if (ret == 3) { goto case_3___0; } else { } if (ret == 1) { goto case_1___0; } else { } if (ret == 4) { goto case_4___0; } else { } if (ret == 2) { goto case_2___0; } else { } if (ret == 0) { goto case_0; } else { } if (ret == -1) { goto case_neg_1; } else { } if (ret == 5) { goto case_5___0; } else { } goto switch_default; case_3___0: /* CIL Label */ lro->parent = skb; goto aggregate; case_1___0: /* CIL Label */ { lro_append_pkt(sp, lro, skb, tcp_len); } goto aggregate; case_4___0: /* CIL Label */ { lro_append_pkt(sp, lro, skb, tcp_len); queue_rx_frame(lro->parent, (int )lro->vlan_tag); clear_lro_session(lro); swstats->flush_max_pkts = swstats->flush_max_pkts + 1ULL; } goto aggregate; case_2___0: /* CIL Label */ { (lro->parent)->data_len = (unsigned int )lro->frags_len; swstats->sending_both = swstats->sending_both + 1ULL; queue_rx_frame(lro->parent, (int )lro->vlan_tag); clear_lro_session(lro); } goto send_up; case_0: /* CIL Label */ ; case_neg_1: /* CIL Label */ ; case_5___0: /* CIL Label */ ; goto ldv_54447; switch_default: /* CIL Label */ ; if (debug_level >= 0) { { printk("\016s2io: %s: Samadhana!!\n", "rx_osm_handler"); } } else { } { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/neterion/s2io.c"), "i" (7475), "i" (12UL)); __builtin_unreachable(); } switch_break___0: /* CIL Label */ ; } ldv_54447: ; } else { } } else { { skb_checksum_none_assert((struct sk_buff const *)skb); } } } else { { skb_checksum_none_assert((struct sk_buff const *)skb); } } swstats->mem_freed = swstats->mem_freed + (unsigned long long )skb->truesize; send_up: { skb_record_rx_queue(skb, (int )((u16 )ring_no)); queue_rx_frame(skb, (int )((unsigned short )rxdp->Control_2)); } aggregate: sp->mac_control.rings[ring_no].rx_bufs_left = sp->mac_control.rings[ring_no].rx_bufs_left - 1U; return (0); } } static void s2io_link(struct s2io_nic *sp , int link ) { struct net_device *dev ; struct swStat *swstats ; { dev = sp->dev; swstats = & (sp->mac_control.stats_info)->sw_stat; if (link != (int )sp->last_link_state) { { init_tti(sp, link); } if (link == 1) { if (debug_level >= 0) { { printk("\016s2io: %s: Link down\n", (char *)(& dev->name)); } } else { } { s2io_stop_all_tx_queue(sp); netif_carrier_off(dev); } if (swstats->link_up_cnt != 0ULL) { swstats->link_up_time = (unsigned long long )jiffies - sp->start_time; } else { } swstats->link_down_cnt = swstats->link_down_cnt + 1ULL; } else { if (debug_level >= 0) { { printk("\016s2io: %s: Link Up\n", (char *)(& dev->name)); } } else { } if (swstats->link_down_cnt != 0ULL) { swstats->link_down_time = (unsigned long long )jiffies - sp->start_time; } else { } { swstats->link_up_cnt = swstats->link_up_cnt + 1ULL; netif_carrier_on(dev); s2io_wake_all_tx_queue(sp); } } } else { } sp->last_link_state = (u16 )link; sp->start_time = (unsigned long long )jiffies; return; } } static void s2io_init_pci(struct s2io_nic *sp ) { u16 pci_cmd ; u16 pcix_cmd ; { { pci_cmd = 0U; pcix_cmd = 0U; pci_read_config_word((struct pci_dev const *)sp->pdev, 98, & pcix_cmd); pci_write_config_word((struct pci_dev const *)sp->pdev, 98, (int )((unsigned int )pcix_cmd | 1U)); pci_read_config_word((struct pci_dev const *)sp->pdev, 98, & pcix_cmd); pci_read_config_word((struct pci_dev const *)sp->pdev, 4, & pci_cmd); pci_write_config_word((struct pci_dev const *)sp->pdev, 4, (int )((unsigned int )pci_cmd | 64U)); pci_read_config_word((struct pci_dev const *)sp->pdev, 4, & pci_cmd); } return; } } static int s2io_verify_parm(struct pci_dev *pdev , u8 *dev_intr_type , u8 *dev_multiq ) { int i ; { if (tx_fifo_num - 1U > 7U) { if (debug_level >= 0) { { printk("\016s2io: Requested number of tx fifos (%d) not supported\n", tx_fifo_num); } } else { } if (tx_fifo_num == 0U) { tx_fifo_num = 1U; } else { tx_fifo_num = 8U; } if (debug_level >= 0) { { printk("\016s2io: Default to %d tx fifos\n", tx_fifo_num); } } else { } } else { } if (multiq != 0U) { *dev_multiq = (u8 )multiq; } else { } if (tx_steering_type != 0U && tx_fifo_num == 1U) { if (tx_steering_type != 2U) { if (debug_level >= 0) { { printk("\016s2io: Tx steering is not supported with one fifo. Disabling Tx steering.\n"); } } else { } } else { } tx_steering_type = 0U; } else { } if (tx_steering_type > 2U) { if (debug_level >= 0) { { printk("\016s2io: Requested transmit steering not supported\n"); } } else { } if (debug_level >= 0) { { printk("\016s2io: Disabling transmit steering\n"); } } else { } tx_steering_type = 0U; } else { } if (rx_ring_num > 8U) { if (debug_level >= 0) { { printk("\016s2io: Requested number of rx rings not supported\n"); } } else { } if (debug_level >= 0) { { printk("\016s2io: Default to %d rx rings\n", 8); } } else { } rx_ring_num = 8U; } else { } if ((unsigned int )*dev_intr_type != 0U && (unsigned int )*dev_intr_type != 2U) { if (debug_level >= 0) { { printk("\016s2io: Wrong intr_type requested. Defaulting to INTA\n"); } } else { } *dev_intr_type = 0U; } else { } if ((unsigned int )*dev_intr_type == 2U && ((unsigned int )pdev->device != 22322U && (unsigned int )pdev->device != 22578U)) { if (debug_level >= 0) { { printk("\016s2io: Xframe I does not support MSI_X. Defaulting to INTA\n"); } } else { } *dev_intr_type = 0U; } else { } if (rx_ring_mode - 1U > 1U) { if (debug_level >= 0) { { printk("\016s2io: Requested ring mode not supported\n"); } } else { } if (debug_level >= 0) { { printk("\016s2io: Defaulting to 1-buffer mode\n"); } } else { } rx_ring_mode = 1U; } else { } i = 0; goto ldv_54468; ldv_54467: ; if (rx_ring_sz[i] > 150U) { if (debug_level >= 0) { { printk("\016s2io: Requested rx ring size not supported\nDefaulting to %d\n", 150); } } else { } rx_ring_sz[i] = 150U; } else { } i = i + 1; ldv_54468: ; if (i <= 7) { goto ldv_54467; } else { } return (0); } } static int rts_ds_steer(struct s2io_nic *nic , u8 ds_codepoint , u8 ring ) { struct XENA_dev_config *bar0 ; register u64 val64 ; int tmp ; { bar0 = (struct XENA_dev_config *)nic->bar0; val64 = 0ULL; if ((unsigned int )ds_codepoint > 63U) { return (-1); } else { } { val64 = (unsigned long long )ring << 56; writeq((unsigned long )val64, (void volatile *)(& bar0->rts_ds_mem_data)); val64 = ((unsigned long long )ds_codepoint << 32) | 72339069014638592ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rts_ds_mem_ctrl)); tmp = wait_for_cmd_complete((void *)(& bar0->rts_ds_mem_ctrl), 281474976710656ULL, 1); } return (tmp); } } static struct net_device_ops const s2io_netdev_ops = {0, 0, & s2io_open, & s2io_close, & s2io_xmit, 0, 0, & s2io_set_multicast, & s2io_set_mac_addr, & eth_validate_addr, & s2io_ioctl, 0, & s2io_change_mtu, 0, & s2io_tx_watchdog, 0, & s2io_get_stats, 0, 0, & s2io_netpoll, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & s2io_set_features, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int s2io_init_nic(struct pci_dev *pdev , struct pci_device_id const *pre ) { struct s2io_nic *sp ; struct net_device *dev ; int i ; int j ; int ret ; int dma_flag ; u32 mac_up ; u32 mac_down ; u64 val64 ; u64 tmp64 ; struct XENA_dev_config *bar0 ; u16 subid ; struct config_param *config ; struct mac_info *mac_control ; int mode ; u8 dev_intr_type ; u8 dev_multiq ; int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; struct tx_fifo_config *tx_cfg ; struct tx_fifo_config *tx_cfg___0 ; struct rx_ring_config *rx_cfg ; struct ring_info *ring ; struct rx_ring_config *rx_cfg___0 ; int tmp___3 ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; atomic_long_t __constr_expr_1 ; int tmp___4 ; struct ring_info *ring___0 ; unsigned long tmp___5 ; struct fifo_info *fifo ; struct lock_class_key __key___1 ; unsigned long tmp___6 ; unsigned long tmp___7 ; int tmp___8 ; struct fifo_info *fifo___0 ; { { dma_flag = 0; val64 = 0ULL; tmp64 = 0ULL; bar0 = (struct XENA_dev_config *)0; dev_intr_type = (u8 )intr_type; dev_multiq = 0U; ret = s2io_verify_parm(pdev, & dev_intr_type, & dev_multiq); } if (ret != 0) { return (ret); } else { } { ret = pci_enable_device(pdev); } if (ret != 0) { if (debug_level >= 0) { { printk("\016s2io: %s: pci_enable_device failed\n", "s2io_init_nic"); } } else { } return (ret); } else { } { tmp___1 = pci_set_dma_mask(pdev, 0xffffffffffffffffULL); } if (tmp___1 == 0) { if (debug_level > 0) { { printk("\016s2io: %s: Using 64bit DMA\n", "s2io_init_nic"); } } else { } { dma_flag = 1; tmp = pci_set_consistent_dma_mask(pdev, 0xffffffffffffffffULL); } if (tmp != 0) { if (debug_level >= 0) { { printk("\016s2io: Unable to obtain 64bit DMA for consistent allocations\n"); } } else { } { pci_disable_device(pdev); } return (-12); } else { } } else { { tmp___0 = pci_set_dma_mask(pdev, 4294967295ULL); } if (tmp___0 == 0) { if (debug_level > 0) { { printk("\016s2io: %s: Using 32bit DMA\n", "s2io_init_nic"); } } else { } } else { { pci_disable_device(pdev); } return (-12); } } { ret = pci_request_regions(pdev, (char const *)(& s2io_driver_name)); } if (ret != 0) { if (debug_level >= 0) { { printk("\016s2io: %s: Request Regions failed - %x\n", "s2io_init_nic", ret); } } else { } { pci_disable_device(pdev); } return (-19); } else { } if ((unsigned int )dev_multiq != 0U) { { dev = ldv_alloc_etherdev_mqs_28(70720, tx_fifo_num, tx_fifo_num); } } else { { dev = ldv_alloc_etherdev_mqs_29(70720, 1U, 1U); } } if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { { pci_disable_device(pdev); pci_release_regions(pdev); } return (-19); } else { } { pci_set_master(pdev); pci_set_drvdata(pdev, (void *)dev); dev->dev.parent = & pdev->dev; tmp___2 = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp___2; sp->dev = dev; sp->pdev = pdev; sp->high_dma_flag = dma_flag; sp->device_enabled_once = 0; } if (rx_ring_mode == 1U) { sp->rxd_mode = 0; } else { } if (rx_ring_mode == 2U) { sp->rxd_mode = 1; } else { } sp->config.intr_type = dev_intr_type; if ((unsigned int )pdev->device == 22322U || (unsigned int )pdev->device == 22578U) { sp->device_type = 2U; } else { sp->device_type = 1U; } { s2io_init_pci(sp); config = & sp->config; mac_control = & sp->mac_control; config->napi = (u8 )napi; config->tx_steering_type = (u8 )tx_steering_type; } if ((unsigned int )config->tx_steering_type == 1U) { config->tx_fifo_num = 8U; } else { config->tx_fifo_num = tx_fifo_num; } if (config->tx_fifo_num <= 4U) { if (config->tx_fifo_num == 1U) { sp->total_tcp_fifos = 1U; } else { sp->total_tcp_fifos = (unsigned int )((u8 )config->tx_fifo_num) - 1U; } sp->udp_fifo_idx = (unsigned int )((u8 )config->tx_fifo_num) - 1U; sp->total_udp_fifos = 1U; sp->other_fifo_idx = (unsigned int )sp->total_tcp_fifos + 255U; } else { sp->total_tcp_fifos = (unsigned int )((u8 )tx_fifo_num) - 3U; sp->udp_fifo_idx = sp->total_tcp_fifos; sp->total_udp_fifos = 2U; sp->other_fifo_idx = (unsigned int )sp->udp_fifo_idx + 2U; } config->multiq = dev_multiq; i = 0; goto ldv_54502; ldv_54501: tx_cfg = (struct tx_fifo_config *)(& config->tx_cfg) + (unsigned long )i; tx_cfg->fifo_len = tx_fifo_len[i]; tx_cfg->fifo_priority = (u8 )i; i = i + 1; ldv_54502: ; if ((u32 )i < config->tx_fifo_num) { goto ldv_54501; } else { } i = 0; goto ldv_54505; ldv_54504: config->fifo_mapping[i] = (u8 )fifo_map[config->tx_fifo_num - 1U][i]; i = i + 1; ldv_54505: ; if (i <= 7) { goto ldv_54504; } else { } i = 0; goto ldv_54508; ldv_54507: sp->fifo_selector[i] = fifo_selector[i]; i = i + 1; ldv_54508: ; if ((u32 )i < config->tx_fifo_num) { goto ldv_54507; } else { } config->tx_intr_type = 131072ULL; i = 0; goto ldv_54513; ldv_54512: tx_cfg___0 = (struct tx_fifo_config *)(& config->tx_cfg) + (unsigned long )i; tx_cfg___0->f_no_snoop = 3U; if (tx_cfg___0->fifo_len <= 64U) { config->tx_intr_type = 65536ULL; goto ldv_54511; } else { } i = i + 1; ldv_54513: ; if ((u32 )i < config->tx_fifo_num) { goto ldv_54512; } else { } ldv_54511: config->max_txds = 19U; config->rx_ring_num = rx_ring_num; i = 0; goto ldv_54517; ldv_54516: rx_cfg = (struct rx_ring_config *)(& config->rx_cfg) + (unsigned long )i; ring = (struct ring_info *)(& mac_control->rings) + (unsigned long )i; rx_cfg->num_rxd = rx_ring_sz[i] * (unsigned int )((int )rxd_count[sp->rxd_mode] + 1); rx_cfg->ring_priority = (u8 )i; ring->rx_bufs_left = 0U; ring->rxd_mode = sp->rxd_mode; ring->rxd_count = rxd_count[sp->rxd_mode]; ring->pdev = sp->pdev; ring->dev = sp->dev; i = i + 1; ldv_54517: ; if ((u32 )i < config->rx_ring_num) { goto ldv_54516; } else { } i = 0; goto ldv_54521; ldv_54520: rx_cfg___0 = (struct rx_ring_config *)(& config->rx_cfg) + (unsigned long )i; rx_cfg___0->ring_org = 1U; rx_cfg___0->f_no_snoop = 3U; i = i + 1; ldv_54521: ; if ((unsigned int )i < rx_ring_num) { goto ldv_54520; } else { } { mac_control->rmac_pause_time = (u16 )rmac_pause_time; mac_control->mc_pause_threshold_q0q3 = (u16 )mc_pause_threshold_q0q3; mac_control->mc_pause_threshold_q4q7 = (u16 )mc_pause_threshold_q4q7; tmp___3 = init_shared_mem(sp); } if (tmp___3 != 0) { if (debug_level >= 0) { { printk("\016s2io: %s: Memory allocation failed\n", (char *)(& dev->name)); } } else { } ret = -12; goto mem_alloc_failed; } else { } { sp->bar0 = pci_ioremap_bar(pdev, 0); } if ((unsigned long )sp->bar0 == (unsigned long )((void *)0)) { if (debug_level >= 0) { { printk("\016s2io: %s: Neterion: cannot remap io mem1\n", (char *)(& dev->name)); } } else { } ret = -12; goto bar0_remap_failed; } else { } { sp->bar1 = pci_ioremap_bar(pdev, 2); } if ((unsigned long )sp->bar1 == (unsigned long )((void *)0)) { if (debug_level >= 0) { { printk("\016s2io: %s: Neterion: cannot remap io mem2\n", (char *)(& dev->name)); } } else { } ret = -12; goto bar1_remap_failed; } else { } j = 0; goto ldv_54527; ldv_54526: mac_control->tx_FIFO_start[j] = (struct TxFIFO_element *)sp->bar1 + (unsigned long )(j * 131072); j = j + 1; ldv_54527: ; if (j <= 7) { goto ldv_54526; } else { } dev->netdev_ops = & s2io_netdev_ops; dev->ethtool_ops = & netdev_ethtool_ops; dev->hw_features = 4296114179ULL; dev->features = (dev->features | dev->hw_features) | 384ULL; if (((int )sp->device_type & 2) != 0) { dev->hw_features = dev->hw_features | 131072ULL; if (ufo != 0U) { dev->features = dev->features | 131072ULL; } else { } } else { } if (sp->high_dma_flag == 1) { dev->features = dev->features | 32ULL; } else { } { dev->watchdog_timeo = 3750; __init_work(& sp->rst_timer_task, 0); __constr_expr_0.counter = 137438953408L; sp->rst_timer_task.data = __constr_expr_0; lockdep_init_map(& sp->rst_timer_task.lockdep_map, "(&sp->rst_timer_task)", & __key, 0); INIT_LIST_HEAD(& sp->rst_timer_task.entry); sp->rst_timer_task.func = & s2io_restart_nic; __init_work(& sp->set_link_task, 0); __constr_expr_1.counter = 137438953408L; sp->set_link_task.data = __constr_expr_1; lockdep_init_map(& sp->set_link_task.lockdep_map, "(&sp->set_link_task)", & __key___0, 0); INIT_LIST_HEAD(& sp->set_link_task.entry); sp->set_link_task.func = & s2io_set_link; pci_save_state(sp->pdev); tmp___4 = s2io_set_swapper(sp); } if (tmp___4 != 0) { if (debug_level >= 0) { { printk("\016s2io: %s: swapper settings are wrong\n", (char *)(& dev->name)); } } else { } ret = -11; goto set_swap_failed; } else { } if (((int )sp->device_type & 2) != 0) { { mode = s2io_verify_pci_mode(sp); } if (mode < 0) { if (debug_level >= 0) { { printk("\016s2io: %s: Unsupported PCI bus mode\n", "s2io_init_nic"); } } else { } ret = -57; goto set_swap_failed; } else { } } else { } if ((unsigned int )sp->config.intr_type == 2U) { { sp->num_entries = (int )(config->rx_ring_num + 1U); ret = s2io_enable_msi_x(sp); } if (ret == 0) { { ret = s2io_test_msi(sp); remove_msix_isr(sp); } } else { } if (ret != 0) { if (debug_level >= 0) { { printk("\016s2io: MSI-X requested but failed to enable\n"); } } else { } sp->config.intr_type = 0U; } else { } } else { } if ((unsigned int )config->intr_type == 2U) { i = 0; goto ldv_54536; ldv_54535: { ring___0 = (struct ring_info *)(& mac_control->rings) + (unsigned long )i; netif_napi_add(dev, & ring___0->napi, & s2io_poll_msix, 64); i = i + 1; } ldv_54536: ; if ((u32 )i < config->rx_ring_num) { goto ldv_54535; } else { } } else { { netif_napi_add(dev, & sp->napi, & s2io_poll_inta, 64); } } if ((int )sp->device_type & 1) { { fix_mac_address(sp); s2io_reset(sp); } } else { } { bar0 = (struct XENA_dev_config *)sp->bar0; val64 = 281474976710656ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->rmac_addr_cmd_mem)); wait_for_cmd_complete((void *)(& bar0->rmac_addr_cmd_mem), 281474976710656ULL, 1); tmp___5 = readq((void const volatile *)(& bar0->rmac_addr_data0_mem)); tmp64 = (u64 )tmp___5; mac_down = (unsigned int )tmp64; mac_up = (unsigned int )(tmp64 >> 32); sp->def_mac_addr[0].mac_addr[3] = (unsigned char )mac_up; sp->def_mac_addr[0].mac_addr[2] = (unsigned char )(mac_up >> 8); sp->def_mac_addr[0].mac_addr[1] = (unsigned char )(mac_up >> 16); sp->def_mac_addr[0].mac_addr[0] = (unsigned char )(mac_up >> 24); sp->def_mac_addr[0].mac_addr[5] = (unsigned char )(mac_down >> 16); sp->def_mac_addr[0].mac_addr[4] = (unsigned char )(mac_down >> 24); dev->addr_len = 6U; memcpy((void *)dev->dev_addr, (void const *)(& sp->def_mac_addr), 6UL); } if ((unsigned int )sp->device_type == 1U) { config->max_mc_addr = 64; config->max_mac_addr = 16; config->mc_start_offset = 16; } else if ((unsigned int )sp->device_type == 2U) { config->max_mc_addr = 256; config->max_mac_addr = 64; config->mc_start_offset = 64; } else { } { do_s2io_store_unicast_mc(sp); } if ((unsigned int )sp->device_type == 2U && (unsigned int )config->intr_type == 2U) { sp->num_entries = (int )(config->rx_ring_num + 1U); } else { } { store_xmsi_data(sp); s2io_reset(sp); sp->state = 0UL; i = 0; } goto ldv_54541; ldv_54540: { fifo = (struct fifo_info *)(& mac_control->fifos) + (unsigned long )i; spinlock_check(& fifo->tx_lock); __raw_spin_lock_init(& fifo->tx_lock.__annonCompField19.rlock, "&(&fifo->tx_lock)->rlock", & __key___1); i = i + 1; } ldv_54541: ; if ((u32 )i < sp->config.tx_fifo_num) { goto ldv_54540; } else { } subid = (sp->pdev)->subsystem_device; if (((int )subid & 255) > 6) { { tmp___6 = readq((void const volatile *)(& bar0->gpio_control)); val64 = (u64 )tmp___6; val64 = val64 | 140737488355328ULL; writeq((unsigned long )val64, (void volatile *)(& bar0->gpio_control)); val64 = 293019865982173184ULL; writeq((unsigned long )val64, (void volatile *)bar0 + 9984U); tmp___7 = readq((void const volatile *)(& bar0->gpio_control)); val64 = (u64 )tmp___7; } } else { } { sp->rx_csum = 1; tmp___8 = ldv_register_netdev_30(dev); } if (tmp___8 != 0) { if (debug_level >= 0) { { printk("\016s2io: Device registration failed\n"); } } else { } ret = -19; goto register_failed; } else { } { s2io_vpd_read(sp); } if (debug_level >= 0) { { printk("\016s2io: Copyright(c) 2002-2010 Exar Corp.\n"); } } else { } if (debug_level >= 0) { { printk("\016s2io: %s: Neterion %s (rev %d)\n", (char *)(& dev->name), (u8 *)(& sp->product_name), (int )pdev->revision); } } else { } if (debug_level >= 0) { { printk("\016s2io: %s: Driver version %s\n", (char *)(& dev->name), (char const *)(& s2io_driver_version)); } } else { } if (debug_level >= 0) { { printk("\016s2io: %s: MAC Address: %pM\n", (char *)(& dev->name), dev->dev_addr); } } else { } if (debug_level >= 0) { { printk("\016s2io: Serial number: %s\n", (u8 *)(& sp->serial_num)); } } else { } if (((int )sp->device_type & 2) != 0) { { mode = s2io_print_pci_mode(sp); } if (mode < 0) { { ret = -57; ldv_unregister_netdev_31(dev); } goto set_swap_failed; } else { } } else { } { if (sp->rxd_mode == 0) { goto case_0; } else { } if (sp->rxd_mode == 1) { goto case_1; } else { } goto switch_break; case_0: /* CIL Label */ ; if (debug_level >= 0) { { printk("\016s2io: %s: 1-Buffer receive mode enabled\n", (char *)(& dev->name)); } } else { } goto ldv_54545; case_1: /* CIL Label */ ; if (debug_level >= 0) { { printk("\016s2io: %s: 2-Buffer receive mode enabled\n", (char *)(& dev->name)); } } else { } goto ldv_54545; switch_break: /* CIL Label */ ; } ldv_54545: ; { if ((int )sp->config.napi == 0) { goto case_0___0; } else { } if ((int )sp->config.napi == 1) { goto case_1___0; } else { } goto switch_break___0; case_0___0: /* CIL Label */ ; if (debug_level >= 0) { { printk("\016s2io: %s: NAPI disabled\n", (char *)(& dev->name)); } } else { } goto ldv_54548; case_1___0: /* CIL Label */ ; if (debug_level >= 0) { { printk("\016s2io: %s: NAPI enabled\n", (char *)(& dev->name)); } } else { } goto ldv_54548; switch_break___0: /* CIL Label */ ; } ldv_54548: ; if (debug_level >= 0) { { printk("\016s2io: %s: Using %d Tx fifo(s)\n", (char *)(& dev->name), sp->config.tx_fifo_num); } } else { } if (debug_level >= 0) { { printk("\016s2io: %s: Using %d Rx ring(s)\n", (char *)(& dev->name), sp->config.rx_ring_num); } } else { } { if ((int )sp->config.intr_type == 0) { goto case_0___1; } else { } if ((int )sp->config.intr_type == 2) { goto case_2; } else { } goto switch_break___1; case_0___1: /* CIL Label */ ; if (debug_level >= 0) { { printk("\016s2io: %s: Interrupt type INTA\n", (char *)(& dev->name)); } } else { } goto ldv_54551; case_2: /* CIL Label */ ; if (debug_level >= 0) { { printk("\016s2io: %s: Interrupt type MSI-X\n", (char *)(& dev->name)); } } else { } goto ldv_54551; switch_break___1: /* CIL Label */ ; } ldv_54551: ; if ((unsigned int )sp->config.multiq != 0U) { i = 0; goto ldv_54555; ldv_54554: fifo___0 = (struct fifo_info *)(& mac_control->fifos) + (unsigned long )i; fifo___0->multiq = config->multiq; i = i + 1; ldv_54555: ; if ((u32 )i < sp->config.tx_fifo_num) { goto ldv_54554; } else { } if (debug_level >= 0) { { printk("\016s2io: %s: Multiqueue support enabled\n", (char *)(& dev->name)); } } else { } } else if (debug_level >= 0) { { printk("\016s2io: %s: Multiqueue support disabled\n", (char *)(& dev->name)); } } else { } { if ((int )sp->config.tx_steering_type == 0) { goto case_0___2; } else { } if ((int )sp->config.tx_steering_type == 1) { goto case_1___1; } else { } if ((int )sp->config.tx_steering_type == 2) { goto case_2___0; } else { } goto switch_break___2; case_0___2: /* CIL Label */ ; if (debug_level >= 0) { { printk("\016s2io: %s: No steering enabled for transmit\n", (char *)(& dev->name)); } } else { } goto ldv_54558; case_1___1: /* CIL Label */ ; if (debug_level >= 0) { { printk("\016s2io: %s: Priority steering enabled for transmit\n", (char *)(& dev->name)); } } else { } goto ldv_54558; case_2___0: /* CIL Label */ ; if (debug_level >= 0) { { printk("\016s2io: %s: Default steering enabled for transmit\n", (char *)(& dev->name)); } } else { } switch_break___2: /* CIL Label */ ; } ldv_54558: ; if (debug_level >= 0) { { printk("\016s2io: %s: Large receive offload enabled\n", (char *)(& dev->name)); } } else { } if (ufo != 0U) { if (debug_level >= 0) { { printk("\016s2io: %s: UDP Fragmentation Offload(UFO) enabled\n", (char *)(& dev->name)); } } else { } } else { } { sprintf((char *)(& sp->name), "%s Neterion %s", (char *)(& dev->name), (u8 *)(& sp->product_name)); } if (vlan_tag_strip != 0U) { sp->vlan_strip_flag = 1; } else { sp->vlan_strip_flag = 0; } { netif_carrier_off(dev); } return (0); register_failed: ; set_swap_failed: { iounmap((void volatile *)sp->bar1); } bar1_remap_failed: { iounmap((void volatile *)sp->bar0); } bar0_remap_failed: ; mem_alloc_failed: { free_shared_mem(sp); pci_disable_device(pdev); pci_release_regions(pdev); ldv_free_netdev_32(dev); } return (ret); } } static void s2io_rem_nic(struct pci_dev *pdev ) { struct net_device *dev ; void *tmp ; struct s2io_nic *sp ; void *tmp___0 ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; } if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { if (debug_level >= 0) { { printk("\016s2io: Driver Data is NULL!!\n"); } } else { } return; } else { } { tmp___0 = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp___0; cancel_work_sync(& sp->rst_timer_task); cancel_work_sync(& sp->set_link_task); ldv_unregister_netdev_33(dev); free_shared_mem(sp); iounmap((void volatile *)sp->bar0); iounmap((void volatile *)sp->bar1); pci_release_regions(pdev); ldv_free_netdev_34(dev); pci_disable_device(pdev); } return; } } static int s2io_starter(void) { int tmp ; { { tmp = ldv___pci_register_driver_35(& s2io_driver, & __this_module, "s2io"); } return (tmp); } } static void s2io_closer(void) { { { ldv_pci_unregister_driver_36(& s2io_driver); } if (debug_level > 0) { { printk("\016s2io: cleanup done\n"); } } else { } return; } } static int check_L2_lro_capable(u8 *buffer , struct iphdr **ip , struct tcphdr **tcp , struct RxD_t *rxdp , struct s2io_nic *sp ) { int ip_off ; u8 l2_type ; u8 ip_len ; { l2_type = (unsigned int )((unsigned char )(rxdp->Control_1 >> 37)) & 7U; if ((rxdp->Control_1 & 8589934592ULL) == 0ULL) { if (debug_level > 0) { { printk("\016s2io: %s: Non-TCP frames not supported for LRO\n", "check_L2_lro_capable"); } } else { } return (-1); } else { } if ((unsigned int )l2_type == 0U || (unsigned int )l2_type == 4U) { ip_off = 14; if (sp->vlan_strip_flag == 0 && (rxdp->Control_1 & 549755813888ULL) != 0ULL) { ip_off = ip_off + 4; } else { } } else { return (-1); } *ip = (struct iphdr *)buffer + (unsigned long )ip_off; ip_len = (*ip)->ihl; ip_len = (int )ip_len << 2U; *tcp = (struct tcphdr *)((unsigned long )*ip + (unsigned long )ip_len); return (0); } } static int check_for_socket_match(struct lro *lro , struct iphdr *ip , struct tcphdr *tcp ) { { if (debug_level > 1) { { printk("\016s2io: %s: Been here...\n", "check_for_socket_match"); } } else { } if (((lro->iph)->saddr != ip->saddr || (lro->iph)->daddr != ip->daddr) || *((unsigned int *)lro->tcph + 0UL) != *((unsigned int *)tcp + 0UL)) { return (-1); } else { } return (0); } } __inline static int get_l4_pyld_length(struct iphdr *ip , struct tcphdr *tcp ) { __u16 tmp ; { { tmp = __fswab16((int )ip->tot_len); } return (((int )tmp - ((int )ip->ihl << 2)) - ((int )tcp->doff << 2)); } } static void initiate_new_session(struct lro *lro , u8 *l2h , struct iphdr *ip , struct tcphdr *tcp , u32 tcp_pyld_len , u16 vlan_tag ) { __u32 tmp ; __u16 tmp___0 ; __be32 *ptr ; __u32 tmp___1 ; { if (debug_level > 1) { { printk("\016s2io: %s: Been here...\n", "initiate_new_session"); } } else { } { lro->l2h = l2h; lro->iph = ip; lro->tcph = tcp; tmp = __fswab32(tcp->seq); lro->tcp_next_seq = tcp_pyld_len + tmp; lro->tcp_ack = tcp->ack_seq; lro->sg_num = 1; tmp___0 = __fswab16((int )ip->tot_len); lro->total_len = (int )tmp___0; lro->frags_len = 0; lro->vlan_tag = vlan_tag; } if ((unsigned int )*((unsigned char *)tcp + 12UL) == 128U) { { ptr = (__be32 *)tcp + 1U; lro->saw_ts = 1U; tmp___1 = __fswab32(*(ptr + 1UL)); lro->cur_tsval = tmp___1; lro->cur_tsecr = *(ptr + 2UL); } } else { } lro->in_use = 1; return; } } static void update_L3L4_header(struct s2io_nic *sp , struct lro *lro ) { struct iphdr *ip ; struct tcphdr *tcp ; struct swStat *swstats ; __u16 tmp ; __u16 tmp___0 ; __be32 *ptr ; { ip = lro->iph; tcp = lro->tcph; swstats = & (sp->mac_control.stats_info)->sw_stat; if (debug_level > 1) { { printk("\016s2io: %s: Been here...\n", "update_L3L4_header"); } } else { } { tmp = __fswab16((int )((__u16 )lro->total_len)); csum_replace2(& ip->check, (int )ip->tot_len, (int )tmp); tmp___0 = __fswab16((int )((__u16 )lro->total_len)); ip->tot_len = tmp___0; tcp->ack_seq = lro->tcp_ack; tcp->window = lro->window; } if ((unsigned int )lro->saw_ts != 0U) { ptr = (__be32 *)tcp + 1U; *(ptr + 2UL) = lro->cur_tsecr; } else { } swstats->sum_avg_pkts_aggregated = swstats->sum_avg_pkts_aggregated + (unsigned long long )lro->sg_num; swstats->num_aggregations = swstats->num_aggregations + 1ULL; return; } } static void aggregate_new_rx(struct lro *lro , struct iphdr *ip , struct tcphdr *tcp , u32 l4_pyld ) { __be32 *ptr ; __u32 tmp ; { if (debug_level > 1) { { printk("\016s2io: %s: Been here...\n", "aggregate_new_rx"); } } else { } lro->total_len = (int )((u32 )lro->total_len + l4_pyld); lro->frags_len = (int )((u32 )lro->frags_len + l4_pyld); lro->tcp_next_seq = lro->tcp_next_seq + l4_pyld; lro->sg_num = lro->sg_num + 1; lro->tcp_ack = tcp->ack_seq; lro->window = tcp->window; if ((unsigned int )lro->saw_ts != 0U) { { ptr = (__be32 *)tcp + 1U; tmp = __fswab32(*(ptr + 1UL)); lro->cur_tsval = tmp; lro->cur_tsecr = *(ptr + 2UL); } } else { } return; } } static int verify_l3_l4_lro_capable(struct lro *l_lro , struct iphdr *ip , struct tcphdr *tcp , u32 tcp_pyld_len ) { u8 *ptr ; __u8 tmp ; int tmp___0 ; __u32 tmp___1 ; { if (debug_level > 1) { { printk("\016s2io: %s: Been here...\n", "verify_l3_l4_lro_capable"); } } else { } if (tcp_pyld_len == 0U) { return (-1); } else { } if ((unsigned int )*((unsigned char *)ip + 0UL) != 5U) { return (-1); } else { } { tmp = ipv4_get_dsfield((struct iphdr const *)ip); tmp___0 = INET_ECN_is_ce((int )tmp); } if (tmp___0 != 0) { return (-1); } else { } if ((unsigned int )*((unsigned char *)tcp + 13UL) != 16U) { return (-1); } else { } if ((unsigned int )*((unsigned char *)tcp + 12UL) != 80U && (unsigned int )*((unsigned char *)tcp + 12UL) != 128U) { return (-1); } else { } if ((unsigned int )*((unsigned char *)tcp + 12UL) == 128U) { ptr = (u8 *)tcp + 1U; goto ldv_54639; ldv_54638: ptr = ptr + 1; ldv_54639: ; if ((unsigned int )*ptr == 1U) { goto ldv_54638; } else { } if ((unsigned int )*ptr != 8U || (unsigned int )*(ptr + 1UL) != 10U) { return (-1); } else { } if ((unsigned long )l_lro != (unsigned long )((struct lro *)0)) { { tmp___1 = __fswab32(*((__be32 *)ptr + 2U)); } if (l_lro->cur_tsval > tmp___1) { return (-1); } else { } } else { } if (*((__be32 *)ptr + 6U) == 0U) { return (-1); } else { } } else { } return (0); } } static int s2io_club_tcp_session(struct ring_info *ring_data , u8 *buffer , u8 **tcp , u32 *tcp_len , struct lro **lro , struct RxD_t *rxdp , struct s2io_nic *sp ) { struct iphdr *ip ; struct tcphdr *tcph ; int ret ; int i ; u16 vlan_tag ; struct swStat *swstats ; int tmp ; struct lro *l_lro ; int tmp___0 ; __u32 tmp___1 ; __u32 tmp___2 ; int tmp___3 ; int tmp___4 ; struct lro *l_lro___0 ; { { ret = 0; vlan_tag = 0U; swstats = & (sp->mac_control.stats_info)->sw_stat; ret = check_L2_lro_capable(buffer, & ip, (struct tcphdr **)tcp, rxdp, sp); } if (ret != 0) { return (ret); } else { } if (debug_level > 1) { { printk("\016s2io: IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr); } } else { } { vlan_tag = (unsigned short )rxdp->Control_2; tcph = (struct tcphdr *)*tcp; tmp = get_l4_pyld_length(ip, tcph); *tcp_len = (u32 )tmp; i = 0; } goto ldv_54661; ldv_54660: l_lro = (struct lro *)(& ring_data->lro0_n) + (unsigned long )i; if (l_lro->in_use != 0) { { tmp___0 = check_for_socket_match(l_lro, ip, tcph); } if (tmp___0 != 0) { goto ldv_54657; } else { } { *lro = l_lro; tmp___2 = __fswab32(tcph->seq); } if ((*lro)->tcp_next_seq != tmp___2) { if (debug_level > 1) { { tmp___1 = __fswab32(tcph->seq); printk("\016s2io: %s: Out of sequence. expected 0x%x, actual 0x%x\n", "s2io_club_tcp_session", (*lro)->tcp_next_seq, tmp___1); } } else { } swstats->outof_sequence_pkts = swstats->outof_sequence_pkts + 1ULL; ret = 2; goto ldv_54659; } else { } { tmp___3 = verify_l3_l4_lro_capable(l_lro, ip, tcph, *tcp_len); } if (tmp___3 == 0) { ret = 1; } else { ret = 2; } goto ldv_54659; } else { } ldv_54657: i = i + 1; ldv_54661: ; if (i <= 31) { goto ldv_54660; } else { } ldv_54659: ; if (ret == 0) { { tmp___4 = verify_l3_l4_lro_capable((struct lro *)0, ip, tcph, *tcp_len); } if (tmp___4 != 0) { return (5); } else { } i = 0; goto ldv_54665; ldv_54664: l_lro___0 = (struct lro *)(& ring_data->lro0_n) + (unsigned long )i; if (l_lro___0->in_use == 0) { *lro = l_lro___0; ret = 3; goto ldv_54663; } else { } i = i + 1; ldv_54665: ; if (i <= 31) { goto ldv_54664; } else { } ldv_54663: ; } else { } if (ret == 0) { if (debug_level > 1) { { printk("\016s2io: %s: All LRO sessions already in use\n", "s2io_club_tcp_session"); } } else { } *lro = (struct lro *)0; return (ret); } else { } { if (ret == 3) { goto case_3; } else { } if (ret == 2) { goto case_2; } else { } if (ret == 1) { goto case_1; } else { } goto switch_default; case_3: /* CIL Label */ { initiate_new_session(*lro, buffer, ip, tcph, *tcp_len, (int )vlan_tag); } goto ldv_54667; case_2: /* CIL Label */ { update_L3L4_header(sp, *lro); } goto ldv_54667; case_1: /* CIL Label */ { aggregate_new_rx(*lro, ip, tcph, *tcp_len); } if ((*lro)->sg_num == (int )sp->lro_max_aggr_per_sess) { { update_L3L4_header(sp, *lro); ret = 4; } } else { } goto ldv_54667; switch_default: /* CIL Label */ ; if (debug_level >= 0) { { printk("\016s2io: %s: Don\'t know, can\'t say!!\n", "s2io_club_tcp_session"); } } else { } goto ldv_54667; switch_break: /* CIL Label */ ; } ldv_54667: ; return (ret); } } static void clear_lro_session(struct lro *lro ) { u16 lro_struct_size ; { { lro_struct_size = 128U; memset((void *)lro, 0, (size_t )lro_struct_size); } return; } } static void queue_rx_frame(struct sk_buff *skb , u16 vlan_tag ) { struct net_device *dev ; struct s2io_nic *sp ; void *tmp ; { { dev = skb->dev; tmp = netdev_priv((struct net_device const *)dev); sp = (struct s2io_nic *)tmp; skb->protocol = eth_type_trans(skb, dev); } if ((unsigned int )vlan_tag != 0U && sp->vlan_strip_flag != 0) { { __vlan_hwaccel_put_tag(skb, 129, (int )vlan_tag); } } else { } if ((unsigned int )sp->config.napi != 0U) { { netif_receive_skb(skb); } } else { { netif_rx(skb); } } return; } } static void lro_append_pkt(struct s2io_nic *sp , struct lro *lro , struct sk_buff *skb , u32 tcp_len ) { struct sk_buff *first ; struct swStat *swstats ; unsigned char *tmp ; unsigned char *tmp___0 ; { { first = lro->parent; swstats = & (sp->mac_control.stats_info)->sw_stat; first->len = first->len + tcp_len; first->data_len = (unsigned int )lro->frags_len; skb_pull(skb, skb->len - tcp_len); tmp___0 = skb_end_pointer((struct sk_buff const *)first); } if ((unsigned long )((struct skb_shared_info *)tmp___0)->frag_list != (unsigned long )((struct sk_buff *)0)) { (lro->last_frag)->next = skb; } else { { tmp = skb_end_pointer((struct sk_buff const *)first); ((struct skb_shared_info *)tmp)->frag_list = skb; } } first->truesize = first->truesize + skb->truesize; lro->last_frag = skb; swstats->clubbed_frms_cnt = swstats->clubbed_frms_cnt + 1ULL; return; } } static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev , pci_channel_state_t state ) { struct net_device *netdev ; void *tmp ; struct s2io_nic *sp ; void *tmp___0 ; bool tmp___1 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); sp = (struct s2io_nic *)tmp___0; netif_device_detach(netdev); } if (state == 3U) { return (4U); } else { } { tmp___1 = netif_running((struct net_device const *)netdev); } if ((int )tmp___1) { { do_s2io_card_down(sp, 0); } } else { } { pci_disable_device(pdev); } return (3U); } } static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct s2io_nic *sp ; void *tmp___0 ; int tmp___1 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); sp = (struct s2io_nic *)tmp___0; tmp___1 = pci_enable_device(pdev); } if (tmp___1 != 0) { { printk("\vs2io: Cannot re-enable PCI device after reset.\n"); } return (4U); } else { } { pci_set_master(pdev); s2io_reset(sp); } return (5U); } } static void s2io_io_resume(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct s2io_nic *sp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; bool tmp___3 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); sp = (struct s2io_nic *)tmp___0; tmp___3 = netif_running((struct net_device const *)netdev); } if ((int )tmp___3) { { tmp___1 = s2io_card_up(sp); } if (tmp___1 != 0) { { printk("\vs2io: Can\'t bring device back up after reset.\n"); } return; } else { } { tmp___2 = s2io_set_mac_addr(netdev, (void *)netdev->dev_addr); } if (tmp___2 == -1) { { s2io_card_down(sp); printk("\vs2io: Can\'t restore mac addr after reset.\n"); } return; } else { } } else { } { netif_device_attach(netdev); netif_tx_wake_all_queues(netdev); } return; } } extern void ldv_EMGentry_exit_s2io_closer_20_2(void (*)(void) ) ; extern int ldv_EMGentry_init_s2io_starter_20_7(int (*)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_allocate_external_0(void) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_deregister_17_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_18_1(struct pci_driver *arg0 ) ; void ldv_dispatch_instance_deregister_8_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_11_2(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_9_1(int arg0 ) ; void ldv_dispatch_irq_register_13_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_14_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_15_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_16_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_12_4(struct net_device *arg0 ) ; void ldv_dispatch_register_19_2(struct pci_driver *arg0 ) ; void ldv_dummy_resourceless_instance_callback_4_10(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_11(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_14(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_15(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_16(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_17(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_18(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_19(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_20(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_23(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_26(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_29(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_32(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_33(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_34(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_37(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_38(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_39(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_40(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_41(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_42(void (*arg0)(struct net_device * , struct ethtool_test * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_test *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_45(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_48(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_49(int (*arg0)(struct net_device * , enum ethtool_phys_id_state ) , struct net_device *arg1 , enum ethtool_phys_id_state arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_50(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_7(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) ; void ldv_entry_EMGentry_20(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_initialize_external_data(void) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_2_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_3_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_2_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_3_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_interrupt_interrupt_instance_1(void *arg0 ) ; void ldv_interrupt_interrupt_instance_2(void *arg0 ) ; void ldv_interrupt_interrupt_instance_3(void *arg0 ) ; int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) ; void ldv_net_dummy_resourceless_instance_4(void *arg0 ) ; void ldv_pci_instance_callback_5_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) ; void ldv_pci_instance_callback_5_23(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_callback_5_24(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_probe_5_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_5_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_5_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_5_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_5_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_5_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_5_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_5(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_12_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; void ldv_switch_automaton_state_0_1(void) ; void ldv_switch_automaton_state_0_6(void) ; void ldv_switch_automaton_state_1_1(void) ; void ldv_switch_automaton_state_1_6(void) ; void ldv_switch_automaton_state_2_1(void) ; void ldv_switch_automaton_state_2_6(void) ; void ldv_switch_automaton_state_3_1(void) ; void ldv_switch_automaton_state_3_6(void) ; void ldv_switch_automaton_state_4_1(void) ; void ldv_switch_automaton_state_4_5(void) ; void ldv_switch_automaton_state_5_11(void) ; void ldv_switch_automaton_state_5_20(void) ; void ldv_switch_automaton_state_6_1(void) ; void ldv_switch_automaton_state_6_3(void) ; void ldv_timer_instance_callback_6_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_6(void *arg0 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_17_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; enum irqreturn (*ldv_1_callback_handler)(int , void * ) ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; void (*ldv_20_exit_s2io_closer_default)(void) ; int (*ldv_20_init_s2io_starter_default)(void) ; int ldv_20_ret_default ; enum irqreturn (*ldv_2_callback_handler)(int , void * ) ; void *ldv_2_data_data ; int ldv_2_line_line ; enum irqreturn ldv_2_ret_val_default ; enum irqreturn (*ldv_2_thread_thread)(int , void * ) ; enum irqreturn (*ldv_3_callback_handler)(int , void * ) ; void *ldv_3_data_data ; int ldv_3_line_line ; enum irqreturn ldv_3_ret_val_default ; enum irqreturn (*ldv_3_thread_thread)(int , void * ) ; void (*ldv_4_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*ldv_4_callback_get_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) ; int (*ldv_4_callback_get_eeprom_len)(struct net_device * ) ; void (*ldv_4_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_4_callback_get_link)(struct net_device * ) ; void (*ldv_4_callback_get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*ldv_4_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; int (*ldv_4_callback_get_regs_len)(struct net_device * ) ; void (*ldv_4_callback_get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_4_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_4_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_4_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; int (*ldv_4_callback_ndo_change_mtu)(struct net_device * , int ) ; int (*ldv_4_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; struct net_device_stats *(*ldv_4_callback_ndo_get_stats)(struct net_device * ) ; void (*ldv_4_callback_ndo_poll_controller)(struct net_device * ) ; int (*ldv_4_callback_ndo_set_features)(struct net_device * , unsigned long long ) ; int (*ldv_4_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_4_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_4_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_4_callback_ndo_tx_timeout)(struct net_device * ) ; int (*ldv_4_callback_ndo_validate_addr)(struct net_device * ) ; void (*ldv_4_callback_self_test)(struct net_device * , struct ethtool_test * , unsigned long long * ) ; int (*ldv_4_callback_set_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) ; int (*ldv_4_callback_set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*ldv_4_callback_set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; int (*ldv_4_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) ; enum ethtool_phys_id_state ldv_4_container_enum_ethtool_phys_id_state ; struct net_device *ldv_4_container_net_device ; struct ethtool_cmd *ldv_4_container_struct_ethtool_cmd_ptr ; struct ethtool_drvinfo *ldv_4_container_struct_ethtool_drvinfo_ptr ; struct ethtool_eeprom *ldv_4_container_struct_ethtool_eeprom_ptr ; struct ethtool_pauseparam *ldv_4_container_struct_ethtool_pauseparam_ptr ; struct ethtool_regs *ldv_4_container_struct_ethtool_regs_ptr ; struct ethtool_ringparam *ldv_4_container_struct_ethtool_ringparam_ptr ; struct ethtool_stats *ldv_4_container_struct_ethtool_stats_ptr ; struct ethtool_test *ldv_4_container_struct_ethtool_test_ptr ; struct ifreq *ldv_4_container_struct_ifreq_ptr ; struct sk_buff *ldv_4_container_struct_sk_buff_ptr ; unsigned long long *ldv_4_ldv_param_11_2_default ; int ldv_4_ldv_param_20_1_default ; unsigned int ldv_4_ldv_param_23_1_default ; unsigned char *ldv_4_ldv_param_23_2_default ; int ldv_4_ldv_param_26_1_default ; int ldv_4_ldv_param_29_2_default ; unsigned long long ldv_4_ldv_param_34_1_default ; unsigned long long *ldv_4_ldv_param_42_2_default ; unsigned char *ldv_4_ldv_param_45_2_default ; unsigned char *ldv_4_ldv_param_7_2_default ; unsigned int (*ldv_5_callback_error_detected)(struct pci_dev * , enum pci_channel_state ) ; void (*ldv_5_callback_func_1_ptr)(struct pci_dev * ) ; unsigned int (*ldv_5_callback_slot_reset)(struct pci_dev * ) ; struct pci_driver *ldv_5_container_pci_driver ; struct pci_dev *ldv_5_resource_dev ; enum pci_channel_state ldv_5_resource_enum_pci_channel_state ; struct pm_message ldv_5_resource_pm_message ; struct pci_device_id *ldv_5_resource_struct_pci_device_id_ptr ; int ldv_5_ret_default ; struct timer_list *ldv_6_container_timer_list ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_2 ; int ldv_statevar_20 ; int ldv_statevar_3 ; int ldv_statevar_4 ; int ldv_statevar_5 ; int ldv_statevar_6 ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) = & s2io_isr; enum irqreturn (*ldv_1_callback_handler)(int , void * ) = & s2io_msix_fifo_handle; void (*ldv_20_exit_s2io_closer_default)(void) = & s2io_closer; int (*ldv_20_init_s2io_starter_default)(void) = & s2io_starter; enum irqreturn (*ldv_2_callback_handler)(int , void * ) = & s2io_msix_ring_handle; enum irqreturn (*ldv_3_callback_handler)(int , void * ) = & s2io_test_intr; void (*ldv_4_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) = & s2io_ethtool_gdrvinfo; int (*ldv_4_callback_get_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) = & s2io_ethtool_geeprom; int (*ldv_4_callback_get_eeprom_len)(struct net_device * ) = & s2io_get_eeprom_len; void (*ldv_4_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) = & s2io_get_ethtool_stats; unsigned int (*ldv_4_callback_get_link)(struct net_device * ) = & ethtool_op_get_link; void (*ldv_4_callback_get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) = & s2io_ethtool_getpause_data; void (*ldv_4_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) = & s2io_ethtool_gregs; int (*ldv_4_callback_get_regs_len)(struct net_device * ) = & s2io_ethtool_get_regs_len; void (*ldv_4_callback_get_ringparam)(struct net_device * , struct ethtool_ringparam * ) = & s2io_ethtool_gringparam; int (*ldv_4_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) = & s2io_ethtool_gset; int (*ldv_4_callback_get_sset_count)(struct net_device * , int ) = & s2io_get_sset_count; void (*ldv_4_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) = & s2io_ethtool_get_strings; int (*ldv_4_callback_ndo_change_mtu)(struct net_device * , int ) = & s2io_change_mtu; int (*ldv_4_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) = & s2io_ioctl; struct net_device_stats *(*ldv_4_callback_ndo_get_stats)(struct net_device * ) = & s2io_get_stats; void (*ldv_4_callback_ndo_poll_controller)(struct net_device * ) = & s2io_netpoll; int (*ldv_4_callback_ndo_set_features)(struct net_device * , unsigned long long ) = & s2io_set_features; int (*ldv_4_callback_ndo_set_mac_address)(struct net_device * , void * ) = & s2io_set_mac_addr; void (*ldv_4_callback_ndo_set_rx_mode)(struct net_device * ) = & s2io_set_multicast; enum netdev_tx (*ldv_4_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) = & s2io_xmit; void (*ldv_4_callback_ndo_tx_timeout)(struct net_device * ) = & s2io_tx_watchdog; int (*ldv_4_callback_ndo_validate_addr)(struct net_device * ) = & eth_validate_addr; void (*ldv_4_callback_self_test)(struct net_device * , struct ethtool_test * , unsigned long long * ) = & s2io_ethtool_test; int (*ldv_4_callback_set_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) = & s2io_ethtool_seeprom; int (*ldv_4_callback_set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) = & s2io_ethtool_setpause_data; int (*ldv_4_callback_set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) = & s2io_ethtool_set_led; int (*ldv_4_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) = & s2io_ethtool_sset; unsigned int (*ldv_5_callback_error_detected)(struct pci_dev * , enum pci_channel_state ) = (unsigned int (*)(struct pci_dev * , enum pci_channel_state ))(& s2io_io_error_detected); void (*ldv_5_callback_func_1_ptr)(struct pci_dev * ) = & s2io_io_resume; unsigned int (*ldv_5_callback_slot_reset)(struct pci_dev * ) = & s2io_io_slot_reset; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_19_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_19_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_5 == 20); ldv_dispatch_register_19_2(ldv_19_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_7_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3200UL); ldv_7_netdev_net_device = (struct net_device *)tmp; } return (ldv_7_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } void ldv_allocate_external_0(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; void *tmp___13 ; void *tmp___14 ; void *tmp___15 ; void *tmp___16 ; void *tmp___17 ; void *tmp___18 ; void *tmp___19 ; void *tmp___20 ; { { ldv_0_data_data = external_allocated_data(); tmp = external_allocated_data(); ldv_0_thread_thread = (enum irqreturn (*)(int , void * ))tmp; ldv_1_data_data = external_allocated_data(); tmp___0 = external_allocated_data(); ldv_1_thread_thread = (enum irqreturn (*)(int , void * ))tmp___0; ldv_2_data_data = external_allocated_data(); tmp___1 = external_allocated_data(); ldv_2_thread_thread = (enum irqreturn (*)(int , void * ))tmp___1; ldv_3_data_data = external_allocated_data(); tmp___2 = external_allocated_data(); ldv_3_thread_thread = (enum irqreturn (*)(int , void * ))tmp___2; tmp___3 = external_allocated_data(); ldv_4_container_net_device = (struct net_device *)tmp___3; tmp___4 = external_allocated_data(); ldv_4_container_struct_ethtool_cmd_ptr = (struct ethtool_cmd *)tmp___4; tmp___5 = external_allocated_data(); ldv_4_container_struct_ethtool_drvinfo_ptr = (struct ethtool_drvinfo *)tmp___5; tmp___6 = external_allocated_data(); ldv_4_container_struct_ethtool_eeprom_ptr = (struct ethtool_eeprom *)tmp___6; tmp___7 = external_allocated_data(); ldv_4_container_struct_ethtool_pauseparam_ptr = (struct ethtool_pauseparam *)tmp___7; tmp___8 = external_allocated_data(); ldv_4_container_struct_ethtool_regs_ptr = (struct ethtool_regs *)tmp___8; tmp___9 = external_allocated_data(); ldv_4_container_struct_ethtool_ringparam_ptr = (struct ethtool_ringparam *)tmp___9; tmp___10 = external_allocated_data(); ldv_4_container_struct_ethtool_stats_ptr = (struct ethtool_stats *)tmp___10; tmp___11 = external_allocated_data(); ldv_4_container_struct_ethtool_test_ptr = (struct ethtool_test *)tmp___11; tmp___12 = external_allocated_data(); ldv_4_container_struct_ifreq_ptr = (struct ifreq *)tmp___12; tmp___13 = external_allocated_data(); ldv_4_container_struct_sk_buff_ptr = (struct sk_buff *)tmp___13; tmp___14 = external_allocated_data(); ldv_4_ldv_param_11_2_default = (unsigned long long *)tmp___14; tmp___15 = external_allocated_data(); ldv_4_ldv_param_23_2_default = (unsigned char *)tmp___15; tmp___16 = external_allocated_data(); ldv_4_ldv_param_42_2_default = (unsigned long long *)tmp___16; tmp___17 = external_allocated_data(); ldv_4_ldv_param_45_2_default = (unsigned char *)tmp___17; tmp___18 = external_allocated_data(); ldv_4_ldv_param_7_2_default = (unsigned char *)tmp___18; tmp___19 = external_allocated_data(); ldv_5_resource_dev = (struct pci_dev *)tmp___19; tmp___20 = external_allocated_data(); ldv_6_container_timer_list = (struct timer_list *)tmp___20; } return; } } int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_8_timer_list_timer_list ; { { ldv_8_timer_list_timer_list = arg1; ldv_assume(ldv_statevar_6 == 2); ldv_dispatch_instance_deregister_8_1(ldv_8_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_deregister_17_1(struct net_device *arg0 ) { { { ldv_4_container_net_device = arg0; ldv_switch_automaton_state_4_1(); } return; } } void ldv_dispatch_deregister_18_1(struct pci_driver *arg0 ) { { { ldv_5_container_pci_driver = arg0; ldv_switch_automaton_state_5_11(); } return; } } void ldv_dispatch_instance_deregister_8_1(struct timer_list *arg0 ) { { { ldv_6_container_timer_list = arg0; ldv_switch_automaton_state_6_1(); } return; } } void ldv_dispatch_instance_register_11_2(struct timer_list *arg0 ) { { { ldv_6_container_timer_list = arg0; ldv_switch_automaton_state_6_3(); } return; } } void ldv_dispatch_irq_deregister_9_1(int arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_0_line_line = arg0; ldv_switch_automaton_state_0_1(); } goto ldv_55435; case_1: /* CIL Label */ { ldv_1_line_line = arg0; ldv_switch_automaton_state_1_1(); } goto ldv_55435; case_2: /* CIL Label */ { ldv_2_line_line = arg0; ldv_switch_automaton_state_2_1(); } goto ldv_55435; case_3: /* CIL Label */ { ldv_3_line_line = arg0; ldv_switch_automaton_state_3_1(); } goto ldv_55435; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_55435: ; return; } } void ldv_dispatch_irq_register_13_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } goto ldv_55452; case_1: /* CIL Label */ { ldv_1_line_line = arg0; ldv_1_callback_handler = arg1; ldv_1_thread_thread = arg2; ldv_1_data_data = arg3; ldv_switch_automaton_state_1_6(); } goto ldv_55452; case_2: /* CIL Label */ { ldv_2_line_line = arg0; ldv_2_callback_handler = arg1; ldv_2_thread_thread = arg2; ldv_2_data_data = arg3; ldv_switch_automaton_state_2_6(); } goto ldv_55452; case_3: /* CIL Label */ { ldv_3_line_line = arg0; ldv_3_callback_handler = arg1; ldv_3_thread_thread = arg2; ldv_3_data_data = arg3; ldv_switch_automaton_state_3_6(); } goto ldv_55452; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_55452: ; return; } } void ldv_dispatch_irq_register_14_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } goto ldv_55469; case_1: /* CIL Label */ { ldv_1_line_line = arg0; ldv_1_callback_handler = arg1; ldv_1_thread_thread = arg2; ldv_1_data_data = arg3; ldv_switch_automaton_state_1_6(); } goto ldv_55469; case_2: /* CIL Label */ { ldv_2_line_line = arg0; ldv_2_callback_handler = arg1; ldv_2_thread_thread = arg2; ldv_2_data_data = arg3; ldv_switch_automaton_state_2_6(); } goto ldv_55469; case_3: /* CIL Label */ { ldv_3_line_line = arg0; ldv_3_callback_handler = arg1; ldv_3_thread_thread = arg2; ldv_3_data_data = arg3; ldv_switch_automaton_state_3_6(); } goto ldv_55469; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_55469: ; return; } } void ldv_dispatch_irq_register_15_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } goto ldv_55486; case_1: /* CIL Label */ { ldv_1_line_line = arg0; ldv_1_callback_handler = arg1; ldv_1_thread_thread = arg2; ldv_1_data_data = arg3; ldv_switch_automaton_state_1_6(); } goto ldv_55486; case_2: /* CIL Label */ { ldv_2_line_line = arg0; ldv_2_callback_handler = arg1; ldv_2_thread_thread = arg2; ldv_2_data_data = arg3; ldv_switch_automaton_state_2_6(); } goto ldv_55486; case_3: /* CIL Label */ { ldv_3_line_line = arg0; ldv_3_callback_handler = arg1; ldv_3_thread_thread = arg2; ldv_3_data_data = arg3; ldv_switch_automaton_state_3_6(); } goto ldv_55486; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_55486: ; return; } } void ldv_dispatch_irq_register_16_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } goto ldv_55503; case_1: /* CIL Label */ { ldv_1_line_line = arg0; ldv_1_callback_handler = arg1; ldv_1_thread_thread = arg2; ldv_1_data_data = arg3; ldv_switch_automaton_state_1_6(); } goto ldv_55503; case_2: /* CIL Label */ { ldv_2_line_line = arg0; ldv_2_callback_handler = arg1; ldv_2_thread_thread = arg2; ldv_2_data_data = arg3; ldv_switch_automaton_state_2_6(); } goto ldv_55503; case_3: /* CIL Label */ { ldv_3_line_line = arg0; ldv_3_callback_handler = arg1; ldv_3_thread_thread = arg2; ldv_3_data_data = arg3; ldv_switch_automaton_state_3_6(); } goto ldv_55503; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_55503: ; return; } } void ldv_dispatch_register_12_4(struct net_device *arg0 ) { { { ldv_4_container_net_device = arg0; ldv_switch_automaton_state_4_5(); } return; } } void ldv_dispatch_register_19_2(struct pci_driver *arg0 ) { { { ldv_5_container_pci_driver = arg0; ldv_switch_automaton_state_5_20(); } return; } } void ldv_dummy_resourceless_instance_callback_4_10(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { s2io_get_eeprom_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_11(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { s2io_get_ethtool_stats(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_14(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ethtool_op_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_15(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { s2io_ethtool_getpause_data(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_16(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) { { { s2io_ethtool_gregs(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_17(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { s2io_ethtool_get_regs_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_18(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { s2io_ethtool_gringparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_19(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { s2io_ethtool_gset(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_20(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { s2io_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_23(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { s2io_ethtool_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_26(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { s2io_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_29(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) { { { s2io_ioctl(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { s2io_ethtool_gdrvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_32(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { s2io_get_stats(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_33(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { s2io_netpoll(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_34(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { s2io_set_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_37(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { s2io_set_mac_addr(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_38(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { s2io_set_multicast(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_39(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { s2io_xmit(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_40(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { s2io_tx_watchdog(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_41(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_42(void (*arg0)(struct net_device * , struct ethtool_test * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_test *arg2 , unsigned long long *arg3 ) { { { s2io_ethtool_test(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_45(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) { { { s2io_ethtool_seeprom(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_48(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { s2io_ethtool_setpause_data(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_49(int (*arg0)(struct net_device * , enum ethtool_phys_id_state ) , struct net_device *arg1 , enum ethtool_phys_id_state arg2 ) { { { s2io_ethtool_set_led(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_50(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { s2io_ethtool_sset(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_7(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) { { { s2io_ethtool_geeprom(arg1, arg2, arg3); } return; } } void ldv_entry_EMGentry_20(void *arg0 ) { int tmp ; { { if (ldv_statevar_20 == 4) { goto case_4; } else { } if (ldv_statevar_20 == 6) { goto case_6; } else { } if (ldv_statevar_20 == 7) { goto case_7; } else { } goto switch_default; case_4: /* CIL Label */ { ldv_assume(ldv_20_ret_default == 0); ldv_assume(ldv_statevar_5 == 12); ldv_EMGentry_exit_s2io_closer_20_2(ldv_20_exit_s2io_closer_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_20 = 7; } goto ldv_55707; case_6: /* CIL Label */ { ldv_assume(ldv_20_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_20 = 7; } goto ldv_55707; case_7: /* CIL Label */ { ldv_assume(ldv_statevar_5 == 20); ldv_20_ret_default = ldv_EMGentry_init_s2io_starter_20_7(ldv_20_init_s2io_starter_default); ldv_20_ret_default = ldv_post_init(ldv_20_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_20 = 4; } else { ldv_statevar_20 = 6; } goto ldv_55707; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_55707: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_20 = 7; ldv_statevar_0 = 6; ldv_statevar_1 = 6; ldv_statevar_2 = 6; ldv_statevar_3 = 6; ldv_statevar_4 = 5; ldv_5_ret_default = 1; ldv_statevar_5 = 20; ldv_statevar_6 = 3; } ldv_55723: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_20((void *)0); } goto ldv_55714; case_1: /* CIL Label */ { ldv_interrupt_interrupt_instance_0((void *)0); } goto ldv_55714; case_2: /* CIL Label */ { ldv_interrupt_interrupt_instance_1((void *)0); } goto ldv_55714; case_3: /* CIL Label */ { ldv_interrupt_interrupt_instance_2((void *)0); } goto ldv_55714; case_4: /* CIL Label */ { ldv_interrupt_interrupt_instance_3((void *)0); } goto ldv_55714; case_5: /* CIL Label */ { ldv_net_dummy_resourceless_instance_4((void *)0); } goto ldv_55714; case_6: /* CIL Label */ { ldv_pci_pci_instance_5((void *)0); } goto ldv_55714; case_7: /* CIL Label */ { ldv_timer_timer_instance_6((void *)0); } goto ldv_55714; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_55714: ; goto ldv_55723; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_9_line_line ; { { ldv_9_line_line = arg1; ldv_assume(((ldv_statevar_0 == 2 || ldv_statevar_1 == 2) || ldv_statevar_2 == 2) || ldv_statevar_3 == 2); ldv_dispatch_irq_deregister_9_1(ldv_9_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_10_netdev_net_device ; { { ldv_10_netdev_net_device = arg1; ldv_free((void *)ldv_10_netdev_net_device); } return; return; } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = s2io_isr(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = s2io_msix_fifo_handle(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_2_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = s2io_msix_ring_handle(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_3_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = s2io_test_intr(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_2_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_3_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { int tmp ; { { if (ldv_statevar_0 == 2) { goto case_2; } else { } if (ldv_statevar_0 == 4) { goto case_4; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); ldv_statevar_0 = 6; } goto ldv_55797; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } ldv_statevar_0 = 6; goto ldv_55797; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 2; } else { ldv_statevar_0 = 4; } goto ldv_55797; case_6: /* CIL Label */ ; goto ldv_55797; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_55797: ; return; } } void ldv_interrupt_interrupt_instance_1(void *arg0 ) { int tmp ; { { if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_1_ret_val_default != 2U); ldv_statevar_1 = 6; } goto ldv_55806; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_1_ret_val_default == 2U); } if ((unsigned long )ldv_1_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_1_3(ldv_1_thread_thread, ldv_1_line_line, ldv_1_data_data); } } else { } ldv_statevar_1 = 6; goto ldv_55806; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_1_ret_val_default = ldv_interrupt_instance_handler_1_5(ldv_1_callback_handler, ldv_1_line_line, ldv_1_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_1 = 2; } else { ldv_statevar_1 = 4; } goto ldv_55806; case_6: /* CIL Label */ ; goto ldv_55806; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_55806: ; return; } } void ldv_interrupt_interrupt_instance_2(void *arg0 ) { int tmp ; { { if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 4) { goto case_4; } else { } if (ldv_statevar_2 == 5) { goto case_5; } else { } if (ldv_statevar_2 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_2_ret_val_default != 2U); ldv_statevar_2 = 6; } goto ldv_55815; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_2_ret_val_default == 2U); } if ((unsigned long )ldv_2_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_2_3(ldv_2_thread_thread, ldv_2_line_line, ldv_2_data_data); } } else { } ldv_statevar_2 = 6; goto ldv_55815; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_2_ret_val_default = ldv_interrupt_instance_handler_2_5(ldv_2_callback_handler, ldv_2_line_line, ldv_2_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_2 = 2; } else { ldv_statevar_2 = 4; } goto ldv_55815; case_6: /* CIL Label */ ; goto ldv_55815; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_55815: ; return; } } void ldv_interrupt_interrupt_instance_3(void *arg0 ) { int tmp ; { { if (ldv_statevar_3 == 2) { goto case_2; } else { } if (ldv_statevar_3 == 4) { goto case_4; } else { } if (ldv_statevar_3 == 5) { goto case_5; } else { } if (ldv_statevar_3 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_3_ret_val_default != 2U); ldv_statevar_3 = 6; } goto ldv_55824; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_3_ret_val_default == 2U); } if ((unsigned long )ldv_3_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_3_3(ldv_3_thread_thread, ldv_3_line_line, ldv_3_data_data); } } else { } ldv_statevar_3 = 6; goto ldv_55824; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_3_ret_val_default = ldv_interrupt_instance_handler_3_5(ldv_3_callback_handler, ldv_3_line_line, ldv_3_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_3 = 2; } else { ldv_statevar_3 = 4; } goto ldv_55824; case_6: /* CIL Label */ ; goto ldv_55824; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_55824: ; return; } } int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) { struct timer_list *ldv_11_timer_list_timer_list ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_11_timer_list_timer_list = arg1; ldv_assume(ldv_statevar_6 == 3); ldv_dispatch_instance_register_11_2(ldv_11_timer_list_timer_list); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_net_dummy_resourceless_instance_4(void *arg0 ) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; { { if (ldv_statevar_4 == 1) { goto case_1; } else { } if (ldv_statevar_4 == 2) { goto case_2; } else { } if (ldv_statevar_4 == 3) { goto case_3; } else { } if (ldv_statevar_4 == 4) { goto case_4; } else { } if (ldv_statevar_4 == 5) { goto case_5; } else { } if (ldv_statevar_4 == 8) { goto case_8; } else { } if (ldv_statevar_4 == 10) { goto case_10; } else { } if (ldv_statevar_4 == 12) { goto case_12; } else { } if (ldv_statevar_4 == 14) { goto case_14; } else { } if (ldv_statevar_4 == 15) { goto case_15; } else { } if (ldv_statevar_4 == 16) { goto case_16; } else { } if (ldv_statevar_4 == 17) { goto case_17; } else { } if (ldv_statevar_4 == 18) { goto case_18; } else { } if (ldv_statevar_4 == 19) { goto case_19; } else { } if (ldv_statevar_4 == 21) { goto case_21; } else { } if (ldv_statevar_4 == 24) { goto case_24; } else { } if (ldv_statevar_4 == 27) { goto case_27; } else { } if (ldv_statevar_4 == 30) { goto case_30; } else { } if (ldv_statevar_4 == 32) { goto case_32; } else { } if (ldv_statevar_4 == 33) { goto case_33; } else { } if (ldv_statevar_4 == 35) { goto case_35; } else { } if (ldv_statevar_4 == 37) { goto case_37; } else { } if (ldv_statevar_4 == 38) { goto case_38; } else { } if (ldv_statevar_4 == 39) { goto case_39; } else { } if (ldv_statevar_4 == 40) { goto case_40; } else { } if (ldv_statevar_4 == 41) { goto case_41; } else { } if (ldv_statevar_4 == 43) { goto case_43; } else { } if (ldv_statevar_4 == 46) { goto case_46; } else { } if (ldv_statevar_4 == 48) { goto case_48; } else { } if (ldv_statevar_4 == 49) { goto case_49; } else { } if (ldv_statevar_4 == 50) { goto case_50; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_55839; case_2: /* CIL Label */ { ldv_statevar_4 = ldv_switch_0(); } goto ldv_55839; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_3(ldv_4_callback_get_drvinfo, ldv_4_container_net_device, ldv_4_container_struct_ethtool_drvinfo_ptr); ldv_statevar_4 = 2; } goto ldv_55839; case_4: /* CIL Label */ { ldv_statevar_4 = ldv_switch_0(); } goto ldv_55839; case_5: /* CIL Label */ ; goto ldv_55839; case_8: /* CIL Label */ { tmp = ldv_xmalloc(1UL); ldv_4_ldv_param_7_2_default = (unsigned char *)tmp; ldv_dummy_resourceless_instance_callback_4_7(ldv_4_callback_get_eeprom, ldv_4_container_net_device, ldv_4_container_struct_ethtool_eeprom_ptr, ldv_4_ldv_param_7_2_default); ldv_free((void *)ldv_4_ldv_param_7_2_default); ldv_statevar_4 = 2; } goto ldv_55839; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_10(ldv_4_callback_get_eeprom_len, ldv_4_container_net_device); ldv_statevar_4 = 2; } goto ldv_55839; case_12: /* CIL Label */ { tmp___0 = ldv_xmalloc(8UL); ldv_4_ldv_param_11_2_default = (unsigned long long *)tmp___0; ldv_dummy_resourceless_instance_callback_4_11(ldv_4_callback_get_ethtool_stats, ldv_4_container_net_device, ldv_4_container_struct_ethtool_stats_ptr, ldv_4_ldv_param_11_2_default); ldv_free((void *)ldv_4_ldv_param_11_2_default); ldv_statevar_4 = 2; } goto ldv_55839; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_14(ldv_4_callback_get_link, ldv_4_container_net_device); ldv_statevar_4 = 2; } goto ldv_55839; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_15(ldv_4_callback_get_pauseparam, ldv_4_container_net_device, ldv_4_container_struct_ethtool_pauseparam_ptr); ldv_statevar_4 = 2; } goto ldv_55839; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_16(ldv_4_callback_get_regs, ldv_4_container_net_device, ldv_4_container_struct_ethtool_regs_ptr, (void *)ldv_4_container_struct_ethtool_cmd_ptr); ldv_statevar_4 = 2; } goto ldv_55839; case_17: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_17(ldv_4_callback_get_regs_len, ldv_4_container_net_device); ldv_statevar_4 = 2; } goto ldv_55839; case_18: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_18(ldv_4_callback_get_ringparam, ldv_4_container_net_device, ldv_4_container_struct_ethtool_ringparam_ptr); ldv_statevar_4 = 2; } goto ldv_55839; case_19: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_19(ldv_4_callback_get_settings, ldv_4_container_net_device, ldv_4_container_struct_ethtool_cmd_ptr); ldv_statevar_4 = 2; } goto ldv_55839; case_21: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_20(ldv_4_callback_get_sset_count, ldv_4_container_net_device, ldv_4_ldv_param_20_1_default); ldv_statevar_4 = 2; } goto ldv_55839; case_24: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_4_ldv_param_23_2_default = (unsigned char *)tmp___1; ldv_dummy_resourceless_instance_callback_4_23(ldv_4_callback_get_strings, ldv_4_container_net_device, ldv_4_ldv_param_23_1_default, ldv_4_ldv_param_23_2_default); ldv_free((void *)ldv_4_ldv_param_23_2_default); ldv_statevar_4 = 2; } goto ldv_55839; case_27: /* CIL Label */ { ldv_assume(((((ldv_statevar_0 == 6 || ldv_statevar_1 == 6) || ldv_statevar_2 == 6) || ldv_statevar_3 == 6) || ldv_statevar_6 == 3) || ldv_statevar_6 == 2); ldv_dummy_resourceless_instance_callback_4_26(ldv_4_callback_ndo_change_mtu, ldv_4_container_net_device, ldv_4_ldv_param_26_1_default); ldv_statevar_4 = 2; } goto ldv_55839; case_30: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_29(ldv_4_callback_ndo_do_ioctl, ldv_4_container_net_device, ldv_4_container_struct_ifreq_ptr, ldv_4_ldv_param_29_2_default); ldv_statevar_4 = 2; } goto ldv_55839; case_32: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_32(ldv_4_callback_ndo_get_stats, ldv_4_container_net_device); ldv_statevar_4 = 2; } goto ldv_55839; case_33: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_33(ldv_4_callback_ndo_poll_controller, ldv_4_container_net_device); ldv_statevar_4 = 2; } goto ldv_55839; case_35: /* CIL Label */ { ldv_assume(((((ldv_statevar_0 == 6 || ldv_statevar_1 == 6) || ldv_statevar_2 == 6) || ldv_statevar_3 == 6) || ldv_statevar_6 == 3) || ldv_statevar_6 == 2); ldv_dummy_resourceless_instance_callback_4_34(ldv_4_callback_ndo_set_features, ldv_4_container_net_device, ldv_4_ldv_param_34_1_default); ldv_statevar_4 = 2; } goto ldv_55839; case_37: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_37(ldv_4_callback_ndo_set_mac_address, ldv_4_container_net_device, (void *)ldv_4_container_struct_ethtool_cmd_ptr); ldv_statevar_4 = 2; } goto ldv_55839; case_38: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_38(ldv_4_callback_ndo_set_rx_mode, ldv_4_container_net_device); ldv_statevar_4 = 2; } goto ldv_55839; case_39: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_39(ldv_4_callback_ndo_start_xmit, ldv_4_container_struct_sk_buff_ptr, ldv_4_container_net_device); ldv_statevar_4 = 2; } goto ldv_55839; case_40: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_40(ldv_4_callback_ndo_tx_timeout, ldv_4_container_net_device); ldv_statevar_4 = 2; } goto ldv_55839; case_41: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_41(ldv_4_callback_ndo_validate_addr, ldv_4_container_net_device); ldv_statevar_4 = 2; } goto ldv_55839; case_43: /* CIL Label */ { tmp___2 = ldv_xmalloc(8UL); ldv_4_ldv_param_42_2_default = (unsigned long long *)tmp___2; ldv_assume(ldv_statevar_6 == 3); ldv_dummy_resourceless_instance_callback_4_42(ldv_4_callback_self_test, ldv_4_container_net_device, ldv_4_container_struct_ethtool_test_ptr, ldv_4_ldv_param_42_2_default); ldv_free((void *)ldv_4_ldv_param_42_2_default); ldv_statevar_4 = 2; } goto ldv_55839; case_46: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_4_ldv_param_45_2_default = (unsigned char *)tmp___3; ldv_dummy_resourceless_instance_callback_4_45(ldv_4_callback_set_eeprom, ldv_4_container_net_device, ldv_4_container_struct_ethtool_eeprom_ptr, ldv_4_ldv_param_45_2_default); ldv_free((void *)ldv_4_ldv_param_45_2_default); ldv_statevar_4 = 2; } goto ldv_55839; case_48: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_48(ldv_4_callback_set_pauseparam, ldv_4_container_net_device, ldv_4_container_struct_ethtool_pauseparam_ptr); ldv_statevar_4 = 2; } goto ldv_55839; case_49: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_49(ldv_4_callback_set_phys_id, ldv_4_container_net_device, ldv_4_container_enum_ethtool_phys_id_state); ldv_statevar_4 = 2; } goto ldv_55839; case_50: /* CIL Label */ { ldv_assume(ldv_statevar_6 == 3); ldv_dummy_resourceless_instance_callback_4_50(ldv_4_callback_set_settings, ldv_4_container_net_device, ldv_4_container_struct_ethtool_cmd_ptr); ldv_statevar_4 = 2; } goto ldv_55839; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_55839: ; return; } } void ldv_pci_instance_callback_5_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) { { { s2io_io_error_detected(arg1, (pci_channel_state_t )arg2); } return; } } void ldv_pci_instance_callback_5_23(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { s2io_io_resume(arg1); } return; } } void ldv_pci_instance_callback_5_24(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { s2io_io_slot_reset(arg1); } return; } } int ldv_pci_instance_probe_5_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = s2io_init_nic(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_5_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { s2io_rem_nic(arg1); } return; } } void ldv_pci_instance_resume_5_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_5_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_5_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_5_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_5_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_5(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_5 == 1) { goto case_1; } else { } if (ldv_statevar_5 == 2) { goto case_2; } else { } if (ldv_statevar_5 == 3) { goto case_3; } else { } if (ldv_statevar_5 == 4) { goto case_4; } else { } if (ldv_statevar_5 == 5) { goto case_5; } else { } if (ldv_statevar_5 == 6) { goto case_6; } else { } if (ldv_statevar_5 == 7) { goto case_7; } else { } if (ldv_statevar_5 == 8) { goto case_8; } else { } if (ldv_statevar_5 == 9) { goto case_9; } else { } if (ldv_statevar_5 == 10) { goto case_10; } else { } if (ldv_statevar_5 == 12) { goto case_12; } else { } if (ldv_statevar_5 == 14) { goto case_14; } else { } if (ldv_statevar_5 == 16) { goto case_16; } else { } if (ldv_statevar_5 == 17) { goto case_17; } else { } if (ldv_statevar_5 == 19) { goto case_19; } else { } if (ldv_statevar_5 == 20) { goto case_20; } else { } if (ldv_statevar_5 == 23) { goto case_23; } else { } if (ldv_statevar_5 == 24) { goto case_24; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_5 = 12; } else { ldv_statevar_5 = 17; } goto ldv_55933; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 1); ldv_pci_instance_release_5_2(ldv_5_container_pci_driver->remove, ldv_5_resource_dev); ldv_statevar_5 = 1; } goto ldv_55933; case_3: /* CIL Label */ ; if ((unsigned long )ldv_5_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_5_3(ldv_5_container_pci_driver->shutdown, ldv_5_resource_dev); } } else { } ldv_statevar_5 = 2; goto ldv_55933; case_4: /* CIL Label */ { ldv_statevar_5 = ldv_switch_1(); } goto ldv_55933; case_5: /* CIL Label */ ; if ((unsigned long )ldv_5_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_5_5(ldv_5_container_pci_driver->resume, ldv_5_resource_dev); } } else { } ldv_statevar_5 = 4; goto ldv_55933; case_6: /* CIL Label */ ; if ((unsigned long )ldv_5_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_5_6(ldv_5_container_pci_driver->resume_early, ldv_5_resource_dev); } } else { } ldv_statevar_5 = 5; goto ldv_55933; case_7: /* CIL Label */ ; if ((unsigned long )ldv_5_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_5_ret_default = ldv_pci_instance_suspend_late_5_7(ldv_5_container_pci_driver->suspend_late, ldv_5_resource_dev, ldv_5_resource_pm_message); } } else { } { ldv_5_ret_default = ldv_filter_err_code(ldv_5_ret_default); ldv_statevar_5 = 6; } goto ldv_55933; case_8: /* CIL Label */ ; if ((unsigned long )ldv_5_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_5_ret_default = ldv_pci_instance_suspend_5_8(ldv_5_container_pci_driver->suspend, ldv_5_resource_dev, ldv_5_resource_pm_message); } } else { } { ldv_5_ret_default = ldv_filter_err_code(ldv_5_ret_default); ldv_statevar_5 = 7; } goto ldv_55933; case_9: /* CIL Label */ { ldv_statevar_5 = ldv_switch_1(); } goto ldv_55933; case_10: /* CIL Label */ { ldv_assume(ldv_statevar_6 == 2); ldv_pci_instance_callback_5_10(ldv_5_callback_error_detected, ldv_5_resource_dev, ldv_5_resource_enum_pci_channel_state); ldv_statevar_5 = 9; } goto ldv_55933; case_12: /* CIL Label */ { ldv_free((void *)ldv_5_resource_dev); ldv_free((void *)ldv_5_resource_struct_pci_device_id_ptr); ldv_5_ret_default = 1; ldv_statevar_5 = 20; } goto ldv_55933; case_14: /* CIL Label */ { ldv_assume(ldv_5_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_5 = 12; } else { ldv_statevar_5 = 17; } goto ldv_55933; case_16: /* CIL Label */ { ldv_assume(ldv_5_ret_default == 0); ldv_statevar_5 = ldv_switch_1(); } goto ldv_55933; case_17: /* CIL Label */ { ldv_assume(((((((((ldv_statevar_0 == 6 || ldv_statevar_0 == 2) || ldv_statevar_1 == 2) || ldv_statevar_1 == 6) || ldv_statevar_2 == 6) || ldv_statevar_2 == 2) || ldv_statevar_3 == 6) || ldv_statevar_3 == 2) || ldv_statevar_4 == 5) || ldv_statevar_4 == 1); ldv_pre_probe(); ldv_5_ret_default = ldv_pci_instance_probe_5_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_5_container_pci_driver->probe, ldv_5_resource_dev, ldv_5_resource_struct_pci_device_id_ptr); ldv_5_ret_default = ldv_ldv_post_probe_37(ldv_5_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_5 = 14; } else { ldv_statevar_5 = 16; } goto ldv_55933; case_19: /* CIL Label */ { tmp___2 = ldv_xmalloc(2936UL); ldv_5_resource_dev = (struct pci_dev *)tmp___2; tmp___3 = ldv_xmalloc(32UL); ldv_5_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___3; tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_5 = 12; } else { ldv_statevar_5 = 17; } goto ldv_55933; case_20: /* CIL Label */ ; goto ldv_55933; case_23: /* CIL Label */ { ldv_assume(((((ldv_statevar_0 == 6 || ldv_statevar_1 == 6) || ldv_statevar_2 == 6) || ldv_statevar_3 == 6) || ldv_statevar_6 == 3) || ldv_statevar_6 == 2); ldv_pci_instance_callback_5_23(ldv_5_callback_func_1_ptr, ldv_5_resource_dev); ldv_statevar_5 = 9; } goto ldv_55933; case_24: /* CIL Label */ { ldv_pci_instance_callback_5_24(ldv_5_callback_slot_reset, ldv_5_resource_dev); ldv_statevar_5 = 9; } goto ldv_55933; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_55933: ; return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_18_pci_driver_pci_driver ; { { ldv_18_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_5 == 12); ldv_dispatch_deregister_18_1(ldv_18_pci_driver_pci_driver); } return; return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_12_netdev_net_device ; int ldv_12_ret_default ; int tmp ; int tmp___0 ; { { ldv_12_ret_default = 1; ldv_12_ret_default = ldv_pre_register_netdev(); ldv_12_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_12_ret_default == 0); ldv_assume(((((ldv_statevar_0 == 6 || ldv_statevar_1 == 6) || ldv_statevar_2 == 6) || ldv_statevar_3 == 6) || ldv_statevar_6 == 3) || ldv_statevar_6 == 2); ldv_12_ret_default = ldv_register_netdev_open_12_6((ldv_12_netdev_net_device->netdev_ops)->ndo_open, ldv_12_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_12_ret_default == 0); ldv_assume(ldv_statevar_4 == 5); ldv_dispatch_register_12_4(ldv_12_netdev_net_device); } } else { { ldv_assume(ldv_12_ret_default != 0); } } } else { { ldv_assume(ldv_12_ret_default != 0); } } return (ldv_12_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_12_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = s2io_open(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_16_callback_handler)(int , void * ) ; void *ldv_16_data_data ; int ldv_16_line_line ; enum irqreturn (*ldv_16_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_16_line_line = (int )arg1; ldv_16_callback_handler = arg2; ldv_16_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_16_data_data = arg5; ldv_assume(((ldv_statevar_0 == 6 || ldv_statevar_1 == 6) || ldv_statevar_2 == 6) || ldv_statevar_3 == 6); ldv_dispatch_irq_register_16_2(ldv_16_line_line, ldv_16_callback_handler, ldv_16_thread_thread, ldv_16_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } if (tmp == 22) { goto case_22; } else { } if (tmp == 23) { goto case_23; } else { } if (tmp == 24) { goto case_24; } else { } if (tmp == 25) { goto case_25; } else { } if (tmp == 26) { goto case_26; } else { } if (tmp == 27) { goto case_27; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (3); case_2: /* CIL Label */ ; return (8); case_3: /* CIL Label */ ; return (10); case_4: /* CIL Label */ ; return (12); case_5: /* CIL Label */ ; return (14); case_6: /* CIL Label */ ; return (15); case_7: /* CIL Label */ ; return (16); case_8: /* CIL Label */ ; return (17); case_9: /* CIL Label */ ; return (18); case_10: /* CIL Label */ ; return (19); case_11: /* CIL Label */ ; return (21); case_12: /* CIL Label */ ; return (24); case_13: /* CIL Label */ ; return (27); case_14: /* CIL Label */ ; return (30); case_15: /* CIL Label */ ; return (32); case_16: /* CIL Label */ ; return (33); case_17: /* CIL Label */ ; return (35); case_18: /* CIL Label */ ; return (37); case_19: /* CIL Label */ ; return (38); case_20: /* CIL Label */ ; return (39); case_21: /* CIL Label */ ; return (40); case_22: /* CIL Label */ ; return (41); case_23: /* CIL Label */ ; return (43); case_24: /* CIL Label */ ; return (46); case_25: /* CIL Label */ ; return (48); case_26: /* CIL Label */ ; return (49); case_27: /* CIL Label */ ; return (50); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (8); case_2: /* CIL Label */ ; return (10); case_3: /* CIL Label */ ; return (23); case_4: /* CIL Label */ ; return (24); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_0_1(void) { { ldv_statevar_0 = 6; return; } } void ldv_switch_automaton_state_0_6(void) { { ldv_statevar_0 = 5; return; } } void ldv_switch_automaton_state_1_1(void) { { ldv_statevar_1 = 6; return; } } void ldv_switch_automaton_state_1_6(void) { { ldv_statevar_1 = 5; return; } } void ldv_switch_automaton_state_2_1(void) { { ldv_statevar_2 = 6; return; } } void ldv_switch_automaton_state_2_6(void) { { ldv_statevar_2 = 5; return; } } void ldv_switch_automaton_state_3_1(void) { { ldv_statevar_3 = 6; return; } } void ldv_switch_automaton_state_3_6(void) { { ldv_statevar_3 = 5; return; } } void ldv_switch_automaton_state_4_1(void) { { ldv_statevar_4 = 5; return; } } void ldv_switch_automaton_state_4_5(void) { { ldv_statevar_4 = 4; return; } } void ldv_switch_automaton_state_5_11(void) { { ldv_5_ret_default = 1; ldv_statevar_5 = 20; return; } } void ldv_switch_automaton_state_5_20(void) { { ldv_statevar_5 = 19; return; } } void ldv_switch_automaton_state_6_1(void) { { ldv_statevar_6 = 3; return; } } void ldv_switch_automaton_state_6_3(void) { { ldv_statevar_6 = 2; return; } } void ldv_timer_instance_callback_6_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_6(void *arg0 ) { { { if (ldv_statevar_6 == 2) { goto case_2; } else { } if (ldv_statevar_6 == 3) { goto case_3; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_6_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_6_2(ldv_6_container_timer_list->function, ldv_6_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); ldv_statevar_6 = 3; } goto ldv_56062; case_3: /* CIL Label */ ; goto ldv_56062; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_56062: ; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_17_netdev_net_device ; { { ldv_17_netdev_net_device = arg1; ldv_assume(ldv_statevar_6 == 2); ldv_unregister_netdev_stop_17_2((ldv_17_netdev_net_device->netdev_ops)->ndo_stop, ldv_17_netdev_net_device); ldv_assume(ldv_statevar_4 == 1); ldv_dispatch_deregister_17_1(ldv_17_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_17_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { s2io_close(arg1); } return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static void *ldv_dev_get_drvdata_16(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_17(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } __inline static int ldv_request_irq_18(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_19(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_20(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_21(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static int ldv_mod_timer_22(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_23(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_24(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_25(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_sync_26(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_27(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static struct net_device *ldv_alloc_etherdev_mqs_28(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___6 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static struct net_device *ldv_alloc_etherdev_mqs_29(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___7 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_30(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___8 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_unregister_netdev_31(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_32(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_33(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_34(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv___pci_register_driver_35(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___9 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_36(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_probe_37(int ldv_func_arg1 ) { int tmp ; { { ldv_check_return_value_probe(ldv_func_arg1); tmp = ldv_post_probe(ldv_func_arg1); } return (tmp); } } void ldv_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_check_alloc_flags(gfp_t ) ; extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_USB_DEV_REF_COUNTS = LDV_USB_DEV_REF_COUNTS != 0 ? LDV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_USB_DEV_REF_COUNTS > 0); } if (LDV_USB_DEV_REF_COUNTS > 1) { LDV_USB_DEV_REF_COUNTS = LDV_USB_DEV_REF_COUNTS + -1; } else { LDV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_initialize(void) { { LDV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_USB_DEV_REF_COUNTS == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; void *ldv_malloc_unknown_size(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }