/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __be16; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef unsigned long uintptr_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s16 int16_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u16 uint16_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct device; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned int flags : 8 ; }; struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct ldv_thread; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct ctl_table; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; enum xen_domain_type { XEN_NATIVE = 0, XEN_PV_DOMAIN = 1, XEN_HVM_DOMAIN = 2 } ; typedef uint16_t domid_t; struct mmu_update { uint64_t ptr ; uint64_t val ; }; struct multicall_entry { unsigned long op ; long result ; unsigned long args[6U] ; }; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct backing_dev_info; enum iio_chan_type { IIO_VOLTAGE = 0, IIO_CURRENT = 1, IIO_POWER = 2, IIO_ACCEL = 3, IIO_ANGL_VEL = 4, IIO_MAGN = 5, IIO_LIGHT = 6, IIO_INTENSITY = 7, IIO_PROXIMITY = 8, IIO_TEMP = 9, IIO_INCLI = 10, IIO_ROT = 11, IIO_ANGL = 12, IIO_TIMESTAMP = 13, IIO_CAPACITANCE = 14, IIO_ALTVOLTAGE = 15, IIO_CCT = 16, IIO_PRESSURE = 17, IIO_HUMIDITYRELATIVE = 18 } ; enum iio_event_type { IIO_EV_TYPE_THRESH = 0, IIO_EV_TYPE_MAG = 1, IIO_EV_TYPE_ROC = 2, IIO_EV_TYPE_THRESH_ADAPTIVE = 3, IIO_EV_TYPE_MAG_ADAPTIVE = 4 } ; enum iio_event_info { IIO_EV_INFO_ENABLE = 0, IIO_EV_INFO_VALUE = 1, IIO_EV_INFO_HYSTERESIS = 2 } ; enum iio_event_direction { IIO_EV_DIR_EITHER = 0, IIO_EV_DIR_RISING = 1, IIO_EV_DIR_FALLING = 2 } ; enum iio_shared_by { IIO_SEPARATE = 0, IIO_SHARED_BY_TYPE = 1, IIO_SHARED_BY_DIR = 2, IIO_SHARED_BY_ALL = 3 } ; enum iio_endian { IIO_CPU = 0, IIO_BE = 1, IIO_LE = 2 } ; struct iio_chan_spec; struct iio_dev; struct iio_chan_spec_ext_info { char const *name ; enum iio_shared_by shared ; ssize_t (*read)(struct iio_dev * , uintptr_t , struct iio_chan_spec const * , char * ) ; ssize_t (*write)(struct iio_dev * , uintptr_t , struct iio_chan_spec const * , char const * , size_t ) ; uintptr_t private ; }; struct iio_event_spec { enum iio_event_type type ; enum iio_event_direction dir ; unsigned long mask_separate ; unsigned long mask_shared_by_type ; unsigned long mask_shared_by_dir ; unsigned long mask_shared_by_all ; }; struct __anonstruct_scan_type_133 { char sign ; u8 realbits ; u8 storagebits ; u8 shift ; enum iio_endian endianness ; }; struct iio_chan_spec { enum iio_chan_type type ; int channel ; int channel2 ; unsigned long address ; int scan_index ; struct __anonstruct_scan_type_133 scan_type ; long info_mask_separate ; long info_mask_shared_by_type ; long info_mask_shared_by_dir ; long info_mask_shared_by_all ; struct iio_event_spec const *event_spec ; unsigned int num_event_specs ; struct iio_chan_spec_ext_info const *ext_info ; char const *extend_name ; char const *datasheet_name ; unsigned int modified : 1 ; unsigned int indexed : 1 ; unsigned int output : 1 ; unsigned int differential : 1 ; }; struct iio_trigger; struct iio_info { struct module *driver_module ; struct attribute_group *event_attrs ; struct attribute_group const *attrs ; int (*read_raw)(struct iio_dev * , struct iio_chan_spec const * , int * , int * , long ) ; int (*write_raw)(struct iio_dev * , struct iio_chan_spec const * , int , int , long ) ; int (*write_raw_get_fmt)(struct iio_dev * , struct iio_chan_spec const * , long ) ; int (*read_event_config)(struct iio_dev * , struct iio_chan_spec const * , enum iio_event_type , enum iio_event_direction ) ; int (*write_event_config)(struct iio_dev * , struct iio_chan_spec const * , enum iio_event_type , enum iio_event_direction , int ) ; int (*read_event_value)(struct iio_dev * , struct iio_chan_spec const * , enum iio_event_type , enum iio_event_direction , enum iio_event_info , int * , int * ) ; int (*write_event_value)(struct iio_dev * , struct iio_chan_spec const * , enum iio_event_type , enum iio_event_direction , enum iio_event_info , int , int ) ; int (*validate_trigger)(struct iio_dev * , struct iio_trigger * ) ; int (*update_scan_mode)(struct iio_dev * , unsigned long const * ) ; int (*debugfs_reg_access)(struct iio_dev * , unsigned int , unsigned int , unsigned int * ) ; }; struct iio_buffer_setup_ops { int (*preenable)(struct iio_dev * ) ; int (*postenable)(struct iio_dev * ) ; int (*predisable)(struct iio_dev * ) ; int (*postdisable)(struct iio_dev * ) ; bool (*validate_scan_mask)(struct iio_dev * , unsigned long const * ) ; }; struct iio_event_interface; struct iio_buffer; struct iio_poll_func; struct iio_dev { int id ; int modes ; int currentmode ; struct device dev ; struct iio_event_interface *event_interface ; struct iio_buffer *buffer ; struct list_head buffer_list ; int scan_bytes ; struct mutex mlock ; unsigned long const *available_scan_masks ; unsigned int masklength ; unsigned long const *active_scan_mask ; bool scan_timestamp ; unsigned int scan_index_timestamp ; struct iio_trigger *trig ; struct iio_poll_func *pollfunc ; struct iio_chan_spec const *channels ; int num_channels ; struct list_head channel_attr_list ; struct attribute_group chan_attr_group ; char const *name ; struct iio_info const *info ; struct mutex info_exist_lock ; struct iio_buffer_setup_ops const *setup_ops ; struct cdev chrdev ; struct attribute_group const *groups[7U] ; int groupcounter ; unsigned long flags ; struct dentry *debugfs_dentry ; unsigned int cached_reg_addr ; }; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_134 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_134 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_137 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_138 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_136 { struct __anonstruct____missing_field_name_137 __annonCompField34 ; struct __anonstruct____missing_field_name_138 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_136 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_139 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_141 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_145 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_144 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_145 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_143 { union __anonunion____missing_field_name_144 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_142 { unsigned long counters ; struct __anonstruct____missing_field_name_143 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_140 { union __anonunion____missing_field_name_141 __annonCompField38 ; union __anonunion____missing_field_name_142 __annonCompField42 ; }; struct __anonstruct____missing_field_name_147 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_146 { struct list_head lru ; struct __anonstruct____missing_field_name_147 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_148 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_139 __annonCompField37 ; struct __anonstruct____missing_field_name_140 __annonCompField43 ; union __anonunion____missing_field_name_146 __annonCompField45 ; union __anonunion____missing_field_name_148 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_150 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_149 { struct __anonstruct_linear_150 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_149 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_152 sync_serial_settings; struct __anonstruct_te1_settings_153 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_153 te1_settings; struct __anonstruct_raw_hdlc_proto_154 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_154 raw_hdlc_proto; struct __anonstruct_fr_proto_155 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_155 fr_proto; struct __anonstruct_fr_proto_pvc_156 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_156 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_157 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_157 fr_proto_pvc_info; struct __anonstruct_cisco_proto_158 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_158 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_159 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_159 ifs_ifsu ; }; union __anonunion_ifr_ifrn_160 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_161 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_160 ifr_ifrn ; union __anonunion_ifr_ifru_161 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_164 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_163 { struct __anonstruct____missing_field_name_164 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_163 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_166 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_165 { struct __anonstruct____missing_field_name_166 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_165 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_167 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_167 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_169 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_169 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_170 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_170 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_172 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_171 { size_t written ; size_t count ; union __anonunion_arg_172 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_171 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_173 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_174 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; union __anonunion____missing_field_name_175 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_173 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_174 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_175 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_176 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_176 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_178 { struct list_head link ; int state ; }; union __anonunion_fl_u_177 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_178 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_177 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_179 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_179 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_181 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_182 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_184 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_185 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_186 { long _band ; int _fd ; }; struct __anonstruct__sigsys_187 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_180 { int _pad[28U] ; struct __anonstruct__kill_181 _kill ; struct __anonstruct__timer_182 _timer ; struct __anonstruct__rt_183 _rt ; struct __anonstruct__sigchld_184 _sigchld ; struct __anonstruct__sigfault_185 _sigfault ; struct __anonstruct__sigpoll_186 _sigpoll ; struct __anonstruct__sigsys_187 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_180 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_191 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_190 { struct __anonstruct____missing_field_name_191 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_190 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_192 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_193 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_195 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_194 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_195 __annonCompField59 ; }; union __anonunion_type_data_196 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_198 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_197 { union __anonunion_payload_198 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_192 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_193 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_194 __annonCompField60 ; union __anonunion_type_data_196 type_data ; union __anonunion____missing_field_name_197 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_22228 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_22228 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_215 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_216 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_214 { struct __anonstruct____missing_field_name_215 __annonCompField63 ; struct __anonstruct____missing_field_name_216 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_214 __annonCompField65 ; }; struct exception_table_entry { int insn ; int fixup ; }; struct in6_addr; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_218 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_218 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_220 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_219 { __wsum csum ; struct __anonstruct____missing_field_name_220 __annonCompField67 ; }; union __anonunion____missing_field_name_221 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_222 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_219 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_221 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_222 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6_mib_device { atomic_long_t mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6msg_mib_device { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; union __anonunion_in6_u_225 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_225 in6_u ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum gro_result { GRO_MERGED = 0, GRO_MERGED_FREE = 1, GRO_HELD = 2, GRO_NORMAL = 3, GRO_DROP = 4 } ; typedef enum gro_result gro_result_t; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28678 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28679 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_237 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_238 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_236 adj_list ; struct __anonstruct_all_adj_list_237 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28678 reg_state : 8 ; bool dismantle ; enum ldv_28679 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_238 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_243 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_243 __annonCompField75 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct res_counter { unsigned long long usage ; unsigned long long max_usage ; unsigned long long limit ; unsigned long long soft_limit ; unsigned long long failcnt ; spinlock_t lock ; struct res_counter *parent ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * ); union __anonunion_ki_obj_244 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void *private ; union __anonunion_ki_obj_244 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; size_t ki_nbytes ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; union __anonunion____missing_field_name_245 { struct sock_filter insns[0U] ; struct work_struct work ; }; struct sk_filter { atomic_t refcnt ; unsigned int len ; struct callback_head rcu ; unsigned int (*bpf_func)(struct sk_buff const * , struct sock_filter const * ) ; union __anonunion____missing_field_name_245 __annonCompField76 ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct neigh_parms *next ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { struct neigh_table *next ; int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_250 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_250 __annonCompField77 ; }; struct __anonstruct_socket_lock_t_251 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_251 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_253 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_252 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_253 __annonCompField78 ; }; union __anonunion____missing_field_name_254 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_256 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_255 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_256 __annonCompField81 ; }; union __anonunion____missing_field_name_257 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_258 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_252 __annonCompField79 ; union __anonunion____missing_field_name_254 __annonCompField80 ; union __anonunion____missing_field_name_255 __annonCompField82 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 4 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_257 __annonCompField83 ; struct proto *skc_prot ; struct net *skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_258 __annonCompField84 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_259 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_259 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned int sk_shutdown : 2 ; unsigned int sk_no_check : 2 ; unsigned int sk_userlocks : 4 ; unsigned int sk_protocol : 8 ; unsigned int sk_type : 16 ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * , int ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_260 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*mtu_reduced)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_260 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct res_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct sock_common __req_common ; struct request_sock *dl_next ; u16 mss ; u8 num_retrans ; u8 cookie_ts : 1 ; u8 num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; struct ipv6_devconf { __s32 forwarding ; __s32 hop_limit ; __s32 mtu6 ; __s32 accept_ra ; __s32 accept_redirects ; __s32 autoconf ; __s32 dad_transmits ; __s32 rtr_solicits ; __s32 rtr_solicit_interval ; __s32 rtr_solicit_delay ; __s32 force_mld_version ; __s32 mldv1_unsolicited_report_interval ; __s32 mldv2_unsolicited_report_interval ; __s32 use_tempaddr ; __s32 temp_valid_lft ; __s32 temp_prefered_lft ; __s32 regen_max_retry ; __s32 max_desync_factor ; __s32 max_addresses ; __s32 accept_ra_defrtr ; __s32 accept_ra_pinfo ; __s32 accept_ra_rtr_pref ; __s32 rtr_probe_interval ; __s32 accept_ra_rt_info_max_plen ; __s32 proxy_ndp ; __s32 accept_source_route ; __s32 optimistic_dad ; __s32 mc_forwarding ; __s32 disable_ipv6 ; __s32 accept_dad ; __s32 force_tllao ; __s32 ndisc_notify ; __s32 suppress_frag_ndisc ; void *sysctl ; }; struct ip6_sf_list { struct ip6_sf_list *sf_next ; struct in6_addr sf_addr ; unsigned long sf_count[2U] ; unsigned char sf_gsresp ; unsigned char sf_oldin ; unsigned char sf_crcount ; }; struct ifmcaddr6 { struct in6_addr mca_addr ; struct inet6_dev *idev ; struct ifmcaddr6 *next ; struct ip6_sf_list *mca_sources ; struct ip6_sf_list *mca_tomb ; unsigned int mca_sfmode ; unsigned char mca_crcount ; unsigned long mca_sfcount[2U] ; struct timer_list mca_timer ; unsigned int mca_flags ; int mca_users ; atomic_t mca_refcnt ; spinlock_t mca_lock ; unsigned long mca_cstamp ; unsigned long mca_tstamp ; }; struct ifacaddr6 { struct in6_addr aca_addr ; struct inet6_dev *aca_idev ; struct rt6_info *aca_rt ; struct ifacaddr6 *aca_next ; int aca_users ; atomic_t aca_refcnt ; spinlock_t aca_lock ; unsigned long aca_cstamp ; unsigned long aca_tstamp ; }; struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry ; struct ipstats_mib *ipv6[1U] ; struct icmpv6_mib_device *icmpv6dev ; struct icmpv6msg_mib_device *icmpv6msgdev ; }; struct inet6_dev { struct net_device *dev ; struct list_head addr_list ; struct ifmcaddr6 *mc_list ; struct ifmcaddr6 *mc_tomb ; spinlock_t mc_lock ; unsigned char mc_qrv ; unsigned char mc_gq_running ; unsigned char mc_ifc_count ; unsigned char mc_dad_count ; unsigned long mc_v1_seen ; unsigned long mc_qi ; unsigned long mc_qri ; unsigned long mc_maxdelay ; struct timer_list mc_gq_timer ; struct timer_list mc_ifc_timer ; struct timer_list mc_dad_timer ; struct ifacaddr6 *ac_list ; rwlock_t lock ; atomic_t refcnt ; __u32 if_flags ; int dead ; u8 rndid[8U] ; struct timer_list regen_timer ; struct list_head tempaddr_list ; struct in6_addr token ; struct neigh_parms *nd_parms ; struct ipv6_devconf cnf ; struct ipv6_devstat stats ; struct timer_list rs_timer ; __u8 rs_probes ; unsigned long tstamp ; struct callback_head rcu ; }; union __anonunion____missing_field_name_274 { __be32 a4 ; __be32 a6[4U] ; }; struct inetpeer_addr_base { union __anonunion____missing_field_name_274 __annonCompField85 ; }; struct inetpeer_addr { struct inetpeer_addr_base addr ; __u16 family ; }; union __anonunion____missing_field_name_275 { struct list_head gc_list ; struct callback_head gc_rcu ; }; struct __anonstruct____missing_field_name_277 { atomic_t rid ; atomic_t ip_id_count ; }; union __anonunion____missing_field_name_276 { struct __anonstruct____missing_field_name_277 __annonCompField87 ; struct callback_head rcu ; struct inet_peer *gc_next ; }; struct inet_peer { struct inet_peer *avl_left ; struct inet_peer *avl_right ; struct inetpeer_addr daddr ; __u32 avl_height ; u32 metrics[15U] ; u32 rate_tokens ; unsigned long rate_last ; union __anonunion____missing_field_name_275 __annonCompField86 ; union __anonunion____missing_field_name_276 __annonCompField88 ; __u32 dtime ; atomic_t refcnt ; }; struct inet_peer_base { struct inet_peer *root ; seqlock_t lock ; u32 flush_seq ; int total ; }; struct rtable { struct dst_entry dst ; int rt_genid ; unsigned int rt_flags ; __u16 rt_type ; __u8 rt_is_input ; __u8 rt_uses_gateway ; int rt_iif ; __be32 rt_gateway ; u32 rt_pmtu ; struct list_head rt_uncached ; }; struct inet_ehash_bucket { struct hlist_nulls_head chain ; }; struct inet_bind_hashbucket { spinlock_t lock ; struct hlist_head chain ; }; struct inet_listen_hashbucket { spinlock_t lock ; struct hlist_nulls_head head ; }; struct inet_hashinfo { struct inet_ehash_bucket *ehash ; spinlock_t *ehash_locks ; unsigned int ehash_mask ; unsigned int ehash_locks_mask ; struct inet_bind_hashbucket *bhash ; unsigned int bhash_size ; struct kmem_cache *bind_bucket_cachep ; struct inet_listen_hashbucket listening_hash[32U] ; atomic_t bsockets ; }; typedef uint32_t grant_ref_t; enum xenbus_state { XenbusStateUnknown = 0, XenbusStateInitialising = 1, XenbusStateInitWait = 2, XenbusStateInitialised = 3, XenbusStateConnected = 4, XenbusStateClosing = 5, XenbusStateClosed = 6, XenbusStateReconfiguring = 7, XenbusStateReconfigured = 8 } ; struct xenbus_watch { struct list_head list ; char const *node ; void (*callback)(struct xenbus_watch * , char const ** , unsigned int ) ; }; struct xenbus_device { char const *devicetype ; char const *nodename ; char const *otherend ; int otherend_id ; struct xenbus_watch otherend_watch ; struct device dev ; enum xenbus_state state ; struct completion down ; struct work_struct work ; }; struct xenbus_device_id { char devicetype[32U] ; }; struct xenbus_driver { struct xenbus_device_id const *ids ; int (*probe)(struct xenbus_device * , struct xenbus_device_id const * ) ; void (*otherend_changed)(struct xenbus_device * , enum xenbus_state ) ; int (*remove)(struct xenbus_device * ) ; int (*suspend)(struct xenbus_device * ) ; int (*resume)(struct xenbus_device * ) ; int (*uevent)(struct xenbus_device * , struct kobj_uevent_env * ) ; struct device_driver driver ; int (*read_otherend_details)(struct xenbus_device * ) ; int (*is_ready)(struct xenbus_device * ) ; }; struct xenbus_transaction { u32 id ; }; typedef unsigned int RING_IDX; struct xen_netif_tx_request { grant_ref_t gref ; uint16_t offset ; uint16_t flags ; uint16_t id ; uint16_t size ; }; struct __anonstruct_gso_307 { uint16_t size ; uint8_t type ; uint8_t pad ; uint16_t features ; }; union __anonunion_u_306 { struct __anonstruct_gso_307 gso ; uint16_t pad[3U] ; }; struct xen_netif_extra_info { uint8_t type ; uint8_t flags ; union __anonunion_u_306 u ; }; struct xen_netif_tx_response { uint16_t id ; int16_t status ; }; struct xen_netif_rx_request { uint16_t id ; grant_ref_t gref ; }; struct xen_netif_rx_response { uint16_t id ; uint16_t offset ; uint16_t flags ; int16_t status ; }; union xen_netif_tx_sring_entry { struct xen_netif_tx_request req ; struct xen_netif_tx_response rsp ; }; struct xen_netif_tx_sring { RING_IDX req_prod ; RING_IDX req_event ; RING_IDX rsp_prod ; RING_IDX rsp_event ; uint8_t pad[48U] ; union xen_netif_tx_sring_entry ring[1U] ; }; struct xen_netif_tx_front_ring { RING_IDX req_prod_pvt ; RING_IDX rsp_cons ; unsigned int nr_ents ; struct xen_netif_tx_sring *sring ; }; union xen_netif_rx_sring_entry { struct xen_netif_rx_request req ; struct xen_netif_rx_response rsp ; }; struct xen_netif_rx_sring { RING_IDX req_prod ; RING_IDX req_event ; RING_IDX rsp_prod ; RING_IDX rsp_event ; uint8_t pad[48U] ; union xen_netif_rx_sring_entry ring[1U] ; }; struct xen_netif_rx_front_ring { RING_IDX req_prod_pvt ; RING_IDX rsp_cons ; unsigned int nr_ents ; struct xen_netif_rx_sring *sring ; }; struct netfront_cb { int pull_to ; }; struct netfront_stats { u64 rx_packets ; u64 tx_packets ; u64 rx_bytes ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; union skb_entry { struct sk_buff *skb ; unsigned long link ; }; struct netfront_info { struct list_head list ; struct net_device *netdev ; struct napi_struct napi ; unsigned int tx_evtchn ; unsigned int rx_evtchn ; unsigned int tx_irq ; unsigned int rx_irq ; char tx_irq_name[20U] ; char rx_irq_name[20U] ; struct xenbus_device *xbdev ; spinlock_t tx_lock ; struct xen_netif_tx_front_ring tx ; int tx_ring_ref ; union skb_entry tx_skbs[256U] ; grant_ref_t gref_tx_head ; grant_ref_t grant_tx_ref[256U] ; struct page *grant_tx_page[256U] ; unsigned int tx_skb_freelist ; spinlock_t rx_lock ; struct xen_netif_rx_front_ring rx ; int rx_ring_ref ; unsigned int rx_min_target ; unsigned int rx_max_target ; unsigned int rx_target ; struct sk_buff_head rx_batch ; struct timer_list rx_refill_timer ; struct sk_buff *rx_skbs[256U] ; grant_ref_t gref_rx_head ; grant_ref_t grant_rx_ref[256U] ; unsigned long rx_pfn_array[256U] ; struct multicall_entry rx_mcl[257U] ; struct mmu_update rx_mmu[256U] ; struct netfront_stats *stats ; unsigned long rx_gso_checksum_fixup ; }; struct netfront_rx_info { struct xen_netif_rx_response rx ; struct xen_netif_extra_info extras[1U] ; }; struct xennet_stat { char name[32U] ; u16 offset ; }; struct ldv_struct_EMGentry_20 { int signal_pending ; }; struct ldv_struct_dummy_resourceless_instance_7 { struct net_device *arg0 ; int signal_pending ; }; struct ldv_struct_io_instance_0 { struct xenbus_driver *arg0 ; int signal_pending ; }; struct ldv_struct_timer_instance_11 { struct timer_list *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___0; typedef struct net_device *ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; struct device_private { void *driver_data ; }; enum hrtimer_restart; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; long ldv__builtin_expect(long exp , long c ) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; long ldv_is_err(void const *ptr ) ; void *ldv_err_ptr(long error ) ; long ldv_ptr_err(void const *ptr ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; int ldv_undef_int(void) ; void ldv_check_alloc_flags(gfp_t flags ) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } extern unsigned long find_next_bit(unsigned long const * , unsigned long , unsigned long ) ; extern int printk(char const * , ...) ; extern int __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; extern unsigned long simple_strtoul(char const * , char ** , unsigned int ) ; extern int sprintf(char * , char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; extern unsigned long __per_cpu_offset[8192U] ; extern unsigned long this_cpu_off ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; extern int nr_cpu_ids ; extern struct cpumask const * const cpu_possible_mask ; __inline static unsigned int cpumask_check(unsigned int cpu ) { bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp ; long tmp___0 ; long tmp___1 ; { { __ret_warn_once = cpu >= (unsigned int )nr_cpu_ids; tmp___1 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___1 != 0L) { { __ret_warn_on = ! __warned; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/cpumask.h", 108); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { __warned = 1; } else { } } else { } { ldv__builtin_expect(__ret_warn_once != 0, 0L); } return (cpu); } } __inline static unsigned int cpumask_next(int n , struct cpumask const *srcp ) { unsigned long tmp ; { if (n != -1) { { cpumask_check((unsigned int )n); } } else { } { tmp = find_next_bit((unsigned long const *)(& srcp->bits), (unsigned long )nr_cpu_ids, (unsigned long )(n + 1)); } return ((unsigned int )tmp); } } __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/dfaa16b/linux-alloc-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static void arch_local_irq_restore(unsigned long f ) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.restore_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/dfaa16b/linux-alloc-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (809), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (45UL), [paravirt_opptr] "i" (& pv_irq_ops.restore_fl.func), [paravirt_clobber] "i" (1), "D" (f): "memory", "cc"); return; } } __inline static void arch_local_irq_disable(void) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.irq_disable.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/dfaa16b/linux-alloc-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (814), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (46UL), [paravirt_opptr] "i" (& pv_irq_ops.irq_disable.func), [paravirt_clobber] "i" (1): "memory", "cc"); return; } } __inline static unsigned long arch_local_irq_save(void) { unsigned long f ; { { f = arch_local_save_flags(); arch_local_irq_disable(); } return (f); } } __inline static void *ERR_PTR(long error ) ; __inline static long PTR_ERR(void const *ptr ) ; __inline static long IS_ERR(void const *ptr ) ; __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void trace_hardirqs_on(void) ; extern void trace_hardirqs_off(void) ; __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } extern void __ldv_spin_lock(spinlock_t * ) ; static void ldv___ldv_spin_lock_106(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_113(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock_rx_lock_of_netfront_info(void) ; void ldv_spin_unlock_rx_lock_of_netfront_info(void) ; void ldv_spin_lock_tx_lock_of_netfront_info(void) ; void ldv_spin_unlock_tx_lock_of_netfront_info(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_bh(raw_spinlock_t * ) ; extern void _raw_spin_lock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_bh(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_109(spinlock_t *lock ) ; __inline static void spin_lock_bh(spinlock_t *lock ) { { { _raw_spin_lock_bh(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_bh_104(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_104(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_104(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_104(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_104(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_104(spinlock_t *lock ) ; __inline static void spin_lock_irq(spinlock_t *lock ) { { { _raw_spin_lock_irq(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_irq_123(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_123(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_110(spinlock_t *lock ) ; __inline static void spin_unlock_bh(spinlock_t *lock ) { { { _raw_spin_unlock_bh(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_bh_105(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_105(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_105(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_105(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_105(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_105(spinlock_t *lock ) ; __inline static void spin_unlock_irq(spinlock_t *lock ) { { { _raw_spin_unlock_irq(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_irq_124(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_124(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_107(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_107(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_107(spinlock_t *lock , unsigned long flags ) ; extern unsigned long volatile jiffies ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern int mod_timer(struct timer_list * , unsigned long ) ; static int ldv_mod_timer_103(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_138(struct timer_list *ldv_func_arg1 ) ; extern void dump_page(struct page * , char * ) ; extern enum xen_domain_type xen_domain_type ; extern u8 xen_features[32U] ; __inline static int xen_feature(int flag ) { { return ((int )xen_features[flag]); } } extern void *__alloc_percpu(size_t , size_t ) ; extern void free_percpu(void * ) ; __inline static struct page *alloc_pages(gfp_t flags , unsigned int order ) ; extern unsigned long get_zeroed_page(gfp_t ) ; extern void free_pages(unsigned long , unsigned int ) ; extern int device_create_file(struct device * , struct device_attribute const * ) ; extern void device_remove_file(struct device * , struct device_attribute const * ) ; static void *ldv_dev_get_drvdata_126(struct device const *dev ) ; static void *ldv_dev_get_drvdata_131(struct device const *dev ) ; static void *ldv_dev_get_drvdata_136(struct device const *dev ) ; static int ldv_dev_set_drvdata_117(struct device *dev , void *data ) ; static int ldv_dev_set_drvdata_121(struct device *dev , void *data ) ; extern int dev_warn(struct device const * , char const * , ...) ; extern int _dev_info(struct device const * , char const * , ...) ; extern void msleep(unsigned int ) ; __inline static int PageHead(struct page const *page ) { int tmp ; { { tmp = constant_test_bit(14L, (unsigned long const volatile *)(& page->flags)); } return (tmp); } } __inline static int PageTail(struct page const *page ) { int tmp ; { { tmp = constant_test_bit(15L, (unsigned long const volatile *)(& page->flags)); } return (tmp); } } __inline static int PageCompound(struct page *page ) { { return ((int )page->flags & 49152); } } extern bool __get_page_tail(struct page * ) ; __inline static void get_page(struct page *page ) { bool tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; long tmp___4 ; { { tmp___1 = PageTail((struct page const *)page); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { { tmp = __get_page_tail(page); tmp___0 = ldv__builtin_expect((long )tmp, 1L); } if (tmp___0 != 0L) { return; } else { } } else { } { tmp___3 = atomic_read((atomic_t const *)(& page->__annonCompField43.__annonCompField42.__annonCompField41._count)); tmp___4 = ldv__builtin_expect(tmp___3 <= 0, 0L); } if (tmp___4 != 0L) { { dump_page(page, (char *)0); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/mm.h"), "i" (488), "i" (12UL)); __builtin_unreachable(); } } else { } { atomic_inc(& page->__annonCompField43.__annonCompField42.__annonCompField41._count); } return; } } __inline static int compound_order(struct page *page ) { int tmp ; { { tmp = PageHead((struct page const *)page); } if (tmp == 0) { return (0); } else { } return ((int )((long )(page + 1UL)->__annonCompField45.lru.prev)); } } __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } extern bool capable(int ) ; extern int net_ratelimit(void) ; extern void kfree(void const * ) ; __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } __inline static void skb_frag_size_set(skb_frag_t *frag , unsigned int size ) { { frag->size = size; return; } } extern void kfree_skb(struct sk_buff * ) ; extern void consume_skb(struct sk_buff * ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static struct sk_buff *skb_get(struct sk_buff *skb ) { { { atomic_inc(& skb->users); } return (skb); } } __inline static struct sk_buff *skb_peek(struct sk_buff_head const *list_ ) { struct sk_buff *skb ; { skb = list_->next; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)list_)) { skb = (struct sk_buff *)0; } else { } return (skb); } } __inline static __u32 skb_queue_len(struct sk_buff_head const *list_ ) { { return ((__u32 )list_->qlen); } } __inline static void __skb_queue_head_init(struct sk_buff_head *list ) { struct sk_buff *tmp ; { tmp = (struct sk_buff *)list; list->next = tmp; list->prev = tmp; list->qlen = 0U; return; } } __inline static void skb_queue_head_init(struct sk_buff_head *list ) { struct lock_class_key __key ; { { spinlock_check(& list->lock); __raw_spin_lock_init(& list->lock.__annonCompField19.rlock, "&(&list->lock)->rlock", & __key); __skb_queue_head_init(list); } return; } } __inline static void __skb_insert(struct sk_buff *newsk , struct sk_buff *prev , struct sk_buff *next , struct sk_buff_head *list ) { struct sk_buff *tmp ; { newsk->next = next; newsk->prev = prev; tmp = newsk; prev->next = tmp; next->prev = tmp; list->qlen = list->qlen + 1U; return; } } __inline static void __skb_queue_after(struct sk_buff_head *list , struct sk_buff *prev , struct sk_buff *newsk ) { { { __skb_insert(newsk, prev, prev->next, list); } return; } } __inline static void __skb_queue_before(struct sk_buff_head *list , struct sk_buff *next , struct sk_buff *newsk ) { { { __skb_insert(newsk, next->prev, next, list); } return; } } __inline static void __skb_queue_head(struct sk_buff_head *list , struct sk_buff *newsk ) { { { __skb_queue_after(list, (struct sk_buff *)list, newsk); } return; } } __inline static void __skb_queue_tail(struct sk_buff_head *list , struct sk_buff *newsk ) { { { __skb_queue_before(list, (struct sk_buff *)list, newsk); } return; } } __inline static void __skb_unlink(struct sk_buff *skb , struct sk_buff_head *list ) { struct sk_buff *next ; struct sk_buff *prev ; struct sk_buff *tmp ; { list->qlen = list->qlen - 1U; next = skb->next; prev = skb->prev; tmp = (struct sk_buff *)0; skb->prev = tmp; skb->next = tmp; next->prev = prev; prev->next = next; return; } } __inline static struct sk_buff *__skb_dequeue(struct sk_buff_head *list ) { struct sk_buff *skb ; struct sk_buff *tmp ; { { tmp = skb_peek((struct sk_buff_head const *)list); skb = tmp; } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { { __skb_unlink(skb, list); } } else { } return (skb); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } extern void skb_add_rx_frag(struct sk_buff * , int , struct page * , int , int , unsigned int ) ; extern unsigned char *__pskb_pull_tail(struct sk_buff * , int ) ; __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } __inline static void skb_reset_network_header(struct sk_buff *skb ) { { skb->network_header = (int )((__u16 )((long )skb->data)) - (int )((__u16 )((long )skb->head)); return; } } __inline static void __skb_queue_purge(struct sk_buff_head *list ) { struct sk_buff *skb ; { goto ldv_31299; ldv_31298: { kfree_skb(skb); } ldv_31299: { skb = __skb_dequeue(list); } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { goto ldv_31298; } else { } return; } } static struct sk_buff *ldv___netdev_alloc_skb_102(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static bool skb_has_frag_list(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_end_pointer(skb); } return ((unsigned long )((struct skb_shared_info *)tmp)->frag_list != (unsigned long )((struct sk_buff *)0)); } } __inline static bool skb_is_gso(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_end_pointer(skb); } return ((unsigned int )((struct skb_shared_info *)tmp)->gso_size != 0U); } } extern int skb_checksum_setup(struct sk_buff * , bool ) ; extern u32 ethtool_op_get_link(struct net_device * ) ; __inline static void u64_stats_update_begin(struct u64_stats_sync *syncp ) { { return; } } __inline static unsigned int u64_stats_fetch_begin_bh(struct u64_stats_sync const *syncp ) { { return (0U); } } __inline static bool u64_stats_fetch_retry_bh(struct u64_stats_sync const *syncp , unsigned int start ) { { return (0); } } extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); } return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = napi_disable_pending(n); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } __inline static void napi_schedule(struct napi_struct *n ) { bool tmp ; { { tmp = napi_schedule_prep(n); } if ((int )tmp) { { __napi_schedule(n); } } else { } return; } } extern void __napi_complete(struct napi_struct * ) ; __inline static void napi_disable(struct napi_struct *n ) { int tmp ; { { __might_sleep("include/linux/netdevice.h", 486, 0); set_bit(1L, (unsigned long volatile *)(& n->state)); } goto ldv_38970; ldv_38969: { msleep(1U); } ldv_38970: { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp != 0) { goto ldv_38969; } else { } { clear_bit(1L, (unsigned long volatile *)(& n->state)); } return; } } __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (502), "i" (12UL)); __builtin_unreachable(); } } else { } { __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_116(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_120(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_139(struct net_device *ldv_func_arg1 ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_start_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_start_queue(tmp); } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); } return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); } return (tmp != 0); } } __inline static bool netif_queue_stopped(struct net_device const *dev ) { struct netdev_queue *tmp ; bool tmp___0 ; { { tmp = netdev_get_tx_queue(dev, 0U); tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)tmp); } return (tmp___0); } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } extern void __dev_kfree_skb_irq(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_irq(struct sk_buff *skb ) { { { __dev_kfree_skb_irq(skb, 1); } return; } } extern gro_result_t napi_gro_receive(struct napi_struct * , struct sk_buff * ) ; extern void napi_gro_flush(struct napi_struct * , bool ) ; __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& dev->state)); } return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_118(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_119(struct net_device *ldv_func_arg1 ) ; static void ldv_unregister_netdev_137(struct net_device *ldv_func_arg1 ) ; extern void netdev_notify_peers(struct net_device * ) ; extern void netdev_update_features(struct net_device * ) ; extern netdev_features_t netif_skb_dev_features(struct sk_buff * , struct net_device const * ) ; __inline static netdev_features_t netif_skb_features(struct sk_buff *skb ) { netdev_features_t tmp ; { { tmp = netif_skb_dev_features(skb, (struct net_device const *)skb->dev); } return (tmp); } } extern void __compiletime_assert_3106(void) ; extern void __compiletime_assert_3107(void) ; extern void __compiletime_assert_3108(void) ; extern void __compiletime_assert_3109(void) ; extern void __compiletime_assert_3110(void) ; extern void __compiletime_assert_3111(void) ; __inline static bool net_gso_ok(netdev_features_t features , int gso_type ) { netdev_features_t feature ; bool __cond ; bool __cond___0 ; bool __cond___1 ; bool __cond___2 ; bool __cond___3 ; bool __cond___4 ; { feature = (netdev_features_t )(gso_type << 16); __cond = 0; if ((int )__cond) { { __compiletime_assert_3106(); } } else { } __cond___0 = 0; if ((int )__cond___0) { { __compiletime_assert_3107(); } } else { } __cond___1 = 0; if ((int )__cond___1) { { __compiletime_assert_3108(); } } else { } __cond___2 = 0; if ((int )__cond___2) { { __compiletime_assert_3109(); } } else { } __cond___3 = 0; if ((int )__cond___3) { { __compiletime_assert_3110(); } } else { } __cond___4 = 0; if ((int )__cond___4) { { __compiletime_assert_3111(); } } else { } return ((features & feature) == feature); } } __inline static bool skb_gso_ok(struct sk_buff *skb , netdev_features_t features ) { unsigned char *tmp ; bool tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); tmp___0 = net_gso_ok(features, (int )((struct skb_shared_info *)tmp)->gso_type); } if ((int )tmp___0) { { tmp___1 = skb_has_frag_list((struct sk_buff const *)skb); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2 || (features & 64ULL) != 0ULL) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static bool netif_needs_gso(struct sk_buff *skb , netdev_features_t features ) { bool tmp ; bool tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; { { tmp = skb_is_gso((struct sk_buff const *)skb); } if ((int )tmp) { { tmp___0 = skb_gso_ok(skb, features); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { tmp___3 = 1; } else { { tmp___2 = ldv__builtin_expect((long )((unsigned int )*((unsigned char *)skb + 124UL) != 12U && (unsigned int )*((unsigned char *)skb + 124UL) != 4U), 0L); } if (tmp___2 != 0L) { tmp___3 = 1; } else { tmp___3 = 0; } } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static void netif_set_gso_max_size(struct net_device *dev , unsigned int size ) { { dev->gso_max_size = size; return; } } extern int netdev_info(struct net_device const * , char const * , ...) ; extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_mac_addr(struct net_device * , void * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_115(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; extern void rtnl_lock(void) ; extern void rtnl_unlock(void) ; extern int gnttab_end_foreign_access_ref(grant_ref_t , int ) ; extern void gnttab_end_foreign_access(grant_ref_t , int , unsigned long ) ; extern int gnttab_query_foreign_access(grant_ref_t ) ; extern int gnttab_alloc_grant_references(u16 , grant_ref_t * ) ; extern void gnttab_free_grant_references(grant_ref_t ) ; extern int gnttab_claim_grant_reference(grant_ref_t * ) ; extern void gnttab_release_grant_reference(grant_ref_t * , grant_ref_t ) ; extern void gnttab_grant_foreign_access_ref(grant_ref_t , domid_t , unsigned long , int ) ; extern unsigned long get_phys_to_machine(unsigned long ) ; __inline static unsigned long pfn_to_mfn(unsigned long pfn ) { unsigned long mfn ; int tmp ; { { tmp = xen_feature(2); } if (tmp != 0) { return (pfn); } else { } { mfn = get_phys_to_machine(pfn); } if (mfn != 0xffffffffffffffffUL) { mfn = mfn & 4611686018427387903UL; } else { } return (mfn); } } extern int xenbus_register_frontend(struct xenbus_driver * ) ; static int ldv_xenbus_register_frontend_140(struct xenbus_driver *ldv_func_arg1 ) ; extern void xenbus_unregister_driver(struct xenbus_driver * ) ; static void ldv_xenbus_unregister_driver_141(struct xenbus_driver *ldv_func_arg1 ) ; extern void *xenbus_read(struct xenbus_transaction , char const * , char const * , unsigned int * ) ; extern int xenbus_write(struct xenbus_transaction , char const * , char const * , char const * ) ; extern int xenbus_transaction_start(struct xenbus_transaction * ) ; extern int xenbus_transaction_end(struct xenbus_transaction , int ) ; extern int xenbus_scanf(struct xenbus_transaction , char const * , char const * , char const * , ...) ; extern int xenbus_printf(struct xenbus_transaction , char const * , char const * , char const * , ...) ; extern int xenbus_switch_state(struct xenbus_device * , enum xenbus_state ) ; extern int xenbus_grant_ring(struct xenbus_device * , unsigned long ) ; extern int xenbus_alloc_evtchn(struct xenbus_device * , int * ) ; extern int xenbus_free_evtchn(struct xenbus_device * , int ) ; extern void xenbus_dev_fatal(struct xenbus_device * , int , char const * , ...) ; extern char const *xenbus_strstate(enum xenbus_state ) ; extern int xenbus_frontend_closed(struct xenbus_device * ) ; extern int bind_evtchn_to_irqhandler(unsigned int , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; extern void unbind_from_irqhandler(unsigned int , void * ) ; extern void notify_remote_via_irq(int ) ; extern bool xen_has_pv_nic_devices(void) ; static struct ethtool_ops const xennet_ethtool_ops ; static void skb_entry_set_link(union skb_entry *list , unsigned short id ) { { list->link = (unsigned long )id; return; } } extern void __compiletime_assert_162(void) ; static int skb_entry_is_link(union skb_entry const *list ) { bool __cond ; { __cond = 0; if ((int )__cond) { { __compiletime_assert_162(); } } else { } return ((unsigned long )list->skb <= 0xffff87ffffffffffUL); } } static void add_id_to_freelist(unsigned int *head , union skb_entry *list , unsigned short id ) { { { skb_entry_set_link(list + (unsigned long )id, (int )((unsigned short )*head)); *head = (unsigned int )id; } return; } } static unsigned short get_id_from_freelist(unsigned int *head , union skb_entry *list ) { unsigned int id ; { id = *head; *head = (unsigned int )(list + (unsigned long )id)->link; return ((unsigned short )id); } } static int xennet_rxidx(RING_IDX idx ) { { return ((int )idx & 255); } } static struct sk_buff *xennet_get_rx_skb(struct netfront_info *np , RING_IDX ri ) { int i ; int tmp ; struct sk_buff *skb ; { { tmp = xennet_rxidx(ri); i = tmp; skb = np->rx_skbs[i]; np->rx_skbs[i] = (struct sk_buff *)0; } return (skb); } } static grant_ref_t xennet_get_rx_ref(struct netfront_info *np , RING_IDX ri ) { int i ; int tmp ; grant_ref_t ref ; { { tmp = xennet_rxidx(ri); i = tmp; ref = np->grant_rx_ref[i]; np->grant_rx_ref[i] = 0U; } return (ref); } } static int xennet_sysfs_addif(struct net_device *netdev ) ; static void xennet_sysfs_delif(struct net_device *netdev ) ; static bool xennet_can_sg(struct net_device *dev ) { { return ((dev->features & 1ULL) != 0ULL); } } static void rx_refill_timeout(unsigned long data ) { struct net_device *dev ; struct netfront_info *np ; void *tmp ; { { dev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)dev); np = (struct netfront_info *)tmp; napi_schedule(& np->napi); } return; } } static int netfront_tx_slot_available(struct netfront_info *np ) { int __min1 ; int __min2 ; { __min1 = 256; __min2 = 256; return ((unsigned long )(np->tx.req_prod_pvt - np->tx.rsp_cons) < (unsigned long )(__min1 < __min2 ? __min1 : __min2) - 19UL); } } static void xennet_maybe_wake_tx(struct net_device *dev ) { struct netfront_info *np ; void *tmp ; bool tmp___0 ; long tmp___1 ; int tmp___2 ; bool tmp___3 ; long tmp___4 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct netfront_info *)tmp; tmp___0 = netif_queue_stopped((struct net_device const *)dev); tmp___1 = ldv__builtin_expect((long )tmp___0, 0L); } if (tmp___1 != 0L) { { tmp___2 = netfront_tx_slot_available(np); } if (tmp___2 != 0) { { tmp___3 = netif_running((struct net_device const *)dev); tmp___4 = ldv__builtin_expect((long )tmp___3, 1L); } if (tmp___4 != 0L) { { netif_wake_queue(dev); } } else { } } else { } } else { } return; } } static void xennet_alloc_rx_buffers(struct net_device *dev ) { unsigned short id ; struct netfront_info *np ; void *tmp ; struct sk_buff *skb ; struct page *page ; int i ; int batch_target ; int notify ; RING_IDX req_prod ; grant_ref_t ref ; unsigned long pfn ; void *vaddr ; struct xen_netif_rx_request *req ; bool tmp___0 ; int tmp___1 ; long tmp___2 ; __u32 tmp___3 ; long tmp___4 ; unsigned int tmp___5 ; int tmp___6 ; long tmp___7 ; int tmp___8 ; long tmp___9 ; unsigned char *tmp___10 ; struct page *tmp___11 ; unsigned char *tmp___12 ; struct page *tmp___13 ; unsigned long tmp___14 ; RING_IDX __old ; RING_IDX __new ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct netfront_info *)tmp; req_prod = np->rx.req_prod_pvt; tmp___0 = netif_carrier_ok((struct net_device const *)dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } { tmp___2 = ldv__builtin_expect((long )tmp___1, 0L); } if (tmp___2 != 0L) { return; } else { } { batch_target = (int )(np->rx_target + (np->rx.rsp_cons - req_prod)); tmp___3 = skb_queue_len((struct sk_buff_head const *)(& np->rx_batch)); i = (int )tmp___3; } goto ldv_54040; ldv_54039: { skb = ldv___netdev_alloc_skb_102(dev, 256U, 544U); tmp___4 = ldv__builtin_expect((unsigned long )skb == (unsigned long )((struct sk_buff *)0), 0L); } if (tmp___4 != 0L) { goto no_skb; } else { } { skb_reserve(skb, 0); page = alloc_pages(544U, 0U); } if ((unsigned long )page == (unsigned long )((struct page *)0)) { { kfree_skb(skb); } no_skb: { ldv_mod_timer_103(& np->rx_refill_timer, (unsigned long )jiffies + 25UL); } if (i != 0) { goto refill; } else { } goto ldv_54038; } else { } { skb_add_rx_frag(skb, 0, page, 0, 0, 4096U); __skb_queue_tail(& np->rx_batch, skb); i = i + 1; } ldv_54040: ; if (i < batch_target) { goto ldv_54039; } else { } ldv_54038: ; if ((unsigned int )i < np->rx_target / 2U) { if (req_prod > (np->rx.sring)->req_prod) { goto push; } else { } return; } else { } if (req_prod - (np->rx.sring)->rsp_prod < np->rx_target / 4U) { tmp___5 = np->rx_target * 2U; np->rx_target = tmp___5; if (tmp___5 > np->rx_max_target) { np->rx_target = np->rx_max_target; } else { } } else { } refill: i = 0; ldv_54043: { skb = __skb_dequeue(& np->rx_batch); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto ldv_54042; } else { } { skb->dev = dev; tmp___6 = xennet_rxidx(req_prod + (RING_IDX )i); id = (unsigned short )tmp___6; tmp___7 = ldv__builtin_expect((unsigned long )np->rx_skbs[(int )id] != (unsigned long )((struct sk_buff *)0), 0L); } if (tmp___7 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/xen-netfront.c"), "i" (317), "i" (12UL)); __builtin_unreachable(); } } else { } { np->rx_skbs[(int )id] = skb; tmp___8 = gnttab_claim_grant_reference(& np->gref_rx_head); ref = (grant_ref_t )tmp___8; tmp___9 = ldv__builtin_expect((int )((short )ref) < 0, 0L); } if (tmp___9 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/xen-netfront.c"), "i" (321), "i" (12UL)); __builtin_unreachable(); } } else { } { np->grant_rx_ref[(int )id] = ref; tmp___10 = skb_end_pointer((struct sk_buff const *)skb); tmp___11 = skb_frag_page((skb_frag_t const *)(& ((struct skb_shared_info *)tmp___10)->frags)); pfn = (unsigned long )(((long )tmp___11 + 24189255811072L) / 64L); tmp___12 = skb_end_pointer((struct sk_buff const *)skb); tmp___13 = skb_frag_page((skb_frag_t const *)(& ((struct skb_shared_info *)tmp___12)->frags)); vaddr = lowmem_page_address((struct page const *)tmp___13); req = & (np->rx.sring)->ring[(req_prod + (RING_IDX )i) & (np->rx.nr_ents - 1U)].req; tmp___14 = pfn_to_mfn(pfn); gnttab_grant_foreign_access_ref(ref, (int )((domid_t )(np->xbdev)->otherend_id), tmp___14, 0); req->id = id; req->gref = ref; i = i + 1; } goto ldv_54043; ldv_54042: __asm__ volatile ("sfence": : : "memory"); np->rx.req_prod_pvt = req_prod + (RING_IDX )i; push: __old = (np->rx.sring)->req_prod; __new = np->rx.req_prod_pvt; __asm__ volatile ("sfence": : : "memory"); (np->rx.sring)->req_prod = __new; __asm__ volatile ("mfence": : : "memory"); notify = __new - (np->rx.sring)->req_event < __new - __old; if (notify != 0) { { notify_remote_via_irq((int )np->rx_irq); } } else { } return; } } static int xennet_open(struct net_device *dev ) { struct netfront_info *np ; void *tmp ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct netfront_info *)tmp; napi_enable(& np->napi); ldv_spin_lock_bh_104(& np->rx_lock); tmp___0 = netif_carrier_ok((struct net_device const *)dev); } if ((int )tmp___0) { { xennet_alloc_rx_buffers(dev); (np->rx.sring)->rsp_event = np->rx.rsp_cons + 1U; } if ((np->rx.sring)->rsp_prod != np->rx.rsp_cons) { { napi_schedule(& np->napi); } } else { } } else { } { ldv_spin_unlock_bh_105(& np->rx_lock); netif_start_queue(dev); } return (0); } } static void xennet_tx_buf_gc(struct net_device *dev ) { RING_IDX cons ; RING_IDX prod ; unsigned short id ; struct netfront_info *np ; void *tmp ; struct sk_buff *skb ; bool tmp___0 ; int tmp___1 ; long tmp___2 ; struct xen_netif_tx_response *txrsp ; int tmp___3 ; long tmp___4 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct netfront_info *)tmp; tmp___0 = netif_carrier_ok((struct net_device const *)dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } { tmp___2 = ldv__builtin_expect((long )tmp___1, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/xen-netfront.c"), "i" (374), "i" (12UL)); __builtin_unreachable(); } } else { } ldv_54064: prod = (np->tx.sring)->rsp_prod; __asm__ volatile ("lfence": : : "memory"); cons = np->tx.rsp_cons; goto ldv_54062; ldv_54061: txrsp = & (np->tx.sring)->ring[cons & (np->tx.nr_ents - 1U)].rsp; if ((int )txrsp->status == 1) { goto ldv_54059; } else { } { id = txrsp->id; skb = np->tx_skbs[(int )id].skb; tmp___3 = gnttab_query_foreign_access(np->grant_tx_ref[(int )id]); tmp___4 = ldv__builtin_expect(tmp___3 != 0, 0L); } if (tmp___4 != 0L) { { printk("\txen_netfront: %s: warning -- grant still in use by backend domain\n", "xennet_tx_buf_gc"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/xen-netfront.c"), "i" (393), "i" (12UL)); __builtin_unreachable(); } } else { } { gnttab_end_foreign_access_ref(np->grant_tx_ref[(int )id], 4); gnttab_release_grant_reference(& np->gref_tx_head, np->grant_tx_ref[(int )id]); np->grant_tx_ref[(int )id] = 0U; np->grant_tx_page[(int )id] = (struct page *)0; add_id_to_freelist(& np->tx_skb_freelist, (union skb_entry *)(& np->tx_skbs), (int )id); dev_kfree_skb_irq(skb); } ldv_54059: cons = cons + 1U; ldv_54062: ; if (cons != prod) { goto ldv_54061; } else { } np->tx.rsp_cons = prod; (np->tx.sring)->rsp_event = (prod + (((np->tx.sring)->req_prod - prod) >> 1)) + 1U; __asm__ volatile ("mfence": : : "memory"); if (cons == prod && prod != (np->tx.sring)->rsp_prod) { goto ldv_54064; } else { } { xennet_maybe_wake_tx(dev); } return; } } static void xennet_make_frags(struct sk_buff *skb , struct net_device *dev , struct xen_netif_tx_request *tx ) { struct netfront_info *np ; void *tmp ; char *data ; unsigned long mfn ; RING_IDX prod ; int frags ; unsigned char *tmp___0 ; unsigned int offset ; unsigned int len ; unsigned int tmp___1 ; unsigned int id ; grant_ref_t ref ; int i ; unsigned short tmp___2 ; RING_IDX tmp___3 ; int tmp___4 ; long tmp___5 ; unsigned long tmp___6 ; unsigned long tmp___7 ; grant_ref_t tmp___8 ; skb_frag_t *frag ; unsigned char *tmp___9 ; struct page *page ; struct page *tmp___10 ; int tmp___11 ; long tmp___12 ; unsigned long bytes ; long tmp___13 ; unsigned short tmp___14 ; RING_IDX tmp___15 ; int tmp___16 ; long tmp___17 ; grant_ref_t tmp___18 ; int tmp___19 ; long tmp___20 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct netfront_info *)tmp; data = (char *)skb->data; prod = np->tx.req_prod_pvt; tmp___0 = skb_end_pointer((struct sk_buff const *)skb); frags = (int )((struct skb_shared_info *)tmp___0)->nr_frags; offset = (unsigned int )((long )data) & 4095U; tmp___1 = skb_headlen((struct sk_buff const *)skb); len = tmp___1; } goto ldv_54082; ldv_54081: { tx->size = 4096U - (unsigned int )((uint16_t )offset); tx->flags = (uint16_t )((unsigned int )tx->flags | 4U); len = len - (unsigned int )tx->size; data = data + (unsigned long )tx->size; offset = 0U; tmp___2 = get_id_from_freelist(& np->tx_skb_freelist, (union skb_entry *)(& np->tx_skbs)); id = (unsigned int )tmp___2; np->tx_skbs[id].skb = skb_get(skb); tmp___3 = prod; prod = prod + 1U; tx = & (np->tx.sring)->ring[tmp___3 & (np->tx.nr_ents - 1U)].req; tx->id = (uint16_t )id; tmp___4 = gnttab_claim_grant_reference(& np->gref_tx_head); ref = (grant_ref_t )tmp___4; tmp___5 = ldv__builtin_expect((int )((short )ref) < 0, 0L); } if (tmp___5 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/xen-netfront.c"), "i" (451), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___6 = __phys_addr((unsigned long )data); mfn = pfn_to_mfn(tmp___6 >> 12); gnttab_grant_foreign_access_ref(ref, (int )((domid_t )(np->xbdev)->otherend_id), mfn, 4); tmp___7 = __phys_addr((unsigned long )data); np->grant_tx_page[id] = (struct page *)-24189255811072L + (tmp___7 >> 12); tmp___8 = ref; np->grant_tx_ref[id] = tmp___8; tx->gref = tmp___8; tx->offset = (uint16_t )offset; tx->size = (uint16_t )len; tx->flags = 0U; } ldv_54082: ; if ((unsigned long )len > 4096UL - (unsigned long )offset) { goto ldv_54081; } else { } i = 0; goto ldv_54091; ldv_54090: { tmp___9 = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp___9)->frags) + (unsigned long )i; tmp___10 = skb_frag_page((skb_frag_t const *)frag); page = tmp___10; len = skb_frag_size((skb_frag_t const *)frag); offset = frag->page_offset; tmp___11 = compound_order(page); tmp___12 = ldv__builtin_expect((unsigned long )(len + offset) > 4096UL << tmp___11, 0L); } if (tmp___12 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/xen-netfront.c"), "i" (473), "i" (12UL)); __builtin_unreachable(); } } else { } page = page + (unsigned long )(offset >> 12); offset = offset & 4095U; goto ldv_54088; ldv_54087: { tmp___13 = ldv__builtin_expect(offset > 4095U, 0L); } if (tmp___13 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/xen-netfront.c"), "i" (482), "i" (12UL)); __builtin_unreachable(); } } else { } bytes = 4096UL - (unsigned long )offset; if (bytes > (unsigned long )len) { bytes = (unsigned long )len; } else { } { tx->flags = (uint16_t )((unsigned int )tx->flags | 4U); tmp___14 = get_id_from_freelist(& np->tx_skb_freelist, (union skb_entry *)(& np->tx_skbs)); id = (unsigned int )tmp___14; np->tx_skbs[id].skb = skb_get(skb); tmp___15 = prod; prod = prod + 1U; tx = & (np->tx.sring)->ring[tmp___15 & (np->tx.nr_ents - 1U)].req; tx->id = (uint16_t )id; tmp___16 = gnttab_claim_grant_reference(& np->gref_tx_head); ref = (grant_ref_t )tmp___16; tmp___17 = ldv__builtin_expect((int )((short )ref) < 0, 0L); } if (tmp___17 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/xen-netfront.c"), "i" (496), "i" (12UL)); __builtin_unreachable(); } } else { } { mfn = pfn_to_mfn((unsigned long )(((long )page + 24189255811072L) / 64L)); gnttab_grant_foreign_access_ref(ref, (int )((domid_t )(np->xbdev)->otherend_id), mfn, 4); np->grant_tx_page[id] = page; tmp___18 = ref; np->grant_tx_ref[id] = tmp___18; tx->gref = tmp___18; tx->offset = (uint16_t )offset; tx->size = (uint16_t )bytes; tx->flags = 0U; offset = offset + (unsigned int )bytes; len = len - (unsigned int )bytes; } if (offset == 4096U && len != 0U) { { tmp___19 = PageCompound(page); tmp___20 = ldv__builtin_expect(tmp___19 == 0, 0L); } if (tmp___20 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/xen-netfront.c"), "i" (514), "i" (12UL)); __builtin_unreachable(); } } else { } page = page + 1; offset = 0U; } else { } ldv_54088: ; if (len != 0U) { goto ldv_54087; } else { } i = i + 1; ldv_54091: ; if (i < frags) { goto ldv_54090; } else { } np->tx.req_prod_pvt = prod; return; } } static int xennet_count_skb_frag_slots(struct sk_buff *skb ) { int i ; int frags ; unsigned char *tmp ; int pages ; skb_frag_t *frag ; unsigned char *tmp___0 ; unsigned long size ; unsigned int tmp___1 ; unsigned long offset ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); frags = (int )((struct skb_shared_info *)tmp)->nr_frags; pages = 0; i = 0; } goto ldv_54103; ldv_54102: { tmp___0 = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp___0)->frags) + (unsigned long )i; tmp___1 = skb_frag_size((skb_frag_t const *)frag); size = (unsigned long )tmp___1; offset = (unsigned long )frag->page_offset; offset = offset & 4095UL; pages = (int )((unsigned int )pages + (unsigned int )(((offset + size) + 4095UL) >> 12)); i = i + 1; } ldv_54103: ; if (i < frags) { goto ldv_54102; } else { } return (pages); } } static int xennet_start_xmit(struct sk_buff *skb , struct net_device *dev ) { unsigned short id ; struct netfront_info *np ; void *tmp ; struct netfront_stats *stats ; unsigned long tcp_ptr__ ; void const *__vpp_verify ; struct xen_netif_tx_request *tx ; char *data ; RING_IDX i ; grant_ref_t ref ; unsigned long mfn ; int notify ; int slots ; unsigned int offset ; unsigned int len ; unsigned int tmp___0 ; unsigned long flags ; int tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; bool tmp___6 ; int tmp___7 ; long tmp___8 ; long tmp___9 ; bool tmp___10 ; int tmp___11 ; long tmp___12 ; int tmp___13 ; int tmp___14 ; netdev_features_t tmp___15 ; bool tmp___16 ; long tmp___17 ; int tmp___18 ; long tmp___19 ; unsigned long tmp___20 ; unsigned long tmp___21 ; grant_ref_t tmp___22 ; struct xen_netif_extra_info *gso ; unsigned char *tmp___23 ; unsigned char *tmp___24 ; unsigned char *tmp___25 ; RING_IDX __old ; RING_IDX __new ; int tmp___26 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct netfront_info *)tmp; __vpp_verify = (void const *)0; __asm__ volatile ("add %%gs:%P1, %0": "=r" (tcp_ptr__): "m" (this_cpu_off), "0" (np->stats)); stats = (struct netfront_stats *)tcp_ptr__; data = (char *)skb->data; offset = (unsigned int )((long )data) & 4095U; tmp___0 = skb_headlen((struct sk_buff const *)skb); len = tmp___0; tmp___2 = ldv__builtin_expect(skb->len > 65535U, 0L); } if (tmp___2 != 0L) { { tmp___1 = net_ratelimit(); } if (tmp___1 != 0) { { printk("\txen_netfront: xennet: skb->len = %u, too big for wire format\n", skb->len); } } else { } goto drop; } else { } { tmp___3 = xennet_count_skb_frag_slots(skb); slots = (int )((unsigned int )(((unsigned long )(offset + len) + 4095UL) / 4096UL) + (unsigned int )tmp___3); tmp___5 = ldv__builtin_expect((unsigned int )slots > 18U, 0L); } if (tmp___5 != 0L) { { tmp___4 = net_ratelimit(); } if (tmp___4 != 0) { { printk("\txen_netfront: xennet: skb rides the rocket: %d slots\n", slots); } } else { } goto drop; } else { } { ldv___ldv_spin_lock_106(& np->tx_lock); tmp___6 = netif_carrier_ok((struct net_device const *)dev); } if (tmp___6) { tmp___7 = 0; } else { tmp___7 = 1; } { tmp___8 = ldv__builtin_expect((long )tmp___7, 0L); } if (tmp___8 != 0L) { tmp___14 = 1; } else { { tmp___9 = ldv__builtin_expect(slots > 1, 0L); } if (tmp___9 != 0L) { { tmp___10 = xennet_can_sg(dev); } if (tmp___10) { tmp___11 = 0; } else { tmp___11 = 1; } { tmp___12 = ldv__builtin_expect((long )tmp___11, 0L); } if (tmp___12 != 0L) { tmp___13 = 1; } else { tmp___13 = 0; } } else { tmp___13 = 0; } if (tmp___13 != 0) { tmp___14 = 1; } else { tmp___14 = 0; } } if (tmp___14 != 0) { { ldv_spin_unlock_irqrestore_107(& np->tx_lock, flags); } goto drop; } else { { tmp___15 = netif_skb_features(skb); tmp___16 = netif_needs_gso(skb, tmp___15); tmp___17 = ldv__builtin_expect((long )tmp___16, 0L); } if (tmp___17 != 0L) { { ldv_spin_unlock_irqrestore_107(& np->tx_lock, flags); } goto drop; } else { } } { i = np->tx.req_prod_pvt; id = get_id_from_freelist(& np->tx_skb_freelist, (union skb_entry *)(& np->tx_skbs)); np->tx_skbs[(int )id].skb = skb; tx = & (np->tx.sring)->ring[i & (np->tx.nr_ents - 1U)].req; tx->id = id; tmp___18 = gnttab_claim_grant_reference(& np->gref_tx_head); ref = (grant_ref_t )tmp___18; tmp___19 = ldv__builtin_expect((int )((short )ref) < 0, 0L); } if (tmp___19 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/xen-netfront.c"), "i" (599), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___20 = __phys_addr((unsigned long )data); mfn = pfn_to_mfn(tmp___20 >> 12); gnttab_grant_foreign_access_ref(ref, (int )((domid_t )(np->xbdev)->otherend_id), mfn, 4); tmp___21 = __phys_addr((unsigned long )data); np->grant_tx_page[(int )id] = (struct page *)-24189255811072L + (tmp___21 >> 12); tmp___22 = ref; np->grant_tx_ref[(int )id] = tmp___22; tx->gref = tmp___22; tx->offset = (uint16_t )offset; tx->size = (uint16_t )len; tx->flags = 0U; } if ((unsigned int )*((unsigned char *)skb + 124UL) == 12U) { tx->flags = (uint16_t )((unsigned int )tx->flags | 3U); } else if ((unsigned int )*((unsigned char *)skb + 124UL) == 4U) { tx->flags = (uint16_t )((unsigned int )tx->flags | 2U); } else { } { tmp___25 = skb_end_pointer((struct sk_buff const *)skb); } if ((unsigned int )((struct skb_shared_info *)tmp___25)->gso_size != 0U) { { i = i + 1U; gso = (struct xen_netif_extra_info *)(& (np->tx.sring)->ring[i & (np->tx.nr_ents - 1U)].req); tx->flags = (uint16_t )((unsigned int )tx->flags | 8U); tmp___23 = skb_end_pointer((struct sk_buff const *)skb); gso->u.gso.size = ((struct skb_shared_info *)tmp___23)->gso_size; tmp___24 = skb_end_pointer((struct sk_buff const *)skb); gso->u.gso.type = ((int )((struct skb_shared_info *)tmp___24)->gso_type & 16) != 0 ? 2U : 1U; gso->u.gso.pad = 0U; gso->u.gso.features = 0U; gso->type = 1U; gso->flags = 0U; } } else { } { np->tx.req_prod_pvt = i + 1U; xennet_make_frags(skb, dev, tx); tx->size = (uint16_t )skb->len; __old = (np->tx.sring)->req_prod; __new = np->tx.req_prod_pvt; __asm__ volatile ("sfence": : : "memory"); (np->tx.sring)->req_prod = __new; __asm__ volatile ("mfence": : : "memory"); notify = __new - (np->tx.sring)->req_event < __new - __old; } if (notify != 0) { { notify_remote_via_irq((int )np->tx_irq); } } else { } { u64_stats_update_begin(& stats->syncp); stats->tx_bytes = stats->tx_bytes + (u64 )skb->len; stats->tx_packets = stats->tx_packets + 1ULL; u64_stats_update_begin(& stats->syncp); xennet_tx_buf_gc(dev); tmp___26 = netfront_tx_slot_available(np); } if (tmp___26 == 0) { { netif_stop_queue(dev); } } else { } { ldv_spin_unlock_irqrestore_107(& np->tx_lock, flags); } return (0); drop: { dev->stats.tx_dropped = dev->stats.tx_dropped + 1UL; consume_skb(skb); } return (0); } } static int xennet_close(struct net_device *dev ) { struct netfront_info *np ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct netfront_info *)tmp; netif_stop_queue(np->netdev); napi_disable(& np->napi); } return (0); } } static void xennet_move_rx_slot(struct netfront_info *np , struct sk_buff *skb , grant_ref_t ref ) { int new ; int tmp ; long tmp___0 ; { { tmp = xennet_rxidx(np->rx.req_prod_pvt); new = tmp; tmp___0 = ldv__builtin_expect((unsigned long )np->rx_skbs[new] != (unsigned long )((struct sk_buff *)0), 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/xen-netfront.c"), "i" (678), "i" (12UL)); __builtin_unreachable(); } } else { } np->rx_skbs[new] = skb; np->grant_rx_ref[new] = ref; (np->rx.sring)->ring[np->rx.req_prod_pvt & (np->rx.nr_ents - 1U)].req.id = (uint16_t )new; (np->rx.sring)->ring[np->rx.req_prod_pvt & (np->rx.nr_ents - 1U)].req.gref = ref; np->rx.req_prod_pvt = np->rx.req_prod_pvt + 1U; return; } } static int xennet_get_extras(struct netfront_info *np , struct xen_netif_extra_info *extras , RING_IDX rp ) { struct xen_netif_extra_info *extra ; struct device *dev ; RING_IDX cons ; int err ; struct sk_buff *skb ; grant_ref_t ref ; int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { dev = & (np->netdev)->dev; cons = np->rx.rsp_cons; err = 0; ldv_54151: { tmp___0 = ldv__builtin_expect(cons + 1U == rp, 0L); } if (tmp___0 != 0L) { { tmp = net_ratelimit(); } if (tmp != 0) { { dev_warn((struct device const *)dev, "Missing extra info\n"); } } else { } err = -53; goto ldv_54150; } else { } { cons = cons + 1U; extra = (struct xen_netif_extra_info *)(& (np->rx.sring)->ring[cons & (np->rx.nr_ents - 1U)].rsp); tmp___2 = ldv__builtin_expect((unsigned int )extra->type != 1U, 0L); } if (tmp___2 != 0L) { { tmp___1 = net_ratelimit(); } if (tmp___1 != 0) { { dev_warn((struct device const *)dev, "Invalid extra type: %d\n", (int )extra->type); } } else { } err = -22; } else { { memcpy((void *)(extras + ((unsigned long )extra->type + 0xffffffffffffffffUL)), (void const *)extra, 8UL); } } { skb = xennet_get_rx_skb(np, cons); ref = xennet_get_rx_ref(np, cons); xennet_move_rx_slot(np, skb, ref); } if ((int )extra->flags & 1) { goto ldv_54151; } else { } ldv_54150: np->rx.rsp_cons = cons; return (err); } } static int xennet_get_responses(struct netfront_info *np , struct netfront_rx_info *rinfo , RING_IDX rp , struct sk_buff_head *list ) { struct xen_netif_rx_response *rx ; struct xen_netif_extra_info *extras ; struct device *dev ; RING_IDX cons ; struct sk_buff *skb ; struct sk_buff *tmp ; grant_ref_t ref ; grant_ref_t tmp___0 ; int max ; int slots ; int err ; unsigned long ret ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; int tmp___5 ; long tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; { { rx = & rinfo->rx; extras = (struct xen_netif_extra_info *)(& rinfo->extras); dev = & (np->netdev)->dev; cons = np->rx.rsp_cons; tmp = xennet_get_rx_skb(np, cons); skb = tmp; tmp___0 = xennet_get_rx_ref(np, cons); ref = tmp___0; max = (int )rx->status <= 256 ? 18 : 17; slots = 1; err = 0; } if (((unsigned int )rx->flags & 8U) != 0U) { { err = xennet_get_extras(np, extras, rp); cons = np->rx.rsp_cons; } } else { } ldv_54170: { tmp___2 = ldv__builtin_expect((int )rx->status < 0, 0L); } if (tmp___2 != 0L) { goto _L; } else { { tmp___3 = ldv__builtin_expect((unsigned int )((int )rx->offset + (int )rx->status) > 4096U, 0L); } if (tmp___3 != 0L) { _L: /* CIL Label */ { tmp___1 = net_ratelimit(); } if (tmp___1 != 0) { { dev_warn((struct device const *)dev, "rx->offset: %x, size: %u\n", (int )rx->offset, (int )rx->status); } } else { } { xennet_move_rx_slot(np, skb, ref); err = -22; } goto next; } else { } } if (ref == 0U) { { tmp___4 = net_ratelimit(); } if (tmp___4 != 0) { { dev_warn((struct device const *)dev, "Bad rx response id %d.\n", (int )rx->id); } } else { } err = -22; goto next; } else { } { tmp___5 = gnttab_end_foreign_access_ref(ref, 0); ret = (unsigned long )tmp___5; tmp___6 = ldv__builtin_expect(ret == 0UL, 0L); } if (tmp___6 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/xen-netfront.c"), "i" (775), "i" (12UL)); __builtin_unreachable(); } } else { } { gnttab_release_grant_reference(& np->gref_rx_head, ref); __skb_queue_tail(list, skb); } next: ; if (((unsigned int )rx->flags & 4U) == 0U) { goto ldv_54169; } else { } if (cons + (RING_IDX )slots == rp) { { tmp___7 = net_ratelimit(); } if (tmp___7 != 0) { { dev_warn((struct device const *)dev, "Need more slots\n"); } } else { } err = -2; goto ldv_54169; } else { } { rx = & (np->rx.sring)->ring[(cons + (RING_IDX )slots) & (np->rx.nr_ents - 1U)].rsp; skb = xennet_get_rx_skb(np, cons + (RING_IDX )slots); ref = xennet_get_rx_ref(np, cons + (RING_IDX )slots); slots = slots + 1; } goto ldv_54170; ldv_54169: { tmp___9 = ldv__builtin_expect(slots > max, 0L); } if (tmp___9 != 0L) { { tmp___8 = net_ratelimit(); } if (tmp___8 != 0) { { dev_warn((struct device const *)dev, "Too many slots\n"); } } else { } err = -7; } else { } { tmp___10 = ldv__builtin_expect(err != 0, 0L); } if (tmp___10 != 0L) { np->rx.rsp_cons = cons + (RING_IDX )slots; } else { } return (err); } } static int xennet_set_skb_gso(struct sk_buff *skb , struct xen_netif_extra_info *gso ) { int tmp ; int tmp___0 ; unsigned char *tmp___1 ; unsigned char *tmp___2 ; unsigned char *tmp___3 ; unsigned char *tmp___4 ; { if ((unsigned int )gso->u.gso.size == 0U) { { tmp = net_ratelimit(); } if (tmp != 0) { { printk("\fxen_netfront: GSO size must not be zero\n"); } } else { } return (-22); } else { } if ((unsigned int )gso->u.gso.type - 1U > 1U) { { tmp___0 = net_ratelimit(); } if (tmp___0 != 0) { { printk("\fxen_netfront: Bad GSO type %d\n", (int )gso->u.gso.type); } } else { } return (-22); } else { } { tmp___1 = skb_end_pointer((struct sk_buff const *)skb); ((struct skb_shared_info *)tmp___1)->gso_size = gso->u.gso.size; tmp___2 = skb_end_pointer((struct sk_buff const *)skb); ((struct skb_shared_info *)tmp___2)->gso_type = (unsigned int )gso->u.gso.type == 1U ? 1U : 16U; tmp___3 = skb_end_pointer((struct sk_buff const *)skb); ((struct skb_shared_info *)tmp___3)->gso_type = (unsigned int )((struct skb_shared_info *)tmp___3)->gso_type | 4U; tmp___4 = skb_end_pointer((struct sk_buff const *)skb); ((struct skb_shared_info *)tmp___4)->gso_segs = 0U; } return (0); } } static RING_IDX xennet_fill_frags(struct netfront_info *np , struct sk_buff *skb , struct sk_buff_head *list ) { struct skb_shared_info *shinfo ; unsigned char *tmp ; RING_IDX cons ; struct sk_buff *nskb ; struct xen_netif_rx_response *rx ; skb_frag_t *nfrag ; unsigned char *tmp___0 ; unsigned int pull_to ; unsigned int tmp___1 ; long tmp___2 ; unsigned int tmp___3 ; long tmp___4 ; struct page *tmp___5 ; unsigned char *tmp___6 ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); shinfo = (struct skb_shared_info *)tmp; cons = np->rx.rsp_cons; } goto ldv_54187; ldv_54186: { cons = cons + 1U; rx = & (np->rx.sring)->ring[cons & (np->rx.nr_ents - 1U)].rsp; tmp___0 = skb_end_pointer((struct sk_buff const *)nskb); nfrag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp___0)->frags); } if ((unsigned int )shinfo->nr_frags == 17U) { { pull_to = (unsigned int )((struct netfront_cb *)(& skb->cb))->pull_to; tmp___1 = skb_headlen((struct sk_buff const *)skb); tmp___2 = ldv__builtin_expect(pull_to <= tmp___1, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/xen-netfront.c"), "i" (855), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___3 = skb_headlen((struct sk_buff const *)skb); __pskb_pull_tail(skb, (int )(pull_to - tmp___3)); } } else { } { tmp___4 = ldv__builtin_expect((unsigned int )shinfo->nr_frags > 16U, 0L); } if (tmp___4 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/xen-netfront.c"), "i" (858), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___5 = skb_frag_page((skb_frag_t const *)nfrag); skb_add_rx_frag(skb, (int )shinfo->nr_frags, tmp___5, (int )rx->offset, (int )rx->status, 4096U); tmp___6 = skb_end_pointer((struct sk_buff const *)nskb); ((struct skb_shared_info *)tmp___6)->nr_frags = 0U; kfree_skb(nskb); } ldv_54187: { nskb = __skb_dequeue(list); } if ((unsigned long )nskb != (unsigned long )((struct sk_buff *)0)) { goto ldv_54186; } else { } return (cons); } } static int checksum_setup(struct net_device *dev , struct sk_buff *skb ) { bool recalculate_partial_csum ; struct netfront_info *np ; void *tmp ; bool tmp___0 ; int tmp___1 ; { recalculate_partial_csum = 0; if ((unsigned int )*((unsigned char *)skb + 124UL) != 12U) { { tmp___0 = skb_is_gso((struct sk_buff const *)skb); } if ((int )tmp___0) { { tmp = netdev_priv((struct net_device const *)dev); np = (struct netfront_info *)tmp; np->rx_gso_checksum_fixup = np->rx_gso_checksum_fixup + 1UL; skb->ip_summed = 3U; recalculate_partial_csum = 1; } } else { } } else { } if ((unsigned int )*((unsigned char *)skb + 124UL) != 12U) { return (0); } else { } { tmp___1 = skb_checksum_setup(skb, (int )recalculate_partial_csum); } return (tmp___1); } } static int handle_incoming_queue(struct net_device *dev , struct sk_buff_head *rxq ) { struct netfront_info *np ; void *tmp ; struct netfront_stats *stats ; unsigned long tcp_ptr__ ; void const *__vpp_verify ; int packets_dropped ; struct sk_buff *skb ; int pull_to ; unsigned int tmp___0 ; unsigned int tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct netfront_info *)tmp; __vpp_verify = (void const *)0; __asm__ volatile ("add %%gs:%P1, %0": "=r" (tcp_ptr__): "m" (this_cpu_off), "0" (np->stats)); stats = (struct netfront_stats *)tcp_ptr__; packets_dropped = 0; } goto ldv_54207; ldv_54208: { pull_to = ((struct netfront_cb *)(& skb->cb))->pull_to; tmp___1 = skb_headlen((struct sk_buff const *)skb); } if ((unsigned int )pull_to > tmp___1) { { tmp___0 = skb_headlen((struct sk_buff const *)skb); __pskb_pull_tail(skb, (int )((unsigned int )pull_to - tmp___0)); } } else { } { skb->protocol = eth_type_trans(skb, dev); skb_reset_network_header(skb); tmp___2 = checksum_setup(dev, skb); } if (tmp___2 != 0) { { kfree_skb(skb); packets_dropped = packets_dropped + 1; dev->stats.rx_errors = dev->stats.rx_errors + 1UL; } goto ldv_54207; } else { } { u64_stats_update_begin(& stats->syncp); stats->rx_packets = stats->rx_packets + 1ULL; stats->rx_bytes = stats->rx_bytes + (u64 )skb->len; u64_stats_update_begin(& stats->syncp); napi_gro_receive(& np->napi, skb); } ldv_54207: { skb = __skb_dequeue(rxq); } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { goto ldv_54208; } else { } return (packets_dropped); } } static int xennet_poll(struct napi_struct *napi , int budget ) { struct netfront_info *np ; struct napi_struct const *__mptr ; struct net_device *dev ; struct sk_buff *skb ; struct netfront_rx_info rinfo ; struct xen_netif_rx_response *rx ; struct xen_netif_extra_info *extras ; RING_IDX i ; RING_IDX rp ; int work_done ; struct sk_buff_head rxq ; struct sk_buff_head errq ; struct sk_buff_head tmpq ; unsigned long flags ; int err ; long tmp ; struct xen_netif_extra_info *gso ; __u32 tmp___0 ; int tmp___1 ; long tmp___2 ; unsigned char *tmp___3 ; unsigned char *tmp___4 ; int tmp___5 ; int more_to_do ; int tmp___6 ; { { __mptr = (struct napi_struct const *)napi; np = (struct netfront_info *)__mptr + 0xffffffffffffffe8UL; dev = np->netdev; rx = & rinfo.rx; extras = (struct xen_netif_extra_info *)(& rinfo.extras); ldv_spin_lock_109(& np->rx_lock); skb_queue_head_init(& rxq); skb_queue_head_init(& errq); skb_queue_head_init(& tmpq); rp = (np->rx.sring)->rsp_prod; __asm__ volatile ("lfence": : : "memory"); i = np->rx.rsp_cons; work_done = 0; } goto ldv_54234; ldv_54236: { memcpy((void *)rx, (void const *)(& (np->rx.sring)->ring[i & (np->rx.nr_ents - 1U)].rsp), 8UL); memset((void *)extras, 0, 8UL); err = xennet_get_responses(np, & rinfo, rp, & tmpq); tmp = ldv__builtin_expect(err != 0, 0L); } if (tmp != 0L) { err: ; goto ldv_54232; ldv_54231: { __skb_queue_tail(& errq, skb); } ldv_54232: { skb = __skb_dequeue(& tmpq); } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { goto ldv_54231; } else { } dev->stats.rx_errors = dev->stats.rx_errors + 1UL; i = np->rx.rsp_cons; goto ldv_54234; } else { } { skb = __skb_dequeue(& tmpq); } if ((unsigned int )extras->type != 0U) { { gso = extras; tmp___1 = xennet_set_skb_gso(skb, gso); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { { __skb_queue_head(& tmpq, skb); tmp___0 = skb_queue_len((struct sk_buff_head const *)(& tmpq)); np->rx.rsp_cons = np->rx.rsp_cons + tmp___0; } goto err; } else { } } else { } ((struct netfront_cb *)(& skb->cb))->pull_to = (int )rx->status; if (((struct netfront_cb *)(& skb->cb))->pull_to > 256) { ((struct netfront_cb *)(& skb->cb))->pull_to = 256; } else { } { tmp___3 = skb_end_pointer((struct sk_buff const *)skb); ((struct skb_shared_info *)tmp___3)->frags[0].page_offset = (__u32 )rx->offset; tmp___4 = skb_end_pointer((struct sk_buff const *)skb); skb_frag_size_set((skb_frag_t *)(& ((struct skb_shared_info *)tmp___4)->frags), (unsigned int )rx->status); skb->data_len = (unsigned int )rx->status; skb->len = skb->len + (unsigned int )rx->status; i = xennet_fill_frags(np, skb, & tmpq); } if (((unsigned int )rx->flags & 2U) != 0U) { skb->ip_summed = 3U; } else if ((int )rx->flags & 1) { skb->ip_summed = 1U; } else { } { __skb_queue_tail(& rxq, skb); i = i + 1U; np->rx.rsp_cons = i; work_done = work_done + 1; } ldv_54234: ; if (i != rp && work_done < budget) { goto ldv_54236; } else { } { __skb_queue_purge(& errq); tmp___5 = handle_incoming_queue(dev, & rxq); work_done = work_done - tmp___5; } if (np->rx.req_prod_pvt - (np->rx.sring)->rsp_prod > (np->rx_target * 3U) / 4U) { np->rx_target = np->rx_target - 1U; if (np->rx_target < np->rx_min_target) { np->rx_target = np->rx_min_target; } else { } } else { } { xennet_alloc_rx_buffers(dev); } if (work_done < budget) { { more_to_do = 0; napi_gro_flush(napi, 0); flags = arch_local_irq_save(); trace_hardirqs_off(); more_to_do = (int )((np->rx.sring)->rsp_prod - np->rx.rsp_cons); } if (more_to_do != 0) { goto ldv_54242; } else { } (np->rx.sring)->rsp_event = np->rx.rsp_cons + 1U; __asm__ volatile ("mfence": : : "memory"); more_to_do = (int )((np->rx.sring)->rsp_prod - np->rx.rsp_cons); ldv_54242: ; if (more_to_do == 0) { { __napi_complete(napi); } } else { } { tmp___6 = arch_irqs_disabled_flags(flags); } if (tmp___6 != 0) { { arch_local_irq_restore(flags); trace_hardirqs_off(); } } else { { trace_hardirqs_on(); arch_local_irq_restore(flags); } } } else { } { ldv_spin_unlock_110(& np->rx_lock); } return (work_done); } } static int xennet_change_mtu(struct net_device *dev , int mtu ) { int max ; bool tmp ; { { tmp = xennet_can_sg(dev); max = (int )tmp ? 65231 : 1500; } if (mtu > max) { return (-22); } else { } dev->mtu = (unsigned int )mtu; return (0); } } static struct rtnl_link_stats64 *xennet_get_stats64(struct net_device *dev , struct rtnl_link_stats64 *tot ) { struct netfront_info *np ; void *tmp ; int cpu ; struct netfront_stats *stats ; void const *__vpp_verify ; unsigned long __ptr ; u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; unsigned int start ; bool tmp___0 ; unsigned int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct netfront_info *)tmp; cpu = -1; } goto ldv_54277; ldv_54276: __vpp_verify = (void const *)0; __asm__ ("": "=r" (__ptr): "0" (np->stats)); stats = (struct netfront_stats *)(__ptr + __per_cpu_offset[cpu]); ldv_54274: { start = u64_stats_fetch_begin_bh((struct u64_stats_sync const *)(& stats->syncp)); rx_packets = stats->rx_packets; tx_packets = stats->tx_packets; rx_bytes = stats->rx_bytes; tx_bytes = stats->tx_bytes; tmp___0 = u64_stats_fetch_retry_bh((struct u64_stats_sync const *)(& stats->syncp), start); } if ((int )tmp___0) { goto ldv_54274; } else { } tot->rx_packets = tot->rx_packets + rx_packets; tot->tx_packets = tot->tx_packets + tx_packets; tot->rx_bytes = tot->rx_bytes + rx_bytes; tot->tx_bytes = tot->tx_bytes + tx_bytes; ldv_54277: { tmp___1 = cpumask_next(cpu, cpu_possible_mask); cpu = (int )tmp___1; } if (cpu < nr_cpu_ids) { goto ldv_54276; } else { } tot->rx_errors = (__u64 )dev->stats.rx_errors; tot->tx_dropped = (__u64 )dev->stats.tx_dropped; return (tot); } } static void xennet_release_tx_bufs(struct netfront_info *np ) { struct sk_buff *skb ; int i ; int tmp ; void *tmp___0 ; { i = 0; goto ldv_54286; ldv_54285: { tmp = skb_entry_is_link((union skb_entry const *)(& np->tx_skbs) + (unsigned long )i); } if (tmp != 0) { goto ldv_54284; } else { } { skb = np->tx_skbs[i].skb; get_page(np->grant_tx_page[i]); tmp___0 = lowmem_page_address((struct page const *)np->grant_tx_page[i]); gnttab_end_foreign_access(np->grant_tx_ref[i], 4, (unsigned long )tmp___0); np->grant_tx_page[i] = (struct page *)0; np->grant_tx_ref[i] = 0U; add_id_to_freelist(& np->tx_skb_freelist, (union skb_entry *)(& np->tx_skbs), (int )((unsigned short )i)); dev_kfree_skb_irq(skb); } ldv_54284: i = i + 1; ldv_54286: ; if ((unsigned int )i <= 255U) { goto ldv_54285; } else { } return; } } static void xennet_release_rx_bufs(struct netfront_info *np ) { int id ; int ref ; struct sk_buff *skb ; struct page *page ; unsigned char *tmp ; void *tmp___0 ; { { ldv_spin_lock_bh_104(& np->rx_lock); id = 0; } goto ldv_54297; ldv_54296: skb = np->rx_skbs[id]; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto ldv_54295; } else { } ref = (int )np->grant_rx_ref[id]; if (ref == 0) { goto ldv_54295; } else { } { tmp = skb_end_pointer((struct sk_buff const *)skb); page = skb_frag_page((skb_frag_t const *)(& ((struct skb_shared_info *)tmp)->frags)); get_page(page); tmp___0 = lowmem_page_address((struct page const *)page); gnttab_end_foreign_access((grant_ref_t )ref, 0, (unsigned long )tmp___0); np->grant_rx_ref[id] = 0U; kfree_skb(skb); } ldv_54295: id = id + 1; ldv_54297: ; if ((unsigned int )id <= 255U) { goto ldv_54296; } else { } { ldv_spin_unlock_bh_105(& np->rx_lock); } return; } } static void xennet_uninit(struct net_device *dev ) { struct netfront_info *np ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct netfront_info *)tmp; xennet_release_tx_bufs(np); xennet_release_rx_bufs(np); gnttab_free_grant_references(np->gref_tx_head); gnttab_free_grant_references(np->gref_rx_head); } return; } } static netdev_features_t xennet_fix_features(struct net_device *dev , netdev_features_t features ) { struct netfront_info *np ; void *tmp ; int val ; struct xenbus_transaction __constr_expr_0 ; int tmp___0 ; struct xenbus_transaction __constr_expr_1 ; int tmp___1 ; struct xenbus_transaction __constr_expr_2 ; int tmp___2 ; struct xenbus_transaction __constr_expr_3 ; int tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct netfront_info *)tmp; } if ((int )features & 1) { { __constr_expr_0.id = 0U; tmp___0 = xenbus_scanf(__constr_expr_0, (np->xbdev)->otherend, "feature-sg", "%d", & val); } if (tmp___0 < 0) { val = 0; } else { } if (val == 0) { features = features & 0xfffffffffffffffeULL; } else { } } else { } if ((features & 16ULL) != 0ULL) { { __constr_expr_1.id = 0U; tmp___1 = xenbus_scanf(__constr_expr_1, (np->xbdev)->otherend, "feature-ipv6-csum-offload", "%d", & val); } if (tmp___1 < 0) { val = 0; } else { } if (val == 0) { features = features & 0xffffffffffffffefULL; } else { } } else { } if ((features & 65536ULL) != 0ULL) { { __constr_expr_2.id = 0U; tmp___2 = xenbus_scanf(__constr_expr_2, (np->xbdev)->otherend, "feature-gso-tcpv4", "%d", & val); } if (tmp___2 < 0) { val = 0; } else { } if (val == 0) { features = features & 0xfffffffffffeffffULL; } else { } } else { } if ((features & 1048576ULL) != 0ULL) { { __constr_expr_3.id = 0U; tmp___3 = xenbus_scanf(__constr_expr_3, (np->xbdev)->otherend, "feature-gso-tcpv6", "%d", & val); } if (tmp___3 < 0) { val = 0; } else { } if (val == 0) { features = features & 0xffffffffffefffffULL; } else { } } else { } return (features); } } static int xennet_set_features(struct net_device *dev , netdev_features_t features ) { { if ((features & 1ULL) == 0ULL && dev->mtu > 1500U) { { netdev_info((struct net_device const *)dev, "Reducing MTU because no SG offload"); dev->mtu = 1500U; } } else { } return (0); } } static irqreturn_t xennet_tx_interrupt(int irq , void *dev_id ) { struct netfront_info *np ; struct net_device *dev ; unsigned long flags ; { { np = (struct netfront_info *)dev_id; dev = np->netdev; ldv___ldv_spin_lock_113(& np->tx_lock); xennet_tx_buf_gc(dev); ldv_spin_unlock_irqrestore_107(& np->tx_lock, flags); } return (1); } } static irqreturn_t xennet_rx_interrupt(int irq , void *dev_id ) { struct netfront_info *np ; struct net_device *dev ; bool tmp ; long tmp___0 ; long tmp___1 ; { { np = (struct netfront_info *)dev_id; dev = np->netdev; tmp = netif_carrier_ok((struct net_device const *)dev); tmp___0 = ldv__builtin_expect((long )tmp, 1L); } if (tmp___0 != 0L) { { tmp___1 = ldv__builtin_expect((np->rx.sring)->rsp_prod != np->rx.rsp_cons, 1L); } if (tmp___1 != 0L) { { napi_schedule(& np->napi); } } else { } } else { } return (1); } } static irqreturn_t xennet_interrupt(int irq , void *dev_id ) { { { xennet_tx_interrupt(irq, dev_id); xennet_rx_interrupt(irq, dev_id); } return (1); } } static void xennet_poll_controller(struct net_device *dev ) { { { xennet_interrupt(0, (void *)dev); } return; } } static struct net_device_ops const xennet_netdev_ops = {0, & xennet_uninit, & xennet_open, & xennet_close, (netdev_tx_t (*)(struct sk_buff * , struct net_device * ))(& xennet_start_xmit), 0, 0, 0, & eth_mac_addr, & eth_validate_addr, 0, 0, & xennet_change_mtu, 0, 0, & xennet_get_stats64, 0, 0, 0, & xennet_poll_controller, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & xennet_fix_features, & xennet_set_features, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct net_device *xennet_create_dev(struct xenbus_device *dev ) { int i ; int err ; struct net_device *netdev ; struct netfront_info *np ; void *tmp ; void *tmp___0 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; int __min1 ; int __min2 ; struct lock_class_key __key___1 ; void *tmp___1 ; struct netfront_stats *xen_nf_stats ; void const *__vpp_verify ; unsigned long __ptr ; unsigned int tmp___2 ; int __min1___0 ; int __min2___0 ; int tmp___3 ; int __min1___1 ; int __min2___1 ; int tmp___4 ; void *tmp___5 ; { { netdev = ldv_alloc_etherdev_mqs_115(31616, 1U, 1U); } if ((unsigned long )netdev == (unsigned long )((struct net_device *)0)) { { tmp = ERR_PTR(-12L); } return ((struct net_device *)tmp); } else { } { tmp___0 = netdev_priv((struct net_device const *)netdev); np = (struct netfront_info *)tmp___0; np->xbdev = dev; spinlock_check(& np->tx_lock); __raw_spin_lock_init(& np->tx_lock.__annonCompField19.rlock, "&(&np->tx_lock)->rlock", & __key); spinlock_check(& np->rx_lock); __raw_spin_lock_init(& np->rx_lock.__annonCompField19.rlock, "&(&np->rx_lock)->rlock", & __key___0); skb_queue_head_init(& np->rx_batch); np->rx_target = 64U; np->rx_min_target = 64U; __min1 = 256; __min2 = 256; np->rx_max_target = (unsigned int )(__min1 < __min2 ? __min1 : __min2); init_timer_key(& np->rx_refill_timer, 0U, "(&np->rx_refill_timer)", & __key___1); np->rx_refill_timer.data = (unsigned long )netdev; np->rx_refill_timer.function = & rx_refill_timeout; err = -12; tmp___1 = __alloc_percpu(32UL, 8UL); np->stats = (struct netfront_stats *)tmp___1; } if ((unsigned long )np->stats == (unsigned long )((struct netfront_stats *)0)) { goto exit; } else { } i = -1; goto ldv_54358; ldv_54357: __vpp_verify = (void const *)0; __asm__ ("": "=r" (__ptr): "0" (np->stats)); xen_nf_stats = (struct netfront_stats *)(__ptr + __per_cpu_offset[i]); ldv_54358: { tmp___2 = cpumask_next(i, cpu_possible_mask); i = (int )tmp___2; } if (i < nr_cpu_ids) { goto ldv_54357; } else { } np->tx_skb_freelist = 0U; i = 0; goto ldv_54361; ldv_54360: { skb_entry_set_link((union skb_entry *)(& np->tx_skbs) + (unsigned long )i, (int )((unsigned int )((unsigned short )i) + 1U)); np->grant_tx_ref[i] = 0U; i = i + 1; } ldv_54361: ; if ((unsigned int )i <= 255U) { goto ldv_54360; } else { } i = 0; goto ldv_54364; ldv_54363: np->rx_skbs[i] = (struct sk_buff *)0; np->grant_rx_ref[i] = 0U; np->grant_tx_page[i] = (struct page *)0; i = i + 1; ldv_54364: ; if ((unsigned int )i <= 255U) { goto ldv_54363; } else { } { __min1___0 = 256; __min2___0 = 256; tmp___3 = gnttab_alloc_grant_references((int )((u16 )(__min1___0 < __min2___0 ? __min1___0 : __min2___0)), & np->gref_tx_head); } if (tmp___3 < 0) { { printk("\txen_netfront: can\'t alloc tx grant refs\n"); err = -12; } goto exit_free_stats; } else { } { __min1___1 = 256; __min2___1 = 256; tmp___4 = gnttab_alloc_grant_references((int )((u16 )(__min1___1 < __min2___1 ? __min1___1 : __min2___1)), & np->gref_rx_head); } if (tmp___4 < 0) { { printk("\txen_netfront: can\'t alloc rx grant refs\n"); err = -12; } goto exit_free_tx; } else { } { netdev->netdev_ops = & xennet_netdev_ops; netif_napi_add(netdev, & np->napi, & xennet_poll, 64); netdev->features = 4295229442ULL; netdev->hw_features = 1114129ULL; netdev->features = netdev->features | netdev->hw_features; netdev->ethtool_ops = & xennet_ethtool_ops; netdev->dev.parent = & dev->dev; netif_set_gso_max_size(netdev, 65231U); np->netdev = netdev; netif_carrier_off(netdev); } return (netdev); exit_free_tx: { gnttab_free_grant_references(np->gref_tx_head); } exit_free_stats: { free_percpu((void *)np->stats); } exit: { ldv_free_netdev_116(netdev); tmp___5 = ERR_PTR((long )err); } return ((struct net_device *)tmp___5); } } static int netfront_probe(struct xenbus_device *dev , struct xenbus_device_id const *id ) { int err ; struct net_device *netdev ; struct netfront_info *info ; long tmp ; long tmp___0 ; void *tmp___1 ; { { netdev = xennet_create_dev(dev); tmp___0 = IS_ERR((void const *)netdev); } if (tmp___0 != 0L) { { tmp = PTR_ERR((void const *)netdev); err = (int )tmp; xenbus_dev_fatal(dev, err, "creating netdev"); } return (err); } else { } { tmp___1 = netdev_priv((struct net_device const *)netdev); info = (struct netfront_info *)tmp___1; ldv_dev_set_drvdata_117(& dev->dev, (void *)info); err = ldv_register_netdev_118(info->netdev); } if (err != 0) { { printk("\fxen_netfront: %s: register_netdev err=%d\n", "netfront_probe", err); } goto fail; } else { } { err = xennet_sysfs_addif(info->netdev); } if (err != 0) { { ldv_unregister_netdev_119(info->netdev); printk("\fxen_netfront: %s: add sysfs failed err=%d\n", "netfront_probe", err); } goto fail; } else { } return (0); fail: { ldv_free_netdev_120(netdev); ldv_dev_set_drvdata_121(& dev->dev, (void *)0); } return (err); } } static void xennet_end_access(int ref , void *page ) { { if (ref != 0) { { gnttab_end_foreign_access((grant_ref_t )ref, 0, (unsigned long )page); } } else { } return; } } static void xennet_disconnect_backend(struct netfront_info *info ) { unsigned int tmp ; unsigned int tmp___0 ; { { ldv_spin_lock_bh_104(& info->rx_lock); ldv_spin_lock_irq_123(& info->tx_lock); netif_carrier_off(info->netdev); ldv_spin_unlock_irq_124(& info->tx_lock); ldv_spin_unlock_bh_105(& info->rx_lock); } if (info->tx_irq != 0U && info->tx_irq == info->rx_irq) { { unbind_from_irqhandler(info->tx_irq, (void *)info); } } else { } if (info->tx_irq != 0U && info->tx_irq != info->rx_irq) { { unbind_from_irqhandler(info->tx_irq, (void *)info); unbind_from_irqhandler(info->rx_irq, (void *)info); } } else { } { tmp = 0U; info->rx_evtchn = tmp; info->tx_evtchn = tmp; tmp___0 = 0U; info->rx_irq = tmp___0; info->tx_irq = tmp___0; xennet_end_access(info->tx_ring_ref, (void *)info->tx.sring); xennet_end_access(info->rx_ring_ref, (void *)info->rx.sring); info->tx_ring_ref = 0; info->rx_ring_ref = 0; info->tx.sring = (struct xen_netif_tx_sring *)0; info->rx.sring = (struct xen_netif_rx_sring *)0; } return; } } static int netfront_resume(struct xenbus_device *dev ) { struct netfront_info *info ; void *tmp ; struct _ddebug descriptor ; long tmp___0 ; { { tmp = ldv_dev_get_drvdata_126((struct device const *)(& dev->dev)); info = (struct netfront_info *)tmp; descriptor.modname = "xen_netfront"; descriptor.function = "netfront_resume"; descriptor.filename = "drivers/net/xen-netfront.c"; descriptor.format = "%s\n"; descriptor.lineno = 1449U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& dev->dev), "%s\n", dev->nodename); } } else { } { xennet_disconnect_backend(info); } return (0); } } static int xen_net_read_mac(struct xenbus_device *dev , u8 *mac ) { char *s ; char *e ; char *macstr ; int i ; struct xenbus_transaction __constr_expr_0 ; void *tmp ; long tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; { { __constr_expr_0.id = 0U; tmp = xenbus_read(__constr_expr_0, dev->nodename, "mac", (unsigned int *)0U); s = (char *)tmp; macstr = s; tmp___1 = IS_ERR((void const *)macstr); } if (tmp___1 != 0L) { { tmp___0 = PTR_ERR((void const *)macstr); } return ((int )tmp___0); } else { } i = 0; goto ldv_54406; ldv_54405: { tmp___2 = simple_strtoul((char const *)s, & e, 16U); *(mac + (unsigned long )i) = (u8 )tmp___2; } if ((unsigned long )s == (unsigned long )e || (int )*e != (i == 5 ? 0 : 58)) { { kfree((void const *)macstr); } return (-2); } else { } s = e + 1UL; i = i + 1; ldv_54406: ; if (i <= 5) { goto ldv_54405; } else { } { kfree((void const *)macstr); } return (0); } } static int setup_netfront_single(struct netfront_info *info ) { int err ; unsigned int tmp ; { { err = xenbus_alloc_evtchn(info->xbdev, (int *)(& info->tx_evtchn)); } if (err < 0) { goto fail; } else { } { err = bind_evtchn_to_irqhandler(info->tx_evtchn, & xennet_interrupt, 0UL, (char const *)(& (info->netdev)->name), (void *)info); } if (err < 0) { goto bind_fail; } else { } info->rx_evtchn = info->tx_evtchn; tmp = (unsigned int )err; info->tx_irq = tmp; info->rx_irq = tmp; return (0); bind_fail: { xenbus_free_evtchn(info->xbdev, (int )info->tx_evtchn); info->tx_evtchn = 0U; } fail: ; return (err); } } static int setup_netfront_split(struct netfront_info *info ) { int err ; { { err = xenbus_alloc_evtchn(info->xbdev, (int *)(& info->tx_evtchn)); } if (err < 0) { goto fail; } else { } { err = xenbus_alloc_evtchn(info->xbdev, (int *)(& info->rx_evtchn)); } if (err < 0) { goto alloc_rx_evtchn_fail; } else { } { snprintf((char *)(& info->tx_irq_name), 20UL, "%s-tx", (char *)(& (info->netdev)->name)); err = bind_evtchn_to_irqhandler(info->tx_evtchn, & xennet_tx_interrupt, 0UL, (char const *)(& info->tx_irq_name), (void *)info); } if (err < 0) { goto bind_tx_fail; } else { } { info->tx_irq = (unsigned int )err; snprintf((char *)(& info->rx_irq_name), 20UL, "%s-rx", (char *)(& (info->netdev)->name)); err = bind_evtchn_to_irqhandler(info->rx_evtchn, & xennet_rx_interrupt, 0UL, (char const *)(& info->rx_irq_name), (void *)info); } if (err < 0) { goto bind_rx_fail; } else { } info->rx_irq = (unsigned int )err; return (0); bind_rx_fail: { unbind_from_irqhandler(info->tx_irq, (void *)info); info->tx_irq = 0U; } bind_tx_fail: { xenbus_free_evtchn(info->xbdev, (int )info->rx_evtchn); info->rx_evtchn = 0U; } alloc_rx_evtchn_fail: { xenbus_free_evtchn(info->xbdev, (int )info->tx_evtchn); info->tx_evtchn = 0U; } fail: ; return (err); } } static int setup_netfront(struct xenbus_device *dev , struct netfront_info *info ) { struct xen_netif_tx_sring *txs ; struct xen_netif_rx_sring *rxs ; int err ; struct net_device *netdev ; unsigned int feature_split_evtchn ; struct xenbus_transaction __constr_expr_0 ; unsigned long tmp ; RING_IDX tmp___0 ; RING_IDX tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; unsigned long tmp___4 ; RING_IDX tmp___5 ; RING_IDX tmp___6 ; unsigned long tmp___7 ; unsigned long tmp___8 ; { { netdev = info->netdev; info->tx_ring_ref = 0; info->rx_ring_ref = 0; info->rx.sring = (struct xen_netif_rx_sring *)0; info->tx.sring = (struct xen_netif_tx_sring *)0; netdev->irq = 0; __constr_expr_0.id = 0U; err = xenbus_scanf(__constr_expr_0, (info->xbdev)->otherend, "feature-split-event-channels", "%u", & feature_split_evtchn); } if (err < 0) { feature_split_evtchn = 0U; } else { } { err = xen_net_read_mac(dev, netdev->dev_addr); } if (err != 0) { { xenbus_dev_fatal(dev, err, "parsing %s/mac", dev->nodename); } goto fail; } else { } { tmp = get_zeroed_page(48U); txs = (struct xen_netif_tx_sring *)tmp; } if ((unsigned long )txs == (unsigned long )((struct xen_netif_tx_sring *)0)) { { err = -12; xenbus_dev_fatal(dev, err, "allocating tx ring page"); } goto fail; } else { } { tmp___0 = 0U; txs->rsp_prod = tmp___0; txs->req_prod = tmp___0; tmp___1 = 1U; txs->rsp_event = tmp___1; txs->req_event = tmp___1; memset((void *)(& txs->pad), 0, 48UL); info->tx.req_prod_pvt = 0U; info->tx.rsp_cons = 0U; info->tx.nr_ents = 256U; info->tx.sring = txs; tmp___2 = __phys_addr((unsigned long )txs); tmp___3 = pfn_to_mfn(tmp___2 >> 12); err = xenbus_grant_ring(dev, tmp___3); } if (err < 0) { goto grant_tx_ring_fail; } else { } { info->tx_ring_ref = err; tmp___4 = get_zeroed_page(48U); rxs = (struct xen_netif_rx_sring *)tmp___4; } if ((unsigned long )rxs == (unsigned long )((struct xen_netif_rx_sring *)0)) { { err = -12; xenbus_dev_fatal(dev, err, "allocating rx ring page"); } goto alloc_rx_ring_fail; } else { } { tmp___5 = 0U; rxs->rsp_prod = tmp___5; rxs->req_prod = tmp___5; tmp___6 = 1U; rxs->rsp_event = tmp___6; rxs->req_event = tmp___6; memset((void *)(& rxs->pad), 0, 48UL); info->rx.req_prod_pvt = 0U; info->rx.rsp_cons = 0U; info->rx.nr_ents = 256U; info->rx.sring = rxs; tmp___7 = __phys_addr((unsigned long )rxs); tmp___8 = pfn_to_mfn(tmp___7 >> 12); err = xenbus_grant_ring(dev, tmp___8); } if (err < 0) { goto grant_rx_ring_fail; } else { } info->rx_ring_ref = err; if (feature_split_evtchn != 0U) { { err = setup_netfront_split(info); } } else { } if (feature_split_evtchn == 0U || (feature_split_evtchn != 0U && err != 0)) { { err = setup_netfront_single(info); } } else { } if (err != 0) { goto alloc_evtchn_fail; } else { } return (0); alloc_evtchn_fail: { gnttab_end_foreign_access_ref((grant_ref_t )info->rx_ring_ref, 0); } grant_rx_ring_fail: { free_pages((unsigned long )rxs, 0U); } alloc_rx_ring_fail: { gnttab_end_foreign_access_ref((grant_ref_t )info->tx_ring_ref, 0); } grant_tx_ring_fail: { free_pages((unsigned long )txs, 0U); } fail: ; return (err); } } static int talk_to_netback(struct xenbus_device *dev , struct netfront_info *info ) { char const *message ; struct xenbus_transaction xbt ; int err ; { { err = setup_netfront(dev, info); } if (err != 0) { goto out; } else { } again: { err = xenbus_transaction_start(& xbt); } if (err != 0) { { xenbus_dev_fatal(dev, err, "starting transaction"); } goto destroy_ring; } else { } { err = xenbus_printf(xbt, dev->nodename, "tx-ring-ref", "%u", info->tx_ring_ref); } if (err != 0) { message = "writing tx ring-ref"; goto abort_transaction; } else { } { err = xenbus_printf(xbt, dev->nodename, "rx-ring-ref", "%u", info->rx_ring_ref); } if (err != 0) { message = "writing rx ring-ref"; goto abort_transaction; } else { } if (info->tx_evtchn == info->rx_evtchn) { { err = xenbus_printf(xbt, dev->nodename, "event-channel", "%u", info->tx_evtchn); } if (err != 0) { message = "writing event-channel"; goto abort_transaction; } else { } } else { { err = xenbus_printf(xbt, dev->nodename, "event-channel-tx", "%u", info->tx_evtchn); } if (err != 0) { message = "writing event-channel-tx"; goto abort_transaction; } else { } { err = xenbus_printf(xbt, dev->nodename, "event-channel-rx", "%u", info->rx_evtchn); } if (err != 0) { message = "writing event-channel-rx"; goto abort_transaction; } else { } } { err = xenbus_printf(xbt, dev->nodename, "request-rx-copy", "%u", 1); } if (err != 0) { message = "writing request-rx-copy"; goto abort_transaction; } else { } { err = xenbus_printf(xbt, dev->nodename, "feature-rx-notify", "%d", 1); } if (err != 0) { message = "writing feature-rx-notify"; goto abort_transaction; } else { } { err = xenbus_printf(xbt, dev->nodename, "feature-sg", "%d", 1); } if (err != 0) { message = "writing feature-sg"; goto abort_transaction; } else { } { err = xenbus_printf(xbt, dev->nodename, "feature-gso-tcpv4", "%d", 1); } if (err != 0) { message = "writing feature-gso-tcpv4"; goto abort_transaction; } else { } { err = xenbus_write(xbt, dev->nodename, "feature-gso-tcpv6", "1"); } if (err != 0) { message = "writing feature-gso-tcpv6"; goto abort_transaction; } else { } { err = xenbus_write(xbt, dev->nodename, "feature-ipv6-csum-offload", "1"); } if (err != 0) { message = "writing feature-ipv6-csum-offload"; goto abort_transaction; } else { } { err = xenbus_transaction_end(xbt, 0); } if (err != 0) { if (err == -11) { goto again; } else { } { xenbus_dev_fatal(dev, err, "completing transaction"); } goto destroy_ring; } else { } return (0); abort_transaction: { xenbus_transaction_end(xbt, 1); xenbus_dev_fatal(dev, err, "%s", message); } destroy_ring: { xennet_disconnect_backend(info); } out: ; return (err); } } static int xennet_connect(struct net_device *dev ) { struct netfront_info *np ; void *tmp ; int i ; int requeue_idx ; int err ; struct sk_buff *skb ; grant_ref_t ref ; struct xen_netif_rx_request *req ; unsigned int feature_rx_copy ; struct xenbus_transaction __constr_expr_0 ; skb_frag_t *frag ; struct page const *page ; struct sk_buff *tmp___0 ; grant_ref_t tmp___1 ; unsigned char *tmp___2 ; struct page *tmp___3 ; unsigned long tmp___4 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct netfront_info *)tmp; __constr_expr_0.id = 0U; err = xenbus_scanf(__constr_expr_0, (np->xbdev)->otherend, "feature-rx-copy", "%u", & feature_rx_copy); } if (err != 1) { feature_rx_copy = 0U; } else { } if (feature_rx_copy == 0U) { { _dev_info((struct device const *)(& dev->dev), "backend does not support copying receive path\n"); } return (-19); } else { } { err = talk_to_netback(np->xbdev, np); } if (err != 0) { return (err); } else { } { rtnl_lock(); netdev_update_features(dev); rtnl_unlock(); ldv_spin_lock_bh_104(& np->rx_lock); ldv_spin_lock_irq_123(& np->tx_lock); xennet_release_tx_bufs(np); requeue_idx = 0; i = 0; } goto ldv_54464; ldv_54463: ; if ((unsigned long )np->rx_skbs[i] == (unsigned long )((struct sk_buff *)0)) { goto ldv_54462; } else { } { tmp___0 = xennet_get_rx_skb(np, (RING_IDX )i); np->rx_skbs[requeue_idx] = tmp___0; skb = tmp___0; tmp___1 = xennet_get_rx_ref(np, (RING_IDX )i); np->grant_rx_ref[requeue_idx] = tmp___1; ref = tmp___1; req = & (np->rx.sring)->ring[(unsigned int )requeue_idx & (np->rx.nr_ents - 1U)].req; tmp___2 = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp___2)->frags); tmp___3 = skb_frag_page((skb_frag_t const *)frag); page = (struct page const *)tmp___3; tmp___4 = pfn_to_mfn((unsigned long )(((long )page + 24189255811072L) / 64L)); gnttab_grant_foreign_access_ref(ref, (int )((domid_t )(np->xbdev)->otherend_id), tmp___4, 0); req->gref = ref; req->id = (uint16_t )requeue_idx; requeue_idx = requeue_idx + 1; } ldv_54462: i = i + 1; ldv_54464: ; if ((unsigned int )i <= 255U) { goto ldv_54463; } else { } { np->rx.req_prod_pvt = (RING_IDX )requeue_idx; netif_carrier_on(np->netdev); notify_remote_via_irq((int )np->tx_irq); } if (np->tx_irq != np->rx_irq) { { notify_remote_via_irq((int )np->rx_irq); } } else { } { xennet_tx_buf_gc(dev); xennet_alloc_rx_buffers(dev); ldv_spin_unlock_irq_124(& np->tx_lock); ldv_spin_unlock_bh_105(& np->rx_lock); } return (0); } } static void netback_changed(struct xenbus_device *dev , enum xenbus_state backend_state ) { struct netfront_info *np ; void *tmp ; struct net_device *netdev ; struct _ddebug descriptor ; char const *tmp___0 ; long tmp___1 ; int tmp___2 ; { { tmp = ldv_dev_get_drvdata_131((struct device const *)(& dev->dev)); np = (struct netfront_info *)tmp; netdev = np->netdev; descriptor.modname = "xen_netfront"; descriptor.function = "netback_changed"; descriptor.filename = "drivers/net/xen-netfront.c"; descriptor.format = "%s\n"; descriptor.lineno = 1828U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { tmp___0 = xenbus_strstate(backend_state); __dynamic_dev_dbg(& descriptor, (struct device const *)(& dev->dev), "%s\n", tmp___0); } } else { } { if ((unsigned int )backend_state == 1U) { goto case_1; } else { } if ((unsigned int )backend_state == 3U) { goto case_3; } else { } if ((unsigned int )backend_state == 7U) { goto case_7; } else { } if ((unsigned int )backend_state == 8U) { goto case_8; } else { } if ((unsigned int )backend_state == 0U) { goto case_0; } else { } if ((unsigned int )backend_state == 2U) { goto case_2; } else { } if ((unsigned int )backend_state == 4U) { goto case_4; } else { } if ((unsigned int )backend_state == 6U) { goto case_6; } else { } if ((unsigned int )backend_state == 5U) { goto case_5; } else { } goto switch_break; case_1: /* CIL Label */ ; case_3: /* CIL Label */ ; case_7: /* CIL Label */ ; case_8: /* CIL Label */ ; case_0: /* CIL Label */ ; goto ldv_54479; case_2: /* CIL Label */ ; if ((unsigned int )dev->state != 1U) { goto ldv_54479; } else { } { tmp___2 = xennet_connect(netdev); } if (tmp___2 != 0) { goto ldv_54479; } else { } { xenbus_switch_state(dev, 4); } goto ldv_54479; case_4: /* CIL Label */ { netdev_notify_peers(netdev); } goto ldv_54479; case_6: /* CIL Label */ ; if ((unsigned int )dev->state == 6U) { goto ldv_54479; } else { } case_5: /* CIL Label */ { xenbus_frontend_closed(dev); } goto ldv_54479; switch_break: /* CIL Label */ ; } ldv_54479: ; return; } } static struct xennet_stat const xennet_stats[1U] = { {{'r', 'x', '_', 'g', 's', 'o', '_', 'c', 'h', 'e', 'c', 'k', 's', 'u', 'm', '_', 'f', 'i', 'x', 'u', 'p', '\000'}, 31584U}}; static int xennet_get_sset_count(struct net_device *dev , int string_set ) { { { if (string_set == 1) { goto case_1; } else { } goto switch_default; case_1: /* CIL Label */ ; return (1); switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } } } static void xennet_get_ethtool_stats(struct net_device *dev , struct ethtool_stats *stats , u64 *data ) { void *np ; void *tmp ; int i ; { { tmp = netdev_priv((struct net_device const *)dev); np = tmp; i = 0; } goto ldv_54506; ldv_54505: *(data + (unsigned long )i) = (u64 )*((unsigned long *)np + (unsigned long )xennet_stats[i].offset); i = i + 1; ldv_54506: ; if (i == 0) { goto ldv_54505; } else { } return; } } static void xennet_get_strings(struct net_device *dev , u32 stringset , u8 *data ) { int i ; { { if (stringset == 1U) { goto case_1; } else { } goto switch_break; case_1: /* CIL Label */ i = 0; goto ldv_54518; ldv_54517: { memcpy((void *)data + (unsigned long )(i * 32), (void const *)(& xennet_stats[i].name), 32UL); i = i + 1; } ldv_54518: ; if (i == 0) { goto ldv_54517; } else { } goto ldv_54520; switch_break: /* CIL Label */ ; } ldv_54520: ; return; } } static struct ethtool_ops const xennet_ethtool_ops = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ethtool_op_get_link, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & xennet_get_strings, 0, & xennet_get_ethtool_stats, 0, 0, 0, 0, & xennet_get_sset_count, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static ssize_t show_rxbuf_min(struct device *dev , struct device_attribute *attr , char *buf ) { struct net_device *netdev ; struct device const *__mptr ; struct netfront_info *info ; void *tmp ; int tmp___0 ; { { __mptr = (struct device const *)dev; netdev = (struct net_device *)__mptr + 0xfffffffffffffac8UL; tmp = netdev_priv((struct net_device const *)netdev); info = (struct netfront_info *)tmp; tmp___0 = sprintf(buf, "%u\n", info->rx_min_target); } return ((ssize_t )tmp___0); } } static ssize_t store_rxbuf_min(struct device *dev , struct device_attribute *attr , char const *buf , size_t len ) { struct net_device *netdev ; struct device const *__mptr ; struct netfront_info *np ; void *tmp ; char *endp ; unsigned long target ; bool tmp___0 ; int tmp___1 ; int __min1 ; int __min2 ; int __min1___0 ; int __min2___0 ; { { __mptr = (struct device const *)dev; netdev = (struct net_device *)__mptr + 0xfffffffffffffac8UL; tmp = netdev_priv((struct net_device const *)netdev); np = (struct netfront_info *)tmp; tmp___0 = capable(12); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-1L); } else { } { target = simple_strtoul(buf, & endp, 0U); } if ((unsigned long )((char const *)endp) == (unsigned long )buf) { return (-74L); } else { } if (target <= 7UL) { target = 8UL; } else { } __min1___0 = 256; __min2___0 = 256; if (target > (unsigned long )(__min1___0 < __min2___0 ? __min1___0 : __min2___0)) { __min1 = 256; __min2 = 256; target = (unsigned long )(__min1 < __min2 ? __min1 : __min2); } else { } { ldv_spin_lock_bh_104(& np->rx_lock); } if (target > (unsigned long )np->rx_max_target) { np->rx_max_target = (unsigned int )target; } else { } np->rx_min_target = (unsigned int )target; if (target > (unsigned long )np->rx_target) { np->rx_target = (unsigned int )target; } else { } { xennet_alloc_rx_buffers(netdev); ldv_spin_unlock_bh_105(& np->rx_lock); } return ((ssize_t )len); } } static ssize_t show_rxbuf_max(struct device *dev , struct device_attribute *attr , char *buf ) { struct net_device *netdev ; struct device const *__mptr ; struct netfront_info *info ; void *tmp ; int tmp___0 ; { { __mptr = (struct device const *)dev; netdev = (struct net_device *)__mptr + 0xfffffffffffffac8UL; tmp = netdev_priv((struct net_device const *)netdev); info = (struct netfront_info *)tmp; tmp___0 = sprintf(buf, "%u\n", info->rx_max_target); } return ((ssize_t )tmp___0); } } static ssize_t store_rxbuf_max(struct device *dev , struct device_attribute *attr , char const *buf , size_t len ) { struct net_device *netdev ; struct device const *__mptr ; struct netfront_info *np ; void *tmp ; char *endp ; unsigned long target ; bool tmp___0 ; int tmp___1 ; int __min1 ; int __min2 ; int __min1___0 ; int __min2___0 ; { { __mptr = (struct device const *)dev; netdev = (struct net_device *)__mptr + 0xfffffffffffffac8UL; tmp = netdev_priv((struct net_device const *)netdev); np = (struct netfront_info *)tmp; tmp___0 = capable(12); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-1L); } else { } { target = simple_strtoul(buf, & endp, 0U); } if ((unsigned long )((char const *)endp) == (unsigned long )buf) { return (-74L); } else { } if (target <= 7UL) { target = 8UL; } else { } __min1___0 = 256; __min2___0 = 256; if (target > (unsigned long )(__min1___0 < __min2___0 ? __min1___0 : __min2___0)) { __min1 = 256; __min2 = 256; target = (unsigned long )(__min1 < __min2 ? __min1 : __min2); } else { } { ldv_spin_lock_bh_104(& np->rx_lock); } if (target < (unsigned long )np->rx_min_target) { np->rx_min_target = (unsigned int )target; } else { } np->rx_max_target = (unsigned int )target; if (target < (unsigned long )np->rx_target) { np->rx_target = (unsigned int )target; } else { } { xennet_alloc_rx_buffers(netdev); ldv_spin_unlock_bh_105(& np->rx_lock); } return ((ssize_t )len); } } static ssize_t show_rxbuf_cur(struct device *dev , struct device_attribute *attr , char *buf ) { struct net_device *netdev ; struct device const *__mptr ; struct netfront_info *info ; void *tmp ; int tmp___0 ; { { __mptr = (struct device const *)dev; netdev = (struct net_device *)__mptr + 0xfffffffffffffac8UL; tmp = netdev_priv((struct net_device const *)netdev); info = (struct netfront_info *)tmp; tmp___0 = sprintf(buf, "%u\n", info->rx_target); } return ((ssize_t )tmp___0); } } static struct device_attribute xennet_attrs[3U] = { {{"rxbuf_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_rxbuf_min, & store_rxbuf_min}, {{"rxbuf_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_rxbuf_max, & store_rxbuf_max}, {{"rxbuf_cur", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_rxbuf_cur, (ssize_t (*)(struct device * , struct device_attribute * , char const * , size_t ))0}}; static int xennet_sysfs_addif(struct net_device *netdev ) { int i ; int err ; { i = 0; goto ldv_54595; ldv_54594: { err = device_create_file(& netdev->dev, (struct device_attribute const *)(& xennet_attrs) + (unsigned long )i); } if (err != 0) { goto fail; } else { } i = i + 1; ldv_54595: ; if ((unsigned int )i <= 2U) { goto ldv_54594; } else { } return (0); fail: ; goto ldv_54598; ldv_54597: { device_remove_file(& netdev->dev, (struct device_attribute const *)(& xennet_attrs) + (unsigned long )i); } ldv_54598: i = i - 1; if (i >= 0) { goto ldv_54597; } else { } return (err); } } static void xennet_sysfs_delif(struct net_device *netdev ) { int i ; { i = 0; goto ldv_54607; ldv_54606: { device_remove_file(& netdev->dev, (struct device_attribute const *)(& xennet_attrs) + (unsigned long )i); i = i + 1; } ldv_54607: ; if ((unsigned int )i <= 2U) { goto ldv_54606; } else { } return; } } static struct xenbus_device_id const netfront_ids[2U] = { {{'v', 'i', 'f', '\000'}}, {{'\000'}}}; static int xennet_remove(struct xenbus_device *dev ) { struct netfront_info *info ; void *tmp ; struct _ddebug descriptor ; long tmp___0 ; { { tmp = ldv_dev_get_drvdata_136((struct device const *)(& dev->dev)); info = (struct netfront_info *)tmp; descriptor.modname = "xen_netfront"; descriptor.function = "xennet_remove"; descriptor.filename = "drivers/net/xen-netfront.c"; descriptor.format = "%s\n"; descriptor.lineno = 2053U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& dev->dev), "%s\n", dev->nodename); } } else { } { xennet_disconnect_backend(info); xennet_sysfs_delif(info->netdev); ldv_unregister_netdev_137(info->netdev); ldv_del_timer_sync_138(& info->rx_refill_timer); free_percpu((void *)info->stats); ldv_free_netdev_139(info->netdev); } return (0); } } static struct xenbus_driver netfront_driver = {(struct xenbus_device_id const *)(& netfront_ids), & netfront_probe, & netback_changed, & xennet_remove, 0, & netfront_resume, 0, {(char const *)(& netfront_ids), 0, & __this_module, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 0, 0}; static int netif_init(void) { bool tmp ; int tmp___0 ; int tmp___1 ; { if ((unsigned int )xen_domain_type == 0U) { return (-19); } else { } { tmp = xen_has_pv_nic_devices(); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-19); } else { } { printk("\016xen_netfront: Initialising Xen virtual ethernet driver\n"); tmp___1 = ldv_xenbus_register_frontend_140(& netfront_driver); } return (tmp___1); } } static void netif_exit(void) { { { ldv_xenbus_unregister_driver_141(& netfront_driver); } return; } } void ldv_EMGentry_exit_netif_exit_20_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_netif_init_20_9(int (*arg0)(void) ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_device_driver_io_instance_0(void *arg0 ) ; void ldv_dispatch_deregister_17_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_18_1(struct xenbus_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_resourceless_instance_13_20_4(void) ; void ldv_dispatch_instance_deregister_13_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_15_2(struct timer_list *arg0 ) ; void ldv_dispatch_register_16_4(struct net_device *arg0 ) ; void ldv_dispatch_register_19_2(struct xenbus_driver *arg0 ) ; void ldv_dispatch_register_dummy_resourceless_instance_13_20_5(void) ; void ldv_dummy_resourceless_instance_callback_10_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_10_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_7_10(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_7_13(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_7_16(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_7_19(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_7_22(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) ; void ldv_dummy_resourceless_instance_callback_7_23(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_24(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_7_27(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_7_28(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_7_29(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_3(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_7_30(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_9(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_8_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_8_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_9_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_9_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_entry_EMGentry_20(void *arg0 ) ; int main(void) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_iio_triggered_buffer_iio_triggered_buffer_instance_1(void *arg0 ) ; void ldv_iio_triggered_buffer_iio_triggered_buffer_instance_2(void *arg0 ) ; void ldv_iio_triggered_buffer_iio_triggered_buffer_instance_3(void *arg0 ) ; enum irqreturn ldv_iio_triggered_buffer_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_iio_triggered_buffer_instance_handler_2_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_iio_triggered_buffer_instance_handler_3_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_iio_triggered_buffer_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_iio_triggered_buffer_instance_thread_2_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_iio_triggered_buffer_instance_thread_3_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_4_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_5_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_6_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_4_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_5_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_6_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_4(void *arg0 ) ; void ldv_interrupt_interrupt_instance_5(void *arg0 ) ; void ldv_interrupt_interrupt_instance_6(void *arg0 ) ; void ldv_io_instance_callback_0_17(int (*arg0)(struct xenbus_device * ) , struct xenbus_device *arg1 ) ; void ldv_io_instance_callback_0_4(void (*arg0)(struct xenbus_device * , enum xenbus_state ) , struct xenbus_device *arg1 , enum xenbus_state arg2 ) ; int ldv_io_instance_probe_0_11(int (*arg0)(struct xenbus_device * , struct xenbus_device_id * ) , struct xenbus_device *arg1 , struct xenbus_device_id *arg2 ) ; void ldv_io_instance_release_0_2(int (*arg0)(struct xenbus_device * ) , struct xenbus_device *arg1 ) ; int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) ; void ldv_net_dummy_resourceless_instance_7(void *arg0 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_16_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_10(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_8(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_9(void *arg0 ) ; void ldv_timer_instance_callback_11_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_11(void *arg0 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_17_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_xenbus_register_frontend(int arg0 , struct xenbus_driver *arg1 ) ; void ldv_xenbus_unregister_driver(void *arg0 , struct xenbus_driver *arg1 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_10 ; struct ldv_thread ldv_thread_11 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_20 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; struct ldv_thread ldv_thread_8 ; struct ldv_thread ldv_thread_9 ; void ldv_EMGentry_exit_netif_exit_20_2(void (*arg0)(void) ) { { { netif_exit(); } return; } } int ldv_EMGentry_init_netif_init_20_9(int (*arg0)(void) ) { int tmp ; { { tmp = netif_init(); } return (tmp); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_12_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3200UL); ldv_12_netdev_net_device = (struct net_device *)tmp; } return (ldv_12_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_13_timer_list_timer_list ; { { ldv_13_timer_list_timer_list = arg1; ldv_dispatch_instance_deregister_13_1(ldv_13_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_device_driver_io_instance_0(void *arg0 ) { void (*ldv_0_callback_otherend_changed)(struct xenbus_device * , enum xenbus_state ) ; int (*ldv_0_callback_resume)(struct xenbus_device * ) ; struct xenbus_driver *ldv_0_container_struct_xenbus_driver ; enum xenbus_state ldv_0_resource_enum_xenbus_state ; struct xenbus_device_id *ldv_0_resource_struct_xenbus_device_id ; struct xenbus_device *ldv_0_resource_struct_xenbus_device_ptr ; int ldv_0_ret_default ; struct ldv_struct_io_instance_0 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_io_instance_0 *)arg0; ldv_0_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_io_instance_0 *)0)) { { ldv_0_container_struct_xenbus_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(32UL); ldv_0_resource_struct_xenbus_device_id = (struct xenbus_device_id *)tmp; tmp___0 = ldv_xmalloc(1632UL); ldv_0_resource_struct_xenbus_device_ptr = (struct xenbus_device *)tmp___0; } goto ldv_main_0; return; ldv_main_0: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_0_ret_default = ldv_io_instance_probe_0_11((int (*)(struct xenbus_device * , struct xenbus_device_id * ))ldv_0_container_struct_xenbus_driver->probe, ldv_0_resource_struct_xenbus_device_ptr, ldv_0_resource_struct_xenbus_device_id); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_struct_xenbus_device_id); ldv_free((void *)ldv_0_resource_struct_xenbus_device_ptr); } return; } return; ldv_call_0: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_io_instance_callback_0_17(ldv_0_callback_resume, ldv_0_resource_struct_xenbus_device_ptr); } goto ldv_call_0; case_2: /* CIL Label */ { ldv_io_instance_callback_0_4(ldv_0_callback_otherend_changed, ldv_0_resource_struct_xenbus_device_ptr, ldv_0_resource_enum_xenbus_state); } goto ldv_call_0; goto ldv_call_0; case_3: /* CIL Label */ { ldv_io_instance_release_0_2(ldv_0_container_struct_xenbus_driver->remove, ldv_0_resource_struct_xenbus_device_ptr); } goto ldv_main_0; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_dispatch_deregister_17_1(struct net_device *arg0 ) { { return; } } void ldv_dispatch_deregister_18_1(struct xenbus_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_13_20_4(void) { { return; } } void ldv_dispatch_instance_deregister_13_1(struct timer_list *arg0 ) { { return; } } void ldv_dispatch_instance_register_15_2(struct timer_list *arg0 ) { struct ldv_struct_timer_instance_11 *cf_arg_11 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_11 = (struct ldv_struct_timer_instance_11 *)tmp; cf_arg_11->arg0 = arg0; ldv_timer_timer_instance_11((void *)cf_arg_11); } return; } } void ldv_dispatch_register_16_4(struct net_device *arg0 ) { struct ldv_struct_dummy_resourceless_instance_7 *cf_arg_7 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_7 = (struct ldv_struct_dummy_resourceless_instance_7 *)tmp; cf_arg_7->arg0 = arg0; ldv_net_dummy_resourceless_instance_7((void *)cf_arg_7); } return; } } void ldv_dispatch_register_19_2(struct xenbus_driver *arg0 ) { struct ldv_struct_io_instance_0 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_0 = (struct ldv_struct_io_instance_0 *)tmp; cf_arg_0->arg0 = arg0; ldv_device_driver_io_instance_0((void *)cf_arg_0); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_13_20_5(void) { struct ldv_struct_EMGentry_20 *cf_arg_8 ; struct ldv_struct_EMGentry_20 *cf_arg_9 ; struct ldv_struct_EMGentry_20 *cf_arg_10 ; void *tmp ; void *tmp___0 ; void *tmp___1 ; { { tmp = ldv_xmalloc(4UL); cf_arg_8 = (struct ldv_struct_EMGentry_20 *)tmp; ldv_struct_device_attribute_dummy_resourceless_instance_8((void *)cf_arg_8); tmp___0 = ldv_xmalloc(4UL); cf_arg_9 = (struct ldv_struct_EMGentry_20 *)tmp___0; ldv_struct_device_attribute_dummy_resourceless_instance_9((void *)cf_arg_9); tmp___1 = ldv_xmalloc(4UL); cf_arg_10 = (struct ldv_struct_EMGentry_20 *)tmp___1; ldv_struct_device_attribute_dummy_resourceless_instance_10((void *)cf_arg_10); } return; } } void ldv_dummy_resourceless_instance_callback_10_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_rxbuf_min(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_10_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_rxbuf_min(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_7_10(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { xennet_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_7_13(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { xennet_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_7_16(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { xennet_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_7_19(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { xennet_fix_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_7_22(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) { { { xennet_get_stats64(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_7_23(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { xennet_poll_controller(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_7_24(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { xennet_set_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_7_27(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { eth_mac_addr(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_7_28(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { xennet_start_xmit(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_7_29(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { xennet_uninit(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_7_3(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { xennet_get_ethtool_stats(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_7_30(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_7_9(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ethtool_op_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_8_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_rxbuf_cur(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_8_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_9_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { show_rxbuf_max(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_9_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { store_rxbuf_max(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_entry_EMGentry_20(void *arg0 ) { void (*ldv_20_exit_netif_exit_default)(void) ; int (*ldv_20_init_netif_init_default)(void) ; int ldv_20_ret_default ; int tmp ; int tmp___0 ; { { ldv_20_ret_default = ldv_EMGentry_init_netif_init_20_9(ldv_20_init_netif_init_default); ldv_20_ret_default = ldv_post_init(ldv_20_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_20_ret_default != 0); ldv_check_final_state(); ldv_stop(); } return; } else { { ldv_assume(ldv_20_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_dummy_resourceless_instance_13_20_5(); ldv_dispatch_deregister_dummy_resourceless_instance_13_20_4(); } } else { } { ldv_EMGentry_exit_netif_exit_20_2(ldv_20_exit_netif_exit_default); ldv_check_final_state(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_initialize(); ldv_entry_EMGentry_20((void *)0); } return 0; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_14_netdev_net_device ; { { ldv_14_netdev_net_device = arg1; ldv_free((void *)ldv_14_netdev_net_device); } return; return; } } void ldv_iio_triggered_buffer_iio_triggered_buffer_instance_1(void *arg0 ) { enum irqreturn (*ldv_1_callback_handler)(int , void * ) ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; int tmp ; { { ldv_switch_to_interrupt_context(); ldv_1_ret_val_default = ldv_iio_triggered_buffer_instance_handler_1_5(ldv_1_callback_handler, ldv_1_line_line, ldv_1_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_1_ret_val_default == 2U); ldv_iio_triggered_buffer_instance_thread_1_3(ldv_1_thread_thread, ldv_1_line_line, ldv_1_data_data); } } else { { ldv_assume((unsigned int )ldv_1_ret_val_default != 2U); } } return; return; } } void ldv_iio_triggered_buffer_iio_triggered_buffer_instance_2(void *arg0 ) { enum irqreturn (*ldv_2_callback_handler)(int , void * ) ; void *ldv_2_data_data ; int ldv_2_line_line ; enum irqreturn ldv_2_ret_val_default ; enum irqreturn (*ldv_2_thread_thread)(int , void * ) ; int tmp ; { { ldv_switch_to_interrupt_context(); ldv_2_ret_val_default = ldv_iio_triggered_buffer_instance_handler_2_5(ldv_2_callback_handler, ldv_2_line_line, ldv_2_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_2_ret_val_default == 2U); ldv_iio_triggered_buffer_instance_thread_2_3(ldv_2_thread_thread, ldv_2_line_line, ldv_2_data_data); } } else { { ldv_assume((unsigned int )ldv_2_ret_val_default != 2U); } } return; return; } } void ldv_iio_triggered_buffer_iio_triggered_buffer_instance_3(void *arg0 ) { enum irqreturn (*ldv_3_callback_handler)(int , void * ) ; void *ldv_3_data_data ; int ldv_3_line_line ; enum irqreturn ldv_3_ret_val_default ; enum irqreturn (*ldv_3_thread_thread)(int , void * ) ; int tmp ; { { ldv_switch_to_interrupt_context(); ldv_3_ret_val_default = ldv_iio_triggered_buffer_instance_handler_3_5(ldv_3_callback_handler, ldv_3_line_line, ldv_3_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_3_ret_val_default == 2U); ldv_iio_triggered_buffer_instance_thread_3_3(ldv_3_thread_thread, ldv_3_line_line, ldv_3_data_data); } } else { { ldv_assume((unsigned int )ldv_3_ret_val_default != 2U); } } return; return; } } enum irqreturn ldv_iio_triggered_buffer_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = xennet_interrupt(arg1, arg2); } return (tmp); } } enum irqreturn ldv_iio_triggered_buffer_instance_handler_2_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = xennet_rx_interrupt(arg1, arg2); } return (tmp); } } enum irqreturn ldv_iio_triggered_buffer_instance_handler_3_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = xennet_tx_interrupt(arg1, arg2); } return (tmp); } } void ldv_iio_triggered_buffer_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { xennet_tx_interrupt(arg1, arg2); } return; } } void ldv_iio_triggered_buffer_instance_thread_2_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { xennet_tx_interrupt(arg1, arg2); } return; } } void ldv_iio_triggered_buffer_instance_thread_3_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { xennet_tx_interrupt(arg1, arg2); } return; } } enum irqreturn ldv_interrupt_instance_handler_4_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = xennet_interrupt(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_5_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = xennet_rx_interrupt(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_6_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = xennet_tx_interrupt(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_4_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { xennet_tx_interrupt(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_5_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { xennet_tx_interrupt(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_6_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { xennet_tx_interrupt(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_4(void *arg0 ) { enum irqreturn (*ldv_4_callback_handler)(int , void * ) ; void *ldv_4_data_data ; int ldv_4_line_line ; enum irqreturn ldv_4_ret_val_default ; enum irqreturn (*ldv_4_thread_thread)(int , void * ) ; int tmp ; { { ldv_switch_to_interrupt_context(); ldv_4_ret_val_default = ldv_interrupt_instance_handler_4_5(ldv_4_callback_handler, ldv_4_line_line, ldv_4_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_4_ret_val_default == 2U); ldv_interrupt_instance_thread_4_3(ldv_4_thread_thread, ldv_4_line_line, ldv_4_data_data); } } else { { ldv_assume((unsigned int )ldv_4_ret_val_default != 2U); } } return; return; } } void ldv_interrupt_interrupt_instance_5(void *arg0 ) { enum irqreturn (*ldv_5_callback_handler)(int , void * ) ; void *ldv_5_data_data ; int ldv_5_line_line ; enum irqreturn ldv_5_ret_val_default ; enum irqreturn (*ldv_5_thread_thread)(int , void * ) ; int tmp ; { { ldv_switch_to_interrupt_context(); ldv_5_ret_val_default = ldv_interrupt_instance_handler_5_5(ldv_5_callback_handler, ldv_5_line_line, ldv_5_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_5_ret_val_default == 2U); ldv_interrupt_instance_thread_5_3(ldv_5_thread_thread, ldv_5_line_line, ldv_5_data_data); } } else { { ldv_assume((unsigned int )ldv_5_ret_val_default != 2U); } } return; return; } } void ldv_interrupt_interrupt_instance_6(void *arg0 ) { enum irqreturn (*ldv_6_callback_handler)(int , void * ) ; void *ldv_6_data_data ; int ldv_6_line_line ; enum irqreturn ldv_6_ret_val_default ; enum irqreturn (*ldv_6_thread_thread)(int , void * ) ; int tmp ; { { ldv_switch_to_interrupt_context(); ldv_6_ret_val_default = ldv_interrupt_instance_handler_6_5(ldv_6_callback_handler, ldv_6_line_line, ldv_6_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_6_ret_val_default == 2U); ldv_interrupt_instance_thread_6_3(ldv_6_thread_thread, ldv_6_line_line, ldv_6_data_data); } } else { { ldv_assume((unsigned int )ldv_6_ret_val_default != 2U); } } return; return; } } void ldv_io_instance_callback_0_17(int (*arg0)(struct xenbus_device * ) , struct xenbus_device *arg1 ) { { { netfront_resume(arg1); } return; } } void ldv_io_instance_callback_0_4(void (*arg0)(struct xenbus_device * , enum xenbus_state ) , struct xenbus_device *arg1 , enum xenbus_state arg2 ) { { { netback_changed(arg1, arg2); } return; } } int ldv_io_instance_probe_0_11(int (*arg0)(struct xenbus_device * , struct xenbus_device_id * ) , struct xenbus_device *arg1 , struct xenbus_device_id *arg2 ) { int tmp ; { { tmp = netfront_probe(arg1, (struct xenbus_device_id const *)arg2); } return (tmp); } } void ldv_io_instance_release_0_2(int (*arg0)(struct xenbus_device * ) , struct xenbus_device *arg1 ) { { { xennet_remove(arg1); } return; } } int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) { struct timer_list *ldv_15_timer_list_timer_list ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_15_timer_list_timer_list = arg1; ldv_dispatch_instance_register_15_2(ldv_15_timer_list_timer_list); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_net_dummy_resourceless_instance_7(void *arg0 ) { void (*ldv_7_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_7_callback_get_link)(struct net_device * ) ; int (*ldv_7_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_7_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; int (*ldv_7_callback_ndo_change_mtu)(struct net_device * , int ) ; unsigned long long (*ldv_7_callback_ndo_fix_features)(struct net_device * , unsigned long long ) ; struct rtnl_link_stats64 *(*ldv_7_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; void (*ldv_7_callback_ndo_poll_controller)(struct net_device * ) ; int (*ldv_7_callback_ndo_set_features)(struct net_device * , unsigned long long ) ; int (*ldv_7_callback_ndo_set_mac_address)(struct net_device * , void * ) ; enum netdev_tx (*ldv_7_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_7_callback_ndo_uninit)(struct net_device * ) ; int (*ldv_7_callback_ndo_validate_addr)(struct net_device * ) ; struct net_device *ldv_7_container_net_device ; struct ethtool_stats *ldv_7_container_struct_ethtool_stats_ptr ; struct rtnl_link_stats64 *ldv_7_container_struct_rtnl_link_stats64_ptr ; struct sk_buff *ldv_7_container_struct_sk_buff_ptr ; int ldv_7_ldv_param_10_1_default ; unsigned int ldv_7_ldv_param_13_1_default ; unsigned char *ldv_7_ldv_param_13_2_default ; int ldv_7_ldv_param_16_1_default ; unsigned long long ldv_7_ldv_param_19_1_default ; unsigned long long ldv_7_ldv_param_24_1_default ; unsigned long long *ldv_7_ldv_param_3_2_default ; struct ldv_struct_dummy_resourceless_instance_7 *data ; void *tmp ; int tmp___0 ; void *tmp___1 ; int tmp___2 ; { data = (struct ldv_struct_dummy_resourceless_instance_7 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_7 *)0)) { { ldv_7_container_net_device = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_7; return; ldv_call_7: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(8UL); ldv_7_ldv_param_3_2_default = (unsigned long long *)tmp; tmp___0 = ldv_undef_int(); } { if (tmp___0 == 1) { goto case_1; } else { } if (tmp___0 == 2) { goto case_2; } else { } if (tmp___0 == 3) { goto case_3; } else { } if (tmp___0 == 4) { goto case_4; } else { } if (tmp___0 == 5) { goto case_5; } else { } if (tmp___0 == 6) { goto case_6; } else { } if (tmp___0 == 7) { goto case_7; } else { } if (tmp___0 == 8) { goto case_8; } else { } if (tmp___0 == 9) { goto case_9; } else { } if (tmp___0 == 10) { goto case_10; } else { } if (tmp___0 == 11) { goto case_11; } else { } if (tmp___0 == 12) { goto case_12; } else { } if (tmp___0 == 13) { goto case_13; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_30(ldv_7_callback_ndo_validate_addr, ldv_7_container_net_device); } goto ldv_55457; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_29(ldv_7_callback_ndo_uninit, ldv_7_container_net_device); } goto ldv_55457; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_28(ldv_7_callback_ndo_start_xmit, ldv_7_container_struct_sk_buff_ptr, ldv_7_container_net_device); } goto ldv_55457; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_27(ldv_7_callback_ndo_set_mac_address, ldv_7_container_net_device, (void *)ldv_7_container_struct_ethtool_stats_ptr); } goto ldv_55457; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_24(ldv_7_callback_ndo_set_features, ldv_7_container_net_device, ldv_7_ldv_param_24_1_default); } goto ldv_55457; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_23(ldv_7_callback_ndo_poll_controller, ldv_7_container_net_device); } goto ldv_55457; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_22(ldv_7_callback_ndo_get_stats64, ldv_7_container_net_device, ldv_7_container_struct_rtnl_link_stats64_ptr); } goto ldv_55457; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_19(ldv_7_callback_ndo_fix_features, ldv_7_container_net_device, ldv_7_ldv_param_19_1_default); } goto ldv_55457; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_16(ldv_7_callback_ndo_change_mtu, ldv_7_container_net_device, ldv_7_ldv_param_16_1_default); } goto ldv_55457; case_10: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_7_ldv_param_13_2_default = (unsigned char *)tmp___1; ldv_dummy_resourceless_instance_callback_7_13(ldv_7_callback_get_strings, ldv_7_container_net_device, ldv_7_ldv_param_13_1_default, ldv_7_ldv_param_13_2_default); ldv_free((void *)ldv_7_ldv_param_13_2_default); } goto ldv_55457; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_10(ldv_7_callback_get_sset_count, ldv_7_container_net_device, ldv_7_ldv_param_10_1_default); } goto ldv_55457; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_9(ldv_7_callback_get_link, ldv_7_container_net_device); } goto ldv_55457; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_3(ldv_7_callback_get_ethtool_stats, ldv_7_container_net_device, ldv_7_container_struct_ethtool_stats_ptr, ldv_7_ldv_param_3_2_default); } goto ldv_55457; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_55457: { ldv_free((void *)ldv_7_ldv_param_3_2_default); } goto ldv_call_7; } else { return; } return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_16_netdev_net_device ; int ldv_16_ret_default ; int tmp ; int tmp___0 ; { { ldv_16_ret_default = 1; ldv_16_ret_default = ldv_pre_register_netdev(); ldv_16_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_16_ret_default == 0); ldv_16_ret_default = ldv_register_netdev_open_16_6((ldv_16_netdev_net_device->netdev_ops)->ndo_open, ldv_16_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_16_ret_default == 0); ldv_dispatch_register_16_4(ldv_16_netdev_net_device); } } else { { ldv_assume(ldv_16_ret_default != 0); } } } else { { ldv_assume(ldv_16_ret_default != 0); } } return (ldv_16_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_16_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = xennet_open(arg1); } return (tmp); } } void ldv_struct_device_attribute_dummy_resourceless_instance_10(void *arg0 ) { long (*ldv_10_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_10_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_10_container_struct_device_attribute ; struct device *ldv_10_container_struct_device_ptr ; char *ldv_10_ldv_param_3_2_default ; char *ldv_10_ldv_param_9_2_default ; unsigned long ldv_10_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_10; return; ldv_call_10: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_10_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_10_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_10_9(ldv_10_callback_store, ldv_10_container_struct_device_ptr, ldv_10_container_struct_device_attribute, ldv_10_ldv_param_9_2_default, ldv_10_ldv_param_9_3_default); ldv_free((void *)ldv_10_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_10_3(ldv_10_callback_show, ldv_10_container_struct_device_ptr, ldv_10_container_struct_device_attribute, ldv_10_ldv_param_3_2_default); } } { ldv_free((void *)ldv_10_ldv_param_3_2_default); } goto ldv_call_10; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_8(void *arg0 ) { long (*ldv_8_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_8_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_8_container_struct_device_attribute ; struct device *ldv_8_container_struct_device_ptr ; char *ldv_8_ldv_param_3_2_default ; char *ldv_8_ldv_param_9_2_default ; unsigned long ldv_8_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_8; return; ldv_call_8: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_8_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_8_ldv_param_9_2_default = (char *)tmp___0; } if ((unsigned long )ldv_8_callback_store != (unsigned long )((long (*)(struct device * , struct device_attribute * , char * , unsigned long ))0)) { { ldv_dummy_resourceless_instance_callback_8_9(ldv_8_callback_store, ldv_8_container_struct_device_ptr, ldv_8_container_struct_device_attribute, ldv_8_ldv_param_9_2_default, ldv_8_ldv_param_9_3_default); } } else { } { ldv_free((void *)ldv_8_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_8_3(ldv_8_callback_show, ldv_8_container_struct_device_ptr, ldv_8_container_struct_device_attribute, ldv_8_ldv_param_3_2_default); } } { ldv_free((void *)ldv_8_ldv_param_3_2_default); } goto ldv_call_8; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_9(void *arg0 ) { long (*ldv_9_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_9_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_9_container_struct_device_attribute ; struct device *ldv_9_container_struct_device_ptr ; char *ldv_9_ldv_param_3_2_default ; char *ldv_9_ldv_param_9_2_default ; unsigned long ldv_9_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_9; return; ldv_call_9: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_9_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_9_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_9_9(ldv_9_callback_store, ldv_9_container_struct_device_ptr, ldv_9_container_struct_device_attribute, ldv_9_ldv_param_9_2_default, ldv_9_ldv_param_9_3_default); ldv_free((void *)ldv_9_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_9_3(ldv_9_callback_show, ldv_9_container_struct_device_ptr, ldv_9_container_struct_device_attribute, ldv_9_ldv_param_3_2_default); } } { ldv_free((void *)ldv_9_ldv_param_3_2_default); } goto ldv_call_9; } else { return; } return; } } void ldv_timer_instance_callback_11_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_11(void *arg0 ) { struct timer_list *ldv_11_container_timer_list ; struct ldv_struct_timer_instance_11 *data ; { data = (struct ldv_struct_timer_instance_11 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_timer_instance_11 *)0)) { { ldv_11_container_timer_list = data->arg0; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_11_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_11_2(ldv_11_container_timer_list->function, ldv_11_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); } return; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_17_netdev_net_device ; { { ldv_17_netdev_net_device = arg1; ldv_unregister_netdev_stop_17_2((ldv_17_netdev_net_device->netdev_ops)->ndo_stop, ldv_17_netdev_net_device); ldv_dispatch_deregister_17_1(ldv_17_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_17_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { xennet_close(arg1); } return; } } int ldv_xenbus_register_frontend(int arg0 , struct xenbus_driver *arg1 ) { struct xenbus_driver *ldv_19_struct_xenbus_driver_struct_xenbus_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_19_struct_xenbus_driver_struct_xenbus_driver = arg1; ldv_dispatch_register_19_2(ldv_19_struct_xenbus_driver_struct_xenbus_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_xenbus_unregister_driver(void *arg0 , struct xenbus_driver *arg1 ) { struct xenbus_driver *ldv_18_struct_xenbus_driver_struct_xenbus_driver ; { { ldv_18_struct_xenbus_driver_struct_xenbus_driver = arg1; ldv_dispatch_deregister_18_1(ldv_18_struct_xenbus_driver_struct_xenbus_driver); } return; return; } } __inline static void *ERR_PTR(long error ) { void *tmp ; { { tmp = ldv_err_ptr(error); } return (tmp); } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_ptr_err(ptr); } return (tmp); } } __inline static long IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_is_err(ptr); } return (tmp); } } __inline static struct page *alloc_pages(gfp_t flags , unsigned int order ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct page *)tmp); } } static struct sk_buff *ldv___netdev_alloc_skb_102(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct sk_buff *)tmp); } } static int ldv_mod_timer_103(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } __inline static void ldv_spin_lock_bh_104(spinlock_t *lock ) { { { ldv_spin_lock_rx_lock_of_netfront_info(); spin_lock_bh(lock); } return; } } __inline static void ldv_spin_unlock_bh_105(spinlock_t *lock ) { { { ldv_spin_unlock_rx_lock_of_netfront_info(); spin_unlock_bh(lock); } return; } } static void ldv___ldv_spin_lock_106(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_tx_lock_of_netfront_info(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_107(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_tx_lock_of_netfront_info(); spin_unlock_irqrestore(lock, flags); } return; } } __inline static void ldv_spin_lock_109(spinlock_t *lock ) { { { ldv_spin_lock_rx_lock_of_netfront_info(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_110(spinlock_t *lock ) { { { ldv_spin_unlock_rx_lock_of_netfront_info(); spin_unlock(lock); } return; } } static void ldv___ldv_spin_lock_113(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_tx_lock_of_netfront_info(); __ldv_spin_lock(ldv_func_arg1); } return; } } static struct net_device *ldv_alloc_etherdev_mqs_115(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___1 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_116(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv_dev_set_drvdata_117(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } static int ldv_register_netdev_118(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_unregister_netdev_119(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_120(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv_dev_set_drvdata_121(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } __inline static void ldv_spin_lock_irq_123(spinlock_t *lock ) { { { ldv_spin_lock_tx_lock_of_netfront_info(); spin_lock_irq(lock); } return; } } __inline static void ldv_spin_unlock_irq_124(spinlock_t *lock ) { { { ldv_spin_unlock_tx_lock_of_netfront_info(); spin_unlock_irq(lock); } return; } } static void *ldv_dev_get_drvdata_126(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_131(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_136(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void ldv_unregister_netdev_137(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv_del_timer_sync_138(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_139(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv_xenbus_register_frontend_140(struct xenbus_driver *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = xenbus_register_frontend(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_xenbus_register_frontend(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_xenbus_unregister_driver_141(struct xenbus_driver *ldv_func_arg1 ) { { { xenbus_unregister_driver(ldv_func_arg1); ldv_xenbus_unregister_driver((void *)0, ldv_func_arg1); } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } int ldv_post_probe(int probe_ret_val ) ; static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_res_counter = 1; void ldv_spin_lock_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); ldv_spin_lock_of_res_counter = 2; } return; } } void ldv_spin_unlock_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_res_counter == 2); ldv_assume(ldv_spin_lock_of_res_counter == 2); ldv_spin_lock_of_res_counter = 1; } return; } } int ldv_spin_trylock_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_res_counter = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); } return; } } int ldv_spin_is_locked_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_res_counter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_res_counter(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_res_counter(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_res_counter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_res_counter(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_res_counter = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_rx_lock_of_netfront_info = 1; void ldv_spin_lock_rx_lock_of_netfront_info(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_rx_lock_of_netfront_info == 1); ldv_assume(ldv_spin_rx_lock_of_netfront_info == 1); ldv_spin_rx_lock_of_netfront_info = 2; } return; } } void ldv_spin_unlock_rx_lock_of_netfront_info(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_rx_lock_of_netfront_info == 2); ldv_assume(ldv_spin_rx_lock_of_netfront_info == 2); ldv_spin_rx_lock_of_netfront_info = 1; } return; } } int ldv_spin_trylock_rx_lock_of_netfront_info(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_rx_lock_of_netfront_info == 1); ldv_assume(ldv_spin_rx_lock_of_netfront_info == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_rx_lock_of_netfront_info = 2; return (1); } } } void ldv_spin_unlock_wait_rx_lock_of_netfront_info(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_rx_lock_of_netfront_info == 1); ldv_assume(ldv_spin_rx_lock_of_netfront_info == 1); } return; } } int ldv_spin_is_locked_rx_lock_of_netfront_info(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_rx_lock_of_netfront_info == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_rx_lock_of_netfront_info(void) { int tmp ; { { tmp = ldv_spin_is_locked_rx_lock_of_netfront_info(); } return (tmp == 0); } } int ldv_spin_is_contended_rx_lock_of_netfront_info(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_rx_lock_of_netfront_info(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_rx_lock_of_netfront_info == 1); ldv_assume(ldv_spin_rx_lock_of_netfront_info == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_rx_lock_of_netfront_info = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_sk_dst_lock_of_sock = 1; void ldv_spin_lock_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); ldv_spin_sk_dst_lock_of_sock = 2; } return; } } void ldv_spin_unlock_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_sk_dst_lock_of_sock == 2); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 2); ldv_spin_sk_dst_lock_of_sock = 1; } return; } } int ldv_spin_trylock_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } } } void ldv_spin_unlock_wait_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); } return; } } int ldv_spin_is_locked_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_sk_dst_lock_of_sock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_sk_dst_lock_of_sock(void) { int tmp ; { { tmp = ldv_spin_is_locked_sk_dst_lock_of_sock(); } return (tmp == 0); } } int ldv_spin_is_contended_sk_dst_lock_of_sock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_sk_dst_lock_of_sock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } else { } return (0); } } static int ldv_spin_slock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_spin_slock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_spin_slock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_slock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_slock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_slock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_slock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_lock_of_netfront_info = 1; void ldv_spin_lock_tx_lock_of_netfront_info(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_tx_lock_of_netfront_info == 1); ldv_assume(ldv_spin_tx_lock_of_netfront_info == 1); ldv_spin_tx_lock_of_netfront_info = 2; } return; } } void ldv_spin_unlock_tx_lock_of_netfront_info(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_tx_lock_of_netfront_info == 2); ldv_assume(ldv_spin_tx_lock_of_netfront_info == 2); ldv_spin_tx_lock_of_netfront_info = 1; } return; } } int ldv_spin_trylock_tx_lock_of_netfront_info(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_lock_of_netfront_info == 1); ldv_assume(ldv_spin_tx_lock_of_netfront_info == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_lock_of_netfront_info = 2; return (1); } } } void ldv_spin_unlock_wait_tx_lock_of_netfront_info(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_lock_of_netfront_info == 1); ldv_assume(ldv_spin_tx_lock_of_netfront_info == 1); } return; } } int ldv_spin_is_locked_tx_lock_of_netfront_info(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_lock_of_netfront_info == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_lock_of_netfront_info(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_lock_of_netfront_info(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_lock_of_netfront_info(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_lock_of_netfront_info(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_lock_of_netfront_info == 1); ldv_assume(ldv_spin_tx_lock_of_netfront_info == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_lock_of_netfront_info = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_i_lock_of_inode == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_res_counter == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_ptl == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_rx_lock_of_netfront_info == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_siglock_of_sighand_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_tx_lock_of_netfront_info == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lock_of_res_counter == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_rx_lock_of_netfront_info == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_sk_dst_lock_of_sock == 2) { return (1); } else { } if (ldv_spin_slock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_tx_lock_of_netfront_info == 2) { return (1); } else { } return (0); } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }