/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct __va_list_tag; typedef struct __va_list_tag __va_list_tag; struct device; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; typedef __builtin_va_list __gnuc_va_list[1U]; typedef __gnuc_va_list va_list[1U]; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct va_format { char const *fmt ; va_list *va ; }; struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct exec_domain; struct map_segment; struct exec_domain { char const *name ; void (*handler)(int , struct pt_regs * ) ; unsigned char pers_low ; unsigned char pers_high ; unsigned long *signal_map ; unsigned long *signal_invmap ; struct map_segment *err_map ; struct map_segment *socktype_map ; struct map_segment *sockopt_map ; struct map_segment *af_map ; struct module *module ; struct exec_domain *next ; }; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; struct __anonstruct_mm_segment_t_27 { unsigned long seg ; }; typedef struct __anonstruct_mm_segment_t_27 mm_segment_t; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct ldv_thread; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct compat_timespec; struct __anonstruct_futex_32 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_33 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_34 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_31 { struct __anonstruct_futex_32 futex ; struct __anonstruct_nanosleep_33 nanosleep ; struct __anonstruct_poll_34 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_31 __annonCompField20 ; }; struct thread_info { struct task_struct *task ; struct exec_domain *exec_domain ; __u32 flags ; __u32 status ; __u32 cpu ; int saved_preempt_count ; mm_segment_t addr_limit ; struct restart_block restart_block ; void *sysenter_return ; unsigned int sig_on_uaccess_error : 1 ; unsigned int uaccess_err : 1 ; }; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct inode; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct backing_dev_info; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_41 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_40 { struct __anonstruct____missing_field_name_41 __annonCompField22 ; }; struct lockref { union __anonunion____missing_field_name_40 __annonCompField23 ; }; struct nameidata; struct path; struct vfsmount; struct __anonstruct____missing_field_name_43 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_42 { struct __anonstruct____missing_field_name_43 __annonCompField24 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_42 __annonCompField25 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_44 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_44 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct __anonstruct_nodemask_t_45 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_45 nodemask_t; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct llist_node; struct llist_node { struct llist_node *next ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pci_dev; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct pci_bus; struct __anonstruct_mm_context_t_112 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_112 mm_context_t; struct device_node; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct iovec; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct cred; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_139 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_139 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_140 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_140 __annonCompField37 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space; struct writeback_control; union __anonunion_arg_142 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_141 { size_t written ; size_t count ; union __anonunion_arg_142 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_141 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_143 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_144 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; union __anonunion____missing_field_name_145 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_143 __annonCompField38 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_144 __annonCompField39 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_145 __annonCompField40 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_146 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_146 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_148 { struct list_head link ; int state ; }; union __anonunion_fl_u_147 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_148 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_147 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct ctl_table; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_151 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_152 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_150 { struct __anonstruct____missing_field_name_151 __annonCompField42 ; struct __anonstruct____missing_field_name_152 __annonCompField43 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_150 __annonCompField44 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; union __anonunion____missing_field_name_153 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_155 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_159 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_158 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_159 __annonCompField47 ; int units ; }; struct __anonstruct____missing_field_name_157 { union __anonunion____missing_field_name_158 __annonCompField48 ; atomic_t _count ; }; union __anonunion____missing_field_name_156 { unsigned long counters ; struct __anonstruct____missing_field_name_157 __annonCompField49 ; unsigned int active ; }; struct __anonstruct____missing_field_name_154 { union __anonunion____missing_field_name_155 __annonCompField46 ; union __anonunion____missing_field_name_156 __annonCompField50 ; }; struct __anonstruct____missing_field_name_161 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_160 { struct list_head lru ; struct __anonstruct____missing_field_name_161 __annonCompField52 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_162 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_153 __annonCompField45 ; struct __anonstruct____missing_field_name_154 __annonCompField51 ; union __anonunion____missing_field_name_160 __annonCompField53 ; union __anonunion____missing_field_name_162 __annonCompField54 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_164 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_163 { struct __anonstruct_linear_164 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_163 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct user_struct; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct exception_table_entry { int insn ; int fixup ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct irq_domain; struct proc_dir_entry; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_167 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_167 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_169 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_169 sync_serial_settings; struct __anonstruct_te1_settings_170 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_170 te1_settings; struct __anonstruct_raw_hdlc_proto_171 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_171 raw_hdlc_proto; struct __anonstruct_fr_proto_172 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_172 fr_proto; struct __anonstruct_fr_proto_pvc_173 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_173 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_174 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_174 fr_proto_pvc_info; struct __anonstruct_cisco_proto_175 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_175 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_176 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_176 ifs_ifsu ; }; union __anonunion_ifr_ifrn_177 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_178 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_177 ifr_ifrn ; union __anonunion_ifr_ifru_178 ifr_ifru ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_180 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_180 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_183 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_184 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_185 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_186 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_187 { long _band ; int _fd ; }; struct __anonstruct__sigsys_188 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_181 { int _pad[28U] ; struct __anonstruct__kill_182 _kill ; struct __anonstruct__timer_183 _timer ; struct __anonstruct__rt_184 _rt ; struct __anonstruct__sigchld_185 _sigchld ; struct __anonstruct__sigfault_186 _sigfault ; struct __anonstruct__sigpoll_187 _sigpoll ; struct __anonstruct__sigsys_188 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_181 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_192 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_191 { struct __anonstruct____missing_field_name_192 __annonCompField56 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_191 __annonCompField57 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_193 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_194 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_196 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_195 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_196 __annonCompField60 ; }; union __anonunion_type_data_197 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_199 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_198 { union __anonunion_payload_199 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_193 __annonCompField58 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_194 __annonCompField59 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_195 __annonCompField61 ; union __anonunion_type_data_197 type_data ; union __anonunion____missing_field_name_198 __annonCompField62 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_24005 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_24005 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_216 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_217 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_215 { struct __anonstruct____missing_field_name_216 __annonCompField64 ; struct __anonstruct____missing_field_name_217 __annonCompField65 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_215 __annonCompField66 ; }; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_219 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_219 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_221 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_220 { __wsum csum ; struct __anonstruct____missing_field_name_221 __annonCompField68 ; }; union __anonunion____missing_field_name_222 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_223 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_222 __annonCompField70 ; __u32 secmark ; union __anonunion____missing_field_name_223 __annonCompField71 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_state; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_29109 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_29110 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_29109 reg_state : 8 ; bool dismantle ; enum ldv_29110 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_245 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_245 __annonCompField75 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct neigh_parms *next ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { struct neigh_table *next ; int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_246 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_246 __annonCompField76 ; }; struct hwrng { char const *name ; int (*init)(struct hwrng * ) ; void (*cleanup)(struct hwrng * ) ; int (*data_present)(struct hwrng * , int ) ; int (*data_read)(struct hwrng * , u32 * ) ; int (*read)(struct hwrng * , void * , size_t , bool ) ; unsigned long priv ; struct list_head list ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct ssb_device_id { __u16 vendor ; __u16 coreid ; __u8 revision ; __u8 __pad ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_250 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_250 __annonCompField77 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct device_node *next ; struct device_node *allnext ; struct proc_dir_entry *pde ; struct kref kref ; unsigned long _flags ; void *data ; }; struct gpio_chip; struct gpio_desc; struct gpio_chip { char const *label ; struct device *dev ; struct module *owner ; struct list_head list ; int (*request)(struct gpio_chip * , unsigned int ) ; void (*free)(struct gpio_chip * , unsigned int ) ; int (*get_direction)(struct gpio_chip * , unsigned int ) ; int (*direction_input)(struct gpio_chip * , unsigned int ) ; int (*direction_output)(struct gpio_chip * , unsigned int , int ) ; int (*get)(struct gpio_chip * , unsigned int ) ; void (*set)(struct gpio_chip * , unsigned int , int ) ; int (*set_debounce)(struct gpio_chip * , unsigned int , unsigned int ) ; int (*to_irq)(struct gpio_chip * , unsigned int ) ; void (*dbg_show)(struct seq_file * , struct gpio_chip * ) ; int base ; u16 ngpio ; struct gpio_desc *desc ; char const * const *names ; bool can_sleep ; bool exported ; struct list_head pin_ranges ; }; struct pcmcia_device; struct ssb_bus; struct ssb_driver; struct ssb_sprom_core_pwr_info { u8 itssi_2g ; u8 itssi_5g ; u8 maxpwr_2g ; u8 maxpwr_5gl ; u8 maxpwr_5g ; u8 maxpwr_5gh ; u16 pa_2g[4U] ; u16 pa_5gl[4U] ; u16 pa_5g[4U] ; u16 pa_5gh[4U] ; }; struct __anonstruct_antenna_gain_251 { s8 a0 ; s8 a1 ; s8 a2 ; s8 a3 ; }; struct __anonstruct_ghz2_253 { u8 tssipos ; u8 extpa_gain ; u8 pdet_range ; u8 tr_iso ; u8 antswlut ; }; struct __anonstruct_ghz5_254 { u8 tssipos ; u8 extpa_gain ; u8 pdet_range ; u8 tr_iso ; u8 antswlut ; }; struct __anonstruct_fem_252 { struct __anonstruct_ghz2_253 ghz2 ; struct __anonstruct_ghz5_254 ghz5 ; }; struct ssb_sprom { u8 revision ; u8 il0mac[6U] ; u8 et0mac[6U] ; u8 et1mac[6U] ; u8 et0phyaddr ; u8 et1phyaddr ; u8 et0mdcport ; u8 et1mdcport ; u16 board_rev ; u16 board_num ; u16 board_type ; u8 country_code ; char alpha2[2U] ; u8 leddc_on_time ; u8 leddc_off_time ; u8 ant_available_a ; u8 ant_available_bg ; u16 pa0b0 ; u16 pa0b1 ; u16 pa0b2 ; u16 pa1b0 ; u16 pa1b1 ; u16 pa1b2 ; u16 pa1lob0 ; u16 pa1lob1 ; u16 pa1lob2 ; u16 pa1hib0 ; u16 pa1hib1 ; u16 pa1hib2 ; u8 gpio0 ; u8 gpio1 ; u8 gpio2 ; u8 gpio3 ; u8 maxpwr_bg ; u8 maxpwr_al ; u8 maxpwr_a ; u8 maxpwr_ah ; u8 itssi_a ; u8 itssi_bg ; u8 tri2g ; u8 tri5gl ; u8 tri5g ; u8 tri5gh ; u8 txpid2g[4U] ; u8 txpid5gl[4U] ; u8 txpid5g[4U] ; u8 txpid5gh[4U] ; s8 rxpo2g ; s8 rxpo5g ; u8 rssisav2g ; u8 rssismc2g ; u8 rssismf2g ; u8 bxa2g ; u8 rssisav5g ; u8 rssismc5g ; u8 rssismf5g ; u8 bxa5g ; u16 cck2gpo ; u32 ofdm2gpo ; u32 ofdm5glpo ; u32 ofdm5gpo ; u32 ofdm5ghpo ; u16 boardflags_lo ; u16 boardflags_hi ; u16 boardflags2_lo ; u16 boardflags2_hi ; struct ssb_sprom_core_pwr_info core_pwr_info[4U] ; struct __anonstruct_antenna_gain_251 antenna_gain ; struct __anonstruct_fem_252 fem ; u16 mcs2gpo[8U] ; u16 mcs5gpo[8U] ; u16 mcs5glpo[8U] ; u16 mcs5ghpo[8U] ; u8 opo ; u8 rxgainerr2ga[3U] ; u8 rxgainerr5gla[3U] ; u8 rxgainerr5gma[3U] ; u8 rxgainerr5gha[3U] ; u8 rxgainerr5gua[3U] ; u8 noiselvl2ga[3U] ; u8 noiselvl5gla[3U] ; u8 noiselvl5gma[3U] ; u8 noiselvl5gha[3U] ; u8 noiselvl5gua[3U] ; u8 regrev ; u8 txchain ; u8 rxchain ; u8 antswitch ; u16 cddpo ; u16 stbcpo ; u16 bw40po ; u16 bwduppo ; u8 tempthresh ; u8 tempoffset ; u16 rawtempsense ; u8 measpower ; u8 tempsense_slope ; u8 tempcorrx ; u8 tempsense_option ; u8 freqoffset_corr ; u8 iqcal_swp_dis ; u8 hw_iqcal_en ; u8 elna2g ; u8 elna5g ; u8 phycal_tempdelta ; u8 temps_period ; u8 temps_hysteresis ; u8 measpower1 ; u8 measpower2 ; u8 pcieingress_war ; u16 cckbw202gpo ; u16 cckbw20ul2gpo ; u32 legofdmbw202gpo ; u32 legofdmbw20ul2gpo ; u32 legofdmbw205glpo ; u32 legofdmbw20ul5glpo ; u32 legofdmbw205gmpo ; u32 legofdmbw20ul5gmpo ; u32 legofdmbw205ghpo ; u32 legofdmbw20ul5ghpo ; u32 mcsbw202gpo ; u32 mcsbw20ul2gpo ; u32 mcsbw402gpo ; u32 mcsbw205glpo ; u32 mcsbw20ul5glpo ; u32 mcsbw405glpo ; u32 mcsbw205gmpo ; u32 mcsbw20ul5gmpo ; u32 mcsbw405gmpo ; u32 mcsbw205ghpo ; u32 mcsbw20ul5ghpo ; u32 mcsbw405ghpo ; u16 mcs32po ; u16 legofdm40duppo ; u8 sar2g ; u8 sar5g ; }; struct ssb_boardinfo { u16 vendor ; u16 type ; }; struct ssb_device; struct ssb_bus_ops { u8 (*read8)(struct ssb_device * , u16 ) ; u16 (*read16)(struct ssb_device * , u16 ) ; u32 (*read32)(struct ssb_device * , u16 ) ; void (*write8)(struct ssb_device * , u16 , u8 ) ; void (*write16)(struct ssb_device * , u16 , u16 ) ; void (*write32)(struct ssb_device * , u16 , u32 ) ; void (*block_read)(struct ssb_device * , void * , size_t , u16 , u8 ) ; void (*block_write)(struct ssb_device * , void const * , size_t , u16 , u8 ) ; }; struct ssb_device { struct ssb_bus_ops const *ops ; struct device *dev ; struct device *dma_dev ; struct ssb_bus *bus ; struct ssb_device_id id ; u8 core_index ; unsigned int irq ; void *drvdata ; void *devtypedata ; }; struct ssb_driver { char const *name ; struct ssb_device_id const *id_table ; int (*probe)(struct ssb_device * , struct ssb_device_id const * ) ; void (*remove)(struct ssb_device * ) ; int (*suspend)(struct ssb_device * , pm_message_t ) ; int (*resume)(struct ssb_device * ) ; void (*shutdown)(struct ssb_device * ) ; struct device_driver drv ; }; enum ssb_bustype { SSB_BUSTYPE_SSB = 0, SSB_BUSTYPE_PCI = 1, SSB_BUSTYPE_PCMCIA = 2, SSB_BUSTYPE_SDIO = 3 } ; struct ssb_chipcommon_pmu { u8 rev ; u32 crystalfreq ; }; struct ssb_chipcommon { struct ssb_device *dev ; u32 capabilities ; u32 status ; u16 fast_pwrup_delay ; spinlock_t gpio_lock ; struct ssb_chipcommon_pmu pmu ; u32 ticks_per_ms ; u32 max_timer_ms ; }; struct ssb_mipscore { }; struct ssb_extif { }; struct ssb_pcicore { struct ssb_device *dev ; u8 setup_done : 1 ; u8 hostmode : 1 ; u8 cardbusmode : 1 ; }; union __anonunion____missing_field_name_255 { u8 mapped_pcmcia_seg ; u32 sdio_sbaddr ; }; struct sdio_func; union __anonunion____missing_field_name_256 { struct pci_dev *host_pci ; struct pcmcia_device *host_pcmcia ; struct sdio_func *host_sdio ; }; struct ssb_bus { void *mmio ; struct ssb_bus_ops const *ops ; struct ssb_device *mapped_device ; union __anonunion____missing_field_name_255 __annonCompField78 ; spinlock_t bar_lock ; enum ssb_bustype bustype ; union __anonunion____missing_field_name_256 __annonCompField79 ; unsigned int quirks ; struct mutex sprom_mutex ; u16 chip_id ; u8 chip_rev ; u16 sprom_offset ; u16 sprom_size ; u8 chip_package ; struct ssb_device devices[16U] ; u8 nr_devices ; unsigned int busnumber ; struct ssb_chipcommon chipco ; struct ssb_pcicore pcicore ; struct ssb_mipscore mipscore ; struct ssb_extif extif ; struct ssb_boardinfo boardinfo ; struct ssb_sprom sprom ; bool has_cardbus_slot ; struct gpio_chip gpio ; struct irq_domain *irq_domain ; struct list_head list ; }; struct ieee80211_hdr { __le16 frame_control ; __le16 duration_id ; u8 addr1[6U] ; u8 addr2[6U] ; u8 addr3[6U] ; __le16 seq_ctrl ; u8 addr4[6U] ; }; struct ieee80211_msrment_ie { u8 token ; u8 mode ; u8 type ; u8 request[0U] ; }; struct ieee80211_ext_chansw_ie { u8 mode ; u8 new_operating_class ; u8 new_ch_num ; u8 count ; }; struct __anonstruct_auth_258 { __le16 auth_alg ; __le16 auth_transaction ; __le16 status_code ; u8 variable[0U] ; }; struct __anonstruct_deauth_259 { __le16 reason_code ; }; struct __anonstruct_assoc_req_260 { __le16 capab_info ; __le16 listen_interval ; u8 variable[0U] ; }; struct __anonstruct_assoc_resp_261 { __le16 capab_info ; __le16 status_code ; __le16 aid ; u8 variable[0U] ; }; struct __anonstruct_reassoc_resp_262 { __le16 capab_info ; __le16 status_code ; __le16 aid ; u8 variable[0U] ; }; struct __anonstruct_reassoc_req_263 { __le16 capab_info ; __le16 listen_interval ; u8 current_ap[6U] ; u8 variable[0U] ; }; struct __anonstruct_disassoc_264 { __le16 reason_code ; }; struct __anonstruct_beacon_265 { __le64 timestamp ; __le16 beacon_int ; __le16 capab_info ; u8 variable[0U] ; }; struct __anonstruct_probe_req_266 { u8 variable[0U] ; }; struct __anonstruct_probe_resp_267 { __le64 timestamp ; __le16 beacon_int ; __le16 capab_info ; u8 variable[0U] ; }; struct __anonstruct_wme_action_270 { u8 action_code ; u8 dialog_token ; u8 status_code ; u8 variable[0U] ; }; struct __anonstruct_chan_switch_271 { u8 action_code ; u8 variable[0U] ; }; struct __anonstruct_ext_chan_switch_272 { u8 action_code ; struct ieee80211_ext_chansw_ie data ; u8 variable[0U] ; }; struct __anonstruct_measurement_273 { u8 action_code ; u8 dialog_token ; u8 element_id ; u8 length ; struct ieee80211_msrment_ie msr_elem ; }; struct __anonstruct_addba_req_274 { u8 action_code ; u8 dialog_token ; __le16 capab ; __le16 timeout ; __le16 start_seq_num ; }; struct __anonstruct_addba_resp_275 { u8 action_code ; u8 dialog_token ; __le16 status ; __le16 capab ; __le16 timeout ; }; struct __anonstruct_delba_276 { u8 action_code ; __le16 params ; __le16 reason_code ; }; struct __anonstruct_self_prot_277 { u8 action_code ; u8 variable[0U] ; }; struct __anonstruct_mesh_action_278 { u8 action_code ; u8 variable[0U] ; }; struct __anonstruct_sa_query_279 { u8 action ; u8 trans_id[2U] ; }; struct __anonstruct_ht_smps_280 { u8 action ; u8 smps_control ; }; struct __anonstruct_ht_notify_cw_281 { u8 action_code ; u8 chanwidth ; }; struct __anonstruct_tdls_discover_resp_282 { u8 action_code ; u8 dialog_token ; __le16 capability ; u8 variable[0U] ; }; struct __anonstruct_vht_opmode_notif_283 { u8 action_code ; u8 operating_mode ; }; union __anonunion_u_269 { struct __anonstruct_wme_action_270 wme_action ; struct __anonstruct_chan_switch_271 chan_switch ; struct __anonstruct_ext_chan_switch_272 ext_chan_switch ; struct __anonstruct_measurement_273 measurement ; struct __anonstruct_addba_req_274 addba_req ; struct __anonstruct_addba_resp_275 addba_resp ; struct __anonstruct_delba_276 delba ; struct __anonstruct_self_prot_277 self_prot ; struct __anonstruct_mesh_action_278 mesh_action ; struct __anonstruct_sa_query_279 sa_query ; struct __anonstruct_ht_smps_280 ht_smps ; struct __anonstruct_ht_notify_cw_281 ht_notify_cw ; struct __anonstruct_tdls_discover_resp_282 tdls_discover_resp ; struct __anonstruct_vht_opmode_notif_283 vht_opmode_notif ; }; struct __anonstruct_action_268 { u8 category ; union __anonunion_u_269 u ; }; union __anonunion_u_257 { struct __anonstruct_auth_258 auth ; struct __anonstruct_deauth_259 deauth ; struct __anonstruct_assoc_req_260 assoc_req ; struct __anonstruct_assoc_resp_261 assoc_resp ; struct __anonstruct_reassoc_resp_262 reassoc_resp ; struct __anonstruct_reassoc_req_263 reassoc_req ; struct __anonstruct_disassoc_264 disassoc ; struct __anonstruct_beacon_265 beacon ; struct __anonstruct_probe_req_266 probe_req ; struct __anonstruct_probe_resp_267 probe_resp ; struct __anonstruct_action_268 action ; }; struct ieee80211_mgmt { __le16 frame_control ; __le16 duration ; u8 da[6U] ; u8 sa[6U] ; u8 bssid[6U] ; __le16 seq_ctrl ; union __anonunion_u_257 u ; }; struct ieee80211_p2p_noa_desc { u8 count ; __le32 duration ; __le32 interval ; __le32 start_time ; }; struct ieee80211_p2p_noa_attr { u8 index ; u8 oppps_ctwindow ; struct ieee80211_p2p_noa_desc desc[4U] ; }; struct ieee80211_mcs_info { u8 rx_mask[10U] ; __le16 rx_highest ; u8 tx_params ; u8 reserved[3U] ; }; struct ieee80211_ht_cap { __le16 cap_info ; u8 ampdu_params_info ; struct ieee80211_mcs_info mcs ; __le16 extended_ht_cap_info ; __le32 tx_BF_cap_info ; u8 antenna_selection_info ; }; struct ieee80211_vht_mcs_info { __le16 rx_mcs_map ; __le16 rx_highest ; __le16 tx_mcs_map ; __le16 tx_highest ; }; struct ieee80211_vht_cap { __le32 vht_cap_info ; struct ieee80211_vht_mcs_info supp_mcs ; }; enum nl80211_iftype { NL80211_IFTYPE_UNSPECIFIED = 0, NL80211_IFTYPE_ADHOC = 1, NL80211_IFTYPE_STATION = 2, NL80211_IFTYPE_AP = 3, NL80211_IFTYPE_AP_VLAN = 4, NL80211_IFTYPE_WDS = 5, NL80211_IFTYPE_MONITOR = 6, NL80211_IFTYPE_MESH_POINT = 7, NL80211_IFTYPE_P2P_CLIENT = 8, NL80211_IFTYPE_P2P_GO = 9, NL80211_IFTYPE_P2P_DEVICE = 10, NUM_NL80211_IFTYPES = 11, NL80211_IFTYPE_MAX = 10 } ; enum nl80211_reg_initiator { NL80211_REGDOM_SET_BY_CORE = 0, NL80211_REGDOM_SET_BY_USER = 1, NL80211_REGDOM_SET_BY_DRIVER = 2, NL80211_REGDOM_SET_BY_COUNTRY_IE = 3 } ; enum nl80211_dfs_regions { NL80211_DFS_UNSET = 0, NL80211_DFS_FCC = 1, NL80211_DFS_ETSI = 2, NL80211_DFS_JP = 3 } ; enum nl80211_user_reg_hint_type { NL80211_USER_REG_HINT_USER = 0, NL80211_USER_REG_HINT_CELL_BASE = 1 } ; enum nl80211_chan_width { NL80211_CHAN_WIDTH_20_NOHT = 0, NL80211_CHAN_WIDTH_20 = 1, NL80211_CHAN_WIDTH_40 = 2, NL80211_CHAN_WIDTH_80 = 3, NL80211_CHAN_WIDTH_80P80 = 4, NL80211_CHAN_WIDTH_160 = 5, NL80211_CHAN_WIDTH_5 = 6, NL80211_CHAN_WIDTH_10 = 7 } ; enum nl80211_bss_scan_width { NL80211_BSS_CHAN_WIDTH_20 = 0, NL80211_BSS_CHAN_WIDTH_10 = 1, NL80211_BSS_CHAN_WIDTH_5 = 2 } ; enum nl80211_auth_type { NL80211_AUTHTYPE_OPEN_SYSTEM = 0, NL80211_AUTHTYPE_SHARED_KEY = 1, NL80211_AUTHTYPE_FT = 2, NL80211_AUTHTYPE_NETWORK_EAP = 3, NL80211_AUTHTYPE_SAE = 4, __NL80211_AUTHTYPE_NUM = 5, NL80211_AUTHTYPE_MAX = 4, NL80211_AUTHTYPE_AUTOMATIC = 5 } ; enum nl80211_mfp { NL80211_MFP_NO = 0, NL80211_MFP_REQUIRED = 1 } ; struct nl80211_wowlan_tcp_data_seq { __u32 start ; __u32 offset ; __u32 len ; }; struct nl80211_wowlan_tcp_data_token { __u32 offset ; __u32 len ; __u8 token_stream[] ; }; struct nl80211_wowlan_tcp_data_token_feature { __u32 min_len ; __u32 max_len ; __u32 bufsize ; }; enum nl80211_dfs_state { NL80211_DFS_USABLE = 0, NL80211_DFS_UNAVAILABLE = 1, NL80211_DFS_AVAILABLE = 2 } ; struct nl80211_vendor_cmd_info { __u32 vendor_id ; __u32 subcmd ; }; enum environment_cap { ENVIRON_ANY = 0, ENVIRON_INDOOR = 1, ENVIRON_OUTDOOR = 2 } ; struct regulatory_request { struct callback_head callback_head ; int wiphy_idx ; enum nl80211_reg_initiator initiator ; enum nl80211_user_reg_hint_type user_reg_hint_type ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; bool intersect ; bool processed ; enum environment_cap country_ie_env ; struct list_head list ; }; struct ieee80211_freq_range { u32 start_freq_khz ; u32 end_freq_khz ; u32 max_bandwidth_khz ; }; struct ieee80211_power_rule { u32 max_antenna_gain ; u32 max_eirp ; }; struct ieee80211_reg_rule { struct ieee80211_freq_range freq_range ; struct ieee80211_power_rule power_rule ; u32 flags ; }; struct ieee80211_regdomain { struct callback_head callback_head ; u32 n_reg_rules ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; struct ieee80211_reg_rule reg_rules[] ; }; struct wiphy; enum ieee80211_band { IEEE80211_BAND_2GHZ = 0, IEEE80211_BAND_5GHZ = 1, IEEE80211_BAND_60GHZ = 2, IEEE80211_NUM_BANDS = 3 } ; struct ieee80211_channel { enum ieee80211_band band ; u16 center_freq ; u16 hw_value ; u32 flags ; int max_antenna_gain ; int max_power ; int max_reg_power ; bool beacon_found ; u32 orig_flags ; int orig_mag ; int orig_mpwr ; enum nl80211_dfs_state dfs_state ; unsigned long dfs_state_entered ; }; struct ieee80211_rate { u32 flags ; u16 bitrate ; u16 hw_value ; u16 hw_value_short ; }; struct ieee80211_sta_ht_cap { u16 cap ; bool ht_supported ; u8 ampdu_factor ; u8 ampdu_density ; struct ieee80211_mcs_info mcs ; }; struct ieee80211_sta_vht_cap { bool vht_supported ; u32 cap ; struct ieee80211_vht_mcs_info vht_mcs ; }; struct ieee80211_supported_band { struct ieee80211_channel *channels ; struct ieee80211_rate *bitrates ; enum ieee80211_band band ; int n_channels ; int n_bitrates ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; }; struct cfg80211_chan_def { struct ieee80211_channel *chan ; enum nl80211_chan_width width ; u32 center_freq1 ; u32 center_freq2 ; }; struct survey_info { struct ieee80211_channel *channel ; u64 channel_time ; u64 channel_time_busy ; u64 channel_time_ext_busy ; u64 channel_time_rx ; u64 channel_time_tx ; u32 filled ; s8 noise ; }; struct cfg80211_crypto_settings { u32 wpa_versions ; u32 cipher_group ; int n_ciphers_pairwise ; u32 ciphers_pairwise[5U] ; int n_akm_suites ; u32 akm_suites[2U] ; bool control_port ; __be16 control_port_ethertype ; bool control_port_no_encrypt ; }; struct mac_address { u8 addr[6U] ; }; struct cfg80211_ssid { u8 ssid[32U] ; u8 ssid_len ; }; struct cfg80211_scan_request { struct cfg80211_ssid *ssids ; int n_ssids ; u32 n_channels ; enum nl80211_bss_scan_width scan_width ; u8 const *ie ; size_t ie_len ; u32 flags ; u32 rates[3U] ; struct wireless_dev *wdev ; struct wiphy *wiphy ; unsigned long scan_start ; bool aborted ; bool notified ; bool no_cck ; struct ieee80211_channel *channels[0U] ; }; struct cfg80211_match_set { struct cfg80211_ssid ssid ; }; struct cfg80211_sched_scan_request { struct cfg80211_ssid *ssids ; int n_ssids ; u32 n_channels ; enum nl80211_bss_scan_width scan_width ; u32 interval ; u8 const *ie ; size_t ie_len ; u32 flags ; struct cfg80211_match_set *match_sets ; int n_match_sets ; s32 rssi_thold ; struct wiphy *wiphy ; struct net_device *dev ; unsigned long scan_start ; struct ieee80211_channel *channels[0U] ; }; enum cfg80211_signal_type { CFG80211_SIGNAL_TYPE_NONE = 0, CFG80211_SIGNAL_TYPE_MBM = 1, CFG80211_SIGNAL_TYPE_UNSPEC = 2 } ; struct cfg80211_ibss_params { u8 *ssid ; u8 *bssid ; struct cfg80211_chan_def chandef ; u8 *ie ; u8 ssid_len ; u8 ie_len ; u16 beacon_interval ; u32 basic_rates ; bool channel_fixed ; bool privacy ; bool control_port ; bool userspace_handles_dfs ; int mcast_rate[3U] ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; }; struct cfg80211_connect_params { struct ieee80211_channel *channel ; u8 *bssid ; u8 *ssid ; size_t ssid_len ; enum nl80211_auth_type auth_type ; u8 *ie ; size_t ie_len ; bool privacy ; enum nl80211_mfp mfp ; struct cfg80211_crypto_settings crypto ; u8 const *key ; u8 key_len ; u8 key_idx ; u32 flags ; int bg_scan_period ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; struct ieee80211_vht_cap vht_capa ; struct ieee80211_vht_cap vht_capa_mask ; }; struct __anonstruct_control_293 { u32 legacy ; u8 ht_mcs[10U] ; u16 vht_mcs[8U] ; }; struct cfg80211_bitrate_mask { struct __anonstruct_control_293 control[3U] ; }; struct cfg80211_pkt_pattern { u8 *mask ; u8 *pattern ; int pattern_len ; int pkt_offset ; }; struct cfg80211_wowlan_tcp { struct socket *sock ; __be32 src ; __be32 dst ; u16 src_port ; u16 dst_port ; u8 dst_mac[6U] ; int payload_len ; u8 const *payload ; struct nl80211_wowlan_tcp_data_seq payload_seq ; u32 data_interval ; u32 wake_len ; u8 const *wake_data ; u8 const *wake_mask ; u32 tokens_size ; struct nl80211_wowlan_tcp_data_token payload_tok ; }; struct cfg80211_wowlan { bool any ; bool disconnect ; bool magic_pkt ; bool gtk_rekey_failure ; bool eap_identity_req ; bool four_way_handshake ; bool rfkill_release ; struct cfg80211_pkt_pattern *patterns ; struct cfg80211_wowlan_tcp *tcp ; int n_patterns ; }; struct cfg80211_gtk_rekey_data { u8 kek[16U] ; u8 kck[16U] ; u8 replay_ctr[8U] ; }; struct ieee80211_iface_limit { u16 max ; u16 types ; }; struct ieee80211_iface_combination { struct ieee80211_iface_limit const *limits ; u32 num_different_channels ; u16 max_interfaces ; u8 n_limits ; bool beacon_int_infra_match ; u8 radar_detect_widths ; }; struct ieee80211_txrx_stypes { u16 tx ; u16 rx ; }; struct wiphy_wowlan_tcp_support { struct nl80211_wowlan_tcp_data_token_feature const *tok ; u32 data_payload_max ; u32 data_interval_max ; u32 wake_payload_max ; bool seq ; }; struct wiphy_wowlan_support { u32 flags ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; struct wiphy_wowlan_tcp_support const *tcp ; }; struct wiphy_coalesce_support { int n_rules ; int max_delay ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; }; struct wiphy_vendor_command { struct nl80211_vendor_cmd_info info ; u32 flags ; int (*doit)(struct wiphy * , struct wireless_dev * , void const * , int ) ; }; struct wiphy { u8 perm_addr[6U] ; u8 addr_mask[6U] ; struct mac_address *addresses ; struct ieee80211_txrx_stypes const *mgmt_stypes ; struct ieee80211_iface_combination const *iface_combinations ; int n_iface_combinations ; u16 software_iftypes ; u16 n_addresses ; u16 interface_modes ; u16 max_acl_mac_addrs ; u32 flags ; u32 regulatory_flags ; u32 features ; u32 ap_sme_capa ; enum cfg80211_signal_type signal_type ; int bss_priv_size ; u8 max_scan_ssids ; u8 max_sched_scan_ssids ; u8 max_match_sets ; u16 max_scan_ie_len ; u16 max_sched_scan_ie_len ; int n_cipher_suites ; u32 const *cipher_suites ; u8 retry_short ; u8 retry_long ; u32 frag_threshold ; u32 rts_threshold ; u8 coverage_class ; char fw_version[32U] ; u32 hw_version ; struct wiphy_wowlan_support const *wowlan ; struct cfg80211_wowlan *wowlan_config ; u16 max_remain_on_channel_duration ; u8 max_num_pmkids ; u32 available_antennas_tx ; u32 available_antennas_rx ; u32 probe_resp_offload ; u8 const *extended_capabilities ; u8 const *extended_capabilities_mask ; u8 extended_capabilities_len ; void const *privid ; struct ieee80211_supported_band *bands[3U] ; void (*reg_notifier)(struct wiphy * , struct regulatory_request * ) ; struct ieee80211_regdomain const *regd ; struct device dev ; bool registered ; struct dentry *debugfsdir ; struct ieee80211_ht_cap const *ht_capa_mod_mask ; struct ieee80211_vht_cap const *vht_capa_mod_mask ; struct net *_net ; struct iw_handler_def const *wext ; struct wiphy_coalesce_support const *coalesce ; struct wiphy_vendor_command const *vendor_commands ; struct nl80211_vendor_cmd_info const *vendor_events ; int n_vendor_commands ; int n_vendor_events ; char priv[0U] ; }; struct cfg80211_conn; struct cfg80211_internal_bss; struct cfg80211_cached_keys; struct __anonstruct_wext_294 { struct cfg80211_ibss_params ibss ; struct cfg80211_connect_params connect ; struct cfg80211_cached_keys *keys ; u8 *ie ; size_t ie_len ; u8 bssid[6U] ; u8 prev_bssid[6U] ; u8 ssid[32U] ; s8 default_key ; s8 default_mgmt_key ; bool prev_bssid_valid ; }; struct wireless_dev { struct wiphy *wiphy ; enum nl80211_iftype iftype ; struct list_head list ; struct net_device *netdev ; u32 identifier ; struct list_head mgmt_registrations ; spinlock_t mgmt_registrations_lock ; struct mutex mtx ; bool use_4addr ; bool p2p_started ; u8 address[6U] ; u8 ssid[32U] ; u8 ssid_len ; u8 mesh_id_len ; u8 mesh_id_up_len ; struct cfg80211_conn *conn ; struct cfg80211_cached_keys *connect_keys ; struct list_head event_list ; spinlock_t event_lock ; struct cfg80211_internal_bss *current_bss ; struct cfg80211_chan_def preset_chandef ; struct ieee80211_channel *channel ; bool ibss_fixed ; bool ibss_dfs_possible ; bool ps ; int ps_timeout ; int beacon_interval ; u32 ap_unexpected_nlportid ; bool cac_started ; unsigned long cac_start_time ; struct __anonstruct_wext_294 wext ; }; struct ieee80211_tx_queue_params { u16 txop ; u16 cw_min ; u16 cw_max ; u8 aifs ; bool acm ; bool uapsd ; }; struct ieee80211_low_level_stats { unsigned int dot11ACKFailureCount ; unsigned int dot11RTSFailureCount ; unsigned int dot11FCSErrorCount ; unsigned int dot11RTSSuccessCount ; }; struct ieee80211_chanctx_conf { struct cfg80211_chan_def def ; struct cfg80211_chan_def min_def ; u8 rx_chains_static ; u8 rx_chains_dynamic ; bool radar_enabled ; u8 drv_priv[0U] ; }; enum ieee80211_rssi_event { RSSI_EVENT_HIGH = 0, RSSI_EVENT_LOW = 1 } ; struct ieee80211_bss_conf { u8 const *bssid ; bool assoc ; bool ibss_joined ; bool ibss_creator ; u16 aid ; bool use_cts_prot ; bool use_short_preamble ; bool use_short_slot ; bool enable_beacon ; u8 dtim_period ; u16 beacon_int ; u16 assoc_capability ; u64 sync_tsf ; u32 sync_device_ts ; u8 sync_dtim_count ; u32 basic_rates ; struct ieee80211_rate *beacon_rate ; int mcast_rate[3U] ; u16 ht_operation_mode ; s32 cqm_rssi_thold ; u32 cqm_rssi_hyst ; struct cfg80211_chan_def chandef ; __be32 arp_addr_list[4U] ; int arp_addr_cnt ; bool qos ; bool idle ; bool ps ; u8 ssid[32U] ; size_t ssid_len ; bool hidden_ssid ; int txpower ; struct ieee80211_p2p_noa_attr p2p_noa_attr ; }; struct ieee80211_tx_rate { s8 idx ; u16 count : 5 ; u16 flags : 11 ; }; struct __anonstruct____missing_field_name_298 { struct ieee80211_tx_rate rates[4U] ; s8 rts_cts_rate_idx ; u8 use_rts : 1 ; u8 use_cts_prot : 1 ; u8 short_preamble : 1 ; u8 skip_table : 1 ; }; union __anonunion____missing_field_name_297 { struct __anonstruct____missing_field_name_298 __annonCompField81 ; unsigned long jiffies ; }; struct ieee80211_vif; struct ieee80211_key_conf; struct __anonstruct_control_296 { union __anonunion____missing_field_name_297 __annonCompField82 ; struct ieee80211_vif *vif ; struct ieee80211_key_conf *hw_key ; u32 flags ; }; struct __anonstruct_status_299 { struct ieee80211_tx_rate rates[4U] ; int ack_signal ; u8 ampdu_ack_len ; u8 ampdu_len ; u8 antenna ; }; struct __anonstruct____missing_field_name_300 { struct ieee80211_tx_rate driver_rates[4U] ; u8 pad[4U] ; void *rate_driver_data[3U] ; }; union __anonunion____missing_field_name_295 { struct __anonstruct_control_296 control ; struct __anonstruct_status_299 status ; struct __anonstruct____missing_field_name_300 __annonCompField83 ; void *driver_data[5U] ; }; struct ieee80211_tx_info { u32 flags ; u8 band ; u8 hw_queue ; u16 ack_frame_id ; union __anonunion____missing_field_name_295 __annonCompField84 ; }; struct ieee80211_sched_scan_ies { u8 *ie[3U] ; size_t len[3U] ; }; enum ieee80211_smps_mode { IEEE80211_SMPS_AUTOMATIC = 0, IEEE80211_SMPS_OFF = 1, IEEE80211_SMPS_STATIC = 2, IEEE80211_SMPS_DYNAMIC = 3, IEEE80211_SMPS_NUM_MODES = 4 } ; struct ieee80211_conf { u32 flags ; int power_level ; int dynamic_ps_timeout ; int max_sleep_period ; u16 listen_interval ; u8 ps_dtim_period ; u8 long_frame_max_tx_count ; u8 short_frame_max_tx_count ; struct cfg80211_chan_def chandef ; bool radar_enabled ; enum ieee80211_smps_mode smps_mode ; }; struct ieee80211_channel_switch { u64 timestamp ; bool block_tx ; struct cfg80211_chan_def chandef ; u8 count ; }; struct ieee80211_vif { enum nl80211_iftype type ; struct ieee80211_bss_conf bss_conf ; u8 addr[6U] ; bool p2p ; bool csa_active ; u8 cab_queue ; u8 hw_queue[4U] ; struct ieee80211_chanctx_conf *chanctx_conf ; u32 driver_flags ; struct dentry *debugfs_dir ; u8 drv_priv[0U] ; }; struct ieee80211_key_conf { u32 cipher ; u8 icv_len ; u8 iv_len ; u8 hw_key_idx ; u8 flags ; s8 keyidx ; u8 keylen ; u8 key[0U] ; }; struct ieee80211_cipher_scheme { u32 cipher ; u16 iftype ; u8 hdr_len ; u8 pn_len ; u8 pn_off ; u8 key_idx_off ; u8 key_idx_mask ; u8 key_idx_shift ; u8 mic_len ; }; enum set_key_cmd { SET_KEY = 0, DISABLE_KEY = 1 } ; enum ieee80211_sta_state { IEEE80211_STA_NOTEXIST = 0, IEEE80211_STA_NONE = 1, IEEE80211_STA_AUTH = 2, IEEE80211_STA_ASSOC = 3, IEEE80211_STA_AUTHORIZED = 4 } ; enum ieee80211_sta_rx_bandwidth { IEEE80211_STA_RX_BW_20 = 0, IEEE80211_STA_RX_BW_40 = 1, IEEE80211_STA_RX_BW_80 = 2, IEEE80211_STA_RX_BW_160 = 3 } ; struct __anonstruct_rate_301 { s8 idx ; u8 count ; u8 count_cts ; u8 count_rts ; u16 flags ; }; struct ieee80211_sta_rates { struct callback_head callback_head ; struct __anonstruct_rate_301 rate[4U] ; }; struct ieee80211_sta { u32 supp_rates[3U] ; u8 addr[6U] ; u16 aid ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; bool wme ; u8 uapsd_queues ; u8 max_sp ; u8 rx_nss ; enum ieee80211_sta_rx_bandwidth bandwidth ; enum ieee80211_smps_mode smps_mode ; struct ieee80211_sta_rates *rates ; u8 drv_priv[0U] ; }; enum sta_notify_cmd { STA_NOTIFY_SLEEP = 0, STA_NOTIFY_AWAKE = 1 } ; struct ieee80211_tx_control { struct ieee80211_sta *sta ; }; struct ieee80211_hw { struct ieee80211_conf conf ; struct wiphy *wiphy ; char const *rate_control_algorithm ; void *priv ; u32 flags ; unsigned int extra_tx_headroom ; unsigned int extra_beacon_tailroom ; int vif_data_size ; int sta_data_size ; int chanctx_data_size ; int napi_weight ; u16 queues ; u16 max_listen_interval ; s8 max_signal ; u8 max_rates ; u8 max_report_rates ; u8 max_rate_tries ; u8 max_rx_aggregation_subframes ; u8 max_tx_aggregation_subframes ; u8 offchannel_tx_hw_queue ; u8 radiotap_mcs_details ; u16 radiotap_vht_details ; netdev_features_t netdev_features ; u8 uapsd_queues ; u8 uapsd_max_sp_len ; u8 n_cipher_schemes ; struct ieee80211_cipher_scheme const *cipher_schemes ; }; enum ieee80211_ampdu_mlme_action { IEEE80211_AMPDU_RX_START = 0, IEEE80211_AMPDU_RX_STOP = 1, IEEE80211_AMPDU_TX_START = 2, IEEE80211_AMPDU_TX_STOP_CONT = 3, IEEE80211_AMPDU_TX_STOP_FLUSH = 4, IEEE80211_AMPDU_TX_STOP_FLUSH_CONT = 5, IEEE80211_AMPDU_TX_OPERATIONAL = 6 } ; enum ieee80211_frame_release_type { IEEE80211_FRAME_RELEASE_PSPOLL = 0, IEEE80211_FRAME_RELEASE_UAPSD = 1 } ; enum ieee80211_roc_type { IEEE80211_ROC_TYPE_NORMAL = 0, IEEE80211_ROC_TYPE_MGMT_TX = 1 } ; struct ieee80211_ops { void (*tx)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) ; int (*start)(struct ieee80211_hw * ) ; void (*stop)(struct ieee80211_hw * ) ; int (*suspend)(struct ieee80211_hw * , struct cfg80211_wowlan * ) ; int (*resume)(struct ieee80211_hw * ) ; void (*set_wakeup)(struct ieee80211_hw * , bool ) ; int (*add_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*change_interface)(struct ieee80211_hw * , struct ieee80211_vif * , enum nl80211_iftype , bool ) ; void (*remove_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*config)(struct ieee80211_hw * , u32 ) ; void (*bss_info_changed)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , u32 ) ; int (*start_ap)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*stop_ap)(struct ieee80211_hw * , struct ieee80211_vif * ) ; u64 (*prepare_multicast)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) ; void (*configure_filter)(struct ieee80211_hw * , unsigned int , unsigned int * , u64 ) ; int (*set_tim)(struct ieee80211_hw * , struct ieee80211_sta * , bool ) ; int (*set_key)(struct ieee80211_hw * , enum set_key_cmd , struct ieee80211_vif * , struct ieee80211_sta * , struct ieee80211_key_conf * ) ; void (*update_tkip_key)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_key_conf * , struct ieee80211_sta * , u32 , u16 * ) ; void (*set_rekey_data)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_gtk_rekey_data * ) ; void (*set_default_unicast_key)(struct ieee80211_hw * , struct ieee80211_vif * , int ) ; int (*hw_scan)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_scan_request * ) ; void (*cancel_hw_scan)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*sched_scan_start)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_sched_scan_request * , struct ieee80211_sched_scan_ies * ) ; void (*sched_scan_stop)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*sw_scan_start)(struct ieee80211_hw * ) ; void (*sw_scan_complete)(struct ieee80211_hw * ) ; int (*get_stats)(struct ieee80211_hw * , struct ieee80211_low_level_stats * ) ; void (*get_tkip_seq)(struct ieee80211_hw * , u8 , u32 * , u16 * ) ; int (*set_frag_threshold)(struct ieee80211_hw * , u32 ) ; int (*set_rts_threshold)(struct ieee80211_hw * , u32 ) ; int (*sta_add)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; int (*sta_remove)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*sta_add_debugfs)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , struct dentry * ) ; void (*sta_remove_debugfs)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , struct dentry * ) ; void (*sta_notify)(struct ieee80211_hw * , struct ieee80211_vif * , enum sta_notify_cmd , struct ieee80211_sta * ) ; int (*sta_state)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , enum ieee80211_sta_state , enum ieee80211_sta_state ) ; void (*sta_pre_rcu_remove)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*sta_rc_update)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , u32 ) ; int (*conf_tx)(struct ieee80211_hw * , struct ieee80211_vif * , u16 , struct ieee80211_tx_queue_params const * ) ; u64 (*get_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*set_tsf)(struct ieee80211_hw * , struct ieee80211_vif * , u64 ) ; void (*reset_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*tx_last_beacon)(struct ieee80211_hw * ) ; int (*ampdu_action)(struct ieee80211_hw * , struct ieee80211_vif * , enum ieee80211_ampdu_mlme_action , struct ieee80211_sta * , u16 , u16 * , u8 ) ; int (*get_survey)(struct ieee80211_hw * , int , struct survey_info * ) ; void (*rfkill_poll)(struct ieee80211_hw * ) ; void (*set_coverage_class)(struct ieee80211_hw * , u8 ) ; int (*testmode_cmd)(struct ieee80211_hw * , struct ieee80211_vif * , void * , int ) ; int (*testmode_dump)(struct ieee80211_hw * , struct sk_buff * , struct netlink_callback * , void * , int ) ; void (*flush)(struct ieee80211_hw * , u32 , bool ) ; void (*channel_switch)(struct ieee80211_hw * , struct ieee80211_channel_switch * ) ; int (*napi_poll)(struct ieee80211_hw * , int ) ; int (*set_antenna)(struct ieee80211_hw * , u32 , u32 ) ; int (*get_antenna)(struct ieee80211_hw * , u32 * , u32 * ) ; int (*remain_on_channel)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_channel * , int , enum ieee80211_roc_type ) ; int (*cancel_remain_on_channel)(struct ieee80211_hw * ) ; int (*set_ringparam)(struct ieee80211_hw * , u32 , u32 ) ; void (*get_ringparam)(struct ieee80211_hw * , u32 * , u32 * , u32 * , u32 * ) ; bool (*tx_frames_pending)(struct ieee80211_hw * ) ; int (*set_bitrate_mask)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_bitrate_mask const * ) ; void (*rssi_callback)(struct ieee80211_hw * , struct ieee80211_vif * , enum ieee80211_rssi_event ) ; void (*allow_buffered_frames)(struct ieee80211_hw * , struct ieee80211_sta * , u16 , int , enum ieee80211_frame_release_type , bool ) ; void (*release_buffered_frames)(struct ieee80211_hw * , struct ieee80211_sta * , u16 , int , enum ieee80211_frame_release_type , bool ) ; int (*get_et_sset_count)(struct ieee80211_hw * , struct ieee80211_vif * , int ) ; void (*get_et_stats)(struct ieee80211_hw * , struct ieee80211_vif * , struct ethtool_stats * , u64 * ) ; void (*get_et_strings)(struct ieee80211_hw * , struct ieee80211_vif * , u32 , u8 * ) ; int (*get_rssi)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , s8 * ) ; void (*mgd_prepare_tx)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*add_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * ) ; void (*remove_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * ) ; void (*change_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * , u32 ) ; int (*assign_vif_chanctx)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_chanctx_conf * ) ; void (*unassign_vif_chanctx)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_chanctx_conf * ) ; void (*restart_complete)(struct ieee80211_hw * ) ; void (*ipv6_addr_change)(struct ieee80211_hw * , struct ieee80211_vif * , struct inet6_dev * ) ; void (*channel_switch_beacon)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_chan_def * ) ; int (*join_ibss)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*leave_ibss)(struct ieee80211_hw * , struct ieee80211_vif * ) ; }; struct b43legacy_wldev; struct b43legacy_txstatus; enum b43legacy_dyndbg { B43legacy_DBG_XMITPOWER = 0, B43legacy_DBG_DMAOVERFLOW = 1, B43legacy_DBG_DMAVERBOSE = 2, B43legacy_DBG_PWORK_FAST = 3, B43legacy_DBG_PWORK_STOP = 4, __B43legacy_NR_DYNDBG = 5 } ; struct b43legacy_txstatus_log { struct b43legacy_txstatus *log ; int end ; spinlock_t lock ; }; struct b43legacy_dfs_file { struct dentry *dentry ; char *buffer ; size_t data_len ; }; struct b43legacy_dfsentry { struct b43legacy_wldev *dev ; struct dentry *subdir ; struct b43legacy_dfs_file file_tsf ; struct b43legacy_dfs_file file_ucode_regs ; struct b43legacy_dfs_file file_shm ; struct b43legacy_dfs_file file_txstat ; struct b43legacy_dfs_file file_txpower_g ; struct b43legacy_dfs_file file_restart ; struct b43legacy_dfs_file file_loctls ; struct b43legacy_txstatus_log txstatlog ; u32 dyn_debug[5U] ; struct dentry *dyn_debug_dentries[5U] ; }; enum led_brightness { LED_OFF = 0, LED_HALF = 127, LED_FULL = 255 } ; struct led_trigger; struct led_classdev { char const *name ; int brightness ; int max_brightness ; int flags ; void (*brightness_set)(struct led_classdev * , enum led_brightness ) ; enum led_brightness (*brightness_get)(struct led_classdev * ) ; int (*blink_set)(struct led_classdev * , unsigned long * , unsigned long * ) ; struct device *dev ; struct list_head node ; char const *default_trigger ; unsigned long blink_delay_on ; unsigned long blink_delay_off ; struct timer_list blink_timer ; int blink_brightness ; struct work_struct set_brightness_work ; int delayed_set_value ; struct rw_semaphore trigger_lock ; struct led_trigger *trigger ; struct list_head trig_list ; void *trigger_data ; bool activated ; }; struct led_trigger { char const *name ; void (*activate)(struct led_classdev * ) ; void (*deactivate)(struct led_classdev * ) ; rwlock_t leddev_list_lock ; struct list_head led_cdevs ; struct list_head next_trig ; }; struct b43legacy_led { struct b43legacy_wldev *dev ; struct led_classdev led_dev ; u8 index ; bool activelow ; char name[32U] ; }; struct b43legacy_dmaring; struct b43legacy_pioqueue; struct b43legacy_fw_header { u8 type ; u8 ver ; u8 __padding[2U] ; __be32 size ; }; union __anonunion_data_307 { __be16 d16 ; __be32 d32 ; }; struct b43legacy_iv { __be16 offset_size ; union __anonunion_data_307 data ; }; struct b43legacy_lopair { s8 low ; s8 high ; u8 used : 1 ; }; struct __anonstruct_radio_off_context_308 { bool valid ; u16 rfover ; u16 rfoverval ; }; struct b43legacy_txpower_lo_control; struct __anonstruct____missing_field_name_309 { u16 rfatt ; u16 bbatt ; u16 txctl1 ; u16 txctl2 ; }; struct __anonstruct____missing_field_name_310 { u16 txpwr_offset ; }; struct b43legacy_phy { u8 possible_phymodes ; bool gmode ; u8 analog ; u8 type ; u8 rev ; u16 antenna_diversity ; u16 savedpctlreg ; u16 radio_manuf ; u16 radio_ver ; u8 calibrated : 1 ; u8 radio_rev ; bool dyn_tssi_tbl ; bool aci_enable ; bool aci_wlan_automatic ; bool aci_hw_rssi ; bool radio_on ; struct __anonstruct_radio_off_context_308 radio_off_context ; u16 minlowsig[2U] ; u16 minlowsigpos[2U] ; struct b43legacy_lopair *_lo_pairs ; s8 const *tssi2dbm ; s8 idle_tssi ; int tgt_idle_tssi ; int cur_idle_tssi ; struct b43legacy_txpower_lo_control *lo_control ; s16 max_lb_gain ; s16 trsw_rx_gain ; s16 lna_lod_gain ; s16 lna_gain ; s16 pga_gain ; u8 power_level ; u16 loopback_gain[2U] ; struct __anonstruct____missing_field_name_309 __annonCompField86 ; struct __anonstruct____missing_field_name_310 __annonCompField87 ; int interfmode ; u32 interfstack[26U] ; s16 nrssi[2U] ; s32 nrssislope ; s8 nrssi_lt[64U] ; u8 channel ; u16 lofcal ; u16 initval ; atomic_t txerr_cnt ; bool manual_txpower_control ; bool phy_locked ; }; struct b43legacy_dma { struct b43legacy_dmaring *tx_ring0 ; struct b43legacy_dmaring *tx_ring1 ; struct b43legacy_dmaring *tx_ring2 ; struct b43legacy_dmaring *tx_ring3 ; struct b43legacy_dmaring *tx_ring4 ; struct b43legacy_dmaring *tx_ring5 ; struct b43legacy_dmaring *rx_ring0 ; struct b43legacy_dmaring *rx_ring3 ; u32 translation ; }; struct b43legacy_pio { struct b43legacy_pioqueue *queue0 ; struct b43legacy_pioqueue *queue1 ; struct b43legacy_pioqueue *queue2 ; struct b43legacy_pioqueue *queue3 ; }; struct b43legacy_noise_calculation { u8 channel_at_start ; bool calculation_running ; u8 nr_samples ; s8 samples[8U][4U] ; }; struct b43legacy_stats { u8 link_noise ; unsigned long last_tx ; unsigned long last_rx ; }; struct b43legacy_key { void *keyconf ; bool enabled ; u8 algorithm ; }; struct b43legacy_qos_params { struct ieee80211_tx_queue_params p ; }; struct b43legacy_wl { struct b43legacy_wldev *current_dev ; struct ieee80211_hw *hw ; spinlock_t irq_lock ; struct mutex mutex ; spinlock_t leds_lock ; struct work_struct firmware_load ; struct ieee80211_vif *vif ; u8 mac_addr[6U] ; u8 bssid[6U] ; int if_type ; bool operating ; unsigned int filter_flags ; struct ieee80211_low_level_stats ieee_stats ; struct hwrng rng ; u8 rng_initialized ; char rng_name[31U] ; struct list_head devlist ; u8 nr_devs ; bool radiotap_enabled ; bool radio_enabled ; struct sk_buff *current_beacon ; bool beacon0_uploaded ; bool beacon1_uploaded ; bool beacon_templates_virgin ; struct work_struct beacon_update_trigger ; struct b43legacy_qos_params qos_params[4U] ; struct work_struct tx_work ; struct sk_buff_head tx_queue[4U] ; bool tx_queue_stopped[4U] ; }; struct b43legacy_firmware { struct firmware const *ucode ; struct firmware const *pcm ; struct firmware const *initvals ; struct firmware const *initvals_band ; u16 rev ; u16 patch ; }; union __anonunion____missing_field_name_311 { struct b43legacy_dma dma ; struct b43legacy_pio pio ; }; struct b43legacy_wldev { struct ssb_device *dev ; struct b43legacy_wl *wl ; atomic_t __init_status ; int suspend_init_status ; bool __using_pio ; bool bad_frames_preempt ; bool dfq_valid ; bool short_preamble ; bool radio_hw_enable ; struct b43legacy_phy phy ; union __anonunion____missing_field_name_311 __annonCompField88 ; struct b43legacy_stats stats ; struct b43legacy_led led_tx ; struct b43legacy_led led_rx ; struct b43legacy_led led_assoc ; struct b43legacy_led led_radio ; u32 irq_reason ; u32 dma_reason[6U] ; u32 irq_mask ; struct b43legacy_noise_calculation noisecalc ; int mac_suspended ; struct tasklet_struct isr_tasklet ; struct delayed_work periodic_work ; unsigned int periodic_state ; struct work_struct restart_work ; u16 ktp ; u8 max_nr_keys ; struct b43legacy_key key[58U] ; struct b43legacy_firmware fw ; struct firmware const *fwp ; struct completion fw_load_complete ; struct list_head list ; struct b43legacy_dfsentry *dfsentry ; }; struct b43legacy_dmadesc_meta { struct sk_buff *skb ; dma_addr_t dmaaddr ; bool is_last_fragment ; }; enum b43legacy_dmatype { B43legacy_DMA_30BIT = 30, B43legacy_DMA_32BIT = 32 } ; struct b43legacy_dmaring { void *descbase ; struct b43legacy_dmadesc_meta *meta ; u8 *txhdr_cache ; dma_addr_t dmabase ; int nr_slots ; int used_slots ; int current_slot ; u32 frameoffset ; u16 rx_buffersize ; u16 mmio_base ; int index ; bool tx ; enum b43legacy_dmatype type ; bool stopped ; u8 queue_prio ; struct b43legacy_wldev *dev ; int max_used_slots ; unsigned long last_injected_overflow ; }; struct b43legacy_pio_txpacket { struct b43legacy_pioqueue *queue ; struct sk_buff *skb ; struct list_head list ; }; struct b43legacy_pioqueue { struct b43legacy_wldev *dev ; u16 mmio_base ; bool tx_suspended ; bool tx_frozen ; bool need_workarounds ; u16 tx_devq_size ; u16 tx_devq_used ; u8 tx_devq_packets ; struct list_head txfree ; unsigned int nr_txfree ; struct list_head txqueue ; struct list_head txrunning ; struct tasklet_struct txtask ; struct b43legacy_pio_txpacket tx_packets_cache[256U] ; }; union __anonunion____missing_field_name_312 { __le32 data ; __u8 raw[4U] ; }; struct b43legacy_plcp_hdr4 { union __anonunion____missing_field_name_312 __annonCompField89 ; }; struct b43legacy_txstatus { u16 cookie ; u16 seq ; u8 phy_stat ; u8 frame_count ; u8 rts_count ; u8 supp_reason ; u8 pm_indicated ; u8 intermediate ; u8 for_ampdu ; u8 acked ; }; struct ldv_struct_EMGentry_14 { int signal_pending ; }; struct ldv_struct_base_instance_5 { struct ssb_driver *arg0 ; int signal_pending ; }; struct ldv_struct_free_irq_8 { int arg0 ; int signal_pending ; }; struct ldv_struct_ieee80211_free_hw_10 { struct ieee80211_hw *arg0 ; int signal_pending ; }; struct ldv_struct_ieee80211_instance_1 { struct ieee80211_tx_control *arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_2 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_timer_instance_6 { struct timer_list *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___0; typedef struct ieee80211_hw *ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; enum hrtimer_restart; enum hrtimer_restart; enum hrtimer_restart; enum hrtimer_restart; struct __ssb_dev_wrapper { struct device dev ; struct ssb_device *sdev ; }; enum hrtimer_restart; struct ieee80211_rts { __le16 frame_control ; __le16 duration ; u8 ra[6U] ; u8 ta[6U] ; }; struct ieee80211_cts { __le16 frame_control ; __le16 duration ; u8 ra[6U] ; }; struct ieee80211_rx_status; struct ieee80211_rx_status { u64 mactime ; u32 device_timestamp ; u32 ampdu_reference ; u32 flag ; u32 vendor_radiotap_bitmap ; u16 vendor_radiotap_len ; u16 freq ; u8 rate_idx ; u8 vht_nss ; u8 rx_flags ; u8 band ; u8 antenna ; s8 signal ; u8 chains ; s8 chain_signal[4U] ; u8 ampdu_delimiter_crc ; u8 vendor_radiotap_align ; u8 vendor_radiotap_oui[3U] ; u8 vendor_radiotap_subns ; }; union __anonunion____missing_field_name_313 { __le32 data ; __u8 raw[6U] ; }; struct b43legacy_plcp_hdr6 { union __anonunion____missing_field_name_313 __annonCompField90 ; }; struct b43legacy_txhdr_fw3 { __le32 mac_ctl ; __le16 mac_frame_ctl ; __le16 tx_fes_time_norm ; __le16 phy_ctl ; __u8 iv[16U] ; __u8 tx_receiver[6U] ; __le16 tx_fes_time_fb ; struct b43legacy_plcp_hdr4 rts_plcp_fb ; __le16 rts_dur_fb ; struct b43legacy_plcp_hdr4 plcp_fb ; __le16 dur_fb ; u8 __p4dding36[2U] ; __le16 cookie ; __le16 unknown_scb_stuff ; struct b43legacy_plcp_hdr6 rts_plcp ; __u8 rts_frame[18U] ; struct b43legacy_plcp_hdr6 plcp ; }; struct b43legacy_hwtxstatus { u8 __p4dding118[4U] ; __le16 cookie ; u8 flags ; u8 count ; u8 __p4dding122[2U] ; __le16 seq ; u8 phy_stat ; u8 __p4dding125[1U] ; }; struct b43legacy_rxhdr_fw3 { __le16 frame_len ; u8 __p4dding132[2U] ; __le16 phy_status0 ; __u8 jssi ; __u8 sig_qual ; u8 __p4dding136[2U] ; __le16 phy_status3 ; __le16 mac_status ; __le16 mac_time ; __le16 channel ; }; enum hrtimer_restart; enum hrtimer_restart; enum b43legacy_led_behaviour { B43legacy_LED_OFF = 0, B43legacy_LED_ON = 1, B43legacy_LED_ACTIVITY = 2, B43legacy_LED_RADIO_ALL = 3, B43legacy_LED_RADIO_A = 4, B43legacy_LED_RADIO_B = 5, B43legacy_LED_MODE_BG = 6, B43legacy_LED_TRANSFER = 7, B43legacy_LED_APTRANSFER = 8, B43legacy_LED_WEIRD = 9, B43legacy_LED_ASSOC = 10, B43legacy_LED_INACTIVE = 11 } ; enum hrtimer_restart; struct b43legacy_debugfs_fops { ssize_t (*read)(struct b43legacy_wldev * , char * , size_t ) ; int (*write)(struct b43legacy_wldev * , char const * , size_t ) ; struct file_operations fops ; size_t file_struct_offset ; bool take_irqlock ; }; enum hrtimer_restart; struct b43legacy_dmadesc32 { __le32 control ; __le32 address ; }; enum hrtimer_restart; union txhdr_union { struct b43legacy_txhdr_fw3 txhdr_fw3 ; }; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; void ldv__builtin_va_end(__builtin_va_list ) ; long ldv__builtin_expect(long exp , long c ) ; void ldv__builtin_va_start(__builtin_va_list ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; extern struct module __this_module ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { { __list_add(new, head, head->next); } return; } } extern void list_del(struct list_head * ) ; __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } extern struct pv_irq_ops pv_irq_ops ; __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int variable_test_bit(long nr , unsigned long const volatile *addr ) { int oldbit ; { __asm__ volatile ("bt %2,%1\n\tsbb %0,%0": "=r" (oldbit): "m" (*((unsigned long *)addr)), "Ir" (nr)); return (oldbit); } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u32 __fswab32(__u32 val ) { int tmp ; { { tmp = __builtin_bswap32(val); } return ((__u32 )tmp); } } __inline static __u32 __swab32p(__u32 const *p ) { __u32 tmp ; { { tmp = __fswab32(*p); } return (tmp); } } __inline static __u32 __be32_to_cpup(__be32 const *p ) { __u32 tmp ; { { tmp = __swab32p(p); } return (tmp); } } extern int printk(char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; extern int snprintf(char * , size_t , char const * , ...) ; extern void __bad_percpu_size(void) ; extern struct task_struct *current_task ; __inline static struct task_struct *get_current(void) { struct task_struct *pfo_ret__ ; { { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& current_task)); goto ldv_2908; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2908; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2908; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2908; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_2908: ; return (pfo_ret__); } } extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/520b8de/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { { __asm__ volatile ("":); return (0); return (1); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __ldv_spin_lock(spinlock_t * ) ; static void ldv___ldv_spin_lock_64(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_73(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_75(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_77(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_80(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_82(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_85(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_87(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_89(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_93(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_95(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_97(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock_irq_lock_of_b43legacy_wl(void) ; void ldv_spin_unlock_irq_lock_of_b43legacy_wl(void) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; void ldv_check_final_state(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; int ldv_undef_int(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; extern void mutex_lock_nested(struct mutex * , unsigned int ) ; extern void mutex_unlock(struct mutex * ) ; __inline static int test_ti_thread_flag(struct thread_info *ti , int flag ) { int tmp___0 ; { { tmp___0 = variable_test_bit((long )flag, (unsigned long const volatile *)(& ti->flags)); } return (tmp___0); } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_67(spinlock_t *lock ) ; __inline static void spin_lock_irq(spinlock_t *lock ) { { { _raw_spin_lock_irq(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_irq_62(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_62(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_62(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_68(spinlock_t *lock ) ; __inline static void spin_unlock_irq(spinlock_t *lock ) { { { _raw_spin_unlock_irq(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_irq_63(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_63(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_63(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; __inline static void init_completion(struct completion *x ) { struct lock_class_key __key ; { { x->done = 0U; __init_waitqueue_head(& x->wait, "&x->wait", & __key); } return; } } extern void wait_for_completion(struct completion * ) ; extern void complete(struct completion * ) ; extern unsigned long msecs_to_jiffies(unsigned int const ) ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern unsigned long round_jiffies_relative(unsigned long ) ; extern void delayed_work_timer_fn(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool cancel_work_sync(struct work_struct * ) ; extern bool cancel_delayed_work_sync(struct delayed_work * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } extern void synchronize_irq(unsigned int ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; extern unsigned long msleep_interruptible(unsigned int ) ; __inline static int test_tsk_thread_flag(struct task_struct *tsk , int flag ) { int tmp ; { { tmp = test_ti_thread_flag((struct thread_info *)tsk->stack, flag); } return (tmp); } } __inline static int signal_pending(struct task_struct *p ) { int tmp ; long tmp___0 ; { { tmp = test_tsk_thread_flag(p, 2); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } return ((int )tmp___0); } } extern int net_ratelimit(void) ; extern void kfree(void const * ) ; extern void *__kmalloc(size_t , gfp_t ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { { tmp___2 = __kmalloc(size, flags); } return (tmp___2); } } __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern void consume_skb(struct sk_buff * ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static __u32 skb_queue_len(struct sk_buff_head const *list_ ) { { return ((__u32 )list_->qlen); } } __inline static void __skb_queue_head_init(struct sk_buff_head *list ) { struct sk_buff *tmp ; { tmp = (struct sk_buff *)list; list->next = tmp; list->prev = tmp; list->qlen = 0U; return; } } __inline static void skb_queue_head_init(struct sk_buff_head *list ) { struct lock_class_key __key ; { { spinlock_check(& list->lock); __raw_spin_lock_init(& list->lock.__annonCompField19.rlock, "&(&list->lock)->rlock", & __key); __skb_queue_head_init(list); } return; } } extern void skb_queue_head(struct sk_buff_head * , struct sk_buff * ) ; extern void skb_queue_tail(struct sk_buff_head * , struct sk_buff * ) ; extern struct sk_buff *skb_dequeue(struct sk_buff_head * ) ; extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { { __dev_kfree_skb_any(skb, 1); } return; } } extern void rtnl_lock(void) ; extern void rtnl_unlock(void) ; __inline static u32 get_unaligned_be32(void const *p ) { __u32 tmp ; { { tmp = __be32_to_cpup((__be32 const *)p); } return (tmp); } } __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } extern int request_firmware(struct firmware const ** , char const * , struct device * ) ; extern int request_firmware_nowait(struct module * , bool , char const * , struct device * , gfp_t , void * , void (*)(struct firmware const * , void * ) ) ; extern void release_firmware(struct firmware const * ) ; extern int hwrng_register(struct hwrng * ) ; extern void hwrng_unregister(struct hwrng * ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_92(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_91(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void __tasklet_schedule(struct tasklet_struct * ) ; __inline static void tasklet_schedule(struct tasklet_struct *t ) { int tmp ; { { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& t->state)); } if (tmp == 0) { { __tasklet_schedule(t); } } else { } return; } } extern void tasklet_kill(struct tasklet_struct * ) ; extern void tasklet_init(struct tasklet_struct * , void (*)(unsigned long ) , unsigned long ) ; __inline static void ssb_set_drvdata(struct ssb_device *dev , void *data ) { { dev->drvdata = data; return; } } __inline static void *ssb_get_drvdata(struct ssb_device *dev ) { { return (dev->drvdata); } } extern void ssb_set_devtypedata(struct ssb_device * , void * ) ; __inline static void *ssb_get_devtypedata(struct ssb_device *dev ) { { return (dev->devtypedata); } } extern int __ssb_driver_register(struct ssb_driver * , struct module * ) ; static int ldv___ssb_driver_register_101(struct ssb_driver *ldv_func_arg1 , struct module *ldv_func_arg2 ) ; extern void ssb_driver_unregister(struct ssb_driver * ) ; static void ldv_ssb_driver_unregister_102(struct ssb_driver *ldv_func_arg1 ) ; extern int ssb_pcicore_dev_irqvecs_enable(struct ssb_pcicore * , struct ssb_device * ) ; extern int ssb_device_is_enabled(struct ssb_device * ) ; extern void ssb_device_enable(struct ssb_device * , u32 ) ; extern void ssb_device_disable(struct ssb_device * , u32 ) ; __inline static u16 ssb_read16(struct ssb_device *dev , u16 offset ) { u16 tmp ; { { tmp = (*((dev->ops)->read16))(dev, (int )offset); } return (tmp); } } __inline static u32 ssb_read32(struct ssb_device *dev , u16 offset ) { u32 tmp ; { { tmp = (*((dev->ops)->read32))(dev, (int )offset); } return (tmp); } } __inline static void ssb_write16(struct ssb_device *dev , u16 offset , u16 value ) { { { (*((dev->ops)->write16))(dev, (int )offset, (int )value); } return; } } __inline static void ssb_write32(struct ssb_device *dev , u16 offset , u32 value ) { { { (*((dev->ops)->write32))(dev, (int )offset, value); } return; } } extern int ssb_bus_may_powerdown(struct ssb_bus * ) ; extern int ssb_bus_powerup(struct ssb_bus * , bool ) ; __inline static void set_wiphy_dev(struct wiphy *wiphy , struct device *dev ) { { wiphy->dev.parent = dev; return; } } __inline static char const *wiphy_name(struct wiphy const *wiphy ) { char const *tmp ; { { tmp = dev_name(& wiphy->dev); } return (tmp); } } extern struct ieee80211_rate *ieee80211_get_response_rate(struct ieee80211_supported_band * , u32 , int ) ; extern void wiphy_rfkill_start_polling(struct wiphy * ) ; __inline static struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb ) { { return ((struct ieee80211_tx_info *)(& skb->cb)); } } __inline static void SET_IEEE80211_DEV(struct ieee80211_hw *hw , struct device *dev ) { { { set_wiphy_dev(hw->wiphy, dev); } return; } } __inline static void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw , u8 *addr ) { { { memcpy((void *)(& (hw->wiphy)->perm_addr), (void const *)addr, 6UL); } return; } } __inline static struct ieee80211_rate *ieee80211_get_tx_rate(struct ieee80211_hw const *hw , struct ieee80211_tx_info const *c ) { bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; { { __ret_warn_once = (int )((signed char )c->__annonCompField84.control.__annonCompField82.__annonCompField81.rates[0].idx) < 0; tmp___1 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___1 != 0L) { { __ret_warn_on = ! __warned; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/net/mac80211.h", 1763); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { __warned = 1; } else { } } else { } { tmp___2 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___2 != 0L) { return ((struct ieee80211_rate *)0); } else { } return (((hw->wiphy)->bands[(int )c->band])->bitrates + (unsigned long )c->__annonCompField84.control.__annonCompField82.__annonCompField81.rates[0].idx); } } extern struct ieee80211_hw *ieee80211_alloc_hw(size_t , struct ieee80211_ops const * ) ; static struct ieee80211_hw *ldv_ieee80211_alloc_hw_100(size_t ldv_func_arg1 , struct ieee80211_ops const *ldv_func_arg2 ) ; extern int ieee80211_register_hw(struct ieee80211_hw * ) ; extern void ieee80211_unregister_hw(struct ieee80211_hw * ) ; extern void ieee80211_free_hw(struct ieee80211_hw * ) ; static void ldv_ieee80211_free_hw_99(struct ieee80211_hw *ldv_func_arg1 ) ; extern struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw * , struct ieee80211_vif * , u16 * , u16 * ) ; __inline static struct sk_buff *ieee80211_beacon_get(struct ieee80211_hw *hw , struct ieee80211_vif *vif ) { struct sk_buff *tmp ; { { tmp = ieee80211_beacon_get_tim(hw, vif, (u16 *)0U, (u16 *)0U); } return (tmp); } } extern __le16 ieee80211_generic_frame_duration(struct ieee80211_hw * , struct ieee80211_vif * , enum ieee80211_band , size_t , struct ieee80211_rate * ) ; extern void ieee80211_stop_queue(struct ieee80211_hw * , int ) ; extern void ieee80211_wake_queues(struct ieee80211_hw * ) ; extern void ieee80211_queue_work(struct ieee80211_hw * , struct work_struct * ) ; extern void ieee80211_queue_delayed_work(struct ieee80211_hw * , struct delayed_work * , unsigned long ) ; int b43legacy_debug(struct b43legacy_wldev *dev , enum b43legacy_dyndbg feature ) ; void b43legacy_debugfs_init(void) ; void b43legacy_debugfs_exit(void) ; void b43legacy_debugfs_add_device(struct b43legacy_wldev *dev ) ; void b43legacy_debugfs_remove_device(struct b43legacy_wldev *dev ) ; void b43legacy_leds_init(struct b43legacy_wldev *dev ) ; void b43legacy_leds_exit(struct b43legacy_wldev *dev ) ; void b43legacy_rfkill_poll(struct ieee80211_hw *hw ) ; int b43legacy_phy_init_tssi2dbm_table(struct b43legacy_wldev *dev ) ; int b43legacy_phy_init(struct b43legacy_wldev *dev ) ; void b43legacy_phy_set_antenna_diversity(struct b43legacy_wldev *dev ) ; void b43legacy_phy_calibrate(struct b43legacy_wldev *dev ) ; void b43legacy_phy_lo_g_measure(struct b43legacy_wldev *dev ) ; void b43legacy_phy_xmitpower(struct b43legacy_wldev *dev ) ; void b43legacy_phy_lo_mark_all_unused(struct b43legacy_wldev *dev ) ; void b43legacy_power_saving_ctl_bits(struct b43legacy_wldev *dev , int bit25 , int bit26 ) ; __inline static struct b43legacy_wl *hw_to_b43legacy_wl(struct ieee80211_hw *hw ) { { return ((struct b43legacy_wl *)hw->priv); } } __inline static int b43legacy_using_pio(struct b43legacy_wldev *dev ) { { return ((int )dev->__using_pio); } } __inline static int b43legacy_is_mode(struct b43legacy_wl *wl , int type ) { { return ((int )wl->operating && wl->if_type == type); } } __inline static u16 b43legacy_read16(struct b43legacy_wldev *dev , u16 offset ) { u16 tmp ; { { tmp = ssb_read16(dev->dev, (int )offset); } return (tmp); } } __inline static void b43legacy_write16(struct b43legacy_wldev *dev , u16 offset , u16 value ) { { { ssb_write16(dev->dev, (int )offset, (int )value); } return; } } __inline static u32 b43legacy_read32(struct b43legacy_wldev *dev , u16 offset ) { u32 tmp ; { { tmp = ssb_read32(dev->dev, (int )offset); } return (tmp); } } __inline static void b43legacy_write32(struct b43legacy_wldev *dev , u16 offset , u32 value ) { { { ssb_write32(dev->dev, (int )offset, value); } return; } } void b43legacyinfo(struct b43legacy_wl *wl , char const *fmt , ...) ; void b43legacyerr(struct b43legacy_wl *wl , char const *fmt , ...) ; void b43legacywarn(struct b43legacy_wl *wl , char const *fmt , ...) ; void b43legacydbg(struct b43legacy_wl *wl , char const *fmt , ...) ; __inline static int b43legacy_is_cck_rate(int rate ) { { return ((rate == 2 || rate == 4) || (rate == 11 || rate == 22)); } } void b43legacy_tsf_read(struct b43legacy_wldev *dev , u64 *tsf ) ; void b43legacy_tsf_write(struct b43legacy_wldev *dev , u64 tsf ) ; u32 b43legacy_shm_read32(struct b43legacy_wldev *dev , u16 routing , u16 offset ) ; u16 b43legacy_shm_read16(struct b43legacy_wldev *dev , u16 routing , u16 offset ) ; void b43legacy_shm_write32(struct b43legacy_wldev *dev , u16 routing , u16 offset , u32 value ) ; void b43legacy_shm_write16(struct b43legacy_wldev *dev , u16 routing , u16 offset , u16 value ) ; u32 b43legacy_hf_read(struct b43legacy_wldev *dev ) ; void b43legacy_hf_write(struct b43legacy_wldev *dev , u32 value ) ; void b43legacy_dummy_transmission(struct b43legacy_wldev *dev ) ; void b43legacy_wireless_core_reset(struct b43legacy_wldev *dev , u32 flags ) ; void b43legacy_mac_suspend(struct b43legacy_wldev *dev ) ; void b43legacy_mac_enable(struct b43legacy_wldev *dev ) ; void b43legacy_controller_restart(struct b43legacy_wldev *dev , char const *reason ) ; int b43legacy_dma_init(struct b43legacy_wldev *dev ) ; void b43legacy_dma_free(struct b43legacy_wldev *dev ) ; int b43legacy_dma_tx(struct b43legacy_wldev *dev , struct sk_buff *skb ) ; void b43legacy_dma_rx(struct b43legacy_dmaring *ring ) ; int b43legacy_pio_init(struct b43legacy_wldev *dev ) ; void b43legacy_pio_free(struct b43legacy_wldev *dev ) ; int b43legacy_pio_tx(struct b43legacy_wldev *dev , struct sk_buff *skb ) ; void b43legacy_pio_rx(struct b43legacy_pioqueue *queue ) ; u8 b43legacy_plcp_get_ratecode_cck(u8 const bitrate ) ; u8 b43legacy_plcp_get_ratecode_ofdm(u8 const bitrate ) ; void b43legacy_generate_plcp_hdr(struct b43legacy_plcp_hdr4 *plcp , u16 const octets , u8 const bitrate ) ; void b43legacy_handle_txstatus(struct b43legacy_wldev *dev , struct b43legacy_txstatus const *status ) ; void b43legacy_qos_init(struct b43legacy_wldev *dev ) ; void b43legacy_radio_write16(struct b43legacy_wldev *dev , u16 offset , u16 val ) ; void b43legacy_radio_turn_on(struct b43legacy_wldev *dev ) ; void b43legacy_radio_turn_off(struct b43legacy_wldev *dev , bool force ) ; int b43legacy_radio_selectchannel(struct b43legacy_wldev *dev , u8 channel , int synthetic_pu_workaround ) ; u16 b43legacy_default_baseband_attenuation(struct b43legacy_wldev *dev ) ; u16 b43legacy_default_radio_attenuation(struct b43legacy_wldev *dev ) ; u16 b43legacy_default_txctl1(struct b43legacy_wldev *dev ) ; int b43legacy_radio_set_interference_mitigation(struct b43legacy_wldev *dev , int mode ) ; void b43legacy_calc_nrssi_slope(struct b43legacy_wldev *dev ) ; static int modparam_pio ; static int modparam_bad_frames_preempt ; static char modparam_fwpostfix[16U] ; static struct ssb_device_id const b43legacy_ssb_tbl[3U] = { {16963U, 2066U, 2U, (unsigned char)0}, {16963U, 2066U, 4U, (unsigned char)0}, {0U, (unsigned short)0, (unsigned char)0, (unsigned char)0}}; struct ssb_device_id const __mod_ssb_device_table ; static struct ieee80211_rate __b43legacy_ratetable[12U] = { {0U, 10U, 2U, (unsigned short)0}, {1U, 20U, 4U, (unsigned short)0}, {1U, 55U, 11U, (unsigned short)0}, {1U, 110U, 22U, (unsigned short)0}, {0U, 60U, 12U, (unsigned short)0}, {0U, 90U, 18U, (unsigned short)0}, {0U, 120U, 24U, (unsigned short)0}, {0U, 180U, 36U, (unsigned short)0}, {0U, 240U, 48U, (unsigned short)0}, {0U, 360U, 72U, (unsigned short)0}, {0U, 480U, 96U, (unsigned short)0}, {0U, 540U, 108U, (unsigned short)0}}; static struct ieee80211_channel b43legacy_bg_chantable[14U] = { {0, 2412U, 1U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2417U, 2U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2422U, 3U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2427U, 4U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2432U, 5U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2437U, 6U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2442U, 7U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2447U, 8U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2452U, 9U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2457U, 10U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2462U, 11U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2467U, 12U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2472U, 13U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2484U, 14U, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}}; static struct ieee80211_supported_band b43legacy_band_2GHz_BPHY = {(struct ieee80211_channel *)(& b43legacy_bg_chantable), (struct ieee80211_rate *)(& __b43legacy_ratetable), 0, 14, 4, {(unsigned short)0, (_Bool)0, (unsigned char)0, (unsigned char)0, {{(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, (unsigned short)0, (unsigned char)0, {(unsigned char)0, (unsigned char)0, (unsigned char)0}}}, {(_Bool)0, 0U, {(unsigned short)0, (unsigned short)0, (unsigned short)0, (unsigned short)0}}}; static struct ieee80211_supported_band b43legacy_band_2GHz_GPHY = {(struct ieee80211_channel *)(& b43legacy_bg_chantable), (struct ieee80211_rate *)(& __b43legacy_ratetable), 0, 14, 12, {(unsigned short)0, (_Bool)0, (unsigned char)0, (unsigned char)0, {{(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, (unsigned short)0, (unsigned char)0, {(unsigned char)0, (unsigned char)0, (unsigned char)0}}}, {(_Bool)0, 0U, {(unsigned short)0, (unsigned short)0, (unsigned short)0, (unsigned short)0}}}; static void b43legacy_wireless_core_exit(struct b43legacy_wldev *dev ) ; static int b43legacy_wireless_core_init(struct b43legacy_wldev *dev ) ; static void b43legacy_wireless_core_stop(struct b43legacy_wldev *dev ) ; static int b43legacy_wireless_core_start(struct b43legacy_wldev *dev ) ; static int b43legacy_ratelimit(struct b43legacy_wl *wl ) { int tmp ; int tmp___0 ; { if ((unsigned long )wl == (unsigned long )((struct b43legacy_wl *)0) || (unsigned long )wl->current_dev == (unsigned long )((struct b43legacy_wldev *)0)) { return (1); } else { } { tmp = atomic_read((atomic_t const *)(& (wl->current_dev)->__init_status)); } if (tmp <= 1) { return (1); } else { } { tmp___0 = net_ratelimit(); } return (tmp___0); } } void b43legacyinfo(struct b43legacy_wl *wl , char const *fmt , ...) { struct va_format vaf ; va_list args ; int tmp ; char const *tmp___0 ; char const *tmp___1 ; { { tmp = b43legacy_ratelimit(wl); } if (tmp == 0) { return; } else { } { ldv__builtin_va_start((__va_list_tag *)(& args)); vaf.fmt = fmt; vaf.va = & args; } if ((unsigned long )wl != (unsigned long )((struct b43legacy_wl *)0) && (unsigned long )wl->hw != (unsigned long )((struct ieee80211_hw *)0)) { { tmp___0 = wiphy_name((struct wiphy const *)(wl->hw)->wiphy); tmp___1 = tmp___0; } } else { tmp___1 = "wlan"; } { printk("\016b43legacy-%s: %pV", tmp___1, & vaf); ldv__builtin_va_end((__va_list_tag *)(& args)); } return; } } void b43legacyerr(struct b43legacy_wl *wl , char const *fmt , ...) { struct va_format vaf ; va_list args ; int tmp ; char const *tmp___0 ; char const *tmp___1 ; { { tmp = b43legacy_ratelimit(wl); } if (tmp == 0) { return; } else { } { ldv__builtin_va_start((__va_list_tag *)(& args)); vaf.fmt = fmt; vaf.va = & args; } if ((unsigned long )wl != (unsigned long )((struct b43legacy_wl *)0) && (unsigned long )wl->hw != (unsigned long )((struct ieee80211_hw *)0)) { { tmp___0 = wiphy_name((struct wiphy const *)(wl->hw)->wiphy); tmp___1 = tmp___0; } } else { tmp___1 = "wlan"; } { printk("\vb43legacy-%s ERROR: %pV", tmp___1, & vaf); ldv__builtin_va_end((__va_list_tag *)(& args)); } return; } } void b43legacywarn(struct b43legacy_wl *wl , char const *fmt , ...) { struct va_format vaf ; va_list args ; int tmp ; char const *tmp___0 ; char const *tmp___1 ; { { tmp = b43legacy_ratelimit(wl); } if (tmp == 0) { return; } else { } { ldv__builtin_va_start((__va_list_tag *)(& args)); vaf.fmt = fmt; vaf.va = & args; } if ((unsigned long )wl != (unsigned long )((struct b43legacy_wl *)0) && (unsigned long )wl->hw != (unsigned long )((struct ieee80211_hw *)0)) { { tmp___0 = wiphy_name((struct wiphy const *)(wl->hw)->wiphy); tmp___1 = tmp___0; } } else { tmp___1 = "wlan"; } { printk("\fb43legacy-%s warning: %pV", tmp___1, & vaf); ldv__builtin_va_end((__va_list_tag *)(& args)); } return; } } void b43legacydbg(struct b43legacy_wl *wl , char const *fmt , ...) { struct va_format vaf ; va_list args ; char const *tmp ; char const *tmp___0 ; { { ldv__builtin_va_start((__va_list_tag *)(& args)); vaf.fmt = fmt; vaf.va = & args; } if ((unsigned long )wl != (unsigned long )((struct b43legacy_wl *)0) && (unsigned long )wl->hw != (unsigned long )((struct ieee80211_hw *)0)) { { tmp = wiphy_name((struct wiphy const *)(wl->hw)->wiphy); tmp___0 = tmp; } } else { tmp___0 = "wlan"; } { printk("\017b43legacy-%s debug: %pV", tmp___0, & vaf); ldv__builtin_va_end((__va_list_tag *)(& args)); } return; } } static void b43legacy_ram_write(struct b43legacy_wldev *dev , u16 offset , u32 val ) { u32 status ; int __ret_warn_on ; long tmp ; __u32 tmp___0 ; { { __ret_warn_on = ((unsigned int )offset & 3U) != 0U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 260); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); status = b43legacy_read32(dev, 288); } if ((status & 65536U) != 0U) { { tmp___0 = __fswab32(val); val = tmp___0; } } else { } { b43legacy_write32(dev, 304, (u32 )offset); __asm__ volatile ("": : : "memory"); b43legacy_write32(dev, 308, val); } return; } } __inline static void b43legacy_shm_control_word(struct b43legacy_wldev *dev , u16 routing , u16 offset ) { u32 control ; { { control = (u32 )routing; control = control << 16; control = control | (u32 )offset; b43legacy_write32(dev, 352, control); } return; } } u32 b43legacy_shm_read32(struct b43legacy_wldev *dev , u16 routing , u16 offset ) { u32 ret ; int __ret_warn_on ; long tmp ; u16 tmp___0 ; u16 tmp___1 ; { if ((unsigned int )routing == 1U) { { __ret_warn_on = (int )offset & 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 291); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (((int )offset & 3) != 0) { { b43legacy_shm_control_word(dev, (int )routing, (int )offset >> 2); tmp___0 = b43legacy_read16(dev, 358); ret = (u32 )tmp___0; ret = ret << 16; b43legacy_shm_control_word(dev, (int )routing, (int )((unsigned int )((u16 )((int )offset >> 2)) + 1U)); tmp___1 = b43legacy_read16(dev, 356); ret = ret | (u32 )tmp___1; } return (ret); } else { } offset = (u16 )((int )offset >> 2); } else { } { b43legacy_shm_control_word(dev, (int )routing, (int )offset); ret = b43legacy_read32(dev, 356); } return (ret); } } u16 b43legacy_shm_read16(struct b43legacy_wldev *dev , u16 routing , u16 offset ) { u16 ret ; int __ret_warn_on ; long tmp ; { if ((unsigned int )routing == 1U) { { __ret_warn_on = (int )offset & 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 318); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (((int )offset & 3) != 0) { { b43legacy_shm_control_word(dev, (int )routing, (int )offset >> 2); ret = b43legacy_read16(dev, 358); } return (ret); } else { } offset = (u16 )((int )offset >> 2); } else { } { b43legacy_shm_control_word(dev, (int )routing, (int )offset); ret = b43legacy_read16(dev, 356); } return (ret); } } void b43legacy_shm_write32(struct b43legacy_wldev *dev , u16 routing , u16 offset , u32 value ) { int __ret_warn_on ; long tmp ; { if ((unsigned int )routing == 1U) { { __ret_warn_on = (int )offset & 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 340); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (((int )offset & 3) != 0) { { b43legacy_shm_control_word(dev, (int )routing, (int )offset >> 2); __asm__ volatile ("": : : "memory"); b43legacy_write16(dev, 358, (int )((u16 )(value >> 16))); __asm__ volatile ("": : : "memory"); b43legacy_shm_control_word(dev, (int )routing, (int )((unsigned int )((u16 )((int )offset >> 2)) + 1U)); __asm__ volatile ("": : : "memory"); b43legacy_write16(dev, 356, (int )((u16 )value)); } return; } else { } offset = (u16 )((int )offset >> 2); } else { } { b43legacy_shm_control_word(dev, (int )routing, (int )offset); __asm__ volatile ("": : : "memory"); b43legacy_write32(dev, 356, value); } return; } } void b43legacy_shm_write16(struct b43legacy_wldev *dev , u16 routing , u16 offset , u16 value ) { int __ret_warn_on ; long tmp ; { if ((unsigned int )routing == 1U) { { __ret_warn_on = (int )offset & 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 367); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (((int )offset & 3) != 0) { { b43legacy_shm_control_word(dev, (int )routing, (int )offset >> 2); __asm__ volatile ("": : : "memory"); b43legacy_write16(dev, 358, (int )value); } return; } else { } offset = (u16 )((int )offset >> 2); } else { } { b43legacy_shm_control_word(dev, (int )routing, (int )offset); __asm__ volatile ("": : : "memory"); b43legacy_write16(dev, 356, (int )value); } return; } } u32 b43legacy_hf_read(struct b43legacy_wldev *dev ) { u32 ret ; u16 tmp ; u16 tmp___0 ; { { tmp = b43legacy_shm_read16(dev, 1, 96); ret = (u32 )tmp; ret = ret << 16; tmp___0 = b43legacy_shm_read16(dev, 1, 94); ret = ret | (u32 )tmp___0; } return (ret); } } void b43legacy_hf_write(struct b43legacy_wldev *dev , u32 value ) { { { b43legacy_shm_write16(dev, 1, 94, (int )((u16 )value)); b43legacy_shm_write16(dev, 1, 96, (int )((u16 )(value >> 16))); } return; } } void b43legacy_tsf_read(struct b43legacy_wldev *dev , u64 *tsf ) { u32 low ; u32 high ; u32 high2 ; long tmp ; u64 tmp___0 ; u16 v0 ; u16 v1 ; u16 v2 ; u16 v3 ; u16 test1 ; u16 test2 ; u16 test3 ; { if ((unsigned int )(dev->dev)->id.revision > 2U) { ldv_52770: { high = b43legacy_read32(dev, 388); low = b43legacy_read32(dev, 384); high2 = b43legacy_read32(dev, 388); tmp = ldv__builtin_expect(high != high2, 0L); } if (tmp != 0L) { goto ldv_52770; } else { } *tsf = (u64 )high; *tsf = *tsf << 32; *tsf = *tsf | (u64 )low; } else { ldv_52780: { v3 = b43legacy_read16(dev, 1592); v2 = b43legacy_read16(dev, 1590); v1 = b43legacy_read16(dev, 1588); v0 = b43legacy_read16(dev, 1586); test3 = b43legacy_read16(dev, 1592); test2 = b43legacy_read16(dev, 1590); test1 = b43legacy_read16(dev, 1588); } if (((int )v3 != (int )test3 || (int )v2 != (int )test2) || (int )v1 != (int )test1) { goto ldv_52780; } else { } *tsf = (u64 )v3; *tsf = *tsf << 48; tmp___0 = (u64 )v2; tmp___0 = tmp___0 << 32; *tsf = *tsf | tmp___0; tmp___0 = (u64 )v1; tmp___0 = tmp___0 << 16; *tsf = *tsf | tmp___0; *tsf = *tsf | (u64 )v0; } return; } } static void b43legacy_time_lock(struct b43legacy_wldev *dev ) { u32 status ; { { status = b43legacy_read32(dev, 288); status = status | 268435456U; b43legacy_write32(dev, 288, status); __asm__ volatile ("": : : "memory"); } return; } } static void b43legacy_time_unlock(struct b43legacy_wldev *dev ) { u32 status ; { { status = b43legacy_read32(dev, 288); status = status & 4026531839U; b43legacy_write32(dev, 288, status); } return; } } static void b43legacy_tsf_write_locked(struct b43legacy_wldev *dev , u64 tsf ) { u32 lo ; u32 hi ; u16 v0 ; u16 v1 ; u16 v2 ; u16 v3 ; { if ((unsigned int )(dev->dev)->id.revision > 2U) { { lo = (u32 )tsf; hi = (u32 )(tsf >> 32); b43legacy_write32(dev, 384, 0U); __asm__ volatile ("": : : "memory"); b43legacy_write32(dev, 388, hi); __asm__ volatile ("": : : "memory"); b43legacy_write32(dev, 384, lo); } } else { { v0 = (u16 )tsf; v1 = (u16 )((tsf & 4294901760ULL) >> 16); v2 = (u16 )((tsf & 281470681743360ULL) >> 32); v3 = (u16 )(tsf >> 48); b43legacy_write16(dev, 1586, 0); __asm__ volatile ("": : : "memory"); b43legacy_write16(dev, 1592, (int )v3); __asm__ volatile ("": : : "memory"); b43legacy_write16(dev, 1590, (int )v2); __asm__ volatile ("": : : "memory"); b43legacy_write16(dev, 1588, (int )v1); __asm__ volatile ("": : : "memory"); b43legacy_write16(dev, 1586, (int )v0); } } return; } } void b43legacy_tsf_write(struct b43legacy_wldev *dev , u64 tsf ) { { { b43legacy_time_lock(dev); b43legacy_tsf_write_locked(dev, tsf); b43legacy_time_unlock(dev); } return; } } static void b43legacy_macfilter_set(struct b43legacy_wldev *dev , u16 offset , u8 const *mac ) { u8 zero_addr[6U] ; unsigned int tmp ; u16 data ; { zero_addr[0] = 0U; tmp = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 6U) { goto while_break; } else { } zero_addr[tmp] = (unsigned char)0; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } if ((unsigned long )mac == (unsigned long )((u8 const *)0U)) { mac = (u8 const *)(& zero_addr); } else { } { offset = (u16 )((unsigned int )offset | 32U); b43legacy_write16(dev, 1056, (int )offset); data = (u16 )*mac; data = (u16 )((int )((short )data) | (int )((short )((int )*(mac + 1UL) << 8))); b43legacy_write16(dev, 1058, (int )data); data = (u16 )*(mac + 2UL); data = (u16 )((int )((short )data) | (int )((short )((int )*(mac + 3UL) << 8))); b43legacy_write16(dev, 1058, (int )data); data = (u16 )*(mac + 4UL); data = (u16 )((int )((short )data) | (int )((short )((int )*(mac + 5UL) << 8))); b43legacy_write16(dev, 1058, (int )data); } return; } } static void b43legacy_write_mac_bssid_templates(struct b43legacy_wldev *dev ) { u8 zero_addr[6U] ; unsigned int tmp ; u8 const *mac ; u8 const *bssid ; u8 mac_bssid[12U] ; int i ; u32 tmp___0 ; { zero_addr[0] = 0U; tmp = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 6U) { goto while_break; } else { } zero_addr[tmp] = (unsigned char)0; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } mac = (u8 const *)(& (dev->wl)->mac_addr); bssid = (u8 const *)(& (dev->wl)->bssid); if ((unsigned long )bssid == (unsigned long )((u8 const *)0U)) { bssid = (u8 const *)(& zero_addr); } else { } if ((unsigned long )mac == (unsigned long )((u8 const *)0U)) { mac = (u8 const *)(& zero_addr); } else { } { b43legacy_macfilter_set(dev, 3, bssid); memcpy((void *)(& mac_bssid), (void const *)mac, 6UL); memcpy((void *)(& mac_bssid) + 6U, (void const *)bssid, 6UL); i = 0; } goto ldv_52823; ldv_52822: { tmp___0 = (unsigned int )mac_bssid[i]; tmp___0 = tmp___0 | ((unsigned int )mac_bssid[i + 1] << 8); tmp___0 = tmp___0 | ((unsigned int )mac_bssid[i + 2] << 16); tmp___0 = tmp___0 | ((unsigned int )mac_bssid[i + 3] << 24); b43legacy_ram_write(dev, (int )((unsigned int )((u16 )i) + 32U), tmp___0); b43legacy_ram_write(dev, (int )((unsigned int )((u16 )i) + 120U), tmp___0); b43legacy_ram_write(dev, (int )((unsigned int )((u16 )i) + 1144U), tmp___0); i = (int )((unsigned int )i + 4U); } ldv_52823: ; if ((unsigned int )i <= 11U) { goto ldv_52822; } else { } return; } } static void b43legacy_upload_card_macaddress(struct b43legacy_wldev *dev ) { { { b43legacy_write_mac_bssid_templates(dev); b43legacy_macfilter_set(dev, 0, (u8 const *)(& (dev->wl)->mac_addr)); } return; } } static void b43legacy_set_slot_time(struct b43legacy_wldev *dev , u16 slot_time ) { { if ((unsigned int )dev->phy.type != 2U) { return; } else { } { b43legacy_write16(dev, 1668, (int )((unsigned int )slot_time + 510U)); b43legacy_shm_write16(dev, 1, 16, (int )slot_time); } return; } } static void b43legacy_short_slot_timing_enable(struct b43legacy_wldev *dev ) { { { b43legacy_set_slot_time(dev, 9); } return; } } static void b43legacy_short_slot_timing_disable(struct b43legacy_wldev *dev ) { { { b43legacy_set_slot_time(dev, 20); } return; } } static void b43legacy_synchronize_irq(struct b43legacy_wldev *dev ) { { { synchronize_irq((dev->dev)->irq); tasklet_kill(& dev->isr_tasklet); } return; } } void b43legacy_dummy_transmission(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; unsigned int i ; unsigned int max_loop ; u16 value ; u32 buffer[5U] ; { phy = & dev->phy; buffer[0] = 0U; buffer[1] = 13893632U; buffer[2] = 0U; buffer[3] = 16777216U; buffer[4] = 0U; { if ((int )phy->type == 1) { goto case_1; } else { } if ((int )phy->type == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ max_loop = 250U; buffer[0] = 754798U; goto ldv_52851; switch_default: /* CIL Label */ { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/main.c"), "i" (645), "i" (12UL)); __builtin_unreachable(); } return; switch_break: /* CIL Label */ ; } ldv_52851: i = 0U; goto ldv_52854; ldv_52853: { b43legacy_ram_write(dev, (int )((unsigned int )((u16 )i) * 4U), buffer[i]); i = i + 1U; } ldv_52854: ; if (i <= 4U) { goto ldv_52853; } else { } { b43legacy_read32(dev, 288); b43legacy_write16(dev, 1384, 0); b43legacy_write16(dev, 1984, 0); b43legacy_write16(dev, 1292, 0); b43legacy_write16(dev, 1288, 0); b43legacy_write16(dev, 1290, 0); b43legacy_write16(dev, 1356, 0); b43legacy_write16(dev, 1386, 20); b43legacy_write16(dev, 1384, 2086); b43legacy_write16(dev, 1280, 0); b43legacy_write16(dev, 1282, 48); } if ((unsigned int )phy->radio_ver == 8272U && (unsigned int )phy->radio_rev <= 5U) { { b43legacy_radio_write16(dev, 81, 23); } } else { } i = 0U; goto ldv_52858; ldv_52857: { value = b43legacy_read16(dev, 1294); } if (((int )value & 128) != 0) { goto ldv_52856; } else { } { __const_udelay(42950UL); i = i + 1U; } ldv_52858: ; if (i < max_loop) { goto ldv_52857; } else { } ldv_52856: i = 0U; goto ldv_52861; ldv_52860: { value = b43legacy_read16(dev, 1294); } if (((int )value & 1024) != 0) { goto ldv_52859; } else { } { __const_udelay(42950UL); i = i + 1U; } ldv_52861: ; if (i <= 9U) { goto ldv_52860; } else { } ldv_52859: i = 0U; goto ldv_52864; ldv_52863: { value = b43legacy_read16(dev, 1680); } if (((int )value & 256) == 0) { goto ldv_52862; } else { } { __const_udelay(42950UL); i = i + 1U; } ldv_52864: ; if (i <= 9U) { goto ldv_52863; } else { } ldv_52862: ; if ((unsigned int )phy->radio_ver == 8272U && (unsigned int )phy->radio_rev <= 5U) { { b43legacy_radio_write16(dev, 81, 55); } } else { } return; } } static void b43legacy_switch_analog(struct b43legacy_wldev *dev , int on ) { { { b43legacy_write16(dev, 998, on != 0 ? 0 : 244); } return; } } void b43legacy_wireless_core_reset(struct b43legacy_wldev *dev , u32 flags ) { u32 tmslow ; u32 macctl ; { { flags = flags | 262144U; flags = flags | 524288U; ssb_device_enable(dev->dev, flags); msleep(2U); tmslow = ssb_read32(dev->dev, 3992); tmslow = tmslow | 131072U; tmslow = tmslow & 4294443007U; ssb_write32(dev->dev, 3992, tmslow); ssb_read32(dev->dev, 3992); msleep(1U); tmslow = tmslow & 4294836223U; ssb_write32(dev->dev, 3992, tmslow); ssb_read32(dev->dev, 3992); msleep(1U); b43legacy_switch_analog(dev, 1); macctl = b43legacy_read32(dev, 288); macctl = macctl & 2147483647U; } if ((flags & 536870912U) != 0U) { macctl = macctl | 2147483648U; dev->phy.gmode = 1; } else { dev->phy.gmode = 0; } { macctl = macctl | 1024U; b43legacy_write32(dev, 288, macctl); } return; } } static void handle_irq_transmit_status(struct b43legacy_wldev *dev ) { u32 v0 ; u32 v1 ; u16 tmp ; struct b43legacy_txstatus stat ; { ldv_52883: { v0 = b43legacy_read32(dev, 368); } if ((v0 & 1U) == 0U) { goto ldv_52882; } else { } { v1 = b43legacy_read32(dev, 372); stat.cookie = (u16 )(v0 >> 16); stat.seq = (u16 )v1; stat.phy_stat = (u8 )((v1 & 16711680U) >> 16); tmp = (u16 )v0; stat.frame_count = (u8 )((int )tmp >> 12); stat.rts_count = (u8 )(((int )tmp & 3840) >> 8); stat.supp_reason = (u8 )(((int )tmp & 28) >> 2); stat.pm_indicated = ((int )tmp & 128) != 0; stat.intermediate = ((int )tmp & 64) != 0; stat.for_ampdu = ((int )tmp & 32) != 0; stat.acked = ((int )tmp & 2) != 0; b43legacy_handle_txstatus(dev, (struct b43legacy_txstatus const *)(& stat)); } goto ldv_52883; ldv_52882: ; return; } } static void drain_txstatus_queue(struct b43legacy_wldev *dev ) { u32 dummy ; { if ((unsigned int )(dev->dev)->id.revision <= 4U) { return; } else { } ldv_52889: { dummy = b43legacy_read32(dev, 368); } if ((dummy & 1U) == 0U) { goto ldv_52888; } else { } { dummy = b43legacy_read32(dev, 372); } goto ldv_52889; ldv_52888: ; return; } } static u32 b43legacy_jssi_read(struct b43legacy_wldev *dev ) { u32 val ; u16 tmp ; u16 tmp___0 ; { { val = 0U; tmp = b43legacy_shm_read16(dev, 1, 1034); val = (u32 )tmp; val = val << 16; tmp___0 = b43legacy_shm_read16(dev, 1, 1032); val = val | (u32 )tmp___0; } return (val); } } static void b43legacy_jssi_write(struct b43legacy_wldev *dev , u32 jssi ) { { { b43legacy_shm_write16(dev, 1, 1032, (int )((u16 )jssi)); b43legacy_shm_write16(dev, 1, 1034, (int )((u16 )(jssi >> 16))); } return; } } static void b43legacy_generate_noise_sample(struct b43legacy_wldev *dev ) { u32 tmp ; int __ret_warn_on ; long tmp___0 ; { { b43legacy_jssi_write(dev, 2139062143U); tmp = b43legacy_read32(dev, 292); b43legacy_write32(dev, 292, tmp | 16U); __ret_warn_on = (int )dev->noisecalc.channel_at_start != (int )dev->phy.channel; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 804); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } return; } } static void b43legacy_calculate_link_quality(struct b43legacy_wldev *dev ) { { if ((int )dev->noisecalc.calculation_running) { return; } else { } { dev->noisecalc.channel_at_start = dev->phy.channel; dev->noisecalc.calculation_running = 1; dev->noisecalc.nr_samples = 0U; b43legacy_generate_noise_sample(dev); } return; } } static void handle_irq_noise(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u16 tmp ; u8 noise[4U] ; u8 i ; u8 j ; s32 average ; int __ret_warn_on ; long tmp___0 ; int __ret_warn_on___0 ; long tmp___1 ; u8 __val ; u8 __min ; u8 __max ; u8 __val___0 ; u8 __min___0 ; u8 __max___0 ; u8 __val___1 ; u8 __min___1 ; u8 __max___1 ; u8 __val___2 ; u8 __min___2 ; u8 __max___2 ; { { phy = & dev->phy; __ret_warn_on = ! dev->noisecalc.calculation_running; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 831); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if ((int )dev->noisecalc.channel_at_start != (int )phy->channel) { goto drop_calculation; } else { } { *((__le32 *)(& noise)) = b43legacy_jssi_read(dev); } if ((((unsigned int )noise[0] == 127U || (unsigned int )noise[1] == 127U) || (unsigned int )noise[2] == 127U) || (unsigned int )noise[3] == 127U) { goto generate_new; } else { } { __ret_warn_on___0 = (unsigned int )dev->noisecalc.nr_samples > 7U; tmp___1 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 840); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); i = dev->noisecalc.nr_samples; __val = noise[0]; __min = 0U; __max = 63U; __val = (u8 )((int )__min > (int )__val ? __min : __val); noise[0] = (u8 )((int )__max < (int )__val ? __max : __val); __val___0 = noise[1]; __min___0 = 0U; __max___0 = 63U; __val___0 = (u8 )((int )__min___0 > (int )__val___0 ? __min___0 : __val___0); noise[1] = (u8 )((int )__max___0 < (int )__val___0 ? __max___0 : __val___0); __val___1 = noise[2]; __min___1 = 0U; __max___1 = 63U; __val___1 = (u8 )((int )__min___1 > (int )__val___1 ? __min___1 : __val___1); noise[2] = (u8 )((int )__max___1 < (int )__val___1 ? __max___1 : __val___1); __val___2 = noise[3]; __min___2 = 0U; __max___2 = 63U; __val___2 = (u8 )((int )__min___2 > (int )__val___2 ? __min___2 : __val___2); noise[3] = (u8 )((int )__max___2 < (int )__val___2 ? __max___2 : __val___2); dev->noisecalc.samples[(int )i][0] = phy->nrssi_lt[(int )noise[0]]; dev->noisecalc.samples[(int )i][1] = phy->nrssi_lt[(int )noise[1]]; dev->noisecalc.samples[(int )i][2] = phy->nrssi_lt[(int )noise[2]]; dev->noisecalc.samples[(int )i][3] = phy->nrssi_lt[(int )noise[3]]; dev->noisecalc.nr_samples = (u8 )((int )dev->noisecalc.nr_samples + 1); } if ((unsigned int )dev->noisecalc.nr_samples == 8U) { average = 0; i = 0U; goto ldv_52949; ldv_52948: j = 0U; goto ldv_52946; ldv_52945: average = average + (int )dev->noisecalc.samples[(int )i][(int )j]; j = (u8 )((int )j + 1); ldv_52946: ; if ((unsigned int )j <= 3U) { goto ldv_52945; } else { } i = (u8 )((int )i + 1); ldv_52949: ; if ((unsigned int )i <= 7U) { goto ldv_52948; } else { } { average = average / 32; average = average * 125; average = average + 64; average = average / 128; tmp = b43legacy_shm_read16(dev, 1, 1036); tmp = (unsigned int )((u16 )((unsigned int )tmp / 128U)) & 31U; } if ((unsigned int )tmp > 7U) { average = average + 2; } else { average = average + -25; } if ((unsigned int )tmp == 8U) { average = average + -72; } else { average = average + -48; } dev->stats.link_noise = (u8 )average; drop_calculation: dev->noisecalc.calculation_running = 0; return; } else { } generate_new: { b43legacy_generate_noise_sample(dev); } return; } } static void handle_irq_tbtt_indication(struct b43legacy_wldev *dev ) { int tmp ; int tmp___0 ; { { tmp = b43legacy_is_mode(dev->wl, 3); } if (tmp != 0) { } else { { b43legacy_power_saving_ctl_bits(dev, -1, -1); } } { tmp___0 = b43legacy_is_mode(dev->wl, 1); } if (tmp___0 != 0) { dev->dfq_valid = 1; } else { } return; } } static void handle_irq_atim_end(struct b43legacy_wldev *dev ) { u32 tmp ; { if ((int )dev->dfq_valid) { { tmp = b43legacy_read32(dev, 292); b43legacy_write32(dev, 292, tmp | 4U); dev->dfq_valid = 0; } } else { } return; } } static void handle_irq_pmq(struct b43legacy_wldev *dev ) { u32 tmp ; { ldv_52962: { tmp = b43legacy_read32(dev, 320); } if ((tmp & 8U) == 0U) { goto ldv_52961; } else { } goto ldv_52962; ldv_52961: { b43legacy_write16(dev, 320, 2); } return; } } static void b43legacy_write_template_common(struct b43legacy_wldev *dev , u8 const *data , u16 size , u16 ram_offset , u16 shm_size_offset , u8 rate ) { u32 i ; u32 tmp ; struct b43legacy_plcp_hdr4 plcp ; { { plcp.__annonCompField89.data = 0U; b43legacy_generate_plcp_hdr(& plcp, (int )((unsigned int )((u16 const )size) + 4U), (int )rate); b43legacy_ram_write(dev, (int )ram_offset, plcp.__annonCompField89.data); ram_offset = (unsigned int )ram_offset + 4U; tmp = (unsigned int )*data << 16; tmp = tmp | ((unsigned int )*(data + 1UL) << 24); b43legacy_ram_write(dev, (int )ram_offset, tmp); ram_offset = (unsigned int )ram_offset + 4U; i = 2U; } goto ldv_52975; ldv_52974: tmp = (unsigned int )*(data + (unsigned long )i); if (i + 1U < (u32 )size) { tmp = tmp | ((unsigned int )*(data + (unsigned long )(i + 1U)) << 8); } else { } if (i + 2U < (u32 )size) { tmp = tmp | ((unsigned int )*(data + (unsigned long )(i + 2U)) << 16); } else { } if (i + 3U < (u32 )size) { tmp = tmp | ((unsigned int )*(data + (unsigned long )(i + 3U)) << 24); } else { } { b43legacy_ram_write(dev, (int )((unsigned int )((int )ram_offset + (int )((u16 )i)) - 2U), tmp); i = i + 4U; } ldv_52975: ; if (i < (u32 )size) { goto ldv_52974; } else { } { b43legacy_shm_write16(dev, 1, (int )shm_size_offset, (int )((unsigned int )size + 6U)); } return; } } static u16 b43legacy_antenna_to_phyctl(int antenna ) { { { if (antenna == 0) { goto case_0; } else { } if (antenna == 1) { goto case_1; } else { } goto switch_break; case_0: /* CIL Label */ ; return (0U); case_1: /* CIL Label */ ; return (256U); switch_break: /* CIL Label */ ; } return (768U); } } static void b43legacy_write_beacon_template(struct b43legacy_wldev *dev , u16 ram_offset , u16 shm_size_offset ) { unsigned int i ; unsigned int len ; unsigned int variable_len ; struct ieee80211_mgmt const *bcn ; u8 const *ie ; bool tim_found ; unsigned int rate ; u16 ctl ; int antenna ; struct ieee80211_tx_info *info ; struct ieee80211_tx_info *tmp ; unsigned long _min1 ; unsigned long _min2 ; struct ieee80211_rate *tmp___0 ; u16 tmp___1 ; uint8_t ie_id ; uint8_t ie_len ; u16 tim_position ; u16 dtim_period ; { { tim_found = 0; tmp = IEEE80211_SKB_CB((dev->wl)->current_beacon); info = tmp; bcn = (struct ieee80211_mgmt const *)((dev->wl)->current_beacon)->data; _min1 = (unsigned long )((dev->wl)->current_beacon)->len; _min2 = 506UL; len = (unsigned int )(_min1 < _min2 ? _min1 : _min2); tmp___0 = ieee80211_get_tx_rate((struct ieee80211_hw const *)(dev->wl)->hw, (struct ieee80211_tx_info const *)info); rate = (unsigned int )tmp___0->hw_value; b43legacy_write_template_common(dev, (u8 const *)bcn, (int )((u16 )len), (int )ram_offset, (int )shm_size_offset, (int )((u8 )rate)); antenna = 3; tmp___1 = b43legacy_antenna_to_phyctl(antenna); antenna = (int )tmp___1; ctl = b43legacy_shm_read16(dev, 1, 84); ctl = (unsigned int )ctl & 65519U; ctl = (unsigned int )ctl & 64575U; ctl = (unsigned int )ctl & 65532U; ctl = (u16 )((int )((short )ctl) | (int )((short )antenna)); ctl = ctl; b43legacy_shm_write16(dev, 1, 84, (int )ctl); ie = (u8 const *)(& bcn->u.beacon.variable); variable_len = len - 36U; i = 0U; } goto ldv_53006; ldv_53005: ie_id = *(ie + (unsigned long )i); ie_len = *(ie + (unsigned long )(i + 1U)); if ((unsigned int )ie_id == 5U) { if (variable_len < ((unsigned int )ie_len + i) + 2U) { goto ldv_53004; } else { } if ((unsigned int )ie_len <= 3U) { goto ldv_53004; } else { } { tim_found = 1; tim_position = 6U; tim_position = (unsigned int )tim_position + 36U; tim_position = (int )tim_position + (int )((u16 )i); dtim_period = (u16 )*(ie + (unsigned long )(i + 3U)); b43legacy_shm_write16(dev, 1, 30, (int )tim_position); b43legacy_shm_write16(dev, 1, 18, (int )dtim_period); } goto ldv_53004; } else { } i = (i + (unsigned int )ie_len) + 2U; ldv_53006: ; if (i < variable_len - 2U) { goto ldv_53005; } else { } ldv_53004: ; if (! tim_found) { { b43legacywarn(dev->wl, "Did not find a valid TIM IE in the beacon template packet. AP or IBSS operation may be broken.\n"); } } else { { b43legacydbg(dev->wl, "Updated beacon template\n"); } } return; } } static void b43legacy_write_probe_resp_plcp(struct b43legacy_wldev *dev , u16 shm_offset , u16 size , struct ieee80211_rate *rate ) { struct b43legacy_plcp_hdr4 plcp ; u32 tmp ; __le16 dur ; { { plcp.__annonCompField89.data = 0U; b43legacy_generate_plcp_hdr(& plcp, (int )((unsigned int )((u16 const )size) + 4U), (int )((u8 const )rate->hw_value)); dur = ieee80211_generic_frame_duration((dev->wl)->hw, (dev->wl)->vif, 0, (size_t )size, rate); tmp = plcp.__annonCompField89.data; b43legacy_shm_write16(dev, 1, (int )shm_offset, (int )((u16 )tmp)); b43legacy_shm_write16(dev, 1, (int )((unsigned int )shm_offset + 2U), (int )((u16 )(tmp >> 16))); b43legacy_shm_write16(dev, 1, (int )((unsigned int )shm_offset + 6U), (int )dur); } return; } } static u8 const *b43legacy_generate_probe_resp(struct b43legacy_wldev *dev , u16 *dest_size , struct ieee80211_rate *rate ) { u8 const *src_data ; u8 *dest_data ; u16 src_size ; u16 elem_size ; u16 src_pos ; u16 dest_pos ; __le16 dur ; struct ieee80211_hdr *hdr ; size_t ie_start ; int __ret_warn_on ; long tmp ; int __ret_warn_on___0 ; long tmp___0 ; long tmp___1 ; void *tmp___2 ; long tmp___3 ; { { src_size = (u16 )((dev->wl)->current_beacon)->len; src_data = (u8 const *)((dev->wl)->current_beacon)->data; ie_start = 36UL; __ret_warn_on = ie_start != 36UL; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 1095); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); __ret_warn_on___0 = (size_t )src_size < ie_start; tmp___0 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 1097); } } else { } { tmp___1 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___1 != 0L) { return ((u8 const *)0U); } else { } { tmp___2 = kmalloc((size_t )src_size, 32U); dest_data = (u8 *)tmp___2; tmp___3 = ldv__builtin_expect((unsigned long )dest_data == (unsigned long )((u8 *)0U), 0L); } if (tmp___3 != 0L) { return ((u8 const *)0U); } else { } { memcpy((void *)dest_data, (void const *)src_data, ie_start); src_pos = (u16 )ie_start; dest_pos = (u16 )ie_start; } goto ldv_53036; ldv_53035: elem_size = (unsigned int )((u16 )*(src_data + ((unsigned long )src_pos + 1UL))) + 2U; if ((unsigned int )((unsigned char )*(src_data + (unsigned long )src_pos)) == 5U) { goto ldv_53034; } else { } { memcpy((void *)dest_data + (unsigned long )dest_pos, (void const *)src_data + (unsigned long )src_pos, (size_t )elem_size); dest_pos = (int )dest_pos + (int )elem_size; } ldv_53034: src_pos = (int )src_pos + (int )elem_size; ldv_53036: ; if ((int )src_pos < (int )src_size + -2) { goto ldv_53035; } else { } { *dest_size = dest_pos; hdr = (struct ieee80211_hdr *)dest_data; hdr->frame_control = 80U; dur = ieee80211_generic_frame_duration((dev->wl)->hw, (dev->wl)->vif, 0, (size_t )*dest_size, rate); hdr->duration_id = dur; } return ((u8 const *)dest_data); } } static void b43legacy_write_probe_resp_template(struct b43legacy_wldev *dev , u16 ram_offset , u16 shm_size_offset , struct ieee80211_rate *rate ) { u8 const *probe_resp_data ; u16 size ; long tmp ; unsigned long _min1 ; unsigned long _min2 ; { { size = (u16 )((dev->wl)->current_beacon)->len; probe_resp_data = b43legacy_generate_probe_resp(dev, & size, rate); tmp = ldv__builtin_expect((unsigned long )probe_resp_data == (unsigned long )((u8 const *)0U), 0L); } if (tmp != 0L) { return; } else { } { b43legacy_write_probe_resp_plcp(dev, 794, (int )size, (struct ieee80211_rate *)(& __b43legacy_ratetable)); b43legacy_write_probe_resp_plcp(dev, 812, (int )size, (struct ieee80211_rate *)(& __b43legacy_ratetable) + 1UL); b43legacy_write_probe_resp_plcp(dev, 830, (int )size, (struct ieee80211_rate *)(& __b43legacy_ratetable) + 2UL); b43legacy_write_probe_resp_plcp(dev, 848, (int )size, (struct ieee80211_rate *)(& __b43legacy_ratetable) + 3UL); _min1 = (unsigned long )size; _min2 = 506UL; size = (u16 )(_min1 < _min2 ? _min1 : _min2); b43legacy_write_template_common(dev, probe_resp_data, (int )size, (int )ram_offset, (int )shm_size_offset, (int )((u8 )rate->hw_value)); kfree((void const *)probe_resp_data); } return; } } static void b43legacy_upload_beacon0(struct b43legacy_wldev *dev ) { struct b43legacy_wl *wl ; { wl = dev->wl; if ((int )wl->beacon0_uploaded) { return; } else { } { b43legacy_write_beacon_template(dev, 104, 24); b43legacy_write_probe_resp_template(dev, 616, 74, (struct ieee80211_rate *)(& __b43legacy_ratetable) + 3UL); wl->beacon0_uploaded = 1; } return; } } static void b43legacy_upload_beacon1(struct b43legacy_wldev *dev ) { struct b43legacy_wl *wl ; { wl = dev->wl; if ((int )wl->beacon1_uploaded) { return; } else { } { b43legacy_write_beacon_template(dev, 1128, 26); wl->beacon1_uploaded = 1; } return; } } static void handle_irq_beacon(struct b43legacy_wldev *dev ) { struct b43legacy_wl *wl ; u32 cmd ; u32 beacon0_valid ; u32 beacon1_valid ; int tmp ; long tmp___0 ; { { wl = dev->wl; tmp = b43legacy_is_mode(wl, 3); } if (tmp == 0) { return; } else { } { dev->irq_mask = dev->irq_mask & 4294967293U; cmd = b43legacy_read32(dev, 292); beacon0_valid = cmd & 1U; beacon1_valid = cmd & 2U; } if (beacon0_valid != 0U && beacon1_valid != 0U) { { b43legacy_write32(dev, 296, 2U); dev->irq_mask = dev->irq_mask | 2U; } return; } else { } { tmp___0 = ldv__builtin_expect((long )wl->beacon_templates_virgin, 0L); } if (tmp___0 != 0L) { { wl->beacon_templates_virgin = 0; b43legacy_upload_beacon0(dev); b43legacy_upload_beacon1(dev); cmd = b43legacy_read32(dev, 292); cmd = cmd | 1U; b43legacy_write32(dev, 292, cmd); } } else if (beacon0_valid == 0U) { { b43legacy_upload_beacon0(dev); cmd = b43legacy_read32(dev, 292); cmd = cmd | 1U; b43legacy_write32(dev, 292, cmd); } } else if (beacon1_valid == 0U) { { b43legacy_upload_beacon1(dev); cmd = b43legacy_read32(dev, 292); cmd = cmd | 2U; b43legacy_write32(dev, 292, cmd); } } else { } return; } } static void b43legacy_beacon_update_trigger_work(struct work_struct *work ) { struct b43legacy_wl *wl ; struct work_struct const *__mptr ; struct b43legacy_wldev *dev ; long tmp ; int tmp___0 ; long tmp___1 ; { { __mptr = (struct work_struct const *)work; wl = (struct b43legacy_wl *)__mptr + 0xfffffffffffffda8UL; mutex_lock_nested(& wl->mutex, 0U); dev = wl->current_dev; tmp = ldv__builtin_expect((unsigned long )dev != (unsigned long )((struct b43legacy_wldev *)0), 1L); } if (tmp != 0L) { { tmp___0 = atomic_read((atomic_t const *)(& dev->__init_status)); tmp___1 = ldv__builtin_expect(tmp___0 > 0, 1L); } if (tmp___1 != 0L) { { ldv_spin_lock_irq_62(& wl->irq_lock); handle_irq_beacon(dev); b43legacy_write32(dev, 300, dev->irq_mask); __asm__ volatile ("": : : "memory"); ldv_spin_unlock_irq_63(& wl->irq_lock); } } else { } } else { } { mutex_unlock(& wl->mutex); } return; } } static void b43legacy_update_templates(struct b43legacy_wl *wl ) { struct sk_buff *beacon ; long tmp ; { { beacon = ieee80211_beacon_get(wl->hw, wl->vif); tmp = ldv__builtin_expect((unsigned long )beacon == (unsigned long )((struct sk_buff *)0), 0L); } if (tmp != 0L) { return; } else { } if ((unsigned long )wl->current_beacon != (unsigned long )((struct sk_buff *)0)) { { dev_kfree_skb_any(wl->current_beacon); } } else { } { wl->current_beacon = beacon; wl->beacon0_uploaded = 0; wl->beacon1_uploaded = 0; ieee80211_queue_work(wl->hw, & wl->beacon_update_trigger); } return; } } static void b43legacy_set_beacon_int(struct b43legacy_wldev *dev , u16 beacon_int ) { { { b43legacy_time_lock(dev); } if ((unsigned int )(dev->dev)->id.revision > 2U) { { b43legacy_write32(dev, 392, (u32 )((int )beacon_int << 16)); b43legacy_write32(dev, 396, (u32 )((int )beacon_int << 10)); } } else { { b43legacy_write16(dev, 1542, (int )beacon_int >> 6); b43legacy_write16(dev, 1552, (int )beacon_int); } } { b43legacy_time_unlock(dev); b43legacydbg(dev->wl, "Set beacon interval to %u\n", (int )beacon_int); } return; } } static void handle_irq_ucode_debug(struct b43legacy_wldev *dev ) { { return; } } static void b43legacy_interrupt_tasklet(struct b43legacy_wldev *dev ) { u32 reason ; u32 dma_reason[6U] ; u32 merged_dma_reason ; int i ; unsigned long flags ; int __ret_warn_on ; int tmp ; long tmp___0 ; long tmp___1 ; int tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; long tmp___6 ; int tmp___7 ; int __ret_warn_on___0 ; long tmp___8 ; int __ret_warn_on___1 ; long tmp___9 ; int tmp___10 ; int __ret_warn_on___2 ; long tmp___11 ; int __ret_warn_on___3 ; long tmp___12 ; { { merged_dma_reason = 0U; ldv___ldv_spin_lock_64(& (dev->wl)->irq_lock); tmp = atomic_read((atomic_t const *)(& dev->__init_status)); __ret_warn_on = tmp <= 0; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 1318); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); reason = dev->irq_reason; i = 0; } goto ldv_53097; ldv_53096: dma_reason[i] = dev->dma_reason[i]; merged_dma_reason = merged_dma_reason | dma_reason[i]; i = i + 1; ldv_53097: ; if ((unsigned int )i <= 5U) { goto ldv_53096; } else { } { tmp___1 = ldv__builtin_expect((reason & 512U) != 0U, 0L); } if (tmp___1 != 0L) { { b43legacyerr(dev->wl, "MAC transmission error\n"); } } else { } { tmp___4 = ldv__builtin_expect((reason & 2048U) != 0U, 0L); } if (tmp___4 != 0L) { { b43legacyerr(dev->wl, "PHY transmission error\n"); __asm__ volatile ("lfence": : : "memory"); tmp___2 = atomic_dec_and_test(& dev->phy.txerr_cnt); tmp___3 = ldv__builtin_expect(tmp___2 != 0, 0L); } if (tmp___3 != 0L) { { b43legacyerr(dev->wl, "Too many PHY TX errors, restarting the controller\n"); b43legacy_controller_restart(dev, "PHY TX errors"); } } else { } } else { } { tmp___5 = ldv__builtin_expect((merged_dma_reason & 64512U) != 0U, 0L); } if (tmp___5 != 0L) { if ((merged_dma_reason & 56320U) != 0U) { { b43legacyerr(dev->wl, "Fatal DMA error: 0x%08X, 0x%08X, 0x%08X, 0x%08X, 0x%08X, 0x%08X\n", dma_reason[0], dma_reason[1], dma_reason[2], dma_reason[3], dma_reason[4], dma_reason[5]); b43legacy_controller_restart(dev, "DMA error"); __asm__ volatile ("": : : "memory"); ldv_spin_unlock_irqrestore_65(& (dev->wl)->irq_lock, flags); } return; } else { } if ((merged_dma_reason & 8192U) != 0U) { { b43legacyerr(dev->wl, "DMA error: 0x%08X, 0x%08X, 0x%08X, 0x%08X, 0x%08X, 0x%08X\n", dma_reason[0], dma_reason[1], dma_reason[2], dma_reason[3], dma_reason[4], dma_reason[5]); } } else { } } else { } { tmp___6 = ldv__builtin_expect((reason & 134217728U) != 0U, 0L); } if (tmp___6 != 0L) { { handle_irq_ucode_debug(dev); } } else { } if ((reason & 4U) != 0U) { { handle_irq_tbtt_indication(dev); } } else { } if ((reason & 32U) != 0U) { { handle_irq_atim_end(dev); } } else { } if ((reason & 2U) != 0U) { { handle_irq_beacon(dev); } } else { } if ((reason & 64U) != 0U) { { handle_irq_pmq(dev); } } else { } if ((reason & 262144U) != 0U) { { handle_irq_noise(dev); } } else { } if ((dma_reason[0] & 65536U) != 0U) { { tmp___7 = b43legacy_using_pio(dev); } if (tmp___7 != 0) { { b43legacy_pio_rx(dev->__annonCompField88.pio.queue0); } } else { { b43legacy_dma_rx(dev->__annonCompField88.dma.rx_ring0); } } } else { } { __ret_warn_on___0 = (dma_reason[1] & 65536U) != 0U; tmp___8 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___8 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 1384); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); __ret_warn_on___1 = (dma_reason[2] & 65536U) != 0U; tmp___9 = ldv__builtin_expect(__ret_warn_on___1 != 0, 0L); } if (tmp___9 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 1385); } } else { } { ldv__builtin_expect(__ret_warn_on___1 != 0, 0L); } if ((dma_reason[3] & 65536U) != 0U) { { tmp___10 = b43legacy_using_pio(dev); } if (tmp___10 != 0) { { b43legacy_pio_rx(dev->__annonCompField88.pio.queue3); } } else { { b43legacy_dma_rx(dev->__annonCompField88.dma.rx_ring3); } } } else { } { __ret_warn_on___2 = (dma_reason[4] & 65536U) != 0U; tmp___11 = ldv__builtin_expect(__ret_warn_on___2 != 0, 0L); } if (tmp___11 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 1392); } } else { } { ldv__builtin_expect(__ret_warn_on___2 != 0, 0L); __ret_warn_on___3 = (dma_reason[5] & 65536U) != 0U; tmp___12 = ldv__builtin_expect(__ret_warn_on___3 != 0, 0L); } if (tmp___12 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 1393); } } else { } { ldv__builtin_expect(__ret_warn_on___3 != 0, 0L); } if ((reason & 536870912U) != 0U) { { handle_irq_transmit_status(dev); } } else { } { b43legacy_write32(dev, 300, dev->irq_mask); __asm__ volatile ("": : : "memory"); ldv_spin_unlock_irqrestore_65(& (dev->wl)->irq_lock, flags); } return; } } static void pio_irq_workaround(struct b43legacy_wldev *dev , u16 base , int queueidx ) { u16 rxctl ; { { rxctl = b43legacy_read16(dev, (int )((unsigned int )base + 8U)); } if ((int )rxctl & 1) { dev->dma_reason[queueidx] = dev->dma_reason[queueidx] | 65536U; } else { dev->dma_reason[queueidx] = dev->dma_reason[queueidx] & 4294901759U; } return; } } static void b43legacy_interrupt_ack(struct b43legacy_wldev *dev , u32 reason ) { int tmp ; { { tmp = b43legacy_using_pio(dev); } if ((tmp != 0 && (unsigned int )(dev->dev)->id.revision <= 2U) && (reason & 256U) == 0U) { { pio_irq_workaround(dev, 768, 0); pio_irq_workaround(dev, 784, 1); pio_irq_workaround(dev, 800, 2); pio_irq_workaround(dev, 816, 3); } } else { } { b43legacy_write32(dev, 296, reason); b43legacy_write32(dev, 32, dev->dma_reason[0]); b43legacy_write32(dev, 40, dev->dma_reason[1]); b43legacy_write32(dev, 48, dev->dma_reason[2]); b43legacy_write32(dev, 56, dev->dma_reason[3]); b43legacy_write32(dev, 64, dev->dma_reason[4]); b43legacy_write32(dev, 72, dev->dma_reason[5]); } return; } } static irqreturn_t b43legacy_interrupt_handler(int irq , void *dev_id ) { irqreturn_t ret ; struct b43legacy_wldev *dev ; u32 reason ; int __ret_warn_on ; long tmp ; int tmp___0 ; long tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; u32 tmp___4 ; u32 tmp___5 ; u32 tmp___6 ; u32 tmp___7 ; { { ret = 0; dev = (struct b43legacy_wldev *)dev_id; __ret_warn_on = (unsigned long )dev == (unsigned long )((struct b43legacy_wldev *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 1450); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); ldv_spin_lock_67(& (dev->wl)->irq_lock); tmp___0 = atomic_read((atomic_t const *)(& dev->__init_status)); tmp___1 = ldv__builtin_expect(tmp___0 <= 1, 0L); } if (tmp___1 != 0L) { goto out; } else { } { reason = b43legacy_read32(dev, 296); } if (reason == 4294967295U) { goto out; } else { } ret = 1; reason = reason & dev->irq_mask; if (reason == 0U) { goto out; } else { } { tmp___2 = b43legacy_read32(dev, 32); dev->dma_reason[0] = tmp___2 & 121856U; tmp___3 = b43legacy_read32(dev, 40); dev->dma_reason[1] = tmp___3 & 56320U; tmp___4 = b43legacy_read32(dev, 48); dev->dma_reason[2] = tmp___4 & 56320U; tmp___5 = b43legacy_read32(dev, 56); dev->dma_reason[3] = tmp___5 & 121856U; tmp___6 = b43legacy_read32(dev, 64); dev->dma_reason[4] = tmp___6 & 56320U; tmp___7 = b43legacy_read32(dev, 72); dev->dma_reason[5] = tmp___7 & 56320U; b43legacy_interrupt_ack(dev, reason); b43legacy_write32(dev, 300, 0U); dev->irq_reason = reason; tasklet_schedule(& dev->isr_tasklet); } out: { __asm__ volatile ("": : : "memory"); ldv_spin_unlock_68(& (dev->wl)->irq_lock); } return (ret); } } static void b43legacy_release_firmware(struct b43legacy_wldev *dev ) { { { release_firmware(dev->fw.ucode); dev->fw.ucode = (struct firmware const *)0; release_firmware(dev->fw.pcm); dev->fw.pcm = (struct firmware const *)0; release_firmware(dev->fw.initvals); dev->fw.initvals = (struct firmware const *)0; release_firmware(dev->fw.initvals_band); dev->fw.initvals_band = (struct firmware const *)0; } return; } } static void b43legacy_print_fw_helptext(struct b43legacy_wl *wl ) { { { b43legacyerr(wl, "You must go to http://wireless.kernel.org/en/users/Drivers/b43#devicefirmware and download the correct firmware (version 3).\n"); } return; } } static void b43legacy_fw_cb(struct firmware const *firmware , void *context ) { struct b43legacy_wldev *dev ; { { dev = (struct b43legacy_wldev *)context; dev->fwp = firmware; complete(& dev->fw_load_complete); } return; } } static int do_request_fw(struct b43legacy_wldev *dev , char const *name , struct firmware const **fw , bool async ) { char path[48U] ; struct b43legacy_fw_header *hdr ; u32 size ; int err ; __u32 tmp ; { if ((unsigned long )name == (unsigned long )((char const *)0)) { return (0); } else { } { snprintf((char *)(& path), 48UL, "b43legacy%s/%s.fw", (char *)(& modparam_fwpostfix), name); b43legacyinfo(dev->wl, "Loading firmware %s\n", (char *)(& path)); } if ((int )async) { { init_completion(& dev->fw_load_complete); err = request_firmware_nowait(& __this_module, 1, (char const *)(& path), (dev->dev)->dev, 208U, (void *)dev, & b43legacy_fw_cb); } if (err != 0) { { b43legacyerr(dev->wl, "Unable to load firmware\n"); } return (err); } else { } { wait_for_completion(& dev->fw_load_complete); } if ((unsigned long )dev->fwp == (unsigned long )((struct firmware const *)0)) { err = -22; } else { } *fw = dev->fwp; } else { { err = request_firmware(fw, (char const *)(& path), (dev->dev)->dev); } } if (err != 0) { { b43legacyerr(dev->wl, "Firmware file \"%s\" not found or load failed.\n", (char *)(& path)); } return (err); } else { } if ((unsigned long )(*fw)->size <= 7UL) { goto err_format; } else { } hdr = (struct b43legacy_fw_header *)(*fw)->data; { if ((int )hdr->type == 117) { goto case_117; } else { } if ((int )hdr->type == 112) { goto case_112; } else { } if ((int )hdr->type == 105) { goto case_105; } else { } goto switch_default; case_117: /* CIL Label */ ; case_112: /* CIL Label */ { tmp = __fswab32(hdr->size); size = tmp; } if ((unsigned long )size != (unsigned long )(*fw)->size - 8UL) { goto err_format; } else { } case_105: /* CIL Label */ ; if ((unsigned int )hdr->ver != 1U) { goto err_format; } else { } goto ldv_53154; switch_default: /* CIL Label */ ; goto err_format; switch_break: /* CIL Label */ ; } ldv_53154: ; return (err); err_format: { b43legacyerr(dev->wl, "Firmware file \"%s\" format error.\n", (char *)(& path)); } return (-71); } } static int b43legacy_one_core_attach(struct ssb_device *dev , struct b43legacy_wl *wl ) ; static void b43legacy_one_core_detach(struct ssb_device *dev ) ; static void b43legacy_request_firmware(struct work_struct *work ) { struct b43legacy_wl *wl ; struct work_struct const *__mptr ; struct b43legacy_wldev *dev ; struct b43legacy_firmware *fw ; u8 rev ; char const *filename ; int err ; { __mptr = (struct work_struct const *)work; wl = (struct b43legacy_wl *)__mptr + 0xfffffffffffffeb8UL; dev = wl->current_dev; fw = & dev->fw; rev = (dev->dev)->id.revision; if ((unsigned long )fw->ucode == (unsigned long )((struct firmware const *)0)) { if ((unsigned int )rev == 2U) { filename = "ucode2"; } else if ((unsigned int )rev == 4U) { filename = "ucode4"; } else { filename = "ucode5"; } { err = do_request_fw(dev, filename, & fw->ucode, 1); } if (err != 0) { goto err_load; } else { } } else { } if ((unsigned long )fw->pcm == (unsigned long )((struct firmware const *)0)) { if ((unsigned int )rev <= 4U) { filename = "pcm4"; } else { filename = "pcm5"; } { err = do_request_fw(dev, filename, & fw->pcm, 0); } if (err != 0) { goto err_load; } else { } } else { } if ((unsigned long )fw->initvals == (unsigned long )((struct firmware const *)0)) { { if ((int )dev->phy.type == 1) { goto case_1; } else { } if ((int )dev->phy.type == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; if ((unsigned int )rev - 5U <= 5U) { filename = "b0g0initvals5"; } else if ((unsigned int )rev == 2U || (unsigned int )rev == 4U) { filename = "b0g0initvals2"; } else { goto err_no_initvals; } goto ldv_53176; switch_default: /* CIL Label */ ; goto err_no_initvals; switch_break: /* CIL Label */ ; } ldv_53176: { err = do_request_fw(dev, filename, & fw->initvals, 0); } if (err != 0) { goto err_load; } else { } } else { } if ((unsigned long )fw->initvals_band == (unsigned long )((struct firmware const *)0)) { { if ((int )dev->phy.type == 1) { goto case_1___0; } else { } if ((int )dev->phy.type == 2) { goto case_2___0; } else { } goto switch_default___0; case_1___0: /* CIL Label */ ; case_2___0: /* CIL Label */ ; if ((unsigned int )rev - 5U <= 5U) { filename = "b0g0bsinitvals5"; } else if ((unsigned int )rev > 10U) { filename = (char const *)0; } else if ((unsigned int )rev == 2U || (unsigned int )rev == 4U) { filename = (char const *)0; } else { goto err_no_initvals; } goto ldv_53180; switch_default___0: /* CIL Label */ ; goto err_no_initvals; switch_break___0: /* CIL Label */ ; } ldv_53180: { err = do_request_fw(dev, filename, & fw->initvals_band, 0); } if (err != 0) { goto err_load; } else { } } else { } { err = ieee80211_register_hw(wl->hw); } if (err != 0) { goto err_one_core_detach; } else { } return; err_one_core_detach: { b43legacy_one_core_detach(dev->dev); } goto error; err_load: { b43legacy_print_fw_helptext(dev->wl); } goto error; err_no_initvals: { err = -19; b43legacyerr(dev->wl, "No Initial Values firmware file for PHY %u, core rev %u\n", (int )dev->phy.type, (int )rev); } goto error; error: { b43legacy_release_firmware(dev); } return; } } static int b43legacy_upload_microcode(struct b43legacy_wldev *dev ) { struct wiphy *wiphy ; size_t hdr_len ; __be32 const *data ; unsigned int i ; unsigned int len ; u16 fwrev ; u16 fwpatch ; u16 fwdate ; u16 fwtime ; u32 tmp ; u32 macctl ; int err ; int __ret_warn_on ; long tmp___0 ; __u32 tmp___1 ; __u32 tmp___2 ; struct task_struct *tmp___3 ; int tmp___4 ; { { wiphy = ((dev->wl)->hw)->wiphy; hdr_len = 8UL; err = 0; macctl = b43legacy_read32(dev, 288); __ret_warn_on = (macctl & 2U) != 0U; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 1699); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); macctl = macctl | 4U; b43legacy_write32(dev, 288, macctl); i = 0U; } goto ldv_53202; ldv_53201: { b43legacy_shm_write16(dev, 2, (int )((u16 )i), 0); i = i + 1U; } ldv_53202: ; if (i <= 63U) { goto ldv_53201; } else { } i = 0U; goto ldv_53205; ldv_53204: { b43legacy_shm_write16(dev, 1, (int )((u16 )i), 0); i = i + 2U; } ldv_53205: ; if (i <= 4095U) { goto ldv_53204; } else { } { data = (__be32 const *)(dev->fw.ucode)->data + 8U; len = (unsigned int )(((unsigned long )(dev->fw.ucode)->size - 8UL) / 4UL); b43legacy_shm_control_word(dev, 768, 0); i = 0U; } goto ldv_53208; ldv_53207: { tmp___1 = __fswab32(*(data + (unsigned long )i)); b43legacy_write32(dev, 356, tmp___1); __const_udelay(42950UL); i = i + 1U; } ldv_53208: ; if (i < len) { goto ldv_53207; } else { } if ((unsigned long )dev->fw.pcm != (unsigned long )((struct firmware const *)0)) { { data = (__be32 const *)(dev->fw.pcm)->data + 8U; len = (unsigned int )(((unsigned long )(dev->fw.pcm)->size - 8UL) / 4UL); b43legacy_shm_control_word(dev, 4, 490); b43legacy_write32(dev, 356, 16384U); b43legacy_shm_control_word(dev, 4, 491); i = 0U; } goto ldv_53211; ldv_53210: { tmp___2 = __fswab32(*(data + (unsigned long )i)); b43legacy_write32(dev, 356, tmp___2); __const_udelay(42950UL); i = i + 1U; } ldv_53211: ; if (i < len) { goto ldv_53210; } else { } } else { } { b43legacy_write32(dev, 296, 4294967295U); macctl = b43legacy_read32(dev, 288); macctl = macctl & 4294967291U; macctl = macctl | 2U; b43legacy_write32(dev, 288, macctl); i = 0U; } ldv_53215: { tmp = b43legacy_read32(dev, 296); } if (tmp == 1U) { goto ldv_53213; } else { } i = i + 1U; if (i > 19U) { { b43legacyerr(dev->wl, "Microcode not responding\n"); b43legacy_print_fw_helptext(dev->wl); err = -19; } goto error; } else { } { msleep_interruptible(50U); tmp___3 = get_current(); tmp___4 = signal_pending(tmp___3); } if (tmp___4 != 0) { err = -4; goto error; } else { } goto ldv_53215; ldv_53213: { b43legacy_read32(dev, 296); fwrev = b43legacy_shm_read16(dev, 1, 0); fwpatch = b43legacy_shm_read16(dev, 1, 2); fwdate = b43legacy_shm_read16(dev, 1, 4); fwtime = b43legacy_shm_read16(dev, 1, 6); } if ((unsigned int )fwrev > 296U) { { b43legacyerr(dev->wl, "YOU ARE TRYING TO LOAD V4 FIRMWARE. Only firmware from binary drivers version 3.x is supported. You must change your firmware files.\n"); b43legacy_print_fw_helptext(dev->wl); err = -95; } goto error; } else { } { b43legacyinfo(dev->wl, "Loading firmware version 0x%X, patch level %u (20%.2i-%.2i-%.2i %.2i:%.2i:%.2i)\n", (int )fwrev, (int )fwpatch, ((int )fwdate >> 12) & 15, ((int )fwdate >> 8) & 15, (int )fwdate & 255, ((int )fwtime >> 11) & 31, ((int )fwtime >> 5) & 63, (int )fwtime & 31); dev->fw.rev = fwrev; dev->fw.patch = fwpatch; snprintf((char *)(& wiphy->fw_version), 32UL, "%u.%u", (int )dev->fw.rev, (int )dev->fw.patch); wiphy->hw_version = (u32 )(dev->dev)->id.coreid; } return (0); error: { macctl = b43legacy_read32(dev, 288); macctl = macctl & 4294967293U; macctl = macctl | 4U; b43legacy_write32(dev, 288, macctl); } return (err); } } extern void __compiletime_assert_1820(void) ; static int b43legacy_write_initvals(struct b43legacy_wldev *dev , struct b43legacy_iv const *ivals , size_t count , size_t array_size ) { struct b43legacy_iv const *iv ; u16 offset ; size_t i ; bool bit32 ; bool __cond ; __u16 tmp ; u32 value ; u16 value___0 ; __u16 tmp___0 ; { __cond = 0; if ((int )__cond) { { __compiletime_assert_1820(); } } else { } iv = ivals; i = 0UL; goto ldv_53234; ldv_53233: ; if (array_size <= 1UL) { goto err_format; } else { } { array_size = array_size - 2UL; tmp = __fswab16((int )iv->offset_size); offset = tmp; bit32 = (int )((short )offset) < 0; offset = (unsigned int )offset & 32767U; } if ((unsigned int )offset > 4095U) { goto err_format; } else { } if ((int )bit32) { if (array_size <= 3UL) { goto err_format; } else { } { array_size = array_size - 4UL; value = get_unaligned_be32((void const *)(& iv->data.d32)); b43legacy_write32(dev, (int )offset, value); iv = iv + 6U; } } else { if (array_size <= 1UL) { goto err_format; } else { } { array_size = array_size - 2UL; tmp___0 = __fswab16((int )iv->data.d16); value___0 = tmp___0; b43legacy_write16(dev, (int )offset, (int )value___0); iv = iv + 4U; } } i = i + 1UL; ldv_53234: ; if (i < count) { goto ldv_53233; } else { } if (array_size != 0UL) { goto err_format; } else { } return (0); err_format: { b43legacyerr(dev->wl, "Initial Values Firmware file-format error.\n"); b43legacy_print_fw_helptext(dev->wl); } return (-71); } } static int b43legacy_upload_initvals(struct b43legacy_wldev *dev ) { size_t hdr_len ; struct b43legacy_fw_header const *hdr ; struct b43legacy_firmware *fw ; struct b43legacy_iv const *ivals ; size_t count ; int err ; __u32 tmp ; __u32 tmp___0 ; { { hdr_len = 8UL; fw = & dev->fw; hdr = (struct b43legacy_fw_header const *)(fw->initvals)->data; ivals = (struct b43legacy_iv const *)(fw->initvals)->data + 8U; tmp = __fswab32(hdr->size); count = (size_t )tmp; err = b43legacy_write_initvals(dev, ivals, count, (unsigned long )(fw->initvals)->size - 8UL); } if (err != 0) { goto out; } else { } if ((unsigned long )fw->initvals_band != (unsigned long )((struct firmware const *)0)) { { hdr = (struct b43legacy_fw_header const *)(fw->initvals_band)->data; ivals = (struct b43legacy_iv const *)(fw->initvals_band)->data + 8U; tmp___0 = __fswab32(hdr->size); count = (size_t )tmp___0; err = b43legacy_write_initvals(dev, ivals, count, (unsigned long )(fw->initvals_band)->size - 8UL); } if (err != 0) { goto out; } else { } } else { } out: ; return (err); } } static int b43legacy_gpio_init(struct b43legacy_wldev *dev ) { struct ssb_bus *bus ; struct ssb_device *gpiodev ; struct ssb_device *pcidev ; u32 mask ; u32 set ; u32 tmp ; u16 tmp___0 ; u16 tmp___1 ; u32 tmp___2 ; { { bus = (dev->dev)->bus; pcidev = (struct ssb_device *)0; tmp = b43legacy_read32(dev, 288); b43legacy_write32(dev, 288, tmp & 4294918143U); tmp___0 = b43legacy_read16(dev, 1182); b43legacy_write16(dev, 1182, (int )((unsigned int )tmp___0 | 15U)); mask = 31U; set = 15U; } if ((unsigned int )((dev->dev)->bus)->chip_id == 17153U) { mask = mask | 96U; set = set | 96U; } else { } if (((int )((dev->dev)->bus)->sprom.boardflags_lo & 2) != 0) { { tmp___1 = b43legacy_read16(dev, 1182); b43legacy_write16(dev, 1182, (int )((unsigned int )tmp___1 | 512U)); mask = mask | 512U; set = set | 512U; } } else { } if ((unsigned int )(dev->dev)->id.revision > 1U) { mask = mask | 16U; } else { } pcidev = bus->pcicore.dev; gpiodev = (unsigned long )bus->chipco.dev != (unsigned long )((struct ssb_device *)0) ? (unsigned long )bus->chipco.dev != (unsigned long )((struct ssb_device *)0) : pcidev; if ((unsigned long )gpiodev == (unsigned long )((struct ssb_device *)0)) { return (0); } else { } { tmp___2 = ssb_read32(gpiodev, 108); ssb_write32(gpiodev, 108, (tmp___2 & ~ mask) | set); } return (0); } } static void b43legacy_gpio_cleanup(struct b43legacy_wldev *dev ) { struct ssb_bus *bus ; struct ssb_device *gpiodev ; struct ssb_device *pcidev ; { bus = (dev->dev)->bus; pcidev = (struct ssb_device *)0; pcidev = bus->pcicore.dev; gpiodev = (unsigned long )bus->chipco.dev != (unsigned long )((struct ssb_device *)0) ? (unsigned long )bus->chipco.dev != (unsigned long )((struct ssb_device *)0) : pcidev; if ((unsigned long )gpiodev == (unsigned long )((struct ssb_device *)0)) { return; } else { } { ssb_write32(gpiodev, 108, 0U); } return; } } void b43legacy_mac_enable(struct b43legacy_wldev *dev ) { int __ret_warn_on ; long tmp ; int __ret_warn_on___0 ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; u32 tmp___2 ; { { dev->mac_suspended = dev->mac_suspended - 1; __ret_warn_on = dev->mac_suspended < 0; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 1972); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on___0 = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 1973); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (dev->mac_suspended == 0) { { tmp___2 = b43legacy_read32(dev, 288); b43legacy_write32(dev, 288, tmp___2 | 1U); b43legacy_write32(dev, 296, 1U); b43legacy_read32(dev, 288); b43legacy_read32(dev, 296); b43legacy_power_saving_ctl_bits(dev, -1, -1); ldv_spin_lock_irq_62(& (dev->wl)->irq_lock); b43legacy_write32(dev, 300, dev->irq_mask); ldv_spin_unlock_irq_63(& (dev->wl)->irq_lock); } } else { } return; } } void b43legacy_mac_suspend(struct b43legacy_wldev *dev ) { int i ; u32 tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; int __ret_warn_on___0 ; long tmp___2 ; u32 tmp___3 ; { { __might_sleep("drivers/net/wireless/b43legacy/main.c", 2000, 0); _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 2001); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); __ret_warn_on___0 = dev->mac_suspended < 0; tmp___2 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___2 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 2002); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (dev->mac_suspended == 0) { { ldv_spin_lock_irq_62(& (dev->wl)->irq_lock); b43legacy_write32(dev, 300, 0U); ldv_spin_unlock_irq_63(& (dev->wl)->irq_lock); b43legacy_synchronize_irq(dev); b43legacy_power_saving_ctl_bits(dev, -1, 1); tmp___3 = b43legacy_read32(dev, 288); b43legacy_write32(dev, 288, tmp___3 & 4294967294U); b43legacy_read32(dev, 296); i = 40; } goto ldv_53296; ldv_53295: { tmp = b43legacy_read32(dev, 296); } if ((int )tmp & 1) { goto out; } else { } { msleep(1U); i = i - 1; } ldv_53296: ; if (i != 0) { goto ldv_53295; } else { } { b43legacyerr(dev->wl, "MAC suspend failed\n"); } } else { } out: dev->mac_suspended = dev->mac_suspended + 1; return; } } static void b43legacy_adjust_opmode(struct b43legacy_wldev *dev ) { struct b43legacy_wl *wl ; u32 ctl ; u16 cfp_pretbtt ; int tmp ; int tmp___0 ; { { wl = dev->wl; ctl = b43legacy_read32(dev, 288); ctl = ctl & 4294705151U; ctl = ctl & 4290772991U; ctl = ctl & 4292870143U; ctl = ctl & 4286578687U; ctl = ctl & 4278190079U; ctl = ctl & 4293918719U; ctl = ctl | 131072U; tmp___0 = b43legacy_is_mode(wl, 3); } if (tmp___0 != 0) { ctl = ctl | 262144U; } else { { tmp = b43legacy_is_mode(wl, 1); } if (tmp != 0) { ctl = ctl & 4294836223U; } else { } } if ((wl->filter_flags & 32U) != 0U) { ctl = ctl | 4194304U; } else { } if ((wl->filter_flags & 4U) != 0U) { ctl = ctl | 8388608U; } else { } if ((wl->filter_flags & 8U) != 0U) { ctl = ctl | 2097152U; } else { } if ((int )wl->filter_flags & 1) { ctl = ctl | 16777216U; } else { } if ((wl->filter_flags & 16U) != 0U) { ctl = ctl | 1048576U; } else { } if ((unsigned int )(dev->dev)->id.revision <= 4U) { ctl = ctl | 16777216U; } else { } { b43legacy_write32(dev, 288, ctl); cfp_pretbtt = 2U; } if ((ctl & 393216U) == 131072U) { if (*((unsigned int *)(dev->dev)->bus + 74UL) == 213766U) { cfp_pretbtt = 100U; } else { cfp_pretbtt = 50U; } } else { } { b43legacy_write16(dev, 1554, (int )cfp_pretbtt); } return; } } static void b43legacy_rate_memory_write(struct b43legacy_wldev *dev , u16 rate , int is_ofdm ) { u16 offset ; u8 tmp ; u8 tmp___0 ; u16 tmp___1 ; { if (is_ofdm != 0) { { offset = 1152U; tmp = b43legacy_plcp_get_ratecode_ofdm((int )((u8 const )rate)); offset = (unsigned int )offset + ((unsigned int )((u16 )tmp) & 15U) * 2U; } } else { { offset = 1216U; tmp___0 = b43legacy_plcp_get_ratecode_cck((int )((u8 const )rate)); offset = (unsigned int )offset + ((unsigned int )((u16 )tmp___0) & 15U) * 2U; } } { tmp___1 = b43legacy_shm_read16(dev, 1, (int )offset); b43legacy_shm_write16(dev, 1, (int )((unsigned int )offset + 32U), (int )tmp___1); } return; } } static void b43legacy_rate_memory_init(struct b43legacy_wldev *dev ) { { { if ((int )dev->phy.type == 2) { goto case_2; } else { } if ((int )dev->phy.type == 1) { goto case_1; } else { } goto switch_default; case_2: /* CIL Label */ { b43legacy_rate_memory_write(dev, 12, 1); b43legacy_rate_memory_write(dev, 24, 1); b43legacy_rate_memory_write(dev, 36, 1); b43legacy_rate_memory_write(dev, 48, 1); b43legacy_rate_memory_write(dev, 72, 1); b43legacy_rate_memory_write(dev, 96, 1); b43legacy_rate_memory_write(dev, 108, 1); } case_1: /* CIL Label */ { b43legacy_rate_memory_write(dev, 2, 0); b43legacy_rate_memory_write(dev, 4, 0); b43legacy_rate_memory_write(dev, 11, 0); b43legacy_rate_memory_write(dev, 22, 0); } goto ldv_53315; switch_default: /* CIL Label */ { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/main.c"), "i" (2120), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_53315: ; return; } } static void b43legacy_mgmtframe_txantenna(struct b43legacy_wldev *dev , int antenna ) { u16 ant ; u16 tmp ; { ant = 0U; { if (antenna == 0) { goto case_0; } else { } if (antenna == 1) { goto case_1; } else { } if (antenna == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ ant = ant; goto ldv_53324; case_1: /* CIL Label */ ant = (u16 )((unsigned int )ant | 256U); goto ldv_53324; case_3: /* CIL Label */ ant = (u16 )((unsigned int )ant | 768U); goto ldv_53324; switch_default: /* CIL Label */ { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/main.c"), "i" (2142), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_53324: { tmp = b43legacy_shm_read16(dev, 1, 84); tmp = (u16 )(((int )((short )tmp) & -961) | (int )((short )ant)); b43legacy_shm_write16(dev, 1, 84, (int )tmp); tmp = b43legacy_shm_read16(dev, 1, 34); tmp = (u16 )(((int )((short )tmp) & -961) | (int )((short )ant)); b43legacy_shm_write16(dev, 1, 34, (int )tmp); tmp = b43legacy_shm_read16(dev, 1, 392); tmp = (u16 )(((int )((short )tmp) & -961) | (int )((short )ant)); b43legacy_shm_write16(dev, 1, 392, (int )tmp); } return; } } static void b43legacy_chip_exit(struct b43legacy_wldev *dev ) { { { b43legacy_radio_turn_off(dev, 1); b43legacy_gpio_cleanup(dev); } return; } } static int b43legacy_chip_init(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; int err ; int tmp ; u32 value32 ; u32 macctl ; u16 value16 ; int tmp___0 ; int __ret_warn_on ; long tmp___1 ; { phy = & dev->phy; macctl = 1280U; if ((int )dev->phy.gmode) { macctl = macctl | 2147483648U; } else { } { macctl = macctl | 131072U; b43legacy_write32(dev, 288, macctl); err = b43legacy_upload_microcode(dev); } if (err != 0) { goto out; } else { } { err = b43legacy_gpio_init(dev); } if (err != 0) { goto out; } else { } { err = b43legacy_upload_initvals(dev); } if (err != 0) { goto err_gpio_clean; } else { } { b43legacy_radio_turn_on(dev); b43legacy_write16(dev, 998, 0); err = b43legacy_phy_init(dev); } if (err != 0) { goto err_radio_off; } else { } { tmp = phy->interfmode; phy->interfmode = 0; b43legacy_radio_set_interference_mitigation(dev, tmp); b43legacy_phy_set_antenna_diversity(dev); b43legacy_mgmtframe_txantenna(dev, 3); } if ((unsigned int )phy->type == 1U) { { value16 = b43legacy_read16(dev, 94); value16 = (u16 )((unsigned int )value16 | 4U); b43legacy_write16(dev, 94, (int )value16); } } else { } { b43legacy_write32(dev, 256, 16777216U); } if ((unsigned int )(dev->dev)->id.revision <= 4U) { { b43legacy_write32(dev, 268, 16777216U); } } else { } { value32 = b43legacy_read32(dev, 288); value32 = value32 & 4294836223U; b43legacy_write32(dev, 288, value32); value32 = b43legacy_read32(dev, 288); value32 = value32 | 131072U; b43legacy_write32(dev, 288, value32); tmp___0 = b43legacy_using_pio(dev); } if (tmp___0 != 0) { { b43legacy_write32(dev, 528, 256U); b43legacy_write32(dev, 560, 256U); b43legacy_write32(dev, 592, 256U); b43legacy_write32(dev, 624, 256U); b43legacy_shm_write16(dev, 1, 52, 0); } } else { } { b43legacy_shm_write16(dev, 1, 116, 0); b43legacy_adjust_opmode(dev); } if ((unsigned int )(dev->dev)->id.revision <= 2U) { { b43legacy_write16(dev, 1550, 0); b43legacy_write16(dev, 1552, 32768); b43legacy_write16(dev, 1540, 0); b43legacy_write16(dev, 1542, 512); } } else { { b43legacy_write32(dev, 392, 2147483648U); b43legacy_write32(dev, 396, 33554432U); } } { b43legacy_write32(dev, 296, 16384U); b43legacy_write32(dev, 36, 121856U); b43legacy_write32(dev, 44, 56320U); b43legacy_write32(dev, 52, 56320U); b43legacy_write32(dev, 60, 121856U); b43legacy_write32(dev, 68, 56320U); b43legacy_write32(dev, 76, 56320U); value32 = ssb_read32(dev->dev, 3992); value32 = value32 | 1048576U; ssb_write32(dev->dev, 3992, value32); b43legacy_write16(dev, 1704, (int )((dev->dev)->bus)->chipco.fast_pwrup_delay); atomic_set(& phy->txerr_cnt, 1000); __ret_warn_on = err != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 2279); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); b43legacydbg(dev->wl, "Chip initialized\n"); } out: ; return (err); err_radio_off: { b43legacy_radio_turn_off(dev, 1); } err_gpio_clean: { b43legacy_gpio_cleanup(dev); } goto out; } } static void b43legacy_periodic_every120sec(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; { phy = & dev->phy; if ((unsigned int )phy->type != 2U || (unsigned int )phy->rev <= 1U) { return; } else { } { b43legacy_mac_suspend(dev); b43legacy_phy_lo_g_measure(dev); b43legacy_mac_enable(dev); } return; } } static void b43legacy_periodic_every60sec(struct b43legacy_wldev *dev ) { { { b43legacy_phy_lo_mark_all_unused(dev); } if (((int )((dev->dev)->bus)->sprom.boardflags_lo & 8) != 0) { { b43legacy_mac_suspend(dev); b43legacy_calc_nrssi_slope(dev); b43legacy_mac_enable(dev); } } else { } return; } } static void b43legacy_periodic_every30sec(struct b43legacy_wldev *dev ) { { { b43legacy_calculate_link_quality(dev); } return; } } static void b43legacy_periodic_every15sec(struct b43legacy_wldev *dev ) { { { b43legacy_phy_xmitpower(dev); atomic_set(& dev->phy.txerr_cnt, 1000); __asm__ volatile ("sfence": : : "memory"); } return; } } static void do_periodic_work(struct b43legacy_wldev *dev ) { unsigned int state ; { state = dev->periodic_state; if ((state & 7U) == 0U) { { b43legacy_periodic_every120sec(dev); } } else { } if ((state & 3U) == 0U) { { b43legacy_periodic_every60sec(dev); } } else { } if ((state & 1U) == 0U) { { b43legacy_periodic_every30sec(dev); } } else { } { b43legacy_periodic_every15sec(dev); } return; } } static void b43legacy_periodic_work_handler(struct work_struct *work ) { struct b43legacy_wldev *dev ; struct work_struct const *__mptr ; struct b43legacy_wl *wl ; unsigned long delay ; int tmp ; long tmp___0 ; int tmp___1 ; int tmp___2 ; { { __mptr = (struct work_struct const *)work; dev = (struct b43legacy_wldev *)__mptr + 0xfffffffffffff540UL; wl = dev->wl; mutex_lock_nested(& wl->mutex, 0U); tmp = atomic_read((atomic_t const *)(& dev->__init_status)); tmp___0 = ldv__builtin_expect(tmp != 2, 0L); } if (tmp___0 != 0L) { goto out; } else { } { tmp___1 = b43legacy_debug(dev, 4); } if (tmp___1 != 0) { goto out_requeue; } else { } { do_periodic_work(dev); dev->periodic_state = dev->periodic_state + 1U; } out_requeue: { tmp___2 = b43legacy_debug(dev, 3); } if (tmp___2 != 0) { { delay = msecs_to_jiffies(50U); } } else { { delay = round_jiffies_relative(3750UL); } } { ieee80211_queue_delayed_work(wl->hw, & dev->periodic_work, delay); } out: { mutex_unlock(& wl->mutex); } return; } } static void b43legacy_periodic_tasks_setup(struct b43legacy_wldev *dev ) { struct delayed_work *work ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; { { work = & dev->periodic_work; dev->periodic_state = 0U; __init_work(& work->work, 0); __constr_expr_0.counter = 137438953408L; work->work.data = __constr_expr_0; lockdep_init_map(& work->work.lockdep_map, "(&(work)->work)", & __key, 0); INIT_LIST_HEAD(& work->work.entry); work->work.func = & b43legacy_periodic_work_handler; init_timer_key(& work->timer, 2U, "(&(work)->timer)", & __key___0); work->timer.function = & delayed_work_timer_fn; work->timer.data = (unsigned long )work; ieee80211_queue_delayed_work((dev->wl)->hw, work, 0UL); } return; } } static int b43legacy_validate_chipaccess(struct b43legacy_wldev *dev ) { u32 value ; u32 shm_backup ; u32 tmp ; u32 tmp___0 ; { { shm_backup = b43legacy_shm_read32(dev, 1, 0); b43legacy_shm_write32(dev, 1, 0, 2857719210U); tmp = b43legacy_shm_read32(dev, 1, 0); } if (tmp != 2857719210U) { goto error; } else { } { b43legacy_shm_write32(dev, 1, 0, 1437248085U); tmp___0 = b43legacy_shm_read32(dev, 1, 0); } if (tmp___0 != 1437248085U) { goto error; } else { } { b43legacy_shm_write32(dev, 1, 0, shm_backup); value = b43legacy_read32(dev, 288); } if ((value | 2147483648U) != 2147484672U) { goto error; } else { } { value = b43legacy_read32(dev, 296); } if (value != 0U) { goto error; } else { } return (0); error: { b43legacyerr(dev->wl, "Failed to validate the chipaccess\n"); } return (-19); } } static void b43legacy_security_init(struct b43legacy_wldev *dev ) { int __ret_warn_on ; long tmp ; { { dev->max_nr_keys = (unsigned int )(dev->dev)->id.revision > 4U ? 58U : 20U; __ret_warn_on = (unsigned int )dev->max_nr_keys > 58U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 2417); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); dev->ktp = b43legacy_shm_read16(dev, 1, 86); dev->ktp = (unsigned int )dev->ktp * 2U; } if ((unsigned int )(dev->dev)->id.revision > 4U) { { b43legacy_write16(dev, 1084, (int )((unsigned int )((u16 )dev->max_nr_keys) + 65528U)); } } else { } return; } } static int b43legacy_rng_read(struct hwrng *rng , u32 *data ) { struct b43legacy_wl *wl ; unsigned long flags ; u16 tmp ; { { wl = (struct b43legacy_wl *)rng->priv; ldv___ldv_spin_lock_73(& wl->irq_lock); tmp = b43legacy_read16(wl->current_dev, 1626); *data = (u32 )tmp; ldv_spin_unlock_irqrestore_65(& wl->irq_lock, flags); } return (2); } } static void b43legacy_rng_exit(struct b43legacy_wl *wl ) { { if ((unsigned int )wl->rng_initialized != 0U) { { hwrng_unregister(& wl->rng); } } else { } return; } } static int b43legacy_rng_init(struct b43legacy_wl *wl ) { int err ; char const *tmp ; { { err = 0; tmp = wiphy_name((struct wiphy const *)(wl->hw)->wiphy); snprintf((char *)(& wl->rng_name), 31UL, "%s_%s", (char *)"b43legacy", tmp); wl->rng.name = (char const *)(& wl->rng_name); wl->rng.data_read = & b43legacy_rng_read; wl->rng.priv = (unsigned long )wl; wl->rng_initialized = 1U; err = hwrng_register(& wl->rng); } if (err != 0) { { wl->rng_initialized = 0U; b43legacyerr(wl, "Failed to register the random number generator (%d)\n", err); } } else { } return (err); } } static void b43legacy_tx_work(struct work_struct *work ) { struct b43legacy_wl *wl ; struct work_struct const *__mptr ; struct b43legacy_wldev *dev ; struct sk_buff *skb ; int queue_num ; int err ; long tmp ; int tmp___0 ; long tmp___1 ; int tmp___2 ; long tmp___3 ; __u32 tmp___4 ; { { __mptr = (struct work_struct const *)work; wl = (struct b43legacy_wl *)__mptr + 0xfffffffffffffd30UL; err = 0; mutex_lock_nested(& wl->mutex, 0U); dev = wl->current_dev; tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct b43legacy_wldev *)0), 0L); } if (tmp != 0L) { { mutex_unlock(& wl->mutex); } return; } else { { tmp___0 = atomic_read((atomic_t const *)(& dev->__init_status)); tmp___1 = ldv__builtin_expect(tmp___0 <= 1, 0L); } if (tmp___1 != 0L) { { mutex_unlock(& wl->mutex); } return; } else { } } queue_num = 0; goto ldv_53421; ldv_53420: ; goto ldv_53419; ldv_53418: { skb = skb_dequeue((struct sk_buff_head *)(& wl->tx_queue) + (unsigned long )queue_num); tmp___2 = b43legacy_using_pio(dev); } if (tmp___2 != 0) { { err = b43legacy_pio_tx(dev, skb); } } else { { err = b43legacy_dma_tx(dev, skb); } } if (err == -28) { { wl->tx_queue_stopped[queue_num] = 1; ieee80211_stop_queue(wl->hw, queue_num); skb_queue_head((struct sk_buff_head *)(& wl->tx_queue) + (unsigned long )queue_num, skb); } goto ldv_53417; } else { } { tmp___3 = ldv__builtin_expect(err != 0, 0L); } if (tmp___3 != 0L) { { consume_skb(skb); } } else { } err = 0; ldv_53419: { tmp___4 = skb_queue_len((struct sk_buff_head const *)(& wl->tx_queue) + (unsigned long )queue_num); } if (tmp___4 != 0U) { goto ldv_53418; } else { } ldv_53417: ; if (err == 0) { wl->tx_queue_stopped[queue_num] = 0; } else { } queue_num = queue_num + 1; ldv_53421: ; if (queue_num <= 3) { goto ldv_53420; } else { } { mutex_unlock(& wl->mutex); } return; } } static void b43legacy_op_tx(struct ieee80211_hw *hw , struct ieee80211_tx_control *control , struct sk_buff *skb ) { struct b43legacy_wl *wl ; struct b43legacy_wl *tmp ; long tmp___0 ; int __ret_warn_on ; unsigned char *tmp___1 ; long tmp___2 ; { { tmp = hw_to_b43legacy_wl(hw); wl = tmp; tmp___0 = ldv__builtin_expect(skb->len <= 9U, 0L); } if (tmp___0 != 0L) { { dev_kfree_skb_any(skb); } return; } else { } { tmp___1 = skb_end_pointer((struct sk_buff const *)skb); __ret_warn_on = (unsigned int )((struct skb_shared_info *)tmp___1)->nr_frags != 0U; tmp___2 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___2 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 2530); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); skb_queue_tail((struct sk_buff_head *)(& wl->tx_queue) + (unsigned long )skb->queue_mapping, skb); } if (! wl->tx_queue_stopped[(int )skb->queue_mapping]) { { ieee80211_queue_work(wl->hw, & wl->tx_work); } } else { { ieee80211_stop_queue(wl->hw, (int )skb->queue_mapping); } } return; } } static int b43legacy_op_conf_tx(struct ieee80211_hw *hw , struct ieee80211_vif *vif , u16 queue , struct ieee80211_tx_queue_params const *params ) { { return (0); } } static int b43legacy_op_get_stats(struct ieee80211_hw *hw , struct ieee80211_low_level_stats *stats ) { struct b43legacy_wl *wl ; struct b43legacy_wl *tmp ; unsigned long flags ; { { tmp = hw_to_b43legacy_wl(hw); wl = tmp; ldv___ldv_spin_lock_75(& wl->irq_lock); memcpy((void *)stats, (void const *)(& wl->ieee_stats), 16UL); ldv_spin_unlock_irqrestore_65(& wl->irq_lock, flags); } return (0); } } static char const *phymode_to_string(unsigned int phymode ) { { { if (phymode == 2U) { goto case_2; } else { } if (phymode == 4U) { goto case_4; } else { } goto switch_default; case_2: /* CIL Label */ ; return ("B"); case_4: /* CIL Label */ ; return ("G"); switch_default: /* CIL Label */ { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/main.c"), "i" (2567), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } return (""); } } static int find_wldev_for_phymode(struct b43legacy_wl *wl , unsigned int phymode , struct b43legacy_wldev **dev , bool *gmode ) { struct b43legacy_wldev *d ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { __mptr = (struct list_head const *)wl->devlist.next; d = (struct b43legacy_wldev *)__mptr + 0xffffffffffffefd0UL; goto ldv_53461; ldv_53460: ; if (((unsigned int )d->phy.possible_phymodes & phymode) != 0U) { *gmode = 1; *dev = d; return (0); } else { } __mptr___0 = (struct list_head const *)d->list.next; d = (struct b43legacy_wldev *)__mptr___0 + 0xffffffffffffefd0UL; ldv_53461: ; if ((unsigned long )(& d->list) != (unsigned long )(& wl->devlist)) { goto ldv_53460; } else { } return (-3); } } static void b43legacy_put_phy_into_reset(struct b43legacy_wldev *dev ) { struct ssb_device *sdev ; u32 tmslow ; { { sdev = dev->dev; tmslow = ssb_read32(sdev, 3992); tmslow = tmslow & 3758096383U; tmslow = tmslow | 524288U; tmslow = tmslow | 131072U; ssb_write32(sdev, 3992, tmslow); msleep(1U); tmslow = ssb_read32(sdev, 3992); tmslow = tmslow & 4294836223U; tmslow = tmslow | 524288U; ssb_write32(sdev, 3992, tmslow); msleep(1U); } return; } } static int b43legacy_switch_phymode(struct b43legacy_wl *wl , unsigned int new_mode ) { struct b43legacy_wldev *up_dev ; struct b43legacy_wldev *down_dev ; int err ; bool gmode ; int prev_status ; char const *tmp ; char const *tmp___0 ; char const *tmp___1 ; char const *tmp___2 ; int __ret_warn_on ; int tmp___3 ; long tmp___4 ; { { up_dev = up_dev; gmode = 0; err = find_wldev_for_phymode(wl, new_mode, & up_dev, & gmode); } if (err != 0) { { tmp = phymode_to_string(new_mode); b43legacyerr(wl, "Could not find a device for %s-PHY mode\n", tmp); } return (err); } else { } if ((unsigned long )up_dev == (unsigned long )wl->current_dev && (int )(wl->current_dev)->phy.gmode == (int )gmode) { return (0); } else { } { tmp___0 = phymode_to_string(new_mode); b43legacydbg(wl, "Reconfiguring PHYmode to %s-PHY\n", tmp___0); down_dev = wl->current_dev; prev_status = atomic_read((atomic_t const *)(& down_dev->__init_status)); } if (prev_status > 1) { { b43legacy_wireless_core_stop(down_dev); } } else { } if (prev_status > 0) { { b43legacy_wireless_core_exit(down_dev); } } else { } if ((unsigned long )down_dev != (unsigned long )up_dev) { { b43legacy_put_phy_into_reset(down_dev); } } else { } up_dev->phy.gmode = gmode; if (prev_status > 0) { { err = b43legacy_wireless_core_init(up_dev); } if (err != 0) { { tmp___1 = phymode_to_string(new_mode); b43legacyerr(wl, "Fatal: Could not initialize device for newly selected %s-PHY mode\n", tmp___1); } goto init_failure; } else { } } else { } if (prev_status > 1) { { err = b43legacy_wireless_core_start(up_dev); } if (err != 0) { { tmp___2 = phymode_to_string(new_mode); b43legacyerr(wl, "Fatal: Could not start device for newly selected %s-PHY mode\n", tmp___2); b43legacy_wireless_core_exit(up_dev); } goto init_failure; } else { } } else { } { tmp___3 = atomic_read((atomic_t const *)(& up_dev->__init_status)); __ret_warn_on = tmp___3 != prev_status; tmp___4 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___4 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 2669); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); b43legacy_shm_write32(up_dev, 1, 62, 0U); wl->current_dev = up_dev; } return (0); init_failure: wl->current_dev = (struct b43legacy_wldev *)0; return (err); } } static void b43legacy_set_retry_limits(struct b43legacy_wldev *dev , unsigned int short_retry , unsigned int long_retry ) { unsigned int _min1 ; unsigned int _min2 ; unsigned int _min1___0 ; unsigned int _min2___0 ; { { _min1 = short_retry; _min2 = 15U; short_retry = _min1 < _min2 ? _min1 : _min2; _min1___0 = long_retry; _min2___0 = 15U; long_retry = _min1___0 < _min2___0 ? _min1___0 : _min2___0; b43legacy_shm_write16(dev, 2, 6, (int )((u16 )short_retry)); b43legacy_shm_write16(dev, 2, 7, (int )((u16 )long_retry)); } return; } } static int b43legacy_op_dev_config(struct ieee80211_hw *hw , u32 changed ) { struct b43legacy_wl *wl ; struct b43legacy_wl *tmp ; struct b43legacy_wldev *dev ; struct b43legacy_phy *phy ; struct ieee80211_conf *conf ; unsigned long flags ; unsigned int new_phymode ; int antenna_tx ; int err ; int __ret_warn_on ; long tmp___0 ; int tmp___1 ; { { tmp = hw_to_b43legacy_wl(hw); wl = tmp; conf = & hw->conf; new_phymode = 65535U; err = 0; antenna_tx = 3; mutex_lock_nested(& wl->mutex, 0U); dev = wl->current_dev; phy = & dev->phy; } if ((changed & 128U) != 0U) { { b43legacy_set_retry_limits(dev, (unsigned int )conf->short_frame_max_tx_count, (unsigned int )conf->long_frame_max_tx_count); } } else { } changed = changed & 4294967167U; if (changed == 0U) { goto out_unlock_mutex; } else { } { if ((unsigned int )(conf->chandef.chan)->band == 0U) { goto case_0; } else { } goto switch_default; case_0: /* CIL Label */ ; if ((unsigned int )phy->type == 1U) { new_phymode = 2U; } else { new_phymode = 4U; } goto ldv_53505; switch_default: /* CIL Label */ { __ret_warn_on = 1; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 2731); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } switch_break: /* CIL Label */ ; } ldv_53505: { err = b43legacy_switch_phymode(wl, new_phymode); } if (err != 0) { goto out_unlock_mutex; } else { } { ldv___ldv_spin_lock_77(& wl->irq_lock); tmp___1 = atomic_read((atomic_t const *)(& dev->__init_status)); } if (tmp___1 <= 1) { { ldv_spin_unlock_irqrestore_65(& wl->irq_lock, flags); } goto out_unlock_mutex; } else { } { b43legacy_write32(dev, 300, 0U); ldv_spin_unlock_irqrestore_65(& wl->irq_lock, flags); b43legacy_synchronize_irq(dev); } if ((int )(conf->chandef.chan)->hw_value != (int )((unsigned short )phy->channel)) { { b43legacy_radio_selectchannel(dev, (int )((u8 )(conf->chandef.chan)->hw_value), 0); } } else { } (dev->wl)->radiotap_enabled = ((int )conf->flags & 1) != 0; if (conf->power_level != 0) { if (conf->power_level != (int )phy->power_level) { { phy->power_level = (u8 )conf->power_level; b43legacy_phy_xmitpower(dev); } } else { } } else { } { b43legacy_mgmtframe_txantenna(dev, antenna_tx); } if ((int )wl->radio_enabled != (int )phy->radio_on) { if ((int )wl->radio_enabled) { { b43legacy_radio_turn_on(dev); b43legacyinfo(dev->wl, "Radio turned on by software\n"); } if (! dev->radio_hw_enable) { { b43legacyinfo(dev->wl, "The hardware RF-kill button still turns the radio physically off. Press the button to turn it on.\n"); } } else { } } else { { b43legacy_radio_turn_off(dev, 0); b43legacyinfo(dev->wl, "Radio turned off by software\n"); } } } else { } { ldv___ldv_spin_lock_80(& wl->irq_lock); b43legacy_write32(dev, 300, dev->irq_mask); __asm__ volatile ("": : : "memory"); ldv_spin_unlock_irqrestore_65(& wl->irq_lock, flags); } out_unlock_mutex: { mutex_unlock(& wl->mutex); } return (err); } } static void b43legacy_update_basic_rates(struct b43legacy_wldev *dev , u32 brates ) { struct ieee80211_supported_band *sband ; struct ieee80211_rate *rate ; int i ; u16 basic ; u16 direct ; u16 offset ; u16 basic_offset ; u16 rateptr ; u8 tmp ; u8 tmp___0 ; int tmp___1 ; u8 tmp___2 ; u8 tmp___3 ; int tmp___4 ; { sband = (((dev->wl)->hw)->wiphy)->bands[0]; i = 0; goto ldv_53522; ldv_53521: { rate = sband->bitrates + (unsigned long )i; tmp___1 = b43legacy_is_cck_rate((int )rate->hw_value); } if (tmp___1 != 0) { { direct = 1216U; basic = 1248U; tmp = b43legacy_plcp_get_ratecode_cck((int )((u8 const )rate->hw_value)); offset = (u16 )tmp; offset = (unsigned int )offset & 15U; } } else { { direct = 1152U; basic = 1184U; tmp___0 = b43legacy_plcp_get_ratecode_ofdm((int )((u8 const )rate->hw_value)); offset = (u16 )tmp___0; offset = (unsigned int )offset & 15U; } } { rate = ieee80211_get_response_rate(sband, brates, (int )rate->bitrate); tmp___4 = b43legacy_is_cck_rate((int )rate->hw_value); } if (tmp___4 != 0) { { tmp___2 = b43legacy_plcp_get_ratecode_cck((int )((u8 const )rate->hw_value)); basic_offset = (u16 )tmp___2; basic_offset = (unsigned int )basic_offset & 15U; } } else { { tmp___3 = b43legacy_plcp_get_ratecode_ofdm((int )((u8 const )rate->hw_value)); basic_offset = (u16 )tmp___3; basic_offset = (unsigned int )basic_offset & 15U; } } { rateptr = b43legacy_shm_read16(dev, 1, (int )((unsigned int )direct + (unsigned int )basic_offset * 2U)); b43legacy_shm_write16(dev, 1, (int )((unsigned int )basic + (unsigned int )offset * 2U), (int )rateptr); i = i + 1; } ldv_53522: ; if (i < sband->n_bitrates) { goto ldv_53521; } else { } return; } } static void b43legacy_op_bss_info_changed(struct ieee80211_hw *hw , struct ieee80211_vif *vif , struct ieee80211_bss_conf *conf , u32 changed ) { struct b43legacy_wl *wl ; struct b43legacy_wl *tmp ; struct b43legacy_wldev *dev ; unsigned long flags ; int __ret_warn_on ; long tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; { { tmp = hw_to_b43legacy_wl(hw); wl = tmp; mutex_lock_nested(& wl->mutex, 0U); __ret_warn_on = (unsigned long )wl->vif != (unsigned long )vif; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 2849); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); dev = wl->current_dev; ldv___ldv_spin_lock_82(& wl->irq_lock); tmp___1 = atomic_read((atomic_t const *)(& dev->__init_status)); } if (tmp___1 <= 1) { { ldv_spin_unlock_irqrestore_65(& wl->irq_lock, flags); } goto out_unlock_mutex; } else { } { b43legacy_write32(dev, 300, 0U); } if ((changed & 128U) != 0U) { { b43legacy_synchronize_irq(dev); } if ((unsigned long )conf->bssid != (unsigned long )((u8 const *)0U)) { { memcpy((void *)(& wl->bssid), (void const *)conf->bssid, 6UL); } } else { { memset((void *)(& wl->bssid), 0, 6UL); } } } else { } { tmp___4 = atomic_read((atomic_t const *)(& dev->__init_status)); } if (tmp___4 > 0) { if ((changed & 256U) != 0U) { { tmp___2 = b43legacy_is_mode(wl, 3); } if (tmp___2 != 0) { { b43legacy_update_templates(wl); } } else { { tmp___3 = b43legacy_is_mode(wl, 1); } if (tmp___3 != 0) { { b43legacy_update_templates(wl); } } else { } } } else { } if ((changed & 128U) != 0U) { { b43legacy_write_mac_bssid_templates(dev); } } else { } } else { } { ldv_spin_unlock_irqrestore_65(& wl->irq_lock, flags); b43legacy_mac_suspend(dev); } if ((changed & 64U) != 0U) { { tmp___5 = b43legacy_is_mode(wl, 3); } if (tmp___5 != 0) { { b43legacy_set_beacon_int(dev, (int )conf->beacon_int); } } else { { tmp___6 = b43legacy_is_mode(wl, 1); } if (tmp___6 != 0) { { b43legacy_set_beacon_int(dev, (int )conf->beacon_int); } } else { } } } else { } if ((changed & 32U) != 0U) { { b43legacy_update_basic_rates(dev, conf->basic_rates); } } else { } if ((changed & 8U) != 0U) { if ((int )conf->use_short_slot) { { b43legacy_short_slot_timing_enable(dev); } } else { { b43legacy_short_slot_timing_disable(dev); } } } else { } { b43legacy_mac_enable(dev); ldv___ldv_spin_lock_85(& wl->irq_lock); b43legacy_write32(dev, 300, dev->irq_mask); __asm__ volatile ("": : : "memory"); ldv_spin_unlock_irqrestore_65(& wl->irq_lock, flags); } out_unlock_mutex: { mutex_unlock(& wl->mutex); } return; } } static void b43legacy_op_configure_filter(struct ieee80211_hw *hw , unsigned int changed , unsigned int *fflags , u64 multicast ) { struct b43legacy_wl *wl ; struct b43legacy_wl *tmp ; struct b43legacy_wldev *dev ; unsigned long flags ; int tmp___0 ; { { tmp = hw_to_b43legacy_wl(hw); wl = tmp; dev = wl->current_dev; } if ((unsigned long )dev == (unsigned long )((struct b43legacy_wldev *)0)) { *fflags = 0U; return; } else { } { ldv___ldv_spin_lock_87(& wl->irq_lock); *fflags = *fflags & 127U; changed = changed & 127U; wl->filter_flags = *fflags; } if (changed != 0U) { { tmp___0 = atomic_read((atomic_t const *)(& dev->__init_status)); } if (tmp___0 > 0) { { b43legacy_adjust_opmode(dev); } } else { } } else { } { ldv_spin_unlock_irqrestore_65(& wl->irq_lock, flags); } return; } } static void b43legacy_wireless_core_stop(struct b43legacy_wldev *dev ) { struct b43legacy_wl *wl ; unsigned long flags ; int queue_num ; int tmp ; struct sk_buff *tmp___0 ; __u32 tmp___1 ; { { wl = dev->wl; tmp = atomic_read((atomic_t const *)(& dev->__init_status)); } if (tmp <= 1) { return; } else { } { ldv___ldv_spin_lock_89(& wl->irq_lock); b43legacy_write32(dev, 300, 0U); b43legacy_read32(dev, 300); ldv_spin_unlock_irqrestore_65(& wl->irq_lock, flags); b43legacy_synchronize_irq(dev); atomic_set(& dev->__init_status, 1); __asm__ volatile ("": : : "memory"); mutex_unlock(& wl->mutex); cancel_delayed_work_sync(& dev->periodic_work); cancel_work_sync(& wl->tx_work); mutex_lock_nested(& wl->mutex, 0U); queue_num = 0; } goto ldv_53555; ldv_53554: ; goto ldv_53552; ldv_53551: { tmp___0 = skb_dequeue((struct sk_buff_head *)(& wl->tx_queue) + (unsigned long )queue_num); consume_skb(tmp___0); } ldv_53552: { tmp___1 = skb_queue_len((struct sk_buff_head const *)(& wl->tx_queue) + (unsigned long )queue_num); } if (tmp___1 != 0U) { goto ldv_53551; } else { } queue_num = queue_num + 1; ldv_53555: ; if (queue_num <= 3) { goto ldv_53554; } else { } { b43legacy_mac_suspend(dev); ldv_free_irq_91((dev->dev)->irq, (void *)dev); b43legacydbg(wl, "Wireless interface stopped\n"); } return; } } static int b43legacy_wireless_core_start(struct b43legacy_wldev *dev ) { int err ; int __ret_warn_on ; int tmp ; long tmp___0 ; { { tmp = atomic_read((atomic_t const *)(& dev->__init_status)); __ret_warn_on = tmp != 1; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 2992); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); drain_txstatus_queue(dev); err = ldv_request_irq_92((dev->dev)->irq, & b43legacy_interrupt_handler, 128UL, "b43legacy", (void *)dev); } if (err != 0) { { b43legacyerr(dev->wl, "Cannot request IRQ-%d\n", (dev->dev)->irq); } goto out; } else { } { ieee80211_wake_queues((dev->wl)->hw); atomic_set(& dev->__init_status, 2); __asm__ volatile ("": : : "memory"); b43legacy_mac_enable(dev); b43legacy_write32(dev, 300, dev->irq_mask); b43legacy_periodic_tasks_setup(dev); b43legacydbg(dev->wl, "Wireless interface started\n"); } out: ; return (err); } } static int b43legacy_phy_versioning(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u32 tmp ; u8 analog_type ; u8 phy_type ; u8 phy_rev ; u16 radio_manuf ; u16 radio_ver ; u16 radio_rev ; int unsupported ; u16 tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; { { phy = & dev->phy; unsupported = 0; tmp___0 = b43legacy_read16(dev, 992); tmp = (u32 )tmp___0; analog_type = (u8 )((tmp & 61440U) >> 12); phy_type = (u8 )((tmp & 3840U) >> 8); phy_rev = (u8 )tmp; } { if ((int )phy_type == 1) { goto case_1; } else { } if ((int )phy_type == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ ; if (((unsigned int )phy_rev != 2U && (unsigned int )phy_rev != 4U) && ((unsigned int )phy_rev != 6U && (unsigned int )phy_rev != 7U)) { unsupported = 1; } else { } goto ldv_53577; case_2: /* CIL Label */ ; if ((unsigned int )phy_rev > 8U) { unsupported = 1; } else { } goto ldv_53577; switch_default: /* CIL Label */ unsupported = 1; switch_break: /* CIL Label */ ; } ldv_53577: ; if (unsupported != 0) { { b43legacyerr(dev->wl, "FOUND UNSUPPORTED PHY (Analog %u, Type %u, Revision %u)\n", (int )analog_type, (int )phy_type, (int )phy_rev); } return (-95); } else { } { b43legacydbg(dev->wl, "Found PHY: Analog %u, Type %u, Revision %u\n", (int )analog_type, (int )phy_type, (int )phy_rev); } if ((unsigned int )((dev->dev)->bus)->chip_id == 17175U) { if ((unsigned int )((dev->dev)->bus)->chip_rev == 0U) { tmp = 839188863U; } else if ((unsigned int )((dev->dev)->bus)->chip_rev == 1U) { tmp = 1107624319U; } else { tmp = 1376059775U; } } else { { b43legacy_write16(dev, 1014, 1); tmp___1 = b43legacy_read16(dev, 1016); tmp = (u32 )tmp___1; tmp = tmp << 16; b43legacy_write16(dev, 1014, 1); tmp___2 = b43legacy_read16(dev, 1018); tmp = tmp | (u32 )tmp___2; } } radio_manuf = (unsigned int )((u16 )tmp) & 4095U; radio_ver = (u16 )((tmp & 268431360U) >> 12); radio_rev = (u16 )(tmp >> 28); { if ((int )phy_type == 1) { goto case_1___0; } else { } if ((int )phy_type == 2) { goto case_2___0; } else { } goto switch_default___0; case_1___0: /* CIL Label */ ; if (((int )radio_ver & 65520) != 8272) { unsupported = 1; } else { } goto ldv_53581; case_2___0: /* CIL Label */ ; if ((unsigned int )radio_ver != 8272U) { unsupported = 1; } else { } goto ldv_53581; switch_default___0: /* CIL Label */ { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/main.c"), "i" (3090), "i" (12UL)); __builtin_unreachable(); } switch_break___0: /* CIL Label */ ; } ldv_53581: ; if (unsupported != 0) { { b43legacyerr(dev->wl, "FOUND UNSUPPORTED RADIO (Manuf 0x%X, Version 0x%X, Revision %u)\n", (int )radio_manuf, (int )radio_ver, (int )radio_rev); } return (-95); } else { } { b43legacydbg(dev->wl, "Found Radio: Manuf 0x%X, Version 0x%X, Revision %u\n", (int )radio_manuf, (int )radio_ver, (int )radio_rev); phy->radio_manuf = radio_manuf; phy->radio_ver = radio_ver; phy->radio_rev = (u8 )radio_rev; phy->analog = analog_type; phy->type = phy_type; phy->rev = phy_rev; } return (0); } } static void setup_struct_phy_for_init(struct b43legacy_wldev *dev , struct b43legacy_phy *phy ) { struct b43legacy_lopair *lo ; int i ; { { memset((void *)(& phy->minlowsig), 255, 4UL); memset((void *)(& phy->minlowsigpos), 0, 4UL); dev->radio_hw_enable = 1; phy->savedpctlreg = 65535U; phy->aci_enable = 0; phy->aci_wlan_automatic = 0; phy->aci_hw_rssi = 0; lo = phy->_lo_pairs; } if ((unsigned long )lo != (unsigned long )((struct b43legacy_lopair *)0)) { { memset((void *)lo, 0, 168UL); } } else { } { phy->max_lb_gain = 0; phy->trsw_rx_gain = 0; phy->__annonCompField86.bbatt = b43legacy_default_baseband_attenuation(dev); phy->__annonCompField86.rfatt = b43legacy_default_radio_attenuation(dev); phy->__annonCompField86.txctl1 = b43legacy_default_txctl1(dev); phy->__annonCompField87.txpwr_offset = 0U; phy->nrssislope = 0; i = 0; } goto ldv_53593; ldv_53592: phy->nrssi[i] = -1000; i = i + 1; ldv_53593: ; if ((unsigned int )i <= 1U) { goto ldv_53592; } else { } i = 0; goto ldv_53598; ldv_53597: phy->nrssi_lt[i] = (s8 )i; i = i + 1; ldv_53598: ; if ((unsigned int )i <= 63U) { goto ldv_53597; } else { } phy->lofcal = 65535U; phy->initval = 65535U; phy->interfmode = 0; phy->channel = 255U; return; } } static void setup_struct_wldev_for_init(struct b43legacy_wldev *dev ) { { { dev->dfq_valid = 0; memset((void *)(& dev->stats), 0, 24UL); setup_struct_phy_for_init(dev, & dev->phy); dev->irq_reason = 0U; memset((void *)(& dev->dma_reason), 0, 24UL); dev->irq_mask = 939887205U; dev->mac_suspended = 1; memset((void *)(& dev->noisecalc), 0, 35UL); } return; } } static void b43legacy_set_synth_pu_delay(struct b43legacy_wldev *dev , bool idle ) { u16 pu_delay ; int tmp ; u16 _max1 ; unsigned short _max2 ; { { pu_delay = 1050U; tmp = b43legacy_is_mode(dev->wl, 1); } if (tmp != 0 || (int )idle) { pu_delay = 500U; } else { } if (*((unsigned int *)dev + 11UL) == 134226000U) { _max1 = pu_delay; _max2 = 2400U; pu_delay = (u16 )((int )_max1 > (int )_max2 ? (int )_max1 : (int )_max2); } else { } { b43legacy_shm_write16(dev, 1, 148, (int )pu_delay); } return; } } static void b43legacy_set_pretbtt(struct b43legacy_wldev *dev ) { u16 pretbtt ; int tmp ; { { tmp = b43legacy_is_mode(dev->wl, 1); } if (tmp != 0) { pretbtt = 2U; } else { pretbtt = 250U; } { b43legacy_shm_write16(dev, 1, 150, (int )pretbtt); b43legacy_write16(dev, 1554, (int )pretbtt); } return; } } static void b43legacy_wireless_core_exit(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u32 macctl ; int __ret_warn_on ; int tmp ; long tmp___0 ; int tmp___1 ; { { phy = & dev->phy; tmp = atomic_read((atomic_t const *)(& dev->__init_status)); __ret_warn_on = tmp > 1; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 3214); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); tmp___1 = atomic_read((atomic_t const *)(& dev->__init_status)); } if (tmp___1 != 1) { return; } else { } { atomic_set(& dev->__init_status, 0); __asm__ volatile ("": : : "memory"); macctl = b43legacy_read32(dev, 288); macctl = macctl & 4294967293U; macctl = macctl | 4U; b43legacy_write32(dev, 288, macctl); b43legacy_leds_exit(dev); b43legacy_rng_exit(dev->wl); b43legacy_pio_free(dev); b43legacy_dma_free(dev); b43legacy_chip_exit(dev); b43legacy_radio_turn_off(dev, 1); b43legacy_switch_analog(dev, 0); } if ((int )phy->dyn_tssi_tbl) { { kfree((void const *)phy->tssi2dbm); } } else { } { kfree((void const *)phy->lo_control); phy->lo_control = (struct b43legacy_txpower_lo_control *)0; } if ((unsigned long )(dev->wl)->current_beacon != (unsigned long )((struct sk_buff *)0)) { { dev_kfree_skb_any((dev->wl)->current_beacon); (dev->wl)->current_beacon = (struct sk_buff *)0; } } else { } { ssb_device_disable(dev->dev, 0U); ssb_bus_may_powerdown((dev->dev)->bus); } return; } } static void prepare_phy_data_for_init(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; int i ; { { phy = & dev->phy; phy->__annonCompField86.bbatt = b43legacy_default_baseband_attenuation(dev); phy->__annonCompField86.rfatt = b43legacy_default_radio_attenuation(dev); phy->__annonCompField86.txctl1 = b43legacy_default_txctl1(dev); phy->__annonCompField86.txctl2 = 65535U; phy->__annonCompField87.txpwr_offset = 0U; phy->nrssislope = 0; i = 0; } goto ldv_53630; ldv_53629: phy->nrssi[i] = -1000; i = i + 1; ldv_53630: ; if ((unsigned int )i <= 1U) { goto ldv_53629; } else { } i = 0; goto ldv_53635; ldv_53634: phy->nrssi_lt[i] = (s8 )i; i = i + 1; ldv_53635: ; if ((unsigned int )i <= 63U) { goto ldv_53634; } else { } { phy->lofcal = 65535U; phy->initval = 65535U; phy->aci_enable = 0; phy->aci_wlan_automatic = 0; phy->aci_hw_rssi = 0; phy->antenna_diversity = 65535U; memset((void *)(& phy->minlowsig), 255, 4UL); memset((void *)(& phy->minlowsigpos), 0, 4UL); phy->calibrated = 0U; } if ((unsigned long )phy->_lo_pairs != (unsigned long )((struct b43legacy_lopair *)0)) { { memset((void *)phy->_lo_pairs, 0, 168UL); } } else { } { memset((void *)(& phy->loopback_gain), 0, 4UL); } return; } } static int b43legacy_wireless_core_init(struct b43legacy_wldev *dev ) { struct b43legacy_wl *wl ; struct ssb_bus *bus ; struct b43legacy_phy *phy ; struct ssb_sprom *sprom ; int err ; u32 hf ; u32 tmp ; int __ret_warn_on ; int tmp___0 ; long tmp___1 ; int tmp___2 ; void *tmp___3 ; int tmp___4 ; int __ret_warn_on___0 ; int tmp___5 ; long tmp___6 ; { { wl = dev->wl; bus = (dev->dev)->bus; phy = & dev->phy; sprom = & ((dev->dev)->bus)->sprom; tmp___0 = atomic_read((atomic_t const *)(& dev->__init_status)); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 3295); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); err = ssb_bus_powerup(bus, 0); } if (err != 0) { goto out; } else { } { tmp___2 = ssb_device_is_enabled(dev->dev); } if (tmp___2 == 0) { { tmp = (int )phy->gmode ? 536870912U : 0U; b43legacy_wireless_core_reset(dev, tmp); } } else { } if ((unsigned int )phy->type - 1U <= 1U) { { tmp___3 = kzalloc(168UL, 208U); phy->_lo_pairs = (struct b43legacy_lopair *)tmp___3; } if ((unsigned long )phy->_lo_pairs == (unsigned long )((struct b43legacy_lopair *)0)) { return (-12); } else { } } else { } { setup_struct_wldev_for_init(dev); err = b43legacy_phy_init_tssi2dbm_table(dev); } if (err != 0) { goto err_kfree_lo_control; } else { } { ssb_pcicore_dev_irqvecs_enable(& bus->pcicore, dev->dev); prepare_phy_data_for_init(dev); b43legacy_phy_calibrate(dev); err = b43legacy_chip_init(dev); } if (err != 0) { goto err_kfree_tssitbl; } else { } { b43legacy_shm_write16(dev, 1, 22, (int )(dev->dev)->id.revision); hf = b43legacy_hf_read(dev); } if ((unsigned int )phy->type == 2U) { hf = hf | 2U; if ((unsigned int )phy->rev == 1U) { hf = hf | 32U; } else { } if (((int )sprom->boardflags_lo & 2) != 0) { hf = hf | 64U; } else { } } else if ((unsigned int )phy->type == 1U) { hf = hf | 2U; if ((unsigned int )phy->rev > 1U && (unsigned int )phy->radio_ver == 8272U) { hf = hf & 4294967263U; } else { } } else { } { b43legacy_hf_write(dev, hf); b43legacy_set_retry_limits(dev, 7U, 4U); b43legacy_shm_write16(dev, 1, 68, 3); b43legacy_shm_write16(dev, 1, 70, 2); b43legacy_shm_write16(dev, 1, 116, 1); b43legacy_rate_memory_init(dev); } if ((unsigned int )phy->type == 1U) { { b43legacy_shm_write16(dev, 2, 3, 31); } } else { { b43legacy_shm_write16(dev, 2, 3, 15); } } { b43legacy_shm_write16(dev, 2, 4, 1023); } ldv_53652: { tmp___4 = b43legacy_using_pio(dev); } if (tmp___4 != 0) { { err = b43legacy_pio_init(dev); } } else { { err = b43legacy_dma_init(dev); } if (err == 0) { { b43legacy_qos_init(dev); } } else { } } if (err == -11) { goto ldv_53652; } else { } if (err != 0) { goto err_chip_exit; } else { } { b43legacy_set_synth_pu_delay(dev, 1); ssb_bus_powerup(bus, 1); b43legacy_upload_card_macaddress(dev); b43legacy_security_init(dev); b43legacy_rng_init(wl); ieee80211_wake_queues((dev->wl)->hw); atomic_set(& dev->__init_status, 1); __asm__ volatile ("": : : "memory"); b43legacy_leds_init(dev); } out: ; return (err); err_chip_exit: { b43legacy_chip_exit(dev); } err_kfree_tssitbl: ; if ((int )phy->dyn_tssi_tbl) { { kfree((void const *)phy->tssi2dbm); } } else { } err_kfree_lo_control: { kfree((void const *)phy->lo_control); phy->lo_control = (struct b43legacy_txpower_lo_control *)0; ssb_bus_may_powerdown(bus); tmp___5 = atomic_read((atomic_t const *)(& dev->__init_status)); __ret_warn_on___0 = tmp___5 != 0; tmp___6 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___6 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 3408); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } return (err); } } static int b43legacy_op_add_interface(struct ieee80211_hw *hw , struct ieee80211_vif *vif ) { struct b43legacy_wl *wl ; struct b43legacy_wl *tmp ; struct b43legacy_wldev *dev ; unsigned long flags ; int err ; { { tmp = hw_to_b43legacy_wl(hw); wl = tmp; err = -95; } if (((unsigned int )vif->type - 2U > 1U && (unsigned int )vif->type != 5U) && (unsigned int )vif->type != 1U) { return (-95); } else { } { mutex_lock_nested(& wl->mutex, 0U); } if ((int )wl->operating) { goto out_mutex_unlock; } else { } { b43legacydbg(wl, "Adding Interface type %d\n", (unsigned int )vif->type); dev = wl->current_dev; wl->operating = 1; wl->vif = vif; wl->if_type = (int )vif->type; memcpy((void *)(& wl->mac_addr), (void const *)(& vif->addr), 6UL); ldv___ldv_spin_lock_93(& wl->irq_lock); b43legacy_adjust_opmode(dev); b43legacy_set_pretbtt(dev); b43legacy_set_synth_pu_delay(dev, 0); b43legacy_upload_card_macaddress(dev); ldv_spin_unlock_irqrestore_65(& wl->irq_lock, flags); err = 0; } out_mutex_unlock: { mutex_unlock(& wl->mutex); } return (err); } } static void b43legacy_op_remove_interface(struct ieee80211_hw *hw , struct ieee80211_vif *vif ) { struct b43legacy_wl *wl ; struct b43legacy_wl *tmp ; struct b43legacy_wldev *dev ; unsigned long flags ; int __ret_warn_on ; long tmp___0 ; int __ret_warn_on___0 ; long tmp___1 ; { { tmp = hw_to_b43legacy_wl(hw); wl = tmp; dev = wl->current_dev; b43legacydbg(wl, "Removing Interface type %d\n", (unsigned int )vif->type); mutex_lock_nested(& wl->mutex, 0U); __ret_warn_on = ! wl->operating; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 3465); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); __ret_warn_on___0 = (unsigned long )wl->vif != (unsigned long )vif; tmp___1 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 3466); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); wl->vif = (struct ieee80211_vif *)0; wl->operating = 0; ldv___ldv_spin_lock_95(& wl->irq_lock); b43legacy_adjust_opmode(dev); memset((void *)(& wl->mac_addr), 0, 6UL); b43legacy_upload_card_macaddress(dev); ldv_spin_unlock_irqrestore_65(& wl->irq_lock, flags); mutex_unlock(& wl->mutex); } return; } } static int b43legacy_op_start(struct ieee80211_hw *hw ) { struct b43legacy_wl *wl ; struct b43legacy_wl *tmp ; struct b43legacy_wldev *dev ; int did_init ; int err ; int tmp___0 ; int tmp___1 ; { { tmp = hw_to_b43legacy_wl(hw); wl = tmp; dev = wl->current_dev; did_init = 0; err = 0; memset((void *)(& wl->bssid), 0, 6UL); memset((void *)(& wl->mac_addr), 0, 6UL); wl->filter_flags = 0U; wl->beacon0_uploaded = 0; wl->beacon1_uploaded = 0; wl->beacon_templates_virgin = 1; wl->radio_enabled = 1; mutex_lock_nested(& wl->mutex, 0U); tmp___0 = atomic_read((atomic_t const *)(& dev->__init_status)); } if (tmp___0 <= 0) { { err = b43legacy_wireless_core_init(dev); } if (err != 0) { goto out_mutex_unlock; } else { } did_init = 1; } else { } { tmp___1 = atomic_read((atomic_t const *)(& dev->__init_status)); } if (tmp___1 <= 1) { { err = b43legacy_wireless_core_start(dev); } if (err != 0) { if (did_init != 0) { { b43legacy_wireless_core_exit(dev); } } else { } goto out_mutex_unlock; } else { } } else { } { wiphy_rfkill_start_polling(hw->wiphy); } out_mutex_unlock: { mutex_unlock(& wl->mutex); } return (err); } } static void b43legacy_op_stop(struct ieee80211_hw *hw ) { struct b43legacy_wl *wl ; struct b43legacy_wl *tmp ; struct b43legacy_wldev *dev ; int tmp___0 ; { { tmp = hw_to_b43legacy_wl(hw); wl = tmp; dev = wl->current_dev; cancel_work_sync(& wl->beacon_update_trigger); mutex_lock_nested(& wl->mutex, 0U); tmp___0 = atomic_read((atomic_t const *)(& dev->__init_status)); } if (tmp___0 > 1) { { b43legacy_wireless_core_stop(dev); } } else { } { b43legacy_wireless_core_exit(dev); wl->radio_enabled = 0; mutex_unlock(& wl->mutex); } return; } } static int b43legacy_op_beacon_set_tim(struct ieee80211_hw *hw , struct ieee80211_sta *sta , bool set ) { struct b43legacy_wl *wl ; struct b43legacy_wl *tmp ; unsigned long flags ; { { tmp = hw_to_b43legacy_wl(hw); wl = tmp; ldv___ldv_spin_lock_97(& wl->irq_lock); b43legacy_update_templates(wl); ldv_spin_unlock_irqrestore_65(& wl->irq_lock, flags); } return (0); } } static int b43legacy_op_get_survey(struct ieee80211_hw *hw , int idx , struct survey_info *survey ) { struct b43legacy_wl *wl ; struct b43legacy_wl *tmp ; struct b43legacy_wldev *dev ; struct ieee80211_conf *conf ; { { tmp = hw_to_b43legacy_wl(hw); wl = tmp; dev = wl->current_dev; conf = & hw->conf; } if (idx != 0) { return (-2); } else { } survey->channel = conf->chandef.chan; survey->filled = 1U; survey->noise = (s8 )dev->stats.link_noise; return (0); } } static struct ieee80211_ops const b43legacy_hw_ops = {& b43legacy_op_tx, & b43legacy_op_start, & b43legacy_op_stop, 0, 0, 0, & b43legacy_op_add_interface, 0, & b43legacy_op_remove_interface, & b43legacy_op_dev_config, & b43legacy_op_bss_info_changed, 0, 0, 0, & b43legacy_op_configure_filter, & b43legacy_op_beacon_set_tim, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & b43legacy_op_get_stats, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & b43legacy_op_conf_tx, 0, 0, 0, 0, 0, & b43legacy_op_get_survey, & b43legacy_rfkill_poll, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static void b43legacy_chip_reset(struct work_struct *work ) { struct b43legacy_wldev *dev ; struct work_struct const *__mptr ; struct b43legacy_wl *wl ; int err ; int prev_status ; { { __mptr = (struct work_struct const *)work; dev = (struct b43legacy_wldev *)__mptr + 0xfffffffffffff458UL; wl = dev->wl; err = 0; mutex_lock_nested(& wl->mutex, 0U); prev_status = atomic_read((atomic_t const *)(& dev->__init_status)); } if (prev_status > 1) { { b43legacy_wireless_core_stop(dev); } } else { } if (prev_status > 0) { { b43legacy_wireless_core_exit(dev); } } else { } if (prev_status > 0) { { err = b43legacy_wireless_core_init(dev); } if (err != 0) { goto out; } else { } } else { } if (prev_status > 1) { { err = b43legacy_wireless_core_start(dev); } if (err != 0) { { b43legacy_wireless_core_exit(dev); } goto out; } else { } } else { } out: ; if (err != 0) { wl->current_dev = (struct b43legacy_wldev *)0; } else { } { mutex_unlock(& wl->mutex); } if (err != 0) { { b43legacyerr(wl, "Controller restart FAILED\n"); } } else { { b43legacyinfo(wl, "Controller restarted\n"); } } return; } } static int b43legacy_setup_modes(struct b43legacy_wldev *dev , int have_bphy , int have_gphy ) { struct ieee80211_hw *hw ; struct b43legacy_phy *phy ; { hw = (dev->wl)->hw; phy = & dev->phy; phy->possible_phymodes = 0U; if (have_bphy != 0) { (hw->wiphy)->bands[0] = & b43legacy_band_2GHz_BPHY; phy->possible_phymodes = (u8 )((unsigned int )phy->possible_phymodes | 2U); } else { } if (have_gphy != 0) { (hw->wiphy)->bands[0] = & b43legacy_band_2GHz_GPHY; phy->possible_phymodes = (u8 )((unsigned int )phy->possible_phymodes | 4U); } else { } return (0); } } static void b43legacy_wireless_core_detach(struct b43legacy_wldev *dev ) { { { b43legacy_release_firmware(dev); } return; } } static int b43legacy_wireless_core_attach(struct b43legacy_wldev *dev ) { struct b43legacy_wl *wl ; struct ssb_bus *bus ; struct pci_dev *pdev ; int err ; int have_bphy ; int have_gphy ; u32 tmp ; u32 tmshigh ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; { { wl = dev->wl; bus = (dev->dev)->bus; pdev = (unsigned int )bus->bustype == 1U ? bus->__annonCompField79.host_pci : (struct pci_dev *)0; have_bphy = 0; have_gphy = 0; err = ssb_bus_powerup(bus, 0); } if (err != 0) { { b43legacyerr(wl, "Bus powerup failed\n"); } goto out; } else { } if ((unsigned int )(dev->dev)->id.revision > 4U) { { tmshigh = ssb_read32(dev->dev, 3996); have_gphy = (tmshigh & 65536U) != 0U; } if (have_gphy == 0) { have_bphy = 1; } else { } } else if ((unsigned int )(dev->dev)->id.revision == 4U) { have_gphy = 1; } else { have_bphy = 1; } { dev->phy.gmode = (have_gphy | have_bphy) != 0; dev->phy.radio_on = 1; tmp = (int )dev->phy.gmode ? 536870912U : 0U; b43legacy_wireless_core_reset(dev, tmp); err = b43legacy_phy_versioning(dev); } if (err != 0) { goto err_powerdown; } else { } if ((unsigned long )pdev == (unsigned long )((struct pci_dev *)0) || (((unsigned int )pdev->device != 17170U && (unsigned int )pdev->device != 17177U) && (unsigned int )pdev->device != 17188U)) { have_bphy = 0; have_gphy = 0; { if ((int )dev->phy.type == 1) { goto case_1; } else { } if ((int )dev->phy.type == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ have_bphy = 1; goto ldv_53740; case_2: /* CIL Label */ have_gphy = 1; goto ldv_53740; switch_default: /* CIL Label */ { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/main.c"), "i" (3717), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_53740: ; } else { } { dev->phy.gmode = (have_gphy | have_bphy) != 0; tmp = (int )dev->phy.gmode ? 536870912U : 0U; b43legacy_wireless_core_reset(dev, tmp); err = b43legacy_validate_chipaccess(dev); } if (err != 0) { goto err_powerdown; } else { } { err = b43legacy_setup_modes(dev, have_bphy, have_gphy); } if (err != 0) { goto err_powerdown; } else { } if ((unsigned long )wl->current_dev == (unsigned long )((struct b43legacy_wldev *)0)) { wl->current_dev = dev; } else { } { __init_work(& dev->restart_work, 0); __constr_expr_0.counter = 137438953408L; dev->restart_work.data = __constr_expr_0; lockdep_init_map(& dev->restart_work.lockdep_map, "(&dev->restart_work)", & __key, 0); INIT_LIST_HEAD(& dev->restart_work.entry); dev->restart_work.func = & b43legacy_chip_reset; b43legacy_radio_turn_off(dev, 1); b43legacy_switch_analog(dev, 0); ssb_device_disable(dev->dev, 0U); ssb_bus_may_powerdown(bus); } out: ; return (err); err_powerdown: { ssb_bus_may_powerdown(bus); } return (err); } } static void b43legacy_one_core_detach(struct ssb_device *dev ) { struct b43legacy_wldev *wldev ; struct b43legacy_wl *wl ; void *tmp ; { { tmp = ssb_get_drvdata(dev); wldev = (struct b43legacy_wldev *)tmp; wl = wldev->wl; b43legacy_debugfs_remove_device(wldev); b43legacy_wireless_core_detach(wldev); list_del(& wldev->list); wl->nr_devs = (u8 )((int )wl->nr_devs - 1); ssb_set_drvdata(dev, (void *)0); kfree((void const *)wldev); } return; } } static int b43legacy_one_core_attach(struct ssb_device *dev , struct b43legacy_wl *wl ) { struct b43legacy_wldev *wldev ; int err ; void *tmp ; { { err = -12; tmp = kzalloc(4168UL, 208U); wldev = (struct b43legacy_wldev *)tmp; } if ((unsigned long )wldev == (unsigned long )((struct b43legacy_wldev *)0)) { goto out; } else { } { wldev->dev = dev; wldev->wl = wl; atomic_set(& wldev->__init_status, 0); __asm__ volatile ("": : : "memory"); wldev->bad_frames_preempt = modparam_bad_frames_preempt != 0; tasklet_init(& wldev->isr_tasklet, (void (*)(unsigned long ))(& b43legacy_interrupt_tasklet), (unsigned long )wldev); } if (modparam_pio != 0) { wldev->__using_pio = 1; } else { } { INIT_LIST_HEAD(& wldev->list); err = b43legacy_wireless_core_attach(wldev); } if (err != 0) { goto err_kfree_wldev; } else { } { list_add(& wldev->list, & wl->devlist); wl->nr_devs = (u8 )((int )wl->nr_devs + 1); ssb_set_drvdata(dev, (void *)wldev); b43legacy_debugfs_add_device(wldev); } out: ; return (err); err_kfree_wldev: { kfree((void const *)wldev); } return (err); } } static void b43legacy_sprom_fixup(struct ssb_bus *bus ) { { if (*((unsigned int *)bus + 368UL) == 5116011U && (unsigned int )bus->sprom.board_rev > 64U) { bus->sprom.boardflags_lo = (u16 )((unsigned int )bus->sprom.boardflags_lo | 2U); } else { } return; } } static void b43legacy_wireless_exit(struct ssb_device *dev , struct b43legacy_wl *wl ) { struct ieee80211_hw *hw ; { { hw = wl->hw; ssb_set_devtypedata(dev, (void *)0); ldv_ieee80211_free_hw_99(hw); } return; } } static int b43legacy_wireless_init(struct ssb_device *dev ) { struct ssb_sprom *sprom ; struct ieee80211_hw *hw ; struct b43legacy_wl *wl ; int err ; int queue_num ; bool tmp ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; struct lock_class_key __key___2 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___3 ; atomic_long_t __constr_expr_1 ; { { sprom = & (dev->bus)->sprom; err = -12; b43legacy_sprom_fixup(dev->bus); hw = ldv_ieee80211_alloc_hw_100(1192UL, & b43legacy_hw_ops); } if ((unsigned long )hw == (unsigned long )((struct ieee80211_hw *)0)) { { b43legacyerr((struct b43legacy_wl *)0, "Could not allocate ieee80211 device\n"); } goto out; } else { } { hw->flags = 66U; (hw->wiphy)->interface_modes = 46U; hw->queues = 1U; hw->max_rates = 2U; SET_IEEE80211_DEV(hw, dev->dev); tmp = is_valid_ether_addr((u8 const *)(& sprom->et1mac)); } if ((int )tmp) { { SET_IEEE80211_PERM_ADDR(hw, (u8 *)(& sprom->et1mac)); } } else { { SET_IEEE80211_PERM_ADDR(hw, (u8 *)(& sprom->il0mac)); } } { wl = hw_to_b43legacy_wl(hw); memset((void *)wl, 0, 1192UL); wl->hw = hw; spinlock_check(& wl->irq_lock); __raw_spin_lock_init(& wl->irq_lock.__annonCompField19.rlock, "&(&wl->irq_lock)->rlock", & __key); spinlock_check(& wl->leds_lock); __raw_spin_lock_init(& wl->leds_lock.__annonCompField19.rlock, "&(&wl->leds_lock)->rlock", & __key___0); __mutex_init(& wl->mutex, "&wl->mutex", & __key___1); INIT_LIST_HEAD(& wl->devlist); __init_work(& wl->beacon_update_trigger, 0); __constr_expr_0.counter = 137438953408L; wl->beacon_update_trigger.data = __constr_expr_0; lockdep_init_map(& wl->beacon_update_trigger.lockdep_map, "(&wl->beacon_update_trigger)", & __key___2, 0); INIT_LIST_HEAD(& wl->beacon_update_trigger.entry); wl->beacon_update_trigger.func = & b43legacy_beacon_update_trigger_work; __init_work(& wl->tx_work, 0); __constr_expr_1.counter = 137438953408L; wl->tx_work.data = __constr_expr_1; lockdep_init_map(& wl->tx_work.lockdep_map, "(&wl->tx_work)", & __key___3, 0); INIT_LIST_HEAD(& wl->tx_work.entry); wl->tx_work.func = & b43legacy_tx_work; queue_num = 0; } goto ldv_53784; ldv_53783: { skb_queue_head_init((struct sk_buff_head *)(& wl->tx_queue) + (unsigned long )queue_num); wl->tx_queue_stopped[queue_num] = 0; queue_num = queue_num + 1; } ldv_53784: ; if (queue_num <= 3) { goto ldv_53783; } else { } { ssb_set_devtypedata(dev, (void *)wl); b43legacyinfo(wl, "Broadcom %04X WLAN found (core revision %u)\n", (int )(dev->bus)->chip_id, (int )dev->id.revision); err = 0; } out: ; return (err); } } static int b43legacy_probe(struct ssb_device *dev , struct ssb_device_id const *id ) { struct b43legacy_wl *wl ; int err ; int first ; void *tmp ; void *tmp___0 ; int __ret_warn_on ; long tmp___1 ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; { { first = 0; tmp = ssb_get_devtypedata(dev); wl = (struct b43legacy_wl *)tmp; } if ((unsigned long )wl == (unsigned long )((struct b43legacy_wl *)0)) { { first = 1; err = b43legacy_wireless_init(dev); } if (err != 0) { goto out; } else { } { tmp___0 = ssb_get_devtypedata(dev); wl = (struct b43legacy_wl *)tmp___0; __ret_warn_on = (unsigned long )wl == (unsigned long )((struct b43legacy_wl *)0); tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 3894); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } } else { } { err = b43legacy_one_core_attach(dev, wl); } if (err != 0) { goto err_wireless_exit; } else { } { __init_work(& wl->firmware_load, 0); __constr_expr_0.counter = 137438953408L; wl->firmware_load.data = __constr_expr_0; lockdep_init_map(& wl->firmware_load.lockdep_map, "(&wl->firmware_load)", & __key, 0); INIT_LIST_HEAD(& wl->firmware_load.entry); wl->firmware_load.func = & b43legacy_request_firmware; schedule_work(& wl->firmware_load); } out: ; return (err); err_wireless_exit: ; if (first != 0) { { b43legacy_wireless_exit(dev, wl); } } else { } return (err); } } static void b43legacy_remove(struct ssb_device *dev ) { struct b43legacy_wl *wl ; void *tmp ; struct b43legacy_wldev *wldev ; void *tmp___0 ; int __ret_warn_on ; long tmp___1 ; int tmp___2 ; { { tmp = ssb_get_devtypedata(dev); wl = (struct b43legacy_wl *)tmp; tmp___0 = ssb_get_drvdata(dev); wldev = (struct b43legacy_wldev *)tmp___0; cancel_work_sync(& wldev->restart_work); cancel_work_sync(& wl->firmware_load); complete(& wldev->fw_load_complete); __ret_warn_on = (unsigned long )wl == (unsigned long )((struct b43legacy_wl *)0); tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/main.c", 3924); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if ((unsigned long )wldev->fw.ucode == (unsigned long )((struct firmware const *)0)) { return; } else { } if ((unsigned long )wl->current_dev == (unsigned long )wldev) { { ieee80211_unregister_hw(wl->hw); } } else { } { b43legacy_one_core_detach(dev); tmp___2 = list_empty((struct list_head const *)(& wl->devlist)); } if (tmp___2 != 0) { { b43legacy_wireless_exit(dev, wl); } } else { } return; } } void b43legacy_controller_restart(struct b43legacy_wldev *dev , char const *reason ) { int tmp ; { { tmp = atomic_read((atomic_t const *)(& dev->__init_status)); } if (tmp <= 0) { return; } else { } { b43legacyinfo(dev->wl, "Controller RESET (%s) ...\n", reason); ieee80211_queue_work((dev->wl)->hw, & dev->restart_work); } return; } } static int b43legacy_suspend(struct ssb_device *dev , pm_message_t state ) { struct b43legacy_wldev *wldev ; void *tmp ; struct b43legacy_wl *wl ; { { tmp = ssb_get_drvdata(dev); wldev = (struct b43legacy_wldev *)tmp; wl = wldev->wl; b43legacydbg(wl, "Suspending...\n"); mutex_lock_nested(& wl->mutex, 0U); wldev->suspend_init_status = atomic_read((atomic_t const *)(& wldev->__init_status)); } if (wldev->suspend_init_status > 1) { { b43legacy_wireless_core_stop(wldev); } } else { } if (wldev->suspend_init_status > 0) { { b43legacy_wireless_core_exit(wldev); } } else { } { mutex_unlock(& wl->mutex); b43legacydbg(wl, "Device suspended.\n"); } return (0); } } static int b43legacy_resume(struct ssb_device *dev ) { struct b43legacy_wldev *wldev ; void *tmp ; struct b43legacy_wl *wl ; int err ; { { tmp = ssb_get_drvdata(dev); wldev = (struct b43legacy_wldev *)tmp; wl = wldev->wl; err = 0; b43legacydbg(wl, "Resuming...\n"); mutex_lock_nested(& wl->mutex, 0U); } if (wldev->suspend_init_status > 0) { { err = b43legacy_wireless_core_init(wldev); } if (err != 0) { { b43legacyerr(wl, "Resume failed at core init\n"); } goto out; } else { } } else { } if (wldev->suspend_init_status > 1) { { err = b43legacy_wireless_core_start(wldev); } if (err != 0) { { b43legacy_wireless_core_exit(wldev); b43legacyerr(wl, "Resume failed at core start\n"); } goto out; } else { } } else { } { b43legacydbg(wl, "Device resumed.\n"); } out: { mutex_unlock(& wl->mutex); } return (err); } } static struct ssb_driver b43legacy_ssb_driver = {"b43legacy", (struct ssb_device_id const *)(& b43legacy_ssb_tbl), & b43legacy_probe, & b43legacy_remove, & b43legacy_suspend, & b43legacy_resume, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}; static void b43legacy_print_driverinfo(void) { char const *feat_pci ; char const *feat_leds ; char const *feat_pio ; char const *feat_dma ; { { feat_pci = ""; feat_leds = ""; feat_pio = ""; feat_dma = ""; feat_pci = "P"; feat_leds = "L"; feat_pio = "I"; feat_dma = "D"; printk("\016Broadcom 43xx-legacy driver loaded [ Features: %s%s%s%s ]\n", feat_pci, feat_leds, feat_pio, feat_dma); } return; } } static int b43legacy_init(void) { int err ; { { b43legacy_debugfs_init(); err = ldv___ssb_driver_register_101(& b43legacy_ssb_driver, & __this_module); } if (err != 0) { goto err_dfs_exit; } else { } { b43legacy_print_driverinfo(); } return (err); err_dfs_exit: { b43legacy_debugfs_exit(); } return (err); } } static void b43legacy_exit(void) { { { ldv_ssb_driver_unregister_102(& b43legacy_ssb_driver); b43legacy_debugfs_exit(); } return; } } void ldv_EMGentry_exit_b43legacy_exit_14_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_b43legacy_init_14_13(int (*arg0)(void) ) ; int ldv___ssb_driver_register(int arg0 , struct ssb_driver *arg1 , struct module *arg2 ) ; int ldv_base_instance_probe_5_16(int (*arg0)(struct ssb_device * , struct ssb_device_id * ) , struct ssb_device *arg1 , struct ssb_device_id *arg2 ) ; void ldv_base_instance_release_5_2(void (*arg0)(struct ssb_device * ) , struct ssb_device *arg1 ) ; void ldv_base_instance_resume_5_5(int (*arg0)(struct ssb_device * ) , struct ssb_device *arg1 ) ; int ldv_base_instance_suspend_5_7(int (*arg0)(struct ssb_device * , struct pm_message ) , struct ssb_device *arg1 , struct pm_message arg2 ) ; void ldv_dispatch_deregister_10_2(struct ieee80211_hw *arg0 ) ; void ldv_dispatch_deregister_12_1(struct ssb_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_factory_13_14_4(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_8_14_5(void) ; void ldv_dispatch_deregister_file_operations_instance_5_14_6(void) ; void ldv_dispatch_instance_deregister_7_2(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_7_3(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_8_1(int arg0 ) ; void ldv_dispatch_irq_register_11_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_13_2(struct ssb_driver *arg0 ) ; void ldv_dispatch_register_9_3(struct ieee80211_tx_control *arg0 ) ; void ldv_dispatch_register_dummy_factory_13_14_7(void) ; void ldv_dispatch_register_dummy_resourceless_instance_8_14_8(void) ; void ldv_dispatch_register_file_operations_instance_5_14_9(void) ; void ldv_entry_EMGentry_14(void *arg0 ) ; int main(void) ; void ldv_file_operations_file_operations_instance_0(void *arg0 ) ; void ldv_file_operations_instance_callback_0_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_0_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; struct ieee80211_hw *ldv_ieee80211_alloc_hw(struct ieee80211_hw *arg0 , unsigned long arg1 , struct ieee80211_ops *arg2 ) ; void ldv_ieee80211_free_hw(void *arg0 , struct ieee80211_hw **arg1 ) ; void ldv_ieee80211_ieee80211_instance_1(void *arg0 ) ; void ldv_ieee80211_instance_callback_1_10(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_1_18(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , struct ieee80211_bss_conf *arg3 , unsigned int arg4 ) ; void ldv_ieee80211_instance_callback_1_21(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned short , struct ieee80211_tx_queue_params * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , unsigned short arg3 , struct ieee80211_tx_queue_params *arg4 ) ; void ldv_ieee80211_instance_callback_1_24(int (*arg0)(struct ieee80211_hw * , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 ) ; void ldv_ieee80211_instance_callback_1_27(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int *arg3 , unsigned long long arg4 ) ; void ldv_ieee80211_instance_callback_1_30(int (*arg0)(struct ieee80211_hw * , struct ieee80211_low_level_stats * ) , struct ieee80211_hw *arg1 , struct ieee80211_low_level_stats *arg2 ) ; void ldv_ieee80211_instance_callback_1_31(int (*arg0)(struct ieee80211_hw * , int , struct survey_info * ) , struct ieee80211_hw *arg1 , int arg2 , struct survey_info *arg3 ) ; void ldv_ieee80211_instance_callback_1_34(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_1_35(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_callback_1_36(int (*arg0)(struct ieee80211_hw * , struct ieee80211_sta * , _Bool ) , struct ieee80211_hw *arg1 , struct ieee80211_sta *arg2 , _Bool arg3 ) ; void ldv_ieee80211_instance_callback_1_39(void (*arg0)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct ieee80211_tx_control *arg2 , struct sk_buff *arg3 ) ; void ldv_ieee80211_instance_resume_1_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; int ldv_ieee80211_instance_start_1_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_stop_1_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; enum irqreturn ldv_interrupt_instance_handler_2_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_2_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_2(void *arg0 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_ssb_driver_unregister(void *arg0 , struct ssb_driver *arg1 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_3(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_4(void *arg0 ) ; void ldv_struct_ssb_driver_base_instance_5(void *arg0 ) ; void ldv_timer_dummy_factory_7(void *arg0 ) ; void ldv_timer_instance_callback_6_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_6(void *arg0 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_14 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; void ldv_EMGentry_exit_b43legacy_exit_14_2(void (*arg0)(void) ) { { { b43legacy_exit(); } return; } } int ldv_EMGentry_init_b43legacy_init_14_13(int (*arg0)(void) ) { int tmp ; { { tmp = b43legacy_init(); } return (tmp); } } int ldv___ssb_driver_register(int arg0 , struct ssb_driver *arg1 , struct module *arg2 ) { struct ssb_driver *ldv_13_struct_ssb_driver_struct_ssb_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_13_struct_ssb_driver_struct_ssb_driver = arg1; ldv_dispatch_register_13_2(ldv_13_struct_ssb_driver_struct_ssb_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_base_instance_probe_5_16(int (*arg0)(struct ssb_device * , struct ssb_device_id * ) , struct ssb_device *arg1 , struct ssb_device_id *arg2 ) { int tmp ; { { tmp = b43legacy_probe(arg1, (struct ssb_device_id const *)arg2); } return (tmp); } } void ldv_base_instance_release_5_2(void (*arg0)(struct ssb_device * ) , struct ssb_device *arg1 ) { { { b43legacy_remove(arg1); } return; } } void ldv_base_instance_resume_5_5(int (*arg0)(struct ssb_device * ) , struct ssb_device *arg1 ) { { { b43legacy_resume(arg1); } return; } } int ldv_base_instance_suspend_5_7(int (*arg0)(struct ssb_device * , struct pm_message ) , struct ssb_device *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = b43legacy_suspend(arg1, arg2); } return (tmp); } } void ldv_dispatch_deregister_10_2(struct ieee80211_hw *arg0 ) { { return; } } void ldv_dispatch_deregister_12_1(struct ssb_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_dummy_factory_13_14_4(void) { { return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_8_14_5(void) { { return; } } void ldv_dispatch_deregister_file_operations_instance_5_14_6(void) { { return; } } void ldv_dispatch_instance_deregister_7_2(struct timer_list *arg0 ) { { return; } } void ldv_dispatch_instance_register_7_3(struct timer_list *arg0 ) { struct ldv_struct_timer_instance_6 *cf_arg_6 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_6 = (struct ldv_struct_timer_instance_6 *)tmp; cf_arg_6->arg0 = arg0; ldv_timer_timer_instance_6((void *)cf_arg_6); } return; } } void ldv_dispatch_irq_deregister_8_1(int arg0 ) { { return; } } void ldv_dispatch_irq_register_11_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_2 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(40UL); cf_arg_2 = (struct ldv_struct_interrupt_instance_2 *)tmp; cf_arg_2->arg0 = arg0; cf_arg_2->arg1 = arg1; cf_arg_2->arg2 = arg2; cf_arg_2->arg3 = arg3; ldv_interrupt_interrupt_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_register_13_2(struct ssb_driver *arg0 ) { struct ldv_struct_base_instance_5 *cf_arg_5 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_5 = (struct ldv_struct_base_instance_5 *)tmp; cf_arg_5->arg0 = arg0; ldv_struct_ssb_driver_base_instance_5((void *)cf_arg_5); } return; } } void ldv_dispatch_register_9_3(struct ieee80211_tx_control *arg0 ) { struct ldv_struct_ieee80211_instance_1 *cf_arg_1 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_1 = (struct ldv_struct_ieee80211_instance_1 *)tmp; cf_arg_1->arg0 = arg0; ldv_ieee80211_ieee80211_instance_1((void *)cf_arg_1); } return; } } void ldv_dispatch_register_dummy_factory_13_14_7(void) { struct ldv_struct_EMGentry_14 *cf_arg_7 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_7 = (struct ldv_struct_EMGentry_14 *)tmp; ldv_timer_dummy_factory_7((void *)cf_arg_7); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_8_14_8(void) { struct ldv_struct_EMGentry_14 *cf_arg_3 ; struct ldv_struct_EMGentry_14 *cf_arg_4 ; void *tmp ; void *tmp___0 ; { { tmp = ldv_xmalloc(4UL); cf_arg_3 = (struct ldv_struct_EMGentry_14 *)tmp; ldv_struct_device_attribute_dummy_resourceless_instance_3((void *)cf_arg_3); tmp___0 = ldv_xmalloc(4UL); cf_arg_4 = (struct ldv_struct_EMGentry_14 *)tmp___0; ldv_struct_device_attribute_dummy_resourceless_instance_4((void *)cf_arg_4); } return; } } void ldv_dispatch_register_file_operations_instance_5_14_9(void) { struct ldv_struct_EMGentry_14 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_0 = (struct ldv_struct_EMGentry_14 *)tmp; ldv_file_operations_file_operations_instance_0((void *)cf_arg_0); } return; } } void ldv_entry_EMGentry_14(void *arg0 ) { void (*ldv_14_exit_b43legacy_exit_default)(void) ; int (*ldv_14_init_b43legacy_init_default)(void) ; int ldv_14_ret_default ; int tmp ; int tmp___0 ; { { ldv_14_ret_default = ldv_EMGentry_init_b43legacy_init_14_13(ldv_14_init_b43legacy_init_default); ldv_14_ret_default = ldv_post_init(ldv_14_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_14_ret_default != 0); ldv_check_final_state(); ldv_stop(); } return; } else { { ldv_assume(ldv_14_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_file_operations_instance_5_14_9(); ldv_dispatch_register_dummy_resourceless_instance_8_14_8(); ldv_dispatch_register_dummy_factory_13_14_7(); ldv_dispatch_deregister_file_operations_instance_5_14_6(); ldv_dispatch_deregister_dummy_resourceless_instance_8_14_5(); ldv_dispatch_deregister_dummy_factory_13_14_4(); } } else { } { ldv_EMGentry_exit_b43legacy_exit_14_2(ldv_14_exit_b43legacy_exit_default); ldv_check_final_state(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_initialize(); ldv_entry_EMGentry_14((void *)0); } return 0; } } void ldv_file_operations_file_operations_instance_0(void *arg0 ) { long long (*ldv_0_callback_llseek)(struct file * , long long , int ) ; long (*ldv_0_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_0_container_file_operations ; char *ldv_0_ldv_param_22_1_default ; long long *ldv_0_ldv_param_22_3_default ; char *ldv_0_ldv_param_4_1_default ; long long *ldv_0_ldv_param_4_3_default ; long long ldv_0_ldv_param_5_1_default ; int ldv_0_ldv_param_5_2_default ; struct file *ldv_0_resource_file ; struct inode *ldv_0_resource_inode ; int ldv_0_ret_default ; unsigned long ldv_0_size_cnt_write_size ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; int tmp___9 ; { { ldv_0_ret_default = 1; ldv_0_size_cnt_write_size = 136UL; tmp = ldv_xmalloc(520UL); ldv_0_resource_file = (struct file *)tmp; tmp___0 = ldv_xmalloc(1032UL); ldv_0_resource_inode = (struct inode *)tmp___0; tmp___1 = ldv_undef_int(); ldv_0_size_cnt_write_size = (unsigned long )tmp___1; } goto ldv_main_0; return; ldv_main_0: { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { { ldv_0_ret_default = ldv_file_operations_instance_probe_0_12(ldv_0_container_file_operations->open, ldv_0_resource_inode, ldv_0_resource_file); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_assume(ldv_0_ret_default == 0); } goto ldv_call_0; } else { { ldv_assume(ldv_0_ret_default != 0); } goto ldv_main_0; } } else { { ldv_free((void *)ldv_0_resource_file); ldv_free((void *)ldv_0_resource_inode); } return; } return; ldv_call_0: { tmp___4 = ldv_undef_int(); } { if (tmp___4 == 1) { goto case_1; } else { } if (tmp___4 == 2) { goto case_2; } else { } if (tmp___4 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_0_ldv_param_4_1_default = (char *)tmp___5; tmp___6 = ldv_xmalloc(8UL); ldv_0_ldv_param_4_3_default = (long long *)tmp___6; ldv_assume(ldv_0_size_cnt_write_size <= 2147479552UL); ldv_file_operations_instance_write_0_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_0_container_file_operations->write, ldv_0_resource_file, ldv_0_ldv_param_4_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_4_3_default); ldv_free((void *)ldv_0_ldv_param_4_1_default); ldv_free((void *)ldv_0_ldv_param_4_3_default); } goto ldv_call_0; case_2: /* CIL Label */ ; goto ldv_main_0; case_3: /* CIL Label */ { tmp___9 = ldv_undef_int(); } if (tmp___9 != 0) { { tmp___7 = ldv_xmalloc(1UL); ldv_0_ldv_param_22_1_default = (char *)tmp___7; tmp___8 = ldv_xmalloc(8UL); ldv_0_ldv_param_22_3_default = (long long *)tmp___8; ldv_file_operations_instance_callback_0_22(ldv_0_callback_read, ldv_0_resource_file, ldv_0_ldv_param_22_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_22_3_default); ldv_free((void *)ldv_0_ldv_param_22_1_default); ldv_free((void *)ldv_0_ldv_param_22_3_default); } } else { { ldv_file_operations_instance_callback_0_5(ldv_0_callback_llseek, ldv_0_resource_file, ldv_0_ldv_param_5_1_default, ldv_0_ldv_param_5_2_default); } } goto ldv_54284; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_54284: ; goto ldv_call_0; goto ldv_call_0; return; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_8_line_line ; { { ldv_8_line_line = arg1; ldv_dispatch_irq_deregister_8_1(ldv_8_line_line); } return; return; } } struct ieee80211_hw *ldv_ieee80211_alloc_hw(struct ieee80211_hw *arg0 , unsigned long arg1 , struct ieee80211_ops *arg2 ) { struct ieee80211_hw *ldv_9_ieee80211_hw_ieee80211_hw ; struct ieee80211_bss_conf *ldv_9_ieee80211_hw_struct_ieee80211_bss_conf_ptr ; struct ieee80211_low_level_stats *ldv_9_ieee80211_hw_struct_ieee80211_low_level_stats_ptr ; struct ieee80211_sta *ldv_9_ieee80211_hw_struct_ieee80211_sta_ptr ; struct ieee80211_tx_control *ldv_9_ieee80211_hw_struct_ieee80211_tx_control_ptr ; struct ieee80211_tx_queue_params *ldv_9_ieee80211_hw_struct_ieee80211_tx_queue_params_ptr ; struct ieee80211_vif *ldv_9_ieee80211_hw_struct_ieee80211_vif_ptr ; struct sk_buff *ldv_9_ieee80211_hw_struct_sk_buff_ptr ; struct survey_info *ldv_9_ieee80211_hw_struct_survey_info_ptr ; struct ieee80211_ops *ldv_9_ieee80211_ops_ieee80211_ops ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; int tmp___8 ; { { tmp___8 = ldv_undef_int(); } if (tmp___8 != 0) { { ldv_9_ieee80211_ops_ieee80211_ops = arg2; tmp = ldv_xmalloc(152UL); ldv_9_ieee80211_hw_ieee80211_hw = (struct ieee80211_hw *)tmp; tmp___0 = ldv_xmalloc(232UL); ldv_9_ieee80211_hw_struct_ieee80211_bss_conf_ptr = (struct ieee80211_bss_conf *)tmp___0; tmp___1 = ldv_xmalloc(16UL); ldv_9_ieee80211_hw_struct_ieee80211_low_level_stats_ptr = (struct ieee80211_low_level_stats *)tmp___1; tmp___2 = ldv_xmalloc(80UL); ldv_9_ieee80211_hw_struct_ieee80211_sta_ptr = (struct ieee80211_sta *)tmp___2; tmp___3 = ldv_xmalloc(8UL); ldv_9_ieee80211_hw_struct_ieee80211_tx_control_ptr = (struct ieee80211_tx_control *)tmp___3; tmp___4 = ldv_xmalloc(10UL); ldv_9_ieee80211_hw_struct_ieee80211_tx_queue_params_ptr = (struct ieee80211_tx_queue_params *)tmp___4; tmp___5 = ldv_xmalloc(280UL); ldv_9_ieee80211_hw_struct_ieee80211_vif_ptr = (struct ieee80211_vif *)tmp___5; tmp___6 = ldv_xmalloc(232UL); ldv_9_ieee80211_hw_struct_sk_buff_ptr = (struct sk_buff *)tmp___6; tmp___7 = ldv_xmalloc(56UL); ldv_9_ieee80211_hw_struct_survey_info_ptr = (struct survey_info *)tmp___7; ldv_dispatch_register_9_3(ldv_9_ieee80211_hw_struct_ieee80211_tx_control_ptr); } return (ldv_9_ieee80211_hw_ieee80211_hw); return (arg0); } else { { ldv_assume((unsigned long )ldv_9_ieee80211_hw_ieee80211_hw == (unsigned long )((struct ieee80211_hw *)0)); } return ((struct ieee80211_hw *)0); return (arg0); } return (arg0); } } void ldv_ieee80211_free_hw(void *arg0 , struct ieee80211_hw **arg1 ) { struct ieee80211_hw *ldv_10_ieee80211_hw_ieee80211_hw ; { { ldv_dispatch_deregister_10_2(ldv_10_ieee80211_hw_ieee80211_hw); ldv_free((void *)ldv_10_ieee80211_hw_ieee80211_hw); } return; return; } } void ldv_ieee80211_ieee80211_instance_1(void *arg0 ) { int (*ldv_1_callback_add_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*ldv_1_callback_bss_info_changed)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) ; int (*ldv_1_callback_conf_tx)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned short , struct ieee80211_tx_queue_params * ) ; int (*ldv_1_callback_config)(struct ieee80211_hw * , unsigned int ) ; void (*ldv_1_callback_configure_filter)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) ; int (*ldv_1_callback_get_stats)(struct ieee80211_hw * , struct ieee80211_low_level_stats * ) ; int (*ldv_1_callback_get_survey)(struct ieee80211_hw * , int , struct survey_info * ) ; void (*ldv_1_callback_remove_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*ldv_1_callback_rfkill_poll)(struct ieee80211_hw * ) ; int (*ldv_1_callback_set_tim)(struct ieee80211_hw * , struct ieee80211_sta * , _Bool ) ; void (*ldv_1_callback_tx)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) ; struct ieee80211_ops *ldv_1_container_ieee80211_ops ; unsigned int ldv_1_ldv_param_18_3_default ; unsigned short ldv_1_ldv_param_21_2_default ; unsigned int ldv_1_ldv_param_24_1_default ; unsigned int ldv_1_ldv_param_27_1_default ; unsigned int *ldv_1_ldv_param_27_2_default ; unsigned long long ldv_1_ldv_param_27_3_default ; int ldv_1_ldv_param_31_1_default ; _Bool ldv_1_ldv_param_36_2_default ; struct ieee80211_hw *ldv_1_resource_ieee80211_hw ; struct ieee80211_bss_conf *ldv_1_resource_struct_ieee80211_bss_conf_ptr ; struct ieee80211_low_level_stats *ldv_1_resource_struct_ieee80211_low_level_stats_ptr ; struct ieee80211_sta *ldv_1_resource_struct_ieee80211_sta_ptr ; struct ieee80211_tx_control *ldv_1_resource_struct_ieee80211_tx_control_ptr ; struct ieee80211_tx_queue_params *ldv_1_resource_struct_ieee80211_tx_queue_params_ptr ; struct ieee80211_vif *ldv_1_resource_struct_ieee80211_vif_ptr ; struct sk_buff *ldv_1_resource_struct_sk_buff_ptr ; struct survey_info *ldv_1_resource_struct_survey_info_ptr ; int ldv_1_ret_default ; struct ldv_struct_ieee80211_instance_1 *data ; int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; { data = (struct ldv_struct_ieee80211_instance_1 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_ieee80211_instance_1 *)0)) { { ldv_1_resource_struct_ieee80211_tx_control_ptr = data->arg0; ldv_free((void *)data); } } else { } goto ldv_main_1; return; ldv_main_1: { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { rtnl_lock(); ldv_1_ret_default = ldv_ieee80211_instance_start_1_6(ldv_1_container_ieee80211_ops->start, ldv_1_resource_ieee80211_hw); ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); rtnl_unlock(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_1_ret_default == 0); } goto ldv_started_1; } else { { ldv_assume(ldv_1_ret_default != 0); } goto ldv_main_1; } } else { return; } return; ldv_started_1: { tmp___1 = ldv_undef_int(); } { if (tmp___1 == 1) { goto case_1; } else { } if (tmp___1 == 2) { goto case_2; } else { } if (tmp___1 == 3) { goto case_3; } else { } if (tmp___1 == 4) { goto case_4; } else { } if (tmp___1 == 5) { goto case_5; } else { } if (tmp___1 == 6) { goto case_6; } else { } if (tmp___1 == 7) { goto case_7; } else { } if (tmp___1 == 8) { goto case_8; } else { } if (tmp___1 == 9) { goto case_9; } else { } if (tmp___1 == 10) { goto case_10; } else { } if (tmp___1 == 11) { goto case_11; } else { } if (tmp___1 == 12) { goto case_12; } else { } if (tmp___1 == 13) { goto case_13; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_ieee80211_instance_callback_1_39(ldv_1_callback_tx, ldv_1_resource_ieee80211_hw, ldv_1_resource_struct_ieee80211_tx_control_ptr, ldv_1_resource_struct_sk_buff_ptr); } goto ldv_started_1; case_2: /* CIL Label */ { ldv_ieee80211_instance_callback_1_36(ldv_1_callback_set_tim, ldv_1_resource_ieee80211_hw, ldv_1_resource_struct_ieee80211_sta_ptr, (int )ldv_1_ldv_param_36_2_default); } goto ldv_started_1; goto ldv_started_1; case_3: /* CIL Label */ { ldv_ieee80211_instance_callback_1_35(ldv_1_callback_rfkill_poll, ldv_1_resource_ieee80211_hw); } goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; case_4: /* CIL Label */ { ldv_ieee80211_instance_callback_1_34(ldv_1_callback_remove_interface, ldv_1_resource_ieee80211_hw, ldv_1_resource_struct_ieee80211_vif_ptr); } goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; case_5: /* CIL Label */ { ldv_ieee80211_instance_callback_1_31(ldv_1_callback_get_survey, ldv_1_resource_ieee80211_hw, ldv_1_ldv_param_31_1_default, ldv_1_resource_struct_survey_info_ptr); } goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; case_6: /* CIL Label */ { ldv_ieee80211_instance_callback_1_30(ldv_1_callback_get_stats, ldv_1_resource_ieee80211_hw, ldv_1_resource_struct_ieee80211_low_level_stats_ptr); } goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; case_7: /* CIL Label */ { tmp___2 = ldv_xmalloc(4UL); ldv_1_ldv_param_27_2_default = (unsigned int *)tmp___2; ldv_ieee80211_instance_callback_1_27(ldv_1_callback_configure_filter, ldv_1_resource_ieee80211_hw, ldv_1_ldv_param_27_1_default, ldv_1_ldv_param_27_2_default, ldv_1_ldv_param_27_3_default); ldv_free((void *)ldv_1_ldv_param_27_2_default); } goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; case_8: /* CIL Label */ { ldv_ieee80211_instance_callback_1_24(ldv_1_callback_config, ldv_1_resource_ieee80211_hw, ldv_1_ldv_param_24_1_default); } goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; case_9: /* CIL Label */ { ldv_ieee80211_instance_callback_1_21(ldv_1_callback_conf_tx, ldv_1_resource_ieee80211_hw, ldv_1_resource_struct_ieee80211_vif_ptr, (int )ldv_1_ldv_param_21_2_default, ldv_1_resource_struct_ieee80211_tx_queue_params_ptr); } goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; case_10: /* CIL Label */ { ldv_ieee80211_instance_callback_1_18(ldv_1_callback_bss_info_changed, ldv_1_resource_ieee80211_hw, ldv_1_resource_struct_ieee80211_vif_ptr, ldv_1_resource_struct_ieee80211_bss_conf_ptr, ldv_1_ldv_param_18_3_default); } goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; case_11: /* CIL Label */ ; if ((unsigned long )ldv_1_container_ieee80211_ops->resume != (unsigned long )((int (*)(struct ieee80211_hw * ))0)) { { ldv_ieee80211_instance_resume_1_12(ldv_1_container_ieee80211_ops->resume, ldv_1_resource_ieee80211_hw); } } else { } goto ldv_started_1; case_12: /* CIL Label */ { ldv_ieee80211_instance_callback_1_10(ldv_1_callback_add_interface, ldv_1_resource_ieee80211_hw, ldv_1_resource_struct_ieee80211_vif_ptr); } goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; goto ldv_started_1; case_13: /* CIL Label */ { rtnl_lock(); ldv_ieee80211_instance_stop_1_8(ldv_1_container_ieee80211_ops->stop, ldv_1_resource_ieee80211_hw); rtnl_unlock(); } goto ldv_main_1; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_ieee80211_instance_callback_1_10(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { b43legacy_op_add_interface(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_1_18(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , struct ieee80211_bss_conf *arg3 , unsigned int arg4 ) { { { b43legacy_op_bss_info_changed(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_1_21(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , unsigned short , struct ieee80211_tx_queue_params * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , unsigned short arg3 , struct ieee80211_tx_queue_params *arg4 ) { { { b43legacy_op_conf_tx(arg1, arg2, (int )arg3, (struct ieee80211_tx_queue_params const *)arg4); } return; } } void ldv_ieee80211_instance_callback_1_24(int (*arg0)(struct ieee80211_hw * , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 ) { { { b43legacy_op_dev_config(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_1_27(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int *arg3 , unsigned long long arg4 ) { { { b43legacy_op_configure_filter(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_1_30(int (*arg0)(struct ieee80211_hw * , struct ieee80211_low_level_stats * ) , struct ieee80211_hw *arg1 , struct ieee80211_low_level_stats *arg2 ) { { { b43legacy_op_get_stats(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_1_31(int (*arg0)(struct ieee80211_hw * , int , struct survey_info * ) , struct ieee80211_hw *arg1 , int arg2 , struct survey_info *arg3 ) { { { b43legacy_op_get_survey(arg1, arg2, arg3); } return; } } void ldv_ieee80211_instance_callback_1_34(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { b43legacy_op_remove_interface(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_1_35(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { b43legacy_rfkill_poll(arg1); } return; } } void ldv_ieee80211_instance_callback_1_36(int (*arg0)(struct ieee80211_hw * , struct ieee80211_sta * , _Bool ) , struct ieee80211_hw *arg1 , struct ieee80211_sta *arg2 , _Bool arg3 ) { { { b43legacy_op_beacon_set_tim(arg1, arg2, (int )arg3); } return; } } void ldv_ieee80211_instance_callback_1_39(void (*arg0)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct ieee80211_tx_control *arg2 , struct sk_buff *arg3 ) { { { b43legacy_op_tx(arg1, arg2, arg3); } return; } } void ldv_ieee80211_instance_resume_1_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_ieee80211_instance_start_1_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { int tmp ; { { tmp = b43legacy_op_start(arg1); } return (tmp); } } void ldv_ieee80211_instance_stop_1_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { b43legacy_op_stop(arg1); } return; } } enum irqreturn ldv_interrupt_instance_handler_2_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = b43legacy_interrupt_handler(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_2_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_2(void *arg0 ) { enum irqreturn (*ldv_2_callback_handler)(int , void * ) ; void *ldv_2_data_data ; int ldv_2_line_line ; enum irqreturn ldv_2_ret_val_default ; enum irqreturn (*ldv_2_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_2 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_2 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_2 *)0)) { { ldv_2_line_line = data->arg0; ldv_2_callback_handler = data->arg1; ldv_2_thread_thread = data->arg2; ldv_2_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_2_ret_val_default = ldv_interrupt_instance_handler_2_5(ldv_2_callback_handler, ldv_2_line_line, ldv_2_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_2_ret_val_default == 2U); } if ((unsigned long )ldv_2_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_2_3(ldv_2_thread_thread, ldv_2_line_line, ldv_2_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_2_ret_val_default != 2U); } } return; return; } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_11_callback_handler)(int , void * ) ; void *ldv_11_data_data ; int ldv_11_line_line ; enum irqreturn (*ldv_11_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_11_line_line = (int )arg1; ldv_11_callback_handler = arg2; ldv_11_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_11_data_data = arg5; ldv_dispatch_irq_register_11_2(ldv_11_line_line, ldv_11_callback_handler, ldv_11_thread_thread, ldv_11_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_ssb_driver_unregister(void *arg0 , struct ssb_driver *arg1 ) { struct ssb_driver *ldv_12_struct_ssb_driver_struct_ssb_driver ; { { ldv_12_struct_ssb_driver_struct_ssb_driver = arg1; ldv_dispatch_deregister_12_1(ldv_12_struct_ssb_driver_struct_ssb_driver); } return; return; } } void ldv_struct_ssb_driver_base_instance_5(void *arg0 ) { struct ssb_driver *ldv_5_container_struct_ssb_driver ; struct pm_message ldv_5_resource_struct_pm_message ; struct ssb_device_id *ldv_5_resource_struct_ssb_device_id_ptr ; struct ssb_device *ldv_5_resource_struct_ssb_device_ptr ; int ldv_5_ret_default ; struct ldv_struct_base_instance_5 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { data = (struct ldv_struct_base_instance_5 *)arg0; ldv_5_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_base_instance_5 *)0)) { { ldv_5_container_struct_ssb_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(6UL); ldv_5_resource_struct_ssb_device_id_ptr = (struct ssb_device_id *)tmp; tmp___0 = ldv_xmalloc(64UL); ldv_5_resource_struct_ssb_device_ptr = (struct ssb_device *)tmp___0; } goto ldv_main_5; return; ldv_main_5: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_5_ret_default = ldv_base_instance_probe_5_16((int (*)(struct ssb_device * , struct ssb_device_id * ))ldv_5_container_struct_ssb_driver->probe, ldv_5_resource_struct_ssb_device_ptr, ldv_5_resource_struct_ssb_device_id_ptr); ldv_5_ret_default = ldv_filter_err_code(ldv_5_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_5_ret_default == 0); } goto ldv_call_5; } else { { ldv_assume(ldv_5_ret_default != 0); } goto ldv_main_5; } } else { { ldv_free((void *)ldv_5_resource_struct_ssb_device_id_ptr); ldv_free((void *)ldv_5_resource_struct_ssb_device_ptr); } return; } return; ldv_call_5: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_5; case_2: /* CIL Label */ { ldv_5_ret_default = ldv_base_instance_suspend_5_7(ldv_5_container_struct_ssb_driver->suspend, ldv_5_resource_struct_ssb_device_ptr, ldv_5_resource_struct_pm_message); ldv_5_ret_default = ldv_filter_err_code(ldv_5_ret_default); tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { { ldv_assume(ldv_5_ret_default == 0); ldv_base_instance_resume_5_5(ldv_5_container_struct_ssb_driver->resume, ldv_5_resource_struct_ssb_device_ptr); } goto ldv_call_5; } else { { ldv_assume(ldv_5_ret_default != 0); } goto ldv_call_5; goto ldv_call_5; } case_3: /* CIL Label */ { ldv_base_instance_release_5_2(ldv_5_container_struct_ssb_driver->remove, ldv_5_resource_struct_ssb_device_ptr); } goto ldv_main_5; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_timer_dummy_factory_7(void *arg0 ) { struct timer_list *ldv_7_container_timer_list ; { { ldv_dispatch_instance_register_7_3(ldv_7_container_timer_list); ldv_dispatch_instance_deregister_7_2(ldv_7_container_timer_list); } return; return; } } void ldv_timer_instance_callback_6_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_6(void *arg0 ) { struct timer_list *ldv_6_container_timer_list ; struct ldv_struct_timer_instance_6 *data ; { data = (struct ldv_struct_timer_instance_6 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_timer_instance_6 *)0)) { { ldv_6_container_timer_list = data->arg0; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_6_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_6_2(ldv_6_container_timer_list->function, ldv_6_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); } return; return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } __inline static void ldv_spin_lock_irq_62(spinlock_t *lock ) { { { ldv_spin_lock_irq_lock_of_b43legacy_wl(); spin_lock_irq(lock); } return; } } __inline static void ldv_spin_unlock_irq_63(spinlock_t *lock ) { { { ldv_spin_unlock_irq_lock_of_b43legacy_wl(); spin_unlock_irq(lock); } return; } } static void ldv___ldv_spin_lock_64(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_lock_of_b43legacy_wl(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_irq_lock_of_b43legacy_wl(); spin_unlock_irqrestore(lock, flags); } return; } } __inline static void ldv_spin_lock_67(spinlock_t *lock ) { { { ldv_spin_lock_irq_lock_of_b43legacy_wl(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_68(spinlock_t *lock ) { { { ldv_spin_unlock_irq_lock_of_b43legacy_wl(); spin_unlock(lock); } return; } } static void ldv___ldv_spin_lock_73(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_lock_of_b43legacy_wl(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_75(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_lock_of_b43legacy_wl(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_77(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_lock_of_b43legacy_wl(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_80(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_lock_of_b43legacy_wl(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_82(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_lock_of_b43legacy_wl(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_85(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_lock_of_b43legacy_wl(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_87(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_lock_of_b43legacy_wl(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_89(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_lock_of_b43legacy_wl(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv_free_irq_91(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static int ldv_request_irq_92(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_spin_lock_93(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_lock_of_b43legacy_wl(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_95(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_lock_of_b43legacy_wl(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_97(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_lock_of_b43legacy_wl(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv_ieee80211_free_hw_99(struct ieee80211_hw *ldv_func_arg1 ) { { { ieee80211_free_hw(ldv_func_arg1); ldv_ieee80211_free_hw((void *)0, (struct ieee80211_hw **)ldv_func_arg1); } return; } } static struct ieee80211_hw *ldv_ieee80211_alloc_hw_100(size_t ldv_func_arg1 , struct ieee80211_ops const *ldv_func_arg2 ) { ldv_func_ret_type___1 ldv_func_res ; struct ieee80211_hw *tmp ; struct ieee80211_hw *tmp___0 ; { { tmp = ieee80211_alloc_hw(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_ieee80211_alloc_hw(ldv_func_res, ldv_func_arg1, (struct ieee80211_ops *)ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv___ssb_driver_register_101(struct ssb_driver *ldv_func_arg1 , struct module *ldv_func_arg2 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __ssb_driver_register(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv___ssb_driver_register(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static void ldv_ssb_driver_unregister_102(struct ssb_driver *ldv_func_arg1 ) { { { ssb_driver_unregister(ldv_func_arg1); ldv_ssb_driver_unregister((void *)0, ldv_func_arg1); } return; } } u16 b43legacy_phy_read(struct b43legacy_wldev *dev , u16 offset ) ; void b43legacy_phy_write(struct b43legacy_wldev *dev , u16 offset , u16 val ) ; u32 const b43legacy_ilt_rotor[53U] ; u32 const b43legacy_ilt_retard[53U] ; u16 const b43legacy_ilt_finefreqa[256U] ; u16 const b43legacy_ilt_finefreqg[256U] ; u16 const b43legacy_ilt_noisea2[8U] ; u16 const b43legacy_ilt_noisea3[8U] ; u16 const b43legacy_ilt_noiseg1[8U] ; u16 const b43legacy_ilt_noiseg2[8U] ; u16 const b43legacy_ilt_noisescaleg1[27U] ; u16 const b43legacy_ilt_noisescaleg2[27U] ; u16 const b43legacy_ilt_noisescaleg3[27U] ; u16 const b43legacy_ilt_sigmasqr1[53U] ; u16 const b43legacy_ilt_sigmasqr2[53U] ; void b43legacy_ilt_write(struct b43legacy_wldev *dev , u16 offset , u16 val ) ; void b43legacy_ilt_write32(struct b43legacy_wldev *dev , u16 offset , u32 val ) ; u16 b43legacy_ilt_read(struct b43legacy_wldev *dev , u16 offset ) ; u32 const b43legacy_ilt_rotor[53U] = { 4273553405U, 4274405373U, 4275191805U, 4276043773U, 4276895742U, 4277682174U, 4278534142U, 4279320574U, 4280172542U, 4280958975U, 4281810943U, 4282662911U, 4283449343U, 4284301311U, 4285087743U, 4285939711U, 4286726144U, 4287578112U, 4288364544U, 4289216512U, 4290068480U, 4290854912U, 4291706880U, 4292493312U, 4293345280U, 4294131712U, 16384U, 868352U, 1654784U, 2506752U, 3293184U, 4145152U, 4931584U, 5783552U, 6635520U, 7421952U, 8273920U, 9060351U, 9912319U, 10698751U, 11550719U, 12337151U, 13189119U, 14041087U, 14827518U, 15679486U, 16465918U, 17317886U, 18104318U, 18956285U, 19808253U, 20594685U, 21446653U}; u32 const b43legacy_ilt_retard[53U] = { 3683896199U, 3597061988U, 3523072856U, 3450263590U, 3392724383U, 3341410996U, 3295275150U, 3261787691U, 3235837036U, 3228826210U, 3223126229U, 3228960579U, 3243642142U, 3269792617U, 3303872767U, 3349946071U, 3408405426U, 3472500953U, 3539348799U, 3619369367U, 3706008936U, 3791534197U, 3889249077U, 3982900533U, 4087037636U, 4186849191U, 16384U, 108150695U, 207961796U, 312098101U, 405748533U, 503462005U, 588985704U, 675623319U, 755641663U, 822487257U, 886580146U, 945037015U, 991107327U, 1025184617U, 1051331870U, 1066010435U, 1071841493U, 1066269282U, 1059255404U, 1033301547U, 999811214U, 953672372U, 902356383U, 844814374U, 772002648U, 698011492U, 611175303U}; u16 const b43legacy_ilt_finefreqa[256U] = { 130U, 130U, 258U, 386U, 514U, 642U, 770U, 898U, 1026U, 1154U, 1282U, 1410U, 1506U, 1634U, 1762U, 1890U, 2018U, 2114U, 2242U, 2370U, 2498U, 2594U, 2722U, 2818U, 2946U, 3042U, 3170U, 3266U, 3394U, 3490U, 3586U, 3682U, 3810U, 3906U, 4002U, 4098U, 4194U, 4290U, 4386U, 4482U, 4578U, 4674U, 4770U, 4834U, 4930U, 5026U, 5122U, 5186U, 5282U, 5346U, 5442U, 5506U, 5602U, 5666U, 5730U, 5825U, 5889U, 5953U, 6017U, 6113U, 6177U, 6241U, 6305U, 6369U, 6433U, 6497U, 6561U, 6625U, 6689U, 6753U, 6817U, 6849U, 6913U, 6977U, 7041U, 7073U, 7137U, 7201U, 7233U, 7297U, 7329U, 7393U, 7425U, 7489U, 7521U, 7585U, 7617U, 7681U, 7713U, 7777U, 7809U, 7841U, 7905U, 7937U, 7969U, 8001U, 8065U, 8097U, 8129U, 8161U, 8193U, 8257U, 8289U, 8321U, 8353U, 8385U, 8417U, 8449U, 8481U, 8513U, 8545U, 8577U, 8609U, 8641U, 8673U, 8705U, 8737U, 8769U, 8801U, 8833U, 8865U, 8897U, 8897U, 8929U, 8961U, 8993U, 9025U, 9057U, 9057U, 9089U, 9121U, 9153U, 9185U, 9185U, 9217U, 9249U, 9281U, 9281U, 9313U, 9345U, 9345U, 9377U, 9409U, 9409U, 9441U, 9473U, 9473U, 9505U, 9537U, 9537U, 9569U, 9569U, 9601U, 9633U, 9633U, 9665U, 9665U, 9697U, 9729U, 9729U, 9761U, 9761U, 9793U, 9793U, 9825U, 9825U, 9857U, 9857U, 9889U, 9889U, 9921U, 9921U, 9953U, 9953U, 9985U, 9985U, 10017U, 10017U, 10048U, 10048U, 10080U, 10080U, 10112U, 10112U, 10112U, 10144U, 10144U, 10176U, 10176U, 10208U, 10208U, 10208U, 10240U, 10240U, 10272U, 10272U, 10272U, 10304U, 10304U, 10304U, 10336U, 10336U, 10368U, 10368U, 10368U, 10400U, 10400U, 10400U, 10432U, 10432U, 10432U, 10464U, 10464U, 10464U, 10496U, 10496U, 10496U, 10528U, 10528U, 10528U, 10560U, 10560U, 10560U, 10592U, 10592U, 10592U, 10592U, 10624U, 10624U, 10624U, 10656U, 10656U, 10656U, 10656U, 10688U, 10688U, 10688U, 10720U, 10720U, 10720U, 10720U, 10752U, 10752U, 10752U, 10752U, 10784U, 10784U, 10784U, 10784U, 10816U, 10816U, 10816U, 10816U, 10848U, 10848U, 10848U}; u16 const b43legacy_ilt_finefreqg[256U] = { 137U, 745U, 1033U, 1257U, 1449U, 1641U, 1801U, 1929U, 2089U, 2217U, 2345U, 2441U, 2569U, 2665U, 2761U, 2857U, 2985U, 3049U, 3145U, 3241U, 3337U, 3433U, 3497U, 3593U, 3689U, 3753U, 3849U, 3913U, 4009U, 4073U, 4137U, 4233U, 4297U, 4361U, 4457U, 4521U, 4585U, 4649U, 4745U, 4809U, 4873U, 4937U, 5001U, 5065U, 5129U, 5193U, 5289U, 5353U, 5417U, 5481U, 5545U, 5609U, 5673U, 5737U, 5801U, 5864U, 5928U, 5992U, 6056U, 6120U, 6184U, 6248U, 6312U, 6376U, 6440U, 6504U, 6568U, 6632U, 6696U, 6760U, 6824U, 6888U, 6952U, 7016U, 7080U, 7144U, 7208U, 7272U, 7336U, 7400U, 7464U, 7528U, 7624U, 7688U, 7752U, 7816U, 7880U, 7944U, 8008U, 8072U, 8168U, 8232U, 8296U, 8360U, 8456U, 8520U, 8584U, 8648U, 8744U, 8808U, 8904U, 8968U, 9032U, 9128U, 9192U, 9288U, 9384U, 9448U, 9544U, 9640U, 9736U, 9832U, 9928U, 10024U, 10119U, 10215U, 10311U, 10439U, 10567U, 10663U, 10791U, 10951U, 11079U, 11239U, 11431U, 11623U, 11847U, 12135U, 12871U, 13606U, 13894U, 14118U, 14342U, 14502U, 14662U, 14822U, 14950U, 15078U, 15206U, 15302U, 15429U, 15525U, 15621U, 15749U, 15845U, 15941U, 16037U, 16101U, 16197U, 16293U, 16389U, 16453U, 16549U, 16613U, 16709U, 16773U, 16869U, 16933U, 16997U, 17093U, 17157U, 17221U, 17317U, 17381U, 17444U, 17508U, 17604U, 17668U, 17732U, 17796U, 17860U, 17924U, 17988U, 18084U, 18148U, 18212U, 18276U, 18340U, 18404U, 18468U, 18532U, 18596U, 18660U, 18724U, 18788U, 18852U, 18916U, 18980U, 19044U, 19108U, 19172U, 19235U, 19299U, 19363U, 19427U, 19491U, 19555U, 19619U, 19683U, 19747U, 19811U, 19875U, 19939U, 20003U, 20067U, 20131U, 20195U, 20259U, 20323U, 20419U, 20483U, 20547U, 20611U, 20675U, 20739U, 20803U, 20867U, 20962U, 21026U, 21090U, 21154U, 21218U, 21314U, 21378U, 21442U, 21506U, 21602U, 21666U, 21762U, 21826U, 21922U, 21986U, 22082U, 22146U, 22242U, 22306U, 22402U, 22497U, 22593U, 22689U, 22785U, 22881U, 22977U, 23073U, 23201U, 23297U, 23425U, 23521U, 23649U, 23809U, 23936U, 24096U, 24288U, 24480U, 24704U, 25024U}; u16 const b43legacy_ilt_noisea2[8U] = { 1U, 1U, 1U, 65534U, 65534U, 16383U, 4096U, 915U}; u16 const b43legacy_ilt_noisea3[8U] = { 19532U, 19532U, 19532U, 11574U, 19532U, 19532U, 19532U, 11574U}; u16 const b43legacy_ilt_noiseg1[8U] = { 316U, 501U, 794U, 1585U, 1U, 1U, 1U, 1U}; u16 const b43legacy_ilt_noiseg2[8U] = { 21636U, 15424U, 0U, 0U, 0U, 0U, 0U, 0U}; u16 const b43legacy_ilt_noisescaleg1[27U] = { 27767U, 20834U, 15168U, 13109U, 12077U, 10794U, 9511U, 7969U, 6685U, 5913U, 5654U, 5140U, 5140U, 5120U, 5140U, 5652U, 5910U, 6681U, 7965U, 9505U, 10791U, 12074U, 13101U, 15157U, 20800U, 27746U, 119U}; u16 const b43legacy_ilt_noisescaleg2[27U] = { 55517U, 52180U, 48320U, 46775U, 45744U, 44461U, 42921U, 40865U, 38555U, 37269U, 36751U, 35466U, 35466U, 35328U, 35466U, 36746U, 37263U, 38549U, 40859U, 42913U, 44457U, 45741U, 46768U, 48311U, 52160U, 55508U, 221U}; u16 const b43legacy_ilt_noisescaleg3[27U] = { 42148U, 42148U, 42148U, 42148U, 42148U, 42148U, 42148U, 42148U, 42148U, 42148U, 42148U, 42148U, 42148U, 41984U, 42148U, 42148U, 42148U, 42148U, 42148U, 42148U, 42148U, 42148U, 42148U, 42148U, 42148U, 42148U, 164U}; u16 const b43legacy_ilt_sigmasqr1[53U] = { 122U, 117U, 113U, 108U, 103U, 99U, 94U, 89U, 84U, 80U, 75U, 70U, 66U, 61U, 61U, 61U, 61U, 61U, 61U, 61U, 61U, 61U, 61U, 61U, 61U, 61U, 0U, 61U, 61U, 61U, 61U, 61U, 61U, 61U, 61U, 61U, 61U, 61U, 61U, 61U, 66U, 70U, 75U, 80U, 84U, 89U, 94U, 99U, 103U, 108U, 113U, 117U, 122U}; u16 const b43legacy_ilt_sigmasqr2[53U] = { 222U, 220U, 218U, 216U, 214U, 212U, 210U, 207U, 205U, 202U, 199U, 196U, 193U, 190U, 190U, 190U, 190U, 190U, 190U, 190U, 190U, 190U, 190U, 190U, 190U, 190U, 0U, 190U, 190U, 190U, 190U, 190U, 190U, 190U, 190U, 190U, 190U, 190U, 190U, 190U, 193U, 196U, 199U, 202U, 205U, 207U, 210U, 212U, 214U, 216U, 218U, 220U, 222U}; void b43legacy_ilt_write(struct b43legacy_wldev *dev , u16 offset , u16 val ) { { { b43legacy_phy_write(dev, 1138, (int )offset); __asm__ volatile ("": : : "memory"); b43legacy_phy_write(dev, 1139, (int )val); } return; } } void b43legacy_ilt_write32(struct b43legacy_wldev *dev , u16 offset , u32 val ) { { { b43legacy_phy_write(dev, 1138, (int )offset); __asm__ volatile ("": : : "memory"); b43legacy_phy_write(dev, 1140, (int )((u16 )(val >> 16))); b43legacy_phy_write(dev, 1139, (int )((u16 )val)); } return; } } u16 b43legacy_ilt_read(struct b43legacy_wldev *dev , u16 offset ) { u16 tmp ; { { b43legacy_phy_write(dev, 1138, (int )offset); tmp = b43legacy_phy_read(dev, 1139); } return (tmp); } } extern void dump_stack(void) ; __inline static void arch_local_irq_restore(unsigned long f ) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.restore_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/520b8de/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (809), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (45UL), [paravirt_opptr] "i" (& pv_irq_ops.restore_fl.func), [paravirt_clobber] "i" (1), "D" (f): "memory", "cc"); return; } } __inline static void arch_local_irq_disable(void) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.irq_disable.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/520b8de/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (814), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (46UL), [paravirt_opptr] "i" (& pv_irq_ops.irq_disable.func), [paravirt_clobber] "i" (1): "memory", "cc"); return; } } __inline static unsigned long arch_local_irq_save(void) { unsigned long f ; { { f = arch_local_save_flags(); arch_local_irq_disable(); } return (f); } } extern void trace_hardirqs_on(void) ; extern void trace_hardirqs_off(void) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_6465; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6465; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6465; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6465; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6465: ; return (pfo_ret__ & 2147483647); } } extern int _cond_resched(void) ; void b43legacy_phy_lock(struct b43legacy_wldev *dev ) ; void b43legacy_phy_unlock(struct b43legacy_wldev *dev ) ; void b43legacy_phy_lo_b_measure(struct b43legacy_wldev *dev ) ; void b43legacy_phy_lo_adjust(struct b43legacy_wldev *dev , int fixed ) ; void b43legacy_phy_set_baseband_attenuation(struct b43legacy_wldev *dev , u16 bbatt ) ; __inline static bool is_bcm_board_vendor(struct b43legacy_wldev *dev ) { { return ((unsigned int )((dev->dev)->bus)->boardinfo.vendor == 5348U); } } __inline static struct b43legacy_lopair *b43legacy_get_lopair(struct b43legacy_phy *phy , u16 radio_attenuation , u16 baseband_attenuation ) { { return (phy->_lo_pairs + (unsigned long )((int )radio_attenuation + (int )((unsigned int )baseband_attenuation / 2U) * 14)); } } void b43legacy_radio_lock(struct b43legacy_wldev *dev ) ; void b43legacy_radio_unlock(struct b43legacy_wldev *dev ) ; u16 b43legacy_radio_read16(struct b43legacy_wldev *dev , u16 offset ) ; u16 b43legacy_radio_init2050(struct b43legacy_wldev *dev ) ; void b43legacy_radio_set_txpower_bg(struct b43legacy_wldev *dev , u16 baseband_attenuation , u16 radio_attenuation , u16 txpower ) ; void b43legacy_radio_clear_tssi(struct b43legacy_wldev *dev ) ; void b43legacy_calc_nrssi_threshold(struct b43legacy_wldev *dev ) ; void b43legacy_nrssi_hw_write(struct b43legacy_wldev *dev , u16 offset , s16 val ) ; void b43legacy_nrssi_hw_update(struct b43legacy_wldev *dev , u16 val ) ; static s8 const b43legacy_tssi2dbm_b_table[64U] = { 77, 76, 75, 74, 74, 73, 72, 71, 71, 70, 69, 69, 68, 67, 66, 66, 65, 64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 50, 49, 48, 47, 45, 44, 43, 41, 40, 38, 37, 35, 33, 31, 29, 26, 23, 20, 16, 12, 6, 0, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7, -7}; static s8 const b43legacy_tssi2dbm_g_table[64U] = { 77, 77, 77, 76, 76, 76, 75, 75, 74, 74, 73, 73, 73, 72, 72, 71, 71, 70, 70, 69, 68, 68, 67, 67, 66, 65, 65, 64, 63, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 50, 49, 47, 45, 43, 40, 37, 33, 28, 22, 14, 5, -7, -20, -20, -20, -20, -20, -20, -20, -20, -20, -20}; static void b43legacy_phy_initg(struct b43legacy_wldev *dev ) ; __inline static void b43legacy_voluntary_preempt(void) { int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; int tmp___6 ; unsigned long _flags ; int tmp___7 ; long tmp___8 ; int tmp___9 ; long tmp___10 ; int tmp___11 ; long tmp___12 ; int tmp___13 ; int tmp___14 ; long tmp___15 ; int tmp___16 ; unsigned long _flags___0 ; int tmp___17 ; long tmp___18 ; { { tmp___9 = preempt_count(); tmp___10 = ldv__builtin_expect(((unsigned long )tmp___9 & 0xffffffffffdfffffUL) != 0UL, 0L); } if (tmp___10 != 0L) { tmp___13 = 1; } else { { tmp___11 = preempt_count(); tmp___12 = ldv__builtin_expect(((unsigned long )tmp___11 & 983040UL) != 0UL, 0L); } if (tmp___12 != 0L) { tmp___13 = 1; } else { tmp___13 = 0; } } if (tmp___13 != 0) { tmp___16 = 1; } else { { tmp___14 = preempt_count(); tmp___15 = ldv__builtin_expect(((unsigned long )tmp___14 & 2096896UL) != 0UL, 0L); } if (tmp___15 != 0L) { tmp___16 = 1; } else { tmp___16 = 0; } } if (tmp___16 != 0) { goto _L; } else { { _flags___0 = arch_local_save_flags(); tmp___17 = arch_irqs_disabled_flags(_flags___0); tmp___18 = ldv__builtin_expect(tmp___17 != 0, 0L); } if (tmp___18 != 0L) { _L: /* CIL Label */ { printk("\016b43legacy: Test (%s) failed\n", (char *)"!(!in_atomic() && !in_irq() && !in_interrupt() && !irqs_disabled())"); tmp = preempt_count(); tmp___0 = ldv__builtin_expect(((unsigned long )tmp & 0xffffffffffdfffffUL) != 0UL, 0L); } if (tmp___0 != 0L) { tmp___3 = 1; } else { { tmp___1 = preempt_count(); tmp___2 = ldv__builtin_expect(((unsigned long )tmp___1 & 983040UL) != 0UL, 0L); } if (tmp___2 != 0L) { tmp___3 = 1; } else { tmp___3 = 0; } } if (tmp___3 != 0) { tmp___6 = 1; } else { { tmp___4 = preempt_count(); tmp___5 = ldv__builtin_expect(((unsigned long )tmp___4 & 2096896UL) != 0UL, 0L); } if (tmp___5 != 0L) { tmp___6 = 1; } else { tmp___6 = 0; } } if (tmp___6 != 0) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/phy.c"), "i" (90), "i" (12UL)); __builtin_unreachable(); } } else { { _flags = arch_local_save_flags(); tmp___7 = arch_irqs_disabled_flags(_flags); tmp___8 = ldv__builtin_expect(tmp___7 != 0, 0L); } if (tmp___8 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/phy.c"), "i" (90), "i" (12UL)); __builtin_unreachable(); } } else { } } } else { } } { __might_sleep("drivers/net/wireless/b43legacy/phy.c", 92, 0); _cond_resched(); } return; } } void b43legacy_phy_lock(struct b43legacy_wldev *dev ) { int __ret_warn_on ; long tmp ; int tmp___0 ; { { __ret_warn_on = (int )dev->phy.phy_locked; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/phy.c", 101); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); dev->phy.phy_locked = 1; } if ((unsigned int )(dev->dev)->id.revision <= 2U) { { b43legacy_mac_suspend(dev); } } else { { tmp___0 = b43legacy_is_mode(dev->wl, 3); } if (tmp___0 == 0) { { b43legacy_power_saving_ctl_bits(dev, -1, 1); } } else { } } return; } } void b43legacy_phy_unlock(struct b43legacy_wldev *dev ) { int __ret_warn_on ; long tmp ; int tmp___0 ; { { __ret_warn_on = ! dev->phy.phy_locked; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/phy.c", 116); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); dev->phy.phy_locked = 0; } if ((unsigned int )(dev->dev)->id.revision <= 2U) { { b43legacy_mac_enable(dev); } } else { { tmp___0 = b43legacy_is_mode(dev->wl, 3); } if (tmp___0 == 0) { { b43legacy_power_saving_ctl_bits(dev, -1, -1); } } else { } } return; } } u16 b43legacy_phy_read(struct b43legacy_wldev *dev , u16 offset ) { u16 tmp ; { { b43legacy_write16(dev, 1020, (int )offset); tmp = b43legacy_read16(dev, 1022); } return (tmp); } } void b43legacy_phy_write(struct b43legacy_wldev *dev , u16 offset , u16 val ) { { { b43legacy_write16(dev, 1020, (int )offset); __asm__ volatile ("": : : "memory"); b43legacy_write16(dev, 1022, (int )val); } return; } } void b43legacy_phy_calibrate(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; { { phy = & dev->phy; b43legacy_read32(dev, 288); } if ((unsigned int )*((unsigned char *)phy + 14UL) != 0U) { return; } else { } if (*((unsigned long *)phy + 0UL) == 4328521728UL) { { b43legacy_wireless_core_reset(dev, 0U); b43legacy_phy_initg(dev); b43legacy_wireless_core_reset(dev, 536870912U); } } else { } phy->calibrated = 1U; return; } } static void b43legacy_phy_init_pctl(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u16 saved_batt ; u16 saved_ratt ; u16 saved_txctl1 ; int must_reset_txpower ; long tmp ; long tmp___0 ; bool tmp___1 ; u16 tmp___2 ; u16 tmp___3 ; u16 tmp___4 ; { { phy = & dev->phy; saved_batt = 0U; saved_ratt = 0U; saved_txctl1 = 0U; must_reset_txpower = 0; tmp___0 = ldv__builtin_expect((unsigned int )phy->type - 1U > 1U, 0L); } if (tmp___0 != 0L) { { printk("\016b43legacy: Test (%s) failed\n", (char *)"!(phy->type == B43legacy_PHYTYPE_B || phy->type == B43legacy_PHYTYPE_G)"); tmp = ldv__builtin_expect((unsigned int )phy->type - 1U > 1U, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/phy.c"), "i" (168), "i" (12UL)); __builtin_unreachable(); } } else { } } else { } { tmp___1 = is_bcm_board_vendor(dev); } if ((int )tmp___1 && (unsigned int )((dev->dev)->bus)->boardinfo.type == 1046U) { return; } else { } { b43legacy_phy_write(dev, 40, 32792); tmp___2 = b43legacy_read16(dev, 998); b43legacy_write16(dev, 998, (int )tmp___2 & 65503); } if ((unsigned int )phy->type == 2U) { if (! phy->gmode) { return; } else { } { b43legacy_phy_write(dev, 1146, 49425); } } else { } if ((unsigned int )phy->savedpctlreg != 65535U) { return; } else { } if ((int )phy->manual_txpower_control) { return; } else { } if (((unsigned int )phy->type == 1U && (unsigned int )phy->rev > 1U) && (unsigned int )phy->radio_ver == 8272U) { { tmp___3 = b43legacy_radio_read16(dev, 118); b43legacy_radio_write16(dev, 118, (int )((unsigned int )tmp___3 | 132U)); } } else { { saved_batt = phy->__annonCompField86.bbatt; saved_ratt = phy->__annonCompField86.rfatt; saved_txctl1 = phy->__annonCompField86.txctl1; b43legacy_radio_set_txpower_bg(dev, 11, 9, 0); must_reset_txpower = 1; } } { b43legacy_dummy_transmission(dev); phy->savedpctlreg = b43legacy_phy_read(dev, 41); } if (must_reset_txpower != 0) { { b43legacy_radio_set_txpower_bg(dev, (int )saved_batt, (int )saved_ratt, (int )saved_txctl1); } } else { { tmp___4 = b43legacy_radio_read16(dev, 118); b43legacy_radio_write16(dev, 118, (int )tmp___4 & 65403); } } { b43legacy_radio_clear_tssi(dev); } return; } } static void b43legacy_phy_agcsetup(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u16 offset ; u16 tmp ; u16 tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; u16 tmp___3 ; u16 tmp___4 ; u16 tmp___5 ; u16 tmp___6 ; u16 tmp___7 ; u16 tmp___8 ; u16 tmp___9 ; u16 tmp___10 ; u16 tmp___11 ; u16 tmp___12 ; u16 tmp___13 ; u16 tmp___14 ; u16 tmp___15 ; u16 tmp___16 ; u16 tmp___17 ; u16 tmp___18 ; u16 tmp___19 ; u16 tmp___20 ; u16 tmp___21 ; u16 tmp___22 ; u16 tmp___23 ; u16 tmp___24 ; u16 tmp___25 ; u16 tmp___26 ; { phy = & dev->phy; offset = 0U; if ((unsigned int )phy->rev == 1U) { offset = 19456U; } else { } { b43legacy_ilt_write(dev, (int )offset, 254); b43legacy_ilt_write(dev, (int )((unsigned int )offset + 1U), 13); b43legacy_ilt_write(dev, (int )((unsigned int )offset + 2U), 19); b43legacy_ilt_write(dev, (int )((unsigned int )offset + 3U), 25); } if ((unsigned int )phy->rev == 1U) { { b43legacy_ilt_write(dev, 6144, 10000); b43legacy_ilt_write(dev, 6145, 39811); b43legacy_ilt_write(dev, 6146, 39811); b43legacy_ilt_write(dev, 6147, 3981); b43legacy_phy_write(dev, 1109, 4); } } else { } { tmp = b43legacy_phy_read(dev, 1189); b43legacy_phy_write(dev, 1189, (int )((u16 )(((int )((short )tmp) & 255) | 22272))); tmp___0 = b43legacy_phy_read(dev, 1050); b43legacy_phy_write(dev, 1050, (int )((u16 )(((int )((short )tmp___0) & -128) | 15))); tmp___1 = b43legacy_phy_read(dev, 1050); b43legacy_phy_write(dev, 1050, (int )((u16 )(((int )((short )tmp___1) & -16257) | 11136))); tmp___2 = b43legacy_phy_read(dev, 1164); b43legacy_phy_write(dev, 1164, (int )((u16 )(((int )((short )tmp___2) & -3841) | 768))); tmp___3 = b43legacy_radio_read16(dev, 122); b43legacy_radio_write16(dev, 122, (int )((unsigned int )tmp___3 | 8U)); tmp___4 = b43legacy_phy_read(dev, 1184); b43legacy_phy_write(dev, 1184, (int )((u16 )(((int )((short )tmp___4) & -16) | 8))); tmp___5 = b43legacy_phy_read(dev, 1185); b43legacy_phy_write(dev, 1185, (int )((u16 )(((int )((short )tmp___5) & -3841) | 1536))); tmp___6 = b43legacy_phy_read(dev, 1186); b43legacy_phy_write(dev, 1186, (int )((u16 )(((int )((short )tmp___6) & -3841) | 1792))); tmp___7 = b43legacy_phy_read(dev, 1184); b43legacy_phy_write(dev, 1184, (int )((u16 )(((int )((short )tmp___7) & -3841) | 256))); } if ((unsigned int )phy->rev == 1U) { { tmp___8 = b43legacy_phy_read(dev, 1186); b43legacy_phy_write(dev, 1186, (int )((u16 )(((int )((short )tmp___8) & -16) | 7))); } } else { } { tmp___9 = b43legacy_phy_read(dev, 1160); b43legacy_phy_write(dev, 1160, (int )((u16 )(((int )((short )tmp___9) & -256) | 28))); tmp___10 = b43legacy_phy_read(dev, 1160); b43legacy_phy_write(dev, 1160, (int )((u16 )(((int )((short )tmp___10) & -16129) | 512))); tmp___11 = b43legacy_phy_read(dev, 1174); b43legacy_phy_write(dev, 1174, (int )((u16 )(((int )((short )tmp___11) & -256) | 28))); tmp___12 = b43legacy_phy_read(dev, 1161); b43legacy_phy_write(dev, 1161, (int )((u16 )(((int )((short )tmp___12) & -256) | 32))); tmp___13 = b43legacy_phy_read(dev, 1161); b43legacy_phy_write(dev, 1161, (int )((u16 )(((int )((short )tmp___13) & -16129) | 512))); tmp___14 = b43legacy_phy_read(dev, 1154); b43legacy_phy_write(dev, 1154, (int )((u16 )(((int )((short )tmp___14) & -256) | 46))); tmp___15 = b43legacy_phy_read(dev, 1174); b43legacy_phy_write(dev, 1174, (int )((u16 )(((int )((short )tmp___15) & 255) | 6656))); tmp___16 = b43legacy_phy_read(dev, 1153); b43legacy_phy_write(dev, 1153, (int )((u16 )(((int )((short )tmp___16) & -256) | 40))); tmp___17 = b43legacy_phy_read(dev, 1153); b43legacy_phy_write(dev, 1153, (int )((u16 )(((int )((short )tmp___17) & 255) | 11264))); } if ((unsigned int )phy->rev == 1U) { { b43legacy_phy_write(dev, 1072, 2347); tmp___18 = b43legacy_phy_read(dev, 1051); b43legacy_phy_write(dev, 1051, (int )((u16 )(((int )((short )tmp___18) & -31) | 2))); } } else { { tmp___19 = b43legacy_phy_read(dev, 1051); b43legacy_phy_write(dev, 1051, (int )tmp___19 & 65505); b43legacy_phy_write(dev, 1055, 10362); tmp___20 = b43legacy_phy_read(dev, 1056); b43legacy_phy_write(dev, 1056, (int )((u16 )(((int )((short )tmp___20) & -16) | 4))); } } if ((unsigned int )phy->rev > 2U) { { b43legacy_phy_write(dev, 1058, 10362); tmp___21 = b43legacy_phy_read(dev, 1056); b43legacy_phy_write(dev, 1056, (int )((u16 )(((int )((short )tmp___21) & 4095) | 12288))); } } else { } { tmp___22 = b43legacy_phy_read(dev, 1192); b43legacy_phy_write(dev, 1192, (int )((u16 )(((int )((short )tmp___22) & -32640) | 30836))); b43legacy_phy_write(dev, 1166, 7168); } if ((unsigned int )phy->rev == 1U) { { tmp___23 = b43legacy_phy_read(dev, 1195); b43legacy_phy_write(dev, 1195, (int )((u16 )(((int )((short )tmp___23) & -3841) | 1536))); b43legacy_phy_write(dev, 1163, 94); tmp___24 = b43legacy_phy_read(dev, 1164); b43legacy_phy_write(dev, 1164, (int )((u16 )(((int )((short )tmp___24) & -256) | 30))); b43legacy_phy_write(dev, 1165, 2); } } else { } { b43legacy_ilt_write(dev, (int )((unsigned int )offset + 2048U), 0); b43legacy_ilt_write(dev, (int )((unsigned int )offset + 2049U), 7); b43legacy_ilt_write(dev, (int )((unsigned int )offset + 2050U), 16); b43legacy_ilt_write(dev, (int )((unsigned int )offset + 2051U), 28); } if ((unsigned int )phy->rev > 5U) { { tmp___25 = b43legacy_phy_read(dev, 1062); b43legacy_phy_write(dev, 1062, (int )tmp___25 & 65532); tmp___26 = b43legacy_phy_read(dev, 1062); b43legacy_phy_write(dev, 1062, (int )tmp___26 & 61439); } } else { } return; } } static void b43legacy_phy_setupg(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u16 i ; long tmp ; long tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; u16 tmp___3 ; bool tmp___4 ; bool tmp___5 ; { { phy = & dev->phy; tmp___0 = ldv__builtin_expect((unsigned int )phy->type != 2U, 0L); } if (tmp___0 != 0L) { { printk("\016b43legacy: Test (%s) failed\n", (char *)"phy->type != B43legacy_PHYTYPE_G"); tmp = ldv__builtin_expect((unsigned int )phy->type != 2U, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/phy.c"), "i" (339), "i" (12UL)); __builtin_unreachable(); } } else { } } else { } if ((unsigned int )phy->rev == 1U) { { b43legacy_phy_write(dev, 1030, 20249); tmp___1 = b43legacy_phy_read(dev, 1065); b43legacy_phy_write(dev, 1065, (int )((u16 )(((int )((short )tmp___1) & -961) | 832))); b43legacy_phy_write(dev, 1068, 90); b43legacy_phy_write(dev, 1063, 26); i = 0U; } goto ldv_50917; ldv_50916: { b43legacy_ilt_write(dev, (int )((unsigned int )i + 22528U), (int )b43legacy_ilt_finefreqg[(int )i]); i = (u16 )((int )i + 1); } ldv_50917: ; if ((unsigned int )i <= 255U) { goto ldv_50916; } else { } i = 0U; goto ldv_50920; ldv_50919: { b43legacy_ilt_write(dev, (int )((unsigned int )i + 6144U), (int )b43legacy_ilt_noiseg1[(int )i]); i = (u16 )((int )i + 1); } ldv_50920: ; if ((unsigned int )i <= 7U) { goto ldv_50919; } else { } i = 0U; goto ldv_50923; ldv_50922: { b43legacy_ilt_write32(dev, (int )((unsigned int )i + 8192U), b43legacy_ilt_rotor[(int )i]); i = (u16 )((int )i + 1); } ldv_50923: ; if ((unsigned int )i <= 52U) { goto ldv_50922; } else { } } else { { b43legacy_nrssi_hw_write(dev, 47768, 30292); } if ((unsigned int )phy->rev == 2U) { { b43legacy_phy_write(dev, 1216, 6241); b43legacy_phy_write(dev, 1217, 625); } } else if ((unsigned int )phy->rev > 2U) { { b43legacy_phy_write(dev, 1216, 152); b43legacy_phy_write(dev, 1217, 112); b43legacy_phy_write(dev, 1225, 128); } } else { } { tmp___2 = b43legacy_phy_read(dev, 1067); b43legacy_phy_write(dev, 1067, (int )((unsigned int )tmp___2 | 2048U)); i = 0U; } goto ldv_50926; ldv_50925: { b43legacy_ilt_write(dev, (int )((unsigned int )i + 16384U), (int )i); i = (u16 )((int )i + 1); } ldv_50926: ; if ((unsigned int )i <= 63U) { goto ldv_50925; } else { } i = 0U; goto ldv_50929; ldv_50928: { b43legacy_ilt_write(dev, (int )((unsigned int )i + 6144U), (int )b43legacy_ilt_noiseg2[(int )i]); i = (u16 )((int )i + 1); } ldv_50929: ; if ((unsigned int )i <= 7U) { goto ldv_50928; } else { } } if ((unsigned int )phy->rev <= 2U) { i = 0U; goto ldv_50932; ldv_50931: { b43legacy_ilt_write(dev, (int )((unsigned int )i + 5120U), (int )b43legacy_ilt_noisescaleg1[(int )i]); i = (u16 )((int )i + 1); } ldv_50932: ; if ((unsigned int )i <= 26U) { goto ldv_50931; } else { } } else if ((unsigned int )phy->rev > 6U) { { tmp___3 = b43legacy_phy_read(dev, 1097); } if (((int )tmp___3 & 512) != 0) { i = 0U; goto ldv_50935; ldv_50934: { b43legacy_ilt_write(dev, (int )((unsigned int )i + 5120U), (int )b43legacy_ilt_noisescaleg3[(int )i]); i = (u16 )((int )i + 1); } ldv_50935: ; if ((unsigned int )i <= 26U) { goto ldv_50934; } else { } } else { goto _L; } } else { _L: /* CIL Label */ i = 0U; goto ldv_50938; ldv_50937: { b43legacy_ilt_write(dev, (int )((unsigned int )i + 5120U), (int )b43legacy_ilt_noisescaleg2[(int )i]); i = (u16 )((int )i + 1); } ldv_50938: ; if ((unsigned int )i <= 26U) { goto ldv_50937; } else { } } if ((unsigned int )phy->rev == 2U) { i = 0U; goto ldv_50941; ldv_50940: { b43legacy_ilt_write(dev, (int )((unsigned int )i + 20480U), (int )b43legacy_ilt_sigmasqr1[(int )i]); i = (u16 )((int )i + 1); } ldv_50941: ; if ((unsigned int )i <= 52U) { goto ldv_50940; } else { } } else if ((unsigned int )phy->rev - 3U <= 5U) { i = 0U; goto ldv_50944; ldv_50943: { b43legacy_ilt_write(dev, (int )((unsigned int )i + 20480U), (int )b43legacy_ilt_sigmasqr2[(int )i]); i = (u16 )((int )i + 1); } ldv_50944: ; if ((unsigned int )i <= 52U) { goto ldv_50943; } else { } } else { } if ((unsigned int )phy->rev == 1U) { i = 0U; goto ldv_50947; ldv_50946: { b43legacy_ilt_write32(dev, (int )((unsigned int )i + 9216U), b43legacy_ilt_retard[(int )i]); i = (u16 )((int )i + 1); } ldv_50947: ; if ((unsigned int )i <= 52U) { goto ldv_50946; } else { } i = 4U; goto ldv_50950; ldv_50949: { b43legacy_ilt_write(dev, (int )((unsigned int )i + 21504U), 32); i = (u16 )((int )i + 1); } ldv_50950: ; if ((unsigned int )i <= 19U) { goto ldv_50949; } else { } { b43legacy_phy_agcsetup(dev); tmp___4 = is_bcm_board_vendor(dev); } if (((int )tmp___4 && (unsigned int )((dev->dev)->bus)->boardinfo.type == 1046U) && (unsigned int )((dev->dev)->bus)->sprom.board_rev == 23U) { return; } else { } { b43legacy_ilt_write(dev, 20481, 2); b43legacy_ilt_write(dev, 20482, 1); } } else { i = 0U; goto ldv_50953; ldv_50952: { b43legacy_ilt_write(dev, (int )((unsigned int )i + 4096U), 2080); i = (u16 )((int )i + 1); } ldv_50953: ; if ((unsigned int )i <= 32U) { goto ldv_50952; } else { } { b43legacy_phy_agcsetup(dev); b43legacy_phy_read(dev, 1024); b43legacy_phy_write(dev, 1027, 4096); b43legacy_ilt_write(dev, 15362, 15); b43legacy_ilt_write(dev, 15363, 20); tmp___5 = is_bcm_board_vendor(dev); } if (((int )tmp___5 && (unsigned int )((dev->dev)->bus)->boardinfo.type == 1046U) && (unsigned int )((dev->dev)->bus)->sprom.board_rev == 23U) { return; } else { } { b43legacy_ilt_write(dev, 1025, 2); b43legacy_ilt_write(dev, 1026, 1); } } return; } } static void b43legacy_phy_inita(struct b43legacy_wldev *dev ) { { { __might_sleep("drivers/net/wireless/b43legacy/phy.c", 439, 0); b43legacy_phy_setupg(dev); } if (((int )((dev->dev)->bus)->sprom.boardflags_lo & 2) != 0) { { b43legacy_phy_write(dev, 1134, 975); } } else { } return; } } static void b43legacy_phy_initb2(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u16 offset ; int val ; { { phy = & dev->phy; b43legacy_write16(dev, 1004, 16162); b43legacy_phy_write(dev, 32, 12316); b43legacy_phy_write(dev, 38, 0); b43legacy_phy_write(dev, 48, 198); b43legacy_phy_write(dev, 136, 15872); val = 15421; offset = 137U; } goto ldv_50965; ldv_50964: { b43legacy_phy_write(dev, (int )offset, (int )((u16 )val)); val = val + -514; offset = (u16 )((int )offset + 1); } ldv_50965: ; if ((unsigned int )offset <= 166U) { goto ldv_50964; } else { } { b43legacy_phy_write(dev, 996, 12288); b43legacy_radio_selectchannel(dev, (int )phy->channel, 0); } if ((unsigned int )phy->radio_ver != 8272U) { { b43legacy_radio_write16(dev, 117, 128); b43legacy_radio_write16(dev, 121, 129); } } else { } { b43legacy_radio_write16(dev, 80, 32); b43legacy_radio_write16(dev, 80, 35); } if ((unsigned int )phy->radio_ver == 8272U) { { b43legacy_radio_write16(dev, 80, 32); b43legacy_radio_write16(dev, 90, 112); b43legacy_radio_write16(dev, 91, 123); b43legacy_radio_write16(dev, 92, 176); b43legacy_radio_write16(dev, 122, 15); b43legacy_phy_write(dev, 56, 1655); b43legacy_radio_init2050(dev); } } else { } { b43legacy_phy_write(dev, 20, 128); b43legacy_phy_write(dev, 50, 202); b43legacy_phy_write(dev, 50, 204); b43legacy_phy_write(dev, 53, 1986); b43legacy_phy_lo_b_measure(dev); b43legacy_phy_write(dev, 38, 52224); } if ((unsigned int )phy->radio_ver != 8272U) { { b43legacy_phy_write(dev, 38, 52736); } } else { } { b43legacy_write16(dev, 1012, 4096); b43legacy_phy_write(dev, 42, 34979); } if ((unsigned int )phy->radio_ver != 8272U) { { b43legacy_phy_write(dev, 42, 35010); } } else { } { b43legacy_radio_set_txpower_bg(dev, 65535, 65535, 65535); b43legacy_phy_init_pctl(dev); } return; } } static void b43legacy_phy_initb4(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u16 offset ; u16 val ; { { phy = & dev->phy; b43legacy_write16(dev, 1004, 16162); b43legacy_phy_write(dev, 32, 12316); b43legacy_phy_write(dev, 38, 0); b43legacy_phy_write(dev, 48, 198); b43legacy_phy_write(dev, 136, 15872); val = 15421U; offset = 137U; } goto ldv_50974; ldv_50973: { b43legacy_phy_write(dev, (int )offset, (int )val); val = (unsigned int )val + 65022U; offset = (u16 )((int )offset + 1); } ldv_50974: ; if ((unsigned int )offset <= 166U) { goto ldv_50973; } else { } { b43legacy_phy_write(dev, 996, 12288); b43legacy_radio_selectchannel(dev, (int )phy->channel, 0); } if ((unsigned int )phy->radio_ver != 8272U) { { b43legacy_radio_write16(dev, 117, 128); b43legacy_radio_write16(dev, 121, 129); } } else { } { b43legacy_radio_write16(dev, 80, 32); b43legacy_radio_write16(dev, 80, 35); } if ((unsigned int )phy->radio_ver == 8272U) { { b43legacy_radio_write16(dev, 80, 32); b43legacy_radio_write16(dev, 90, 112); b43legacy_radio_write16(dev, 91, 123); b43legacy_radio_write16(dev, 92, 176); b43legacy_radio_write16(dev, 122, 15); b43legacy_phy_write(dev, 56, 1655); b43legacy_radio_init2050(dev); } } else { } { b43legacy_phy_write(dev, 20, 128); b43legacy_phy_write(dev, 50, 202); } if ((unsigned int )phy->radio_ver == 8272U) { { b43legacy_phy_write(dev, 50, 224); } } else { } { b43legacy_phy_write(dev, 53, 1986); b43legacy_phy_lo_b_measure(dev); b43legacy_phy_write(dev, 38, 52224); } if ((unsigned int )phy->radio_ver == 8272U) { { b43legacy_phy_write(dev, 38, 52736); } } else { } { b43legacy_write16(dev, 1012, 4352); b43legacy_phy_write(dev, 42, 34979); } if ((unsigned int )phy->radio_ver == 8272U) { { b43legacy_phy_write(dev, 42, 35010); } } else { } { b43legacy_radio_set_txpower_bg(dev, 65535, 65535, 65535); } if (((int )((dev->dev)->bus)->sprom.boardflags_lo & 8) != 0) { { b43legacy_calc_nrssi_slope(dev); b43legacy_calc_nrssi_threshold(dev); } } else { } { b43legacy_phy_init_pctl(dev); } return; } } static void b43legacy_phy_initb5(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u16 offset ; u16 value ; u8 old_channel ; u16 tmp ; bool tmp___0 ; int tmp___1 ; u16 tmp___2 ; u16 tmp___3 ; u16 tmp___4 ; u16 tmp___5 ; u16 tmp___6 ; u16 tmp___7 ; u16 tmp___8 ; u16 tmp___9 ; u16 tmp___10 ; u16 tmp___11 ; u16 tmp___12 ; { phy = & dev->phy; if ((unsigned int )phy->analog == 1U) { { tmp = b43legacy_radio_read16(dev, 122); b43legacy_radio_write16(dev, 122, (int )((unsigned int )tmp | 80U)); } } else { } { tmp___0 = is_bcm_board_vendor(dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1 && (unsigned int )((dev->dev)->bus)->boardinfo.type != 1046U) { value = 8480U; offset = 168U; goto ldv_50984; ldv_50983: { b43legacy_phy_write(dev, (int )offset, (int )value); value = (unsigned int )value + 514U; offset = (u16 )((int )offset + 1); } ldv_50984: ; if ((unsigned int )offset <= 198U) { goto ldv_50983; } else { } } else { } { tmp___2 = b43legacy_phy_read(dev, 53); b43legacy_phy_write(dev, 53, (int )((u16 )(((int )((short )tmp___2) & -3841) | 1792))); } if ((unsigned int )phy->radio_ver == 8272U) { { b43legacy_phy_write(dev, 56, 1639); } } else { } if ((int )phy->gmode) { if ((unsigned int )phy->radio_ver == 8272U) { { tmp___3 = b43legacy_radio_read16(dev, 122); b43legacy_radio_write16(dev, 122, (int )((unsigned int )tmp___3 | 32U)); tmp___4 = b43legacy_radio_read16(dev, 81); b43legacy_radio_write16(dev, 81, (int )((unsigned int )tmp___4 | 4U)); } } else { } { b43legacy_write16(dev, 994, 0); tmp___5 = b43legacy_phy_read(dev, 2050); b43legacy_phy_write(dev, 2050, (int )((unsigned int )tmp___5 | 256U)); tmp___6 = b43legacy_phy_read(dev, 1067); b43legacy_phy_write(dev, 1067, (int )((unsigned int )tmp___6 | 8192U)); b43legacy_phy_write(dev, 28, 6250); tmp___7 = b43legacy_phy_read(dev, 19); b43legacy_phy_write(dev, 19, (int )((u16 )(((int )((short )tmp___7) & 255) | 6400))); tmp___8 = b43legacy_phy_read(dev, 53); b43legacy_phy_write(dev, 53, (int )((u16 )(((int )((short )tmp___8) & -128) | 100))); tmp___9 = b43legacy_phy_read(dev, 93); b43legacy_phy_write(dev, 93, (int )((u16 )(((int )((short )tmp___9) & -128) | 10))); b43legacy_phy_write(dev, 91, 0); b43legacy_phy_write(dev, 92, 0); } } else { } if ((int )dev->bad_frames_preempt) { { tmp___10 = b43legacy_phy_read(dev, 1025); b43legacy_phy_write(dev, 1025, (int )((unsigned int )tmp___10 | 4096U)); } } else { } if ((unsigned int )phy->analog == 1U) { { b43legacy_phy_write(dev, 38, 52736); b43legacy_phy_write(dev, 33, 14179); b43legacy_phy_write(dev, 34, 7107); b43legacy_phy_write(dev, 35, 1785); b43legacy_phy_write(dev, 36, 894); } } else { { b43legacy_phy_write(dev, 38, 52224); } } { b43legacy_phy_write(dev, 48, 198); b43legacy_write16(dev, 1004, 16162); } if ((unsigned int )phy->analog == 1U) { { b43legacy_phy_write(dev, 32, 15900); } } else { { b43legacy_phy_write(dev, 32, 12316); } } if ((unsigned int )phy->analog == 0U) { { b43legacy_write16(dev, 996, 12288); } } else { } { old_channel = (unsigned int )phy->channel != 255U ? phy->channel : 1U; b43legacy_radio_selectchannel(dev, 7, 0); } if ((unsigned int )phy->radio_ver != 8272U) { { b43legacy_radio_write16(dev, 117, 128); b43legacy_radio_write16(dev, 121, 129); } } else { } { b43legacy_radio_write16(dev, 80, 32); b43legacy_radio_write16(dev, 80, 35); } if ((unsigned int )phy->radio_ver == 8272U) { { b43legacy_radio_write16(dev, 80, 32); b43legacy_radio_write16(dev, 90, 112); } } else { } { b43legacy_radio_write16(dev, 91, 123); b43legacy_radio_write16(dev, 92, 176); tmp___11 = b43legacy_radio_read16(dev, 122); b43legacy_radio_write16(dev, 122, (int )((unsigned int )tmp___11 | 7U)); b43legacy_radio_selectchannel(dev, (int )old_channel, 0); b43legacy_phy_write(dev, 20, 128); b43legacy_phy_write(dev, 50, 202); b43legacy_phy_write(dev, 42, 34979); b43legacy_radio_set_txpower_bg(dev, 65535, 65535, 65535); } if ((unsigned int )phy->radio_ver == 8272U) { { b43legacy_radio_write16(dev, 93, 13); } } else { } { tmp___12 = b43legacy_read16(dev, 996); b43legacy_write16(dev, 996, (int )((u16 )(((int )((short )tmp___12) & -64) | 4))); } return; } } static void b43legacy_phy_initb6(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u16 offset ; u16 val ; u8 old_channel ; u16 tmp ; u32 tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; u16 tmp___3 ; u16 tmp___4 ; u16 tmp___5 ; u16 tmp___6 ; u16 tmp___7 ; u16 tmp___8 ; u16 tmp___9 ; { { phy = & dev->phy; b43legacy_phy_write(dev, 62, 33146); tmp = b43legacy_radio_read16(dev, 122); b43legacy_radio_write16(dev, 122, (int )((unsigned int )tmp | 88U)); } if ((unsigned int )phy->radio_rev - 4U <= 1U) { { b43legacy_radio_write16(dev, 81, 55); b43legacy_radio_write16(dev, 82, 112); b43legacy_radio_write16(dev, 83, 179); b43legacy_radio_write16(dev, 84, 155); b43legacy_radio_write16(dev, 90, 136); b43legacy_radio_write16(dev, 91, 136); b43legacy_radio_write16(dev, 93, 136); b43legacy_radio_write16(dev, 94, 136); b43legacy_radio_write16(dev, 125, 136); tmp___0 = b43legacy_shm_read32(dev, 1, 94); b43legacy_shm_write32(dev, 1, 94, tmp___0 | 512U); } } else { } if ((unsigned int )phy->radio_rev == 8U) { { b43legacy_radio_write16(dev, 81, 0); b43legacy_radio_write16(dev, 82, 64); b43legacy_radio_write16(dev, 83, 183); b43legacy_radio_write16(dev, 84, 152); b43legacy_radio_write16(dev, 90, 136); b43legacy_radio_write16(dev, 91, 107); b43legacy_radio_write16(dev, 92, 15); } if ((int )((short )((dev->dev)->bus)->sprom.boardflags_lo) < 0) { { b43legacy_radio_write16(dev, 93, 250); b43legacy_radio_write16(dev, 94, 216); } } else { { b43legacy_radio_write16(dev, 93, 245); b43legacy_radio_write16(dev, 94, 184); } } { b43legacy_radio_write16(dev, 115, 3); b43legacy_radio_write16(dev, 125, 168); b43legacy_radio_write16(dev, 124, 1); b43legacy_radio_write16(dev, 126, 8); } } else { } val = 7711U; offset = 136U; goto ldv_50994; ldv_50993: { b43legacy_phy_write(dev, (int )offset, (int )val); val = (unsigned int )val + 65022U; offset = (u16 )((int )offset + 1); } ldv_50994: ; if ((unsigned int )offset <= 151U) { goto ldv_50993; } else { } val = 15935U; offset = 152U; goto ldv_50997; ldv_50996: { b43legacy_phy_write(dev, (int )offset, (int )val); val = (unsigned int )val + 65022U; offset = (u16 )((int )offset + 1); } ldv_50997: ; if ((unsigned int )offset <= 167U) { goto ldv_50996; } else { } val = 8480U; offset = 168U; goto ldv_51000; ldv_50999: { b43legacy_phy_write(dev, (int )offset, (int )val & 16191); val = (unsigned int )val + 514U; offset = (u16 )((int )offset + 1); } ldv_51000: ; if ((unsigned int )offset <= 199U) { goto ldv_50999; } else { } if ((unsigned int )phy->type == 2U) { { tmp___1 = b43legacy_radio_read16(dev, 122); b43legacy_radio_write16(dev, 122, (int )((unsigned int )tmp___1 | 32U)); tmp___2 = b43legacy_radio_read16(dev, 81); b43legacy_radio_write16(dev, 81, (int )((unsigned int )tmp___2 | 4U)); tmp___3 = b43legacy_phy_read(dev, 2050); b43legacy_phy_write(dev, 2050, (int )((unsigned int )tmp___3 | 256U)); tmp___4 = b43legacy_phy_read(dev, 1067); b43legacy_phy_write(dev, 1067, (int )((unsigned int )tmp___4 | 8192U)); b43legacy_phy_write(dev, 91, 0); b43legacy_phy_write(dev, 92, 0); } } else { } old_channel = phy->channel; if ((unsigned int )old_channel > 7U) { { b43legacy_radio_selectchannel(dev, 1, 0); } } else { { b43legacy_radio_selectchannel(dev, 13, 0); } } { b43legacy_radio_write16(dev, 80, 32); b43legacy_radio_write16(dev, 80, 35); __const_udelay(171800UL); } if ((unsigned int )phy->radio_rev <= 5U || (unsigned int )phy->radio_rev == 8U) { { tmp___5 = b43legacy_radio_read16(dev, 124); b43legacy_radio_write16(dev, 124, (int )((unsigned int )tmp___5 | 2U)); b43legacy_radio_write16(dev, 80, 32); } } else { } if ((unsigned int )phy->radio_rev <= 2U) { { b43legacy_radio_write16(dev, 80, 32); b43legacy_radio_write16(dev, 90, 112); b43legacy_radio_write16(dev, 91, 123); b43legacy_radio_write16(dev, 92, 176); } } else { } { tmp___6 = b43legacy_radio_read16(dev, 122); b43legacy_radio_write16(dev, 122, (int )((u16 )(((int )((short )tmp___6) & 255) | 7))); b43legacy_radio_selectchannel(dev, (int )old_channel, 0); b43legacy_phy_write(dev, 20, 512); } if ((unsigned int )phy->radio_rev > 5U) { { b43legacy_phy_write(dev, 42, 35010); } } else { { b43legacy_phy_write(dev, 42, 35520); } } { b43legacy_phy_write(dev, 56, 1640); b43legacy_radio_set_txpower_bg(dev, 65535, 65535, 65535); } if ((unsigned int )phy->radio_rev - 4U <= 1U) { { tmp___7 = b43legacy_phy_read(dev, 93); b43legacy_phy_write(dev, 93, (int )((u16 )(((int )((short )tmp___7) & -128) | 3))); } } else { } if ((unsigned int )phy->radio_rev <= 2U) { { b43legacy_radio_write16(dev, 93, 13); } } else { } if ((unsigned int )phy->analog == 4U) { { b43legacy_write16(dev, 996, 9); tmp___8 = b43legacy_phy_read(dev, 97); b43legacy_phy_write(dev, 97, (int )tmp___8 & 4095); } } else { { tmp___9 = b43legacy_phy_read(dev, 2); b43legacy_phy_write(dev, 2, (int )((u16 )(((int )((short )tmp___9) & -64) | 4))); } } if ((unsigned int )phy->type == 2U) { { b43legacy_write16(dev, 998, 0); } } else { } if ((unsigned int )phy->type == 1U) { { b43legacy_write16(dev, 998, 33088); b43legacy_phy_write(dev, 22, 1040); b43legacy_phy_write(dev, 23, 2080); b43legacy_phy_write(dev, 98, 7); b43legacy_radio_init2050(dev); b43legacy_phy_lo_g_measure(dev); } if (((int )((dev->dev)->bus)->sprom.boardflags_lo & 8) != 0) { { b43legacy_calc_nrssi_slope(dev); b43legacy_calc_nrssi_threshold(dev); } } else { } { b43legacy_phy_init_pctl(dev); } } else { } return; } } static void b43legacy_calc_loopback_gain(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u16 backup_phy[15U] ; unsigned int tmp ; u16 backup_radio[3U] ; u16 backup_bband ; u16 i ; u16 loop1_cnt ; u16 loop1_done ; u16 loop1_omitted ; u16 loop2_done ; u16 tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; u16 tmp___3 ; u16 tmp___4 ; u16 tmp___5 ; u16 tmp___6 ; u16 tmp___7 ; u16 tmp___8 ; u16 tmp___9 ; u16 tmp___10 ; u16 tmp___11 ; u16 tmp___12 ; u16 tmp___13 ; u16 tmp___14 ; u16 tmp___15 ; u16 tmp___16 ; u16 tmp___17 ; u16 tmp___18 ; u16 tmp___19 ; u16 tmp___20 ; u16 tmp___21 ; u16 tmp___22 ; u16 tmp___23 ; u16 tmp___24 ; u16 tmp___25 ; u16 tmp___26 ; u16 tmp___27 ; u16 tmp___28 ; u16 tmp___29 ; u16 tmp___30 ; u16 tmp___31 ; u16 tmp___32 ; u16 tmp___33 ; u16 tmp___34 ; { phy = & dev->phy; backup_phy[0] = 0U; tmp = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 15U) { goto while_break; } else { } backup_phy[tmp] = (unsigned short)0; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } { backup_phy[0] = b43legacy_phy_read(dev, 1065); backup_phy[1] = b43legacy_phy_read(dev, 1); backup_phy[2] = b43legacy_phy_read(dev, 2065); backup_phy[3] = b43legacy_phy_read(dev, 2066); } if ((unsigned int )phy->rev != 1U) { { backup_phy[4] = b43legacy_phy_read(dev, 2068); backup_phy[5] = b43legacy_phy_read(dev, 2069); } } else { } { backup_phy[6] = b43legacy_phy_read(dev, 90); backup_phy[7] = b43legacy_phy_read(dev, 89); backup_phy[8] = b43legacy_phy_read(dev, 88); backup_phy[9] = b43legacy_phy_read(dev, 10); backup_phy[10] = b43legacy_phy_read(dev, 3); backup_phy[11] = b43legacy_phy_read(dev, 2063); backup_phy[12] = b43legacy_phy_read(dev, 2064); backup_phy[13] = b43legacy_phy_read(dev, 43); backup_phy[14] = b43legacy_phy_read(dev, 21); b43legacy_phy_read(dev, 45); backup_bband = phy->__annonCompField86.bbatt; backup_radio[0] = b43legacy_radio_read16(dev, 82); backup_radio[1] = b43legacy_radio_read16(dev, 67); backup_radio[2] = b43legacy_radio_read16(dev, 122); tmp___0 = b43legacy_phy_read(dev, 1065); b43legacy_phy_write(dev, 1065, (int )tmp___0 & 16383); tmp___1 = b43legacy_phy_read(dev, 1); b43legacy_phy_write(dev, 1, (int )tmp___1 & 32768); tmp___2 = b43legacy_phy_read(dev, 2065); b43legacy_phy_write(dev, 2065, (int )((unsigned int )tmp___2 | 2U)); tmp___3 = b43legacy_phy_read(dev, 2066); b43legacy_phy_write(dev, 2066, (int )tmp___3 & 65533); tmp___4 = b43legacy_phy_read(dev, 2065); b43legacy_phy_write(dev, 2065, (int )((unsigned int )tmp___4 | 1U)); tmp___5 = b43legacy_phy_read(dev, 2066); b43legacy_phy_write(dev, 2066, (int )tmp___5 & 65534); } if ((unsigned int )phy->rev != 1U) { { tmp___6 = b43legacy_phy_read(dev, 2068); b43legacy_phy_write(dev, 2068, (int )((unsigned int )tmp___6 | 1U)); tmp___7 = b43legacy_phy_read(dev, 2069); b43legacy_phy_write(dev, 2069, (int )tmp___7 & 65534); tmp___8 = b43legacy_phy_read(dev, 2068); b43legacy_phy_write(dev, 2068, (int )((unsigned int )tmp___8 | 2U)); tmp___9 = b43legacy_phy_read(dev, 2069); b43legacy_phy_write(dev, 2069, (int )tmp___9 & 65533); } } else { } { tmp___10 = b43legacy_phy_read(dev, 2065); b43legacy_phy_write(dev, 2065, (int )((unsigned int )tmp___10 | 12U)); tmp___11 = b43legacy_phy_read(dev, 2066); b43legacy_phy_write(dev, 2066, (int )((unsigned int )tmp___11 | 12U)); tmp___12 = b43legacy_phy_read(dev, 2065); b43legacy_phy_write(dev, 2065, (int )((unsigned int )tmp___12 | 48U)); tmp___13 = b43legacy_phy_read(dev, 2066); b43legacy_phy_write(dev, 2066, (int )((u16 )(((int )((short )tmp___13) & -49) | 16))); b43legacy_phy_write(dev, 90, 1920); b43legacy_phy_write(dev, 89, 51216); b43legacy_phy_write(dev, 88, 13); } if ((unsigned int )phy->analog == 0U) { { b43legacy_phy_write(dev, 3, 290); } } else { { tmp___14 = b43legacy_phy_read(dev, 10); b43legacy_phy_write(dev, 10, (int )((unsigned int )tmp___14 | 8192U)); } } if ((unsigned int )phy->rev != 1U) { { tmp___15 = b43legacy_phy_read(dev, 2068); b43legacy_phy_write(dev, 2068, (int )((unsigned int )tmp___15 | 4U)); tmp___16 = b43legacy_phy_read(dev, 2069); b43legacy_phy_write(dev, 2069, (int )tmp___16 & 65531); } } else { } { tmp___17 = b43legacy_phy_read(dev, 3); b43legacy_phy_write(dev, 3, (int )((u16 )(((int )((short )tmp___17) & -97) | 64))); } if (*((unsigned int *)phy + 3UL) == 33562704U) { { b43legacy_radio_write16(dev, 82, 0); tmp___18 = b43legacy_radio_read16(dev, 67); b43legacy_radio_write16(dev, 67, (int )((u16 )(((int )((short )tmp___18) & -16) | 9))); loop1_cnt = 9U; } } else if ((unsigned int )phy->radio_rev == 8U) { { b43legacy_radio_write16(dev, 67, 15); loop1_cnt = 15U; } } else { loop1_cnt = 0U; } { b43legacy_phy_set_baseband_attenuation(dev, 11); } if ((unsigned int )phy->rev > 2U) { { b43legacy_phy_write(dev, 2063, 49184); } } else { { b43legacy_phy_write(dev, 2063, 32800); } } { b43legacy_phy_write(dev, 2064, 0); tmp___19 = b43legacy_phy_read(dev, 43); b43legacy_phy_write(dev, 43, (int )((u16 )(((int )((short )tmp___19) & -64) | 1))); tmp___20 = b43legacy_phy_read(dev, 43); b43legacy_phy_write(dev, 43, (int )((u16 )(((int )((short )tmp___20) & -16129) | 2048))); tmp___21 = b43legacy_phy_read(dev, 2065); b43legacy_phy_write(dev, 2065, (int )((unsigned int )tmp___21 | 256U)); tmp___22 = b43legacy_phy_read(dev, 2066); b43legacy_phy_write(dev, 2066, (int )tmp___22 & 53247); } if (((int )((dev->dev)->bus)->sprom.boardflags_lo & 4096) != 0) { if ((unsigned int )phy->rev > 6U) { { tmp___23 = b43legacy_phy_read(dev, 2065); b43legacy_phy_write(dev, 2065, (int )((unsigned int )tmp___23 | 2048U)); tmp___24 = b43legacy_phy_read(dev, 2066); b43legacy_phy_write(dev, 2066, (int )((unsigned int )tmp___24 | 32768U)); } } else { } } else { } { tmp___25 = b43legacy_radio_read16(dev, 122); b43legacy_radio_write16(dev, 122, (int )tmp___25 & 247); i = 0U; } goto ldv_51016; ldv_51015: { b43legacy_radio_write16(dev, 67, (int )loop1_cnt); tmp___26 = b43legacy_phy_read(dev, 2066); b43legacy_phy_write(dev, 2066, (int )((u16 )(((int )((short )tmp___26) & -3841) | (int )((short )((int )i << 8))))); tmp___27 = b43legacy_phy_read(dev, 21); b43legacy_phy_write(dev, 21, (int )((u16 )(((int )((short )tmp___27) & 4095) | -24576))); tmp___28 = b43legacy_phy_read(dev, 21); b43legacy_phy_write(dev, 21, (int )((unsigned int )tmp___28 | 61440U)); __const_udelay(85900UL); tmp___29 = b43legacy_phy_read(dev, 45); } if ((unsigned int )tmp___29 > 3579U) { goto ldv_51014; } else { } i = (u16 )((int )i + 1); ldv_51016: ; if ((int )i < (int )loop1_cnt) { goto ldv_51015; } else { } ldv_51014: loop1_done = i; loop1_omitted = (int )loop1_cnt - (int )loop1_done; loop2_done = 0U; if ((unsigned int )loop1_done > 7U) { { tmp___30 = b43legacy_phy_read(dev, 2066); b43legacy_phy_write(dev, 2066, (int )((unsigned int )tmp___30 | 48U)); i = (unsigned int )loop1_done + 65528U; } goto ldv_51019; ldv_51018: { tmp___31 = b43legacy_phy_read(dev, 2066); b43legacy_phy_write(dev, 2066, (int )((u16 )(((int )((short )tmp___31) & -3841) | (int )((short )((int )i << 8))))); tmp___32 = b43legacy_phy_read(dev, 21); b43legacy_phy_write(dev, 21, (int )((u16 )(((int )((short )tmp___32) & 4095) | -24576))); tmp___33 = b43legacy_phy_read(dev, 21); b43legacy_phy_write(dev, 21, (int )((unsigned int )tmp___33 | 61440U)); __const_udelay(85900UL); tmp___34 = b43legacy_phy_read(dev, 45); } if ((unsigned int )tmp___34 > 3579U) { goto ldv_51017; } else { } i = (u16 )((int )i + 1); ldv_51019: ; if ((unsigned int )i <= 15U) { goto ldv_51018; } else { } ldv_51017: ; } else { } if ((unsigned int )phy->rev != 1U) { { b43legacy_phy_write(dev, 2068, (int )backup_phy[4]); b43legacy_phy_write(dev, 2069, (int )backup_phy[5]); } } else { } { b43legacy_phy_write(dev, 90, (int )backup_phy[6]); b43legacy_phy_write(dev, 89, (int )backup_phy[7]); b43legacy_phy_write(dev, 88, (int )backup_phy[8]); b43legacy_phy_write(dev, 10, (int )backup_phy[9]); b43legacy_phy_write(dev, 3, (int )backup_phy[10]); b43legacy_phy_write(dev, 2063, (int )backup_phy[11]); b43legacy_phy_write(dev, 2064, (int )backup_phy[12]); b43legacy_phy_write(dev, 43, (int )backup_phy[13]); b43legacy_phy_write(dev, 21, (int )backup_phy[14]); b43legacy_phy_set_baseband_attenuation(dev, (int )backup_bband); b43legacy_radio_write16(dev, 82, (int )backup_radio[0]); b43legacy_radio_write16(dev, 67, (int )backup_radio[1]); b43legacy_radio_write16(dev, 122, (int )backup_radio[2]); b43legacy_phy_write(dev, 2065, (int )((unsigned int )backup_phy[2] | 3U)); __const_udelay(42950UL); b43legacy_phy_write(dev, 2065, (int )backup_phy[2]); b43legacy_phy_write(dev, 2066, (int )backup_phy[3]); b43legacy_phy_write(dev, 1065, (int )backup_phy[0]); b43legacy_phy_write(dev, 1, (int )backup_phy[1]); phy->loopback_gain[0] = ((unsigned int )loop1_done * 6U + (unsigned int )loop1_omitted * 65532U) + 65525U; phy->loopback_gain[1] = (unsigned int )loop2_done * 65530U + 48U; } return; } } static void b43legacy_phy_initg(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u16 tmp ; u16 tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; u16 tmp___3 ; u16 tmp___4 ; u16 tmp___5 ; int __ret_warn_on ; long tmp___6 ; int __ret_warn_on___0 ; long tmp___7 ; u16 tmp___8 ; u16 tmp___9 ; { phy = & dev->phy; if ((unsigned int )phy->rev == 1U) { { b43legacy_phy_initb5(dev); } } else { { b43legacy_phy_initb6(dev); } } if ((unsigned int )phy->rev > 1U && (int )phy->gmode) { { b43legacy_phy_inita(dev); } } else { } if ((unsigned int )phy->rev > 1U) { { b43legacy_phy_write(dev, 2068, 0); b43legacy_phy_write(dev, 2069, 0); } } else { } if ((unsigned int )phy->rev == 2U) { { b43legacy_phy_write(dev, 2065, 0); b43legacy_phy_write(dev, 21, 192); } } else { } if ((unsigned int )phy->rev > 5U) { { b43legacy_phy_write(dev, 2065, 1024); b43legacy_phy_write(dev, 21, 192); } } else { } if ((int )phy->gmode) { { tmp___0 = b43legacy_phy_read(dev, 1024); tmp = (unsigned int )tmp___0 & 255U; } if ((unsigned int )tmp == 3U) { { b43legacy_phy_write(dev, 1218, 6166); b43legacy_phy_write(dev, 1219, 34310); } } else { } if ((unsigned int )tmp - 4U <= 1U) { { b43legacy_phy_write(dev, 1218, 6166); b43legacy_phy_write(dev, 1219, 32774); tmp___1 = b43legacy_phy_read(dev, 1228); b43legacy_phy_write(dev, 1228, (int )((u16 )(((int )((short )tmp___1) & 255) | 7936))); } } else { } if ((unsigned int )phy->rev > 1U) { { b43legacy_phy_write(dev, 1150, 120); } } else { } } else { } if ((unsigned int )phy->radio_rev == 8U) { { tmp___2 = b43legacy_phy_read(dev, 2049); b43legacy_phy_write(dev, 2049, (int )((unsigned int )tmp___2 | 128U)); tmp___3 = b43legacy_phy_read(dev, 1086); b43legacy_phy_write(dev, 1086, (int )((unsigned int )tmp___3 | 4U)); } } else { } if ((unsigned int )phy->rev > 1U && (int )phy->gmode) { { b43legacy_calc_loopback_gain(dev); } } else { } if ((unsigned int )phy->radio_rev != 8U) { if ((unsigned int )phy->initval == 65535U) { { phy->initval = b43legacy_radio_init2050(dev); } } else { { b43legacy_radio_write16(dev, 120, (int )phy->initval); } } } else { } if ((unsigned int )phy->__annonCompField86.txctl2 == 65535U) { { b43legacy_phy_lo_g_measure(dev); } } else { if (*((unsigned int *)phy + 3UL) == 134226000U) { { b43legacy_radio_write16(dev, 82, (int )((u16 )((int )((short )((int )phy->__annonCompField86.txctl1 << 4)) | (int )((short )phy->__annonCompField86.txctl2)))); } } else { { tmp___4 = b43legacy_radio_read16(dev, 82); b43legacy_radio_write16(dev, 82, (int )((u16 )(((int )((short )tmp___4) & -16) | (int )((short )phy->__annonCompField86.txctl1)))); } } if ((unsigned int )phy->rev > 5U) { { tmp___5 = b43legacy_phy_read(dev, 54); b43legacy_phy_write(dev, 54, (int )((u16 )(((int )((short )tmp___5) & 4095) | (int )((short )((int )phy->__annonCompField86.txctl2 << 12))))); } } else { } if (((int )((dev->dev)->bus)->sprom.boardflags_lo & 2) != 0) { { b43legacy_phy_write(dev, 46, 32885); } } else { { b43legacy_phy_write(dev, 46, 32895); } } if ((unsigned int )phy->rev <= 1U) { { b43legacy_phy_write(dev, 47, 257); } } else { { b43legacy_phy_write(dev, 47, 514); } } } if ((int )phy->gmode) { { b43legacy_phy_lo_adjust(dev, 0); b43legacy_phy_write(dev, 2063, 32888); } } else { } if (((int )((dev->dev)->bus)->sprom.boardflags_lo & 8) == 0) { { b43legacy_nrssi_hw_update(dev, 65535); b43legacy_calc_nrssi_threshold(dev); } } else if ((int )phy->gmode || (unsigned int )phy->rev > 1U) { if ((int )phy->nrssi[0] == -1000) { { __ret_warn_on = (int )phy->nrssi[1] != -1000; tmp___6 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___6 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/phy.c", 1105); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); b43legacy_calc_nrssi_slope(dev); } } else { { __ret_warn_on___0 = (int )phy->nrssi[1] == -1000; tmp___7 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___7 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/phy.c", 1108); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); b43legacy_calc_nrssi_threshold(dev); } } } else { } if ((unsigned int )phy->radio_rev == 8U) { { b43legacy_phy_write(dev, 2053, 12848); } } else { } { b43legacy_phy_init_pctl(dev); } if ((unsigned int )((dev->dev)->bus)->chip_id == 17158U && (unsigned int )((dev->dev)->bus)->chip_package == 2U) { { tmp___8 = b43legacy_phy_read(dev, 1065); b43legacy_phy_write(dev, 1065, (int )tmp___8 & 49151); tmp___9 = b43legacy_phy_read(dev, 1219); b43legacy_phy_write(dev, 1219, (int )tmp___9 & 32767); } } else { } return; } } static u16 b43legacy_phy_lo_b_r15_loop(struct b43legacy_wldev *dev ) { int i ; u16 ret ; unsigned long flags ; u16 tmp ; int tmp___0 ; { { ret = 0U; flags = arch_local_irq_save(); trace_hardirqs_off(); i = 0; } goto ldv_51039; ldv_51038: { b43legacy_phy_write(dev, 21, 44960); __const_udelay(4295UL); b43legacy_phy_write(dev, 21, 61344); __const_udelay(42950UL); b43legacy_phy_write(dev, 21, 65440); __const_udelay(171800UL); tmp = b43legacy_phy_read(dev, 44); ret = (int )ret + (int )tmp; i = i + 1; } ldv_51039: ; if (i <= 9) { goto ldv_51038; } else { } { tmp___0 = arch_irqs_disabled_flags(flags); } if (tmp___0 != 0) { { arch_local_irq_restore(flags); trace_hardirqs_off(); } } else { { trace_hardirqs_on(); arch_local_irq_restore(flags); } } { b43legacy_voluntary_preempt(); } return (ret); } } void b43legacy_phy_lo_b_measure(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u16 regstack[12U] ; unsigned int tmp ; u16 mls ; u16 fval ; int i ; int j ; u16 tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; u16 tmp___3 ; u16 tmp___4 ; { phy = & dev->phy; regstack[0] = 0U; tmp = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 12U) { goto while_break; } else { } regstack[tmp] = (unsigned short)0; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } { regstack[0] = b43legacy_phy_read(dev, 21); tmp___0 = b43legacy_radio_read16(dev, 82); regstack[1] = (unsigned int )tmp___0 & 65520U; } if ((unsigned int )phy->radio_ver == 8275U) { { regstack[2] = b43legacy_phy_read(dev, 10); regstack[3] = b43legacy_phy_read(dev, 42); regstack[4] = b43legacy_phy_read(dev, 53); regstack[5] = b43legacy_phy_read(dev, 3); regstack[6] = b43legacy_phy_read(dev, 1); regstack[7] = b43legacy_phy_read(dev, 48); regstack[8] = b43legacy_radio_read16(dev, 67); regstack[9] = b43legacy_radio_read16(dev, 122); regstack[10] = b43legacy_read16(dev, 1004); tmp___1 = b43legacy_radio_read16(dev, 82); regstack[11] = (unsigned int )tmp___1 & 240U; b43legacy_phy_write(dev, 48, 255); b43legacy_write16(dev, 1004, 16191); b43legacy_phy_write(dev, 53, (int )regstack[4] & 65407); b43legacy_radio_write16(dev, 122, (int )regstack[9] & 65520); } } else { } { b43legacy_phy_write(dev, 21, 45056); b43legacy_phy_write(dev, 43, 4); } if ((unsigned int )phy->radio_ver == 8275U) { { b43legacy_phy_write(dev, 43, 515); b43legacy_phy_write(dev, 42, 2211); } } else { } phy->minlowsig[0] = 65535U; i = 0; goto ldv_51061; ldv_51060: { b43legacy_radio_write16(dev, 82, (int )((u16 )((int )((short )regstack[1]) | (int )((short )i)))); b43legacy_phy_lo_b_r15_loop(dev); i = i + 1; } ldv_51061: ; if (i <= 3) { goto ldv_51060; } else { } i = 0; goto ldv_51064; ldv_51063: { b43legacy_radio_write16(dev, 82, (int )((u16 )((int )((short )regstack[1]) | (int )((short )i)))); tmp___2 = b43legacy_phy_lo_b_r15_loop(dev); mls = (u16 )((unsigned int )tmp___2 / 10U); } if ((int )mls < (int )phy->minlowsig[0]) { phy->minlowsig[0] = mls; phy->minlowsigpos[0] = (u16 )i; } else { } i = i + 1; ldv_51064: ; if (i <= 9) { goto ldv_51063; } else { } { b43legacy_radio_write16(dev, 82, (int )regstack[1] | (int )phy->minlowsigpos[0]); phy->minlowsig[1] = 65535U; i = -4; } goto ldv_51070; ldv_51069: j = -4; goto ldv_51067; ldv_51066: ; if (j < 0) { fval = ((unsigned int )((u16 )i) * 256U + (unsigned int )((u16 )j)) + 256U; } else { fval = (unsigned int )((u16 )i) * 256U + (unsigned int )((u16 )j); } { b43legacy_phy_write(dev, 47, (int )fval); tmp___3 = b43legacy_phy_lo_b_r15_loop(dev); mls = (u16 )((unsigned int )tmp___3 / 10U); } if ((int )mls < (int )phy->minlowsig[1]) { phy->minlowsig[1] = mls; phy->minlowsigpos[1] = fval; } else { } j = j + 2; ldv_51067: ; if (j <= 4) { goto ldv_51066; } else { } i = i + 2; ldv_51070: ; if (i <= 4) { goto ldv_51069; } else { } { phy->minlowsigpos[1] = (unsigned int )phy->minlowsigpos[1] + 257U; b43legacy_phy_write(dev, 47, (int )phy->minlowsigpos[1]); } if ((unsigned int )phy->radio_ver == 8275U) { { b43legacy_phy_write(dev, 10, (int )regstack[2]); b43legacy_phy_write(dev, 42, (int )regstack[3]); b43legacy_phy_write(dev, 53, (int )regstack[4]); b43legacy_phy_write(dev, 3, (int )regstack[5]); b43legacy_phy_write(dev, 1, (int )regstack[6]); b43legacy_phy_write(dev, 48, (int )regstack[7]); b43legacy_radio_write16(dev, 67, (int )regstack[8]); b43legacy_radio_write16(dev, 122, (int )regstack[9]); tmp___4 = b43legacy_radio_read16(dev, 82); b43legacy_radio_write16(dev, 82, (int )((u16 )(((int )((short )tmp___4) & 15) | (int )((short )regstack[11])))); b43legacy_write16(dev, 1004, (int )regstack[10]); } } else { } { b43legacy_phy_write(dev, 21, (int )regstack[0]); } return; } } __inline static u16 b43legacy_phy_lo_g_deviation_subval(struct b43legacy_wldev *dev , u16 control ) { struct b43legacy_phy *phy ; u16 ret ; unsigned long flags ; int tmp ; { { phy = & dev->phy; flags = arch_local_irq_save(); trace_hardirqs_off(); } if ((int )phy->gmode) { { b43legacy_phy_write(dev, 21, 58112); control = (int )control << 8U; b43legacy_phy_write(dev, 2066, (int )((unsigned int )control | 176U)); __const_udelay(21475UL); b43legacy_phy_write(dev, 2066, (int )((unsigned int )control | 178U)); __const_udelay(8590UL); b43legacy_phy_write(dev, 2066, (int )((unsigned int )control | 179U)); __const_udelay(17180UL); b43legacy_phy_write(dev, 21, 62208); __const_udelay(34360UL); } } else { { b43legacy_phy_write(dev, 21, (int )((unsigned int )control | 61344U)); __const_udelay(8590UL); b43legacy_phy_write(dev, 21, (int )((unsigned int )control | 61408U)); __const_udelay(17180UL); b43legacy_phy_write(dev, 21, (int )((unsigned int )control | 65504U)); __const_udelay(34360UL); } } { ret = b43legacy_phy_read(dev, 45); tmp = arch_irqs_disabled_flags(flags); } if (tmp != 0) { { arch_local_irq_restore(flags); trace_hardirqs_off(); } } else { { trace_hardirqs_on(); arch_local_irq_restore(flags); } } { b43legacy_voluntary_preempt(); } return (ret); } } static u32 b43legacy_phy_lo_g_singledeviation(struct b43legacy_wldev *dev , u16 control ) { int i ; u32 ret ; u16 tmp ; { ret = 0U; i = 0; goto ldv_51099; ldv_51098: { tmp = b43legacy_phy_lo_g_deviation_subval(dev, (int )control); ret = ret + (u32 )tmp; i = i + 1; } ldv_51099: ; if (i <= 7) { goto ldv_51098; } else { } return (ret); } } __inline static void b43legacy_lo_write(struct b43legacy_wldev *dev , struct b43legacy_lopair *pair ) { u16 value ; { value = (u16 )((unsigned char )pair->low); value = (u16 )((int )((short )value) | (int )((short )((int )((unsigned char )pair->high) << 8))); if (((unsigned int )((unsigned char )pair->low) - 248U > 16U || (int )pair->high < -8) || (int )pair->high > 8) { { b43legacydbg(dev->wl, "WARNING: Writing invalid LOpair (low: %d, high: %d)\n", (int )pair->low, (int )pair->high); dump_stack(); } } else { } { b43legacy_phy_write(dev, 2064, (int )value); } return; } } __inline static struct b43legacy_lopair *b43legacy_find_lopair(struct b43legacy_wldev *dev , u16 bbatt , u16 rfatt , u16 tx ) { u8 dict[10U] ; struct b43legacy_phy *phy ; int __ret_warn_on ; long tmp ; struct b43legacy_lopair *tmp___0 ; struct b43legacy_lopair *tmp___1 ; { dict[0] = 11U; dict[1] = 10U; dict[2] = 11U; dict[3] = 12U; dict[4] = 13U; dict[5] = 12U; dict[6] = 13U; dict[7] = 12U; dict[8] = 13U; dict[9] = 12U; phy = & dev->phy; if ((unsigned int )bbatt > 6U) { bbatt = 6U; } else { } { __ret_warn_on = (unsigned int )rfatt > 9U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/phy.c", 1323); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if ((unsigned int )tx == 3U) { { tmp___0 = b43legacy_get_lopair(phy, (int )rfatt, (int )bbatt); } return (tmp___0); } else { } { tmp___1 = b43legacy_get_lopair(phy, (int )dict[(int )rfatt], (int )bbatt); } return (tmp___1); } } __inline static struct b43legacy_lopair *b43legacy_current_lopair(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; struct b43legacy_lopair *tmp ; { { phy = & dev->phy; tmp = b43legacy_find_lopair(dev, (int )phy->__annonCompField86.bbatt, (int )phy->__annonCompField86.rfatt, (int )phy->__annonCompField86.txctl1); } return (tmp); } } void b43legacy_phy_lo_adjust(struct b43legacy_wldev *dev , int fixed ) { struct b43legacy_lopair *pair ; { if (fixed != 0) { { pair = b43legacy_find_lopair(dev, 2, 3, 0); } } else { { pair = b43legacy_current_lopair(dev); } } { b43legacy_lo_write(dev, pair); } return; } } static void b43legacy_phy_lo_g_measure_txctl2(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u16 txctl2 ; u16 i ; u32 smallest ; u32 tmp ; { { phy = & dev->phy; txctl2 = 0U; b43legacy_radio_write16(dev, 82, 0); __const_udelay(42950UL); smallest = b43legacy_phy_lo_g_singledeviation(dev, 0); i = 0U; } goto ldv_51134; ldv_51133: { b43legacy_radio_write16(dev, 82, (int )i); __const_udelay(42950UL); tmp = b43legacy_phy_lo_g_singledeviation(dev, 0); } if (tmp < smallest) { smallest = tmp; txctl2 = i; } else { } i = (u16 )((int )i + 1); ldv_51134: ; if ((unsigned int )i <= 15U) { goto ldv_51133; } else { } phy->__annonCompField86.txctl2 = txctl2; return; } } static void b43legacy_phy_lo_g_state(struct b43legacy_wldev *dev , struct b43legacy_lopair const *in_pair , struct b43legacy_lopair *out_pair , u16 r27 ) { struct b43legacy_lopair transitions[8U] ; struct b43legacy_lopair lowest_transition ; struct b43legacy_lopair tmp_pair ; struct b43legacy_lopair transition ; int i ; int state ; int found_lower ; int j ; int begin ; int end ; u32 lowest_deviation ; u32 tmp ; int __ret_warn_on ; long tmp___0 ; int __ret_warn_on___0 ; long tmp___1 ; long ret ; int __x___0 ; long ret___0 ; int __x___2 ; int tmp___2 ; { { transitions[0].low = 1; transitions[0].high = 1; transitions[0].used = (unsigned char)0; transitions[1].low = 0; transitions[1].high = 1; transitions[1].used = (unsigned char)0; transitions[2].low = -1; transitions[2].high = 1; transitions[2].used = (unsigned char)0; transitions[3].low = -1; transitions[3].high = 0; transitions[3].used = (unsigned char)0; transitions[4].low = -1; transitions[4].high = -1; transitions[4].used = (unsigned char)0; transitions[5].low = 0; transitions[5].high = -1; transitions[5].used = (unsigned char)0; transitions[6].low = 1; transitions[6].high = -1; transitions[6].used = (unsigned char)0; transitions[7].low = 1; transitions[7].high = 0; transitions[7].used = (unsigned char)0; lowest_transition.low = in_pair->low; lowest_transition.high = in_pair->high; lowest_transition.used = (unsigned char)0; i = 12; state = 0; b43legacy_lo_write(dev, & lowest_transition); lowest_deviation = b43legacy_phy_lo_g_singledeviation(dev, (int )r27); } ldv_51168: { found_lower = 0; __ret_warn_on = (unsigned int )state > 8U; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/phy.c", 1413); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (state == 0) { begin = 1; end = 8; } else if (((unsigned int )state & 1U) == 0U) { begin = state + -1; end = state + 1; } else { begin = state + -2; end = state + 2; } if (begin <= 0) { begin = begin + 8; } else { } if (end > 8) { end = end + -8; } else { } j = begin; tmp_pair.high = lowest_transition.high; tmp_pair.low = lowest_transition.low; ldv_51167: { __ret_warn_on___0 = (unsigned int )j - 1U > 7U; tmp___1 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/phy.c", 1433); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); transition.high = (s8 )((int )((unsigned char )tmp_pair.high) + (int )((unsigned char )transitions[j + -1].high)); transition.low = (s8 )((int )((unsigned char )tmp_pair.low) + (int )((unsigned char )transitions[j + -1].low)); __x___0 = (int )transition.low; ret = (long )(__x___0 < 0 ? - __x___0 : __x___0); } if (ret <= 8L) { __x___2 = (int )transition.high; ret___0 = (long )(__x___2 < 0 ? - __x___2 : __x___2); if (ret___0 <= 8L) { { b43legacy_lo_write(dev, & transition); tmp = b43legacy_phy_lo_g_singledeviation(dev, (int )r27); } if (tmp < lowest_deviation) { lowest_deviation = tmp; state = j; found_lower = 1; lowest_transition.high = transition.high; lowest_transition.low = transition.low; } else { } } else { } } else { } if (j == end) { goto ldv_51166; } else { } if (j == 8) { j = 1; } else { j = j + 1; } goto ldv_51167; ldv_51166: tmp___2 = i; i = i - 1; if (tmp___2 != 0 && found_lower != 0) { goto ldv_51168; } else { } out_pair->high = lowest_transition.high; out_pair->low = lowest_transition.low; return; } } void b43legacy_phy_set_baseband_attenuation(struct b43legacy_wldev *dev , u16 bbatt ) { struct b43legacy_phy *phy ; u16 value ; u16 tmp ; u16 tmp___0 ; u16 tmp___1 ; { phy = & dev->phy; if ((unsigned int )phy->analog == 0U) { { tmp = b43legacy_read16(dev, 998); value = (unsigned int )tmp & 65520U; value = (u16 )((int )((short )value) | ((int )((short )bbatt) & 15)); b43legacy_write16(dev, 998, (int )value); } return; } else { } if ((unsigned int )phy->analog > 1U) { { tmp___0 = b43legacy_phy_read(dev, 96); value = (unsigned int )tmp___0 & 65475U; value = (u16 )((int )((short )value) | ((int )((short )((int )bbatt << 2)) & 60)); } } else { { tmp___1 = b43legacy_phy_read(dev, 96); value = (unsigned int )tmp___1 & 65415U; value = (u16 )((int )((short )value) | ((int )((short )((int )bbatt << 3)) & 120)); } } { b43legacy_phy_write(dev, 96, (int )value); } return; } } void b43legacy_phy_lo_g_measure(struct b43legacy_wldev *dev ) { u8 pairorder[10U] ; int is_initializing ; int tmp ; struct b43legacy_phy *phy ; u16 h ; u16 i ; u16 oldi ; u16 j ; struct b43legacy_lopair control ; struct b43legacy_lopair *tmp_control ; u16 tmp___0 ; u16 regstack[16U] ; unsigned int tmp___1 ; u8 oldchannel ; u8 r27 ; u16 r31 ; u16 tmp___2 ; { { pairorder[0] = 3U; pairorder[1] = 1U; pairorder[2] = 5U; pairorder[3] = 7U; pairorder[4] = 9U; pairorder[5] = 2U; pairorder[6] = 0U; pairorder[7] = 4U; pairorder[8] = 6U; pairorder[9] = 8U; tmp = atomic_read((atomic_t const *)(& dev->__init_status)); is_initializing = tmp <= 1; phy = & dev->phy; oldi = 0U; regstack[0] = 0U; tmp___1 = 1U; } { while (1) { while_continue: /* CIL Label */ ; if (tmp___1 >= 16U) { goto while_break; } else { } regstack[tmp___1] = (unsigned short)0; tmp___1 = tmp___1 + 1U; } while_break: /* CIL Label */ ; } r27 = 0U; oldchannel = phy->channel; if ((int )phy->gmode) { { regstack[0] = b43legacy_phy_read(dev, 1065); regstack[1] = b43legacy_phy_read(dev, 2050); b43legacy_phy_write(dev, 1065, (int )regstack[0] & 32767); b43legacy_phy_write(dev, 2050, (int )regstack[1] & 65532); } } else { } { regstack[3] = b43legacy_read16(dev, 994); b43legacy_write16(dev, 994, (int )((unsigned int )regstack[3] | 32768U)); regstack[4] = b43legacy_read16(dev, 1012); regstack[5] = b43legacy_phy_read(dev, 21); regstack[6] = b43legacy_phy_read(dev, 42); regstack[7] = b43legacy_phy_read(dev, 53); regstack[8] = b43legacy_phy_read(dev, 96); regstack[9] = b43legacy_radio_read16(dev, 67); regstack[10] = b43legacy_radio_read16(dev, 122); regstack[11] = b43legacy_radio_read16(dev, 82); } if ((int )phy->gmode) { { regstack[12] = b43legacy_phy_read(dev, 2065); regstack[13] = b43legacy_phy_read(dev, 2066); regstack[14] = b43legacy_phy_read(dev, 2068); regstack[15] = b43legacy_phy_read(dev, 2069); } } else { } { b43legacy_radio_selectchannel(dev, 6, 0); } if ((int )phy->gmode) { { b43legacy_phy_write(dev, 1065, (int )regstack[0] & 32767); b43legacy_phy_write(dev, 2050, (int )regstack[1] & 65532); b43legacy_dummy_transmission(dev); } } else { } { b43legacy_radio_write16(dev, 67, 6); b43legacy_phy_set_baseband_attenuation(dev, 2); b43legacy_write16(dev, 1012, 0); b43legacy_phy_write(dev, 46, 127); b43legacy_phy_write(dev, 2063, 120); b43legacy_phy_write(dev, 53, (int )regstack[7] & 65407); b43legacy_radio_write16(dev, 122, (int )regstack[10] & 65520); b43legacy_phy_write(dev, 43, 515); b43legacy_phy_write(dev, 42, 2211); } if ((int )phy->gmode) { { b43legacy_phy_write(dev, 2068, (int )((unsigned int )regstack[14] | 3U)); b43legacy_phy_write(dev, 2069, (int )regstack[15] & 65532); b43legacy_phy_write(dev, 2065, 435); b43legacy_phy_write(dev, 2066, 178); } } else { } if (is_initializing != 0) { { b43legacy_phy_lo_g_measure_txctl2(dev); } } else { } { b43legacy_phy_write(dev, 2063, 32888); control.low = 0; control.high = 0; h = 0U; } goto ldv_51198; ldv_51197: i = (u16 )pairorder[(int )h]; if (is_initializing != 0) { if ((unsigned int )i == 3U) { control.low = 0; control.high = 0; } else if (((int )i & 1 && (int )oldi & 1) || (((unsigned int )i & 1U) == 0U && ((unsigned int )oldi & 1U) == 0U)) { { tmp_control = b43legacy_get_lopair(phy, (int )oldi, 0); memcpy((void *)(& control), (void const *)tmp_control, 3UL); } } else { { tmp_control = b43legacy_get_lopair(phy, 3, 0); memcpy((void *)(& control), (void const *)tmp_control, 3UL); } } } else { } j = 0U; goto ldv_51195; ldv_51194: ; if (is_initializing != 0) { tmp___0 = (unsigned int )i * 2U + (unsigned int )j; r27 = 0U; r31 = 0U; if ((unsigned int )tmp___0 > 14U) { r31 = 1U; if ((unsigned int )tmp___0 > 17U) { r27 = 1U; } else { } if ((unsigned int )tmp___0 > 19U) { r27 = 2U; } else { } } else { } } else { { tmp_control = b43legacy_get_lopair(phy, (int )i, (int )((unsigned int )j * 2U)); } if ((unsigned int )*((unsigned char *)tmp_control + 2UL) == 0U) { goto ldv_51193; } else { } { memcpy((void *)(& control), (void const *)tmp_control, 3UL); r27 = 3U; r31 = 0U; } } { b43legacy_radio_write16(dev, 67, (int )i); b43legacy_radio_write16(dev, 82, (int )phy->__annonCompField86.txctl2); __const_udelay(42950UL); b43legacy_voluntary_preempt(); b43legacy_phy_set_baseband_attenuation(dev, (int )((unsigned int )j * 2U)); tmp___0 = (unsigned int )regstack[10] & 65520U; } if ((unsigned int )r31 != 0U) { tmp___0 = (u16 )((unsigned int )tmp___0 | 8U); } else { } { b43legacy_radio_write16(dev, 122, (int )tmp___0); tmp_control = b43legacy_get_lopair(phy, (int )i, (int )((unsigned int )j * 2U)); b43legacy_phy_lo_g_state(dev, (struct b43legacy_lopair const *)(& control), tmp_control, (int )r27); } ldv_51193: j = (u16 )((int )j + 1); ldv_51195: ; if ((unsigned int )j <= 3U) { goto ldv_51194; } else { } oldi = i; h = (u16 )((int )h + 1); ldv_51198: ; if ((unsigned int )h <= 9U) { goto ldv_51197; } else { } i = 10U; goto ldv_51205; ldv_51204: j = 0U; goto ldv_51202; ldv_51201: ; if (is_initializing != 0) { { tmp_control = b43legacy_get_lopair(phy, (int )((unsigned int )i + 65527U), (int )((unsigned int )j * 2U)); memcpy((void *)(& control), (void const *)tmp_control, 3UL); tmp___0 = ((unsigned int )((u16 )((int )i + -9)) * 2U + (unsigned int )j) + 65531U; r27 = 0U; r31 = 0U; } if ((unsigned int )tmp___0 > 14U) { r31 = 1U; if ((unsigned int )tmp___0 > 17U) { r27 = 1U; } else { } if ((unsigned int )tmp___0 > 19U) { r27 = 2U; } else { } } else { } } else { { tmp_control = b43legacy_get_lopair(phy, (int )((unsigned int )i + 65527U), (int )((unsigned int )j * 2U)); } if ((unsigned int )*((unsigned char *)tmp_control + 2UL) == 0U) { goto ldv_51200; } else { } { memcpy((void *)(& control), (void const *)tmp_control, 3UL); r27 = 3U; r31 = 0U; } } { b43legacy_radio_write16(dev, 67, (int )((unsigned int )i + 65527U)); b43legacy_radio_write16(dev, 82, (int )((unsigned int )phy->__annonCompField86.txctl2 | 48U)); __const_udelay(42950UL); b43legacy_voluntary_preempt(); b43legacy_phy_set_baseband_attenuation(dev, (int )((unsigned int )j * 2U)); tmp___0 = (unsigned int )regstack[10] & 65520U; } if ((unsigned int )r31 != 0U) { tmp___0 = (u16 )((unsigned int )tmp___0 | 8U); } else { } { b43legacy_radio_write16(dev, 122, (int )tmp___0); tmp_control = b43legacy_get_lopair(phy, (int )i, (int )((unsigned int )j * 2U)); b43legacy_phy_lo_g_state(dev, (struct b43legacy_lopair const *)(& control), tmp_control, (int )r27); } ldv_51200: j = (u16 )((int )j + 1); ldv_51202: ; if ((unsigned int )j <= 3U) { goto ldv_51201; } else { } i = (u16 )((int )i + 1); ldv_51205: ; if ((unsigned int )i <= 13U) { goto ldv_51204; } else { } if ((int )phy->gmode) { { b43legacy_phy_write(dev, 21, 58112); b43legacy_phy_write(dev, 2066, (int )((u16 )((int )((short )((int )r27 << 8)) | 160))); __const_udelay(21475UL); b43legacy_phy_write(dev, 2066, (int )((u16 )((int )((short )((int )r27 << 8)) | 162))); __const_udelay(8590UL); b43legacy_phy_write(dev, 2066, (int )((u16 )((int )((short )((int )r27 << 8)) | 163))); b43legacy_voluntary_preempt(); } } else { { b43legacy_phy_write(dev, 21, (int )((unsigned int )((u16 )r27) | 61344U)); } } { b43legacy_phy_lo_adjust(dev, is_initializing); b43legacy_phy_write(dev, 46, 32895); } if ((int )phy->gmode) { { b43legacy_phy_write(dev, 47, 514); } } else { { b43legacy_phy_write(dev, 47, 257); } } { b43legacy_write16(dev, 1012, (int )regstack[4]); b43legacy_phy_write(dev, 21, (int )regstack[5]); b43legacy_phy_write(dev, 42, (int )regstack[6]); b43legacy_phy_write(dev, 53, (int )regstack[7]); b43legacy_phy_write(dev, 96, (int )regstack[8]); b43legacy_radio_write16(dev, 67, (int )regstack[9]); b43legacy_radio_write16(dev, 122, (int )regstack[10]); regstack[11] = (unsigned int )regstack[11] & 240U; tmp___2 = b43legacy_radio_read16(dev, 82); regstack[11] = (u16 )((int )((short )regstack[11]) | ((int )((short )tmp___2) & 15)); b43legacy_radio_write16(dev, 82, (int )regstack[11]); b43legacy_write16(dev, 994, (int )regstack[3]); } if ((int )phy->gmode) { { b43legacy_phy_write(dev, 2065, (int )regstack[12]); b43legacy_phy_write(dev, 2066, (int )regstack[13]); b43legacy_phy_write(dev, 2068, (int )regstack[14]); b43legacy_phy_write(dev, 2069, (int )regstack[15]); b43legacy_phy_write(dev, 1065, (int )regstack[0]); b43legacy_phy_write(dev, 2050, (int )regstack[1]); } } else { } { b43legacy_radio_selectchannel(dev, (int )oldchannel, 1); i = 0U; } goto ldv_51208; ldv_51207: tmp_control = phy->_lo_pairs + (unsigned long )i; if (((unsigned int )((unsigned char )tmp_control->low) - 248U > 16U || (int )tmp_control->high < -8) || (int )tmp_control->high > 8) { { b43legacywarn(dev->wl, "WARNING: Invalid LOpair (low: %d, high: %d, index: %d)\n", (int )tmp_control->low, (int )tmp_control->high, (int )i); } } else { } i = (u16 )((int )i + 1); ldv_51208: ; if ((unsigned int )i <= 55U) { goto ldv_51207; } else { } return; } } static void b43legacy_phy_lo_mark_current_used(struct b43legacy_wldev *dev ) { struct b43legacy_lopair *pair ; { { pair = b43legacy_current_lopair(dev); pair->used = 1U; } return; } } void b43legacy_phy_lo_mark_all_unused(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; struct b43legacy_lopair *pair ; int i ; { phy = & dev->phy; i = 0; goto ldv_51221; ldv_51220: pair = phy->_lo_pairs + (unsigned long )i; pair->used = 0U; i = i + 1; ldv_51221: ; if (i <= 55) { goto ldv_51220; } else { } return; } } static s8 b43legacy_phy_estimate_power_out(struct b43legacy_wldev *dev , s8 tssi ) { struct b43legacy_phy *phy ; s8 dbm ; s32 tmp ; s32 __val ; s32 __min ; s32 __max ; { phy = & dev->phy; dbm = 0; tmp = (s32 )phy->idle_tssi; tmp = tmp + (int )tssi; tmp = tmp - (int )phy->savedpctlreg; { if ((int )phy->type == 1) { goto case_1; } else { } if ((int )phy->type == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ __val = tmp; __min = 0; __max = 63; __val = __min > __val ? __min : __val; tmp = __max < __val ? __max : __val; dbm = *(phy->tssi2dbm + (unsigned long )tmp); goto ldv_51236; switch_default: /* CIL Label */ { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/phy.c"), "i" (1769), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_51236: ; return (dbm); } } void b43legacy_phy_xmitpower(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u16 tmp ; u16 txpower ; s8 v0 ; s8 v1 ; s8 v2 ; s8 v3 ; s8 average ; int max_pwr ; s16 desired_pwr ; s16 estimated_pwr ; s16 pwr_adjust ; s16 radio_att_delta ; s16 baseband_att_delta ; s16 radio_attenuation ; s16 baseband_attenuation ; bool tmp___0 ; long tmp___1 ; long tmp___2 ; u16 tmp___3 ; s8 tmp___4 ; long tmp___5 ; int _min1 ; int _min2 ; int __val ; int __min ; int __max ; int tmp___6 ; s16 __val___0 ; s16 __min___0 ; s16 __max___0 ; s16 __val___1 ; s16 __min___1 ; s16 __max___1 ; s16 __val___2 ; s16 __min___2 ; s16 __max___2 ; { phy = & dev->phy; if ((unsigned int )phy->savedpctlreg == 65535U) { return; } else { } if ((unsigned int )((dev->dev)->bus)->boardinfo.type == 1046U) { { tmp___0 = is_bcm_board_vendor(dev); } if ((int )tmp___0) { return; } else { } } else { } if ((int )phy->manual_txpower_control) { return; } else { } { tmp___2 = ldv__builtin_expect((unsigned int )phy->type - 1U > 1U, 0L); } if (tmp___2 != 0L) { { printk("\016b43legacy: Test (%s) failed\n", (char *)"!(phy->type == B43legacy_PHYTYPE_B || phy->type == B43legacy_PHYTYPE_G)"); tmp___1 = ldv__builtin_expect((unsigned int )phy->type - 1U > 1U, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/phy.c"), "i" (1806), "i" (12UL)); __builtin_unreachable(); } } else { } } else { } { tmp = b43legacy_shm_read16(dev, 1, 88); v0 = (signed char )tmp; v1 = (signed char )((int )tmp >> 8); tmp = b43legacy_shm_read16(dev, 1, 90); v2 = (signed char )tmp; v3 = (signed char )((int )tmp >> 8); tmp = 0U; } if (((int )v0 == 127 || (int )v1 == 127) || ((int )v2 == 127 || (int )v3 == 127)) { { tmp = b43legacy_shm_read16(dev, 1, 112); v0 = (signed char )tmp; v1 = (signed char )((int )tmp >> 8); tmp = b43legacy_shm_read16(dev, 1, 114); v2 = (signed char )tmp; v3 = (signed char )((int )tmp >> 8); } if (((int )v0 == 127 || (int )v1 == 127) || ((int )v2 == 127 || (int )v3 == 127)) { return; } else { } v0 = (int )((s8 )((unsigned int )((unsigned char )v0) + 32U)) & 63; v1 = (int )((s8 )((unsigned int )((unsigned char )v1) + 32U)) & 63; v2 = (int )((s8 )((unsigned int )((unsigned char )v2) + 32U)) & 63; v3 = (int )((s8 )((unsigned int )((unsigned char )v3) + 32U)) & 63; tmp = 1U; } else { } { b43legacy_radio_clear_tssi(dev); average = (s8 )((((((int )v0 + (int )v1) + (int )v2) + (int )v3) + 2) / 4); } if ((unsigned int )tmp != 0U) { { tmp___3 = b43legacy_shm_read16(dev, 1, 94); } if (((int )tmp___3 & 8) != 0) { average = (s8 )((unsigned int )((unsigned char )average) + 243U); } else { } } else { } { tmp___4 = b43legacy_phy_estimate_power_out(dev, (int )average); estimated_pwr = (s16 )tmp___4; max_pwr = (int )((dev->dev)->bus)->sprom.maxpwr_bg; } if (((int )((dev->dev)->bus)->sprom.boardflags_lo & 2) != 0 && (unsigned int )phy->type == 2U) { max_pwr = max_pwr + -3; } else { } { tmp___5 = ldv__builtin_expect(max_pwr <= 0, 0L); } if (tmp___5 != 0L) { { b43legacywarn(dev->wl, "Invalid max-TX-power value in SPROM.\n"); max_pwr = 74; ((dev->dev)->bus)->sprom.maxpwr_bg = (u8 )max_pwr; } } else { } { _min1 = 74 - (int )((dev->dev)->bus)->sprom.antenna_gain.a0; _min2 = max_pwr; max_pwr = _min1 < _min2 ? _min1 : _min2; __val = (int )phy->power_level << 2; __min = 0; __max = max_pwr; __val = __min > __val ? __min : __val; desired_pwr = (s16 )(__max < __val ? __max : __val); tmp___6 = b43legacy_debug(dev, 0); } if (tmp___6 != 0) { { b43legacydbg(dev->wl, "Current TX power output: %u.%u dBm, Desired TX power output: %u.%u dBm\n", (int )estimated_pwr / 4, (((int )estimated_pwr & 3) * 100) / 4, (int )desired_pwr / 4, (((int )desired_pwr & 3) * 100) / 4); } } else { } pwr_adjust = (s16 )(((int )desired_pwr - (int )estimated_pwr) / 2); radio_att_delta = (s16 )((-7 - (int )pwr_adjust) >> 3); baseband_att_delta = (s16 )((unsigned int )((unsigned short )radio_att_delta) * 65532U - (unsigned int )((unsigned short )((int )pwr_adjust >> 1))); if (((int )radio_att_delta | (int )baseband_att_delta) == 0) { { b43legacy_phy_lo_mark_current_used(dev); } return; } else { } baseband_attenuation = (s16 )phy->__annonCompField86.bbatt; baseband_attenuation = (s16 )((int )((unsigned short )baseband_attenuation) + (int )((unsigned short )baseband_att_delta)); radio_attenuation = (s16 )phy->__annonCompField86.rfatt; radio_attenuation = (s16 )((int )((unsigned short )radio_attenuation) + (int )((unsigned short )radio_att_delta)); if ((int )radio_attenuation < 0) { baseband_attenuation = (s16 )((unsigned int )((unsigned short )baseband_attenuation) + (unsigned int )((unsigned short )radio_attenuation) * 4U); radio_attenuation = 0; } else if ((int )radio_attenuation > 9) { baseband_attenuation = (s16 )((unsigned int )((unsigned short )baseband_attenuation) + (unsigned int )((unsigned short )((int )radio_attenuation + -9)) * 4U); radio_attenuation = 9; } else { goto ldv_51265; ldv_51264: baseband_attenuation = (s16 )((unsigned int )((unsigned short )baseband_attenuation) + 4U); radio_attenuation = (s16 )((int )radio_attenuation - 1); ldv_51265: ; if ((int )baseband_attenuation < 0 && (int )radio_attenuation > 0) { goto ldv_51264; } else { } goto ldv_51268; ldv_51267: baseband_attenuation = (s16 )((unsigned int )((unsigned short )baseband_attenuation) + 65532U); radio_attenuation = (s16 )((int )radio_attenuation + 1); ldv_51268: ; if ((int )baseband_attenuation > 11 && (int )radio_attenuation <= 8) { goto ldv_51267; } else { } } __val___0 = baseband_attenuation; __min___0 = 0; __max___0 = 11; __val___0 = (s16 )((int )__min___0 > (int )__val___0 ? __min___0 : __val___0); baseband_attenuation = (s16 )((int )__max___0 < (int )__val___0 ? __max___0 : __val___0); txpower = phy->__annonCompField86.txctl1; if (*((unsigned int *)phy + 3UL) == 33562704U) { if ((int )radio_attenuation <= 1) { if ((unsigned int )txpower == 0U) { txpower = 3U; radio_attenuation = (s16 )((unsigned int )((unsigned short )radio_attenuation) + 2U); baseband_attenuation = (s16 )((unsigned int )((unsigned short )baseband_attenuation) + 2U); } else if (((int )((dev->dev)->bus)->sprom.boardflags_lo & 2) != 0) { baseband_attenuation = (s16 )((unsigned int )((unsigned short )baseband_attenuation) + (unsigned int )((unsigned short )((int )radio_attenuation + -2)) * 4U); radio_attenuation = 2; } else { } } else if ((int )radio_attenuation > 4 && (unsigned int )txpower != 0U) { txpower = 0U; if ((int )baseband_attenuation <= 2) { radio_attenuation = (s16 )((unsigned int )((unsigned short )radio_attenuation) + 65533U); baseband_attenuation = (s16 )((unsigned int )((unsigned short )baseband_attenuation) + 2U); } else { radio_attenuation = (s16 )((unsigned int )((unsigned short )radio_attenuation) + 65534U); baseband_attenuation = (s16 )((unsigned int )((unsigned short )baseband_attenuation) + 65534U); } } else { } } else { } { phy->__annonCompField86.txctl1 = txpower; __val___1 = baseband_attenuation; __min___1 = 0; __max___1 = 11; __val___1 = (s16 )((int )__min___1 > (int )__val___1 ? __min___1 : __val___1); baseband_attenuation = (s16 )((int )__max___1 < (int )__val___1 ? __max___1 : __val___1); __val___2 = radio_attenuation; __min___2 = 0; __max___2 = 9; __val___2 = (s16 )((int )__min___2 > (int )__val___2 ? __min___2 : __val___2); radio_attenuation = (s16 )((int )__max___2 < (int )__val___2 ? __max___2 : __val___2); phy->__annonCompField86.rfatt = (u16 )radio_attenuation; phy->__annonCompField86.bbatt = (u16 )baseband_attenuation; b43legacy_phy_lock(dev); b43legacy_radio_lock(dev); b43legacy_radio_set_txpower_bg(dev, (int )((u16 )baseband_attenuation), (int )((u16 )radio_attenuation), (int )txpower); b43legacy_phy_lo_mark_current_used(dev); b43legacy_radio_unlock(dev); b43legacy_phy_unlock(dev); } return; } } __inline static s32 b43legacy_tssi2dbm_ad(s32 num , s32 den ) { { if (num < 0) { return (num / den); } else { return ((num + den / 2) / den); } } } __inline static s8 b43legacy_tssi2dbm_entry(s8 *entry , u8 index , s16 pab0 , s16 pab1 , s16 pab2 ) { s32 m1 ; s32 m2 ; s32 f ; s32 q ; s32 delta ; s8 i ; s32 _max1 ; s32 tmp ; int _max2 ; s32 tmp___0 ; long ret ; int __x___0 ; s32 __val ; s32 tmp___1 ; s32 __min ; s32 __max ; { { f = 256; i = 0; m1 = b43legacy_tssi2dbm_ad((int )pab0 * 16 + (int )index * (int )pab1, 32); tmp = b43legacy_tssi2dbm_ad((int )index * (int )pab2 + 32768, 256); _max1 = tmp; _max2 = 1; m2 = _max1 > _max2 ? _max1 : _max2; } ldv_51306: ; if ((int )i > 15) { return (-22); } else { } { tmp___0 = b43legacy_tssi2dbm_ad(m2 * f, 16); q = b43legacy_tssi2dbm_ad((4096 - tmp___0) * f, 2048); __x___0 = q - f; ret = (long )(__x___0 < 0 ? - __x___0 : __x___0); delta = (s32 )ret; f = q; i = (s8 )((int )i + 1); } if (delta > 1) { goto ldv_51306; } else { } { tmp___1 = b43legacy_tssi2dbm_ad(m1 * f, 8192); __val = tmp___1; __min = -127; __max = 128; __val = __min > __val ? __min : __val; *(entry + (unsigned long )index) = (s8 )(__max < __val ? __max : __val); } return (0); } } int b43legacy_phy_init_tssi2dbm_table(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; s16 pab0 ; s16 pab1 ; s16 pab2 ; u8 idx ; s8 *dyn_tssi2dbm ; int __ret_warn_on ; long tmp ; void *tmp___0 ; s8 tmp___1 ; { { phy = & dev->phy; __ret_warn_on = (unsigned int )phy->type - 1U > 1U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/phy.c", 2004); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); pab0 = (short )((dev->dev)->bus)->sprom.pa0b0; pab1 = (short )((dev->dev)->bus)->sprom.pa0b1; pab2 = (short )((dev->dev)->bus)->sprom.pa0b2; } if ((unsigned int )((dev->dev)->bus)->chip_id == 17153U && (unsigned int )phy->radio_ver != 8272U) { phy->idle_tssi = 52; phy->tssi2dbm = (s8 const *)(& b43legacy_tssi2dbm_b_table); return (0); } else { } if ((((int )pab0 != 0 && (int )pab1 != 0) && ((int )pab2 != 0 && (int )pab0 != -1)) && ((int )pab1 != -1 && (int )pab2 != -1)) { if ((unsigned int )((dev->dev)->bus)->sprom.itssi_bg - 1U <= 253U) { phy->idle_tssi = (signed char )((dev->dev)->bus)->sprom.itssi_bg; } else { phy->idle_tssi = 62; } { tmp___0 = kmalloc(64UL, 208U); dyn_tssi2dbm = (s8 *)tmp___0; } if ((unsigned long )dyn_tssi2dbm == (unsigned long )((s8 *)0)) { { b43legacyerr(dev->wl, "Could not allocate memory for tssi2dbm table\n"); } return (-12); } else { } idx = 0U; goto ldv_51324; ldv_51323: { tmp___1 = b43legacy_tssi2dbm_entry(dyn_tssi2dbm, (int )idx, (int )pab0, (int )pab1, (int )pab2); } if ((int )tmp___1 != 0) { { phy->tssi2dbm = (s8 const *)0; b43legacyerr(dev->wl, "Could not generate tssi2dBm table\n"); kfree((void const *)dyn_tssi2dbm); } return (-19); } else { } idx = (u8 )((int )idx + 1); ldv_51324: ; if ((unsigned int )idx <= 63U) { goto ldv_51323; } else { } phy->tssi2dbm = (s8 const *)dyn_tssi2dbm; phy->dyn_tssi_tbl = 1; } else { { if ((int )phy->type == 1) { goto case_1; } else { } if ((int )phy->type == 2) { goto case_2; } else { } goto switch_break; case_1: /* CIL Label */ phy->idle_tssi = 52; phy->tssi2dbm = (s8 const *)(& b43legacy_tssi2dbm_b_table); goto ldv_51327; case_2: /* CIL Label */ phy->idle_tssi = 52; phy->tssi2dbm = (s8 const *)(& b43legacy_tssi2dbm_g_table); goto ldv_51327; switch_break: /* CIL Label */ ; } ldv_51327: ; } return (0); } } int b43legacy_phy_init(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; int err ; { phy = & dev->phy; err = -19; { if ((int )phy->type == 1) { goto case_1; } else { } if ((int )phy->type == 2) { goto case_2___0; } else { } goto switch_break; case_1: /* CIL Label */ ; { if ((int )phy->rev == 2) { goto case_2; } else { } if ((int )phy->rev == 4) { goto case_4; } else { } if ((int )phy->rev == 5) { goto case_5; } else { } if ((int )phy->rev == 6) { goto case_6; } else { } goto switch_break___0; case_2: /* CIL Label */ { b43legacy_phy_initb2(dev); err = 0; } goto ldv_51336; case_4: /* CIL Label */ { b43legacy_phy_initb4(dev); err = 0; } goto ldv_51336; case_5: /* CIL Label */ { b43legacy_phy_initb5(dev); err = 0; } goto ldv_51336; case_6: /* CIL Label */ { b43legacy_phy_initb6(dev); err = 0; } goto ldv_51336; switch_break___0: /* CIL Label */ ; } ldv_51336: ; goto ldv_51340; case_2___0: /* CIL Label */ { b43legacy_phy_initg(dev); err = 0; } goto ldv_51340; switch_break: /* CIL Label */ ; } ldv_51340: ; if (err != 0) { { b43legacyerr(dev->wl, "Unknown PHYTYPE found\n"); } } else { } return (err); } } void b43legacy_phy_set_antenna_diversity(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u16 antennadiv ; u16 offset ; u16 value ; u32 ucodeflags ; int __ret_warn_on ; long tmp ; u16 tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; u16 tmp___3 ; u16 tmp___4 ; u16 tmp___5 ; u16 tmp___6 ; u16 tmp___7 ; u16 tmp___8 ; u16 tmp___9 ; u16 tmp___10 ; int __ret_warn_on___0 ; long tmp___11 ; { phy = & dev->phy; antennadiv = phy->antenna_diversity; if ((unsigned int )antennadiv == 65535U) { antennadiv = 3U; } else { } { __ret_warn_on = (unsigned int )antennadiv > 3U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/phy.c", 2107); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); ucodeflags = b43legacy_shm_read32(dev, 1, 94); b43legacy_shm_write32(dev, 1, 94, ucodeflags & 4294967294U); } { if ((int )phy->type == 2) { goto case_2; } else { } if ((int )phy->type == 1) { goto case_1; } else { } goto switch_default; case_2: /* CIL Label */ offset = 1024U; if ((unsigned int )antennadiv == 2U) { value = 384U; } else { value = (int )antennadiv << 7U; } { tmp___0 = b43legacy_phy_read(dev, (int )((unsigned int )offset + 1U)); b43legacy_phy_write(dev, (int )((unsigned int )offset + 1U), (int )((u16 )(((int )((short )tmp___0) & 32383) | (int )((short )value)))); } if ((unsigned int )antennadiv > 1U) { if ((unsigned int )antennadiv == 2U) { value = (int )antennadiv << 7U; } else { value = 0U; } { tmp___1 = b43legacy_phy_read(dev, (int )((unsigned int )offset + 43U)); b43legacy_phy_write(dev, (int )((unsigned int )offset + 43U), (int )((u16 )(((int )((short )tmp___1) & -257) | (int )((short )value)))); } } else { } if ((unsigned int )phy->type == 2U) { if ((unsigned int )antennadiv > 1U) { { tmp___2 = b43legacy_phy_read(dev, 1164); b43legacy_phy_write(dev, 1164, (int )((unsigned int )tmp___2 | 8192U)); } } else { { tmp___3 = b43legacy_phy_read(dev, 1164); b43legacy_phy_write(dev, 1164, (int )tmp___3 & 57343); } } if ((unsigned int )phy->rev > 1U) { { tmp___4 = b43legacy_phy_read(dev, 1121); b43legacy_phy_write(dev, 1121, (int )((unsigned int )tmp___4 | 16U)); tmp___5 = b43legacy_phy_read(dev, 1197); b43legacy_phy_write(dev, 1197, (int )((u16 )(((int )((short )tmp___5) & 255) | 21))); } if ((unsigned int )phy->rev == 2U) { { b43legacy_phy_write(dev, 1063, 8); } } else { { tmp___6 = b43legacy_phy_read(dev, 1063); b43legacy_phy_write(dev, 1063, (int )((u16 )(((int )((short )tmp___6) & 255) | 8))); } } } else if ((unsigned int )phy->rev > 5U) { { b43legacy_phy_write(dev, 1179, 220); } } else { } } else if ((unsigned int )phy->rev <= 2U) { { tmp___7 = b43legacy_phy_read(dev, 43); b43legacy_phy_write(dev, 43, (int )((u16 )(((int )((short )tmp___7) & 255) | 36))); } } else { { tmp___8 = b43legacy_phy_read(dev, 97); b43legacy_phy_write(dev, 97, (int )((unsigned int )tmp___8 | 16U)); } if ((unsigned int )phy->rev == 3U) { { b43legacy_phy_write(dev, 147, 29); b43legacy_phy_write(dev, 39, 8); } } else { { b43legacy_phy_write(dev, 147, 58); tmp___9 = b43legacy_phy_read(dev, 39); b43legacy_phy_write(dev, 39, (int )((u16 )(((int )((short )tmp___9) & 255) | 8))); } } } goto ldv_51353; case_1: /* CIL Label */ ; if ((unsigned int )(dev->dev)->id.revision == 2U) { value = 384U; } else { value = (int )antennadiv << 7U; } { tmp___10 = b43legacy_phy_read(dev, 994); b43legacy_phy_write(dev, 994, (int )((u16 )(((int )((short )tmp___10) & -385) | (int )((short )value)))); } goto ldv_51353; switch_default: /* CIL Label */ { __ret_warn_on___0 = 1; tmp___11 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___11 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/phy.c", 2199); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } switch_break: /* CIL Label */ ; } ldv_51353: ; if ((unsigned int )antennadiv > 1U) { { ucodeflags = b43legacy_shm_read32(dev, 1, 94); b43legacy_shm_write32(dev, 1, 94, ucodeflags | 1U); } } else { } phy->antenna_diversity = antennadiv; return; } } void b43legacy_power_saving_ctl_bits(struct b43legacy_wldev *dev , int bit25 , int bit26 ) { int i ; u32 status ; u32 tmp ; { { bit25 = 0; bit26 = 1; status = b43legacy_read32(dev, 288); } if (bit25 != 0) { status = status | 33554432U; } else { status = status & 4261412863U; } if (bit26 != 0) { status = status | 67108864U; } else { status = status & 4227858431U; } { b43legacy_write32(dev, 288, status); } if (bit26 != 0 && (unsigned int )(dev->dev)->id.revision > 4U) { i = 0; goto ldv_51367; ldv_51366: { tmp = b43legacy_shm_read32(dev, 1, 64); } if (tmp != 4U) { goto ldv_51365; } else { } { __const_udelay(42950UL); i = i + 1; } ldv_51367: ; if (i <= 99) { goto ldv_51366; } else { } ldv_51365: ; } else { } return; } } void b43legacy_radio_set_txpower_a(struct b43legacy_wldev *dev , u16 txpower ) ; void b43legacy_radio_set_txantenna(struct b43legacy_wldev *dev , u32 val ) ; u8 b43legacy_radio_aci_detect(struct b43legacy_wldev *dev , u8 channel ) ; u8 b43legacy_radio_aci_scan(struct b43legacy_wldev *dev ) ; s16 b43legacy_nrssi_hw_read(struct b43legacy_wldev *dev , u16 offset ) ; void b43legacy_nrssi_mem_update(struct b43legacy_wldev *dev ) ; void b43legacy_radio_set_tx_iq(struct b43legacy_wldev *dev ) ; u16 b43legacy_radio_calibrationvalue(struct b43legacy_wldev *dev ) ; static u16 const rcc_table[16U] = { 2U, 3U, 1U, 15U, 6U, 7U, 5U, 15U, 10U, 11U, 9U, 15U, 14U, 15U, 13U, 15U}; static u16 flip_4bit(u16 value ) { u16 flipped ; long tmp ; long tmp___0 ; { { flipped = 0U; tmp___0 = ldv__builtin_expect(((int )value & -16) != 0, 0L); } if (tmp___0 != 0L) { { printk("\016b43legacy: Test (%s) failed\n", (char *)"!((value & ~0x000F) == 0x0000)"); tmp = ldv__builtin_expect(((int )value & -16) != 0, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/radio.c"), "i" (56), "i" (12UL)); __builtin_unreachable(); } } else { } } else { } flipped = (u16 )((int )((short )flipped) | (int )((short )(((int )value & 1) << 3))); flipped = (u16 )((int )((short )flipped) | (int )((short )(((int )value & 2) << 1))); flipped = (u16 )((int )((short )flipped) | (int )((short )(((int )value & 4) >> 1))); flipped = (u16 )((int )((short )flipped) | (int )((short )(((int )value & 8) >> 3))); return (flipped); } } __inline static u16 channel2freq_bg(u8 channel ) { u16 frequencies_bg[14U] ; long tmp ; { { frequencies_bg[0] = 12U; frequencies_bg[1] = 17U; frequencies_bg[2] = 22U; frequencies_bg[3] = 27U; frequencies_bg[4] = 32U; frequencies_bg[5] = 37U; frequencies_bg[6] = 42U; frequencies_bg[7] = 47U; frequencies_bg[8] = 52U; frequencies_bg[9] = 57U; frequencies_bg[10] = 62U; frequencies_bg[11] = 67U; frequencies_bg[12] = 72U; frequencies_bg[13] = 84U; tmp = ldv__builtin_expect((unsigned int )channel - 1U > 13U, 0L); } if (tmp != 0L) { { printk("\016b43legacy: Channel %d is out of range\n", (int )channel); dump_stack(); } return (2412U); } else { } return (frequencies_bg[(int )channel + -1]); } } void b43legacy_radio_lock(struct b43legacy_wldev *dev ) { u32 status ; int __ret_warn_on ; long tmp ; { { status = b43legacy_read32(dev, 288); __ret_warn_on = (status & 524288U) != 0U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/radio.c", 95); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); status = status | 524288U; b43legacy_write32(dev, 288, status); __asm__ volatile ("": : : "memory"); __const_udelay(42950UL); } return; } } void b43legacy_radio_unlock(struct b43legacy_wldev *dev ) { u32 status ; int __ret_warn_on ; long tmp ; { { b43legacy_read16(dev, 992); status = b43legacy_read32(dev, 288); __ret_warn_on = (status & 524288U) == 0U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/radio.c", 108); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); status = status & 4294443007U; b43legacy_write32(dev, 288, status); __asm__ volatile ("": : : "memory"); } return; } } u16 b43legacy_radio_read16(struct b43legacy_wldev *dev , u16 offset ) { struct b43legacy_phy *phy ; int __ret_warn_on ; long tmp ; u16 tmp___0 ; { phy = & dev->phy; { if ((int )phy->type == 1) { goto case_1; } else { } if ((int )phy->type == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ ; if ((unsigned int )phy->radio_ver == 8275U) { if ((unsigned int )offset <= 111U) { offset = (unsigned int )offset + 128U; } else if ((unsigned int )offset <= 127U) { offset = (unsigned int )offset + 112U; } else { } } else if ((unsigned int )phy->radio_ver == 8272U) { offset = (u16 )((unsigned int )offset | 128U); } else { { __ret_warn_on = 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/radio.c", 128); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } } goto ldv_50878; case_2: /* CIL Label */ offset = (u16 )((unsigned int )offset | 128U); goto ldv_50878; switch_default: /* CIL Label */ { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/radio.c"), "i" (134), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_50878: { b43legacy_write16(dev, 1014, (int )offset); tmp___0 = b43legacy_read16(dev, 1018); } return (tmp___0); } } void b43legacy_radio_write16(struct b43legacy_wldev *dev , u16 offset , u16 val ) { { { b43legacy_write16(dev, 1014, (int )offset); __asm__ volatile ("": : : "memory"); b43legacy_write16(dev, 1018, (int )val); } return; } } static void b43legacy_set_all_gains(struct b43legacy_wldev *dev , s16 first , s16 second , s16 third ) { struct b43legacy_phy *phy ; u16 i ; u16 start ; u16 end ; u16 offset ; u16 tmp ; u16 tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; { phy = & dev->phy; start = 8U; end = 24U; offset = 1024U; if ((unsigned int )phy->rev <= 1U) { offset = 20480U; start = 16U; end = 32U; } else { } i = 0U; goto ldv_50899; ldv_50898: { b43legacy_ilt_write(dev, (int )offset + (int )i, (int )((u16 )first)); i = (u16 )((int )i + 1); } ldv_50899: ; if ((unsigned int )i <= 3U) { goto ldv_50898; } else { } i = start; goto ldv_50902; ldv_50901: { b43legacy_ilt_write(dev, (int )offset + (int )i, (int )((u16 )second)); i = (u16 )((int )i + 1); } ldv_50902: ; if ((int )i < (int )end) { goto ldv_50901; } else { } if ((int )third != -1) { { tmp = (u16 )((int )((short )((int )((unsigned short )third) << 14)) | (int )((short )((int )((unsigned short )third) << 6))); tmp___0 = b43legacy_phy_read(dev, 1184); b43legacy_phy_write(dev, 1184, (int )((u16 )(((int )((short )tmp___0) & -16449) | (int )((short )tmp)))); tmp___1 = b43legacy_phy_read(dev, 1185); b43legacy_phy_write(dev, 1185, (int )((u16 )(((int )((short )tmp___1) & -16449) | (int )((short )tmp)))); tmp___2 = b43legacy_phy_read(dev, 1186); b43legacy_phy_write(dev, 1186, (int )((u16 )(((int )((short )tmp___2) & -16449) | (int )((short )tmp)))); } } else { } { b43legacy_dummy_transmission(dev); } return; } } static void b43legacy_set_original_gains(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u16 i ; u16 tmp ; u16 offset ; u16 start ; u16 end ; u16 tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; { phy = & dev->phy; offset = 1024U; start = 8U; end = 24U; if ((unsigned int )phy->rev <= 1U) { offset = 20480U; start = 16U; end = 32U; } else { } i = 0U; goto ldv_50914; ldv_50913: { tmp = (unsigned int )i & 65532U; tmp = (u16 )((int )((short )tmp) | (int )((short )(((int )i & 1) << 1))); tmp = (u16 )((int )((short )tmp) | (int )((short )(((int )i & 2) >> 1))); b43legacy_ilt_write(dev, (int )offset + (int )i, (int )tmp); i = (u16 )((int )i + 1); } ldv_50914: ; if ((unsigned int )i <= 3U) { goto ldv_50913; } else { } i = start; goto ldv_50917; ldv_50916: { b43legacy_ilt_write(dev, (int )offset + (int )i, (int )i - (int )start); i = (u16 )((int )i + 1); } ldv_50917: ; if ((int )i < (int )end) { goto ldv_50916; } else { } { tmp___0 = b43legacy_phy_read(dev, 1184); b43legacy_phy_write(dev, 1184, (int )((unsigned int )tmp___0 | 16448U)); tmp___1 = b43legacy_phy_read(dev, 1185); b43legacy_phy_write(dev, 1185, (int )((unsigned int )tmp___1 | 16448U)); tmp___2 = b43legacy_phy_read(dev, 1186); b43legacy_phy_write(dev, 1186, (int )((u16 )(((int )((short )tmp___2) & -16449) | 16384))); b43legacy_dummy_transmission(dev); } return; } } static void b43legacy_synth_pu_workaround(struct b43legacy_wldev *dev , u8 channel ) { struct b43legacy_phy *phy ; u16 tmp ; u16 tmp___0 ; u16 tmp___1 ; { { phy = & dev->phy; __might_sleep("drivers/net/wireless/b43legacy/radio.c", 229, 0); } if ((unsigned int )phy->radio_ver != 8272U || (unsigned int )phy->radio_rev > 5U) { return; } else { } if ((unsigned int )channel <= 10U) { { tmp = channel2freq_bg((int )((unsigned int )channel + 4U)); b43legacy_write16(dev, 1008, (int )tmp); } } else { { tmp___0 = channel2freq_bg((int )channel); b43legacy_write16(dev, 1008, (int )tmp___0); } } { msleep(1U); tmp___1 = channel2freq_bg((int )channel); b43legacy_write16(dev, 1008, (int )tmp___1); } return; } } u8 b43legacy_radio_aci_detect(struct b43legacy_wldev *dev , u8 channel ) { struct b43legacy_phy *phy ; u8 ret ; u16 saved ; u16 rssi ; u16 temp ; int i ; int j ; u16 tmp ; u16 tmp___0 ; { { phy = & dev->phy; ret = 0U; j = 0; saved = b43legacy_phy_read(dev, 1027); b43legacy_radio_selectchannel(dev, (int )channel, 0); b43legacy_phy_write(dev, 1027, (int )((u16 )(((int )((short )saved) & -8) | 5))); } if ((int )phy->aci_hw_rssi) { { tmp = b43legacy_phy_read(dev, 1162); rssi = (unsigned int )tmp & 63U; } } else { rssi = (unsigned int )saved & 63U; } if ((unsigned int )rssi > 32U) { rssi = (unsigned int )rssi + 65472U; } else { } i = 0; goto ldv_50936; ldv_50935: { tmp___0 = b43legacy_phy_read(dev, 1151); temp = (unsigned int )((u16 )((int )tmp___0 >> 8)) & 63U; } if ((unsigned int )temp > 32U) { temp = (unsigned int )temp + 65472U; } else { } if ((int )temp < (int )rssi) { j = j + 1; } else { } if (j > 19) { ret = 1U; } else { } i = i + 1; ldv_50936: ; if (i <= 99) { goto ldv_50935; } else { } { b43legacy_phy_write(dev, 1027, (int )saved); } return (ret); } } u8 b43legacy_radio_aci_scan(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u8 ret[13U] ; unsigned int channel ; unsigned int i ; unsigned int j ; unsigned int start ; unsigned int end ; u16 tmp ; u16 tmp___0 ; long ret___0 ; int __x___0 ; u16 tmp___1 ; u16 tmp___2 ; u16 tmp___3 ; { phy = & dev->phy; channel = (unsigned int )phy->channel; if ((unsigned int )phy->type != 2U || (unsigned int )phy->rev == 0U) { return (0U); } else { } { b43legacy_phy_lock(dev); b43legacy_radio_lock(dev); tmp = b43legacy_phy_read(dev, 2050); b43legacy_phy_write(dev, 2050, (int )tmp & 65532); tmp___0 = b43legacy_phy_read(dev, 1065); b43legacy_phy_write(dev, 1065, (int )tmp___0 & 32767); b43legacy_set_all_gains(dev, 3, 8, 1); start = channel != 5U ? channel - 5U : 1U; end = 13U < channel + 5U ? 13U : channel + 5U; i = start; } goto ldv_50953; ldv_50952: __x___0 = (int )(channel - i); ret___0 = (long )(__x___0 < 0 ? - __x___0 : __x___0); if (ret___0 > 2L) { { ret[i - 1U] = b43legacy_radio_aci_detect(dev, (int )((u8 )i)); } } else { } i = i + 1U; ldv_50953: ; if (i <= end) { goto ldv_50952; } else { } { b43legacy_radio_selectchannel(dev, (int )((u8 )channel), 0); tmp___1 = b43legacy_phy_read(dev, 2050); b43legacy_phy_write(dev, 2050, (int )((unsigned int )tmp___1 | 3U)); tmp___2 = b43legacy_phy_read(dev, 1027); b43legacy_phy_write(dev, 1027, (int )tmp___2 & 65528); tmp___3 = b43legacy_phy_read(dev, 1065); b43legacy_phy_write(dev, 1065, (int )((unsigned int )tmp___3 | 32768U)); b43legacy_set_original_gains(dev); i = 0U; } goto ldv_50960; ldv_50959: ; if ((unsigned int )ret[i] == 0U) { goto ldv_50955; } else { } end = 13U < i + 5U ? 13U : i + 5U; j = i; goto ldv_50957; ldv_50956: ret[j] = 1U; j = j + 1U; ldv_50957: ; if (j < end) { goto ldv_50956; } else { } ldv_50955: i = i + 1U; ldv_50960: ; if (i <= 12U) { goto ldv_50959; } else { } { b43legacy_radio_unlock(dev); b43legacy_phy_unlock(dev); } return (ret[channel - 1U]); } } void b43legacy_nrssi_hw_write(struct b43legacy_wldev *dev , u16 offset , s16 val ) { { { b43legacy_phy_write(dev, 2051, (int )offset); __asm__ volatile ("": : : "memory"); b43legacy_phy_write(dev, 2052, (int )((unsigned short )val)); } return; } } s16 b43legacy_nrssi_hw_read(struct b43legacy_wldev *dev , u16 offset ) { u16 val ; { { b43legacy_phy_write(dev, 2051, (int )offset); val = b43legacy_phy_read(dev, 2052); } return ((s16 )val); } } void b43legacy_nrssi_hw_update(struct b43legacy_wldev *dev , u16 val ) { u16 i ; s16 tmp ; s16 __val ; s16 __min ; s16 __max ; { i = 0U; goto ldv_50983; ldv_50982: { tmp = b43legacy_nrssi_hw_read(dev, (int )i); tmp = (s16 )((int )((unsigned short )tmp) - (int )val); __val = tmp; __min = -32; __max = 31; __val = (s16 )((int )__min > (int )__val ? __min : __val); tmp = (s16 )((int )__max < (int )__val ? __max : __val); b43legacy_nrssi_hw_write(dev, (int )i, (int )tmp); i = (u16 )((int )i + 1); } ldv_50983: ; if ((unsigned int )i <= 63U) { goto ldv_50982; } else { } return; } } void b43legacy_nrssi_mem_update(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; s16 i ; s16 delta ; s32 tmp ; s32 __val ; s32 __min ; s32 __max ; { phy = & dev->phy; delta = (s16 )(31U - (unsigned int )((unsigned short )phy->nrssi[0])); i = 0; goto ldv_50997; ldv_50996: tmp = ((int )i - (int )delta) * phy->nrssislope; tmp = tmp / 65536; tmp = tmp + 58; __val = tmp; __min = 0; __max = 63; __val = __min > __val ? __min : __val; tmp = __max < __val ? __max : __val; phy->nrssi_lt[(int )i] = (s8 )tmp; i = (s16 )((int )i + 1); ldv_50997: ; if ((int )i <= 63) { goto ldv_50996; } else { } return; } } static void b43legacy_calc_nrssi_offset(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u16 backup[20U] ; unsigned int tmp ; s16 v47F ; u16 i ; u16 saved ; u16 tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; u16 tmp___3 ; u16 tmp___4 ; u16 tmp___5 ; u16 tmp___6 ; u16 tmp___7 ; u16 tmp___8 ; u16 tmp___9 ; u16 tmp___10 ; u16 tmp___11 ; u16 tmp___12 ; u16 tmp___13 ; u16 tmp___14 ; u16 tmp___15 ; u16 tmp___16 ; u16 tmp___17 ; u16 tmp___18 ; u16 tmp___19 ; u16 tmp___20 ; u16 tmp___21 ; u16 tmp___22 ; u16 tmp___23 ; u16 tmp___24 ; u16 tmp___25 ; u16 tmp___26 ; u16 tmp___27 ; u16 tmp___28 ; u16 tmp___29 ; { phy = & dev->phy; backup[0] = 0U; tmp = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 20U) { goto while_break; } else { } backup[tmp] = (unsigned short)0; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } { saved = 65535U; backup[0] = b43legacy_phy_read(dev, 1); backup[1] = b43legacy_phy_read(dev, 2065); backup[2] = b43legacy_phy_read(dev, 2066); backup[3] = b43legacy_phy_read(dev, 2068); backup[4] = b43legacy_phy_read(dev, 2069); backup[5] = b43legacy_phy_read(dev, 90); backup[6] = b43legacy_phy_read(dev, 89); backup[7] = b43legacy_phy_read(dev, 88); backup[8] = b43legacy_phy_read(dev, 10); backup[9] = b43legacy_phy_read(dev, 3); backup[10] = b43legacy_radio_read16(dev, 122); backup[11] = b43legacy_radio_read16(dev, 67); tmp___0 = b43legacy_phy_read(dev, 1065); b43legacy_phy_write(dev, 1065, (int )tmp___0 & 32767); tmp___1 = b43legacy_phy_read(dev, 1); b43legacy_phy_write(dev, 1, (int )((u16 )(((int )((short )tmp___1) & 16383) | 16384))); tmp___2 = b43legacy_phy_read(dev, 2065); b43legacy_phy_write(dev, 2065, (int )((unsigned int )tmp___2 | 12U)); tmp___3 = b43legacy_phy_read(dev, 2066); b43legacy_phy_write(dev, 2066, (int )((u16 )(((int )((short )tmp___3) & -13) | 4))); tmp___4 = b43legacy_phy_read(dev, 2050); b43legacy_phy_write(dev, 2050, (int )tmp___4 & 65532); } if ((unsigned int )phy->rev > 5U) { { backup[12] = b43legacy_phy_read(dev, 46); backup[13] = b43legacy_phy_read(dev, 47); backup[14] = b43legacy_phy_read(dev, 2063); backup[15] = b43legacy_phy_read(dev, 2064); backup[16] = b43legacy_phy_read(dev, 2049); backup[17] = b43legacy_phy_read(dev, 96); backup[18] = b43legacy_phy_read(dev, 20); backup[19] = b43legacy_phy_read(dev, 1144); b43legacy_phy_write(dev, 46, 0); b43legacy_phy_write(dev, 47, 0); b43legacy_phy_write(dev, 2063, 0); b43legacy_phy_write(dev, 2064, 0); tmp___5 = b43legacy_phy_read(dev, 1144); b43legacy_phy_write(dev, 1144, (int )((unsigned int )tmp___5 | 256U)); tmp___6 = b43legacy_phy_read(dev, 2049); b43legacy_phy_write(dev, 2049, (int )((unsigned int )tmp___6 | 64U)); tmp___7 = b43legacy_phy_read(dev, 96); b43legacy_phy_write(dev, 96, (int )((unsigned int )tmp___7 | 64U)); tmp___8 = b43legacy_phy_read(dev, 20); b43legacy_phy_write(dev, 20, (int )((unsigned int )tmp___8 | 512U)); } } else { } { tmp___9 = b43legacy_radio_read16(dev, 122); b43legacy_radio_write16(dev, 122, (int )((unsigned int )tmp___9 | 112U)); tmp___10 = b43legacy_radio_read16(dev, 122); b43legacy_radio_write16(dev, 122, (int )((unsigned int )tmp___10 | 128U)); __const_udelay(128850UL); tmp___11 = b43legacy_phy_read(dev, 1151); v47F = (int )((short )((int )tmp___11 >> 8)) & 63; } if ((int )v47F > 31) { v47F = (s16 )((unsigned int )((unsigned short )v47F) + 65472U); } else { } if ((int )v47F == 31) { i = 7U; goto ldv_51008; ldv_51007: { b43legacy_radio_write16(dev, 123, (int )i); __const_udelay(85900UL); tmp___12 = b43legacy_phy_read(dev, 1151); v47F = (int )((short )((int )tmp___12 >> 8)) & 63; } if ((int )v47F > 31) { v47F = (s16 )((unsigned int )((unsigned short )v47F) + 65472U); } else { } if ((int )v47F <= 30 && (unsigned int )saved == 65535U) { saved = i; } else { } i = (u16 )((int )i - 1); ldv_51008: ; if ((unsigned int )i > 3U) { goto ldv_51007; } else { } if ((unsigned int )saved == 65535U) { saved = 4U; } else { } } else { { tmp___13 = b43legacy_radio_read16(dev, 122); b43legacy_radio_write16(dev, 122, (int )tmp___13 & 127); tmp___14 = b43legacy_phy_read(dev, 2068); b43legacy_phy_write(dev, 2068, (int )((unsigned int )tmp___14 | 1U)); tmp___15 = b43legacy_phy_read(dev, 2069); b43legacy_phy_write(dev, 2069, (int )tmp___15 & 65534); tmp___16 = b43legacy_phy_read(dev, 2065); b43legacy_phy_write(dev, 2065, (int )((unsigned int )tmp___16 | 12U)); tmp___17 = b43legacy_phy_read(dev, 2066); b43legacy_phy_write(dev, 2066, (int )((unsigned int )tmp___17 | 12U)); tmp___18 = b43legacy_phy_read(dev, 2065); b43legacy_phy_write(dev, 2065, (int )((unsigned int )tmp___18 | 48U)); tmp___19 = b43legacy_phy_read(dev, 2066); b43legacy_phy_write(dev, 2066, (int )((unsigned int )tmp___19 | 48U)); b43legacy_phy_write(dev, 90, 1152); b43legacy_phy_write(dev, 89, 2064); b43legacy_phy_write(dev, 88, 13); } if ((unsigned int )phy->analog == 0U) { { b43legacy_phy_write(dev, 3, 290); } } else { { tmp___20 = b43legacy_phy_read(dev, 10); b43legacy_phy_write(dev, 10, (int )((unsigned int )tmp___20 | 8192U)); } } { tmp___21 = b43legacy_phy_read(dev, 2068); b43legacy_phy_write(dev, 2068, (int )((unsigned int )tmp___21 | 4U)); tmp___22 = b43legacy_phy_read(dev, 2069); b43legacy_phy_write(dev, 2069, (int )tmp___22 & 65531); tmp___23 = b43legacy_phy_read(dev, 3); b43legacy_phy_write(dev, 3, (int )((u16 )(((int )((short )tmp___23) & -97) | 64))); tmp___24 = b43legacy_radio_read16(dev, 122); b43legacy_radio_write16(dev, 122, (int )((unsigned int )tmp___24 | 15U)); b43legacy_set_all_gains(dev, 3, 0, 1); tmp___25 = b43legacy_radio_read16(dev, 67); b43legacy_radio_write16(dev, 67, (int )((u16 )(((int )((short )tmp___25) & 255) | 15))); __const_udelay(128850UL); tmp___26 = b43legacy_phy_read(dev, 1151); v47F = (int )((short )((int )tmp___26 >> 8)) & 63; } if ((int )v47F > 31) { v47F = (s16 )((unsigned int )((unsigned short )v47F) + 65472U); } else { } if ((int )v47F == -32) { i = 0U; goto ldv_51011; ldv_51010: { b43legacy_radio_write16(dev, 123, (int )i); __const_udelay(85900UL); tmp___27 = b43legacy_phy_read(dev, 1151); v47F = (int )((short )((int )tmp___27 >> 8)) & 63; } if ((int )v47F > 31) { v47F = (s16 )((unsigned int )((unsigned short )v47F) + 65472U); } else { } if ((int )v47F >= -30 && (unsigned int )saved == 65535U) { saved = i; } else { } i = (u16 )((int )i + 1); ldv_51011: ; if ((unsigned int )i <= 3U) { goto ldv_51010; } else { } if ((unsigned int )saved == 65535U) { saved = 3U; } else { } } else { saved = 0U; } } { b43legacy_radio_write16(dev, 123, (int )saved); } if ((unsigned int )phy->rev > 5U) { { b43legacy_phy_write(dev, 46, (int )backup[12]); b43legacy_phy_write(dev, 47, (int )backup[13]); b43legacy_phy_write(dev, 2063, (int )backup[14]); b43legacy_phy_write(dev, 2064, (int )backup[15]); } } else { } { b43legacy_phy_write(dev, 2068, (int )backup[3]); b43legacy_phy_write(dev, 2069, (int )backup[4]); b43legacy_phy_write(dev, 90, (int )backup[5]); b43legacy_phy_write(dev, 89, (int )backup[6]); b43legacy_phy_write(dev, 88, (int )backup[7]); b43legacy_phy_write(dev, 10, (int )backup[8]); b43legacy_phy_write(dev, 3, (int )backup[9]); b43legacy_radio_write16(dev, 67, (int )backup[11]); b43legacy_radio_write16(dev, 122, (int )backup[10]); tmp___28 = b43legacy_phy_read(dev, 2050); b43legacy_phy_write(dev, 2050, (int )((unsigned int )tmp___28 | 3U)); tmp___29 = b43legacy_phy_read(dev, 1065); b43legacy_phy_write(dev, 1065, (int )((unsigned int )tmp___29 | 32768U)); b43legacy_set_original_gains(dev); } if ((unsigned int )phy->rev > 5U) { { b43legacy_phy_write(dev, 2049, (int )backup[16]); b43legacy_phy_write(dev, 96, (int )backup[17]); b43legacy_phy_write(dev, 20, (int )backup[18]); b43legacy_phy_write(dev, 1144, (int )backup[19]); } } else { } { b43legacy_phy_write(dev, 1, (int )backup[0]); b43legacy_phy_write(dev, 2066, (int )backup[2]); b43legacy_phy_write(dev, 2065, (int )backup[1]); } return; } } void b43legacy_calc_nrssi_slope(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u16 backup[18U] ; unsigned int tmp ; u16 tmp___0 ; s16 nrssi0 ; s16 nrssi1 ; u16 tmp___1 ; u16 tmp___2 ; u16 tmp___3 ; u16 tmp___4 ; u16 tmp___5 ; u16 tmp___6 ; u16 tmp___7 ; u16 tmp___8 ; u16 tmp___9 ; u16 tmp___10 ; u16 tmp___11 ; u16 tmp___12 ; u16 tmp___13 ; u16 tmp___14 ; u16 tmp___15 ; u16 tmp___16 ; u16 tmp___17 ; u16 tmp___18 ; u16 tmp___19 ; u16 tmp___20 ; u16 tmp___21 ; u16 tmp___22 ; u16 tmp___23 ; u16 tmp___24 ; u16 tmp___25 ; u16 tmp___26 ; u16 tmp___27 ; u16 tmp___28 ; u16 tmp___29 ; u16 tmp___30 ; u16 tmp___31 ; u16 tmp___32 ; u16 tmp___33 ; u16 tmp___34 ; { phy = & dev->phy; backup[0] = 0U; tmp = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 18U) { goto while_break; } else { } backup[tmp] = (unsigned short)0; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } { if ((int )phy->type == 1) { goto case_1; } else { } if ((int )phy->type == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ { backup[0] = b43legacy_radio_read16(dev, 122); backup[1] = b43legacy_radio_read16(dev, 82); backup[2] = b43legacy_radio_read16(dev, 67); backup[3] = b43legacy_phy_read(dev, 48); backup[4] = b43legacy_phy_read(dev, 38); backup[5] = b43legacy_phy_read(dev, 21); backup[6] = b43legacy_phy_read(dev, 42); backup[7] = b43legacy_phy_read(dev, 32); backup[8] = b43legacy_phy_read(dev, 90); backup[9] = b43legacy_phy_read(dev, 89); backup[10] = b43legacy_phy_read(dev, 88); backup[11] = b43legacy_read16(dev, 994); backup[12] = b43legacy_read16(dev, 998); backup[13] = b43legacy_read16(dev, 1012); tmp___0 = b43legacy_radio_read16(dev, 122); tmp___0 = (u16 )((int )((short )tmp___0) & ((unsigned int )phy->rev > 4U ? 127 : 15)); b43legacy_radio_write16(dev, 122, (int )tmp___0); b43legacy_phy_write(dev, 48, 255); b43legacy_write16(dev, 1004, 32639); b43legacy_phy_write(dev, 38, 0); tmp___1 = b43legacy_phy_read(dev, 21); b43legacy_phy_write(dev, 21, (int )((unsigned int )tmp___1 | 32U)); b43legacy_phy_write(dev, 42, 2211); tmp___2 = b43legacy_radio_read16(dev, 122); b43legacy_radio_write16(dev, 122, (int )((unsigned int )tmp___2 | 128U)); tmp___3 = b43legacy_phy_read(dev, 39); nrssi0 = (short )tmp___3; tmp___4 = b43legacy_radio_read16(dev, 122); b43legacy_radio_write16(dev, 122, (int )tmp___4 & 127); } if ((unsigned int )phy->analog > 1U) { { b43legacy_write16(dev, 998, 64); } } else if ((unsigned int )phy->analog == 0U) { { b43legacy_write16(dev, 998, 290); } } else { { tmp___5 = b43legacy_read16(dev, 1012); b43legacy_write16(dev, 1012, (int )tmp___5 & 8192); } } { b43legacy_phy_write(dev, 32, 16191); b43legacy_phy_write(dev, 21, 62256); b43legacy_radio_write16(dev, 90, 96); tmp___6 = b43legacy_radio_read16(dev, 67); b43legacy_radio_write16(dev, 67, (int )tmp___6 & 240); b43legacy_phy_write(dev, 90, 1152); b43legacy_phy_write(dev, 89, 2064); b43legacy_phy_write(dev, 88, 13); __const_udelay(85900UL); tmp___7 = b43legacy_phy_read(dev, 39); nrssi1 = (short )tmp___7; b43legacy_phy_write(dev, 48, (int )backup[3]); b43legacy_radio_write16(dev, 122, (int )backup[0]); b43legacy_write16(dev, 994, (int )backup[11]); b43legacy_phy_write(dev, 38, (int )backup[4]); b43legacy_phy_write(dev, 21, (int )backup[5]); b43legacy_phy_write(dev, 42, (int )backup[6]); b43legacy_synth_pu_workaround(dev, (int )phy->channel); } if ((unsigned int )phy->analog != 0U) { { b43legacy_write16(dev, 1012, (int )backup[13]); } } else { } { b43legacy_phy_write(dev, 32, (int )backup[7]); b43legacy_phy_write(dev, 90, (int )backup[8]); b43legacy_phy_write(dev, 89, (int )backup[9]); b43legacy_phy_write(dev, 88, (int )backup[10]); b43legacy_radio_write16(dev, 82, (int )backup[1]); b43legacy_radio_write16(dev, 67, (int )backup[2]); } if ((int )nrssi0 == (int )nrssi1) { phy->nrssislope = 65536; } else { phy->nrssislope = 4194304 / ((int )nrssi0 - (int )nrssi1); } if ((int )nrssi0 < -3) { phy->nrssi[0] = nrssi0; phy->nrssi[1] = nrssi1; } else { } goto ldv_51022; case_2: /* CIL Label */ ; if ((unsigned int )phy->radio_rev > 8U) { return; } else { } if ((unsigned int )phy->radio_rev == 8U) { { b43legacy_calc_nrssi_offset(dev); } } else { } { tmp___8 = b43legacy_phy_read(dev, 1065); b43legacy_phy_write(dev, 1065, (int )tmp___8 & 32767); tmp___9 = b43legacy_phy_read(dev, 2050); b43legacy_phy_write(dev, 2050, (int )tmp___9 & 65532); backup[7] = b43legacy_read16(dev, 994); tmp___10 = b43legacy_read16(dev, 994); b43legacy_write16(dev, 994, (int )((unsigned int )tmp___10 | 32768U)); backup[0] = b43legacy_radio_read16(dev, 122); backup[1] = b43legacy_radio_read16(dev, 82); backup[2] = b43legacy_radio_read16(dev, 67); backup[3] = b43legacy_phy_read(dev, 21); backup[4] = b43legacy_phy_read(dev, 90); backup[5] = b43legacy_phy_read(dev, 89); backup[6] = b43legacy_phy_read(dev, 88); backup[8] = b43legacy_read16(dev, 998); backup[9] = b43legacy_read16(dev, 1012); } if ((unsigned int )phy->rev > 2U) { { backup[10] = b43legacy_phy_read(dev, 46); backup[11] = b43legacy_phy_read(dev, 47); backup[12] = b43legacy_phy_read(dev, 2063); backup[13] = b43legacy_phy_read(dev, 2064); backup[14] = b43legacy_phy_read(dev, 2049); backup[15] = b43legacy_phy_read(dev, 96); backup[16] = b43legacy_phy_read(dev, 20); backup[17] = b43legacy_phy_read(dev, 1144); b43legacy_phy_write(dev, 46, 0); b43legacy_phy_write(dev, 2064, 0); } { if ((int )phy->rev == 4) { goto case_4; } else { } if ((int )phy->rev == 6) { goto case_6; } else { } if ((int )phy->rev == 7) { goto case_7; } else { } if ((int )phy->rev == 3) { goto case_3; } else { } if ((int )phy->rev == 5) { goto case_5; } else { } goto switch_break___0; case_4: /* CIL Label */ ; case_6: /* CIL Label */ ; case_7: /* CIL Label */ { tmp___11 = b43legacy_phy_read(dev, 1144); b43legacy_phy_write(dev, 1144, (int )((unsigned int )tmp___11 | 256U)); tmp___12 = b43legacy_phy_read(dev, 2049); b43legacy_phy_write(dev, 2049, (int )((unsigned int )tmp___12 | 64U)); } goto ldv_51027; case_3: /* CIL Label */ ; case_5: /* CIL Label */ { tmp___13 = b43legacy_phy_read(dev, 2049); b43legacy_phy_write(dev, 2049, (int )tmp___13 & 65471); } goto ldv_51027; switch_break___0: /* CIL Label */ ; } ldv_51027: { tmp___14 = b43legacy_phy_read(dev, 96); b43legacy_phy_write(dev, 96, (int )((unsigned int )tmp___14 | 64U)); tmp___15 = b43legacy_phy_read(dev, 20); b43legacy_phy_write(dev, 20, (int )((unsigned int )tmp___15 | 512U)); } } else { } { tmp___16 = b43legacy_radio_read16(dev, 122); b43legacy_radio_write16(dev, 122, (int )((unsigned int )tmp___16 | 112U)); b43legacy_set_all_gains(dev, 0, 8, 0); tmp___17 = b43legacy_radio_read16(dev, 122); b43legacy_radio_write16(dev, 122, (int )tmp___17 & 247); } if ((unsigned int )phy->rev > 1U) { { tmp___18 = b43legacy_phy_read(dev, 2065); b43legacy_phy_write(dev, 2065, (int )((unsigned int )tmp___18 | 48U)); tmp___19 = b43legacy_phy_read(dev, 2066); b43legacy_phy_write(dev, 2066, (int )((u16 )(((int )((short )tmp___19) & -49) | 16))); } } else { } { tmp___20 = b43legacy_radio_read16(dev, 122); b43legacy_radio_write16(dev, 122, (int )((unsigned int )tmp___20 | 128U)); __const_udelay(85900UL); tmp___21 = b43legacy_phy_read(dev, 1151); nrssi0 = (int )((short )((int )tmp___21 >> 8)) & 63; } if ((int )nrssi0 > 31) { nrssi0 = (s16 )((unsigned int )((unsigned short )nrssi0) + 65472U); } else { } { tmp___22 = b43legacy_radio_read16(dev, 122); b43legacy_radio_write16(dev, 122, (int )tmp___22 & 127); } if ((unsigned int )phy->analog > 1U) { { tmp___23 = b43legacy_phy_read(dev, 3); b43legacy_phy_write(dev, 3, (int )((u16 )(((int )((short )tmp___23) & -97) | 64))); } } else { } { tmp___24 = b43legacy_read16(dev, 1012); b43legacy_write16(dev, 1012, (int )((unsigned int )tmp___24 | 8192U)); tmp___25 = b43legacy_radio_read16(dev, 122); b43legacy_radio_write16(dev, 122, (int )((unsigned int )tmp___25 | 15U)); b43legacy_phy_write(dev, 21, 62256); } if ((unsigned int )phy->rev > 1U) { { tmp___26 = b43legacy_phy_read(dev, 2066); b43legacy_phy_write(dev, 2066, (int )((u16 )(((int )((short )tmp___26) & -49) | 32))); tmp___27 = b43legacy_phy_read(dev, 2065); b43legacy_phy_write(dev, 2065, (int )((u16 )(((int )((short )tmp___27) & -49) | 32))); } } else { } { b43legacy_set_all_gains(dev, 3, 0, 1); } if ((unsigned int )phy->radio_rev == 8U) { { b43legacy_radio_write16(dev, 67, 31); } } else { { tmp___28 = b43legacy_radio_read16(dev, 82); tmp___0 = (unsigned int )tmp___28 & 65295U; b43legacy_radio_write16(dev, 82, (int )((unsigned int )tmp___0 | 96U)); tmp___29 = b43legacy_radio_read16(dev, 67); tmp___0 = (unsigned int )tmp___29 & 65520U; b43legacy_radio_write16(dev, 67, (int )((unsigned int )tmp___0 | 9U)); } } { b43legacy_phy_write(dev, 90, 1152); b43legacy_phy_write(dev, 89, 2064); b43legacy_phy_write(dev, 88, 13); __const_udelay(85900UL); tmp___30 = b43legacy_phy_read(dev, 1151); nrssi1 = (int )((short )((int )tmp___30 >> 8)) & 63; } if ((int )nrssi1 > 31) { nrssi1 = (s16 )((unsigned int )((unsigned short )nrssi1) + 65472U); } else { } if ((int )nrssi0 == (int )nrssi1) { phy->nrssislope = 65536; } else { phy->nrssislope = 4194304 / ((int )nrssi0 - (int )nrssi1); } if ((int )nrssi0 >= -4) { phy->nrssi[0] = nrssi1; phy->nrssi[1] = nrssi0; } else { } if ((unsigned int )phy->rev > 2U) { { b43legacy_phy_write(dev, 46, (int )backup[10]); b43legacy_phy_write(dev, 47, (int )backup[11]); b43legacy_phy_write(dev, 2063, (int )backup[12]); b43legacy_phy_write(dev, 2064, (int )backup[13]); } } else { } if ((unsigned int )phy->rev > 1U) { { tmp___31 = b43legacy_phy_read(dev, 2066); b43legacy_phy_write(dev, 2066, (int )tmp___31 & 65487); tmp___32 = b43legacy_phy_read(dev, 2065); b43legacy_phy_write(dev, 2065, (int )tmp___32 & 65487); } } else { } { b43legacy_radio_write16(dev, 122, (int )backup[0]); b43legacy_radio_write16(dev, 82, (int )backup[1]); b43legacy_radio_write16(dev, 67, (int )backup[2]); b43legacy_write16(dev, 994, (int )backup[7]); b43legacy_write16(dev, 998, (int )backup[8]); b43legacy_write16(dev, 1012, (int )backup[9]); b43legacy_phy_write(dev, 21, (int )backup[3]); b43legacy_phy_write(dev, 90, (int )backup[4]); b43legacy_phy_write(dev, 89, (int )backup[5]); b43legacy_phy_write(dev, 88, (int )backup[6]); b43legacy_synth_pu_workaround(dev, (int )phy->channel); tmp___33 = b43legacy_phy_read(dev, 2050); b43legacy_phy_write(dev, 2050, (int )((unsigned int )tmp___33 | 3U)); b43legacy_set_original_gains(dev); tmp___34 = b43legacy_phy_read(dev, 1065); b43legacy_phy_write(dev, 1065, (int )((unsigned int )tmp___34 | 32768U)); } if ((unsigned int )phy->rev > 2U) { { b43legacy_phy_write(dev, 2049, (int )backup[14]); b43legacy_phy_write(dev, 96, (int )backup[15]); b43legacy_phy_write(dev, 20, (int )backup[16]); b43legacy_phy_write(dev, 1144, (int )backup[17]); } } else { } { b43legacy_nrssi_mem_update(dev); b43legacy_calc_nrssi_threshold(dev); } goto ldv_51022; switch_default: /* CIL Label */ { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/radio.c"), "i" (814), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_51022: ; return; } } void b43legacy_calc_nrssi_threshold(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; s32 threshold ; s32 a ; s32 b ; s16 tmp16 ; u16 tmp_u16 ; s32 __val ; s32 __min ; s32 __max ; u16 tmp ; u16 tmp___0 ; s32 __val___0 ; s32 __min___0 ; s32 __max___0 ; s32 __val___1 ; s32 __min___1 ; s32 __max___1 ; u16 tmp___1 ; { phy = & dev->phy; { if ((int )phy->type == 1) { goto case_1; } else { } if ((int )phy->type == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ ; if ((unsigned int )phy->radio_ver != 8272U) { return; } else { } if (((int )((dev->dev)->bus)->sprom.boardflags_lo & 8) == 0) { return; } else { } if ((unsigned int )phy->radio_rev > 5U) { threshold = ((int )phy->nrssi[1] - (int )phy->nrssi[0]) * 32; threshold = threshold + ((int )phy->nrssi[0] + 1) * 20; threshold = threshold / 40; } else { threshold = (int )phy->nrssi[1] + -5; } { __val = threshold; __min = 0; __max = 62; __val = __min > __val ? __min : __val; threshold = __max < __val ? __max : __val; b43legacy_phy_read(dev, 32); b43legacy_phy_write(dev, 32, (int )((u16 )((int )((short )((int )((unsigned short )threshold) << 8)) | 28))); } if ((unsigned int )phy->radio_rev > 5U) { { b43legacy_phy_write(dev, 135, 3597); b43legacy_phy_write(dev, 134, 3083); b43legacy_phy_write(dev, 133, 2569); b43legacy_phy_write(dev, 132, 2056); b43legacy_phy_write(dev, 131, 2056); b43legacy_phy_write(dev, 130, 1540); b43legacy_phy_write(dev, 129, 770); b43legacy_phy_write(dev, 128, 256); } } else { } goto ldv_51045; case_2: /* CIL Label */ ; if (! phy->gmode || ((int )((dev->dev)->bus)->sprom.boardflags_lo & 8) == 0) { { tmp16 = b43legacy_nrssi_hw_read(dev, 32); } if ((int )tmp16 > 31) { tmp16 = (s16 )((unsigned int )((unsigned short )tmp16) + 65472U); } else { } if ((int )tmp16 <= 2) { { tmp = b43legacy_phy_read(dev, 1162); b43legacy_phy_write(dev, 1162, (int )((u16 )(((int )((short )tmp) & -4096) | 2539))); } } else { { tmp___0 = b43legacy_phy_read(dev, 1162); b43legacy_phy_write(dev, 1162, (int )((u16 )(((int )((short )tmp___0) & -4096) | 2797))); } } } else { if (phy->interfmode == 1) { a = 14; b = 10; } else if (! phy->aci_wlan_automatic && (int )phy->aci_enable) { a = 19; b = 18; } else { a = 14; b = 17; } a = a * ((int )phy->nrssi[1] - (int )phy->nrssi[0]); a = a + ((int )phy->nrssi[0] << 6); if (a <= 31) { a = a + 31; } else { a = a + 32; } a = a >> 6; __val___0 = a; __min___0 = -31; __max___0 = 31; __val___0 = __min___0 > __val___0 ? __min___0 : __val___0; a = __max___0 < __val___0 ? __max___0 : __val___0; b = b * ((int )phy->nrssi[1] - (int )phy->nrssi[0]); b = b + ((int )phy->nrssi[0] << 6); if (b <= 31) { b = b + 31; } else { b = b + 32; } { b = b >> 6; __val___1 = b; __min___1 = -31; __max___1 = 31; __val___1 = __min___1 > __val___1 ? __min___1 : __val___1; b = __max___1 < __val___1 ? __max___1 : __val___1; tmp___1 = b43legacy_phy_read(dev, 1162); tmp_u16 = (unsigned int )tmp___1 & 61440U; tmp_u16 = (unsigned int )tmp_u16 | ((unsigned int )((u16 )b) & 63U); tmp_u16 = (unsigned int )tmp_u16 | (((unsigned int )((u16 )a) & 63U) << 6U); b43legacy_phy_write(dev, 1162, (int )tmp_u16); } } goto ldv_51045; switch_default: /* CIL Label */ { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/radio.c"), "i" (913), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_51045: ; return; } } static void _stack_save(u32 *_stackptr , size_t *stackidx , u8 id , u16 offset , u16 value ) { u32 *stackptr ; int __ret_warn_on ; long tmp ; int __ret_warn_on___0 ; long tmp___0 ; int __ret_warn_on___1 ; long tmp___1 ; { { stackptr = _stackptr + *stackidx; __ret_warn_on = ((int )offset & 57344) != 0; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/radio.c", 926); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); __ret_warn_on___0 = ((int )id & 248) != 0; tmp___0 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/radio.c", 927); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); *stackptr = (u32 )offset; *stackptr = *stackptr | ((unsigned int )id << 13); *stackptr = *stackptr | ((unsigned int )value << 16); *stackidx = *stackidx + 1UL; __ret_warn_on___1 = *stackidx > 25UL; tmp___1 = ldv__builtin_expect(__ret_warn_on___1 != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/radio.c", 932); } } else { } { ldv__builtin_expect(__ret_warn_on___1 != 0, 0L); } return; } } static u16 _stack_restore(u32 *stackptr , u8 id , u16 offset ) { size_t i ; int __ret_warn_on ; long tmp ; int __ret_warn_on___0 ; long tmp___0 ; { { __ret_warn_on = ((int )offset & 57344) != 0; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/radio.c", 940); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); __ret_warn_on___0 = ((int )id & 248) != 0; tmp___0 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/radio.c", 941); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); i = 0UL; } goto ldv_51082; ldv_51081: ; if ((*stackptr & 8191U) != (u32 )offset) { goto ldv_51080; } else { } if ((*stackptr & 28672U) >> 13 != (u32 )id) { goto ldv_51080; } else { } return ((u16 )(*stackptr >> 16)); ldv_51080: i = i + 1UL; stackptr = stackptr + 1; ldv_51082: ; if (i <= 25UL) { goto ldv_51081; } else { } { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/radio.c"), "i" (949), "i" (12UL)); __builtin_unreachable(); } return (0U); } } static void b43legacy_radio_interference_mitigation_enable(struct b43legacy_wldev *dev , int mode ) { struct b43legacy_phy *phy ; u16 tmp ; u16 flipped ; u32 tmp32 ; size_t stackidx ; u32 *stack ; u16 tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; u16 tmp___3 ; u16 tmp___4 ; u16 tmp___5 ; u16 tmp___6 ; u16 tmp___7 ; u16 tmp___8 ; u16 tmp___9 ; u16 tmp___10 ; u16 tmp___11 ; u16 tmp___12 ; u16 tmp___13 ; u16 tmp___14 ; u16 tmp___15 ; u16 tmp___16 ; u16 tmp___17 ; u16 tmp___18 ; u16 tmp___19 ; u16 tmp___20 ; u16 tmp___21 ; u16 tmp___22 ; u16 tmp___23 ; u16 tmp___24 ; u16 tmp___25 ; u16 tmp___26 ; u16 tmp___27 ; u16 tmp___28 ; u16 tmp___29 ; u16 tmp___30 ; u16 tmp___31 ; u16 tmp___32 ; u16 tmp___33 ; u16 tmp___34 ; u16 tmp___35 ; u16 tmp___36 ; u16 tmp___37 ; u16 tmp___38 ; u16 tmp___39 ; u16 tmp___40 ; u16 tmp___41 ; u16 tmp___42 ; u16 tmp___43 ; u16 tmp___44 ; u16 tmp___45 ; u16 tmp___46 ; u16 tmp___47 ; u16 tmp___48 ; u16 tmp___49 ; u16 tmp___50 ; u16 tmp___51 ; u16 tmp___52 ; u16 tmp___53 ; u16 tmp___54 ; u16 tmp___55 ; u16 tmp___56 ; u16 tmp___57 ; u16 tmp___58 ; u16 tmp___59 ; u16 tmp___60 ; u16 tmp___61 ; u16 tmp___62 ; u16 tmp___63 ; u16 tmp___64 ; u16 tmp___65 ; u16 tmp___66 ; u16 tmp___67 ; u16 tmp___68 ; u16 tmp___69 ; u16 tmp___70 ; u16 tmp___71 ; u16 tmp___72 ; u16 tmp___73 ; u16 tmp___74 ; u16 tmp___75 ; u16 tmp___76 ; u16 tmp___77 ; u16 tmp___78 ; { phy = & dev->phy; stackidx = 0UL; stack = (u32 *)(& phy->interfstack); { if (mode == 1) { goto case_1; } else { } if (mode == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ ; if ((unsigned int )phy->rev != 1U) { { tmp___0 = b43legacy_phy_read(dev, 1067); b43legacy_phy_write(dev, 1067, (int )((unsigned int )tmp___0 | 2048U)); tmp___1 = b43legacy_phy_read(dev, 1065); b43legacy_phy_write(dev, 1065, (int )tmp___1 & 49151); } goto ldv_51095; } else { } { tmp___2 = b43legacy_radio_read16(dev, 120); _stack_save(stack, & stackidx, 2, 120, (int )tmp___2); tmp___3 = b43legacy_radio_read16(dev, 120); tmp = (unsigned int )tmp___3 & 30U; flipped = flip_4bit((int )tmp); } if ((unsigned int )flipped - 8U <= 1U) { flipped = 7U; } else if ((unsigned int )flipped > 9U) { flipped = (unsigned int )flipped + 65533U; } else { } { flipped = flip_4bit((int )flipped); flipped = (u16 )((int )((short )((int )flipped << 1)) | 32); b43legacy_radio_write16(dev, 120, (int )flipped); b43legacy_calc_nrssi_threshold(dev); tmp___4 = b43legacy_phy_read(dev, 1030); _stack_save(stack, & stackidx, 1, 1030, (int )tmp___4); b43legacy_phy_write(dev, 1030, 32296); tmp___5 = b43legacy_phy_read(dev, 1067); b43legacy_phy_write(dev, 1067, (int )((unsigned int )tmp___5 | 2048U)); tmp___6 = b43legacy_phy_read(dev, 1025); b43legacy_phy_write(dev, 1025, (int )((unsigned int )tmp___6 | 4096U)); tmp___7 = b43legacy_phy_read(dev, 1184); _stack_save(stack, & stackidx, 1, 1184, (int )tmp___7); tmp___8 = b43legacy_phy_read(dev, 1184); b43legacy_phy_write(dev, 1184, (int )((u16 )(((int )((short )tmp___8) & -16192) | 8))); tmp___9 = b43legacy_phy_read(dev, 1185); _stack_save(stack, & stackidx, 1, 1185, (int )tmp___9); tmp___10 = b43legacy_phy_read(dev, 1185); b43legacy_phy_write(dev, 1185, (int )((u16 )(((int )((short )tmp___10) & -16192) | 1541))); tmp___11 = b43legacy_phy_read(dev, 1186); _stack_save(stack, & stackidx, 1, 1186, (int )tmp___11); tmp___12 = b43legacy_phy_read(dev, 1186); b43legacy_phy_write(dev, 1186, (int )((u16 )(((int )((short )tmp___12) & -16192) | 516))); tmp___13 = b43legacy_phy_read(dev, 1192); _stack_save(stack, & stackidx, 1, 1192, (int )tmp___13); tmp___14 = b43legacy_phy_read(dev, 1192); b43legacy_phy_write(dev, 1192, (int )((u16 )(((int )((short )tmp___14) & -16192) | 2051))); tmp___15 = b43legacy_phy_read(dev, 1195); _stack_save(stack, & stackidx, 1, 1195, (int )tmp___15); tmp___16 = b43legacy_phy_read(dev, 1195); b43legacy_phy_write(dev, 1195, (int )((u16 )(((int )((short )tmp___16) & -16192) | 1541))); tmp___17 = b43legacy_phy_read(dev, 1191); _stack_save(stack, & stackidx, 1, 1191, (int )tmp___17); b43legacy_phy_write(dev, 1191, 2); tmp___18 = b43legacy_phy_read(dev, 1187); _stack_save(stack, & stackidx, 1, 1187, (int )tmp___18); b43legacy_phy_write(dev, 1187, 10362); tmp___19 = b43legacy_phy_read(dev, 1193); _stack_save(stack, & stackidx, 1, 1193, (int )tmp___19); b43legacy_phy_write(dev, 1193, 8231); tmp___20 = b43legacy_phy_read(dev, 1171); _stack_save(stack, & stackidx, 1, 1171, (int )tmp___20); b43legacy_phy_write(dev, 1171, 13045); tmp___21 = b43legacy_phy_read(dev, 1194); _stack_save(stack, & stackidx, 1, 1194, (int )tmp___21); b43legacy_phy_write(dev, 1194, 8231); tmp___22 = b43legacy_phy_read(dev, 1196); _stack_save(stack, & stackidx, 1, 1196, (int )tmp___22); b43legacy_phy_write(dev, 1196, 13045); } goto ldv_51095; case_2: /* CIL Label */ { tmp___23 = b43legacy_phy_read(dev, 51); } if (((int )tmp___23 & 2048) != 0) { goto ldv_51095; } else { } { phy->aci_enable = 1; tmp___24 = b43legacy_phy_read(dev, 1025); _stack_save(stack, & stackidx, 1, 1025, (int )tmp___24); tmp___25 = b43legacy_phy_read(dev, 1065); _stack_save(stack, & stackidx, 1, 1065, (int )tmp___25); } if ((unsigned int )phy->rev <= 1U) { { tmp___26 = b43legacy_phy_read(dev, 1030); _stack_save(stack, & stackidx, 1, 1030, (int )tmp___26); } } else { { tmp___27 = b43legacy_phy_read(dev, 1216); _stack_save(stack, & stackidx, 1, 1216, (int )tmp___27); tmp___28 = b43legacy_phy_read(dev, 1217); _stack_save(stack, & stackidx, 1, 1217, (int )tmp___28); } } { tmp___29 = b43legacy_phy_read(dev, 51); _stack_save(stack, & stackidx, 1, 51, (int )tmp___29); tmp___30 = b43legacy_phy_read(dev, 1191); _stack_save(stack, & stackidx, 1, 1191, (int )tmp___30); tmp___31 = b43legacy_phy_read(dev, 1187); _stack_save(stack, & stackidx, 1, 1187, (int )tmp___31); tmp___32 = b43legacy_phy_read(dev, 1193); _stack_save(stack, & stackidx, 1, 1193, (int )tmp___32); tmp___33 = b43legacy_phy_read(dev, 1194); _stack_save(stack, & stackidx, 1, 1194, (int )tmp___33); tmp___34 = b43legacy_phy_read(dev, 1196); _stack_save(stack, & stackidx, 1, 1196, (int )tmp___34); tmp___35 = b43legacy_phy_read(dev, 1171); _stack_save(stack, & stackidx, 1, 1171, (int )tmp___35); tmp___36 = b43legacy_phy_read(dev, 1185); _stack_save(stack, & stackidx, 1, 1185, (int )tmp___36); tmp___37 = b43legacy_phy_read(dev, 1184); _stack_save(stack, & stackidx, 1, 1184, (int )tmp___37); tmp___38 = b43legacy_phy_read(dev, 1186); _stack_save(stack, & stackidx, 1, 1186, (int )tmp___38); tmp___39 = b43legacy_phy_read(dev, 1162); _stack_save(stack, & stackidx, 1, 1162, (int )tmp___39); tmp___40 = b43legacy_phy_read(dev, 1192); _stack_save(stack, & stackidx, 1, 1192, (int )tmp___40); tmp___41 = b43legacy_phy_read(dev, 1195); _stack_save(stack, & stackidx, 1, 1195, (int )tmp___41); } if ((unsigned int )phy->rev == 2U) { { tmp___42 = b43legacy_phy_read(dev, 1197); _stack_save(stack, & stackidx, 1, 1197, (int )tmp___42); tmp___43 = b43legacy_phy_read(dev, 1198); _stack_save(stack, & stackidx, 1, 1198, (int )tmp___43); } } else if ((unsigned int )phy->rev > 2U) { { tmp___44 = b43legacy_phy_read(dev, 1197); _stack_save(stack, & stackidx, 1, 1197, (int )tmp___44); tmp___45 = b43legacy_phy_read(dev, 1045); _stack_save(stack, & stackidx, 1, 1045, (int )tmp___45); tmp___46 = b43legacy_phy_read(dev, 1046); _stack_save(stack, & stackidx, 1, 1046, (int )tmp___46); tmp___47 = b43legacy_phy_read(dev, 1047); _stack_save(stack, & stackidx, 1, 1047, (int )tmp___47); tmp___48 = b43legacy_ilt_read(dev, 6658); _stack_save(stack, & stackidx, 3, 6658, (int )tmp___48); tmp___49 = b43legacy_ilt_read(dev, 6659); _stack_save(stack, & stackidx, 3, 6659, (int )tmp___49); } } else { } { tmp___50 = b43legacy_phy_read(dev, 1067); _stack_save(stack, & stackidx, 1, 1067, (int )tmp___50); tmp___51 = b43legacy_phy_read(dev, 1164); _stack_save(stack, & stackidx, 1, 1164, (int )tmp___51); tmp___52 = b43legacy_phy_read(dev, 1025); b43legacy_phy_write(dev, 1025, (int )tmp___52 & 61439); tmp___53 = b43legacy_phy_read(dev, 1065); b43legacy_phy_write(dev, 1065, (int )((u16 )(((int )((short )tmp___53) & -4) | 2))); b43legacy_phy_write(dev, 51, 2048); b43legacy_phy_write(dev, 1187, 8231); b43legacy_phy_write(dev, 1193, 7336); b43legacy_phy_write(dev, 1171, 10362); b43legacy_phy_write(dev, 1194, 7336); b43legacy_phy_write(dev, 1196, 10362); tmp___54 = b43legacy_phy_read(dev, 1184); b43legacy_phy_write(dev, 1184, (int )((u16 )(((int )((short )tmp___54) & -64) | 26))); b43legacy_phy_write(dev, 1191, 13); } if ((unsigned int )phy->rev <= 1U) { { b43legacy_phy_write(dev, 1030, 65293); } } else if ((unsigned int )phy->rev == 2U) { { b43legacy_phy_write(dev, 1216, 65535); b43legacy_phy_write(dev, 1217, 169); } } else { { b43legacy_phy_write(dev, 1216, 193); b43legacy_phy_write(dev, 1217, 89); } } { tmp___55 = b43legacy_phy_read(dev, 1185); b43legacy_phy_write(dev, 1185, (int )((u16 )(((int )((short )tmp___55) & -16129) | 6144))); tmp___56 = b43legacy_phy_read(dev, 1185); b43legacy_phy_write(dev, 1185, (int )((u16 )(((int )((short )tmp___56) & -64) | 21))); tmp___57 = b43legacy_phy_read(dev, 1192); b43legacy_phy_write(dev, 1192, (int )((u16 )(((int )((short )tmp___57) & -12289) | 4096))); tmp___58 = b43legacy_phy_read(dev, 1192); b43legacy_phy_write(dev, 1192, (int )((u16 )(((int )((short )tmp___58) & -3841) | 2560))); tmp___59 = b43legacy_phy_read(dev, 1195); b43legacy_phy_write(dev, 1195, (int )((u16 )(((int )((short )tmp___59) & -12289) | 4096))); tmp___60 = b43legacy_phy_read(dev, 1195); b43legacy_phy_write(dev, 1195, (int )((u16 )(((int )((short )tmp___60) & -3841) | 2048))); tmp___61 = b43legacy_phy_read(dev, 1195); b43legacy_phy_write(dev, 1195, (int )((u16 )(((int )((short )tmp___61) & -49) | 16))); tmp___62 = b43legacy_phy_read(dev, 1195); b43legacy_phy_write(dev, 1195, (int )((u16 )(((int )((short )tmp___62) & -16) | 5))); tmp___63 = b43legacy_phy_read(dev, 1192); b43legacy_phy_write(dev, 1192, (int )((u16 )(((int )((short )tmp___63) & -49) | 16))); tmp___64 = b43legacy_phy_read(dev, 1192); b43legacy_phy_write(dev, 1192, (int )((u16 )(((int )((short )tmp___64) & -16) | 6))); tmp___65 = b43legacy_phy_read(dev, 1186); b43legacy_phy_write(dev, 1186, (int )((u16 )(((int )((short )tmp___65) & -3841) | 2048))); tmp___66 = b43legacy_phy_read(dev, 1184); b43legacy_phy_write(dev, 1184, (int )((u16 )(((int )((short )tmp___66) & -3841) | 1280))); tmp___67 = b43legacy_phy_read(dev, 1186); b43legacy_phy_write(dev, 1186, (int )((u16 )(((int )((short )tmp___67) & -16) | 11))); } if ((unsigned int )phy->rev > 2U) { { tmp___68 = b43legacy_phy_read(dev, 1162); b43legacy_phy_write(dev, 1162, (int )tmp___68 & 32767); tmp___69 = b43legacy_phy_read(dev, 1045); b43legacy_phy_write(dev, 1045, (int )((u16 )(((int )((short )tmp___69) & -32768) | 14040))); tmp___70 = b43legacy_phy_read(dev, 1046); b43legacy_phy_write(dev, 1046, (int )((u16 )(((int )((short )tmp___70) & -32768) | 14040))); tmp___71 = b43legacy_phy_read(dev, 1047); b43legacy_phy_write(dev, 1047, (int )((u16 )(((int )((short )tmp___71) & -512) | 365))); } } else { { tmp___72 = b43legacy_phy_read(dev, 1162); b43legacy_phy_write(dev, 1162, (int )((unsigned int )tmp___72 | 4096U)); tmp___73 = b43legacy_phy_read(dev, 1162); b43legacy_phy_write(dev, 1162, (int )((u16 )(((int )((short )tmp___73) & -24577) | 8192))); tmp32 = b43legacy_shm_read32(dev, 1, 94); } if ((tmp32 & 2048U) == 0U) { { tmp32 = tmp32 | 2048U; b43legacy_shm_write32(dev, 1, 94, tmp32); } } else { } } if ((unsigned int )phy->rev > 1U) { { tmp___74 = b43legacy_phy_read(dev, 1067); b43legacy_phy_write(dev, 1067, (int )((unsigned int )tmp___74 | 2048U)); } } else { } { tmp___75 = b43legacy_phy_read(dev, 1164); b43legacy_phy_write(dev, 1164, (int )((u16 )(((int )((short )tmp___75) & -3841) | 512))); } if ((unsigned int )phy->rev == 2U) { { tmp___76 = b43legacy_phy_read(dev, 1198); b43legacy_phy_write(dev, 1198, (int )((u16 )(((int )((short )tmp___76) & -256) | 127))); tmp___77 = b43legacy_phy_read(dev, 1197); b43legacy_phy_write(dev, 1197, (int )((u16 )(((int )((short )tmp___77) & 255) | 4864))); } } else if ((unsigned int )phy->rev > 5U) { { b43legacy_ilt_write(dev, 6659, 127); b43legacy_ilt_write(dev, 6658, 127); tmp___78 = b43legacy_phy_read(dev, 1197); b43legacy_phy_write(dev, 1197, (int )tmp___78 & 255); } } else { } { b43legacy_calc_nrssi_slope(dev); } goto ldv_51095; switch_default: /* CIL Label */ { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/radio.c"), "i" (1230), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_51095: ; return; } } static void b43legacy_radio_interference_mitigation_disable(struct b43legacy_wldev *dev , int mode ) { struct b43legacy_phy *phy ; u32 tmp32 ; u32 *stack ; u16 tmp ; u16 tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; u16 tmp___3 ; u16 tmp___4 ; u16 tmp___5 ; u16 tmp___6 ; u16 tmp___7 ; u16 tmp___8 ; u16 tmp___9 ; u16 tmp___10 ; u16 tmp___11 ; u16 tmp___12 ; u16 tmp___13 ; u16 tmp___14 ; u16 tmp___15 ; u16 tmp___16 ; u16 tmp___17 ; u16 tmp___18 ; u16 tmp___19 ; u16 tmp___20 ; u16 tmp___21 ; u16 tmp___22 ; u16 tmp___23 ; u16 tmp___24 ; u16 tmp___25 ; u16 tmp___26 ; u16 tmp___27 ; u16 tmp___28 ; u16 tmp___29 ; u16 tmp___30 ; u16 tmp___31 ; u16 tmp___32 ; u16 tmp___33 ; u16 tmp___34 ; u16 tmp___35 ; u16 tmp___36 ; u16 tmp___37 ; u16 tmp___38 ; u16 tmp___39 ; u16 tmp___40 ; u16 tmp___41 ; u16 tmp___42 ; u16 tmp___43 ; u16 tmp___44 ; u16 tmp___45 ; { phy = & dev->phy; stack = (u32 *)(& phy->interfstack); { if (mode == 1) { goto case_1; } else { } if (mode == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ ; if ((unsigned int )phy->rev != 1U) { { tmp = b43legacy_phy_read(dev, 1067); b43legacy_phy_write(dev, 1067, (int )tmp & 63487); tmp___0 = b43legacy_phy_read(dev, 1065); b43legacy_phy_write(dev, 1065, (int )((unsigned int )tmp___0 | 16384U)); } goto ldv_51106; } else { } { tmp___1 = _stack_restore(stack, 1, 120); b43legacy_phy_write(dev, 120, (int )tmp___1); b43legacy_calc_nrssi_threshold(dev); tmp___2 = _stack_restore(stack, 1, 1030); b43legacy_phy_write(dev, 1030, (int )tmp___2); tmp___3 = b43legacy_phy_read(dev, 1067); b43legacy_phy_write(dev, 1067, (int )tmp___3 & 63487); } if (! dev->bad_frames_preempt) { { tmp___4 = b43legacy_phy_read(dev, 1025); b43legacy_phy_write(dev, 1025, (int )tmp___4 & 63487); } } else { } { tmp___5 = b43legacy_phy_read(dev, 1065); b43legacy_phy_write(dev, 1065, (int )((unsigned int )tmp___5 | 16384U)); tmp___6 = _stack_restore(stack, 1, 1184); b43legacy_phy_write(dev, 1184, (int )tmp___6); tmp___7 = _stack_restore(stack, 1, 1185); b43legacy_phy_write(dev, 1185, (int )tmp___7); tmp___8 = _stack_restore(stack, 1, 1186); b43legacy_phy_write(dev, 1186, (int )tmp___8); tmp___9 = _stack_restore(stack, 1, 1192); b43legacy_phy_write(dev, 1192, (int )tmp___9); tmp___10 = _stack_restore(stack, 1, 1195); b43legacy_phy_write(dev, 1195, (int )tmp___10); tmp___11 = _stack_restore(stack, 1, 1191); b43legacy_phy_write(dev, 1191, (int )tmp___11); tmp___12 = _stack_restore(stack, 1, 1187); b43legacy_phy_write(dev, 1187, (int )tmp___12); tmp___13 = _stack_restore(stack, 1, 1193); b43legacy_phy_write(dev, 1193, (int )tmp___13); tmp___14 = _stack_restore(stack, 1, 1171); b43legacy_phy_write(dev, 1171, (int )tmp___14); tmp___15 = _stack_restore(stack, 1, 1194); b43legacy_phy_write(dev, 1194, (int )tmp___15); tmp___16 = _stack_restore(stack, 1, 1196); b43legacy_phy_write(dev, 1196, (int )tmp___16); } goto ldv_51106; case_2: /* CIL Label */ { tmp___17 = b43legacy_phy_read(dev, 51); } if (((int )tmp___17 & 2048) == 0) { goto ldv_51106; } else { } { phy->aci_enable = 0; tmp___18 = _stack_restore(stack, 1, 1025); b43legacy_phy_write(dev, 1025, (int )tmp___18); tmp___19 = _stack_restore(stack, 1, 1065); b43legacy_phy_write(dev, 1065, (int )tmp___19); tmp___20 = _stack_restore(stack, 1, 51); b43legacy_phy_write(dev, 51, (int )tmp___20); tmp___21 = _stack_restore(stack, 1, 1187); b43legacy_phy_write(dev, 1187, (int )tmp___21); tmp___22 = _stack_restore(stack, 1, 1193); b43legacy_phy_write(dev, 1193, (int )tmp___22); tmp___23 = _stack_restore(stack, 1, 1171); b43legacy_phy_write(dev, 1171, (int )tmp___23); tmp___24 = _stack_restore(stack, 1, 1194); b43legacy_phy_write(dev, 1194, (int )tmp___24); tmp___25 = _stack_restore(stack, 1, 1196); b43legacy_phy_write(dev, 1196, (int )tmp___25); tmp___26 = _stack_restore(stack, 1, 1184); b43legacy_phy_write(dev, 1184, (int )tmp___26); tmp___27 = _stack_restore(stack, 1, 1191); b43legacy_phy_write(dev, 1191, (int )tmp___27); } if ((unsigned int )phy->rev > 1U) { { tmp___28 = _stack_restore(stack, 1, 1216); b43legacy_phy_write(dev, 1216, (int )tmp___28); tmp___29 = _stack_restore(stack, 1, 1217); b43legacy_phy_write(dev, 1217, (int )tmp___29); } } else { { tmp___30 = _stack_restore(stack, 1, 1030); b43legacy_phy_write(dev, 1030, (int )tmp___30); } } { tmp___31 = _stack_restore(stack, 1, 1185); b43legacy_phy_write(dev, 1185, (int )tmp___31); tmp___32 = _stack_restore(stack, 1, 1195); b43legacy_phy_write(dev, 1195, (int )tmp___32); tmp___33 = _stack_restore(stack, 1, 1192); b43legacy_phy_write(dev, 1192, (int )tmp___33); } if ((unsigned int )phy->rev == 2U) { { tmp___34 = _stack_restore(stack, 1, 1197); b43legacy_phy_write(dev, 1197, (int )tmp___34); tmp___35 = _stack_restore(stack, 1, 1198); b43legacy_phy_write(dev, 1198, (int )tmp___35); } } else if ((unsigned int )phy->rev > 2U) { { tmp___36 = _stack_restore(stack, 1, 1197); b43legacy_phy_write(dev, 1197, (int )tmp___36); tmp___37 = _stack_restore(stack, 1, 1045); b43legacy_phy_write(dev, 1045, (int )tmp___37); tmp___38 = _stack_restore(stack, 1, 1046); b43legacy_phy_write(dev, 1046, (int )tmp___38); tmp___39 = _stack_restore(stack, 1, 1047); b43legacy_phy_write(dev, 1047, (int )tmp___39); tmp___40 = _stack_restore(stack, 3, 6658); b43legacy_ilt_write(dev, 6658, (int )tmp___40); tmp___41 = _stack_restore(stack, 3, 6659); b43legacy_ilt_write(dev, 6659, (int )tmp___41); } } else { } { tmp___42 = _stack_restore(stack, 1, 1186); b43legacy_phy_write(dev, 1186, (int )tmp___42); tmp___43 = _stack_restore(stack, 1, 1192); b43legacy_phy_write(dev, 1192, (int )tmp___43); tmp___44 = _stack_restore(stack, 1, 1067); b43legacy_phy_write(dev, 1067, (int )tmp___44); tmp___45 = _stack_restore(stack, 1, 1164); b43legacy_phy_write(dev, 1164, (int )tmp___45); tmp32 = b43legacy_shm_read32(dev, 1, 94); } if ((tmp32 & 2048U) != 0U) { { tmp32 = tmp32 & 4294965247U; b43legacy_shm_write32(dev, 1, 94, tmp32); } } else { } { b43legacy_calc_nrssi_slope(dev); } goto ldv_51106; switch_default: /* CIL Label */ { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/radio.c"), "i" (1328), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_51106: ; return; } } int b43legacy_radio_set_interference_mitigation(struct b43legacy_wldev *dev , int mode ) { struct b43legacy_phy *phy ; int currentmode ; { phy = & dev->phy; if (((unsigned int )phy->type != 2U || (unsigned int )phy->rev == 0U) || ! phy->gmode) { return (-19); } else { } phy->aci_wlan_automatic = 0; { if (mode == 3) { goto case_3; } else { } if (mode == 0) { goto case_0; } else { } if (mode == 1) { goto case_1; } else { } if (mode == 2) { goto case_2; } else { } goto switch_default; case_3: /* CIL Label */ phy->aci_wlan_automatic = 1; if ((int )phy->aci_enable) { mode = 2; } else { mode = 0; } goto ldv_51116; case_0: /* CIL Label */ ; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; goto ldv_51116; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_51116: currentmode = phy->interfmode; if (currentmode == mode) { return (0); } else { } if (currentmode != 0) { { b43legacy_radio_interference_mitigation_disable(dev, currentmode); } } else { } if (mode == 0) { phy->aci_enable = 0; phy->aci_hw_rssi = 0; } else { { b43legacy_radio_interference_mitigation_enable(dev, mode); } } phy->interfmode = mode; return (0); } } u16 b43legacy_radio_calibrationvalue(struct b43legacy_wldev *dev ) { u16 reg ; u16 index ; u16 ret ; { { reg = b43legacy_radio_read16(dev, 96); index = (u16 )(((int )reg & 30) >> 1); ret = (int )((u16 )rcc_table[(int )index]) << 1U; ret = (u16 )((int )((short )ret) | ((int )((short )reg) & 1)); ret = (u16 )((unsigned int )ret | 32U); } return (ret); } } static u16 b43legacy_get_812_value(struct b43legacy_wldev *dev , u8 lpd ) { struct b43legacy_phy *phy ; u16 loop_or ; u16 adj_loopback_gain ; u8 loop ; u16 extern_lna_control ; u16 tmp ; { phy = & dev->phy; loop_or = 0U; adj_loopback_gain = phy->loopback_gain[0]; if (! phy->gmode) { return (0U); } else { } if ((unsigned int )phy->rev <= 1U && ! phy->gmode) { if ((unsigned int )phy->rev <= 6U || ((int )((dev->dev)->bus)->sprom.boardflags_lo & 4096) == 0) { { if ((int )lpd == 3) { goto case_3; } else { } if ((int )lpd == 1) { goto case_1; } else { } if ((int )lpd == 5) { goto case_5; } else { } if ((int )lpd == 4) { goto case_4; } else { } goto switch_default; case_3: /* CIL Label */ ; return (4018U); case_1: /* CIL Label */ ; return (178U); case_5: /* CIL Label */ ; return (12466U); case_4: /* CIL Label */ ; return (12467U); switch_default: /* CIL Label */ { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/radio.c"), "i" (1422), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } } else { { if ((int )lpd == 3) { goto case_3___0; } else { } if ((int )lpd == 1) { goto case_1___0; } else { } if ((int )lpd == 5) { goto case_5___0; } else { } if ((int )lpd == 4) { goto case_4___0; } else { } goto switch_default___0; case_3___0: /* CIL Label */ ; return (36786U); case_1___0: /* CIL Label */ ; return (32946U); case_5___0: /* CIL Label */ ; return (8370U); case_4___0: /* CIL Label */ ; return (8371U); switch_default___0: /* CIL Label */ { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/radio.c"), "i" (1435), "i" (12UL)); __builtin_unreachable(); } switch_break___0: /* CIL Label */ ; } } } else { if ((unsigned int )phy->radio_rev == 8U) { adj_loopback_gain = (unsigned int )adj_loopback_gain + 62U; } else { adj_loopback_gain = (unsigned int )adj_loopback_gain + 38U; } if ((unsigned int )adj_loopback_gain > 69U) { adj_loopback_gain = (unsigned int )adj_loopback_gain + 65466U; extern_lna_control = 12288U; } else if ((unsigned int )adj_loopback_gain > 57U) { adj_loopback_gain = (unsigned int )adj_loopback_gain + 65478U; extern_lna_control = 8192U; } else if ((unsigned int )adj_loopback_gain > 45U) { adj_loopback_gain = (unsigned int )adj_loopback_gain + 65490U; extern_lna_control = 4096U; } else { adj_loopback_gain = (unsigned int )adj_loopback_gain + 65520U; extern_lna_control = 0U; } loop = 0U; goto ldv_51149; ldv_51148: tmp = (unsigned int )adj_loopback_gain + (unsigned int )((u16 )loop) * 65530U; if ((unsigned int )tmp <= 5U) { goto ldv_51147; } else { } loop = (u8 )((int )loop + 1); ldv_51149: ; if ((unsigned int )loop <= 15U) { goto ldv_51148; } else { } ldv_51147: loop_or = (u16 )((int )((short )((int )loop << 8)) | (int )((short )extern_lna_control)); if ((unsigned int )phy->rev > 6U && ((int )((dev->dev)->bus)->sprom.boardflags_lo & 4096) != 0) { if ((unsigned int )extern_lna_control != 0U) { loop_or = (u16 )((unsigned int )loop_or | 32768U); } else { } { if ((int )lpd == 3) { goto case_3___1; } else { } if ((int )lpd == 1) { goto case_1___1; } else { } if ((int )lpd == 5) { goto case_5___1; } else { } if ((int )lpd == 4) { goto case_4___1; } else { } goto switch_default___1; case_3___1: /* CIL Label */ ; return (36754U); case_1___1: /* CIL Label */ ; return ((u16 )((unsigned int )loop_or | 32914U)); case_5___1: /* CIL Label */ ; return ((u16 )((unsigned int )loop_or | 8338U)); case_4___1: /* CIL Label */ ; return ((u16 )((unsigned int )loop_or | 8339U)); switch_default___1: /* CIL Label */ { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/radio.c"), "i" (1477), "i" (12UL)); __builtin_unreachable(); } switch_break___1: /* CIL Label */ ; } } else { { if ((int )lpd == 3) { goto case_3___2; } else { } if ((int )lpd == 1) { goto case_1___2; } else { } if ((int )lpd == 5) { goto case_5___2; } else { } if ((int )lpd == 4) { goto case_4___2; } else { } goto switch_default___2; case_3___2: /* CIL Label */ ; return (3986U); case_1___2: /* CIL Label */ ; case_5___2: /* CIL Label */ ; return ((u16 )((unsigned int )loop_or | 146U)); case_4___2: /* CIL Label */ ; return ((u16 )((unsigned int )loop_or | 147U)); switch_default___2: /* CIL Label */ { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/radio.c"), "i" (1489), "i" (12UL)); __builtin_unreachable(); } switch_break___2: /* CIL Label */ ; } } } return (0U); } } u16 b43legacy_radio_init2050(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u16 backup[21U] ; unsigned int tmp ; u16 ret ; u16 i ; u16 j ; u32 tmp1 ; u32 tmp2 ; u16 tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; u16 tmp___3 ; u16 tmp___4 ; u16 tmp___5 ; u16 tmp___6 ; u16 tmp___7 ; u16 tmp___8 ; u16 tmp___9 ; u16 tmp___10 ; u16 tmp___11 ; u16 tmp___12 ; u16 tmp___13 ; u16 tmp___14 ; u16 tmp___15 ; u16 tmp___16 ; u16 tmp___17 ; u16 tmp___18 ; u16 tmp___19 ; u16 tmp___20 ; u16 tmp___21 ; u16 tmp___22 ; u16 tmp___23 ; u16 tmp___24 ; { phy = & dev->phy; backup[0] = 0U; tmp = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 21U) { goto while_break; } else { } backup[tmp] = (unsigned short)0; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } { tmp1 = 0U; tmp2 = 0U; backup[0] = b43legacy_radio_read16(dev, 67); backup[14] = b43legacy_radio_read16(dev, 81); backup[15] = b43legacy_radio_read16(dev, 82); backup[1] = b43legacy_phy_read(dev, 21); backup[16] = b43legacy_phy_read(dev, 90); backup[17] = b43legacy_phy_read(dev, 89); backup[18] = b43legacy_phy_read(dev, 88); } if ((unsigned int )phy->type == 1U) { { backup[2] = b43legacy_phy_read(dev, 48); backup[3] = b43legacy_read16(dev, 1004); b43legacy_phy_write(dev, 48, 255); b43legacy_write16(dev, 1004, 16191); } } else if ((int )phy->gmode) { { backup[4] = b43legacy_phy_read(dev, 2065); backup[5] = b43legacy_phy_read(dev, 2066); backup[6] = b43legacy_phy_read(dev, 2068); backup[7] = b43legacy_phy_read(dev, 2069); backup[8] = b43legacy_phy_read(dev, 1065); backup[9] = b43legacy_phy_read(dev, 2050); tmp___0 = b43legacy_phy_read(dev, 2068); b43legacy_phy_write(dev, 2068, (int )((unsigned int )tmp___0 | 3U)); tmp___1 = b43legacy_phy_read(dev, 2069); b43legacy_phy_write(dev, 2069, (int )tmp___1 & 65532); tmp___2 = b43legacy_phy_read(dev, 1065); b43legacy_phy_write(dev, 1065, (int )tmp___2 & 32767); tmp___3 = b43legacy_phy_read(dev, 2050); b43legacy_phy_write(dev, 2050, (int )tmp___3 & 65532); } if ((unsigned int )phy->rev > 1U) { { backup[19] = b43legacy_phy_read(dev, 2063); backup[20] = b43legacy_phy_read(dev, 2064); } if ((unsigned int )phy->rev > 2U) { { b43legacy_phy_write(dev, 2063, 49184); } } else { { b43legacy_phy_write(dev, 2063, 32800); } } { b43legacy_phy_write(dev, 2064, 0); } } else { } { tmp___4 = b43legacy_get_812_value(dev, 3); b43legacy_phy_write(dev, 2066, (int )tmp___4); } if ((unsigned int )phy->rev <= 6U || ((int )((dev->dev)->bus)->sprom.boardflags_lo & 4096) == 0) { { b43legacy_phy_write(dev, 2065, 435); } } else { { b43legacy_phy_write(dev, 2065, 2483); } } } else { } { tmp___5 = b43legacy_read16(dev, 994); b43legacy_write16(dev, 994, (int )((unsigned int )tmp___5 | 32768U)); backup[10] = b43legacy_phy_read(dev, 53); tmp___6 = b43legacy_phy_read(dev, 53); b43legacy_phy_write(dev, 53, (int )tmp___6 & 65407); backup[11] = b43legacy_read16(dev, 998); backup[12] = b43legacy_read16(dev, 1012); } if ((unsigned int )phy->analog == 0U) { { b43legacy_write16(dev, 998, 290); } } else { if ((unsigned int )phy->analog > 1U) { { tmp___7 = b43legacy_phy_read(dev, 3); b43legacy_phy_write(dev, 3, (int )((unsigned int )tmp___7 | 64U)); } } else { } { tmp___8 = b43legacy_read16(dev, 1012); b43legacy_write16(dev, 1012, (int )((unsigned int )tmp___8 | 8192U)); } } { ret = b43legacy_radio_calibrationvalue(dev); } if ((unsigned int )phy->type == 1U) { { b43legacy_radio_write16(dev, 120, 38); } } else { } if ((int )phy->gmode) { { tmp___9 = b43legacy_get_812_value(dev, 3); b43legacy_phy_write(dev, 2066, (int )tmp___9); } } else { } { b43legacy_phy_write(dev, 21, 49071); b43legacy_phy_write(dev, 43, 5123); } if ((int )phy->gmode) { { tmp___10 = b43legacy_get_812_value(dev, 1); b43legacy_phy_write(dev, 2066, (int )tmp___10); } } else { } { b43legacy_phy_write(dev, 21, 49056); tmp___11 = b43legacy_radio_read16(dev, 81); b43legacy_radio_write16(dev, 81, (int )((unsigned int )tmp___11 | 4U)); } if ((unsigned int )phy->radio_rev == 8U) { { b43legacy_radio_write16(dev, 67, 31); } } else { { b43legacy_radio_write16(dev, 82, 0); tmp___12 = b43legacy_radio_read16(dev, 67); b43legacy_radio_write16(dev, 67, (int )((u16 )(((int )((short )tmp___12) & -16) | 9))); } } { b43legacy_phy_write(dev, 88, 0); i = 0U; } goto ldv_51171; ldv_51170: { b43legacy_phy_write(dev, 90, 1152); b43legacy_phy_write(dev, 89, 51216); b43legacy_phy_write(dev, 88, 13); } if ((int )phy->gmode) { { tmp___13 = b43legacy_get_812_value(dev, 5); b43legacy_phy_write(dev, 2066, (int )tmp___13); } } else { } { b43legacy_phy_write(dev, 21, 44976); __const_udelay(42950UL); } if ((int )phy->gmode) { { tmp___14 = b43legacy_get_812_value(dev, 5); b43legacy_phy_write(dev, 2066, (int )tmp___14); } } else { } { b43legacy_phy_write(dev, 21, 61360); __const_udelay(42950UL); } if ((int )phy->gmode) { { tmp___15 = b43legacy_get_812_value(dev, 4); b43legacy_phy_write(dev, 2066, (int )tmp___15); } } else { } { b43legacy_phy_write(dev, 21, 65520); __const_udelay(85900UL); tmp___16 = b43legacy_phy_read(dev, 45); tmp1 = tmp1 + (u32 )tmp___16; b43legacy_phy_write(dev, 88, 0); } if ((int )phy->gmode) { { tmp___17 = b43legacy_get_812_value(dev, 5); b43legacy_phy_write(dev, 2066, (int )tmp___17); } } else { } { b43legacy_phy_write(dev, 21, 44976); i = (u16 )((int )i + 1); } ldv_51171: ; if ((unsigned int )i <= 15U) { goto ldv_51170; } else { } { tmp1 = tmp1 + 1U; tmp1 = tmp1 >> 9; __const_udelay(42950UL); b43legacy_phy_write(dev, 88, 0); i = 0U; } goto ldv_51178; ldv_51177: { tmp___18 = flip_4bit((int )i); b43legacy_radio_write16(dev, 120, (int )((u16 )((int )((short )((int )tmp___18 << 1)) | 32))); backup[13] = b43legacy_radio_read16(dev, 120); __const_udelay(42950UL); j = 0U; } goto ldv_51174; ldv_51173: { b43legacy_phy_write(dev, 90, 3456); b43legacy_phy_write(dev, 89, 51216); b43legacy_phy_write(dev, 88, 13); } if ((int )phy->gmode) { { tmp___19 = b43legacy_get_812_value(dev, 5); b43legacy_phy_write(dev, 2066, (int )tmp___19); } } else { } { b43legacy_phy_write(dev, 21, 44976); __const_udelay(42950UL); } if ((int )phy->gmode) { { tmp___20 = b43legacy_get_812_value(dev, 5); b43legacy_phy_write(dev, 2066, (int )tmp___20); } } else { } { b43legacy_phy_write(dev, 21, 61360); __const_udelay(42950UL); } if ((int )phy->gmode) { { tmp___21 = b43legacy_get_812_value(dev, 4); b43legacy_phy_write(dev, 2066, (int )tmp___21); } } else { } { b43legacy_phy_write(dev, 21, 65520); __const_udelay(42950UL); tmp___22 = b43legacy_phy_read(dev, 45); tmp2 = tmp2 + (u32 )tmp___22; b43legacy_phy_write(dev, 88, 0); } if ((int )phy->gmode) { { tmp___23 = b43legacy_get_812_value(dev, 5); b43legacy_phy_write(dev, 2066, (int )tmp___23); } } else { } { b43legacy_phy_write(dev, 21, 44976); j = (u16 )((int )j + 1); } ldv_51174: ; if ((unsigned int )j <= 15U) { goto ldv_51173; } else { } tmp2 = tmp2 + 1U; tmp2 = tmp2 >> 8; if (tmp1 < tmp2) { goto ldv_51176; } else { } i = (u16 )((int )i + 1); ldv_51178: ; if ((unsigned int )i <= 15U) { goto ldv_51177; } else { } ldv_51176: { b43legacy_phy_write(dev, 21, (int )backup[1]); b43legacy_radio_write16(dev, 81, (int )backup[14]); b43legacy_radio_write16(dev, 82, (int )backup[15]); b43legacy_radio_write16(dev, 67, (int )backup[0]); b43legacy_phy_write(dev, 90, (int )backup[16]); b43legacy_phy_write(dev, 89, (int )backup[17]); b43legacy_phy_write(dev, 88, (int )backup[18]); b43legacy_write16(dev, 998, (int )backup[11]); } if ((unsigned int )phy->analog != 0U) { { b43legacy_write16(dev, 1012, (int )backup[12]); } } else { } { b43legacy_phy_write(dev, 53, (int )backup[10]); b43legacy_radio_selectchannel(dev, (int )phy->channel, 1); } if ((unsigned int )phy->type == 1U) { { b43legacy_phy_write(dev, 48, (int )backup[2]); b43legacy_write16(dev, 1004, (int )backup[3]); } } else if ((int )phy->gmode) { { tmp___24 = b43legacy_read16(dev, 994); b43legacy_write16(dev, 994, (int )tmp___24 & 32767); b43legacy_phy_write(dev, 2065, (int )backup[4]); b43legacy_phy_write(dev, 2066, (int )backup[5]); b43legacy_phy_write(dev, 2068, (int )backup[6]); b43legacy_phy_write(dev, 2069, (int )backup[7]); b43legacy_phy_write(dev, 1065, (int )backup[8]); b43legacy_phy_write(dev, 2050, (int )backup[9]); } if ((unsigned int )phy->rev > 1U) { { b43legacy_phy_write(dev, 2063, (int )backup[19]); b43legacy_phy_write(dev, 2064, (int )backup[20]); } } else { } } else { } if ((unsigned int )i > 14U) { ret = backup[13]; } else { } return (ret); } } void b43legacy_radio_set_tx_iq(struct b43legacy_wldev *dev ) { u8 data_high[5U] ; u8 data_low[5U] ; u16 tmp ; u16 tmp___0 ; int i ; int j ; { { data_high[0] = 0U; data_high[1] = 64U; data_high[2] = 128U; data_high[3] = 144U; data_high[4] = 208U; data_low[0] = 0U; data_low[1] = 1U; data_low[2] = 5U; data_low[3] = 6U; data_low[4] = 10U; tmp___0 = b43legacy_radio_read16(dev, 30); tmp = tmp___0; i = 0; } goto ldv_51195; ldv_51194: j = 0; goto ldv_51192; ldv_51191: ; if ((int )tmp == (int )((unsigned short )((int )data_high[i] | (int )data_low[j]))) { { b43legacy_phy_write(dev, 105, (int )((u16 )((int )((short )((i - j) << 8)) | 192))); } return; } else { } j = j + 1; ldv_51192: ; if (j <= 4) { goto ldv_51191; } else { } i = i + 1; ldv_51195: ; if (i <= 4) { goto ldv_51194; } else { } return; } } int b43legacy_radio_selectchannel(struct b43legacy_wldev *dev , u8 channel , int synthetic_pu_workaround ) { struct b43legacy_phy *phy ; int __ret_warn_on ; long tmp ; u16 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u16 tmp___3 ; u16 tmp___4 ; { phy = & dev->phy; if ((unsigned int )channel == 255U) { { if ((int )phy->type == 1) { goto case_1; } else { } if ((int )phy->type == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ channel = 6U; goto ldv_51205; switch_default: /* CIL Label */ { __ret_warn_on = 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/radio.c", 1778); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } switch_break: /* CIL Label */ ; } ldv_51205: ; } else { } if (synthetic_pu_workaround != 0) { { b43legacy_synth_pu_workaround(dev, (int )channel); } } else { } { tmp___0 = channel2freq_bg((int )channel); b43legacy_write16(dev, 1008, (int )tmp___0); } if ((unsigned int )channel == 14U) { if ((unsigned int )((dev->dev)->bus)->sprom.country_code == 5U) { { tmp___1 = b43legacy_shm_read32(dev, 1, 94); b43legacy_shm_write32(dev, 1, 94, tmp___1 & 4294967167U); } } else { { tmp___2 = b43legacy_shm_read32(dev, 1, 94); b43legacy_shm_write32(dev, 1, 94, tmp___2 | 128U); } } { tmp___3 = b43legacy_read16(dev, 1012); b43legacy_write16(dev, 1012, (int )((unsigned int )tmp___3 | 2048U)); } } else { { tmp___4 = b43legacy_read16(dev, 1012); b43legacy_write16(dev, 1012, (int )tmp___4 & 63423); } } { phy->channel = channel; msleep(8U); } return (0); } } void b43legacy_radio_set_txantenna(struct b43legacy_wldev *dev , u32 val ) { u16 tmp ; u16 tmp___0 ; u16 tmp___1 ; u16 tmp___2 ; { { val = val << 8; tmp___0 = b43legacy_shm_read16(dev, 1, 34); tmp = (unsigned int )tmp___0 & 64767U; b43legacy_shm_write16(dev, 1, 34, (int )tmp | (int )((u16 )val)); tmp___1 = b43legacy_shm_read16(dev, 1, 936); tmp = (unsigned int )tmp___1 & 64767U; b43legacy_shm_write16(dev, 1, 936, (int )tmp | (int )((u16 )val)); tmp___2 = b43legacy_shm_read16(dev, 1, 84); tmp = (unsigned int )tmp___2 & 64767U; b43legacy_shm_write16(dev, 1, 84, (int )tmp | (int )((u16 )val)); } return; } } static u16 b43legacy_get_txgain_base_band(u16 txpower ) { u16 ret ; int __ret_warn_on ; long tmp ; { { __ret_warn_on = (unsigned int )txpower > 63U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/radio.c", 1838); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if ((unsigned int )txpower > 53U) { ret = 2U; } else if ((unsigned int )txpower > 48U) { ret = 4U; } else if ((unsigned int )txpower > 43U) { ret = 5U; } else { ret = 6U; } return (ret); } } static u16 b43legacy_get_txgain_freq_power_amp(u16 txpower ) { u16 ret ; int __ret_warn_on ; long tmp ; { { __ret_warn_on = (unsigned int )txpower > 63U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/radio.c", 1857); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if ((unsigned int )txpower > 31U) { ret = 0U; } else if ((unsigned int )txpower > 24U) { ret = 1U; } else if ((unsigned int )txpower > 19U) { ret = 2U; } else if ((unsigned int )txpower > 11U) { ret = 3U; } else { ret = 4U; } return (ret); } } static u16 b43legacy_get_txgain_dac(u16 txpower ) { u16 ret ; int __ret_warn_on ; long tmp ; { { __ret_warn_on = (unsigned int )txpower > 63U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/radio.c", 1878); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if ((unsigned int )txpower > 53U) { ret = (unsigned int )txpower + 65483U; } else if ((unsigned int )txpower > 48U) { ret = (unsigned int )txpower + 65494U; } else if ((unsigned int )txpower > 43U) { ret = (unsigned int )txpower + 65499U; } else if ((unsigned int )txpower > 31U) { ret = (unsigned int )txpower + 65504U; } else if ((unsigned int )txpower > 24U) { ret = (unsigned int )txpower + 65516U; } else if ((unsigned int )txpower > 19U) { ret = (unsigned int )txpower + 65523U; } else if ((unsigned int )txpower > 11U) { ret = (unsigned int )txpower + 65528U; } else { ret = txpower; } return (ret); } } void b43legacy_radio_set_txpower_a(struct b43legacy_wldev *dev , u16 txpower ) { struct b43legacy_phy *phy ; u16 pamp ; u16 base ; u16 dac ; u16 ilt ; u16 __val ; u16 __min ; u16 __max ; { { phy = & dev->phy; __val = txpower; __min = 0U; __max = 63U; __val = (u16 )((int )__min > (int )__val ? __min : __val); txpower = (u16 )((int )__max < (int )__val ? __max : __val); pamp = b43legacy_get_txgain_freq_power_amp((int )txpower); pamp = (int )pamp << 5U; pamp = (unsigned int )pamp & 224U; b43legacy_phy_write(dev, 25, (int )pamp); base = b43legacy_get_txgain_base_band((int )txpower); base = (unsigned int )base & 15U; b43legacy_phy_write(dev, 23, (int )((unsigned int )base | 32U)); ilt = b43legacy_ilt_read(dev, 12289); ilt = (unsigned int )ilt & 7U; dac = b43legacy_get_txgain_dac((int )txpower); dac = (int )dac << 3U; dac = (u16 )((int )dac | (int )ilt); b43legacy_ilt_write(dev, 12289, (int )dac); phy->__annonCompField87.txpwr_offset = txpower; } return; } } void b43legacy_radio_set_txpower_bg(struct b43legacy_wldev *dev , u16 baseband_attenuation , u16 radio_attenuation , u16 txpower ) { struct b43legacy_phy *phy ; int __ret_warn_on ; long tmp ; int __ret_warn_on___0 ; long tmp___0 ; int __ret_warn_on___1 ; long tmp___1 ; int __ret_warn_on___2 ; long tmp___2 ; u16 tmp___3 ; { phy = & dev->phy; if ((unsigned int )baseband_attenuation == 65535U) { baseband_attenuation = phy->__annonCompField86.bbatt; } else { } if ((unsigned int )radio_attenuation == 65535U) { radio_attenuation = phy->__annonCompField86.rfatt; } else { } if ((unsigned int )txpower == 65535U) { txpower = phy->__annonCompField86.txctl1; } else { } { phy->__annonCompField86.bbatt = baseband_attenuation; phy->__annonCompField86.rfatt = radio_attenuation; phy->__annonCompField86.txctl1 = txpower; __ret_warn_on = (unsigned int )baseband_attenuation > 11U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/radio.c", 1950); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if ((unsigned int )phy->radio_rev <= 5U) { { __ret_warn_on___0 = (unsigned int )radio_attenuation > 9U; tmp___0 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/radio.c", 1952); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } } else { { __ret_warn_on___1 = (unsigned int )radio_attenuation > 31U; tmp___1 = ldv__builtin_expect(__ret_warn_on___1 != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/radio.c", 1954); } } else { } { ldv__builtin_expect(__ret_warn_on___1 != 0, 0L); } } { __ret_warn_on___2 = (unsigned int )txpower > 7U; tmp___2 = ldv__builtin_expect(__ret_warn_on___2 != 0, 0L); } if (tmp___2 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/radio.c", 1955); } } else { } { ldv__builtin_expect(__ret_warn_on___2 != 0, 0L); b43legacy_phy_set_baseband_attenuation(dev, (int )baseband_attenuation); b43legacy_radio_write16(dev, 67, (int )radio_attenuation); b43legacy_shm_write16(dev, 1, 100, (int )radio_attenuation); } if ((unsigned int )phy->radio_ver == 8272U) { { tmp___3 = b43legacy_radio_read16(dev, 82); b43legacy_radio_write16(dev, 82, (int )((u16 )(((int )((short )tmp___3) & -113) | ((int )((short )((int )txpower << 4)) & 112)))); } } else { } if ((unsigned int )phy->type == 2U) { { b43legacy_phy_lo_adjust(dev, 0); } } else { } return; } } u16 b43legacy_default_baseband_attenuation(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; { phy = & dev->phy; if ((unsigned int )phy->radio_ver == 8272U && (unsigned int )phy->radio_rev <= 5U) { return (0U); } else { } return (2U); } } u16 b43legacy_default_radio_attenuation(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; u16 att ; bool tmp ; bool tmp___0 ; bool tmp___1 ; bool tmp___2 ; bool tmp___3 ; bool tmp___4 ; { phy = & dev->phy; att = 65535U; { if ((int )phy->radio_ver == 8275) { goto case_8275; } else { } if ((int )phy->radio_ver == 8272) { goto case_8272; } else { } goto switch_break; case_8275: /* CIL Label */ ; { if ((int )phy->radio_rev == 1) { goto case_1; } else { } goto switch_break___0; case_1: /* CIL Label */ att = 6U; goto ldv_51271; switch_break___0: /* CIL Label */ ; } ldv_51271: ; goto ldv_51272; case_8272: /* CIL Label */ ; { if ((int )phy->radio_rev == 0) { goto case_0; } else { } if ((int )phy->radio_rev == 1) { goto case_1___0; } else { } if ((int )phy->radio_rev == 2) { goto case_2; } else { } if ((int )phy->radio_rev == 3) { goto case_3; } else { } if ((int )phy->radio_rev == 4) { goto case_4; } else { } if ((int )phy->radio_rev == 5) { goto case_5; } else { } if ((int )phy->radio_rev == 6) { goto case_6; } else { } if ((int )phy->radio_rev == 7) { goto case_7; } else { } if ((int )phy->radio_rev == 8) { goto case_8; } else { } if ((int )phy->radio_rev == 9) { goto case_9; } else { } goto switch_default; case_0: /* CIL Label */ att = 5U; goto ldv_51275; case_1___0: /* CIL Label */ ; if ((unsigned int )phy->type == 2U) { { tmp___0 = is_bcm_board_vendor(dev); } if (((int )tmp___0 && (unsigned int )((dev->dev)->bus)->boardinfo.type == 1057U) && (unsigned int )((dev->dev)->bus)->sprom.board_rev > 29U) { att = 3U; } else { { tmp = is_bcm_board_vendor(dev); } if ((int )tmp && (unsigned int )((dev->dev)->bus)->boardinfo.type == 1046U) { att = 3U; } else { att = 1U; } } } else { { tmp___1 = is_bcm_board_vendor(dev); } if (((int )tmp___1 && (unsigned int )((dev->dev)->bus)->boardinfo.type == 1057U) && (unsigned int )((dev->dev)->bus)->sprom.board_rev > 29U) { att = 7U; } else { att = 6U; } } goto ldv_51275; case_2: /* CIL Label */ ; if ((unsigned int )phy->type == 2U) { { tmp___3 = is_bcm_board_vendor(dev); } if (((int )tmp___3 && (unsigned int )((dev->dev)->bus)->boardinfo.type == 1057U) && (unsigned int )((dev->dev)->bus)->sprom.board_rev > 29U) { att = 3U; } else { { tmp___2 = is_bcm_board_vendor(dev); } if ((int )tmp___2 && (unsigned int )((dev->dev)->bus)->boardinfo.type == 1046U) { att = 5U; } else if ((unsigned int )((dev->dev)->bus)->chip_id == 17184U) { att = 4U; } else { att = 3U; } } } else { att = 6U; } goto ldv_51275; case_3: /* CIL Label */ att = 5U; goto ldv_51275; case_4: /* CIL Label */ ; case_5: /* CIL Label */ att = 1U; goto ldv_51275; case_6: /* CIL Label */ ; case_7: /* CIL Label */ att = 5U; goto ldv_51275; case_8: /* CIL Label */ att = 26U; goto ldv_51275; case_9: /* CIL Label */ ; switch_default: /* CIL Label */ att = 5U; switch_break___1: /* CIL Label */ ; } ldv_51275: ; switch_break: /* CIL Label */ ; } ldv_51272: { tmp___4 = is_bcm_board_vendor(dev); } if ((int )tmp___4 && (unsigned int )((dev->dev)->bus)->boardinfo.type == 1057U) { if ((unsigned int )((dev->dev)->bus)->sprom.board_rev <= 66U) { att = 2U; } else if ((unsigned int )((dev->dev)->bus)->sprom.board_rev <= 80U) { att = 3U; } else { } } else { } if ((unsigned int )att == 65535U) { att = 5U; } else { } return (att); } } u16 b43legacy_default_txctl1(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; { phy = & dev->phy; if ((unsigned int )phy->radio_ver != 8272U) { return (0U); } else { } if ((unsigned int )phy->radio_rev == 1U) { return (3U); } else { } if ((unsigned int )phy->radio_rev <= 5U) { return (2U); } else { } if ((unsigned int )phy->radio_rev == 8U) { return (1U); } else { } return (0U); } } void b43legacy_radio_turn_on(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; int err ; u8 channel ; int tmp ; int __ret_warn_on ; long tmp___0 ; { { phy = & dev->phy; __might_sleep("drivers/net/wireless/b43legacy/radio.c", 2087, 0); } if ((int )phy->radio_on) { return; } else { } { if ((int )phy->type == 1) { goto case_1; } else { } if ((int )phy->type == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ { b43legacy_phy_write(dev, 21, 32768); b43legacy_phy_write(dev, 21, 52224); b43legacy_phy_write(dev, 21, (int )phy->gmode ? 192 : 0); } if ((int )phy->radio_off_context.valid) { { b43legacy_phy_write(dev, 2065, (int )phy->radio_off_context.rfover); b43legacy_phy_write(dev, 2066, (int )phy->radio_off_context.rfoverval); phy->radio_off_context.valid = 0; } } else { } { channel = phy->channel; err = b43legacy_radio_selectchannel(dev, 6, 1); tmp = b43legacy_radio_selectchannel(dev, (int )channel, 0); err = err | tmp; __ret_warn_on = err != 0; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/radio.c", 2111); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } goto ldv_51300; switch_default: /* CIL Label */ { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/radio.c"), "i" (2114), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_51300: phy->radio_on = 1; return; } } void b43legacy_radio_turn_off(struct b43legacy_wldev *dev , bool force ) { struct b43legacy_phy *phy ; u16 rfover ; u16 rfoverval ; { phy = & dev->phy; if (! phy->radio_on && ! force) { return; } else { } if ((unsigned int )phy->type == 2U && (unsigned int )(dev->dev)->id.revision > 4U) { { rfover = b43legacy_phy_read(dev, 2065); rfoverval = b43legacy_phy_read(dev, 2066); } if (! force) { phy->radio_off_context.rfover = rfover; phy->radio_off_context.rfoverval = rfoverval; phy->radio_off_context.valid = 1; } else { } { b43legacy_phy_write(dev, 2065, (int )((unsigned int )rfover | 140U)); b43legacy_phy_write(dev, 2066, (int )rfoverval & 65395); } } else { { b43legacy_phy_write(dev, 21, 43520); } } { phy->radio_on = 0; b43legacydbg(dev->wl, "Radio initialized\n"); } return; } } void b43legacy_radio_clear_tssi(struct b43legacy_wldev *dev ) { struct b43legacy_phy *phy ; { phy = & dev->phy; { if ((int )phy->type == 1) { goto case_1; } else { } if ((int )phy->type == 2) { goto case_2; } else { } goto switch_break; case_1: /* CIL Label */ ; case_2: /* CIL Label */ { b43legacy_shm_write16(dev, 1, 88, 32639); b43legacy_shm_write16(dev, 1, 90, 32639); b43legacy_shm_write16(dev, 1, 112, 32639); b43legacy_shm_write16(dev, 1, 114, 32639); } goto ldv_51315; switch_break: /* CIL Label */ ; } ldv_51315: ; return; } } extern long simple_strtol(char const * , char ** , unsigned int ) ; extern int memcmp(void const * , void const * , size_t ) ; static void ldv___ldv_spin_lock_62(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_64___0(spinlock_t *ldv_func_arg1 ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; extern bool capable(int ) ; extern int device_create_file(struct device * , struct device_attribute const * ) ; extern void device_remove_file(struct device * , struct device_attribute const * ) ; int b43legacy_sysfs_register(struct b43legacy_wldev *wldev ) ; void b43legacy_sysfs_unregister(struct b43legacy_wldev *wldev ) ; __inline static struct ssb_device *dev_to_ssb_dev(struct device *dev ) { struct __ssb_dev_wrapper *wrap ; struct device const *__mptr ; { __mptr = (struct device const *)dev; wrap = (struct __ssb_dev_wrapper *)__mptr; return (wrap->sdev); } } __inline static struct b43legacy_wldev *dev_to_b43legacy_wldev(struct device *dev ) { struct ssb_device *ssb_dev ; struct ssb_device *tmp ; void *tmp___0 ; { { tmp = dev_to_ssb_dev(dev); ssb_dev = tmp; tmp___0 = ssb_get_drvdata(ssb_dev); } return ((struct b43legacy_wldev *)tmp___0); } } static int get_integer(char const *buf , size_t count ) { char tmp[11U] ; unsigned int tmp___0 ; int ret ; size_t _min1 ; unsigned long _min2 ; long tmp___1 ; { tmp[0] = 0; tmp___0 = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp___0 >= 11U) { goto while_break; } else { } tmp[tmp___0] = (char)0; tmp___0 = tmp___0 + 1U; } while_break: /* CIL Label */ ; } ret = -22; if (count == 0UL) { goto out; } else { } { _min1 = count; _min2 = 10UL; count = _min1 < _min2 ? _min1 : _min2; memcpy((void *)(& tmp), (void const *)buf, count); tmp___1 = simple_strtol((char const *)(& tmp), (char **)0, 10U); ret = (int )tmp___1; } out: ; return (ret); } } static int get_boolean(char const *buf , size_t count ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { if (count != 0UL) { if ((int )((signed char )*buf) == 49) { return (1); } else { } if ((int )((signed char )*buf) == 48) { return (0); } else { } if (count > 3UL) { { tmp = memcmp((void const *)buf, (void const *)"true", 4UL); } if (tmp == 0) { return (1); } else { } } else { } if (count > 4UL) { { tmp___0 = memcmp((void const *)buf, (void const *)"false", 5UL); } if (tmp___0 == 0) { return (0); } else { } } else { } if (count > 2UL) { { tmp___1 = memcmp((void const *)buf, (void const *)"yes", 3UL); } if (tmp___1 == 0) { return (1); } else { } } else { } if (count > 1UL) { { tmp___2 = memcmp((void const *)buf, (void const *)"no", 2UL); } if (tmp___2 == 0) { return (0); } else { } } else { } if (count > 1UL) { { tmp___3 = memcmp((void const *)buf, (void const *)"on", 2UL); } if (tmp___3 == 0) { return (1); } else { } } else { } if (count > 2UL) { { tmp___4 = memcmp((void const *)buf, (void const *)"off", 3UL); } if (tmp___4 == 0) { return (0); } else { } } else { } } else { } return (-22); } } static ssize_t b43legacy_attr_interfmode_show(struct device *dev , struct device_attribute *attr , char *buf ) { struct b43legacy_wldev *wldev ; struct b43legacy_wldev *tmp ; ssize_t count ; bool tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int __ret_warn_on ; long tmp___5 ; { { tmp = dev_to_b43legacy_wldev(dev); wldev = tmp; count = 0L; tmp___0 = capable(12); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-1L); } else { } { mutex_lock_nested(& (wldev->wl)->mutex, 0U); } { if (wldev->phy.interfmode == 0) { goto case_0; } else { } if (wldev->phy.interfmode == 1) { goto case_1; } else { } if (wldev->phy.interfmode == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ { tmp___2 = snprintf(buf, 4096UL, "0 (No Interference Mitigation)\n"); count = (ssize_t )tmp___2; } goto ldv_50875; case_1: /* CIL Label */ { tmp___3 = snprintf(buf, 4096UL, "1 (Non-WLAN Interference Mitigation)\n"); count = (ssize_t )tmp___3; } goto ldv_50875; case_2: /* CIL Label */ { tmp___4 = snprintf(buf, 4096UL, "2 (WLAN Interference Mitigation)\n"); count = (ssize_t )tmp___4; } goto ldv_50875; switch_default: /* CIL Label */ { __ret_warn_on = 1; tmp___5 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___5 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/sysfs.c", 101); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } switch_break: /* CIL Label */ ; } ldv_50875: { mutex_unlock(& (wldev->wl)->mutex); } return (count); } } static ssize_t b43legacy_attr_interfmode_store(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct b43legacy_wldev *wldev ; struct b43legacy_wldev *tmp ; unsigned long flags ; int err ; int mode ; bool tmp___0 ; int tmp___1 ; { { tmp = dev_to_b43legacy_wldev(dev); wldev = tmp; tmp___0 = capable(12); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-1L); } else { } { mode = get_integer(buf, count); } { if (mode == 0) { goto case_0; } else { } if (mode == 1) { goto case_1; } else { } if (mode == 2) { goto case_2; } else { } if (mode == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ mode = 0; goto ldv_50892; case_1: /* CIL Label */ mode = 1; goto ldv_50892; case_2: /* CIL Label */ mode = 2; goto ldv_50892; case_3: /* CIL Label */ mode = 3; goto ldv_50892; switch_default: /* CIL Label */ ; return (-22L); switch_break: /* CIL Label */ ; } ldv_50892: { mutex_lock_nested(& (wldev->wl)->mutex, 0U); ldv___ldv_spin_lock_62(& (wldev->wl)->irq_lock); err = b43legacy_radio_set_interference_mitigation(wldev, mode); } if (err != 0) { { b43legacyerr(wldev->wl, "Interference Mitigation not supported by device\n"); } } else { } { __asm__ volatile ("": : : "memory"); ldv_spin_unlock_irqrestore_65(& (wldev->wl)->irq_lock, flags); mutex_unlock(& (wldev->wl)->mutex); } return ((ssize_t )(err != 0 ? (size_t )err : count)); } } static struct device_attribute dev_attr_interference = {{"interference", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & b43legacy_attr_interfmode_show, & b43legacy_attr_interfmode_store}; static ssize_t b43legacy_attr_preamble_show(struct device *dev , struct device_attribute *attr , char *buf ) { struct b43legacy_wldev *wldev ; struct b43legacy_wldev *tmp ; ssize_t count ; bool tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = dev_to_b43legacy_wldev(dev); wldev = tmp; tmp___0 = capable(12); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-1L); } else { } { mutex_lock_nested(& (wldev->wl)->mutex, 0U); } if ((int )wldev->short_preamble) { { tmp___2 = snprintf(buf, 4096UL, "1 (Short Preamble enabled)\n"); count = (ssize_t )tmp___2; } } else { { tmp___3 = snprintf(buf, 4096UL, "0 (Short Preamble disabled)\n"); count = (ssize_t )tmp___3; } } { mutex_unlock(& (wldev->wl)->mutex); } return (count); } } static ssize_t b43legacy_attr_preamble_store(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct b43legacy_wldev *wldev ; struct b43legacy_wldev *tmp ; unsigned long flags ; int value ; bool tmp___0 ; int tmp___1 ; { { tmp = dev_to_b43legacy_wldev(dev); wldev = tmp; tmp___0 = capable(12); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-1L); } else { } { value = get_boolean(buf, count); } if (value < 0) { return ((ssize_t )value); } else { } { mutex_lock_nested(& (wldev->wl)->mutex, 0U); ldv___ldv_spin_lock_64___0(& (wldev->wl)->irq_lock); wldev->short_preamble = value != 0; ldv_spin_unlock_irqrestore_65(& (wldev->wl)->irq_lock, flags); mutex_unlock(& (wldev->wl)->mutex); } return ((ssize_t )count); } } static struct device_attribute dev_attr_shortpreamble = {{"shortpreamble", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & b43legacy_attr_preamble_show, & b43legacy_attr_preamble_store}; int b43legacy_sysfs_register(struct b43legacy_wldev *wldev ) { struct device *dev ; int err ; int __ret_warn_on ; int tmp ; long tmp___0 ; { { dev = (wldev->dev)->dev; tmp = atomic_read((atomic_t const *)(& wldev->__init_status)); __ret_warn_on = tmp != 1; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/sysfs.c", 216); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); err = device_create_file(dev, (struct device_attribute const *)(& dev_attr_interference)); } if (err != 0) { goto out; } else { } { err = device_create_file(dev, (struct device_attribute const *)(& dev_attr_shortpreamble)); } if (err != 0) { goto err_remove_interfmode; } else { } out: ; return (err); err_remove_interfmode: { device_remove_file(dev, (struct device_attribute const *)(& dev_attr_interference)); } goto out; } } void b43legacy_sysfs_unregister(struct b43legacy_wldev *wldev ) { struct device *dev ; { { dev = (wldev->dev)->dev; device_remove_file(dev, (struct device_attribute const *)(& dev_attr_shortpreamble)); device_remove_file(dev, (struct device_attribute const *)(& dev_attr_interference)); } return; } } void ldv_dummy_resourceless_instance_callback_3_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_4_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; void ldv_dummy_resourceless_instance_callback_3_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { b43legacy_attr_interfmode_show(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { b43legacy_attr_interfmode_store(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_4_3(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { b43legacy_attr_preamble_show(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_9(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { b43legacy_attr_preamble_store(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_3(void *arg0 ) { long (*ldv_3_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_3_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_3_container_struct_device_attribute ; struct device *ldv_3_container_struct_device_ptr ; char *ldv_3_ldv_param_3_2_default ; char *ldv_3_ldv_param_9_2_default ; unsigned long ldv_3_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_3; return; ldv_call_3: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_3_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_3_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_3_9(ldv_3_callback_store, ldv_3_container_struct_device_ptr, ldv_3_container_struct_device_attribute, ldv_3_ldv_param_9_2_default, ldv_3_ldv_param_9_3_default); ldv_free((void *)ldv_3_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_3_3(ldv_3_callback_show, ldv_3_container_struct_device_ptr, ldv_3_container_struct_device_attribute, ldv_3_ldv_param_3_2_default); } } { ldv_free((void *)ldv_3_ldv_param_3_2_default); } goto ldv_call_3; } else { return; } return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_4(void *arg0 ) { long (*ldv_4_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_4_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; struct device_attribute *ldv_4_container_struct_device_attribute ; struct device *ldv_4_container_struct_device_ptr ; char *ldv_4_ldv_param_3_2_default ; char *ldv_4_ldv_param_9_2_default ; unsigned long ldv_4_ldv_param_9_3_default ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { goto ldv_call_4; return; ldv_call_4: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { tmp = ldv_xmalloc(1UL); ldv_4_ldv_param_3_2_default = (char *)tmp; tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp___0 = ldv_xmalloc(1UL); ldv_4_ldv_param_9_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_4_9(ldv_4_callback_store, ldv_4_container_struct_device_ptr, ldv_4_container_struct_device_attribute, ldv_4_ldv_param_9_2_default, ldv_4_ldv_param_9_3_default); ldv_free((void *)ldv_4_ldv_param_9_2_default); } } else { { ldv_dummy_resourceless_instance_callback_4_3(ldv_4_callback_show, ldv_4_container_struct_device_ptr, ldv_4_container_struct_device_attribute, ldv_4_ldv_param_3_2_default); } } { ldv_free((void *)ldv_4_ldv_param_3_2_default); } goto ldv_call_4; } else { return; } return; } } static void ldv___ldv_spin_lock_62(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_lock_of_b43legacy_wl(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_64___0(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_lock_of_b43legacy_wl(); __ldv_spin_lock(ldv_func_arg1); } return; } } extern void *memmove(void * , void const * , size_t ) ; extern unsigned char *skb_pull(struct sk_buff * , unsigned int ) ; extern void skb_trim(struct sk_buff * , unsigned int ) ; __inline static int ieee80211_has_protected(__le16 fc ) { { return (((int )fc & 16384) != 0); } } __inline static int ieee80211_is_beacon(__le16 fc ) { { return (((int )fc & 252) == 128); } } extern unsigned int ieee80211_hdrlen(__le16 ) ; __inline static struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb ) { { return ((struct ieee80211_rx_status *)(& skb->cb)); } } __inline static struct ieee80211_rate *ieee80211_get_rts_cts_rate(struct ieee80211_hw const *hw , struct ieee80211_tx_info const *c ) { { if ((int )((signed char )c->__annonCompField84.control.__annonCompField82.__annonCompField81.rts_cts_rate_idx) < 0) { return ((struct ieee80211_rate *)0); } else { } return (((hw->wiphy)->bands[(int )c->band])->bitrates + (unsigned long )c->__annonCompField84.control.__annonCompField82.__annonCompField81.rts_cts_rate_idx); } } __inline static struct ieee80211_rate *ieee80211_get_alt_retry_rate(struct ieee80211_hw const *hw , struct ieee80211_tx_info const *c , int idx ) { { if ((int )((signed char )c->__annonCompField84.control.__annonCompField82.__annonCompField81.rates[idx + 1].idx) < 0) { return ((struct ieee80211_rate *)0); } else { } return (((hw->wiphy)->bands[(int )c->band])->bitrates + (unsigned long )c->__annonCompField84.control.__annonCompField82.__annonCompField81.rates[idx + 1].idx); } } extern void ieee80211_rx_irqsafe(struct ieee80211_hw * , struct sk_buff * ) ; extern void ieee80211_rts_get(struct ieee80211_hw * , struct ieee80211_vif * , void const * , size_t , struct ieee80211_tx_info const * , struct ieee80211_rts * ) ; extern void ieee80211_ctstoself_get(struct ieee80211_hw * , struct ieee80211_vif * , void const * , size_t , struct ieee80211_tx_info const * , struct ieee80211_cts * ) ; void b43legacy_debugfs_log_txstat(struct b43legacy_wldev *dev , struct b43legacy_txstatus const *status ) ; __inline static int b43legacy_is_ofdm_rate(int rate ) { int tmp ; { { tmp = b43legacy_is_cck_rate(rate); } return (tmp == 0); } } int b43legacy_generate_txhdr(struct b43legacy_wldev *dev , u8 *txhdr , unsigned char const *fragment_data , unsigned int fragment_len , struct ieee80211_tx_info *info , u16 cookie ) ; void b43legacy_rx(struct b43legacy_wldev *dev , struct sk_buff *skb , void const *_rxhdr ) ; void b43legacy_handle_hwtxstatus(struct b43legacy_wldev *dev , struct b43legacy_hwtxstatus const *hw ) ; void b43legacy_tx_suspend(struct b43legacy_wldev *dev ) ; void b43legacy_tx_resume(struct b43legacy_wldev *dev ) ; __inline static int b43legacy_new_kidx_api(struct b43legacy_wldev *dev ) { { return ((unsigned int )dev->fw.rev > 350U); } } __inline static u8 b43legacy_kidx_to_fw(struct b43legacy_wldev *dev , u8 raw_kidx ) { u8 firmware_kidx ; int tmp ; { { tmp = b43legacy_new_kidx_api(dev); } if (tmp != 0) { firmware_kidx = raw_kidx; } else if ((unsigned int )raw_kidx > 3U) { firmware_kidx = (unsigned int )raw_kidx + 252U; } else { firmware_kidx = raw_kidx; } return (firmware_kidx); } } __inline static u8 b43legacy_kidx_to_raw(struct b43legacy_wldev *dev , u8 firmware_kidx ) { u8 raw_kidx ; int tmp ; { { tmp = b43legacy_new_kidx_api(dev); } if (tmp != 0) { raw_kidx = firmware_kidx; } else { raw_kidx = (unsigned int )firmware_kidx + 4U; } return (raw_kidx); } } void b43legacy_dma_tx_suspend(struct b43legacy_wldev *dev ) ; void b43legacy_dma_tx_resume(struct b43legacy_wldev *dev ) ; void b43legacy_dma_handle_txstatus(struct b43legacy_wldev *dev , struct b43legacy_txstatus const *status ) ; void b43legacy_pio_handle_txstatus(struct b43legacy_wldev *dev , struct b43legacy_txstatus const *status ) ; void b43legacy_pio_freeze_txqueues(struct b43legacy_wldev *dev ) ; void b43legacy_pio_thaw_txqueues(struct b43legacy_wldev *dev ) ; static u8 b43legacy_plcp_get_bitrate_idx_cck(struct b43legacy_plcp_hdr6 *plcp ) { { { if ((int )plcp->__annonCompField90.raw[0] == 10) { goto case_10; } else { } if ((int )plcp->__annonCompField90.raw[0] == 20) { goto case_20; } else { } if ((int )plcp->__annonCompField90.raw[0] == 55) { goto case_55; } else { } if ((int )plcp->__annonCompField90.raw[0] == 110) { goto case_110; } else { } goto switch_break; case_10: /* CIL Label */ ; return (0U); case_20: /* CIL Label */ ; return (1U); case_55: /* CIL Label */ ; return (2U); case_110: /* CIL Label */ ; return (3U); switch_break: /* CIL Label */ ; } { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/xmit.c"), "i" (52), "i" (12UL)); __builtin_unreachable(); } return (255U); } } static u8 b43legacy_plcp_get_bitrate_idx_ofdm(struct b43legacy_plcp_hdr6 *plcp , bool aphy ) { int base ; { base = (int )aphy ? 0 : 4; { if (((int )plcp->__annonCompField90.raw[0] & 15) == 11) { goto case_11; } else { } if (((int )plcp->__annonCompField90.raw[0] & 15) == 15) { goto case_15; } else { } if (((int )plcp->__annonCompField90.raw[0] & 15) == 10) { goto case_10; } else { } if (((int )plcp->__annonCompField90.raw[0] & 15) == 14) { goto case_14; } else { } if (((int )plcp->__annonCompField90.raw[0] & 15) == 9) { goto case_9; } else { } if (((int )plcp->__annonCompField90.raw[0] & 15) == 13) { goto case_13; } else { } if (((int )plcp->__annonCompField90.raw[0] & 15) == 8) { goto case_8; } else { } if (((int )plcp->__annonCompField90.raw[0] & 15) == 12) { goto case_12; } else { } goto switch_break; case_11: /* CIL Label */ ; return ((u8 )base); case_15: /* CIL Label */ ; return ((unsigned int )((u8 )base) + 1U); case_10: /* CIL Label */ ; return ((unsigned int )((u8 )base) + 2U); case_14: /* CIL Label */ ; return ((unsigned int )((u8 )base) + 3U); case_9: /* CIL Label */ ; return ((unsigned int )((u8 )base) + 4U); case_13: /* CIL Label */ ; return ((unsigned int )((u8 )base) + 5U); case_8: /* CIL Label */ ; return ((unsigned int )((u8 )base) + 6U); case_12: /* CIL Label */ ; return ((unsigned int )((u8 )base) + 7U); switch_break: /* CIL Label */ ; } { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/xmit.c"), "i" (80), "i" (12UL)); __builtin_unreachable(); } return (255U); } } u8 b43legacy_plcp_get_ratecode_cck(u8 const bitrate ) { { { if ((int )bitrate == 2) { goto case_2; } else { } if ((int )bitrate == 4) { goto case_4; } else { } if ((int )bitrate == 11) { goto case_11; } else { } if ((int )bitrate == 22) { goto case_22; } else { } goto switch_break; case_2: /* CIL Label */ ; return (10U); case_4: /* CIL Label */ ; return (20U); case_11: /* CIL Label */ ; return (55U); case_22: /* CIL Label */ ; return (110U); switch_break: /* CIL Label */ ; } { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/xmit.c"), "i" (96), "i" (12UL)); __builtin_unreachable(); } return (0U); } } u8 b43legacy_plcp_get_ratecode_ofdm(u8 const bitrate ) { { { if ((int )bitrate == 12) { goto case_12; } else { } if ((int )bitrate == 18) { goto case_18; } else { } if ((int )bitrate == 24) { goto case_24; } else { } if ((int )bitrate == 36) { goto case_36; } else { } if ((int )bitrate == 48) { goto case_48; } else { } if ((int )bitrate == 72) { goto case_72; } else { } if ((int )bitrate == 96) { goto case_96; } else { } if ((int )bitrate == 108) { goto case_108; } else { } goto switch_break; case_12: /* CIL Label */ ; return (11U); case_18: /* CIL Label */ ; return (15U); case_24: /* CIL Label */ ; return (10U); case_36: /* CIL Label */ ; return (14U); case_48: /* CIL Label */ ; return (9U); case_72: /* CIL Label */ ; return (13U); case_96: /* CIL Label */ ; return (8U); case_108: /* CIL Label */ ; return (12U); switch_break: /* CIL Label */ ; } { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/xmit.c"), "i" (120), "i" (12UL)); __builtin_unreachable(); } return (0U); } } void b43legacy_generate_plcp_hdr(struct b43legacy_plcp_hdr4 *plcp , u16 const octets , u8 const bitrate ) { __le32 *data ; __u8 *raw ; u16 d ; u8 tmp ; int __ret_warn_on ; long tmp___0 ; u32 plen ; int tmp___1 ; { { data = & plcp->__annonCompField89.data; raw = (__u8 *)(& plcp->__annonCompField89.raw); tmp___1 = b43legacy_is_ofdm_rate((int )bitrate); } if (tmp___1 != 0) { { tmp = b43legacy_plcp_get_ratecode_ofdm((int )bitrate); d = (u16 )tmp; __ret_warn_on = ((int )octets & 61440) != 0; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/xmit.c", 134); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); d = (u16 )((int )((short )d) | (int )((short )((int )octets << 5))); *data = (unsigned int )d; } } else { plen = (u32 )(((int )octets * 16) / (int )bitrate); if (((int )octets * 16) % (int )bitrate > 0) { plen = plen + 1U; if ((unsigned int )((unsigned char )bitrate) == 22U && ((int )octets * 8) % 11 <= 3) { *(raw + 1UL) = 132U; } else { *(raw + 1UL) = 4U; } } else { *(raw + 1UL) = 4U; } { *data = *data | (plen << 16); *raw = b43legacy_plcp_get_ratecode_cck((int )bitrate); } } return; } } static u8 b43legacy_calc_fallback_rate(u8 bitrate ) { { { if ((int )bitrate == 2) { goto case_2; } else { } if ((int )bitrate == 4) { goto case_4; } else { } if ((int )bitrate == 11) { goto case_11; } else { } if ((int )bitrate == 22) { goto case_22; } else { } if ((int )bitrate == 12) { goto case_12; } else { } if ((int )bitrate == 18) { goto case_18; } else { } if ((int )bitrate == 24) { goto case_24; } else { } if ((int )bitrate == 36) { goto case_36; } else { } if ((int )bitrate == 48) { goto case_48; } else { } if ((int )bitrate == 72) { goto case_72; } else { } if ((int )bitrate == 96) { goto case_96; } else { } if ((int )bitrate == 108) { goto case_108; } else { } goto switch_break; case_2: /* CIL Label */ ; return (2U); case_4: /* CIL Label */ ; return (2U); case_11: /* CIL Label */ ; return (4U); case_22: /* CIL Label */ ; return (11U); case_12: /* CIL Label */ ; return (11U); case_18: /* CIL Label */ ; return (12U); case_24: /* CIL Label */ ; return (18U); case_36: /* CIL Label */ ; return (24U); case_48: /* CIL Label */ ; return (36U); case_72: /* CIL Label */ ; return (48U); case_96: /* CIL Label */ ; return (72U); case_108: /* CIL Label */ ; return (96U); switch_break: /* CIL Label */ ; } { printk("\016b43legacy: Test (%s) failed\n", (char *)"1"); __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/xmit.c"), "i" (183), "i" (12UL)); __builtin_unreachable(); } return (0U); } } static int generate_txhdr_fw3(struct b43legacy_wldev *dev , struct b43legacy_txhdr_fw3 *txhdr , unsigned char const *fragment_data , unsigned int fragment_len , struct ieee80211_tx_info *info , u16 cookie ) { struct ieee80211_hdr const *wlhdr ; int use_encryption ; u8 rate ; struct ieee80211_rate *rate_fb ; int rate_ofdm ; int rate_fb_ofdm ; unsigned int plcp_fragment_len ; u32 mac_ctl ; u16 phy_ctl ; struct ieee80211_rate *tx_rate ; struct ieee80211_tx_rate *rates ; struct ieee80211_rate *tmp ; u8 key_idx ; struct b43legacy_key *key ; int wlhdr_len ; size_t iv_len ; int __ret_warn_on ; long tmp___0 ; unsigned int tmp___1 ; unsigned long _min1 ; unsigned long _min2 ; unsigned int len ; struct ieee80211_hdr *hdr ; int rts_rate ; int rts_rate_fb ; int rts_rate_fb_ofdm ; struct ieee80211_rate *tmp___2 ; u8 tmp___3 ; { { use_encryption = (unsigned long )info->__annonCompField84.control.hw_key != (unsigned long )((struct ieee80211_key_conf *)0); mac_ctl = 0U; phy_ctl = 0U; wlhdr = (struct ieee80211_hdr const *)fragment_data; memset((void *)txhdr, 0, 82UL); tx_rate = ieee80211_get_tx_rate((struct ieee80211_hw const *)(dev->wl)->hw, (struct ieee80211_tx_info const *)info); rate = (u8 )tx_rate->hw_value; rate_ofdm = b43legacy_is_ofdm_rate((int )rate); tmp = ieee80211_get_alt_retry_rate((struct ieee80211_hw const *)(dev->wl)->hw, (struct ieee80211_tx_info const *)info, 0); rate_fb = (unsigned long )tmp != (unsigned long )((struct ieee80211_rate *)0) ? (unsigned long )tmp != (unsigned long )((struct ieee80211_rate *)0) : tx_rate; rate_fb_ofdm = b43legacy_is_ofdm_rate((int )rate_fb->hw_value); txhdr->mac_frame_ctl = wlhdr->frame_control; memcpy((void *)(& txhdr->tx_receiver), (void const *)(& wlhdr->addr1), 6UL); } if (((int )rate_fb->hw_value == (int )((unsigned short )rate) || (int )((short )wlhdr->duration_id) < 0) || (unsigned int )((unsigned short )wlhdr->duration_id) == 0U) { txhdr->dur_fb = wlhdr->duration_id; } else { { txhdr->dur_fb = ieee80211_generic_frame_duration((dev->wl)->hw, info->__annonCompField84.control.vif, (enum ieee80211_band )info->band, (size_t )fragment_len, rate_fb); } } plcp_fragment_len = fragment_len + 4U; if (use_encryption != 0) { { key_idx = (info->__annonCompField84.control.hw_key)->hw_key_idx; __ret_warn_on = (int )key_idx >= (int )dev->max_nr_keys; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/xmit.c", 243); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); key = (struct b43legacy_key *)(& dev->key) + (unsigned long )key_idx; } if ((int )key->enabled) { { plcp_fragment_len = plcp_fragment_len + (unsigned int )(info->__annonCompField84.control.hw_key)->icv_len; key_idx = b43legacy_kidx_to_fw(dev, (int )key_idx); mac_ctl = mac_ctl | ((u32 )((int )key_idx << 20) & 267386880U); mac_ctl = mac_ctl | ((u32 )((int )key->algorithm << 16) & 458752U); tmp___1 = ieee80211_hdrlen((int )wlhdr->frame_control); wlhdr_len = (int )tmp___1; _min1 = (unsigned long )(info->__annonCompField84.control.hw_key)->iv_len; _min2 = 16UL; iv_len = _min1 < _min2 ? _min1 : _min2; memcpy((void *)(& txhdr->iv), (void const *)wlhdr + (unsigned long )wlhdr_len, iv_len); } } else { return (-126); } } else { } { b43legacy_generate_plcp_hdr((struct b43legacy_plcp_hdr4 *)(& txhdr->plcp), (int )((u16 const )plcp_fragment_len), (int )rate); b43legacy_generate_plcp_hdr(& txhdr->plcp_fb, (int )((u16 const )plcp_fragment_len), (int )((u8 const )rate_fb->hw_value)); } if (rate_ofdm != 0) { phy_ctl = (u16 )((unsigned int )phy_ctl | 1U); } else { } if (((int )info->__annonCompField84.control.__annonCompField82.__annonCompField81.rates[0].flags & 4) != 0) { phy_ctl = (u16 )((unsigned int )phy_ctl | 16U); } else { } phy_ctl = (u16 )((unsigned int )phy_ctl | 768U); rates = (struct ieee80211_tx_rate *)(& info->__annonCompField84.control.__annonCompField82.__annonCompField81.rates); if ((info->flags & 4U) == 0U) { mac_ctl = mac_ctl | 1U; } else { } if ((info->flags & 2U) != 0U) { mac_ctl = mac_ctl | 16U; } else { } if ((info->flags & 16U) != 0U) { mac_ctl = mac_ctl | 8U; } else { } if (rate_fb_ofdm != 0) { mac_ctl = mac_ctl | 256U; } else { } if ((int )rates->flags & 1 || (int )rates->count <= (int )((dev->wl)->hw)->conf.long_frame_max_tx_count) { rates->count = ((dev->wl)->hw)->conf.long_frame_max_tx_count; mac_ctl = mac_ctl | 2U; } else { rates->count = ((dev->wl)->hw)->conf.short_frame_max_tx_count; } if (((unsigned int )rates->flags & 3U) != 0U) { { tmp___2 = ieee80211_get_rts_cts_rate((struct ieee80211_hw const *)(dev->wl)->hw, (struct ieee80211_tx_info const *)info); rts_rate = (int )tmp___2->hw_value; tmp___3 = b43legacy_calc_fallback_rate((int )((u8 )rts_rate)); rts_rate_fb = (int )tmp___3; rts_rate_fb_ofdm = b43legacy_is_ofdm_rate(rts_rate_fb); } if (rts_rate_fb_ofdm != 0) { mac_ctl = mac_ctl | 512U; } else { } if (((int )rates->flags & 2) != 0) { { ieee80211_ctstoself_get((dev->wl)->hw, info->__annonCompField84.control.vif, (void const *)fragment_data, (size_t )fragment_len, (struct ieee80211_tx_info const *)info, (struct ieee80211_cts *)(& txhdr->rts_frame)); mac_ctl = mac_ctl | 1024U; len = 10U; } } else { { ieee80211_rts_get((dev->wl)->hw, info->__annonCompField84.control.vif, (void const *)fragment_data, (size_t )fragment_len, (struct ieee80211_tx_info const *)info, (struct ieee80211_rts *)(& txhdr->rts_frame)); mac_ctl = mac_ctl | 4U; len = 16U; } } { len = len + 4U; b43legacy_generate_plcp_hdr((struct b43legacy_plcp_hdr4 *)(& txhdr->rts_plcp), (int )((u16 const )len), (int )((u8 const )rts_rate)); b43legacy_generate_plcp_hdr(& txhdr->rts_plcp_fb, (int )((u16 const )len), (int )((u8 const )rts_rate_fb)); hdr = (struct ieee80211_hdr *)(& txhdr->rts_frame); txhdr->rts_dur_fb = hdr->duration_id; } } else { } txhdr->cookie = cookie; txhdr->mac_ctl = mac_ctl; txhdr->phy_ctl = phy_ctl; return (0); } } int b43legacy_generate_txhdr(struct b43legacy_wldev *dev , u8 *txhdr , unsigned char const *fragment_data , unsigned int fragment_len , struct ieee80211_tx_info *info , u16 cookie ) { int tmp ; { { tmp = generate_txhdr_fw3(dev, (struct b43legacy_txhdr_fw3 *)txhdr, fragment_data, fragment_len, info, (int )cookie); } return (tmp); } } static s8 b43legacy_rssi_postprocess(struct b43legacy_wldev *dev , u8 in_rssi , int ofdm , int adjust_2053 , int adjust_2050 ) { struct b43legacy_phy *phy ; s32 tmp ; { phy = & dev->phy; { if ((int )phy->radio_ver == 8272) { goto case_8272; } else { } if ((int )phy->radio_ver == 8288) { goto case_8288; } else { } goto switch_default; case_8272: /* CIL Label */ ; if (ofdm != 0) { tmp = (s32 )in_rssi; if (tmp > 127) { tmp = tmp + -256; } else { } tmp = tmp * 73; tmp = tmp / 64; if (adjust_2050 != 0) { tmp = tmp + 25; } else { tmp = tmp + -3; } } else { if (((int )((dev->dev)->bus)->sprom.boardflags_lo & 8) != 0) { if ((unsigned int )in_rssi > 63U) { in_rssi = 63U; } else { } tmp = (s32 )phy->nrssi_lt[(int )in_rssi]; tmp = 31 - tmp; tmp = tmp * -131; tmp = tmp / 128; tmp = tmp + -57; } else { tmp = (s32 )in_rssi; tmp = 31 - tmp; tmp = tmp * -149; tmp = tmp / 128; tmp = tmp + -68; } if ((unsigned int )phy->type == 2U && adjust_2050 != 0) { tmp = tmp + 25; } else { } } goto ldv_52229; case_8288: /* CIL Label */ ; if ((int )((signed char )in_rssi) < 0) { tmp = (int )in_rssi + -256; } else { tmp = (s32 )in_rssi; } goto ldv_52229; switch_default: /* CIL Label */ tmp = (s32 )in_rssi; tmp = tmp + -11; tmp = tmp * 103; tmp = tmp / 64; if (adjust_2053 != 0) { tmp = tmp + -109; } else { tmp = tmp + -83; } switch_break: /* CIL Label */ ; } ldv_52229: ; return ((s8 )tmp); } } void b43legacy_rx(struct b43legacy_wldev *dev , struct sk_buff *skb , void const *_rxhdr ) { struct ieee80211_rx_status status ; struct b43legacy_plcp_hdr6 *plcp ; struct ieee80211_hdr *wlhdr ; struct b43legacy_rxhdr_fw3 const *rxhdr ; __le16 fctl ; u16 phystat0 ; u16 phystat3 ; u16 chanstat ; u16 mactime ; u32 macstat ; u16 chanid ; u8 jssi ; int padding ; long tmp ; long tmp___0 ; unsigned int keyidx ; int wlhdr_len ; int iv_len ; int icv_len ; u8 tmp___1 ; int __ret_warn_on ; long tmp___2 ; int __ret_warn_on___0 ; int tmp___3 ; long tmp___4 ; unsigned int tmp___5 ; long tmp___6 ; long tmp___7 ; u16 low_mactime_now ; int tmp___8 ; struct ieee80211_rx_status *tmp___9 ; { { rxhdr = (struct b43legacy_rxhdr_fw3 const *)_rxhdr; memset((void *)(& status), 0, 48UL); phystat0 = rxhdr->phy_status0; phystat3 = rxhdr->phy_status3; jssi = rxhdr->jssi; macstat = (u32 )rxhdr->mac_status; mactime = rxhdr->mac_time; chanstat = rxhdr->channel; } if ((int )macstat & 1) { (dev->wl)->ieee_stats.dot11FCSErrorCount = (dev->wl)->ieee_stats.dot11FCSErrorCount + 1U; } else { } { padding = (macstat & 4U) != 0U ? 2 : 0; tmp = ldv__builtin_expect((unsigned long )skb->len < (unsigned long )padding + 6UL, 0L); } if (tmp != 0L) { { b43legacydbg(dev->wl, "RX: Packet size underrun (1)\n"); } goto drop; } else { } { plcp = (struct b43legacy_plcp_hdr6 *)skb->data + (unsigned long )padding; skb_pull(skb, (unsigned int )padding + 6U); tmp___0 = ldv__builtin_expect(skb->len <= 13U, 0L); } if (tmp___0 != 0L) { { b43legacydbg(dev->wl, "RX: Packet size underrun (2)\n"); } goto drop; } else { } wlhdr = (struct ieee80211_hdr *)skb->data; fctl = wlhdr->frame_control; if ((macstat & 24U) == 8U) { { keyidx = (macstat & 2016U) >> 5; tmp___1 = b43legacy_kidx_to_raw(dev, (int )((u8 )keyidx)); keyidx = (unsigned int )tmp___1; __ret_warn_on = keyidx >= (unsigned int )dev->max_nr_keys; tmp___2 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___2 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/xmit.c", 492); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if ((unsigned int )dev->key[keyidx].algorithm != 0U) { { tmp___3 = ieee80211_has_protected((int )fctl); __ret_warn_on___0 = tmp___3 == 0; tmp___4 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___4 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/xmit.c", 496); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); fctl = (unsigned int )fctl & 49151U; wlhdr->frame_control = fctl; tmp___5 = ieee80211_hdrlen((int )fctl); wlhdr_len = (int )tmp___5; tmp___6 = ldv__builtin_expect(skb->len < (unsigned int )(wlhdr_len + 3), 0L); } if (tmp___6 != 0L) { { b43legacydbg(dev->wl, "RX: Packet size underrun3\n"); } goto drop; } else { } if (((int )*(skb->data + ((unsigned long )wlhdr_len + 3UL)) & 32) != 0) { iv_len = 8; icv_len = 8; } else { iv_len = 4; icv_len = 4; } { tmp___7 = ldv__builtin_expect(skb->len < (unsigned int )((wlhdr_len + iv_len) + icv_len), 0L); } if (tmp___7 != 0L) { { b43legacydbg(dev->wl, "RX: Packet size underrun4\n"); } goto drop; } else { } { memmove((void *)skb->data + (unsigned long )iv_len, (void const *)skb->data, (size_t )wlhdr_len); skb_pull(skb, (unsigned int )iv_len); skb_trim(skb, skb->len - (unsigned int )icv_len); status.flag = status.flag | 2U; } } else { } } else { } { status.signal = b43legacy_rssi_postprocess(dev, (int )jssi, (int )phystat0 & 1, (int )phystat0 & 16384, (int )phystat3 & 1024); } if ((int )phystat0 & 1) { { status.rate_idx = b43legacy_plcp_get_bitrate_idx_ofdm(plcp, 0); } } else { { status.rate_idx = b43legacy_plcp_get_bitrate_idx_cck(plcp); } } { status.antenna = ((int )phystat0 & 32) != 0; tmp___8 = ieee80211_is_beacon((int )fctl); } if (tmp___8 != 0 || (int )(dev->wl)->radiotap_enabled) { { b43legacy_tsf_read(dev, & status.mactime); low_mactime_now = (u16 )status.mactime; status.mactime = status.mactime & 0xffffffffffff0000ULL; status.mactime = status.mactime + (u64 )mactime; } if ((int )low_mactime_now <= (int )mactime) { status.mactime = status.mactime - 65536ULL; } else { } status.flag = status.flag | 128U; } else { } chanid = (u16 )(((int )chanstat & 1020) >> 2); { if (((int )chanstat & 3) == 1) { goto case_1; } else { } if (((int )chanstat & 3) == 2) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ status.band = 0U; status.freq = (unsigned int )chanid + 2400U; goto ldv_52262; switch_default: /* CIL Label */ { b43legacywarn(dev->wl, "Unexpected value for chanstat (0x%X)\n", (int )chanstat); } switch_break: /* CIL Label */ ; } ldv_52262: { tmp___9 = IEEE80211_SKB_RXCB(skb); memcpy((void *)tmp___9, (void const *)(& status), 48UL); ieee80211_rx_irqsafe((dev->wl)->hw, skb); } return; drop: { b43legacydbg(dev->wl, "RX: Packet dropped\n"); dev_kfree_skb_any(skb); } return; } } void b43legacy_handle_txstatus(struct b43legacy_wldev *dev , struct b43legacy_txstatus const *status ) { int tmp ; { { b43legacy_debugfs_log_txstat(dev, status); } if ((unsigned int )((unsigned char )status->intermediate) != 0U) { return; } else { } if ((unsigned int )((unsigned char )status->for_ampdu) != 0U) { return; } else { } if ((unsigned int )((unsigned char )status->acked) == 0U) { (dev->wl)->ieee_stats.dot11ACKFailureCount = (dev->wl)->ieee_stats.dot11ACKFailureCount + 1U; } else { } if ((unsigned int )((unsigned char )status->rts_count) != 0U) { if ((unsigned int )((unsigned char )status->rts_count) == 15U) { (dev->wl)->ieee_stats.dot11RTSFailureCount = (dev->wl)->ieee_stats.dot11RTSFailureCount + 1U; } else { (dev->wl)->ieee_stats.dot11RTSSuccessCount = (dev->wl)->ieee_stats.dot11RTSSuccessCount + 1U; } } else { } { tmp = b43legacy_using_pio(dev); } if (tmp != 0) { { b43legacy_pio_handle_txstatus(dev, status); } } else { { b43legacy_dma_handle_txstatus(dev, status); } } return; } } void b43legacy_handle_hwtxstatus(struct b43legacy_wldev *dev , struct b43legacy_hwtxstatus const *hw ) { struct b43legacy_txstatus status ; u8 tmp ; { { status.cookie = hw->cookie; status.seq = hw->seq; status.phy_stat = hw->phy_stat; tmp = hw->count; status.frame_count = (u8 )((int )tmp >> 4); status.rts_count = (unsigned int )tmp & 15U; tmp = (int )((u8 )hw->flags) << 1U; status.supp_reason = (u8 )(((int )tmp & 28) >> 2); status.pm_indicated = (int )((signed char )tmp) < 0; status.intermediate = ((int )tmp & 64) != 0; status.for_ampdu = ((int )tmp & 32) != 0; status.acked = ((int )tmp & 2) != 0; b43legacy_handle_txstatus(dev, (struct b43legacy_txstatus const *)(& status)); } return; } } void b43legacy_tx_suspend(struct b43legacy_wldev *dev ) { int tmp ; { { tmp = b43legacy_using_pio(dev); } if (tmp != 0) { { b43legacy_pio_freeze_txqueues(dev); } } else { { b43legacy_dma_tx_suspend(dev); } } return; } } void b43legacy_tx_resume(struct b43legacy_wldev *dev ) { int tmp ; { { tmp = b43legacy_using_pio(dev); } if (tmp != 0) { { b43legacy_pio_thaw_txqueues(dev); } } else { { b43legacy_dma_tx_resume(dev); } } return; } } void b43legacy_qos_init(struct b43legacy_wldev *dev ) { u32 tmp ; u16 tmp___0 ; { return; { tmp = b43legacy_hf_read(dev); b43legacy_hf_write(dev, tmp | 256U); tmp___0 = b43legacy_read16(dev, 1672); b43legacy_write16(dev, 1672, (int )((unsigned int )tmp___0 | 4U)); } } } extern void wiphy_rfkill_set_hw_state(struct wiphy * , bool ) ; bool b43legacy_is_hw_radio_enabled(struct b43legacy_wldev *dev ) ; bool b43legacy_is_hw_radio_enabled(struct b43legacy_wldev *dev ) { u32 tmp ; int tmp___0 ; u16 tmp___1 ; { if ((unsigned int )(dev->dev)->id.revision > 2U) { { tmp = b43legacy_read32(dev, 344); } if ((tmp & 65536U) == 0U) { return (1); } else { } } else { { tmp___0 = atomic_read((atomic_t const *)(& dev->__init_status)); } if (tmp___0 <= 1) { return (1); } else { } { tmp___1 = b43legacy_read16(dev, 1178); } if (((int )tmp___1 & 16) != 0) { return (1); } else { } } return (0); } } void b43legacy_rfkill_poll(struct ieee80211_hw *hw ) { struct b43legacy_wl *wl ; struct b43legacy_wl *tmp ; struct b43legacy_wldev *dev ; struct ssb_bus *bus ; bool enabled ; bool brought_up ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; { { tmp = hw_to_b43legacy_wl(hw); wl = tmp; dev = wl->current_dev; bus = (dev->dev)->bus; brought_up = 0; mutex_lock_nested(& wl->mutex, 0U); tmp___1 = atomic_read((atomic_t const *)(& dev->__init_status)); tmp___2 = ldv__builtin_expect(tmp___1 <= 0, 0L); } if (tmp___2 != 0L) { { tmp___0 = ssb_bus_powerup(bus, 0); } if (tmp___0 != 0) { { mutex_unlock(& wl->mutex); } return; } else { } { ssb_device_enable(dev->dev, 0U); brought_up = 1; } } else { } { enabled = b43legacy_is_hw_radio_enabled(dev); tmp___3 = ldv__builtin_expect((int )enabled != (int )dev->radio_hw_enable, 0L); } if (tmp___3 != 0L) { { dev->radio_hw_enable = enabled; b43legacyinfo(wl, "Radio hardware status changed to %s\n", (int )enabled ? (char *)"ENABLED" : (char *)"DISABLED"); wiphy_rfkill_set_hw_state(hw->wiphy, (int )((bool )(! ((int )enabled != 0)))); } if ((int )enabled != (int )dev->phy.radio_on) { if ((int )enabled) { { b43legacy_radio_turn_on(dev); } } else { { b43legacy_radio_turn_off(dev, 0); } } } else { } } else { } if ((int )brought_up) { { ssb_device_disable(dev->dev, 0U); ssb_bus_may_powerdown(bus); } } else { } { mutex_unlock(& wl->mutex); } return; } } extern char *strncpy(char * , char const * , __kernel_size_t ) ; static void ldv___ldv_spin_lock_62___0(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_64___1(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock_leds_lock_of_b43legacy_wl(void) ; void ldv_spin_unlock_leds_lock_of_b43legacy_wl(void) ; __inline static void ldv_spin_unlock_irqrestore_63___0(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_63___0(spinlock_t *lock , unsigned long flags ) ; extern char *__ieee80211_get_tx_led_name(struct ieee80211_hw * ) ; extern char *__ieee80211_get_rx_led_name(struct ieee80211_hw * ) ; extern char *__ieee80211_get_assoc_led_name(struct ieee80211_hw * ) ; extern char *__ieee80211_get_radio_led_name(struct ieee80211_hw * ) ; __inline static char *ieee80211_get_tx_led_name(struct ieee80211_hw *hw ) { char *tmp ; { { tmp = __ieee80211_get_tx_led_name(hw); } return (tmp); } } __inline static char *ieee80211_get_rx_led_name(struct ieee80211_hw *hw ) { char *tmp ; { { tmp = __ieee80211_get_rx_led_name(hw); } return (tmp); } } __inline static char *ieee80211_get_assoc_led_name(struct ieee80211_hw *hw ) { char *tmp ; { { tmp = __ieee80211_get_assoc_led_name(hw); } return (tmp); } } __inline static char *ieee80211_get_radio_led_name(struct ieee80211_hw *hw ) { char *tmp ; { { tmp = __ieee80211_get_radio_led_name(hw); } return (tmp); } } extern int led_classdev_register(struct device * , struct led_classdev * ) ; extern void led_classdev_unregister(struct led_classdev * ) ; static void b43legacy_led_turn_on(struct b43legacy_wldev *dev , u8 led_index , bool activelow ) { struct b43legacy_wl *wl ; unsigned long flags ; u16 ctl ; { { wl = dev->wl; ldv___ldv_spin_lock_62___0(& wl->leds_lock); ctl = b43legacy_read16(dev, 1180); } if ((int )activelow) { ctl = (u16 )((int )((short )ctl) & ~ ((int )((short )(1 << (int )led_index)))); } else { ctl = (u16 )((int )((short )ctl) | (int )((short )(1 << (int )led_index))); } { b43legacy_write16(dev, 1180, (int )ctl); ldv_spin_unlock_irqrestore_63___0(& wl->leds_lock, flags); } return; } } static void b43legacy_led_turn_off(struct b43legacy_wldev *dev , u8 led_index , bool activelow ) { struct b43legacy_wl *wl ; unsigned long flags ; u16 ctl ; { { wl = dev->wl; ldv___ldv_spin_lock_64___1(& wl->leds_lock); ctl = b43legacy_read16(dev, 1180); } if ((int )activelow) { ctl = (u16 )((int )((short )ctl) | (int )((short )(1 << (int )led_index))); } else { ctl = (u16 )((int )((short )ctl) & ~ ((int )((short )(1 << (int )led_index)))); } { b43legacy_write16(dev, 1180, (int )ctl); ldv_spin_unlock_irqrestore_63___0(& wl->leds_lock, flags); } return; } } static void b43legacy_led_brightness_set(struct led_classdev *led_dev , enum led_brightness brightness ) { struct b43legacy_led *led ; struct led_classdev const *__mptr ; struct b43legacy_wldev *dev ; bool radio_enabled ; { __mptr = (struct led_classdev const *)led_dev; led = (struct b43legacy_led *)__mptr + 0xfffffffffffffff8UL; dev = led->dev; radio_enabled = (bool )((int )dev->phy.radio_on && (int )dev->radio_hw_enable); if ((unsigned int )brightness == 0U || ! radio_enabled) { { b43legacy_led_turn_off(dev, (int )led->index, (int )led->activelow); } } else { { b43legacy_led_turn_on(dev, (int )led->index, (int )led->activelow); } } return; } } static int b43legacy_register_led(struct b43legacy_wldev *dev , struct b43legacy_led *led , char const *name , char const *default_trigger , u8 led_index , bool activelow ) { int err ; { { b43legacy_led_turn_off(dev, (int )led_index, (int )activelow); } if ((unsigned long )led->dev != (unsigned long )((struct b43legacy_wldev *)0)) { return (-17); } else { } if ((unsigned long )default_trigger == (unsigned long )((char const *)0)) { return (-22); } else { } { led->dev = dev; led->index = led_index; led->activelow = activelow; strncpy((char *)(& led->name), name, 32UL); led->led_dev.name = (char const *)(& led->name); led->led_dev.default_trigger = default_trigger; led->led_dev.brightness_set = & b43legacy_led_brightness_set; err = led_classdev_register((dev->dev)->dev, & led->led_dev); } if (err != 0) { { b43legacywarn(dev->wl, "LEDs: Failed to register %s\n", name); led->dev = (struct b43legacy_wldev *)0; } return (err); } else { } return (0); } } static void b43legacy_unregister_led(struct b43legacy_led *led ) { { if ((unsigned long )led->dev == (unsigned long )((struct b43legacy_wldev *)0)) { return; } else { } { led_classdev_unregister(& led->led_dev); b43legacy_led_turn_off(led->dev, (int )led->index, (int )led->activelow); led->dev = (struct b43legacy_wldev *)0; } return; } } static void b43legacy_map_led(struct b43legacy_wldev *dev , u8 led_index , enum b43legacy_led_behaviour behaviour , bool activelow ) { struct ieee80211_hw *hw ; char name[32U] ; char const *tmp ; char *tmp___0 ; char const *tmp___1 ; char *tmp___2 ; char const *tmp___3 ; char *tmp___4 ; bool tmp___5 ; char const *tmp___6 ; char *tmp___7 ; { hw = (dev->wl)->hw; { if ((unsigned int )behaviour == 11U) { goto case_11; } else { } if ((unsigned int )behaviour == 0U) { goto case_0; } else { } if ((unsigned int )behaviour == 1U) { goto case_1; } else { } if ((unsigned int )behaviour == 2U) { goto case_2; } else { } if ((unsigned int )behaviour == 7U) { goto case_7; } else { } if ((unsigned int )behaviour == 8U) { goto case_8; } else { } if ((unsigned int )behaviour == 3U) { goto case_3; } else { } if ((unsigned int )behaviour == 4U) { goto case_4; } else { } if ((unsigned int )behaviour == 5U) { goto case_5; } else { } if ((unsigned int )behaviour == 6U) { goto case_6; } else { } if ((unsigned int )behaviour == 9U) { goto case_9; } else { } if ((unsigned int )behaviour == 10U) { goto case_10; } else { } goto switch_default; case_11: /* CIL Label */ ; goto ldv_50763; case_0: /* CIL Label */ { b43legacy_led_turn_off(dev, (int )led_index, (int )activelow); } goto ldv_50763; case_1: /* CIL Label */ { b43legacy_led_turn_on(dev, (int )led_index, (int )activelow); } goto ldv_50763; case_2: /* CIL Label */ ; case_7: /* CIL Label */ ; case_8: /* CIL Label */ { tmp = wiphy_name((struct wiphy const *)hw->wiphy); snprintf((char *)(& name), 32UL, "b43legacy-%s::tx", tmp); tmp___0 = ieee80211_get_tx_led_name(hw); b43legacy_register_led(dev, & dev->led_tx, (char const *)(& name), (char const *)tmp___0, (int )led_index, (int )activelow); tmp___1 = wiphy_name((struct wiphy const *)hw->wiphy); snprintf((char *)(& name), 32UL, "b43legacy-%s::rx", tmp___1); tmp___2 = ieee80211_get_rx_led_name(hw); b43legacy_register_led(dev, & dev->led_rx, (char const *)(& name), (char const *)tmp___2, (int )led_index, (int )activelow); } goto ldv_50763; case_3: /* CIL Label */ ; case_4: /* CIL Label */ ; case_5: /* CIL Label */ ; case_6: /* CIL Label */ { tmp___3 = wiphy_name((struct wiphy const *)hw->wiphy); snprintf((char *)(& name), 32UL, "b43legacy-%s::radio", tmp___3); tmp___4 = ieee80211_get_radio_led_name(hw); b43legacy_register_led(dev, & dev->led_radio, (char const *)(& name), (char const *)tmp___4, (int )led_index, (int )activelow); } if ((int )dev->phy.radio_on) { { tmp___5 = b43legacy_is_hw_radio_enabled(dev); } if ((int )tmp___5) { { b43legacy_led_turn_on(dev, (int )led_index, (int )activelow); } } else { } } else { } goto ldv_50763; case_9: /* CIL Label */ ; case_10: /* CIL Label */ { tmp___6 = wiphy_name((struct wiphy const *)hw->wiphy); snprintf((char *)(& name), 32UL, "b43legacy-%s::assoc", tmp___6); tmp___7 = ieee80211_get_assoc_led_name(hw); b43legacy_register_led(dev, & dev->led_assoc, (char const *)(& name), (char const *)tmp___7, (int )led_index, (int )activelow); } goto ldv_50763; switch_default: /* CIL Label */ { b43legacywarn(dev->wl, "LEDs: Unknown behaviour 0x%02X\n", (unsigned int )behaviour); } goto ldv_50763; switch_break: /* CIL Label */ ; } ldv_50763: ; return; } } void b43legacy_leds_init(struct b43legacy_wldev *dev ) { struct ssb_bus *bus ; u8 sprom[4U] ; int i ; enum b43legacy_led_behaviour behaviour ; bool activelow ; int __ret_warn_on ; long tmp ; { bus = (dev->dev)->bus; sprom[0] = bus->sprom.gpio0; sprom[1] = bus->sprom.gpio1; sprom[2] = bus->sprom.gpio2; sprom[3] = bus->sprom.gpio3; i = 0; goto ldv_50793; ldv_50792: ; if ((unsigned int )sprom[i] == 255U) { activelow = 0; { if (i == 0) { goto case_0; } else { } if (i == 1) { goto case_1; } else { } if (i == 2) { goto case_2; } else { } if (i == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ behaviour = 2; activelow = 1; if ((unsigned int )bus->boardinfo.vendor == 3601U) { behaviour = 3; } else { } goto ldv_50785; case_1: /* CIL Label */ behaviour = 5; if ((unsigned int )bus->boardinfo.vendor == 4163U) { behaviour = 10; } else { } goto ldv_50785; case_2: /* CIL Label */ behaviour = 4; goto ldv_50785; case_3: /* CIL Label */ behaviour = 0; goto ldv_50785; switch_default: /* CIL Label */ { __ret_warn_on = 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/leds.c", 226); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } return; switch_break: /* CIL Label */ ; } ldv_50785: ; } else { behaviour = (enum b43legacy_led_behaviour )((int )sprom[i] & 127); activelow = (int )((signed char )sprom[i]) < 0; } { b43legacy_map_led(dev, (int )((u8 )i), behaviour, (int )activelow); i = i + 1; } ldv_50793: ; if (i <= 3) { goto ldv_50792; } else { } return; } } void b43legacy_leds_exit(struct b43legacy_wldev *dev ) { { { b43legacy_unregister_led(& dev->led_tx); b43legacy_unregister_led(& dev->led_rx); b43legacy_unregister_led(& dev->led_assoc); b43legacy_unregister_led(& dev->led_radio); } return; } } static void ldv___ldv_spin_lock_62___0(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_leds_lock_of_b43legacy_wl(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_63___0(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_leds_lock_of_b43legacy_wl(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_spin_lock_64___1(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_leds_lock_of_b43legacy_wl(); __ldv_spin_lock(ldv_func_arg1); } return; } } long ldv_is_err(void const *ptr ) ; void *ldv_err_ptr(long error ) ; __inline static int fls64(__u64 x ) { int bitpos ; { bitpos = -1; __asm__ ("bsrq %1,%q0": "+r" (bitpos): "rm" (x)); return (bitpos + 1); } } extern void might_fault(void) ; extern int sscanf(char const * , char const * , ...) ; __inline static int __get_order(unsigned long size ) { int order ; { { size = size - 1UL; size = size >> 12; order = fls64((__u64 )size); } return (order); } } __inline static void *ERR_PTR(long error ) ; __inline static long IS_ERR(void const *ptr ) ; static void ldv___ldv_spin_lock_62___1(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock_lock_of_b43legacy_txstatus_log(void) ; void ldv_spin_unlock_lock_of_b43legacy_txstatus_log(void) ; __inline static void ldv_spin_lock_68(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_62(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_62(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_69(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_63(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_63(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irqrestore_63___1(spinlock_t *lock , unsigned long flags ) ; extern loff_t generic_file_llseek(struct file * , loff_t , int ) ; extern int simple_open(struct inode * , struct file * ) ; extern ssize_t simple_read_from_buffer(void * , size_t , loff_t * , void const * , size_t ) ; extern unsigned long __get_free_pages(gfp_t , unsigned int ) ; extern unsigned long get_zeroed_page(gfp_t ) ; extern void free_pages(unsigned long , unsigned int ) ; extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; extern void __copy_from_user_overflow(void) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { __copy_from_user_overflow(); } } } return (n); } } __inline static void *kmalloc_array(size_t n , size_t size , gfp_t flags ) { void *tmp ; { if (size != 0UL && n > 0xffffffffffffffffUL / size) { return ((void *)0); } else { } { tmp = __kmalloc(n * size, flags); } return (tmp); } } __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *tmp ; { { tmp = kmalloc_array(n, size, flags | 32768U); } return (tmp); } } __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern struct dentry *debugfs_create_file(char const * , umode_t , struct dentry * , void * , struct file_operations const * ) ; extern struct dentry *debugfs_create_dir(char const * , struct dentry * ) ; extern void debugfs_remove(struct dentry * ) ; extern struct dentry *debugfs_create_bool(char const * , umode_t , struct dentry * , u32 * ) ; static struct dentry *rootdir ; __inline static struct b43legacy_dfs_file *fops_to_dfs_file(struct b43legacy_wldev *dev , struct b43legacy_debugfs_fops const *dfops ) { void *p ; { p = (void *)dev->dfsentry; p = p + dfops->file_struct_offset; return ((struct b43legacy_dfs_file *)p); } } static ssize_t tsf_read_file(struct b43legacy_wldev *dev , char *buf , size_t bufsize ) { ssize_t count ; u64 tsf ; int tmp ; { { count = 0L; b43legacy_tsf_read(dev, & tsf); } if (bufsize != (unsigned long )count) { { tmp = snprintf(buf + (unsigned long )count, bufsize - (unsigned long )count, "0x%08x%08x\n", (unsigned int )(tsf >> 32), (unsigned int )tsf); count = count + (ssize_t )tmp; } } else { { printk("\vb43legacy: fappend overflow\n"); } } return (count); } } static int tsf_write_file(struct b43legacy_wldev *dev , char const *buf , size_t count ) { u64 tsf ; int tmp ; { { tmp = sscanf(buf, "%llu", & tsf); } if (tmp != 1) { return (-22); } else { } { b43legacy_tsf_write(dev, tsf); } return (0); } } static ssize_t ucode_regs_read_file(struct b43legacy_wldev *dev , char *buf , size_t bufsize ) { ssize_t count ; int i ; u16 tmp ; int tmp___0 ; { count = 0L; i = 0; goto ldv_51059; ldv_51058: ; if (bufsize != (unsigned long )count) { { tmp = b43legacy_shm_read16(dev, 2, (int )((u16 )i)); tmp___0 = snprintf(buf + (unsigned long )count, bufsize - (unsigned long )count, "r%d = 0x%04x\n", i, (int )tmp); count = count + (ssize_t )tmp___0; } } else { { printk("\vb43legacy: fappend overflow\n"); } } i = i + 1; ldv_51059: ; if (i <= 63) { goto ldv_51058; } else { } return (count); } } static ssize_t shm_read_file(struct b43legacy_wldev *dev , char *buf , size_t bufsize ) { ssize_t count ; int i ; u16 tmp ; __le16 *le16buf ; { count = 0L; le16buf = (__le16 *)buf; i = 0; goto ldv_51072; ldv_51071: ; if (bufsize <= 1UL) { goto ldv_51070; } else { } { tmp = b43legacy_shm_read16(dev, 1, (int )((unsigned int )((u16 )i) * 2U)); *(le16buf + (unsigned long )i) = tmp; count = (ssize_t )((unsigned long )count + 2UL); bufsize = bufsize - 2UL; i = i + 1; } ldv_51072: ; if (i <= 4095) { goto ldv_51071; } else { } ldv_51070: ; return (count); } } static ssize_t txstat_read_file(struct b43legacy_wldev *dev , char *buf , size_t bufsize ) { struct b43legacy_txstatus_log *log ; ssize_t count ; unsigned long flags ; int i ; int idx ; struct b43legacy_txstatus *stat ; int tmp ; int tmp___0 ; int tmp___1 ; { { log = & (dev->dfsentry)->txstatlog; count = 0L; ldv___ldv_spin_lock_62___1(& log->lock); } if (log->end < 0) { if (bufsize != (unsigned long )count) { { tmp = snprintf(buf + (unsigned long )count, bufsize - (unsigned long )count, "Nothing transmitted, yet\n"); count = count + (ssize_t )tmp; } } else { { printk("\vb43legacy: fappend overflow\n"); } } goto out_unlock; } else { } if (bufsize != (unsigned long )count) { { tmp___0 = snprintf(buf + (unsigned long )count, bufsize - (unsigned long )count, "b43legacy TX status reports:\n\nindex | cookie | seq | phy_stat | frame_count | rts_count | supp_reason | pm_indicated | intermediate | for_ampdu | acked\n---\n"); count = count + (ssize_t )tmp___0; } } else { { printk("\vb43legacy: fappend overflow\n"); } } i = log->end + 1; idx = 0; ldv_51086: ; if (i == 100) { i = 0; } else { } stat = log->log + (unsigned long )i; if ((unsigned int )stat->cookie != 0U) { if (bufsize != (unsigned long )count) { { tmp___1 = snprintf(buf + (unsigned long )count, bufsize - (unsigned long )count, "%03d | 0x%04X | 0x%04X | 0x%02X | 0x%X | 0x%X | %u | %u | %u | %u | %u\n", idx, (int )stat->cookie, (int )stat->seq, (int )stat->phy_stat, (int )stat->frame_count, (int )stat->rts_count, (int )stat->supp_reason, (int )stat->pm_indicated, (int )stat->intermediate, (int )stat->for_ampdu, (int )stat->acked); count = count + (ssize_t )tmp___1; } } else { { printk("\vb43legacy: fappend overflow\n"); } } idx = idx + 1; } else { } if (i == log->end) { goto ldv_51085; } else { } i = i + 1; goto ldv_51086; ldv_51085: ; out_unlock: { ldv_spin_unlock_irqrestore_63___1(& log->lock, flags); } return (count); } } static int restart_write_file(struct b43legacy_wldev *dev , char const *buf , size_t count ) { int err ; { err = 0; if (count != 0UL && (int )((signed char )*buf) == 49) { { b43legacy_controller_restart(dev, "manually restarted"); } } else { err = -22; } return (err); } } static ssize_t b43legacy_debugfs_read(struct file *file , char *userbuf , size_t count , loff_t *ppos ) { struct b43legacy_wldev *dev ; struct b43legacy_debugfs_fops *dfops ; struct b43legacy_dfs_file *dfile ; ssize_t ret ; char *buf ; size_t bufsize ; size_t buforder ; int tmp ; int err ; int tmp___0 ; struct file_operations const *__mptr ; unsigned long tmp___1 ; { { ret = ret; bufsize = 16384UL; tmp = __get_order(bufsize); buforder = (size_t const )tmp; err = 0; } if (count == 0UL) { return (0L); } else { } dev = (struct b43legacy_wldev *)file->private_data; if ((unsigned long )dev == (unsigned long )((struct b43legacy_wldev *)0)) { return (-19L); } else { } { mutex_lock_nested(& (dev->wl)->mutex, 0U); tmp___0 = atomic_read((atomic_t const *)(& dev->__init_status)); } if (tmp___0 <= 0) { err = -19; goto out_unlock; } else { } __mptr = file->f_op; dfops = (struct b43legacy_debugfs_fops *)__mptr + 0xfffffffffffffff0UL; if ((unsigned long )dfops->read == (unsigned long )((ssize_t (*)(struct b43legacy_wldev * , char * , size_t ))0)) { err = -38; goto out_unlock; } else { } { dfile = fops_to_dfs_file(dev, (struct b43legacy_debugfs_fops const *)dfops); } if ((unsigned long )dfile->buffer == (unsigned long )((char *)0)) { { tmp___1 = __get_free_pages(208U, (unsigned int )buforder); buf = (char *)tmp___1; } if ((unsigned long )buf == (unsigned long )((char *)0)) { err = -12; goto out_unlock; } else { } { memset((void *)buf, 0, bufsize); } if ((int )dfops->take_irqlock) { { ldv_spin_lock_irq_62(& (dev->wl)->irq_lock); ret = (*(dfops->read))(dev, buf, bufsize); ldv_spin_unlock_irq_63(& (dev->wl)->irq_lock); } } else { { ret = (*(dfops->read))(dev, buf, bufsize); } } if (ret <= 0L) { { free_pages((unsigned long )buf, (unsigned int )buforder); err = (int )ret; } goto out_unlock; } else { } dfile->data_len = (size_t )ret; dfile->buffer = buf; } else { } { ret = simple_read_from_buffer((void *)userbuf, count, ppos, (void const *)dfile->buffer, dfile->data_len); } if ((unsigned long long )*ppos >= (unsigned long long )dfile->data_len) { { free_pages((unsigned long )dfile->buffer, (unsigned int )buforder); dfile->buffer = (char *)0; dfile->data_len = 0UL; } } else { } out_unlock: { mutex_unlock(& (dev->wl)->mutex); } return (err != 0 ? (ssize_t )err : ret); } } static ssize_t b43legacy_debugfs_write(struct file *file , char const *userbuf , size_t count , loff_t *ppos ) { struct b43legacy_wldev *dev ; struct b43legacy_debugfs_fops *dfops ; char *buf ; int err ; int tmp ; struct file_operations const *__mptr ; unsigned long tmp___0 ; unsigned long tmp___1 ; { err = 0; if (count == 0UL) { return (0L); } else { } if (count > 4096UL) { return (-7L); } else { } dev = (struct b43legacy_wldev *)file->private_data; if ((unsigned long )dev == (unsigned long )((struct b43legacy_wldev *)0)) { return (-19L); } else { } { mutex_lock_nested(& (dev->wl)->mutex, 0U); tmp = atomic_read((atomic_t const *)(& dev->__init_status)); } if (tmp <= 0) { err = -19; goto out_unlock; } else { } __mptr = file->f_op; dfops = (struct b43legacy_debugfs_fops *)__mptr + 0xfffffffffffffff0UL; if ((unsigned long )dfops->write == (unsigned long )((int (*)(struct b43legacy_wldev * , char const * , size_t ))0)) { err = -38; goto out_unlock; } else { } { tmp___0 = get_zeroed_page(208U); buf = (char *)tmp___0; } if ((unsigned long )buf == (unsigned long )((char *)0)) { err = -12; goto out_unlock; } else { } { tmp___1 = copy_from_user((void *)buf, (void const *)userbuf, count); } if (tmp___1 != 0UL) { err = -14; goto out_freepage; } else { } if ((int )dfops->take_irqlock) { { ldv_spin_lock_irq_62(& (dev->wl)->irq_lock); err = (*(dfops->write))(dev, (char const *)buf, count); ldv_spin_unlock_irq_63(& (dev->wl)->irq_lock); } } else { { err = (*(dfops->write))(dev, (char const *)buf, count); } } if (err != 0) { } else { } out_freepage: { free_pages((unsigned long )buf, 0U); } out_unlock: { mutex_unlock(& (dev->wl)->mutex); } return ((ssize_t )(err != 0 ? (size_t )err : count)); } } static struct b43legacy_debugfs_fops fops_tsf = {& tsf_read_file, & tsf_write_file, {0, & generic_file_llseek, & b43legacy_debugfs_read, & b43legacy_debugfs_write, 0, 0, 0, 0, 0, 0, 0, & simple_open, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 16UL, 1}; static struct b43legacy_debugfs_fops fops_ucode_regs = {& ucode_regs_read_file, (int (*)(struct b43legacy_wldev * , char const * , size_t ))0, {0, & generic_file_llseek, & b43legacy_debugfs_read, & b43legacy_debugfs_write, 0, 0, 0, 0, 0, 0, 0, & simple_open, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 40UL, 1}; static struct b43legacy_debugfs_fops fops_shm = {& shm_read_file, (int (*)(struct b43legacy_wldev * , char const * , size_t ))0, {0, & generic_file_llseek, & b43legacy_debugfs_read, & b43legacy_debugfs_write, 0, 0, 0, 0, 0, 0, 0, & simple_open, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 64UL, 1}; static struct b43legacy_debugfs_fops fops_txstat = {& txstat_read_file, (int (*)(struct b43legacy_wldev * , char const * , size_t ))0, {0, & generic_file_llseek, & b43legacy_debugfs_read, & b43legacy_debugfs_write, 0, 0, 0, 0, 0, 0, 0, & simple_open, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 88UL, 0}; static struct b43legacy_debugfs_fops fops_restart = {(ssize_t (*)(struct b43legacy_wldev * , char * , size_t ))0, & restart_write_file, {0, & generic_file_llseek, & b43legacy_debugfs_read, & b43legacy_debugfs_write, 0, 0, 0, 0, 0, 0, 0, & simple_open, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 136UL, 1}; int b43legacy_debug(struct b43legacy_wldev *dev , enum b43legacy_dyndbg feature ) { { return ((unsigned long )dev->dfsentry != (unsigned long )((struct b43legacy_dfsentry *)0) && (dev->dfsentry)->dyn_debug[(unsigned int )feature] != 0U); } } static void b43legacy_remove_dynamic_debug(struct b43legacy_wldev *dev ) { struct b43legacy_dfsentry *e ; int i ; { e = dev->dfsentry; i = 0; goto ldv_51139; ldv_51138: { debugfs_remove(e->dyn_debug_dentries[i]); i = i + 1; } ldv_51139: ; if (i <= 4) { goto ldv_51138; } else { } return; } } static void b43legacy_add_dynamic_debug(struct b43legacy_wldev *dev ) { struct b43legacy_dfsentry *e ; struct dentry *d ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; { { e = dev->dfsentry; e->dyn_debug[0] = 0U; d = debugfs_create_bool("debug_xmitpower", 384, e->subdir, (u32 *)(& e->dyn_debug)); tmp = IS_ERR((void const *)d); } if (tmp == 0L) { e->dyn_debug_dentries[0] = d; } else { } { e->dyn_debug[1] = 0U; d = debugfs_create_bool("debug_dmaoverflow", 384, e->subdir, (u32 *)(& e->dyn_debug) + 1UL); tmp___0 = IS_ERR((void const *)d); } if (tmp___0 == 0L) { e->dyn_debug_dentries[1] = d; } else { } { e->dyn_debug[2] = 0U; d = debugfs_create_bool("debug_dmaverbose", 384, e->subdir, (u32 *)(& e->dyn_debug) + 2UL); tmp___1 = IS_ERR((void const *)d); } if (tmp___1 == 0L) { e->dyn_debug_dentries[2] = d; } else { } { e->dyn_debug[3] = 0U; d = debugfs_create_bool("debug_pwork_fast", 384, e->subdir, (u32 *)(& e->dyn_debug) + 3UL); tmp___2 = IS_ERR((void const *)d); } if (tmp___2 == 0L) { e->dyn_debug_dentries[3] = d; } else { } { e->dyn_debug[4] = 0U; d = debugfs_create_bool("debug_pwork_stop", 384, e->subdir, (u32 *)(& e->dyn_debug) + 4UL); tmp___3 = IS_ERR((void const *)d); } if (tmp___3 == 0L) { e->dyn_debug_dentries[4] = d; } else { } return; } } void b43legacy_debugfs_add_device(struct b43legacy_wldev *dev ) { struct b43legacy_dfsentry *e ; struct b43legacy_txstatus_log *log ; char devdir[16U] ; int __ret_warn_on ; long tmp ; void *tmp___0 ; void *tmp___1 ; struct lock_class_key __key ; char const *tmp___2 ; void *tmp___3 ; long tmp___4 ; struct dentry *d ; long tmp___5 ; struct dentry *d___0 ; long tmp___6 ; struct dentry *d___1 ; long tmp___7 ; struct dentry *d___2 ; long tmp___8 ; struct dentry *d___3 ; long tmp___9 ; { { __ret_warn_on = (unsigned long )dev == (unsigned long )((struct b43legacy_wldev *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/debugfs.c", 387); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); tmp___0 = kzalloc(336UL, 208U); e = (struct b43legacy_dfsentry *)tmp___0; } if ((unsigned long )e == (unsigned long )((struct b43legacy_dfsentry *)0)) { { b43legacyerr(dev->wl, "debugfs: add device OOM\n"); } return; } else { } { e->dev = dev; log = & e->txstatlog; tmp___1 = kcalloc(100UL, 12UL, 208U); log->log = (struct b43legacy_txstatus *)tmp___1; } if ((unsigned long )log->log == (unsigned long )((struct b43legacy_txstatus *)0)) { { b43legacyerr(dev->wl, "debugfs: add device txstatus OOM\n"); kfree((void const *)e); } return; } else { } { log->end = -1; spinlock_check(& log->lock); __raw_spin_lock_init(& log->lock.__annonCompField19.rlock, "&(&log->lock)->rlock", & __key); dev->dfsentry = e; tmp___2 = wiphy_name((struct wiphy const *)((dev->wl)->hw)->wiphy); snprintf((char *)(& devdir), 16UL, "%s", tmp___2); e->subdir = debugfs_create_dir((char const *)(& devdir), rootdir); } if ((unsigned long )e->subdir == (unsigned long )((struct dentry *)0)) { goto _L; } else { { tmp___4 = IS_ERR((void const *)e->subdir); } if (tmp___4 != 0L) { _L: /* CIL Label */ { tmp___3 = ERR_PTR(-19L); } if ((unsigned long )((void *)e->subdir) == (unsigned long )tmp___3) { { b43legacydbg(dev->wl, "DebugFS (CONFIG_DEBUG_FS) not enabled in kernel config\n"); } } else { { b43legacyerr(dev->wl, "debugfs: cannot create %s directory\n", (char *)(& devdir)); } } { dev->dfsentry = (struct b43legacy_dfsentry *)0; kfree((void const *)log->log); kfree((void const *)e); } return; } else { } } { d = debugfs_create_file("tsf", 384, e->subdir, (void *)dev, (struct file_operations const *)(& fops_tsf.fops)); e->file_tsf.dentry = (struct dentry *)0; tmp___5 = IS_ERR((void const *)d); } if (tmp___5 == 0L) { e->file_tsf.dentry = d; } else { } { d___0 = debugfs_create_file("ucode_regs", 256, e->subdir, (void *)dev, (struct file_operations const *)(& fops_ucode_regs.fops)); e->file_ucode_regs.dentry = (struct dentry *)0; tmp___6 = IS_ERR((void const *)d___0); } if (tmp___6 == 0L) { e->file_ucode_regs.dentry = d___0; } else { } { d___1 = debugfs_create_file("shm", 256, e->subdir, (void *)dev, (struct file_operations const *)(& fops_shm.fops)); e->file_shm.dentry = (struct dentry *)0; tmp___7 = IS_ERR((void const *)d___1); } if (tmp___7 == 0L) { e->file_shm.dentry = d___1; } else { } { d___2 = debugfs_create_file("txstat", 256, e->subdir, (void *)dev, (struct file_operations const *)(& fops_txstat.fops)); e->file_txstat.dentry = (struct dentry *)0; tmp___8 = IS_ERR((void const *)d___2); } if (tmp___8 == 0L) { e->file_txstat.dentry = d___2; } else { } { d___3 = debugfs_create_file("restart", 128, e->subdir, (void *)dev, (struct file_operations const *)(& fops_restart.fops)); e->file_restart.dentry = (struct dentry *)0; tmp___9 = IS_ERR((void const *)d___3); } if (tmp___9 == 0L) { e->file_restart.dentry = d___3; } else { } { b43legacy_add_dynamic_debug(dev); } return; } } void b43legacy_debugfs_remove_device(struct b43legacy_wldev *dev ) { struct b43legacy_dfsentry *e ; { if ((unsigned long )dev == (unsigned long )((struct b43legacy_wldev *)0)) { return; } else { } e = dev->dfsentry; if ((unsigned long )e == (unsigned long )((struct b43legacy_dfsentry *)0)) { return; } else { } { b43legacy_remove_dynamic_debug(dev); debugfs_remove(e->file_tsf.dentry); debugfs_remove(e->file_ucode_regs.dentry); debugfs_remove(e->file_shm.dentry); debugfs_remove(e->file_txstat.dentry); debugfs_remove(e->file_restart.dentry); debugfs_remove(e->subdir); kfree((void const *)e->txstatlog.log); kfree((void const *)e); } return; } } void b43legacy_debugfs_log_txstat(struct b43legacy_wldev *dev , struct b43legacy_txstatus const *status ) { struct b43legacy_dfsentry *e ; struct b43legacy_txstatus_log *log ; struct b43legacy_txstatus *cur ; int i ; int __ret_warn_on ; unsigned long _flags ; int tmp ; long tmp___0 ; { e = dev->dfsentry; if ((unsigned long )e == (unsigned long )((struct b43legacy_dfsentry *)0)) { return; } else { } { log = & e->txstatlog; _flags = arch_local_save_flags(); tmp = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp == 0; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/debugfs.c", 479); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); ldv_spin_lock_68(& log->lock); i = log->end + 1; } if (i == 100) { i = 0; } else { } { log->end = i; cur = log->log + (unsigned long )i; memcpy((void *)cur, (void const *)status, 12UL); ldv_spin_unlock_69(& log->lock); } return; } } void b43legacy_debugfs_init(void) { long tmp ; { { rootdir = debugfs_create_dir("b43legacy", (struct dentry *)0); tmp = IS_ERR((void const *)rootdir); } if (tmp != 0L) { rootdir = (struct dentry *)0; } else { } return; } } void b43legacy_debugfs_exit(void) { { { debugfs_remove(rootdir); } return; } } void ldv_file_operations_instance_callback_0_22(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { b43legacy_debugfs_read(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_0_5(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { generic_file_llseek(arg1, arg2, arg3); } return; } } int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = simple_open(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { b43legacy_debugfs_write(arg1, (char const *)arg2, arg3, arg4); } return; } } __inline static void *ERR_PTR(long error ) { void *tmp ; { { tmp = ldv_err_ptr(error); } return (tmp); } } __inline static long IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_is_err(ptr); } return (tmp); } } static void ldv___ldv_spin_lock_62___1(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_b43legacy_txstatus_log(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_63___1(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_lock_of_b43legacy_txstatus_log(); spin_unlock_irqrestore(lock, flags); } return; } } __inline static void ldv_spin_lock_68(spinlock_t *lock ) { { { ldv_spin_lock_lock_of_b43legacy_txstatus_log(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_69(spinlock_t *lock ) { { { ldv_spin_unlock_lock_of_b43legacy_txstatus_log(); spin_unlock(lock); } return; } } extern unsigned long __phys_addr(unsigned long ) ; extern unsigned long volatile jiffies ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern void debug_dma_sync_single_for_device(struct device * , dma_addr_t , size_t , int ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (103), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); } return; } } __inline static void dma_sync_single_for_device(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (115), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_device))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_device(dev, addr, size, (int )dir); } return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/520b8de/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static int dma_set_mask_and_coherent(struct device *dev , u64 mask ) { int rc ; int tmp ; { { tmp = dma_set_mask(dev, mask); rc = tmp; } if (rc == 0) { { dma_set_coherent_mask(dev, mask); } } else { } return (rc); } } __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flag ) { void *ret ; void *tmp ; { { tmp = dma_alloc_attrs(dev, size, dma_handle, flag | 32768U, (struct dma_attrs *)0); ret = tmp; } return (ret); } } extern struct sk_buff *__alloc_skb(unsigned int , gfp_t , int , int ) ; __inline static struct sk_buff *alloc_skb(unsigned int size , gfp_t priority ) { struct sk_buff *tmp ; { { tmp = __alloc_skb(size, priority, 0, -1); } return (tmp); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern struct sk_buff *__netdev_alloc_skb(struct net_device * , unsigned int , gfp_t ) ; __inline static struct sk_buff *__dev_alloc_skb(unsigned int length , gfp_t gfp_mask ) { struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb((struct net_device *)0, length, gfp_mask); } return (tmp); } } __inline static void skb_set_queue_mapping(struct sk_buff *skb , u16 queue_mapping ) { { skb->queue_mapping = queue_mapping; return; } } __inline static u16 skb_get_queue_mapping(struct sk_buff const *skb ) { { return ((u16 )skb->queue_mapping); } } extern void __dev_kfree_skb_irq(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_irq(struct sk_buff *skb ) { { { __dev_kfree_skb_irq(skb, 1); } return; } } extern u32 ssb_dma_translation(struct ssb_device * ) ; extern void __compiletime_assert_768(void) ; extern void __compiletime_assert_770(void) ; extern void __compiletime_assert_771(void) ; extern void __compiletime_assert_777(void) ; __inline static void ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info ) { int i ; bool __cond ; bool __cond___0 ; bool __cond___1 ; bool __cond___2 ; { __cond = 0; if ((int )__cond) { { __compiletime_assert_768(); } } else { } __cond___0 = 0; if ((int )__cond___0) { { __compiletime_assert_770(); } } else { } __cond___1 = 0; if ((int )__cond___1) { { __compiletime_assert_771(); } } else { } i = 0; goto ldv_49083; ldv_49082: info->__annonCompField84.status.rates[i].count = 0U; i = i + 1; ldv_49083: ; if (i <= 3) { goto ldv_49082; } else { } __cond___2 = 0; if ((int )__cond___2) { { __compiletime_assert_777(); } } else { } { memset((void *)(& info->__annonCompField84.status.ampdu_ack_len), 0, 24UL); } return; } } extern void ieee80211_tx_status_irqsafe(struct ieee80211_hw * , struct sk_buff * ) ; extern void ieee80211_wake_queue(struct ieee80211_hw * , int ) ; __inline static u32 b43legacy_dma_read(struct b43legacy_dmaring *ring , u16 offset ) { u32 tmp ; { { tmp = b43legacy_read32(ring->dev, (int )ring->mmio_base + (int )offset); } return (tmp); } } __inline static void b43legacy_dma_write(struct b43legacy_dmaring *ring , u16 offset , u32 value ) { { { b43legacy_write32(ring->dev, (int )ring->mmio_base + (int )offset, value); } return; } } static struct b43legacy_dmadesc32 *op32_idx2desc(struct b43legacy_dmaring *ring , int slot , struct b43legacy_dmadesc_meta **meta ) { struct b43legacy_dmadesc32 *desc ; { *meta = ring->meta + (unsigned long )slot; desc = (struct b43legacy_dmadesc32 *)ring->descbase; desc = desc + (unsigned long )slot; return (desc); } } static void op32_fill_descriptor(struct b43legacy_dmaring *ring , struct b43legacy_dmadesc32 *desc , dma_addr_t dmaaddr , u16 bufsize , int start , int end , int irq ) { struct b43legacy_dmadesc32 *descbase ; int slot ; u32 ctl ; u32 addr ; u32 addrext ; int __ret_warn_on ; long tmp ; { { descbase = (struct b43legacy_dmadesc32 *)ring->descbase; slot = (int )(((long )desc - (long )descbase) / 8L); __ret_warn_on = slot < 0 || slot >= ring->nr_slots; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 70); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); addr = (unsigned int )dmaaddr & 1073741823U; addrext = (unsigned int )dmaaddr >> 30; addr = addr | (ring->dev)->__annonCompField88.dma.translation; ctl = ((u32 )bufsize - ring->frameoffset) & 8191U; } if (slot == ring->nr_slots + -1) { ctl = ctl | 268435456U; } else { } if (start != 0) { ctl = ctl | 2147483648U; } else { } if (end != 0) { ctl = ctl | 1073741824U; } else { } if (irq != 0) { ctl = ctl | 536870912U; } else { } ctl = ctl | ((addrext << 16) & 196608U); desc->control = ctl; desc->address = addr; return; } } static void op32_poke_tx(struct b43legacy_dmaring *ring , int slot ) { { { b43legacy_dma_write(ring, 8, (unsigned int )((unsigned long )slot) * 8U); } return; } } static void op32_tx_suspend(struct b43legacy_dmaring *ring ) { u32 tmp ; { { tmp = b43legacy_dma_read(ring, 0); b43legacy_dma_write(ring, 0, tmp | 2U); } return; } } static void op32_tx_resume(struct b43legacy_dmaring *ring ) { u32 tmp ; { { tmp = b43legacy_dma_read(ring, 0); b43legacy_dma_write(ring, 0, tmp & 4294967293U); } return; } } static int op32_get_current_rxslot(struct b43legacy_dmaring *ring ) { u32 val ; { { val = b43legacy_dma_read(ring, 28); val = val & 4095U; } return ((int )(val / 8U)); } } static void op32_set_current_rxslot(struct b43legacy_dmaring *ring , int slot ) { { { b43legacy_dma_write(ring, 24, (unsigned int )((unsigned long )slot) * 8U); } return; } } __inline static int free_slots(struct b43legacy_dmaring *ring ) { { return (ring->nr_slots - ring->used_slots); } } __inline static int next_slot(struct b43legacy_dmaring *ring , int slot ) { int __ret_warn_on ; long tmp ; { { __ret_warn_on = slot < -1 || slot > ring->nr_slots + -1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 137); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (slot == ring->nr_slots + -1) { return (0); } else { } return (slot + 1); } } static void update_max_used_slots(struct b43legacy_dmaring *ring , int current_used_slots ) { int tmp ; { if (current_used_slots <= ring->max_used_slots) { return; } else { } { ring->max_used_slots = current_used_slots; tmp = b43legacy_debug(ring->dev, 2); } if (tmp != 0) { { b43legacydbg((ring->dev)->wl, "max_used_slots increased to %d on %s ring %d\n", ring->max_used_slots, (int )ring->tx ? (char *)"TX" : (char *)"RX", ring->index); } } else { } return; } } __inline static int request_slot(struct b43legacy_dmaring *ring ) { int slot ; int __ret_warn_on ; long tmp ; int __ret_warn_on___0 ; long tmp___0 ; int __ret_warn_on___1 ; int tmp___1 ; long tmp___2 ; { { __ret_warn_on = ! ring->tx; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 178); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); __ret_warn_on___0 = (int )ring->stopped; tmp___0 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 179); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); tmp___1 = free_slots(ring); __ret_warn_on___1 = tmp___1 == 0; tmp___2 = ldv__builtin_expect(__ret_warn_on___1 != 0, 0L); } if (tmp___2 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 180); } } else { } { ldv__builtin_expect(__ret_warn_on___1 != 0, 0L); slot = next_slot(ring, ring->current_slot); ring->current_slot = slot; ring->used_slots = ring->used_slots + 1; update_max_used_slots(ring, ring->used_slots); } return (slot); } } static struct b43legacy_dmaring *priority_to_txring(struct b43legacy_wldev *dev , int queue_priority ) { struct b43legacy_dmaring *ring ; int __ret_warn_on ; long tmp ; { return (dev->__annonCompField88.dma.tx_ring1); { if (queue_priority == 0) { goto case_0; } else { } if (queue_priority == 1) { goto case_1; } else { } if (queue_priority == 2) { goto case_2; } else { } if (queue_priority == 3) { goto case_3; } else { } if (queue_priority == 4) { goto case_4; } else { } if (queue_priority == 5) { goto case_5; } else { } goto switch_default; switch_default: /* CIL Label */ { __ret_warn_on = 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 204); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } case_0: /* CIL Label */ ring = dev->__annonCompField88.dma.tx_ring3; goto ldv_52140; case_1: /* CIL Label */ ring = dev->__annonCompField88.dma.tx_ring2; goto ldv_52140; case_2: /* CIL Label */ ring = dev->__annonCompField88.dma.tx_ring1; goto ldv_52140; case_3: /* CIL Label */ ring = dev->__annonCompField88.dma.tx_ring0; goto ldv_52140; case_4: /* CIL Label */ ring = dev->__annonCompField88.dma.tx_ring4; goto ldv_52140; case_5: /* CIL Label */ ring = dev->__annonCompField88.dma.tx_ring5; goto ldv_52140; switch_break: /* CIL Label */ ; } ldv_52140: ; return (ring); } } static u16 b43legacy_dmacontroller_base(enum b43legacy_dmatype type , int controller_idx ) { u16 map32[6U] ; int __ret_warn_on ; long tmp ; { { map32[0] = 512U; map32[1] = 544U; map32[2] = 576U; map32[3] = 608U; map32[4] = 640U; map32[5] = 672U; __ret_warn_on = (unsigned int )controller_idx > 5U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 255); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } return (map32[controller_idx]); } } __inline static dma_addr_t map_descbuffer(struct b43legacy_dmaring *ring , unsigned char *buf , size_t len , int tx ) { dma_addr_t dmaaddr ; { if (tx != 0) { { dmaaddr = dma_map_single_attrs(((ring->dev)->dev)->dma_dev, (void *)buf, len, 1, (struct dma_attrs *)0); } } else { { dmaaddr = dma_map_single_attrs(((ring->dev)->dev)->dma_dev, (void *)buf, len, 2, (struct dma_attrs *)0); } } return (dmaaddr); } } __inline static void unmap_descbuffer(struct b43legacy_dmaring *ring , dma_addr_t addr , size_t len , int tx ) { { if (tx != 0) { { dma_unmap_single_attrs(((ring->dev)->dev)->dma_dev, addr, len, 1, (struct dma_attrs *)0); } } else { { dma_unmap_single_attrs(((ring->dev)->dev)->dma_dev, addr, len, 2, (struct dma_attrs *)0); } } return; } } __inline static void sync_descbuffer_for_cpu(struct b43legacy_dmaring *ring , dma_addr_t addr , size_t len ) { int __ret_warn_on ; long tmp ; { { __ret_warn_on = (int )ring->tx; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 300); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); dma_sync_single_for_cpu(((ring->dev)->dev)->dma_dev, addr, len, 2); } return; } } __inline static void sync_descbuffer_for_device(struct b43legacy_dmaring *ring , dma_addr_t addr , size_t len ) { int __ret_warn_on ; long tmp ; { { __ret_warn_on = (int )ring->tx; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 311); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); dma_sync_single_for_device(((ring->dev)->dev)->dma_dev, addr, len, 2); } return; } } __inline static void free_descriptor_buffer(struct b43legacy_dmaring *ring , struct b43legacy_dmadesc_meta *meta , int irq_context ) { { if ((unsigned long )meta->skb != (unsigned long )((struct sk_buff *)0)) { if (irq_context != 0) { { dev_kfree_skb_irq(meta->skb); } } else { { consume_skb(meta->skb); } } meta->skb = (struct sk_buff *)0; } else { } return; } } static int alloc_ringmemory(struct b43legacy_dmaring *ring ) { { { ring->descbase = dma_zalloc_coherent(((ring->dev)->dev)->dma_dev, 4096UL, & ring->dmabase, 208U); } if ((unsigned long )ring->descbase == (unsigned long )((void *)0)) { return (-12); } else { } return (0); } } static void free_ringmemory(struct b43legacy_dmaring *ring ) { { { dma_free_attrs(((ring->dev)->dev)->dma_dev, 4096UL, ring->descbase, ring->dmabase, (struct dma_attrs *)0); } return; } } static int b43legacy_dmacontroller_rx_reset(struct b43legacy_wldev *dev , u16 mmio_base , enum b43legacy_dmatype type ) { int i ; u32 value ; u16 offset ; { { __might_sleep("drivers/net/wireless/b43legacy/dma.c", 358, 0); offset = 16U; b43legacy_write32(dev, (int )mmio_base + (int )offset, 0U); i = 0; } goto ldv_52207; ldv_52206: { offset = 28U; value = b43legacy_read32(dev, (int )mmio_base + (int )offset); value = value & 61440U; } if (value == 0U) { i = -1; goto ldv_52205; } else { } { msleep(1U); i = i + 1; } ldv_52207: ; if (i <= 9) { goto ldv_52206; } else { } ldv_52205: ; if (i != -1) { { b43legacyerr(dev->wl, "DMA RX reset timed out\n"); } return (-19); } else { } return (0); } } static int b43legacy_dmacontroller_tx_reset(struct b43legacy_wldev *dev , u16 mmio_base , enum b43legacy_dmatype type ) { int i ; u32 value ; u16 offset ; { { __might_sleep("drivers/net/wireless/b43legacy/dma.c", 389, 0); i = 0; } goto ldv_52218; ldv_52217: { offset = 12U; value = b43legacy_read32(dev, (int )mmio_base + (int )offset); value = value & 61440U; } if ((value == 0U || value == 8192U) || value == 12288U) { goto ldv_52216; } else { } { msleep(1U); i = i + 1; } ldv_52218: ; if (i <= 9) { goto ldv_52217; } else { } ldv_52216: { offset = 0U; b43legacy_write32(dev, (int )mmio_base + (int )offset, 0U); i = 0; } goto ldv_52221; ldv_52220: { offset = 12U; value = b43legacy_read32(dev, (int )mmio_base + (int )offset); value = value & 61440U; } if (value == 0U) { i = -1; goto ldv_52219; } else { } { msleep(1U); i = i + 1; } ldv_52221: ; if (i <= 9) { goto ldv_52220; } else { } ldv_52219: ; if (i != -1) { { b43legacyerr(dev->wl, "DMA TX reset timed out\n"); } return (-19); } else { } { msleep(1U); } return (0); } } static bool b43legacy_dma_mapping_error(struct b43legacy_dmaring *ring , dma_addr_t addr , size_t buffersize , bool dma_to_device ) { int tmp ; long tmp___0 ; { { tmp = dma_mapping_error(((ring->dev)->dev)->dma_dev, addr); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } if (tmp___0 != 0L) { return (1); } else { } { if ((unsigned int )ring->type == 30U) { goto case_30; } else { } if ((unsigned int )ring->type == 32U) { goto case_32; } else { } goto switch_break; case_30: /* CIL Label */ ; if (addr + (unsigned long long )buffersize > 1073741824ULL) { goto address_error; } else { } goto ldv_52230; case_32: /* CIL Label */ ; if (addr + (unsigned long long )buffersize > 4294967296ULL) { goto address_error; } else { } goto ldv_52230; switch_break: /* CIL Label */ ; } ldv_52230: ; return (0); address_error: { unmap_descbuffer(ring, addr, buffersize, (int )dma_to_device); } return (1); } } static int setup_rx_descbuffer(struct b43legacy_dmaring *ring , struct b43legacy_dmadesc32 *desc , struct b43legacy_dmadesc_meta *meta , gfp_t gfp_flags ) { struct b43legacy_rxhdr_fw3 *rxhdr ; struct b43legacy_hwtxstatus *txstat ; dma_addr_t dmaaddr ; struct sk_buff *skb ; int __ret_warn_on ; long tmp ; long tmp___0 ; long tmp___1 ; bool tmp___2 ; bool tmp___3 ; { { __ret_warn_on = (int )ring->tx; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 463); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); skb = __dev_alloc_skb((unsigned int )ring->rx_buffersize, gfp_flags); tmp___0 = ldv__builtin_expect((unsigned long )skb == (unsigned long )((struct sk_buff *)0), 0L); } if (tmp___0 != 0L) { return (-12); } else { } { dmaaddr = map_descbuffer(ring, skb->data, (size_t )ring->rx_buffersize, 0); tmp___2 = b43legacy_dma_mapping_error(ring, dmaaddr, (size_t )ring->rx_buffersize, 0); } if ((int )tmp___2) { { gfp_flags = gfp_flags | 1U; dev_kfree_skb_any(skb); skb = __dev_alloc_skb((unsigned int )ring->rx_buffersize, gfp_flags); tmp___1 = ldv__builtin_expect((unsigned long )skb == (unsigned long )((struct sk_buff *)0), 0L); } if (tmp___1 != 0L) { return (-12); } else { } { dmaaddr = map_descbuffer(ring, skb->data, (size_t )ring->rx_buffersize, 0); } } else { } { tmp___3 = b43legacy_dma_mapping_error(ring, dmaaddr, (size_t )ring->rx_buffersize, 0); } if ((int )tmp___3) { { dev_kfree_skb_any(skb); } return (-5); } else { } { meta->skb = skb; meta->dmaaddr = dmaaddr; op32_fill_descriptor(ring, desc, dmaaddr, (int )ring->rx_buffersize, 0, 0, 0); rxhdr = (struct b43legacy_rxhdr_fw3 *)skb->data; rxhdr->frame_len = 0U; txstat = (struct b43legacy_hwtxstatus *)skb->data; txstat->cookie = 0U; } return (0); } } static int alloc_initial_descbuffers(struct b43legacy_dmaring *ring ) { int i ; int err ; struct b43legacy_dmadesc32 *desc ; struct b43legacy_dmadesc_meta *meta ; { err = -12; i = 0; goto ldv_52253; ldv_52252: { desc = op32_idx2desc(ring, i, & meta); err = setup_rx_descbuffer(ring, desc, meta, 208U); } if (err != 0) { { b43legacyerr((ring->dev)->wl, "Failed to allocate initial descbuffers\n"); } goto err_unwind; } else { } i = i + 1; ldv_52253: ; if (i < ring->nr_slots) { goto ldv_52252; } else { } __asm__ volatile ("mfence": : : "memory"); ring->used_slots = ring->nr_slots; err = 0; out: ; return (err); err_unwind: i = i - 1; goto ldv_52257; ldv_52256: { desc = op32_idx2desc(ring, i, & meta); unmap_descbuffer(ring, meta->dmaaddr, (size_t )ring->rx_buffersize, 0); consume_skb(meta->skb); i = i - 1; } ldv_52257: ; if (i >= 0) { goto ldv_52256; } else { } goto out; } } static int dmacontroller_setup(struct b43legacy_dmaring *ring ) { int err ; u32 value ; u32 addrext ; u32 trans ; u32 ringbase ; { err = 0; trans = (ring->dev)->__annonCompField88.dma.translation; ringbase = (unsigned int )ring->dmabase; if ((int )ring->tx) { { addrext = ringbase >> 30; value = 1U; value = value | ((addrext << 16) & 196608U); b43legacy_dma_write(ring, 0, value); b43legacy_dma_write(ring, 4, (ringbase & 1073741823U) | trans); } } else { { err = alloc_initial_descbuffers(ring); } if (err != 0) { goto out; } else { } { addrext = ringbase >> 30; value = ring->frameoffset << 1; value = value | 1U; value = value | ((addrext << 16) & 196608U); b43legacy_dma_write(ring, 16, value); b43legacy_dma_write(ring, 20, (ringbase & 1073741823U) | trans); b43legacy_dma_write(ring, 24, 200U); } } out: ; return (err); } } static void dmacontroller_cleanup(struct b43legacy_dmaring *ring ) { { if ((int )ring->tx) { { b43legacy_dmacontroller_tx_reset(ring->dev, (int )ring->mmio_base, ring->type); b43legacy_dma_write(ring, 4, 0U); } } else { { b43legacy_dmacontroller_rx_reset(ring->dev, (int )ring->mmio_base, ring->type); b43legacy_dma_write(ring, 20, 0U); } } return; } } static void free_all_descbuffers(struct b43legacy_dmaring *ring ) { struct b43legacy_dmadesc_meta *meta ; int i ; int __ret_warn_on ; long tmp ; { if (ring->used_slots == 0) { return; } else { } i = 0; goto ldv_52280; ldv_52279: { op32_idx2desc(ring, i, & meta); } if ((unsigned long )meta->skb == (unsigned long )((struct sk_buff *)0)) { { __ret_warn_on = ! ring->tx; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 606); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } goto ldv_52278; } else { } if ((int )ring->tx) { { unmap_descbuffer(ring, meta->dmaaddr, (size_t )(meta->skb)->len, 1); } } else { { unmap_descbuffer(ring, meta->dmaaddr, (size_t )ring->rx_buffersize, 0); } } { free_descriptor_buffer(ring, meta, 0); } ldv_52278: i = i + 1; ldv_52280: ; if (i < ring->nr_slots) { goto ldv_52279; } else { } return; } } static u64 supported_dma_mask(struct b43legacy_wldev *dev ) { u32 tmp ; u16 mmio_base ; { { mmio_base = b43legacy_dmacontroller_base(0, 0); b43legacy_write32(dev, (int )mmio_base, 196608U); tmp = b43legacy_read32(dev, (int )mmio_base); } if ((tmp & 196608U) != 0U) { return (4294967295ULL); } else { } return (1073741823ULL); } } static enum b43legacy_dmatype dma_mask_to_engine_type(u64 dmamask ) { int __ret_warn_on ; long tmp ; { if (dmamask == 1073741823ULL) { return (30); } else { } if (dmamask == 4294967295ULL) { return (32); } else { } { __ret_warn_on = 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 642); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } return (30); } } static struct b43legacy_dmaring *b43legacy_setup_dmaring(struct b43legacy_wldev *dev , int controller_index , int for_tx , enum b43legacy_dmatype type ) { struct b43legacy_dmaring *ring ; int err ; int nr_slots ; dma_addr_t dma_test ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; bool tmp___3 ; bool tmp___4 ; int __ret_warn_on ; long tmp___5 ; { { tmp = kzalloc(96UL, 208U); ring = (struct b43legacy_dmaring *)tmp; } if ((unsigned long )ring == (unsigned long )((struct b43legacy_dmaring *)0)) { goto out; } else { } ring->type = type; ring->dev = dev; nr_slots = 64; if (for_tx != 0) { nr_slots = 128; } else { } { tmp___0 = kcalloc((size_t )nr_slots, 24UL, 208U); ring->meta = (struct b43legacy_dmadesc_meta *)tmp___0; } if ((unsigned long )ring->meta == (unsigned long )((struct b43legacy_dmadesc_meta *)0)) { goto err_kfree_ring; } else { } if (for_tx != 0) { { tmp___1 = kcalloc((size_t )nr_slots, 82UL, 208U); ring->txhdr_cache = (u8 *)tmp___1; } if ((unsigned long )ring->txhdr_cache == (unsigned long )((u8 *)0U)) { goto err_kfree_meta; } else { } { dma_test = dma_map_single_attrs((dev->dev)->dma_dev, (void *)ring->txhdr_cache, 82UL, 1, (struct dma_attrs *)0); tmp___4 = b43legacy_dma_mapping_error(ring, dma_test, 82UL, 1); } if ((int )tmp___4) { { kfree((void const *)ring->txhdr_cache); tmp___2 = kcalloc((size_t )nr_slots, 82UL, 209U); ring->txhdr_cache = (u8 *)tmp___2; } if ((unsigned long )ring->txhdr_cache == (unsigned long )((u8 *)0U)) { goto err_kfree_meta; } else { } { dma_test = dma_map_single_attrs((dev->dev)->dma_dev, (void *)ring->txhdr_cache, 82UL, 1, (struct dma_attrs *)0); tmp___3 = b43legacy_dma_mapping_error(ring, dma_test, 82UL, 1); } if ((int )tmp___3) { goto err_kfree_txhdr_cache; } else { } } else { } { dma_unmap_single_attrs((dev->dev)->dma_dev, dma_test, 82UL, 1, (struct dma_attrs *)0); } } else { } { ring->nr_slots = nr_slots; ring->mmio_base = b43legacy_dmacontroller_base(type, controller_index); ring->index = controller_index; } if (for_tx != 0) { ring->tx = 1; ring->current_slot = -1; } else if (ring->index == 0) { ring->rx_buffersize = 2404U; ring->frameoffset = 30U; } else if (ring->index == 3) { ring->rx_buffersize = 16U; ring->frameoffset = 0U; } else { { __ret_warn_on = 1; tmp___5 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___5 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 723); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } } { ring->last_injected_overflow = jiffies; err = alloc_ringmemory(ring); } if (err != 0) { goto err_kfree_txhdr_cache; } else { } { err = dmacontroller_setup(ring); } if (err != 0) { goto err_free_ringmemory; } else { } out: ; return (ring); err_free_ringmemory: { free_ringmemory(ring); } err_kfree_txhdr_cache: { kfree((void const *)ring->txhdr_cache); } err_kfree_meta: { kfree((void const *)ring->meta); } err_kfree_ring: { kfree((void const *)ring); ring = (struct b43legacy_dmaring *)0; } goto out; } } static void b43legacy_destroy_dmaring(struct b43legacy_dmaring *ring ) { { if ((unsigned long )ring == (unsigned long )((struct b43legacy_dmaring *)0)) { return; } else { } { b43legacydbg((ring->dev)->wl, "DMA-%u 0x%04X (%s) max used slots: %d/%d\n", (unsigned int )ring->type, (int )ring->mmio_base, (int )ring->tx ? (char *)"TX" : (char *)"RX", ring->max_used_slots, ring->nr_slots); dmacontroller_cleanup(ring); free_all_descbuffers(ring); free_ringmemory(ring); kfree((void const *)ring->txhdr_cache); kfree((void const *)ring->meta); kfree((void const *)ring); } return; } } void b43legacy_dma_free(struct b43legacy_wldev *dev ) { struct b43legacy_dma *dma ; int tmp ; { { tmp = b43legacy_using_pio(dev); } if (tmp != 0) { return; } else { } { dma = & dev->__annonCompField88.dma; b43legacy_destroy_dmaring(dma->rx_ring3); dma->rx_ring3 = (struct b43legacy_dmaring *)0; b43legacy_destroy_dmaring(dma->rx_ring0); dma->rx_ring0 = (struct b43legacy_dmaring *)0; b43legacy_destroy_dmaring(dma->tx_ring5); dma->tx_ring5 = (struct b43legacy_dmaring *)0; b43legacy_destroy_dmaring(dma->tx_ring4); dma->tx_ring4 = (struct b43legacy_dmaring *)0; b43legacy_destroy_dmaring(dma->tx_ring3); dma->tx_ring3 = (struct b43legacy_dmaring *)0; b43legacy_destroy_dmaring(dma->tx_ring2); dma->tx_ring2 = (struct b43legacy_dmaring *)0; b43legacy_destroy_dmaring(dma->tx_ring1); dma->tx_ring1 = (struct b43legacy_dmaring *)0; b43legacy_destroy_dmaring(dma->tx_ring0); dma->tx_ring0 = (struct b43legacy_dmaring *)0; } return; } } static int b43legacy_dma_set_mask(struct b43legacy_wldev *dev , u64 mask ) { u64 orig_mask ; bool fallback ; int err ; enum b43legacy_dmatype tmp ; enum b43legacy_dmatype tmp___0 ; enum b43legacy_dmatype tmp___1 ; { orig_mask = mask; fallback = 0; ldv_52325: { err = dma_set_mask_and_coherent((dev->dev)->dma_dev, mask); } if (err == 0) { goto ldv_52323; } else { } if (mask == 0xffffffffffffffffULL) { mask = 4294967295ULL; fallback = 1; goto ldv_52324; } else { } if (mask == 4294967295ULL) { mask = 1073741823ULL; fallback = 1; goto ldv_52324; } else { } { tmp = dma_mask_to_engine_type(orig_mask); b43legacyerr(dev->wl, "The machine/kernel does not support the required %u-bit DMA mask\n", (unsigned int )tmp); } return (-95); ldv_52324: ; goto ldv_52325; ldv_52323: ; if ((int )fallback) { { tmp___0 = dma_mask_to_engine_type(mask); tmp___1 = dma_mask_to_engine_type(orig_mask); b43legacyinfo(dev->wl, "DMA mask fallback from %u-bit to %u-bit\n", (unsigned int )tmp___1, (unsigned int )tmp___0); } } else { } return (0); } } int b43legacy_dma_init(struct b43legacy_wldev *dev ) { struct b43legacy_dma *dma ; struct b43legacy_dmaring *ring ; int err ; u64 dmamask ; enum b43legacy_dmatype type ; { { dma = & dev->__annonCompField88.dma; dmamask = supported_dma_mask(dev); type = dma_mask_to_engine_type(dmamask); err = b43legacy_dma_set_mask(dev, dmamask); } if (err != 0) { { b43legacywarn(dev->wl, "DMA for this device not supported. Falling back to PIO\n"); dev->__using_pio = 1; } return (-11); } else { } { dma->translation = ssb_dma_translation(dev->dev); err = -12; ring = b43legacy_setup_dmaring(dev, 0, 1, type); } if ((unsigned long )ring == (unsigned long )((struct b43legacy_dmaring *)0)) { goto out; } else { } { dma->tx_ring0 = ring; ring = b43legacy_setup_dmaring(dev, 1, 1, type); } if ((unsigned long )ring == (unsigned long )((struct b43legacy_dmaring *)0)) { goto err_destroy_tx0; } else { } { dma->tx_ring1 = ring; ring = b43legacy_setup_dmaring(dev, 2, 1, type); } if ((unsigned long )ring == (unsigned long )((struct b43legacy_dmaring *)0)) { goto err_destroy_tx1; } else { } { dma->tx_ring2 = ring; ring = b43legacy_setup_dmaring(dev, 3, 1, type); } if ((unsigned long )ring == (unsigned long )((struct b43legacy_dmaring *)0)) { goto err_destroy_tx2; } else { } { dma->tx_ring3 = ring; ring = b43legacy_setup_dmaring(dev, 4, 1, type); } if ((unsigned long )ring == (unsigned long )((struct b43legacy_dmaring *)0)) { goto err_destroy_tx3; } else { } { dma->tx_ring4 = ring; ring = b43legacy_setup_dmaring(dev, 5, 1, type); } if ((unsigned long )ring == (unsigned long )((struct b43legacy_dmaring *)0)) { goto err_destroy_tx4; } else { } { dma->tx_ring5 = ring; ring = b43legacy_setup_dmaring(dev, 0, 0, type); } if ((unsigned long )ring == (unsigned long )((struct b43legacy_dmaring *)0)) { goto err_destroy_tx5; } else { } dma->rx_ring0 = ring; if ((unsigned int )(dev->dev)->id.revision <= 4U) { { ring = b43legacy_setup_dmaring(dev, 3, 0, type); } if ((unsigned long )ring == (unsigned long )((struct b43legacy_dmaring *)0)) { goto err_destroy_rx0; } else { } dma->rx_ring3 = ring; } else { } { b43legacydbg(dev->wl, "%u-bit DMA initialized\n", (unsigned int )type); err = 0; } out: ; return (err); err_destroy_rx0: { b43legacy_destroy_dmaring(dma->rx_ring0); dma->rx_ring0 = (struct b43legacy_dmaring *)0; } err_destroy_tx5: { b43legacy_destroy_dmaring(dma->tx_ring5); dma->tx_ring5 = (struct b43legacy_dmaring *)0; } err_destroy_tx4: { b43legacy_destroy_dmaring(dma->tx_ring4); dma->tx_ring4 = (struct b43legacy_dmaring *)0; } err_destroy_tx3: { b43legacy_destroy_dmaring(dma->tx_ring3); dma->tx_ring3 = (struct b43legacy_dmaring *)0; } err_destroy_tx2: { b43legacy_destroy_dmaring(dma->tx_ring2); dma->tx_ring2 = (struct b43legacy_dmaring *)0; } err_destroy_tx1: { b43legacy_destroy_dmaring(dma->tx_ring1); dma->tx_ring1 = (struct b43legacy_dmaring *)0; } err_destroy_tx0: { b43legacy_destroy_dmaring(dma->tx_ring0); dma->tx_ring0 = (struct b43legacy_dmaring *)0; } goto out; } } static u16 generate_cookie(struct b43legacy_dmaring *ring , int slot ) { u16 cookie ; int __ret_warn_on ; long tmp ; { cookie = 4096U; { if (ring->index == 0) { goto case_0; } else { } if (ring->index == 1) { goto case_1; } else { } if (ring->index == 2) { goto case_2; } else { } if (ring->index == 3) { goto case_3; } else { } if (ring->index == 4) { goto case_4; } else { } if (ring->index == 5) { goto case_5; } else { } goto switch_break; case_0: /* CIL Label */ cookie = 40960U; goto ldv_52348; case_1: /* CIL Label */ cookie = 45056U; goto ldv_52348; case_2: /* CIL Label */ cookie = 49152U; goto ldv_52348; case_3: /* CIL Label */ cookie = 53248U; goto ldv_52348; case_4: /* CIL Label */ cookie = 57344U; goto ldv_52348; case_5: /* CIL Label */ cookie = 61440U; goto ldv_52348; switch_break: /* CIL Label */ ; } ldv_52348: { __ret_warn_on = ((int )((unsigned short )slot) & 61440) != 0; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 968); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); cookie = (u16 )((int )cookie | (int )((unsigned short )slot)); } return (cookie); } } static struct b43legacy_dmaring *parse_cookie(struct b43legacy_wldev *dev , u16 cookie , int *slot ) { struct b43legacy_dma *dma ; struct b43legacy_dmaring *ring ; int __ret_warn_on ; long tmp ; int __ret_warn_on___0 ; long tmp___0 ; { dma = & dev->__annonCompField88.dma; ring = (struct b43legacy_dmaring *)0; { if (((int )cookie & 61440) == 40960) { goto case_40960; } else { } if (((int )cookie & 61440) == 45056) { goto case_45056; } else { } if (((int )cookie & 61440) == 49152) { goto case_49152; } else { } if (((int )cookie & 61440) == 53248) { goto case_53248; } else { } if (((int )cookie & 61440) == 57344) { goto case_57344; } else { } if (((int )cookie & 61440) == 61440) { goto case_61440; } else { } goto switch_default; case_40960: /* CIL Label */ ring = dma->tx_ring0; goto ldv_52364; case_45056: /* CIL Label */ ring = dma->tx_ring1; goto ldv_52364; case_49152: /* CIL Label */ ring = dma->tx_ring2; goto ldv_52364; case_53248: /* CIL Label */ ring = dma->tx_ring3; goto ldv_52364; case_57344: /* CIL Label */ ring = dma->tx_ring4; goto ldv_52364; case_61440: /* CIL Label */ ring = dma->tx_ring5; goto ldv_52364; switch_default: /* CIL Label */ { __ret_warn_on = 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 1002); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } switch_break: /* CIL Label */ ; } ldv_52364: { *slot = (int )cookie & 4095; __ret_warn_on___0 = ((unsigned long )ring == (unsigned long )((struct b43legacy_dmaring *)0) || *slot < 0) || *slot >= ring->nr_slots; tmp___0 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 1005); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } return (ring); } } static int dma_tx_fragment(struct b43legacy_dmaring *ring , struct sk_buff **in_skb ) { struct sk_buff *skb ; struct ieee80211_tx_info *info ; struct ieee80211_tx_info *tmp ; u8 *header ; int slot ; int old_top_slot ; int old_used_slots ; int err ; struct b43legacy_dmadesc32 *desc ; struct b43legacy_dmadesc_meta *meta ; struct b43legacy_dmadesc_meta *meta_hdr ; struct sk_buff *bounce_skb ; int __ret_warn_on ; unsigned char *tmp___0 ; long tmp___1 ; u16 tmp___2 ; long tmp___3 ; bool tmp___4 ; unsigned char *tmp___5 ; u16 tmp___6 ; bool tmp___7 ; bool tmp___8 ; int tmp___9 ; { { skb = *in_skb; tmp = IEEE80211_SKB_CB(skb); info = tmp; tmp___0 = skb_end_pointer((struct sk_buff const *)skb); __ret_warn_on = (unsigned int )((struct skb_shared_info *)tmp___0)->nr_frags != 0U; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 1024); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); old_top_slot = ring->current_slot; old_used_slots = ring->used_slots; slot = request_slot(ring); desc = op32_idx2desc(ring, slot, & meta_hdr); memset((void *)meta_hdr, 0, 24UL); header = ring->txhdr_cache + (unsigned long )slot * 82UL; tmp___2 = generate_cookie(ring, slot); err = b43legacy_generate_txhdr(ring->dev, header, (unsigned char const *)skb->data, skb->len, info, (int )tmp___2); tmp___3 = ldv__builtin_expect(err != 0, 0L); } if (tmp___3 != 0L) { ring->current_slot = old_top_slot; ring->used_slots = old_used_slots; return (err); } else { } { meta_hdr->dmaaddr = map_descbuffer(ring, header, 82UL, 1); tmp___4 = b43legacy_dma_mapping_error(ring, meta_hdr->dmaaddr, 82UL, 1); } if ((int )tmp___4) { ring->current_slot = old_top_slot; ring->used_slots = old_used_slots; return (-5); } else { } { op32_fill_descriptor(ring, desc, meta_hdr->dmaaddr, 82, 1, 0, 0); slot = request_slot(ring); desc = op32_idx2desc(ring, slot, & meta); memset((void *)meta, 0, 24UL); meta->skb = skb; meta->is_last_fragment = 1; meta->dmaaddr = map_descbuffer(ring, skb->data, (size_t )skb->len, 1); tmp___8 = b43legacy_dma_mapping_error(ring, meta->dmaaddr, (size_t )skb->len, 1); } if ((int )tmp___8) { { bounce_skb = alloc_skb(skb->len, 33U); } if ((unsigned long )bounce_skb == (unsigned long )((struct sk_buff *)0)) { ring->current_slot = old_top_slot; ring->used_slots = old_used_slots; err = -12; goto out_unmap_hdr; } else { } { tmp___5 = skb_put(bounce_skb, skb->len); memcpy((void *)tmp___5, (void const *)skb->data, (size_t )skb->len); memcpy((void *)(& bounce_skb->cb), (void const *)(& skb->cb), 48UL); bounce_skb->dev = skb->dev; tmp___6 = skb_get_queue_mapping((struct sk_buff const *)skb); skb_set_queue_mapping(bounce_skb, (int )tmp___6); info = IEEE80211_SKB_CB(bounce_skb); dev_kfree_skb_any(skb); skb = bounce_skb; *in_skb = bounce_skb; meta->skb = skb; meta->dmaaddr = map_descbuffer(ring, skb->data, (size_t )skb->len, 1); tmp___7 = b43legacy_dma_mapping_error(ring, meta->dmaaddr, (size_t )skb->len, 1); } if ((int )tmp___7) { ring->current_slot = old_top_slot; ring->used_slots = old_used_slots; err = -5; goto out_free_bounce; } else { } } else { } { op32_fill_descriptor(ring, desc, meta->dmaaddr, (int )((u16 )skb->len), 0, 1, 1); __asm__ volatile ("sfence": : : "memory"); tmp___9 = next_slot(ring, slot); op32_poke_tx(ring, tmp___9); } return (0); out_free_bounce: { dev_kfree_skb_any(skb); } out_unmap_hdr: { unmap_descbuffer(ring, meta_hdr->dmaaddr, 82UL, 1); } return (err); } } __inline static int should_inject_overflow(struct b43legacy_dmaring *ring ) { unsigned long next_overflow ; int tmp ; long tmp___0 ; { { tmp = b43legacy_debug(ring->dev, 1); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } if (tmp___0 != 0L) { next_overflow = ring->last_injected_overflow + 250UL; if ((long )(next_overflow - (unsigned long )jiffies) < 0L) { { ring->last_injected_overflow = jiffies; b43legacydbg((ring->dev)->wl, "Injecting TX ring overflow on DMA controller %d\n", ring->index); } return (1); } else { } } else { } return (0); } } int b43legacy_dma_tx(struct b43legacy_wldev *dev , struct sk_buff *skb ) { struct b43legacy_dmaring *ring ; int err ; u16 tmp ; int __ret_warn_on ; long tmp___0 ; int tmp___1 ; long tmp___2 ; int __ret_warn_on___0 ; int tmp___3 ; long tmp___4 ; long tmp___5 ; long tmp___6 ; long tmp___7 ; long tmp___8 ; unsigned int skb_mapping ; u16 tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; { { err = 0; tmp = skb_get_queue_mapping((struct sk_buff const *)skb); ring = priority_to_txring(dev, (int )tmp); __ret_warn_on = ! ring->tx; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 1140); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); tmp___2 = ldv__builtin_expect((long )ring->stopped, 0L); } if (tmp___2 != 0L) { { tmp___1 = b43legacy_debug(dev, 2); } if (tmp___1 != 0) { { b43legacyerr(dev->wl, "Packet after queue stopped\n"); } } else { } return (-28); } else { } { tmp___3 = free_slots(ring); __ret_warn_on___0 = tmp___3 <= 1; tmp___4 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___4 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 1152); } } else { } { tmp___5 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); tmp___6 = ldv__builtin_expect(tmp___5 != 0L, 0L); } if (tmp___6 != 0L) { { b43legacyerr(dev->wl, "DMA queue overflow\n"); } return (-28); } else { } { err = dma_tx_fragment(ring, & skb); tmp___7 = ldv__builtin_expect(err == -126, 0L); } if (tmp___7 != 0L) { { dev_kfree_skb_any(skb); } return (0); } else { } { tmp___8 = ldv__builtin_expect(err != 0, 0L); } if (tmp___8 != 0L) { { b43legacyerr(dev->wl, "DMA tx mapping failure\n"); } return (err); } else { } { tmp___11 = free_slots(ring); } if (tmp___11 <= 1) { goto _L; } else { { tmp___12 = should_inject_overflow(ring); } if (tmp___12 != 0) { _L: /* CIL Label */ { tmp___9 = skb_get_queue_mapping((struct sk_buff const *)skb); skb_mapping = (unsigned int )tmp___9; ieee80211_stop_queue((dev->wl)->hw, (int )skb_mapping); (dev->wl)->tx_queue_stopped[skb_mapping] = 1; ring->stopped = 1; tmp___10 = b43legacy_debug(dev, 2); } if (tmp___10 != 0) { { b43legacydbg(dev->wl, "Stopped TX ring %d\n", ring->index); } } else { } } else { } } return (err); } } void b43legacy_dma_handle_txstatus(struct b43legacy_wldev *dev , struct b43legacy_txstatus const *status ) { struct b43legacy_dmaring *ring ; struct b43legacy_dmadesc_meta *meta ; int retry_limit ; int slot ; int firstused ; long tmp ; int __ret_warn_on ; long tmp___0 ; long tmp___1 ; int __ret_warn_on___0 ; long tmp___2 ; struct ieee80211_tx_info *info ; long tmp___3 ; int __ret_warn_on___1 ; long tmp___4 ; int __ret_warn_on___2 ; int tmp___5 ; long tmp___6 ; int tmp___7 ; { { ring = parse_cookie(dev, (int )status->cookie, & slot); tmp = ldv__builtin_expect((unsigned long )ring == (unsigned long )((struct b43legacy_dmaring *)0), 0L); } if (tmp != 0L) { return; } else { } { __ret_warn_on = ! ring->tx; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 1198); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); firstused = (ring->current_slot - ring->used_slots) + 1; } if (firstused < 0) { firstused = ring->nr_slots + firstused; } else { } { tmp___1 = ldv__builtin_expect(slot != firstused, 0L); } if (tmp___1 != 0L) { { b43legacydbg(dev->wl, "Out of order TX status report on DMA ring %d. Expected %d, but got %d\n", ring->index, firstused, slot); } return; } else { } ldv_52432: { __ret_warn_on___0 = slot < 0 || slot >= ring->nr_slots; tmp___2 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___2 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 1217); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); op32_idx2desc(ring, slot, & meta); } if ((unsigned long )meta->skb != (unsigned long )((struct sk_buff *)0)) { { unmap_descbuffer(ring, meta->dmaaddr, (size_t )(meta->skb)->len, 1); } } else { { unmap_descbuffer(ring, meta->dmaaddr, 82UL, 1); } } if ((int )meta->is_last_fragment) { { tmp___3 = ldv__builtin_expect((unsigned long )meta->skb == (unsigned long )((struct sk_buff *)0), 0L); } if (tmp___3 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/wireless/b43legacy/dma.c"), "i" (1230), "i" (12UL)); __builtin_unreachable(); } } else { } { info = IEEE80211_SKB_CB(meta->skb); retry_limit = (int )info->__annonCompField84.status.rates[0].count; ieee80211_tx_info_clear_status(info); } if ((unsigned int )((unsigned char )status->acked) != 0U) { info->flags = info->flags | 512U; } else { } if ((int )((unsigned char )status->rts_count) > (int )((dev->wl)->hw)->conf.short_frame_max_tx_count) { info->__annonCompField84.status.rates[0].count = 0U; info->__annonCompField84.status.rates[1].count = (unsigned char )status->frame_count; } else if ((int )status->frame_count > retry_limit) { info->__annonCompField84.status.rates[0].count = (unsigned char )retry_limit; info->__annonCompField84.status.rates[1].count = (int )((unsigned char )status->frame_count) - (int )((unsigned char )retry_limit); } else { info->__annonCompField84.status.rates[0].count = (unsigned char )status->frame_count; info->__annonCompField84.status.rates[1].idx = -1; } { ieee80211_tx_status_irqsafe((dev->wl)->hw, meta->skb); meta->skb = (struct sk_buff *)0; } } else { { __ret_warn_on___1 = (unsigned long )meta->skb != (unsigned long )((struct sk_buff *)0); tmp___4 = ldv__builtin_expect(__ret_warn_on___1 != 0, 0L); } if (tmp___4 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 1275); } } else { } { ldv__builtin_expect(__ret_warn_on___1 != 0, 0L); } } ring->used_slots = ring->used_slots - 1; if ((int )meta->is_last_fragment) { goto ldv_52431; } else { } { slot = next_slot(ring, slot); } goto ldv_52432; ldv_52431: dev->stats.last_tx = jiffies; if ((int )ring->stopped) { { tmp___5 = free_slots(ring); __ret_warn_on___2 = tmp___5 <= 1; tmp___6 = ldv__builtin_expect(__ret_warn_on___2 != 0, 0L); } if (tmp___6 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 1287); } } else { } { ldv__builtin_expect(__ret_warn_on___2 != 0, 0L); ring->stopped = 0; } } else { } if ((int )(dev->wl)->tx_queue_stopped[(int )ring->queue_prio]) { (dev->wl)->tx_queue_stopped[(int )ring->queue_prio] = 0; } else { { ieee80211_wake_queue((dev->wl)->hw, (int )ring->queue_prio); tmp___7 = b43legacy_debug(dev, 2); } if (tmp___7 != 0) { { b43legacydbg(dev->wl, "Woke up TX ring %d\n", ring->index); } } else { } } { ieee80211_queue_work((dev->wl)->hw, & (dev->wl)->tx_work); } return; } } static void dma_rx(struct b43legacy_dmaring *ring , int *slot ) { struct b43legacy_dmadesc32 *desc ; struct b43legacy_dmadesc_meta *meta ; struct b43legacy_rxhdr_fw3 *rxhdr ; struct sk_buff *skb ; u16 len ; int err ; dma_addr_t dmaaddr ; struct b43legacy_hwtxstatus *hw ; int i ; int i___0 ; int tmp ; long tmp___0 ; int cnt ; s32 tmp___1 ; long tmp___2 ; long tmp___3 ; { { desc = op32_idx2desc(ring, *slot, & meta); sync_descbuffer_for_cpu(ring, meta->dmaaddr, (size_t )ring->rx_buffersize); skb = meta->skb; } if (ring->index == 3) { hw = (struct b43legacy_hwtxstatus *)skb->data; i = 0; goto ldv_52450; ldv_52449: ; if (i > 100) { goto ldv_52448; } else { } { i = i + 1; __const_udelay(8590UL); __asm__ volatile ("": : : "memory"); } ldv_52450: ; if ((unsigned int )hw->cookie == 0U) { goto ldv_52449; } else { } ldv_52448: { b43legacy_handle_hwtxstatus(ring->dev, (struct b43legacy_hwtxstatus const *)hw); sync_descbuffer_for_device(ring, meta->dmaaddr, (size_t )ring->rx_buffersize); } return; } else { } rxhdr = (struct b43legacy_rxhdr_fw3 *)skb->data; len = rxhdr->frame_len; if ((unsigned int )len == 0U) { i___0 = 0; ldv_52452: { __const_udelay(8590UL); __asm__ volatile ("": : : "memory"); len = rxhdr->frame_len; } if ((unsigned int )len == 0U) { tmp = i___0; i___0 = i___0 + 1; if (tmp <= 4) { goto ldv_52452; } else { goto ldv_52453; } } else { } ldv_52453: { tmp___0 = ldv__builtin_expect((unsigned int )len == 0U, 0L); } if (tmp___0 != 0L) { { sync_descbuffer_for_device(ring, meta->dmaaddr, (size_t )ring->rx_buffersize); } goto drop; } else { } } else { } { tmp___2 = ldv__builtin_expect((int )len > (int )ring->rx_buffersize, 0L); } if (tmp___2 != 0L) { cnt = 0; tmp___1 = (s32 )len; ldv_52458: { desc = op32_idx2desc(ring, *slot, & meta); sync_descbuffer_for_device(ring, meta->dmaaddr, (size_t )ring->rx_buffersize); *slot = next_slot(ring, *slot); cnt = cnt + 1; tmp___1 = tmp___1 - (int )ring->rx_buffersize; } if (tmp___1 <= 0) { goto ldv_52457; } else { } goto ldv_52458; ldv_52457: { b43legacyerr((ring->dev)->wl, "DMA RX buffer too small (len: %u, buffer: %u, nr-dropped: %d)\n", (int )len, (int )ring->rx_buffersize, cnt); } goto drop; } else { } { dmaaddr = meta->dmaaddr; err = setup_rx_descbuffer(ring, desc, meta, 32U); tmp___3 = ldv__builtin_expect(err != 0, 0L); } if (tmp___3 != 0L) { { b43legacydbg((ring->dev)->wl, "DMA RX: setup_rx_descbuffer() failed\n"); sync_descbuffer_for_device(ring, dmaaddr, (size_t )ring->rx_buffersize); } goto drop; } else { } { unmap_descbuffer(ring, dmaaddr, (size_t )ring->rx_buffersize, 0); skb_put(skb, (u32 )len + ring->frameoffset); skb_pull(skb, ring->frameoffset); b43legacy_rx(ring->dev, skb, (void const *)rxhdr); } drop: ; return; } } void b43legacy_dma_rx(struct b43legacy_dmaring *ring ) { int slot ; int current_slot ; int used_slots ; int __ret_warn_on ; long tmp ; int __ret_warn_on___0 ; long tmp___0 ; { { used_slots = 0; __ret_warn_on = (int )ring->tx; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 1409); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); current_slot = op32_get_current_rxslot(ring); __ret_warn_on___0 = current_slot < 0 || current_slot >= ring->nr_slots; tmp___0 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 1412); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); slot = ring->current_slot; } goto ldv_52470; ldv_52469: { dma_rx(ring, & slot); used_slots = used_slots + 1; update_max_used_slots(ring, used_slots); slot = next_slot(ring, slot); } ldv_52470: ; if (slot != current_slot) { goto ldv_52469; } else { } { op32_set_current_rxslot(ring, slot); ring->current_slot = slot; } return; } } static void b43legacy_dma_tx_suspend_ring(struct b43legacy_dmaring *ring ) { int __ret_warn_on ; long tmp ; { { __ret_warn_on = ! ring->tx; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 1425); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); op32_tx_suspend(ring); } return; } } static void b43legacy_dma_tx_resume_ring(struct b43legacy_dmaring *ring ) { int __ret_warn_on ; long tmp ; { { __ret_warn_on = ! ring->tx; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/dma.c", 1431); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); op32_tx_resume(ring); } return; } } void b43legacy_dma_tx_suspend(struct b43legacy_wldev *dev ) { { { b43legacy_power_saving_ctl_bits(dev, -1, 1); b43legacy_dma_tx_suspend_ring(dev->__annonCompField88.dma.tx_ring0); b43legacy_dma_tx_suspend_ring(dev->__annonCompField88.dma.tx_ring1); b43legacy_dma_tx_suspend_ring(dev->__annonCompField88.dma.tx_ring2); b43legacy_dma_tx_suspend_ring(dev->__annonCompField88.dma.tx_ring3); b43legacy_dma_tx_suspend_ring(dev->__annonCompField88.dma.tx_ring4); b43legacy_dma_tx_suspend_ring(dev->__annonCompField88.dma.tx_ring5); } return; } } void b43legacy_dma_tx_resume(struct b43legacy_wldev *dev ) { { { b43legacy_dma_tx_resume_ring(dev->__annonCompField88.dma.tx_ring5); b43legacy_dma_tx_resume_ring(dev->__annonCompField88.dma.tx_ring4); b43legacy_dma_tx_resume_ring(dev->__annonCompField88.dma.tx_ring3); b43legacy_dma_tx_resume_ring(dev->__annonCompField88.dma.tx_ring2); b43legacy_dma_tx_resume_ring(dev->__annonCompField88.dma.tx_ring1); b43legacy_dma_tx_resume_ring(dev->__annonCompField88.dma.tx_ring0); b43legacy_power_saving_ctl_bits(dev, -1, -1); } return; } } __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { { __list_add(new, head->prev, head); } return; } } extern void __list_del_entry(struct list_head * ) ; __inline static void list_move(struct list_head *list , struct list_head *head ) { { { __list_del_entry(list); list_add(list, head); } return; } } __inline static void list_move_tail(struct list_head *list , struct list_head *head ) { { { __list_del_entry(list); list_add_tail(list, head); } return; } } static void ldv___ldv_spin_lock_62___2(spinlock_t *ldv_func_arg1 ) ; __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb(dev, length, 32U); } return (tmp); } } __inline static struct sk_buff *dev_alloc_skb(unsigned int length ) { struct sk_buff *tmp ; { { tmp = netdev_alloc_skb((struct net_device *)0, length); } return (tmp); } } __inline static void ieee80211_tx_info_clear_status___0(struct ieee80211_tx_info *info ) { int i ; bool __cond ; bool __cond___0 ; bool __cond___1 ; bool __cond___2 ; { __cond = 0; if ((int )__cond) { { __compiletime_assert_768(); } } else { } __cond___0 = 0; if ((int )__cond___0) { { __compiletime_assert_770(); } } else { } __cond___1 = 0; if ((int )__cond___1) { { __compiletime_assert_771(); } } else { } i = 0; goto ldv_49095; ldv_49094: info->__annonCompField84.status.rates[i].count = 0U; i = i + 1; ldv_49095: ; if (i <= 3) { goto ldv_49094; } else { } __cond___2 = 0; if ((int )__cond___2) { { __compiletime_assert_777(); } } else { } { memset((void *)(& info->__annonCompField84.status.ampdu_ack_len), 0, 24UL); } return; } } __inline static u16 b43legacy_pio_read(struct b43legacy_pioqueue *queue , u16 offset ) { u16 tmp ; { { tmp = b43legacy_read16(queue->dev, (int )queue->mmio_base + (int )offset); } return (tmp); } } __inline static void b43legacy_pio_write(struct b43legacy_pioqueue *queue , u16 offset , u16 value ) { { { b43legacy_write16(queue->dev, (int )queue->mmio_base + (int )offset, (int )value); __asm__ volatile ("": : : "memory"); } return; } } void b43legacy_pio_tx_suspend(struct b43legacy_pioqueue *queue ) ; void b43legacy_pio_tx_resume(struct b43legacy_pioqueue *queue ) ; static void tx_start(struct b43legacy_pioqueue *queue ) { { { b43legacy_pio_write(queue, 0, 8); } return; } } static void tx_octet(struct b43legacy_pioqueue *queue , u8 octet ) { { if ((int )queue->need_workarounds) { { b43legacy_pio_write(queue, 2, (int )octet); b43legacy_pio_write(queue, 0, 1); } } else { { b43legacy_pio_write(queue, 0, 1); b43legacy_pio_write(queue, 2, (int )octet); } } return; } } static u16 tx_get_next_word(u8 const *txhdr , u8 const *packet , size_t txhdr_size , unsigned int *pos ) { u8 const *source ; unsigned int i ; u16 ret ; { i = *pos; if ((size_t )i < txhdr_size) { source = txhdr; } else { source = packet; i = i - (unsigned int )txhdr_size; } ret = *((__le16 *)source + (unsigned long )i); *pos = *pos + 2U; return (ret); } } static void tx_data(struct b43legacy_pioqueue *queue , u8 *txhdr , u8 const *packet , unsigned int octets ) { u16 data ; unsigned int i ; { i = 0U; if ((int )queue->need_workarounds) { { data = tx_get_next_word((u8 const *)txhdr, packet, 82UL, & i); b43legacy_pio_write(queue, 2, (int )data); } } else { } { b43legacy_pio_write(queue, 0, 3); } goto ldv_50961; ldv_50960: { data = tx_get_next_word((u8 const *)txhdr, packet, 82UL, & i); b43legacy_pio_write(queue, 2, (int )data); } ldv_50961: ; if (i < octets - 1U) { goto ldv_50960; } else { } if ((int )octets & 1) { { tx_octet(queue, (int )*(packet + ((unsigned long )octets + 0xffffffffffffffadUL))); } } else { } return; } } static void tx_complete(struct b43legacy_pioqueue *queue , struct sk_buff *skb ) { { if ((int )queue->need_workarounds) { { b43legacy_pio_write(queue, 2, (int )*(skb->data + (unsigned long )(skb->len - 1U))); b43legacy_pio_write(queue, 0, 5); } } else { { b43legacy_pio_write(queue, 0, 4); } } return; } } static u16 generate_cookie___0(struct b43legacy_pioqueue *queue , struct b43legacy_pio_txpacket *packet ) { u16 cookie ; int packetindex ; int __ret_warn_on ; long tmp ; int __ret_warn_on___0 ; long tmp___0 ; { cookie = 0U; { if ((int )queue->mmio_base == 768) { goto case_768; } else { } if ((int )queue->mmio_base == 784) { goto case_784; } else { } if ((int )queue->mmio_base == 800) { goto case_800; } else { } if ((int )queue->mmio_base == 816) { goto case_816; } else { } goto switch_default; case_768: /* CIL Label */ ; goto ldv_50974; case_784: /* CIL Label */ cookie = 4096U; goto ldv_50974; case_800: /* CIL Label */ cookie = 8192U; goto ldv_50974; case_816: /* CIL Label */ cookie = 12288U; goto ldv_50974; switch_default: /* CIL Label */ { __ret_warn_on = 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/pio.c", 139); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } switch_break: /* CIL Label */ ; } ldv_50974: { packetindex = (int )(((long )packet - (long )(& (packet->queue)->tx_packets_cache)) / 32L); __ret_warn_on___0 = ((int )((unsigned short )packetindex) & 61440) != 0; tmp___0 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/pio.c", 142); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); cookie = (u16 )((int )cookie | (int )((unsigned short )packetindex)); } return (cookie); } } static struct b43legacy_pioqueue *parse_cookie___0(struct b43legacy_wldev *dev , u16 cookie , struct b43legacy_pio_txpacket **packet ) { struct b43legacy_pio *pio ; struct b43legacy_pioqueue *queue ; int packetindex ; int __ret_warn_on ; long tmp ; int __ret_warn_on___0 ; long tmp___0 ; { pio = & dev->__annonCompField88.pio; queue = (struct b43legacy_pioqueue *)0; { if (((int )cookie & 61440) == 0) { goto case_0; } else { } if (((int )cookie & 61440) == 4096) { goto case_4096; } else { } if (((int )cookie & 61440) == 8192) { goto case_8192; } else { } if (((int )cookie & 61440) == 12288) { goto case_12288; } else { } goto switch_default; case_0: /* CIL Label */ queue = pio->queue0; goto ldv_50992; case_4096: /* CIL Label */ queue = pio->queue1; goto ldv_50992; case_8192: /* CIL Label */ queue = pio->queue2; goto ldv_50992; case_12288: /* CIL Label */ queue = pio->queue3; goto ldv_50992; switch_default: /* CIL Label */ { __ret_warn_on = 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/pio.c", 171); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } switch_break: /* CIL Label */ ; } ldv_50992: { packetindex = (int )cookie & 4095; __ret_warn_on___0 = (unsigned int )packetindex > 255U; tmp___0 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/pio.c", 175); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); *packet = (struct b43legacy_pio_txpacket *)(& queue->tx_packets_cache) + (unsigned long )packetindex; } return (queue); } } static int pio_tx_write_fragment(struct b43legacy_pioqueue *queue , struct sk_buff *skb , struct b43legacy_pio_txpacket *packet , size_t txhdr_size ) { union txhdr_union txhdr_data ; u8 *txhdr ; unsigned int octets ; int err ; int __ret_warn_on ; unsigned char *tmp ; long tmp___0 ; u16 tmp___1 ; struct ieee80211_tx_info *tmp___2 ; { { txhdr = (u8 *)0U; txhdr = (u8 *)(& txhdr_data.txhdr_fw3); tmp = skb_end_pointer((struct sk_buff const *)skb); __ret_warn_on = (unsigned int )((struct skb_shared_info *)tmp)->nr_frags != 0U; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/pio.c", 197); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); tmp___1 = generate_cookie___0(queue, packet); tmp___2 = IEEE80211_SKB_CB(skb); err = b43legacy_generate_txhdr(queue->dev, txhdr, (unsigned char const *)skb->data, skb->len, tmp___2, (int )tmp___1); } if (err != 0) { return (err); } else { } { tx_start(queue); octets = skb->len + (unsigned int )txhdr_size; } if ((int )queue->need_workarounds) { octets = octets - 1U; } else { } { tx_data(queue, txhdr, (u8 const *)skb->data, octets); tx_complete(queue, skb); } return (0); } } static void free_txpacket(struct b43legacy_pio_txpacket *packet , int irq_context ) { struct b43legacy_pioqueue *queue ; { queue = packet->queue; if ((unsigned long )packet->skb != (unsigned long )((struct sk_buff *)0)) { if (irq_context != 0) { { dev_kfree_skb_irq(packet->skb); } } else { { consume_skb(packet->skb); } } } else { } { list_move(& packet->list, & queue->txfree); queue->nr_txfree = queue->nr_txfree + 1U; } return; } } static int pio_tx_packet(struct b43legacy_pio_txpacket *packet ) { struct b43legacy_pioqueue *queue ; struct sk_buff *skb ; u16 octets ; int err ; int __ret_warn_on ; long tmp ; int __ret_warn_on___0 ; long tmp___0 ; long tmp___1 ; { queue = packet->queue; skb = packet->skb; octets = (unsigned int )((u16 )skb->len) + 82U; if ((int )queue->tx_devq_size < (int )octets) { { b43legacywarn((queue->dev)->wl, "PIO queue too small. Dropping packet.\n"); free_txpacket(packet, 1); } return (0); } else { } { __ret_warn_on = (unsigned int )queue->tx_devq_packets > 31U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/pio.c", 246); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); __ret_warn_on___0 = (int )queue->tx_devq_used > (int )queue->tx_devq_size; tmp___0 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/pio.c", 247); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if ((unsigned int )queue->tx_devq_packets == 31U) { return (-16); } else { } if ((int )queue->tx_devq_used + (int )octets > (int )queue->tx_devq_size) { return (-16); } else { } { err = pio_tx_write_fragment(queue, skb, packet, 82UL); tmp___1 = ldv__builtin_expect(err == -126, 0L); } if (tmp___1 != 0L) { { free_txpacket(packet, 1); } return (0); } else { } { queue->tx_devq_packets = (u8 )((int )queue->tx_devq_packets + 1); queue->tx_devq_used = (int )queue->tx_devq_used + (int )octets; list_move_tail(& packet->list, & queue->txrunning); } return (0); } } static void tx_tasklet(unsigned long d ) { struct b43legacy_pioqueue *queue ; struct b43legacy_wldev *dev ; unsigned long flags ; struct b43legacy_pio_txpacket *packet ; struct b43legacy_pio_txpacket *tmp_packet ; int err ; u16 txctl ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; { { queue = (struct b43legacy_pioqueue *)d; dev = queue->dev; ldv___ldv_spin_lock_62___2(& (dev->wl)->irq_lock); } if ((int )queue->tx_frozen) { goto out_unlock; } else { } { txctl = b43legacy_pio_read(queue, 0); } if (((int )txctl & 128) != 0) { goto out_unlock; } else { } __mptr = (struct list_head const *)queue->txqueue.next; packet = (struct b43legacy_pio_txpacket *)__mptr + 0xfffffffffffffff0UL; __mptr___0 = (struct list_head const *)packet->list.next; tmp_packet = (struct b43legacy_pio_txpacket *)__mptr___0 + 0xfffffffffffffff0UL; goto ldv_51050; ldv_51049: { err = pio_tx_packet(packet); } if (err != 0) { goto ldv_51048; } else { } packet = tmp_packet; __mptr___1 = (struct list_head const *)tmp_packet->list.next; tmp_packet = (struct b43legacy_pio_txpacket *)__mptr___1 + 0xfffffffffffffff0UL; ldv_51050: ; if ((unsigned long )(& packet->list) != (unsigned long )(& queue->txqueue)) { goto ldv_51049; } else { } ldv_51048: ; out_unlock: { ldv_spin_unlock_irqrestore_65(& (dev->wl)->irq_lock, flags); } return; } } static void setup_txqueues(struct b43legacy_pioqueue *queue ) { struct b43legacy_pio_txpacket *packet ; int i ; { queue->nr_txfree = 256U; i = 0; goto ldv_51057; ldv_51056: { packet = (struct b43legacy_pio_txpacket *)(& queue->tx_packets_cache) + (unsigned long )i; packet->queue = queue; INIT_LIST_HEAD(& packet->list); list_add(& packet->list, & queue->txfree); i = i + 1; } ldv_51057: ; if (i <= 255) { goto ldv_51056; } else { } return; } } static struct b43legacy_pioqueue *b43legacy_setup_pioqueue(struct b43legacy_wldev *dev , u16 pio_mmio_base ) { struct b43legacy_pioqueue *queue ; u32 value ; u16 qsize ; void *tmp ; { { tmp = kzalloc(8312UL, 208U); queue = (struct b43legacy_pioqueue *)tmp; } if ((unsigned long )queue == (unsigned long )((struct b43legacy_pioqueue *)0)) { goto out; } else { } { queue->dev = dev; queue->mmio_base = pio_mmio_base; queue->need_workarounds = (unsigned int )(dev->dev)->id.revision <= 2U; INIT_LIST_HEAD(& queue->txfree); INIT_LIST_HEAD(& queue->txqueue); INIT_LIST_HEAD(& queue->txrunning); tasklet_init(& queue->txtask, & tx_tasklet, (unsigned long )queue); value = b43legacy_read32(dev, 288); value = value & 4294901759U; b43legacy_write32(dev, 288, value); qsize = b43legacy_read16(dev, (int )((unsigned int )queue->mmio_base + 4U)); } if ((unsigned int )qsize == 0U) { { b43legacyerr(dev->wl, "This card does not support PIO operation mode. Please use DMA mode (module parameter pio=0).\n"); } goto err_freequeue; } else { } if ((unsigned int )qsize <= 80U) { { b43legacyerr(dev->wl, "PIO tx device-queue too small (%u)\n", (int )qsize); } goto err_freequeue; } else { } { qsize = (unsigned int )qsize + 65456U; queue->tx_devq_size = qsize; setup_txqueues(queue); } out: ; return (queue); err_freequeue: { kfree((void const *)queue); queue = (struct b43legacy_pioqueue *)0; } goto out; } } static void cancel_transfers(struct b43legacy_pioqueue *queue ) { struct b43legacy_pio_txpacket *packet ; struct b43legacy_pio_txpacket *tmp_packet ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; struct list_head const *__mptr___3 ; struct list_head const *__mptr___4 ; { { tasklet_kill(& queue->txtask); __mptr = (struct list_head const *)queue->txrunning.next; packet = (struct b43legacy_pio_txpacket *)__mptr + 0xfffffffffffffff0UL; __mptr___0 = (struct list_head const *)packet->list.next; tmp_packet = (struct b43legacy_pio_txpacket *)__mptr___0 + 0xfffffffffffffff0UL; } goto ldv_51080; ldv_51079: { free_txpacket(packet, 0); packet = tmp_packet; __mptr___1 = (struct list_head const *)tmp_packet->list.next; tmp_packet = (struct b43legacy_pio_txpacket *)__mptr___1 + 0xfffffffffffffff0UL; } ldv_51080: ; if ((unsigned long )(& packet->list) != (unsigned long )(& queue->txrunning)) { goto ldv_51079; } else { } __mptr___2 = (struct list_head const *)queue->txqueue.next; packet = (struct b43legacy_pio_txpacket *)__mptr___2 + 0xfffffffffffffff0UL; __mptr___3 = (struct list_head const *)packet->list.next; tmp_packet = (struct b43legacy_pio_txpacket *)__mptr___3 + 0xfffffffffffffff0UL; goto ldv_51089; ldv_51088: { free_txpacket(packet, 0); packet = tmp_packet; __mptr___4 = (struct list_head const *)tmp_packet->list.next; tmp_packet = (struct b43legacy_pio_txpacket *)__mptr___4 + 0xfffffffffffffff0UL; } ldv_51089: ; if ((unsigned long )(& packet->list) != (unsigned long )(& queue->txqueue)) { goto ldv_51088; } else { } return; } } static void b43legacy_destroy_pioqueue(struct b43legacy_pioqueue *queue ) { { if ((unsigned long )queue == (unsigned long )((struct b43legacy_pioqueue *)0)) { return; } else { } { cancel_transfers(queue); kfree((void const *)queue); } return; } } void b43legacy_pio_free(struct b43legacy_wldev *dev ) { struct b43legacy_pio *pio ; int tmp ; { { tmp = b43legacy_using_pio(dev); } if (tmp == 0) { return; } else { } { pio = & dev->__annonCompField88.pio; b43legacy_destroy_pioqueue(pio->queue3); pio->queue3 = (struct b43legacy_pioqueue *)0; b43legacy_destroy_pioqueue(pio->queue2); pio->queue2 = (struct b43legacy_pioqueue *)0; b43legacy_destroy_pioqueue(pio->queue1); pio->queue1 = (struct b43legacy_pioqueue *)0; b43legacy_destroy_pioqueue(pio->queue0); pio->queue0 = (struct b43legacy_pioqueue *)0; } return; } } int b43legacy_pio_init(struct b43legacy_wldev *dev ) { struct b43legacy_pio *pio ; struct b43legacy_pioqueue *queue ; int err ; { { pio = & dev->__annonCompField88.pio; err = -12; queue = b43legacy_setup_pioqueue(dev, 768); } if ((unsigned long )queue == (unsigned long )((struct b43legacy_pioqueue *)0)) { goto out; } else { } { pio->queue0 = queue; queue = b43legacy_setup_pioqueue(dev, 784); } if ((unsigned long )queue == (unsigned long )((struct b43legacy_pioqueue *)0)) { goto err_destroy0; } else { } { pio->queue1 = queue; queue = b43legacy_setup_pioqueue(dev, 800); } if ((unsigned long )queue == (unsigned long )((struct b43legacy_pioqueue *)0)) { goto err_destroy1; } else { } { pio->queue2 = queue; queue = b43legacy_setup_pioqueue(dev, 816); } if ((unsigned long )queue == (unsigned long )((struct b43legacy_pioqueue *)0)) { goto err_destroy2; } else { } pio->queue3 = queue; if ((unsigned int )(dev->dev)->id.revision <= 2U) { dev->irq_mask = dev->irq_mask | 256U; } else { } { b43legacydbg(dev->wl, "PIO initialized\n"); err = 0; } out: ; return (err); err_destroy2: { b43legacy_destroy_pioqueue(pio->queue2); pio->queue2 = (struct b43legacy_pioqueue *)0; } err_destroy1: { b43legacy_destroy_pioqueue(pio->queue1); pio->queue1 = (struct b43legacy_pioqueue *)0; } err_destroy0: { b43legacy_destroy_pioqueue(pio->queue0); pio->queue0 = (struct b43legacy_pioqueue *)0; } goto out; } } int b43legacy_pio_tx(struct b43legacy_wldev *dev , struct sk_buff *skb ) { struct b43legacy_pioqueue *queue ; struct b43legacy_pio_txpacket *packet ; int __ret_warn_on ; long tmp ; int __ret_warn_on___0 ; int tmp___0 ; long tmp___1 ; struct list_head const *__mptr ; int __ret_warn_on___1 ; long tmp___2 ; { { queue = dev->__annonCompField88.pio.queue1; __ret_warn_on = (int )queue->tx_suspended; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/pio.c", 472); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); tmp___0 = list_empty((struct list_head const *)(& queue->txfree)); __ret_warn_on___0 = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/pio.c", 473); } } else { } { ldv__builtin_expect(__ret_warn_on___0 != 0, 0L); __mptr = (struct list_head const *)queue->txfree.next; packet = (struct b43legacy_pio_txpacket *)__mptr + 0xfffffffffffffff0UL; packet->skb = skb; list_move_tail(& packet->list, & queue->txqueue); queue->nr_txfree = queue->nr_txfree - 1U; __ret_warn_on___1 = queue->nr_txfree > 255U; tmp___2 = ldv__builtin_expect(__ret_warn_on___1 != 0, 0L); } if (tmp___2 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/pio.c", 481); } } else { } { ldv__builtin_expect(__ret_warn_on___1 != 0, 0L); tasklet_schedule(& queue->txtask); } return (0); } } void b43legacy_pio_handle_txstatus(struct b43legacy_wldev *dev , struct b43legacy_txstatus const *status ) { struct b43legacy_pioqueue *queue ; struct b43legacy_pio_txpacket *packet ; struct ieee80211_tx_info *info ; int retry_limit ; int __ret_warn_on ; long tmp ; int tmp___0 ; { { queue = parse_cookie___0(dev, (int )status->cookie, & packet); __ret_warn_on = (unsigned long )queue == (unsigned long )((struct b43legacy_pioqueue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/pio.c", 497); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if ((unsigned long )packet->skb == (unsigned long )((struct sk_buff *)0)) { return; } else { } { queue->tx_devq_packets = (u8 )((int )queue->tx_devq_packets - 1); queue->tx_devq_used = (unsigned int )((int )queue->tx_devq_used - (int )((u16 )(packet->skb)->len)) - 82U; info = IEEE80211_SKB_CB(packet->skb); retry_limit = (int )info->__annonCompField84.status.rates[0].count; ieee80211_tx_info_clear_status___0(info); } if ((unsigned int )((unsigned char )status->acked) != 0U) { info->flags = info->flags | 512U; } else { } if ((int )((unsigned char )status->rts_count) > (int )((dev->wl)->hw)->conf.short_frame_max_tx_count) { info->__annonCompField84.status.rates[0].count = 0U; info->__annonCompField84.status.rates[1].count = (unsigned char )status->frame_count; } else if ((int )status->frame_count > retry_limit) { info->__annonCompField84.status.rates[0].count = (unsigned char )retry_limit; info->__annonCompField84.status.rates[1].count = (int )((unsigned char )status->frame_count) - (int )((unsigned char )retry_limit); } else { info->__annonCompField84.status.rates[0].count = (unsigned char )status->frame_count; info->__annonCompField84.status.rates[1].idx = -1; } { ieee80211_tx_status_irqsafe((dev->wl)->hw, packet->skb); packet->skb = (struct sk_buff *)0; free_txpacket(packet, 1); tmp___0 = list_empty((struct list_head const *)(& queue->txqueue)); } if (tmp___0 == 0) { { tasklet_schedule(& queue->txtask); } } else { } return; } } static void pio_rx_error(struct b43legacy_pioqueue *queue , int clear_buffers , char const *error ) { int i ; int __ret_warn_on ; long tmp ; { { b43legacyerr((queue->dev)->wl, "PIO RX error: %s\n", error); b43legacy_pio_write(queue, 8, 2); } if (clear_buffers != 0) { { __ret_warn_on = (unsigned int )queue->mmio_base != 768U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/pio.c", 559); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); i = 0; } goto ldv_51141; ldv_51140: { b43legacy_pio_read(queue, 10); i = i + 1; } ldv_51141: ; if (i <= 14) { goto ldv_51140; } else { } } else { } return; } } void b43legacy_pio_rx(struct b43legacy_pioqueue *queue ) { __le16 preamble[21U] ; unsigned int tmp ; struct b43legacy_rxhdr_fw3 *rxhdr ; u16 tmp___0 ; u16 len ; u16 macstat ; int i ; int preamble_readwords ; struct sk_buff *skb ; long tmp___1 ; long tmp___2 ; long tmp___3 ; struct b43legacy_hwtxstatus *hw ; long tmp___4 ; { preamble[0] = 0U; tmp = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 21U) { goto while_break; } else { } preamble[tmp] = (unsigned short)0; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } { tmp___0 = b43legacy_pio_read(queue, 8); } if (((int )tmp___0 & 1) == 0) { return; } else { } { b43legacy_pio_write(queue, 8, 1); i = 0; } goto ldv_51156; ldv_51155: { tmp___0 = b43legacy_pio_read(queue, 8); } if (((int )tmp___0 & 2) != 0) { goto data_ready; } else { } { __const_udelay(42950UL); i = i + 1; } ldv_51156: ; if (i <= 9) { goto ldv_51155; } else { } { b43legacydbg((queue->dev)->wl, "PIO RX timed out\n"); } return; data_ready: { len = b43legacy_pio_read(queue, 10); tmp___1 = ldv__builtin_expect((unsigned int )len > 1792U, 0L); } if (tmp___1 != 0L) { { pio_rx_error(queue, 0, "len > 0x700"); } return; } else { } { tmp___2 = ldv__builtin_expect((unsigned int )len == 0U, 0L); } if (tmp___2 != 0L) { { tmp___3 = ldv__builtin_expect((unsigned int )queue->mmio_base != 816U, 0L); } if (tmp___3 != 0L) { { pio_rx_error(queue, 0, "len == 0"); } return; } else { } } else { } preamble[0] = len; if ((unsigned int )queue->mmio_base == 816U) { preamble_readwords = 7; } else { preamble_readwords = 9; } i = 0; goto ldv_51159; ldv_51158: { tmp___0 = b43legacy_pio_read(queue, 10); preamble[i + 1] = tmp___0; i = i + 1; } ldv_51159: ; if (i < preamble_readwords) { goto ldv_51158; } else { } rxhdr = (struct b43legacy_rxhdr_fw3 *)(& preamble); macstat = rxhdr->mac_status; if ((int )macstat & 1) { { pio_rx_error(queue, (unsigned int )queue->mmio_base == 768U, "Frame FCS error"); } return; } else { } if ((unsigned int )queue->mmio_base == 816U) { { hw = (struct b43legacy_hwtxstatus *)(& preamble) + 1U; b43legacy_handle_hwtxstatus(queue->dev, (struct b43legacy_hwtxstatus const *)hw); } return; } else { } { skb = dev_alloc_skb((unsigned int )len); tmp___4 = ldv__builtin_expect((unsigned long )skb == (unsigned long )((struct sk_buff *)0), 0L); } if (tmp___4 != 0L) { { pio_rx_error(queue, 1, "OOM"); } return; } else { } { skb_put(skb, (unsigned int )len); i = 0; } goto ldv_51163; ldv_51162: { tmp___0 = b43legacy_pio_read(queue, 10); *((__le16 *)skb->data + (unsigned long )i) = tmp___0; i = i + 2; } ldv_51163: ; if (i < (int )len + -1) { goto ldv_51162; } else { } if ((int )len & 1) { { tmp___0 = b43legacy_pio_read(queue, 10); *(skb->data + ((unsigned long )len + 0xffffffffffffffffUL)) = (unsigned char )tmp___0; } } else { } { b43legacy_rx(queue->dev, skb, (void const *)rxhdr); } return; } } void b43legacy_pio_tx_suspend(struct b43legacy_pioqueue *queue ) { u16 tmp ; { { b43legacy_power_saving_ctl_bits(queue->dev, -1, 1); tmp = b43legacy_pio_read(queue, 0); b43legacy_pio_write(queue, 0, (int )((unsigned int )tmp | 128U)); } return; } } void b43legacy_pio_tx_resume(struct b43legacy_pioqueue *queue ) { u16 tmp ; { { tmp = b43legacy_pio_read(queue, 0); b43legacy_pio_write(queue, 0, (int )tmp & 65407); b43legacy_power_saving_ctl_bits(queue->dev, -1, -1); tasklet_schedule(& queue->txtask); } return; } } void b43legacy_pio_freeze_txqueues(struct b43legacy_wldev *dev ) { struct b43legacy_pio *pio ; int __ret_warn_on ; int tmp ; long tmp___0 ; { { tmp = b43legacy_using_pio(dev); __ret_warn_on = tmp == 0; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/pio.c", 669); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); pio = & dev->__annonCompField88.pio; (pio->queue0)->tx_frozen = 1; (pio->queue1)->tx_frozen = 1; (pio->queue2)->tx_frozen = 1; (pio->queue3)->tx_frozen = 1; } return; } } void b43legacy_pio_thaw_txqueues(struct b43legacy_wldev *dev ) { struct b43legacy_pio *pio ; int __ret_warn_on ; int tmp ; long tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { tmp = b43legacy_using_pio(dev); __ret_warn_on = tmp == 0; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/wireless/b43legacy/pio.c", 681); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); pio = & dev->__annonCompField88.pio; (pio->queue0)->tx_frozen = 0; (pio->queue1)->tx_frozen = 0; (pio->queue2)->tx_frozen = 0; (pio->queue3)->tx_frozen = 0; tmp___1 = list_empty((struct list_head const *)(& (pio->queue0)->txqueue)); } if (tmp___1 == 0) { { tasklet_schedule(& (pio->queue0)->txtask); } } else { } { tmp___2 = list_empty((struct list_head const *)(& (pio->queue1)->txqueue)); } if (tmp___2 == 0) { { tasklet_schedule(& (pio->queue1)->txtask); } } else { } { tmp___3 = list_empty((struct list_head const *)(& (pio->queue2)->txqueue)); } if (tmp___3 == 0) { { tasklet_schedule(& (pio->queue2)->txtask); } } else { } { tmp___4 = list_empty((struct list_head const *)(& (pio->queue3)->txqueue)); } if (tmp___4 == 0) { { tasklet_schedule(& (pio->queue3)->txtask); } } else { } return; } } static void ldv___ldv_spin_lock_62___2(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_irq_lock_of_b43legacy_wl(); __ldv_spin_lock(ldv_func_arg1); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } int ldv_post_probe(int probe_ret_val ) ; static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_check_alloc_flags(gfp_t ) ; extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_malloc_unknown_size(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_irq_lock_of_b43legacy_wl = 1; void ldv_spin_lock_irq_lock_of_b43legacy_wl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_irq_lock_of_b43legacy_wl == 1); ldv_assume(ldv_spin_irq_lock_of_b43legacy_wl == 1); ldv_spin_irq_lock_of_b43legacy_wl = 2; } return; } } void ldv_spin_unlock_irq_lock_of_b43legacy_wl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_irq_lock_of_b43legacy_wl == 2); ldv_assume(ldv_spin_irq_lock_of_b43legacy_wl == 2); ldv_spin_irq_lock_of_b43legacy_wl = 1; } return; } } int ldv_spin_trylock_irq_lock_of_b43legacy_wl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_irq_lock_of_b43legacy_wl == 1); ldv_assume(ldv_spin_irq_lock_of_b43legacy_wl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_irq_lock_of_b43legacy_wl = 2; return (1); } } } void ldv_spin_unlock_wait_irq_lock_of_b43legacy_wl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_irq_lock_of_b43legacy_wl == 1); ldv_assume(ldv_spin_irq_lock_of_b43legacy_wl == 1); } return; } } int ldv_spin_is_locked_irq_lock_of_b43legacy_wl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_irq_lock_of_b43legacy_wl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_irq_lock_of_b43legacy_wl(void) { int tmp ; { { tmp = ldv_spin_is_locked_irq_lock_of_b43legacy_wl(); } return (tmp == 0); } } int ldv_spin_is_contended_irq_lock_of_b43legacy_wl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_irq_lock_of_b43legacy_wl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_irq_lock_of_b43legacy_wl == 1); ldv_assume(ldv_spin_irq_lock_of_b43legacy_wl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_irq_lock_of_b43legacy_wl = 2; return (1); } else { } return (0); } } static int ldv_spin_leds_lock_of_b43legacy_wl = 1; void ldv_spin_lock_leds_lock_of_b43legacy_wl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_leds_lock_of_b43legacy_wl == 1); ldv_assume(ldv_spin_leds_lock_of_b43legacy_wl == 1); ldv_spin_leds_lock_of_b43legacy_wl = 2; } return; } } void ldv_spin_unlock_leds_lock_of_b43legacy_wl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_leds_lock_of_b43legacy_wl == 2); ldv_assume(ldv_spin_leds_lock_of_b43legacy_wl == 2); ldv_spin_leds_lock_of_b43legacy_wl = 1; } return; } } int ldv_spin_trylock_leds_lock_of_b43legacy_wl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_leds_lock_of_b43legacy_wl == 1); ldv_assume(ldv_spin_leds_lock_of_b43legacy_wl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_leds_lock_of_b43legacy_wl = 2; return (1); } } } void ldv_spin_unlock_wait_leds_lock_of_b43legacy_wl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_leds_lock_of_b43legacy_wl == 1); ldv_assume(ldv_spin_leds_lock_of_b43legacy_wl == 1); } return; } } int ldv_spin_is_locked_leds_lock_of_b43legacy_wl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_leds_lock_of_b43legacy_wl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_leds_lock_of_b43legacy_wl(void) { int tmp ; { { tmp = ldv_spin_is_locked_leds_lock_of_b43legacy_wl(); } return (tmp == 0); } } int ldv_spin_is_contended_leds_lock_of_b43legacy_wl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_leds_lock_of_b43legacy_wl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_leds_lock_of_b43legacy_wl == 1); ldv_assume(ldv_spin_leds_lock_of_b43legacy_wl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_leds_lock_of_b43legacy_wl = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_b43legacy_txstatus_log = 1; void ldv_spin_lock_lock_of_b43legacy_txstatus_log(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_b43legacy_txstatus_log == 1); ldv_assume(ldv_spin_lock_of_b43legacy_txstatus_log == 1); ldv_spin_lock_of_b43legacy_txstatus_log = 2; } return; } } void ldv_spin_unlock_lock_of_b43legacy_txstatus_log(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_b43legacy_txstatus_log == 2); ldv_assume(ldv_spin_lock_of_b43legacy_txstatus_log == 2); ldv_spin_lock_of_b43legacy_txstatus_log = 1; } return; } } int ldv_spin_trylock_lock_of_b43legacy_txstatus_log(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_b43legacy_txstatus_log == 1); ldv_assume(ldv_spin_lock_of_b43legacy_txstatus_log == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_b43legacy_txstatus_log = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_b43legacy_txstatus_log(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_b43legacy_txstatus_log == 1); ldv_assume(ldv_spin_lock_of_b43legacy_txstatus_log == 1); } return; } } int ldv_spin_is_locked_lock_of_b43legacy_txstatus_log(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_b43legacy_txstatus_log == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_b43legacy_txstatus_log(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_b43legacy_txstatus_log(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_b43legacy_txstatus_log(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_b43legacy_txstatus_log(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_b43legacy_txstatus_log == 1); ldv_assume(ldv_spin_lock_of_b43legacy_txstatus_log == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_b43legacy_txstatus_log = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_irq_lock_of_b43legacy_wl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_leds_lock_of_b43legacy_wl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_b43legacy_txstatus_log == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_irq_lock_of_b43legacy_wl == 2) { return (1); } else { } if (ldv_spin_leds_lock_of_b43legacy_wl == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lock_of_b43legacy_txstatus_log == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }