/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct device; struct ldv_thread; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; struct arch_spinlock; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_15 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_15 __annonCompField7 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_17 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_16 { s64 lock ; struct __anonstruct____missing_field_name_17 __annonCompField8 ; }; typedef union __anonunion_arch_rwlock_t_16 arch_rwlock_t; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned int flags : 8 ; }; struct net_device; struct file_operations; struct completion; struct pid; enum system_states { SYSTEM_BOOTING = 0, SYSTEM_RUNNING = 1, SYSTEM_HALT = 2, SYSTEM_POWER_OFF = 3, SYSTEM_RESTART = 4 } ; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct lockdep_map; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct pdev_archdata { }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_133 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_133 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_136 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_137 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_135 { struct __anonstruct____missing_field_name_136 __annonCompField34 ; struct __anonstruct____missing_field_name_137 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_135 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_138 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_144 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_143 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_144 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_141 { unsigned long counters ; struct __anonstruct____missing_field_name_142 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_139 { union __anonunion____missing_field_name_140 __annonCompField38 ; union __anonunion____missing_field_name_141 __annonCompField42 ; }; struct __anonstruct____missing_field_name_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_145 { struct list_head lru ; struct __anonstruct____missing_field_name_146 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_147 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct __anonstruct____missing_field_name_139 __annonCompField43 ; union __anonunion____missing_field_name_145 __annonCompField45 ; union __anonunion____missing_field_name_147 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct __anonstruct_sync_serial_settings_151 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_151 sync_serial_settings; struct __anonstruct_te1_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_152 te1_settings; struct __anonstruct_raw_hdlc_proto_153 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_153 raw_hdlc_proto; struct __anonstruct_fr_proto_154 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_154 fr_proto; struct __anonstruct_fr_proto_pvc_155 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_155 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_156 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_156 fr_proto_pvc_info; struct __anonstruct_cisco_proto_157 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_157 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_158 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_158 ifs_ifsu ; }; union __anonunion_ifr_ifrn_159 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_160 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_159 ifr_ifrn ; union __anonunion_ifr_ifru_160 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_163 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_162 { struct __anonstruct____missing_field_name_163 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_162 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_165 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_164 { struct __anonstruct____missing_field_name_165 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_164 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_166 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_168 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_168 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_169 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_169 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_171 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_170 { size_t written ; size_t count ; union __anonunion_arg_171 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_170 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_172 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_173 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_174 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_172 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_173 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_174 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_175 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_175 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_177 { struct list_head link ; int state ; }; union __anonunion_fl_u_176 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_177 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_176 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_178 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_178 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_180 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_181 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_184 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_185 { long _band ; int _fd ; }; struct __anonstruct__sigsys_186 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_179 { int _pad[28U] ; struct __anonstruct__kill_180 _kill ; struct __anonstruct__timer_181 _timer ; struct __anonstruct__rt_182 _rt ; struct __anonstruct__sigchld_183 _sigchld ; struct __anonstruct__sigfault_184 _sigfault ; struct __anonstruct__sigpoll_185 _sigpoll ; struct __anonstruct__sigsys_186 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_179 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_190 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_189 { struct __anonstruct____missing_field_name_190 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_189 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_191 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_192 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_194 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_193 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; union __anonunion_type_data_195 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_197 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_196 { union __anonunion_payload_197 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_191 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_192 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_193 __annonCompField60 ; union __anonunion_type_data_195 type_data ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_214 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_215 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField63 ; struct __anonstruct____missing_field_name_215 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_213 __annonCompField65 ; }; struct exception_table_entry { int insn ; int fixup ; }; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_217 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_217 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_219 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_218 { __wsum csum ; struct __anonstruct____missing_field_name_219 __annonCompField67 ; }; union __anonunion____missing_field_name_220 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_221 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_218 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_221 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum gro_result { GRO_MERGED = 0, GRO_MERGED_FREE = 1, GRO_HELD = 2, GRO_NORMAL = 3, GRO_DROP = 4 } ; typedef enum gro_result gro_result_t; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28026 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28027 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28026 reg_state : 8 ; bool dismantle ; enum ldv_28027 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct msix_entry { u32 vector ; u16 entry ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_246 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_246 __annonCompField76 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct vlan_ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_vlan_proto ; __be16 h_vlan_TCI ; __be16 h_vlan_encapsulated_proto ; }; struct ring_desc { __le32 buf ; __le32 flaglen ; }; struct ring_desc_ex { __le32 bufhigh ; __le32 buflow ; __le32 txvlan ; __le32 flaglen ; }; union ring_type { struct ring_desc *orig ; struct ring_desc_ex *ex ; }; struct nv_ethtool_str { char name[32U] ; }; struct nv_ethtool_stats { u64 tx_bytes ; u64 tx_zero_rexmt ; u64 tx_one_rexmt ; u64 tx_many_rexmt ; u64 tx_late_collision ; u64 tx_fifo_errors ; u64 tx_carrier_errors ; u64 tx_excess_deferral ; u64 tx_retry_error ; u64 rx_frame_error ; u64 rx_extra_byte ; u64 rx_late_collision ; u64 rx_runt ; u64 rx_frame_too_long ; u64 rx_over_errors ; u64 rx_crc_errors ; u64 rx_frame_align_error ; u64 rx_length_error ; u64 rx_unicast ; u64 rx_multicast ; u64 rx_broadcast ; u64 rx_packets ; u64 rx_errors_total ; u64 tx_errors_total ; u64 tx_deferral ; u64 tx_packets ; u64 rx_bytes ; u64 tx_pause ; u64 rx_pause ; u64 rx_drop_frame ; u64 tx_unicast ; u64 tx_multicast ; u64 tx_broadcast ; }; struct register_test { __u32 reg ; __u32 mask ; }; struct nv_skb_map { struct sk_buff *skb ; dma_addr_t dma ; unsigned int dma_len : 31 ; unsigned int dma_single : 1 ; struct ring_desc_ex *first_tx_desc ; struct nv_skb_map *next_tx_ctx ; }; struct fe_priv { spinlock_t lock ; struct net_device *dev ; struct napi_struct napi ; spinlock_t hwstats_lock ; struct nv_ethtool_stats estats ; int in_shutdown ; u32 linkspeed ; int duplex ; int autoneg ; int fixed_mode ; int phyaddr ; int wolenabled ; unsigned int phy_oui ; unsigned int phy_model ; unsigned int phy_rev ; u16 gigabit ; int intr_test ; int recover_error ; int quiet_count ; dma_addr_t ring_addr ; struct pci_dev *pci_dev ; u32 orig_mac[2U] ; u32 events ; u32 irqmask ; u32 desc_ver ; u32 txrxctl_bits ; u32 vlanctl_bits ; u32 driver_data ; u32 device_id ; u32 register_size ; u32 mac_in_use ; int mgmt_version ; int mgmt_sema ; void *base ; union ring_type get_rx ; union ring_type put_rx ; union ring_type first_rx ; union ring_type last_rx ; struct nv_skb_map *get_rx_ctx ; struct nv_skb_map *put_rx_ctx ; struct nv_skb_map *first_rx_ctx ; struct nv_skb_map *last_rx_ctx ; struct nv_skb_map *rx_skb ; union ring_type rx_ring ; unsigned int rx_buf_sz ; unsigned int pkt_limit ; struct timer_list oom_kick ; struct timer_list nic_poll ; struct timer_list stats_poll ; u32 nic_poll_irq ; int rx_ring_size ; struct u64_stats_sync swstats_rx_syncp ; u64 stat_rx_packets ; u64 stat_rx_bytes ; u64 stat_rx_missed_errors ; u64 stat_rx_dropped ; int need_linktimer ; unsigned long link_timeout ; union ring_type get_tx ; union ring_type put_tx ; union ring_type first_tx ; union ring_type last_tx ; struct nv_skb_map *get_tx_ctx ; struct nv_skb_map *put_tx_ctx ; struct nv_skb_map *first_tx_ctx ; struct nv_skb_map *last_tx_ctx ; struct nv_skb_map *tx_skb ; union ring_type tx_ring ; u32 tx_flags ; int tx_ring_size ; int tx_limit ; u32 tx_pkts_in_progress ; struct nv_skb_map *tx_change_owner ; struct nv_skb_map *tx_end_flip ; int tx_stop ; struct u64_stats_sync swstats_tx_syncp ; u64 stat_tx_packets ; u64 stat_tx_bytes ; u64 stat_tx_dropped ; u32 msi_flags ; struct msix_entry msi_x_entry[8U] ; u32 pause_flags ; u32 saved_config_space[385U] ; char name_rx[19U] ; char name_tx[19U] ; char name_other[22U] ; }; struct __anonstruct_ri_252 { int reg ; int init ; }; struct ldv_struct_dummy_resourceless_instance_3 { struct net_device *arg0 ; int signal_pending ; }; struct ldv_struct_free_irq_10 { int arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_0 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_pci_instance_4 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_platform_instance_6 { int signal_pending ; }; struct ldv_struct_timer_instance_7 { struct timer_list *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; typedef int ldv_func_ret_type___6; typedef int ldv_func_ret_type___7; typedef int ldv_func_ret_type___8; typedef int ldv_func_ret_type___9; typedef int ldv_func_ret_type___10; typedef int ldv_func_ret_type___11; typedef int ldv_func_ret_type___12; typedef int ldv_func_ret_type___13; typedef int ldv_func_ret_type___14; typedef int ldv_func_ret_type___15; typedef int ldv_func_ret_type___16; typedef int ldv_func_ret_type___17; typedef int ldv_func_ret_type___18; typedef int ldv_func_ret_type___19; typedef int ldv_func_ret_type___20; typedef int ldv_func_ret_type___21; typedef struct net_device *ldv_func_ret_type___22; typedef int ldv_func_ret_type___23; typedef int ldv_func_ret_type___24; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; typedef int ldv_map; struct usb_device; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; void __builtin_prefetch(void const * , ...) ; long ldv__builtin_expect(long exp , long c ) ; void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_check_return_value_probe(int retval ) ; void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_54(int ldv_func_arg1 ) ; static int ldv_ldv_post_probe_55(int ldv_func_arg1 ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; int ldv_undef_int(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } extern int printk(char const * , ...) ; extern int __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern int __dynamic_netdev_dbg(struct _ddebug * , struct net_device const * , char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; extern int sprintf(char * , char const * , ...) ; extern enum system_states system_state ; extern void __bad_percpu_size(void) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern size_t strlcpy(char * , char const * , size_t ) ; extern void warn_slowpath_fmt(char const * , int const , char const * , ...) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/8d0c6a3/linux-usb-dev/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static void arch_local_irq_disable(void) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.irq_disable.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/8d0c6a3/linux-usb-dev/lkbce/arch/x86/include/asm/paravirt.h"), "i" (814), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (46UL), [paravirt_opptr] "i" (& pv_irq_ops.irq_disable.func), [paravirt_clobber] "i" (1): "memory", "cc"); return; } } __inline static void arch_local_irq_enable(void) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.irq_enable.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/8d0c6a3/linux-usb-dev/lkbce/arch/x86/include/asm/paravirt.h"), "i" (819), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (47UL), [paravirt_opptr] "i" (& pv_irq_ops.irq_enable.func), [paravirt_clobber] "i" (1): "memory", "cc"); return; } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void trace_hardirqs_on(void) ; extern void trace_hardirqs_off(void) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_6345; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6345; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6345; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6345; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6345: ; return (pfo_ret__ & 2147483647); } } extern void __local_bh_disable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_disable(void) { { { __local_bh_disable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __local_bh_enable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_enable(void) { { { __local_bh_enable_ip((unsigned long )((void *)0), 512U); } return; } } __inline static int arch_spin_is_locked(arch_spinlock_t *lock ) { struct __raw_tickets tmp ; { tmp = *((struct __raw_tickets volatile *)(& lock->__annonCompField7.tickets)); return ((int )tmp.tail != (int )tmp.head); } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_bh(raw_spinlock_t * ) ; extern void _raw_spin_lock_irq(raw_spinlock_t * ) ; extern unsigned long _raw_spin_lock_irqsave(raw_spinlock_t * ) ; extern int _raw_spin_trylock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_bh(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void spin_lock_bh(spinlock_t *lock ) { { { _raw_spin_lock_bh(& lock->__annonCompField19.rlock); } return; } } __inline static int spin_trylock(spinlock_t *lock ) { int tmp ; { { tmp = _raw_spin_trylock(& lock->__annonCompField19.rlock); } return (tmp); } } __inline static void spin_lock_irq(spinlock_t *lock ) { { { _raw_spin_lock_irq(& lock->__annonCompField19.rlock); } return; } } __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void spin_unlock_bh(spinlock_t *lock ) { { { _raw_spin_unlock_bh(& lock->__annonCompField19.rlock); } return; } } __inline static void spin_unlock_irq(spinlock_t *lock ) { { { _raw_spin_unlock_irq(& lock->__annonCompField19.rlock); } return; } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } extern unsigned long volatile jiffies ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern int mod_timer(struct timer_list * , unsigned long ) ; static int ldv_mod_timer_20(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_21(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_22(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_23(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_24(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_25(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_26(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_27(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_38(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_39(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_40(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_41(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_42(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_43(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_44(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_45(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_46(struct timer_list *ldv_func_arg1 ) ; extern unsigned long round_jiffies(unsigned long ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void *ioremap_nocache(resource_size_t , unsigned long ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { { tmp = ioremap_nocache(offset, size); } return (tmp); } } extern void iounmap(void volatile * ) ; extern int cpu_number ; extern void __bad_size_call_parameter(void) ; extern int device_set_wakeup_enable(struct device * , bool ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } static void *ldv_dev_get_drvdata_16(struct device const *dev ) ; static int ldv_dev_set_drvdata_17(struct device *dev , void *data ) ; extern int dev_err(struct device const * , char const * , ...) ; extern int _dev_info(struct device const * , char const * , ...) ; extern void __udelay(unsigned long ) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; extern void usleep_range(unsigned long , unsigned long ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static void dql_queued(struct dql *dql , unsigned int count ) { long tmp ; { { tmp = ldv__builtin_expect(count > 268435455U, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/dynamic_queue_limits.h"), "i" (74), "i" (12UL)); __builtin_unreachable(); } } else { } dql->num_queued = dql->num_queued + count; dql->last_obj_cnt = count; return; } } __inline static int dql_avail(struct dql const *dql ) { { return ((int )((unsigned int )dql->adj_limit - (unsigned int )dql->num_queued)); } } extern void dql_completed(struct dql * , unsigned int ) ; extern void dql_reset(struct dql * ) ; extern long schedule_timeout_uninterruptible(long ) ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void get_random_bytes(void * , int ) ; extern void kfree(void const * ) ; extern void *__kmalloc(size_t , gfp_t ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { { tmp___2 = __kmalloc(size, flags); } return (tmp___2); } } __inline static void *kmalloc_array(size_t n , size_t size , gfp_t flags ) { void *tmp ; { if (size != 0UL && n > 0xffffffffffffffffUL / size) { return ((void *)0); } else { } { tmp = __kmalloc(n * size, flags); } return (tmp); } } __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *tmp ; { { tmp = kmalloc_array(n, size, flags | 32768U); } return (tmp); } } __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops___0 ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops___0 = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops___0->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops___0 ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops___0 = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops___0->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops___0->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops___0 ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops___0 = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (79), "i" (12UL)); __builtin_unreachable(); } } else { } { addr = (*(ops___0->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); } return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops___0 ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops___0 = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (91), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops___0->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops___0->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 0); } return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops___0 ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops___0 = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops___0->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops___0->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops___0 ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops___0 = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops___0->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops___0->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops___0 ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops___0 = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/8d0c6a3/linux-usb-dev/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops___0->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops___0->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } extern void kfree_skb(struct sk_buff * ) ; extern void consume_skb(struct sk_buff * ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static bool skb_is_nonlinear(struct sk_buff const *skb ) { { return ((unsigned int )skb->data_len != 0U); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static int skb_tailroom(struct sk_buff const *skb ) { bool tmp ; { { tmp = skb_is_nonlinear(skb); } return ((int )tmp ? 0 : (int )((unsigned int )skb->end - (unsigned int )skb->tail)); } } extern struct sk_buff *__netdev_alloc_skb(struct net_device * , unsigned int , gfp_t ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb(dev, length, 32U); } return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); } return (tmp___0); } } extern void skb_clone_tx_timestamp(struct sk_buff * ) ; extern void skb_tstamp_tx(struct sk_buff * , struct skb_shared_hwtstamps * ) ; __inline static void sw_tx_timestamp(struct sk_buff *skb ) { unsigned char *tmp ; unsigned char *tmp___0 ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); } if (((int )((struct skb_shared_info *)tmp)->tx_flags & 2) != 0) { { tmp___0 = skb_end_pointer((struct sk_buff const *)skb); } if (((int )((struct skb_shared_info *)tmp___0)->tx_flags & 4) == 0) { { skb_tstamp_tx(skb, (struct skb_shared_hwtstamps *)0); } } else { } } else { } return; } } __inline static void skb_tx_timestamp(struct sk_buff *skb ) { { { skb_clone_tx_timestamp(skb); sw_tx_timestamp(skb); } return; } } __inline static bool skb_is_gso(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_end_pointer(skb); } return ((unsigned int )((struct skb_shared_info *)tmp)->gso_size != 0U); } } __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } __inline static __u32 ethtool_cmd_speed(struct ethtool_cmd const *ep ) { { return ((__u32 )(((int )ep->speed_hi << 16) | (int )ep->speed)); } } extern u32 ethtool_op_get_link(struct net_device * ) ; extern int ethtool_op_get_ts_info(struct net_device * , struct ethtool_ts_info * ) ; __inline static void u64_stats_update_begin(struct u64_stats_sync *syncp ) { { return; } } __inline static unsigned int u64_stats_fetch_begin_bh(struct u64_stats_sync const *syncp ) { { return (0U); } } __inline static bool u64_stats_fetch_retry_bh(struct u64_stats_sync const *syncp , unsigned int start ) { { return (0); } } extern void synchronize_irq(unsigned int ) ; extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); } return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = napi_disable_pending(n); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } __inline static void napi_schedule(struct napi_struct *n ) { bool tmp ; { { tmp = napi_schedule_prep(n); } if ((int )tmp) { { __napi_schedule(n); } } else { } return; } } extern void napi_complete(struct napi_struct * ) ; __inline static void napi_disable(struct napi_struct *n ) { int tmp ; { { __might_sleep("include/linux/netdevice.h", 486, 0); set_bit(1L, (unsigned long volatile *)(& n->state)); } goto ldv_37818; ldv_37817: { msleep(1U); } ldv_37818: { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp != 0) { goto ldv_37817; } else { } { clear_bit(1L, (unsigned long volatile *)(& n->state)); } return; } } __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (502), "i" (12UL)); __builtin_unreachable(); } } else { } { __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_49(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_51(struct net_device *ldv_func_arg1 ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_schedule_queue(struct netdev_queue *txq ) { { if ((txq->state & 3UL) == 0UL) { { __netif_schedule(txq->qdisc); } } else { } return; } } __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_start_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_start_queue(tmp); } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); } return; } } __inline static void netdev_tx_sent_queue(struct netdev_queue *dev_queue , unsigned int bytes ) { int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { { dql_queued(& dev_queue->dql, bytes); tmp = dql_avail((struct dql const *)(& dev_queue->dql)); tmp___0 = ldv__builtin_expect(tmp >= 0, 1L); } if (tmp___0 != 0L) { return; } else { } { set_bit(1L, (unsigned long volatile *)(& dev_queue->state)); __asm__ volatile ("mfence": : : "memory"); tmp___1 = dql_avail((struct dql const *)(& dev_queue->dql)); tmp___2 = ldv__builtin_expect(tmp___1 >= 0, 0L); } if (tmp___2 != 0L) { { clear_bit(1L, (unsigned long volatile *)(& dev_queue->state)); } } else { } return; } } __inline static void netdev_sent_queue(struct net_device *dev , unsigned int bytes ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netdev_tx_sent_queue(tmp, bytes); } return; } } __inline static void netdev_tx_completed_queue(struct netdev_queue *dev_queue , unsigned int pkts , unsigned int bytes ) { long tmp ; int tmp___0 ; int tmp___1 ; { { tmp = ldv__builtin_expect(bytes == 0U, 0L); } if (tmp != 0L) { return; } else { } { dql_completed(& dev_queue->dql, bytes); __asm__ volatile ("mfence": : : "memory"); tmp___0 = dql_avail((struct dql const *)(& dev_queue->dql)); } if (tmp___0 < 0) { return; } else { } { tmp___1 = test_and_set_bit(1L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___1 != 0) { { netif_schedule_queue(dev_queue); } } else { } return; } } __inline static void netdev_completed_queue(struct net_device *dev , unsigned int pkts , unsigned int bytes ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netdev_tx_completed_queue(tmp, pkts, bytes); } return; } } __inline static void netdev_tx_reset_queue(struct netdev_queue *q ) { { { clear_bit(1L, (unsigned long volatile *)(& q->state)); dql_reset(& q->dql); } return; } } __inline static void netdev_reset_queue(struct net_device *dev_queue ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev_queue, 0U); netdev_tx_reset_queue(tmp); } return; } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { { __dev_kfree_skb_any(skb, 1); } return; } } extern gro_result_t napi_gro_receive(struct napi_struct * , struct sk_buff * ) ; __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& dev->state)); } return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; __inline static void __netif_tx_lock(struct netdev_queue *txq , int cpu ) { { { spin_lock(& txq->_xmit_lock); txq->xmit_lock_owner = cpu; } return; } } __inline static void __netif_tx_unlock(struct netdev_queue *txq ) { { { txq->xmit_lock_owner = -1; spin_unlock(& txq->_xmit_lock); } return; } } __inline static void netif_tx_lock(struct net_device *dev ) { unsigned int i ; int cpu ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { { spin_lock(& dev->tx_global_lock); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_39208; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39208; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39208; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39208; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_39208: pscr_ret__ = pfo_ret__; goto ldv_39214; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39218; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39218; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39218; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39218; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_39218: pscr_ret__ = pfo_ret_____0; goto ldv_39214; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39227; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39227; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39227; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39227; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_39227: pscr_ret__ = pfo_ret_____1; goto ldv_39214; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39236; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39236; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39236; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39236; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_39236: pscr_ret__ = pfo_ret_____2; goto ldv_39214; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_39214; switch_break: /* CIL Label */ ; } ldv_39214: cpu = pscr_ret__; i = 0U; goto ldv_39246; ldv_39245: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; __netif_tx_lock(txq, cpu); set_bit(2L, (unsigned long volatile *)(& txq->state)); __netif_tx_unlock(txq); i = i + 1U; } ldv_39246: ; if (i < dev->num_tx_queues) { goto ldv_39245; } else { } return; } } __inline static void netif_tx_lock_bh(struct net_device *dev ) { { { local_bh_disable(); netif_tx_lock(dev); } return; } } __inline static void netif_tx_unlock(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_39257; ldv_39256: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; clear_bit(2L, (unsigned long volatile *)(& txq->state)); netif_schedule_queue(txq); i = i + 1U; } ldv_39257: ; if (i < dev->num_tx_queues) { goto ldv_39256; } else { } { spin_unlock(& dev->tx_global_lock); } return; } } __inline static void netif_tx_unlock_bh(struct net_device *dev ) { { { netif_tx_unlock(dev); local_bh_enable(); } return; } } __inline static void netif_addr_lock(struct net_device *dev ) { { { spin_lock(& dev->addr_list_lock); } return; } } __inline static void netif_addr_unlock(struct net_device *dev ) { { { spin_unlock(& dev->addr_list_lock); } return; } } extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_48(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_50(struct net_device *ldv_func_arg1 ) ; extern int netdev_warn(struct net_device const * , char const * , ...) ; extern int netdev_info(struct net_device const * , char const * , ...) ; extern int pci_bus_write_config_dword(struct pci_bus * , unsigned int , int , u32 ) ; __inline static int pci_write_config_dword(struct pci_dev const *dev , int where , u32 val ) { int tmp ; { { tmp = pci_bus_write_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern int pci_wake_from_d3(struct pci_dev * , bool ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_52(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_53(struct pci_driver *ldv_func_arg1 ) ; extern int pci_enable_msi_block(struct pci_dev * , int ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern int pci_enable_msix(struct pci_dev * , struct msix_entry * , int ) ; extern void pci_disable_msix(struct pci_dev * ) ; __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); } return; } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } __inline static void pci_unmap_page(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) { { { dma_unmap_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_address, size, (enum dma_data_direction )direction); } return; } } __inline static int pci_dma_mapping_error(struct pci_dev *pdev , dma_addr_t dma_addr ) { int tmp ; { { tmp = dma_mapping_error(& pdev->dev, dma_addr); } return (tmp); } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_16((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_17(& pdev->dev, data); } return; } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_28(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_29(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_30(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_31(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_32(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_33(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_34(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_35(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_36(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_37(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void disable_irq(unsigned int ) ; extern void enable_irq(unsigned int ) ; __inline static void disable_irq_lockdep(unsigned int irq ) { { { disable_irq(irq); arch_local_irq_disable(); trace_hardirqs_off(); } return; } } __inline static void enable_irq_lockdep(unsigned int irq ) { { { trace_hardirqs_on(); arch_local_irq_enable(); enable_irq(irq); } return; } } extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_47(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static void eth_random_addr(u8 *addr ) { { { get_random_bytes((void *)addr, 6); *addr = (unsigned int )*addr & 254U; *addr = (u8 )((unsigned int )*addr | 2U); } return; } } __inline static void eth_hw_addr_random(struct net_device *dev ) { { { dev->addr_assign_type = 1U; eth_random_addr(dev->dev_addr); } return; } } __inline static struct sk_buff *__vlan_hwaccel_put_tag(struct sk_buff *skb , __be16 vlan_proto , u16 vlan_tci ) { { skb->vlan_proto = vlan_proto; skb->vlan_tci = (__u16 )((unsigned int )vlan_tci | 4096U); return (skb); } } static struct nv_ethtool_str const nv_estats_str[33U] = { {{'t', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}}, {{'t', 'x', '_', 'z', 'e', 'r', 'o', '_', 'r', 'e', 'x', 'm', 't', '\000'}}, {{'t', 'x', '_', 'o', 'n', 'e', '_', 'r', 'e', 'x', 'm', 't', '\000'}}, {{'t', 'x', '_', 'm', 'a', 'n', 'y', '_', 'r', 'e', 'x', 'm', 't', '\000'}}, {{'t', 'x', '_', 'l', 'a', 't', 'e', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', '\000'}}, {{'t', 'x', '_', 'f', 'i', 'f', 'o', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'t', 'x', '_', 'c', 'a', 'r', 'r', 'i', 'e', 'r', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'t', 'x', '_', 'e', 'x', 'c', 'e', 's', 's', '_', 'd', 'e', 'f', 'e', 'r', 'r', 'a', 'l', '\000'}}, {{'t', 'x', '_', 'r', 'e', 't', 'r', 'y', '_', 'e', 'r', 'r', 'o', 'r', '\000'}}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', '_', 'e', 'r', 'r', 'o', 'r', '\000'}}, {{'r', 'x', '_', 'e', 'x', 't', 'r', 'a', '_', 'b', 'y', 't', 'e', '\000'}}, {{'r', 'x', '_', 'l', 'a', 't', 'e', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', '\000'}}, {{'r', 'x', '_', 'r', 'u', 'n', 't', '\000'}}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', '_', 't', 'o', 'o', '_', 'l', 'o', 'n', 'g', '\000'}}, {{'r', 'x', '_', 'o', 'v', 'e', 'r', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'c', 'r', 'c', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', '_', 'a', 'l', 'i', 'g', 'n', '_', 'e', 'r', 'r', 'o', 'r', '\000'}}, {{'r', 'x', '_', 'l', 'e', 'n', 'g', 't', 'h', '_', 'e', 'r', 'r', 'o', 'r', '\000'}}, {{'r', 'x', '_', 'u', 'n', 'i', 'c', 'a', 's', 't', '\000'}}, {{'r', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '\000'}}, {{'r', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '\000'}}, {{'r', 'x', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '_', 't', 'o', 't', 'a', 'l', '\000'}}, {{'t', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '_', 't', 'o', 't', 'a', 'l', '\000'}}, {{'t', 'x', '_', 'd', 'e', 'f', 'e', 'r', 'r', 'a', 'l', '\000'}}, {{'t', 'x', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}}, {{'t', 'x', '_', 'p', 'a', 'u', 's', 'e', '\000'}}, {{'r', 'x', '_', 'p', 'a', 'u', 's', 'e', '\000'}}, {{'r', 'x', '_', 'd', 'r', 'o', 'p', '_', 'f', 'r', 'a', 'm', 'e', '\000'}}, {{'t', 'x', '_', 'u', 'n', 'i', 'c', 'a', 's', 't', '\000'}}, {{'t', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '\000'}}, {{'t', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '\000'}}}; static struct nv_ethtool_str const nv_etests_str[4U] = { {{'l', 'i', 'n', 'k', ' ', ' ', ' ', ' ', ' ', ' ', '(', 'o', 'n', 'l', 'i', 'n', 'e', '/', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}}, {{'r', 'e', 'g', 'i', 's', 't', 'e', 'r', ' ', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '\000'}}, {{'i', 'n', 't', 'e', 'r', 'r', 'u', 'p', 't', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '\000'}}, {{'l', 'o', 'o', 'p', 'b', 'a', 'c', 'k', ' ', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '\000'}}}; static struct register_test const nv_registers_test[7U] = { {8U, 1U}, {128U, 60U}, {144U, 1023U}, {176U, 4294967295U}, {316U, 255U}, {512U, 30583U}, {0U, 0U}}; static int max_interrupt_work = 4; static int optimization_mode = 2; static int poll_interval = -1; static int msi = 1; static int dma_64bit = 1; static bool debug_tx_timeout = 0; static int phy_cross = 0; static int phy_power_down ; __inline static struct fe_priv *get_nvpriv(struct net_device *dev ) { void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); } return ((struct fe_priv *)tmp); } } __inline static u8 *get_hwbase(struct net_device *dev ) { void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); } return ((u8 *)((struct fe_priv *)tmp)->base); } } __inline static void pci_push(u8 *base ) { { { readl((void const volatile *)base); } return; } } __inline static u32 nv_descr_getlength(struct ring_desc *prd , u32 v ) { { return (prd->flaglen & (v == 1U ? 65535U : 16383U)); } } __inline static u32 nv_descr_getlength_ex(struct ring_desc_ex *prd , u32 v ) { { return (prd->flaglen & 16383U); } } static bool nv_optimized(struct fe_priv *np ) { { if (np->desc_ver - 1U <= 1U) { return (0); } else { } return (1); } } static int reg_delay(struct net_device *dev , int offset , u32 mask , u32 target , int delay , int delaymax ) { u8 *base ; u8 *tmp ; unsigned int tmp___0 ; { { tmp = get_hwbase(dev); base = tmp; pci_push(base); } ldv_44006: { __udelay((unsigned long )delay); delaymax = delaymax - delay; } if (delaymax < 0) { return (1); } else { } { tmp___0 = readl((void const volatile *)base + (unsigned long )offset); } if ((tmp___0 & mask) != target) { goto ldv_44006; } else { } return (0); } } __inline static u32 dma_low(dma_addr_t addr ) { { return ((u32 )addr); } } __inline static u32 dma_high(dma_addr_t addr ) { { return ((u32 )(addr >> 32ULL)); } } static void setup_hw_rings(struct net_device *dev , int rxtx_flags ) { struct fe_priv *np ; struct fe_priv *tmp ; u8 *base ; u8 *tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; u32 tmp___4 ; u32 tmp___5 ; u32 tmp___6 ; bool tmp___7 ; int tmp___8 ; { { tmp = get_nvpriv(dev); np = tmp; tmp___0 = get_hwbase(dev); base = tmp___0; tmp___7 = nv_optimized(np); } if (tmp___7) { tmp___8 = 0; } else { tmp___8 = 1; } if (tmp___8) { if (rxtx_flags & 1) { { tmp___1 = dma_low(np->ring_addr); writel(tmp___1, (void volatile *)base + 260U); } } else { } if ((rxtx_flags & 2) != 0) { { tmp___2 = dma_low(np->ring_addr + (unsigned long long )((unsigned long )np->rx_ring_size * 8UL)); writel(tmp___2, (void volatile *)base + 256U); } } else { } } else { if (rxtx_flags & 1) { { tmp___3 = dma_low(np->ring_addr); writel(tmp___3, (void volatile *)base + 260U); tmp___4 = dma_high(np->ring_addr); writel(tmp___4, (void volatile *)base + 332U); } } else { } if ((rxtx_flags & 2) != 0) { { tmp___5 = dma_low(np->ring_addr + (unsigned long long )((unsigned long )np->rx_ring_size * 16UL)); writel(tmp___5, (void volatile *)base + 256U); tmp___6 = dma_high(np->ring_addr + (unsigned long long )((unsigned long )np->rx_ring_size * 16UL)); writel(tmp___6, (void volatile *)base + 328U); } } else { } } return; } } static void free_rings(struct net_device *dev ) { struct fe_priv *np ; struct fe_priv *tmp ; bool tmp___0 ; int tmp___1 ; { { tmp = get_nvpriv(dev); np = tmp; tmp___0 = nv_optimized(np); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { if ((unsigned long )np->rx_ring.orig != (unsigned long )((struct ring_desc *)0)) { { pci_free_consistent(np->pci_dev, (unsigned long )(np->rx_ring_size + np->tx_ring_size) * 8UL, (void *)np->rx_ring.orig, np->ring_addr); } } else { } } else if ((unsigned long )np->rx_ring.ex != (unsigned long )((struct ring_desc_ex *)0)) { { pci_free_consistent(np->pci_dev, (unsigned long )(np->rx_ring_size + np->tx_ring_size) * 16UL, (void *)np->rx_ring.ex, np->ring_addr); } } else { } { kfree((void const *)np->rx_skb); kfree((void const *)np->tx_skb); } return; } } static int using_multi_irqs(struct net_device *dev ) { struct fe_priv *np ; struct fe_priv *tmp ; { { tmp = get_nvpriv(dev); np = tmp; } if ((np->msi_flags & 128U) == 0U || *((unsigned int *)np + 352UL) == 129U) { return (0); } else { return (1); } } } static void nv_txrx_gate(struct net_device *dev , bool gate ) { struct fe_priv *np ; struct fe_priv *tmp ; u8 *base ; u8 *tmp___0 ; u32 powerstate ; { { tmp = get_nvpriv(dev); np = tmp; tmp___0 = get_hwbase(dev); base = tmp___0; } if (np->mac_in_use == 0U && (np->driver_data & 256U) != 0U) { { powerstate = readl((void const volatile *)base + 1536U); } if ((int )gate) { powerstate = powerstate | 3840U; } else { powerstate = powerstate & 4294963455U; } { writel(powerstate, (void volatile *)base + 1536U); } } else { } return; } } static void nv_enable_irq(struct net_device *dev ) { struct fe_priv *np ; struct fe_priv *tmp ; int tmp___0 ; { { tmp = get_nvpriv(dev); np = tmp; tmp___0 = using_multi_irqs(dev); } if (tmp___0 == 0) { if ((np->msi_flags & 128U) != 0U) { { enable_irq(np->msi_x_entry[0].vector); } } else { { enable_irq((np->pci_dev)->irq); } } } else { { enable_irq(np->msi_x_entry[0].vector); enable_irq(np->msi_x_entry[1].vector); enable_irq(np->msi_x_entry[2].vector); } } return; } } static void nv_disable_irq(struct net_device *dev ) { struct fe_priv *np ; struct fe_priv *tmp ; int tmp___0 ; { { tmp = get_nvpriv(dev); np = tmp; tmp___0 = using_multi_irqs(dev); } if (tmp___0 == 0) { if ((np->msi_flags & 128U) != 0U) { { disable_irq(np->msi_x_entry[0].vector); } } else { { disable_irq((np->pci_dev)->irq); } } } else { { disable_irq(np->msi_x_entry[0].vector); disable_irq(np->msi_x_entry[1].vector); disable_irq(np->msi_x_entry[2].vector); } } return; } } static void nv_enable_hw_interrupts(struct net_device *dev , u32 mask ) { u8 *base ; u8 *tmp ; { { tmp = get_hwbase(dev); base = tmp; writel(mask, (void volatile *)base + 4U); } return; } } static void nv_disable_hw_interrupts(struct net_device *dev , u32 mask ) { struct fe_priv *np ; struct fe_priv *tmp ; u8 *base ; u8 *tmp___0 ; { { tmp = get_nvpriv(dev); np = tmp; tmp___0 = get_hwbase(dev); base = tmp___0; } if ((np->msi_flags & 128U) != 0U) { { writel(mask, (void volatile *)base + 4U); } } else { if ((np->msi_flags & 64U) != 0U) { { writel(0U, (void volatile *)base + 48U); } } else { } { writel(0U, (void volatile *)base + 4U); } } return; } } static void nv_napi_enable(struct net_device *dev ) { struct fe_priv *np ; struct fe_priv *tmp ; { { tmp = get_nvpriv(dev); np = tmp; napi_enable(& np->napi); } return; } } static void nv_napi_disable(struct net_device *dev ) { struct fe_priv *np ; struct fe_priv *tmp ; { { tmp = get_nvpriv(dev); np = tmp; napi_disable(& np->napi); } return; } } static int mii_rw(struct net_device *dev , int addr , int miireg , int value ) { u8 *base ; u8 *tmp ; u32 reg ; int retval ; unsigned int tmp___0 ; unsigned int tmp___1 ; int tmp___2 ; { { tmp = get_hwbase(dev); base = tmp; writel(7U, (void volatile *)base + 384U); reg = readl((void const volatile *)base + 400U); } if ((reg & 32768U) != 0U) { { writel(32768U, (void volatile *)base + 400U); __const_udelay(214750UL); } } else { } reg = (u32 )((addr << 5) | miireg); if (value != -1) { { writel((unsigned int )value, (void volatile *)base + 404U); reg = reg | 1024U; } } else { } { writel(reg, (void volatile *)base + 400U); tmp___2 = reg_delay(dev, 400, 32768U, 0U, 10, 10000); } if (tmp___2 != 0) { retval = -1; } else if (value != -1) { retval = 0; } else { { tmp___1 = readl((void const volatile *)base + 384U); } if ((int )tmp___1 & 1) { retval = -1; } else { { tmp___0 = readl((void const volatile *)base + 404U); retval = (int )tmp___0; } } } return (retval); } } static int phy_reset(struct net_device *dev , u32 bmcr_setup ) { struct fe_priv *np ; void *tmp ; u32 miicontrol ; unsigned int tries ; int tmp___0 ; int tmp___1 ; unsigned int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tries = 0U; miicontrol = bmcr_setup | 32768U; tmp___0 = mii_rw(dev, np->phyaddr, 0, (int )miicontrol); } if (tmp___0 != 0) { return (-1); } else { } { msleep(500U); } goto ldv_44079; ldv_44078: { usleep_range(10000UL, 20000UL); tmp___1 = mii_rw(dev, np->phyaddr, 0, -1); miicontrol = (u32 )tmp___1; tmp___2 = tries; tries = tries + 1U; } if (tmp___2 > 100U) { return (-1); } else { } ldv_44079: ; if ((miicontrol & 32768U) != 0U) { goto ldv_44078; } else { } return (0); } } static int init_realtek_8211b(struct net_device *dev , struct fe_priv *np ) { struct __anonstruct_ri_252 ri[7U] ; int i ; int tmp ; { ri[0].reg = 31; ri[0].init = 0; ri[1].reg = 25; ri[1].init = 36352; ri[2].reg = 31; ri[2].init = 1; ri[3].reg = 19; ri[3].init = 44311; ri[4].reg = 20; ri[4].init = 64340; ri[5].reg = 24; ri[5].init = 62919; ri[6].reg = 31; ri[6].init = 0; i = 0; goto ldv_44093; ldv_44092: { tmp = mii_rw(dev, np->phyaddr, ri[i].reg, ri[i].init); } if (tmp != 0) { return (2); } else { } i = i + 1; ldv_44093: ; if ((unsigned int )i <= 6U) { goto ldv_44092; } else { } return (0); } } static int init_realtek_8211c(struct net_device *dev , struct fe_priv *np ) { u32 reg ; u8 *base ; u8 *tmp ; u32 powerstate ; unsigned int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; { { tmp = get_hwbase(dev); base = tmp; tmp___0 = readl((void const volatile *)base + 1536U); powerstate = tmp___0; powerstate = powerstate | 4U; writel(powerstate, (void volatile *)base + 1536U); msleep(25U); powerstate = powerstate & 4294967291U; writel(powerstate, (void volatile *)base + 1536U); msleep(25U); tmp___1 = mii_rw(dev, np->phyaddr, 17, -1); reg = (u32 )tmp___1; reg = reg | 8U; tmp___2 = mii_rw(dev, np->phyaddr, 17, (int )reg); } if (tmp___2 != 0) { return (2); } else { } { tmp___3 = mii_rw(dev, np->phyaddr, 31, 5); } if (tmp___3 != 0) { return (2); } else { } { tmp___4 = mii_rw(dev, np->phyaddr, 1, -1); reg = (u32 )tmp___4; } if ((reg & 512U) == 0U) { { reg = reg | 512U; tmp___5 = mii_rw(dev, np->phyaddr, 1, (int )reg); } if (tmp___5 != 0) { return (2); } else { } } else { } { tmp___6 = mii_rw(dev, np->phyaddr, 31, 0); } if (tmp___6 != 0) { return (2); } else { } return (0); } } static int init_realtek_8201(struct net_device *dev , struct fe_priv *np ) { u32 phy_reserved ; int tmp ; int tmp___0 ; { if ((np->driver_data & 4194304U) != 0U) { { tmp = mii_rw(dev, np->phyaddr, 17, -1); phy_reserved = (u32 )tmp; phy_reserved = phy_reserved | 4096U; tmp___0 = mii_rw(dev, np->phyaddr, 17, (int )phy_reserved); } if (tmp___0 != 0) { return (2); } else { } } else { } return (0); } } static int init_realtek_8201_cross(struct net_device *dev , struct fe_priv *np ) { u32 phy_reserved ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { if (phy_cross == 0) { { tmp = mii_rw(dev, np->phyaddr, 31, 1); } if (tmp != 0) { return (2); } else { } { tmp___0 = mii_rw(dev, np->phyaddr, 25, -1); phy_reserved = (u32 )tmp___0; phy_reserved = phy_reserved & 4294967292U; phy_reserved = phy_reserved | 1U; tmp___1 = mii_rw(dev, np->phyaddr, 25, (int )phy_reserved); } if (tmp___1 != 0) { return (2); } else { } { tmp___2 = mii_rw(dev, np->phyaddr, 31, 0); } if (tmp___2 != 0) { return (2); } else { } } else { } return (0); } } static int init_cicada(struct net_device *dev , struct fe_priv *np , u32 phyinterface ) { u32 phy_reserved ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { if ((phyinterface & 268435456U) != 0U) { { tmp = mii_rw(dev, np->phyaddr, 23, -1); phy_reserved = (u32 )tmp; phy_reserved = phy_reserved & 4294902271U; phy_reserved = phy_reserved | 4608U; tmp___0 = mii_rw(dev, np->phyaddr, 23, (int )phy_reserved); } if (tmp___0 != 0) { return (2); } else { } { tmp___1 = mii_rw(dev, np->phyaddr, 28, -1); phy_reserved = (u32 )tmp___1; phy_reserved = phy_reserved | 4U; tmp___2 = mii_rw(dev, np->phyaddr, 28, (int )phy_reserved); } if (tmp___2 != 0) { return (2); } else { } } else { } { tmp___3 = mii_rw(dev, np->phyaddr, 22, -1); phy_reserved = (u32 )tmp___3; phy_reserved = phy_reserved | 8192U; tmp___4 = mii_rw(dev, np->phyaddr, 22, (int )phy_reserved); } if (tmp___4 != 0) { return (2); } else { } return (0); } } static int init_vitesse(struct net_device *dev , struct fe_priv *np ) { u32 phy_reserved ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; { { tmp = mii_rw(dev, np->phyaddr, 31, 21173); } if (tmp != 0) { return (2); } else { } { tmp___0 = mii_rw(dev, np->phyaddr, 16, 44938); } if (tmp___0 != 0) { return (2); } else { } { tmp___1 = mii_rw(dev, np->phyaddr, 18, -1); phy_reserved = (u32 )tmp___1; tmp___2 = mii_rw(dev, np->phyaddr, 18, (int )phy_reserved); } if (tmp___2 != 0) { return (2); } else { } { tmp___3 = mii_rw(dev, np->phyaddr, 17, -1); phy_reserved = (u32 )tmp___3; phy_reserved = phy_reserved & 4294967283U; phy_reserved = phy_reserved | 8U; tmp___4 = mii_rw(dev, np->phyaddr, 17, (int )phy_reserved); } if (tmp___4 != 0) { return (2); } else { } { tmp___5 = mii_rw(dev, np->phyaddr, 16, 36746); } if (tmp___5 != 0) { return (2); } else { } { tmp___6 = mii_rw(dev, np->phyaddr, 16, 44934); } if (tmp___6 != 0) { return (2); } else { } { tmp___7 = mii_rw(dev, np->phyaddr, 18, -1); phy_reserved = (u32 )tmp___7; phy_reserved = phy_reserved & 4294967283U; phy_reserved = phy_reserved | 8U; tmp___8 = mii_rw(dev, np->phyaddr, 18, (int )phy_reserved); } if (tmp___8 != 0) { return (2); } else { } { tmp___9 = mii_rw(dev, np->phyaddr, 17, -1); phy_reserved = (u32 )tmp___9; tmp___10 = mii_rw(dev, np->phyaddr, 17, (int )phy_reserved); } if (tmp___10 != 0) { return (2); } else { } { tmp___11 = mii_rw(dev, np->phyaddr, 16, 36742); } if (tmp___11 != 0) { return (2); } else { } { tmp___12 = mii_rw(dev, np->phyaddr, 16, 44930); } if (tmp___12 != 0) { return (2); } else { } { tmp___13 = mii_rw(dev, np->phyaddr, 18, -1); phy_reserved = (u32 )tmp___13; tmp___14 = mii_rw(dev, np->phyaddr, 18, (int )phy_reserved); } if (tmp___14 != 0) { return (2); } else { } { tmp___15 = mii_rw(dev, np->phyaddr, 17, -1); phy_reserved = (u32 )tmp___15; phy_reserved = phy_reserved & 4294966911U; phy_reserved = phy_reserved | 256U; tmp___16 = mii_rw(dev, np->phyaddr, 17, (int )phy_reserved); } if (tmp___16 != 0) { return (2); } else { } { tmp___17 = mii_rw(dev, np->phyaddr, 16, 36738); } if (tmp___17 != 0) { return (2); } else { } { tmp___18 = mii_rw(dev, np->phyaddr, 31, 0); } if (tmp___18 != 0) { return (2); } else { } return (0); } } static int phy_init(struct net_device *dev ) { struct fe_priv *np ; struct fe_priv *tmp ; u8 *base ; u8 *tmp___0 ; u32 phyinterface ; u32 mii_status ; u32 mii_control ; u32 mii_control_1000 ; u32 reg ; int tmp___1 ; char const *tmp___2 ; int tmp___3 ; char const *tmp___4 ; int tmp___5 ; char const *tmp___6 ; int tmp___7 ; char const *tmp___8 ; int tmp___9 ; int tmp___10 ; char const *tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; char const *tmp___15 ; int tmp___16 ; int tmp___17 ; char const *tmp___18 ; int tmp___19 ; char const *tmp___20 ; int tmp___21 ; char const *tmp___22 ; int tmp___23 ; char const *tmp___24 ; int tmp___25 ; char const *tmp___26 ; int tmp___27 ; char const *tmp___28 ; int tmp___29 ; int tmp___30 ; int tmp___31 ; int tmp___32 ; { { tmp = get_nvpriv(dev); np = tmp; tmp___0 = get_hwbase(dev); base = tmp___0; } if (np->phy_model == 544U) { { tmp___1 = mii_rw(dev, np->phyaddr, 28, -1); reg = (u32 )tmp___1; reg = reg & 4294966527U; tmp___3 = mii_rw(dev, np->phyaddr, 28, (int )reg); } if (tmp___3 != 0) { { tmp___2 = pci_name((struct pci_dev const *)np->pci_dev); netdev_info((struct net_device const *)dev, "%s: phy write to errata reg failed\n", tmp___2); } return (2); } else { } } else { } if (np->phy_oui == 1842U) { if (*((unsigned long *)np + 79UL) == 272UL) { { tmp___5 = init_realtek_8211b(dev, np); } if (tmp___5 != 0) { { tmp___4 = pci_name((struct pci_dev const *)np->pci_dev); netdev_info((struct net_device const *)dev, "%s: phy init failed\n", tmp___4); } return (2); } else { } } else if (*((unsigned long *)np + 79UL) == 4294967568UL) { { tmp___7 = init_realtek_8211c(dev, np); } if (tmp___7 != 0) { { tmp___6 = pci_name((struct pci_dev const *)np->pci_dev); netdev_info((struct net_device const *)dev, "%s: phy init failed\n", tmp___6); } return (2); } else { } } else if (np->phy_model == 512U) { { tmp___9 = init_realtek_8201(dev, np); } if (tmp___9 != 0) { { tmp___8 = pci_name((struct pci_dev const *)np->pci_dev); netdev_info((struct net_device const *)dev, "%s: phy init failed\n", tmp___8); } return (2); } else { } } else { } } else { } { tmp___10 = mii_rw(dev, np->phyaddr, 4, -1); reg = (u32 )tmp___10; reg = reg | 3552U; tmp___12 = mii_rw(dev, np->phyaddr, 4, (int )reg); } if (tmp___12 != 0) { { tmp___11 = pci_name((struct pci_dev const *)np->pci_dev); netdev_info((struct net_device const *)dev, "%s: phy write to advertise failed\n", tmp___11); } return (2); } else { } { phyinterface = readl((void const volatile *)base + 192U); tmp___13 = mii_rw(dev, np->phyaddr, 1, -1); mii_status = (u32 )tmp___13; } if ((mii_status & 256U) != 0U) { { np->gigabit = 256U; tmp___14 = mii_rw(dev, np->phyaddr, 9, -1); mii_control_1000 = (u32 )tmp___14; mii_control_1000 = mii_control_1000 & 4294967039U; } if ((phyinterface & 268435456U) != 0U) { mii_control_1000 = mii_control_1000 | 512U; } else { mii_control_1000 = mii_control_1000 & 4294966783U; } { tmp___16 = mii_rw(dev, np->phyaddr, 9, (int )mii_control_1000); } if (tmp___16 != 0) { { tmp___15 = pci_name((struct pci_dev const *)np->pci_dev); netdev_info((struct net_device const *)dev, "%s: phy init failed\n", tmp___15); } return (2); } else { } } else { np->gigabit = 0U; } { tmp___17 = mii_rw(dev, np->phyaddr, 0, -1); mii_control = (u32 )tmp___17; mii_control = mii_control | 4096U; } if (np->phy_oui == 1842U && *((unsigned long *)np + 79UL) == 4294967568UL) { { mii_control = mii_control | 512U; tmp___19 = mii_rw(dev, np->phyaddr, 0, (int )mii_control); } if (tmp___19 != 0) { { tmp___18 = pci_name((struct pci_dev const *)np->pci_dev); netdev_info((struct net_device const *)dev, "%s: phy init failed\n", tmp___18); } return (2); } else { } } else { { tmp___21 = phy_reset(dev, mii_control); } if (tmp___21 != 0) { { tmp___20 = pci_name((struct pci_dev const *)np->pci_dev); netdev_info((struct net_device const *)dev, "%s: phy reset failed\n", tmp___20); } return (2); } else { } } if (np->phy_oui == 1009U) { { tmp___23 = init_cicada(dev, np, phyinterface); } if (tmp___23 != 0) { { tmp___22 = pci_name((struct pci_dev const *)np->pci_dev); netdev_info((struct net_device const *)dev, "%s: phy init failed\n", tmp___22); } return (2); } else { } } else if (np->phy_oui == 449U) { { tmp___25 = init_vitesse(dev, np); } if (tmp___25 != 0) { { tmp___24 = pci_name((struct pci_dev const *)np->pci_dev); netdev_info((struct net_device const *)dev, "%s: phy init failed\n", tmp___24); } return (2); } else { } } else if (np->phy_oui == 1842U) { if (*((unsigned long *)np + 79UL) == 272UL) { { tmp___27 = init_realtek_8211b(dev, np); } if (tmp___27 != 0) { { tmp___26 = pci_name((struct pci_dev const *)np->pci_dev); netdev_info((struct net_device const *)dev, "%s: phy init failed\n", tmp___26); } return (2); } else { } } else if (np->phy_model == 512U) { { tmp___29 = init_realtek_8201(dev, np); } if (tmp___29 != 0) { { tmp___28 = pci_name((struct pci_dev const *)np->pci_dev); netdev_info((struct net_device const *)dev, "%s: phy init failed\n", tmp___28); } return (2); } else { { tmp___30 = init_realtek_8201_cross(dev, np); } if (tmp___30 != 0) { { tmp___28 = pci_name((struct pci_dev const *)np->pci_dev); netdev_info((struct net_device const *)dev, "%s: phy init failed\n", tmp___28); } return (2); } else { } } } else { } } else { } { mii_rw(dev, np->phyaddr, 4, (int )reg); tmp___31 = mii_rw(dev, np->phyaddr, 0, -1); mii_control = (u32 )tmp___31; mii_control = mii_control | 4608U; } if (phy_power_down != 0) { mii_control = mii_control | 2048U; } else { } { tmp___32 = mii_rw(dev, np->phyaddr, 0, (int )mii_control); } if (tmp___32 != 0) { return (2); } else { } return (0); } } static void nv_start_rx(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; u32 rx_ctrl ; unsigned int tmp___1 ; unsigned int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; tmp___1 = readl((void const volatile *)base + 148U); rx_ctrl = tmp___1; tmp___2 = readl((void const volatile *)base + 148U); } if ((int )tmp___2 & 1 && np->mac_in_use == 0U) { { rx_ctrl = rx_ctrl & 4294967294U; writel(rx_ctrl, (void volatile *)base + 148U); pci_push(base); } } else { } { writel(np->linkspeed, (void volatile *)base + 272U); pci_push(base); rx_ctrl = rx_ctrl | 1U; } if (np->mac_in_use != 0U) { rx_ctrl = rx_ctrl & 4278190079U; } else { } { writel(rx_ctrl, (void volatile *)base + 148U); pci_push(base); } return; } } static void nv_stop_rx(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; u32 rx_ctrl ; unsigned int tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; tmp___1 = readl((void const volatile *)base + 148U); rx_ctrl = tmp___1; } if (np->mac_in_use == 0U) { rx_ctrl = rx_ctrl & 4294967294U; } else { rx_ctrl = rx_ctrl | 16777216U; } { writel(rx_ctrl, (void volatile *)base + 148U); tmp___2 = reg_delay(dev, 152, 1U, 0U, 10, 500000); } if (tmp___2 != 0) { { netdev_info((struct net_device const *)dev, "%s: ReceiverStatus remained busy\n", "nv_stop_rx"); } } else { } { __const_udelay(429500UL); } if (np->mac_in_use == 0U) { { writel(0U, (void volatile *)base + 272U); } } else { } return; } } static void nv_start_tx(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; u32 tx_ctrl ; unsigned int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; tmp___1 = readl((void const volatile *)base + 132U); tx_ctrl = tmp___1; tx_ctrl = tx_ctrl | 1U; } if (np->mac_in_use != 0U) { tx_ctrl = tx_ctrl & 4278190079U; } else { } { writel(tx_ctrl, (void volatile *)base + 132U); pci_push(base); } return; } } static void nv_stop_tx(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; u32 tx_ctrl ; unsigned int tmp___1 ; int tmp___2 ; unsigned int tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; tmp___1 = readl((void const volatile *)base + 132U); tx_ctrl = tmp___1; } if (np->mac_in_use == 0U) { tx_ctrl = tx_ctrl & 4294967294U; } else { tx_ctrl = tx_ctrl | 16777216U; } { writel(tx_ctrl, (void volatile *)base + 132U); tmp___2 = reg_delay(dev, 136, 1U, 0U, 10, 500000); } if (tmp___2 != 0) { { netdev_info((struct net_device const *)dev, "%s: TransmitterStatus remained busy\n", "nv_stop_tx"); } } else { } { __const_udelay(429500UL); } if (np->mac_in_use == 0U) { { tmp___3 = readl((void const volatile *)base + 268U); writel(tmp___3 & 32768U, (void volatile *)base + 268U); } } else { } return; } } static void nv_start_rxtx(struct net_device *dev ) { { { nv_start_rx(dev); nv_start_tx(dev); } return; } } static void nv_stop_rxtx(struct net_device *dev ) { { { nv_stop_rx(dev); nv_stop_tx(dev); } return; } } static void nv_txrx_reset(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; writel(np->txrxctl_bits | 20U, (void volatile *)base + 324U); pci_push(base); __const_udelay(17180UL); writel(np->txrxctl_bits | 4U, (void volatile *)base + 324U); pci_push(base); } return; } } static void nv_mac_reset(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; u32 temp1 ; u32 temp2 ; u32 temp3 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; writel(np->txrxctl_bits | 20U, (void volatile *)base + 324U); pci_push(base); temp1 = readl((void const volatile *)base + 168U); temp2 = readl((void const volatile *)base + 172U); temp3 = readl((void const volatile *)base + 268U); writel(243U, (void volatile *)base + 52U); pci_push(base); __const_udelay(274880UL); writel(0U, (void volatile *)base + 52U); pci_push(base); __const_udelay(274880UL); writel(temp1, (void volatile *)base + 168U); writel(temp2, (void volatile *)base + 172U); writel(temp3, (void volatile *)base + 268U); writel(np->txrxctl_bits | 4U, (void volatile *)base + 324U); pci_push(base); } return; } } static void nv_update_stats(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; bool __warned ; int __ret_warn_once ; int tmp___1 ; int __ret_warn_on ; long tmp___2 ; long tmp___3 ; long tmp___4 ; int tmp___5 ; long tmp___6 ; unsigned int tmp___7 ; unsigned int tmp___8 ; unsigned int tmp___9 ; unsigned int tmp___10 ; unsigned int tmp___11 ; unsigned int tmp___12 ; unsigned int tmp___13 ; unsigned int tmp___14 ; unsigned int tmp___15 ; unsigned int tmp___16 ; unsigned int tmp___17 ; unsigned int tmp___18 ; unsigned int tmp___19 ; unsigned int tmp___20 ; unsigned int tmp___21 ; unsigned int tmp___22 ; unsigned int tmp___23 ; unsigned int tmp___24 ; unsigned int tmp___25 ; unsigned int tmp___26 ; unsigned int tmp___27 ; unsigned int tmp___28 ; unsigned int tmp___29 ; unsigned int tmp___30 ; unsigned int tmp___31 ; unsigned int tmp___32 ; unsigned int tmp___33 ; unsigned int tmp___34 ; unsigned int tmp___35 ; unsigned int tmp___36 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; tmp___1 = preempt_count(); __ret_warn_once = ((unsigned long )tmp___1 & 983040UL) != 0UL; tmp___4 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___4 != 0L) { { __ret_warn_on = ! __warned; tmp___2 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___2 != 0L) { { warn_slowpath_fmt("drivers/net/ethernet/nvidia/forcedeth.c", 1669, "forcedeth: estats spin_lock(_bh) from top-half"); } } else { } { tmp___3 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___3 != 0L) { __warned = 1; } else { } } else { } { ldv__builtin_expect(__ret_warn_once != 0, 0L); tmp___5 = arch_spin_is_locked(& np->hwstats_lock.__annonCompField19.rlock.raw_lock); tmp___6 = ldv__builtin_expect(tmp___5 == 0, 0L); } if (tmp___6 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/nvidia/forcedeth.c"), "i" (1670), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___7 = readl((void const volatile *)base + 640U); np->estats.tx_bytes = np->estats.tx_bytes + (u64 )tmp___7; tmp___8 = readl((void const volatile *)base + 644U); np->estats.tx_zero_rexmt = np->estats.tx_zero_rexmt + (u64 )tmp___8; tmp___9 = readl((void const volatile *)base + 648U); np->estats.tx_one_rexmt = np->estats.tx_one_rexmt + (u64 )tmp___9; tmp___10 = readl((void const volatile *)base + 652U); np->estats.tx_many_rexmt = np->estats.tx_many_rexmt + (u64 )tmp___10; tmp___11 = readl((void const volatile *)base + 656U); np->estats.tx_late_collision = np->estats.tx_late_collision + (u64 )tmp___11; tmp___12 = readl((void const volatile *)base + 660U); np->estats.tx_fifo_errors = np->estats.tx_fifo_errors + (u64 )tmp___12; tmp___13 = readl((void const volatile *)base + 664U); np->estats.tx_carrier_errors = np->estats.tx_carrier_errors + (u64 )tmp___13; tmp___14 = readl((void const volatile *)base + 668U); np->estats.tx_excess_deferral = np->estats.tx_excess_deferral + (u64 )tmp___14; tmp___15 = readl((void const volatile *)base + 672U); np->estats.tx_retry_error = np->estats.tx_retry_error + (u64 )tmp___15; tmp___16 = readl((void const volatile *)base + 676U); np->estats.rx_frame_error = np->estats.rx_frame_error + (u64 )tmp___16; tmp___17 = readl((void const volatile *)base + 680U); np->estats.rx_extra_byte = np->estats.rx_extra_byte + (u64 )tmp___17; tmp___18 = readl((void const volatile *)base + 684U); np->estats.rx_late_collision = np->estats.rx_late_collision + (u64 )tmp___18; tmp___19 = readl((void const volatile *)base + 688U); np->estats.rx_runt = np->estats.rx_runt + (u64 )tmp___19; tmp___20 = readl((void const volatile *)base + 692U); np->estats.rx_frame_too_long = np->estats.rx_frame_too_long + (u64 )tmp___20; tmp___21 = readl((void const volatile *)base + 696U); np->estats.rx_over_errors = np->estats.rx_over_errors + (u64 )tmp___21; tmp___22 = readl((void const volatile *)base + 700U); np->estats.rx_crc_errors = np->estats.rx_crc_errors + (u64 )tmp___22; tmp___23 = readl((void const volatile *)base + 704U); np->estats.rx_frame_align_error = np->estats.rx_frame_align_error + (u64 )tmp___23; tmp___24 = readl((void const volatile *)base + 708U); np->estats.rx_length_error = np->estats.rx_length_error + (u64 )tmp___24; tmp___25 = readl((void const volatile *)base + 712U); np->estats.rx_unicast = np->estats.rx_unicast + (u64 )tmp___25; tmp___26 = readl((void const volatile *)base + 716U); np->estats.rx_multicast = np->estats.rx_multicast + (u64 )tmp___26; tmp___27 = readl((void const volatile *)base + 720U); np->estats.rx_broadcast = np->estats.rx_broadcast + (u64 )tmp___27; np->estats.rx_packets = (np->estats.rx_unicast + np->estats.rx_multicast) + np->estats.rx_broadcast; np->estats.rx_errors_total = (((((np->estats.rx_crc_errors + np->estats.rx_over_errors) + np->estats.rx_frame_error) + (np->estats.rx_frame_align_error - np->estats.rx_extra_byte)) + np->estats.rx_late_collision) + np->estats.rx_runt) + np->estats.rx_frame_too_long; np->estats.tx_errors_total = (((np->estats.tx_late_collision + np->estats.tx_fifo_errors) + np->estats.tx_carrier_errors) + np->estats.tx_excess_deferral) + np->estats.tx_retry_error; } if ((np->driver_data & 1024U) != 0U) { { tmp___28 = readl((void const volatile *)base + 724U); np->estats.tx_deferral = np->estats.tx_deferral + (u64 )tmp___28; tmp___29 = readl((void const volatile *)base + 728U); np->estats.tx_packets = np->estats.tx_packets + (u64 )tmp___29; tmp___30 = readl((void const volatile *)base + 732U); np->estats.rx_bytes = np->estats.rx_bytes + (u64 )tmp___30; tmp___31 = readl((void const volatile *)base + 736U); np->estats.tx_pause = np->estats.tx_pause + (u64 )tmp___31; tmp___32 = readl((void const volatile *)base + 740U); np->estats.rx_pause = np->estats.rx_pause + (u64 )tmp___32; tmp___33 = readl((void const volatile *)base + 744U); np->estats.rx_drop_frame = np->estats.rx_drop_frame + (u64 )tmp___33; np->estats.rx_errors_total = np->estats.rx_errors_total + np->estats.rx_drop_frame; } } else { } if ((np->driver_data & 2048U) != 0U) { { tmp___34 = readl((void const volatile *)base + 416U); np->estats.tx_unicast = np->estats.tx_unicast + (u64 )tmp___34; tmp___35 = readl((void const volatile *)base + 420U); np->estats.tx_multicast = np->estats.tx_multicast + (u64 )tmp___35; tmp___36 = readl((void const volatile *)base + 424U); np->estats.tx_broadcast = np->estats.tx_broadcast + (u64 )tmp___36; } } else { } return; } } static struct rtnl_link_stats64 *nv_get_stats64(struct net_device *dev , struct rtnl_link_stats64 *storage ) { struct fe_priv *np ; void *tmp ; unsigned int syncp_start ; bool tmp___0 ; bool tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; } ldv_44194: { syncp_start = u64_stats_fetch_begin_bh((struct u64_stats_sync const *)(& np->swstats_rx_syncp)); storage->rx_packets = np->stat_rx_packets; storage->rx_bytes = np->stat_rx_bytes; storage->rx_dropped = np->stat_rx_dropped; storage->rx_missed_errors = np->stat_rx_missed_errors; tmp___0 = u64_stats_fetch_retry_bh((struct u64_stats_sync const *)(& np->swstats_rx_syncp), syncp_start); } if ((int )tmp___0) { goto ldv_44194; } else { } ldv_44196: { syncp_start = u64_stats_fetch_begin_bh((struct u64_stats_sync const *)(& np->swstats_tx_syncp)); storage->tx_packets = np->stat_tx_packets; storage->tx_bytes = np->stat_tx_bytes; storage->tx_dropped = np->stat_tx_dropped; tmp___1 = u64_stats_fetch_retry_bh((struct u64_stats_sync const *)(& np->swstats_tx_syncp), syncp_start); } if ((int )tmp___1) { goto ldv_44196; } else { } if ((np->driver_data & 3584U) != 0U) { { spin_lock_bh(& np->hwstats_lock); nv_update_stats(dev); storage->rx_errors = np->estats.rx_errors_total; storage->tx_errors = np->estats.tx_errors_total; storage->multicast = np->estats.rx_multicast; storage->rx_length_errors = np->estats.rx_length_error; storage->rx_over_errors = np->estats.rx_over_errors; storage->rx_crc_errors = np->estats.rx_crc_errors; storage->rx_frame_errors = np->estats.rx_frame_align_error; storage->rx_fifo_errors = np->estats.rx_drop_frame; storage->tx_carrier_errors = np->estats.tx_carrier_errors; storage->tx_fifo_errors = np->estats.tx_fifo_errors; spin_unlock_bh(& np->hwstats_lock); } } else { } return (storage); } } static int nv_alloc_rx(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; struct ring_desc *less_rx ; struct ring_desc *tmp___0 ; struct sk_buff *skb ; struct sk_buff *tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; struct ring_desc *tmp___5 ; long tmp___6 ; struct nv_skb_map *tmp___7 ; long tmp___8 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; less_rx = np->get_rx.orig; tmp___0 = less_rx; less_rx = less_rx - 1; } if ((unsigned long )tmp___0 == (unsigned long )np->first_rx.orig) { less_rx = np->last_rx.orig; } else { } goto ldv_44206; ldv_44205: { tmp___1 = netdev_alloc_skb(dev, np->rx_buf_sz + 64U); skb = tmp___1; } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { { (np->put_rx_ctx)->skb = skb; tmp___2 = skb_tailroom((struct sk_buff const *)skb); (np->put_rx_ctx)->dma = pci_map_single(np->pci_dev, (void *)skb->data, (size_t )tmp___2, 2); tmp___3 = pci_dma_mapping_error(np->pci_dev, (np->put_rx_ctx)->dma); } if (tmp___3 != 0) { { kfree_skb(skb); } goto packet_dropped; } else { } { tmp___4 = skb_tailroom((struct sk_buff const *)skb); (np->put_rx_ctx)->dma_len = (unsigned int )tmp___4; (np->put_rx.orig)->buf = (unsigned int )(np->put_rx_ctx)->dma; __asm__ volatile ("sfence": : : "memory"); (np->put_rx.orig)->flaglen = np->rx_buf_sz | 2147483648U; tmp___5 = np->put_rx.orig; np->put_rx.orig = np->put_rx.orig + 1; tmp___6 = ldv__builtin_expect((unsigned long )tmp___5 == (unsigned long )np->last_rx.orig, 0L); } if (tmp___6 != 0L) { np->put_rx.orig = np->first_rx.orig; } else { } { tmp___7 = np->put_rx_ctx; np->put_rx_ctx = np->put_rx_ctx + 1; tmp___8 = ldv__builtin_expect((unsigned long )tmp___7 == (unsigned long )np->last_rx_ctx, 0L); } if (tmp___8 != 0L) { np->put_rx_ctx = np->first_rx_ctx; } else { } } else { packet_dropped: { u64_stats_update_begin(& np->swstats_rx_syncp); np->stat_rx_dropped = np->stat_rx_dropped + 1ULL; u64_stats_update_begin(& np->swstats_rx_syncp); } return (1); } ldv_44206: ; if ((unsigned long )np->put_rx.orig != (unsigned long )less_rx) { goto ldv_44205; } else { } return (0); } } static int nv_alloc_rx_optimized(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; struct ring_desc_ex *less_rx ; struct ring_desc_ex *tmp___0 ; struct sk_buff *skb ; struct sk_buff *tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; struct ring_desc_ex *tmp___5 ; long tmp___6 ; struct nv_skb_map *tmp___7 ; long tmp___8 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; less_rx = np->get_rx.ex; tmp___0 = less_rx; less_rx = less_rx - 1; } if ((unsigned long )tmp___0 == (unsigned long )np->first_rx.ex) { less_rx = np->last_rx.ex; } else { } goto ldv_44216; ldv_44215: { tmp___1 = netdev_alloc_skb(dev, np->rx_buf_sz + 64U); skb = tmp___1; } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { { (np->put_rx_ctx)->skb = skb; tmp___2 = skb_tailroom((struct sk_buff const *)skb); (np->put_rx_ctx)->dma = pci_map_single(np->pci_dev, (void *)skb->data, (size_t )tmp___2, 2); tmp___3 = pci_dma_mapping_error(np->pci_dev, (np->put_rx_ctx)->dma); } if (tmp___3 != 0) { { kfree_skb(skb); } goto packet_dropped; } else { } { tmp___4 = skb_tailroom((struct sk_buff const *)skb); (np->put_rx_ctx)->dma_len = (unsigned int )tmp___4; (np->put_rx.ex)->bufhigh = dma_high((np->put_rx_ctx)->dma); (np->put_rx.ex)->buflow = dma_low((np->put_rx_ctx)->dma); __asm__ volatile ("sfence": : : "memory"); (np->put_rx.ex)->flaglen = np->rx_buf_sz | 2147483648U; tmp___5 = np->put_rx.ex; np->put_rx.ex = np->put_rx.ex + 1; tmp___6 = ldv__builtin_expect((unsigned long )tmp___5 == (unsigned long )np->last_rx.ex, 0L); } if (tmp___6 != 0L) { np->put_rx.ex = np->first_rx.ex; } else { } { tmp___7 = np->put_rx_ctx; np->put_rx_ctx = np->put_rx_ctx + 1; tmp___8 = ldv__builtin_expect((unsigned long )tmp___7 == (unsigned long )np->last_rx_ctx, 0L); } if (tmp___8 != 0L) { np->put_rx_ctx = np->first_rx_ctx; } else { } } else { packet_dropped: { u64_stats_update_begin(& np->swstats_rx_syncp); np->stat_rx_dropped = np->stat_rx_dropped + 1ULL; u64_stats_update_begin(& np->swstats_rx_syncp); } return (1); } ldv_44216: ; if ((unsigned long )np->put_rx.ex != (unsigned long )less_rx) { goto ldv_44215; } else { } return (0); } } static void nv_do_rx_refill(unsigned long data ) { struct net_device *dev ; struct fe_priv *np ; void *tmp ; { { dev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; napi_schedule(& np->napi); } return; } } static void nv_init_rx(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; int i ; union ring_type tmp___0 ; union ring_type tmp___1 ; bool tmp___2 ; int tmp___3 ; struct nv_skb_map *tmp___4 ; struct nv_skb_map *tmp___5 ; bool tmp___6 ; int tmp___7 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___1 = np->rx_ring; np->first_rx = tmp___1; tmp___0 = tmp___1; np->put_rx = tmp___0; np->get_rx = tmp___0; tmp___2 = nv_optimized(np); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { np->last_rx.orig = np->rx_ring.orig + ((unsigned long )np->rx_ring_size + 0xffffffffffffffffUL); } else { np->last_rx.ex = np->rx_ring.ex + ((unsigned long )np->rx_ring_size + 0xffffffffffffffffUL); } tmp___5 = np->rx_skb; np->first_rx_ctx = tmp___5; tmp___4 = tmp___5; np->put_rx_ctx = tmp___4; np->get_rx_ctx = tmp___4; np->last_rx_ctx = np->rx_skb + ((unsigned long )np->rx_ring_size + 0xffffffffffffffffUL); i = 0; goto ldv_44229; ldv_44228: { tmp___6 = nv_optimized(np); } if (tmp___6) { tmp___7 = 0; } else { tmp___7 = 1; } if (tmp___7) { (np->rx_ring.orig + (unsigned long )i)->flaglen = 0U; (np->rx_ring.orig + (unsigned long )i)->buf = 0U; } else { (np->rx_ring.ex + (unsigned long )i)->flaglen = 0U; (np->rx_ring.ex + (unsigned long )i)->txvlan = 0U; (np->rx_ring.ex + (unsigned long )i)->bufhigh = 0U; (np->rx_ring.ex + (unsigned long )i)->buflow = 0U; } (np->rx_skb + (unsigned long )i)->skb = (struct sk_buff *)0; (np->rx_skb + (unsigned long )i)->dma = 0ULL; i = i + 1; ldv_44229: ; if (i < np->rx_ring_size) { goto ldv_44228; } else { } return; } } static void nv_init_tx(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; int i ; union ring_type tmp___0 ; union ring_type tmp___1 ; bool tmp___2 ; int tmp___3 ; struct nv_skb_map *tmp___4 ; struct nv_skb_map *tmp___5 ; bool tmp___6 ; int tmp___7 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___1 = np->tx_ring; np->first_tx = tmp___1; tmp___0 = tmp___1; np->put_tx = tmp___0; np->get_tx = tmp___0; tmp___2 = nv_optimized(np); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { np->last_tx.orig = np->tx_ring.orig + ((unsigned long )np->tx_ring_size + 0xffffffffffffffffUL); } else { np->last_tx.ex = np->tx_ring.ex + ((unsigned long )np->tx_ring_size + 0xffffffffffffffffUL); } { tmp___5 = np->tx_skb; np->first_tx_ctx = tmp___5; tmp___4 = tmp___5; np->put_tx_ctx = tmp___4; np->get_tx_ctx = tmp___4; np->last_tx_ctx = np->tx_skb + ((unsigned long )np->tx_ring_size + 0xffffffffffffffffUL); netdev_reset_queue(np->dev); np->tx_pkts_in_progress = 0U; np->tx_change_owner = (struct nv_skb_map *)0; np->tx_end_flip = (struct nv_skb_map *)0; np->tx_stop = 0; i = 0; } goto ldv_44237; ldv_44236: { tmp___6 = nv_optimized(np); } if (tmp___6) { tmp___7 = 0; } else { tmp___7 = 1; } if (tmp___7) { (np->tx_ring.orig + (unsigned long )i)->flaglen = 0U; (np->tx_ring.orig + (unsigned long )i)->buf = 0U; } else { (np->tx_ring.ex + (unsigned long )i)->flaglen = 0U; (np->tx_ring.ex + (unsigned long )i)->txvlan = 0U; (np->tx_ring.ex + (unsigned long )i)->bufhigh = 0U; (np->tx_ring.ex + (unsigned long )i)->buflow = 0U; } (np->tx_skb + (unsigned long )i)->skb = (struct sk_buff *)0; (np->tx_skb + (unsigned long )i)->dma = 0ULL; (np->tx_skb + (unsigned long )i)->dma_len = 0U; (np->tx_skb + (unsigned long )i)->dma_single = 0U; (np->tx_skb + (unsigned long )i)->first_tx_desc = (struct ring_desc_ex *)0; (np->tx_skb + (unsigned long )i)->next_tx_ctx = (struct nv_skb_map *)0; i = i + 1; ldv_44237: ; if (i < np->tx_ring_size) { goto ldv_44236; } else { } return; } } static int nv_init_ring(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; int tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; nv_init_tx(dev); nv_init_rx(dev); tmp___2 = nv_optimized(np); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { { tmp___0 = nv_alloc_rx(dev); } return (tmp___0); } else { { tmp___1 = nv_alloc_rx_optimized(dev); } return (tmp___1); } } } static void nv_unmap_txskb(struct fe_priv *np , struct nv_skb_map *tx_skb ) { { if (tx_skb->dma != 0ULL) { if ((unsigned int )*((unsigned char *)tx_skb + 19UL) != 0U) { { pci_unmap_single(np->pci_dev, tx_skb->dma, (size_t )tx_skb->dma_len, 1); } } else { { pci_unmap_page(np->pci_dev, tx_skb->dma, (size_t )tx_skb->dma_len, 1); } } tx_skb->dma = 0ULL; } else { } return; } } static int nv_release_txskb(struct fe_priv *np , struct nv_skb_map *tx_skb ) { { { nv_unmap_txskb(np, tx_skb); } if ((unsigned long )tx_skb->skb != (unsigned long )((struct sk_buff *)0)) { { dev_kfree_skb_any(tx_skb->skb); tx_skb->skb = (struct sk_buff *)0; } return (1); } else { } return (0); } } static void nv_drain_tx(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; unsigned int i ; bool tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; i = 0U; } goto ldv_44257; ldv_44256: { tmp___0 = nv_optimized(np); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { (np->tx_ring.orig + (unsigned long )i)->flaglen = 0U; (np->tx_ring.orig + (unsigned long )i)->buf = 0U; } else { (np->tx_ring.ex + (unsigned long )i)->flaglen = 0U; (np->tx_ring.ex + (unsigned long )i)->txvlan = 0U; (np->tx_ring.ex + (unsigned long )i)->bufhigh = 0U; (np->tx_ring.ex + (unsigned long )i)->buflow = 0U; } { tmp___2 = nv_release_txskb(np, np->tx_skb + (unsigned long )i); } if (tmp___2 != 0) { { u64_stats_update_begin(& np->swstats_tx_syncp); np->stat_tx_dropped = np->stat_tx_dropped + 1ULL; u64_stats_update_begin(& np->swstats_tx_syncp); } } else { } (np->tx_skb + (unsigned long )i)->dma = 0ULL; (np->tx_skb + (unsigned long )i)->dma_len = 0U; (np->tx_skb + (unsigned long )i)->dma_single = 0U; (np->tx_skb + (unsigned long )i)->first_tx_desc = (struct ring_desc_ex *)0; (np->tx_skb + (unsigned long )i)->next_tx_ctx = (struct nv_skb_map *)0; i = i + 1U; ldv_44257: ; if (i < (unsigned int )np->tx_ring_size) { goto ldv_44256; } else { } np->tx_pkts_in_progress = 0U; np->tx_change_owner = (struct nv_skb_map *)0; np->tx_end_flip = (struct nv_skb_map *)0; return; } } static void nv_drain_rx(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; int i ; bool tmp___0 ; int tmp___1 ; unsigned char *tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; i = 0; } goto ldv_44265; ldv_44264: { tmp___0 = nv_optimized(np); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { (np->rx_ring.orig + (unsigned long )i)->flaglen = 0U; (np->rx_ring.orig + (unsigned long )i)->buf = 0U; } else { (np->rx_ring.ex + (unsigned long )i)->flaglen = 0U; (np->rx_ring.ex + (unsigned long )i)->txvlan = 0U; (np->rx_ring.ex + (unsigned long )i)->bufhigh = 0U; (np->rx_ring.ex + (unsigned long )i)->buflow = 0U; } __asm__ volatile ("sfence": : : "memory"); if ((unsigned long )(np->rx_skb + (unsigned long )i)->skb != (unsigned long )((struct sk_buff *)0)) { { tmp___2 = skb_end_pointer((struct sk_buff const *)(np->rx_skb + (unsigned long )i)->skb); pci_unmap_single(np->pci_dev, (np->rx_skb + (unsigned long )i)->dma, (size_t )((long )tmp___2 - (long )((np->rx_skb + (unsigned long )i)->skb)->data), 2); consume_skb((np->rx_skb + (unsigned long )i)->skb); (np->rx_skb + (unsigned long )i)->skb = (struct sk_buff *)0; } } else { } i = i + 1; ldv_44265: ; if (i < np->rx_ring_size) { goto ldv_44264; } else { } return; } } static void nv_drain_rxtx(struct net_device *dev ) { { { nv_drain_tx(dev); nv_drain_rx(dev); } return; } } __inline static u32 nv_get_empty_tx_slots(struct fe_priv *np ) { { return ((unsigned int )np->tx_ring_size - (unsigned int )(((long )np->tx_ring_size + ((long )np->put_tx_ctx - (long )np->get_tx_ctx) / 40L) % (long )np->tx_ring_size)); } } static void nv_legacybackoff_reseed(struct net_device *dev ) { u8 *base ; u8 *tmp ; u32 reg ; u32 low ; int tx_status ; unsigned int tmp___0 ; unsigned int tmp___1 ; { { tmp = get_hwbase(dev); base = tmp; tx_status = 0; tmp___0 = readl((void const volatile *)base + 156U); reg = tmp___0 & 4294967040U; get_random_bytes((void *)(& low), 4); reg = reg | (low & 255U); tmp___1 = readl((void const volatile *)base + 132U); tx_status = (int )tmp___1 & 1; } if (tx_status != 0) { { nv_stop_tx(dev); } } else { } { nv_stop_rx(dev); writel(reg, (void volatile *)base + 156U); } if (tx_status != 0) { { nv_start_tx(dev); } } else { } { nv_start_rx(dev); } return; } } static u32 const main_seedset[8U][15U] = { { 145U, 155U, 165U, 175U, 185U, 196U, 235U, 245U, 255U, 265U, 275U, 285U, 660U, 690U, 874U}, { 245U, 255U, 265U, 575U, 385U, 298U, 335U, 345U, 355U, 366U, 375U, 385U, 761U, 790U, 974U}, { 145U, 155U, 165U, 175U, 185U, 196U, 235U, 245U, 255U, 265U, 275U, 285U, 660U, 690U, 874U}, { 245U, 255U, 265U, 575U, 385U, 298U, 335U, 345U, 355U, 366U, 375U, 386U, 761U, 790U, 974U}, { 266U, 265U, 276U, 585U, 397U, 208U, 345U, 355U, 365U, 376U, 385U, 396U, 771U, 700U, 984U}, { 266U, 265U, 276U, 586U, 397U, 208U, 346U, 355U, 365U, 376U, 285U, 396U, 771U, 700U, 984U}, { 366U, 365U, 376U, 686U, 497U, 308U, 447U, 455U, 466U, 476U, 485U, 496U, 871U, 800U, 84U}, { 466U, 465U, 476U, 786U, 597U, 408U, 547U, 555U, 566U, 576U, 585U, 597U, 971U, 900U, 184U}}; static u32 const gear_seedset[8U][15U] = { { 251U, 262U, 273U, 324U, 319U, 508U, 375U, 364U, 341U, 371U, 398U, 193U, 375U, 30U, 295U}, { 351U, 375U, 373U, 469U, 551U, 639U, 477U, 464U, 441U, 472U, 498U, 293U, 476U, 130U, 395U}, { 351U, 375U, 373U, 469U, 551U, 639U, 477U, 464U, 441U, 472U, 498U, 293U, 476U, 130U, 397U}, { 251U, 262U, 273U, 324U, 319U, 508U, 375U, 364U, 341U, 371U, 398U, 193U, 375U, 30U, 295U}, { 251U, 262U, 273U, 324U, 319U, 508U, 375U, 364U, 341U, 371U, 398U, 193U, 375U, 30U, 295U}, { 351U, 375U, 373U, 469U, 551U, 639U, 477U, 464U, 441U, 472U, 498U, 293U, 476U, 130U, 395U}, { 351U, 375U, 373U, 469U, 551U, 639U, 477U, 464U, 441U, 472U, 498U, 293U, 476U, 130U, 395U}, { 351U, 375U, 373U, 469U, 551U, 639U, 477U, 464U, 441U, 472U, 498U, 293U, 476U, 130U, 395U}}; static void nv_gear_backoff_reseed(struct net_device *dev ) { u8 *base ; u8 *tmp ; u32 miniseed1 ; u32 miniseed2 ; u32 miniseed2_reversed ; u32 miniseed3 ; u32 miniseed3_reversed ; u32 temp ; u32 seedset ; u32 combinedSeed ; int i ; { { tmp = get_hwbase(dev); base = tmp; get_random_bytes((void *)(& miniseed1), 4); miniseed1 = miniseed1 & 4095U; } if (miniseed1 == 0U) { miniseed1 = 2748U; } else { } { get_random_bytes((void *)(& miniseed2), 4); miniseed2 = miniseed2 & 4095U; } if (miniseed2 == 0U) { miniseed2 = 2748U; } else { } { miniseed2_reversed = (((miniseed2 & 3840U) >> 8) | (miniseed2 & 240U)) | ((miniseed2 & 15U) << 8); get_random_bytes((void *)(& miniseed3), 4); miniseed3 = miniseed3 & 4095U; } if (miniseed3 == 0U) { miniseed3 = 2748U; } else { } miniseed3_reversed = (((miniseed3 & 3840U) >> 8) | (miniseed3 & 240U)) | ((miniseed3 & 15U) << 8); combinedSeed = ((miniseed1 ^ miniseed2_reversed) << 12) | (miniseed2 ^ miniseed3_reversed); if ((combinedSeed & 1023U) == 0U) { combinedSeed = combinedSeed | 8U; } else { } if ((combinedSeed & 4190208U) == 0U) { combinedSeed = combinedSeed | 32768U; } else { } { temp = 1879048192U; temp = temp | (combinedSeed & 1023U); temp = temp | (combinedSeed >> 12); writel(temp, (void volatile *)base + 196U); get_random_bytes((void *)(& seedset), 4); seedset = seedset & 7U; i = 1; } goto ldv_44296; ldv_44295: { temp = (u32 )((i << 24) | 1879048192); temp = temp | ((u32 )main_seedset[seedset][i + -1] & 1023U); temp = temp | (((unsigned int )gear_seedset[seedset][i + -1] & 1023U) << 12); writel(temp, (void volatile *)base + 196U); i = i + 1; } ldv_44296: ; if (i <= 15) { goto ldv_44295; } else { } return; } } static netdev_tx_t nv_start_xmit(struct sk_buff *skb , struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u32 tx_flags ; u32 tx_flags_extra ; unsigned int fragments ; unsigned char *tmp___0 ; unsigned int i ; u32 offset ; u32 bcnt ; u32 size ; unsigned int tmp___1 ; u32 entries ; u32 empty_slots ; struct ring_desc *put_tx ; struct ring_desc *start_tx ; struct ring_desc *prev_tx ; struct nv_skb_map *prev_tx_ctx ; struct nv_skb_map *tmp_tx_ctx ; struct nv_skb_map *start_tx_ctx ; unsigned long flags ; u32 frag_size ; unsigned char *tmp___2 ; unsigned int tmp___3 ; raw_spinlock_t *tmp___4 ; long tmp___5 ; int tmp___6 ; struct ring_desc *tmp___7 ; long tmp___8 ; struct nv_skb_map *tmp___9 ; long tmp___10 ; skb_frag_t const *frag ; unsigned char *tmp___11 ; u32 frag_size___0 ; unsigned int tmp___12 ; struct nv_skb_map *tmp___13 ; long tmp___14 ; int tmp___15 ; struct ring_desc *tmp___16 ; long tmp___17 ; struct nv_skb_map *tmp___18 ; long tmp___19 ; unsigned char *tmp___20 ; bool tmp___21 ; raw_spinlock_t *tmp___22 ; u8 *tmp___23 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tx_flags = 0U; tx_flags_extra = np->desc_ver == 1U ? 65536U : 536870912U; tmp___0 = skb_end_pointer((struct sk_buff const *)skb); fragments = (unsigned int )((struct skb_shared_info *)tmp___0)->nr_frags; offset = 0U; tmp___1 = skb_headlen((struct sk_buff const *)skb); size = tmp___1; entries = (size >> 14) + ((size & 16383U) != 0U ? 1U : 0U); tmp_tx_ctx = (struct nv_skb_map *)0; start_tx_ctx = (struct nv_skb_map *)0; i = 0U; } goto ldv_44321; ldv_44320: { tmp___2 = skb_end_pointer((struct sk_buff const *)skb); tmp___3 = skb_frag_size((skb_frag_t const *)(& ((struct skb_shared_info *)tmp___2)->frags) + (unsigned long )i); frag_size = tmp___3; entries = entries + ((frag_size >> 14) + ((frag_size & 16383U) != 0U ? 1U : 0U)); i = i + 1U; } ldv_44321: ; if (i < fragments) { goto ldv_44320; } else { } { tmp___4 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___4); empty_slots = nv_get_empty_tx_slots(np); tmp___5 = ldv__builtin_expect(empty_slots <= entries, 0L); } if (tmp___5 != 0L) { { netif_stop_queue(dev); np->tx_stop = 1; spin_unlock_irqrestore(& np->lock, flags); } return (16); } else { } { spin_unlock_irqrestore(& np->lock, flags); put_tx = np->put_tx.orig; start_tx = put_tx; } ldv_44326: { prev_tx = put_tx; prev_tx_ctx = np->put_tx_ctx; bcnt = 16384U < size ? 16384U : size; (np->put_tx_ctx)->dma = pci_map_single(np->pci_dev, (void *)skb->data + (unsigned long )offset, (size_t )bcnt, 1); tmp___6 = pci_dma_mapping_error(np->pci_dev, (np->put_tx_ctx)->dma); } if (tmp___6 != 0) { { kfree_skb(skb); u64_stats_update_begin(& np->swstats_tx_syncp); np->stat_tx_dropped = np->stat_tx_dropped + 1ULL; u64_stats_update_begin(& np->swstats_tx_syncp); } return (0); } else { } { (np->put_tx_ctx)->dma_len = bcnt; (np->put_tx_ctx)->dma_single = 1U; put_tx->buf = (unsigned int )(np->put_tx_ctx)->dma; put_tx->flaglen = (bcnt - 1U) | tx_flags; tx_flags = np->tx_flags; offset = offset + bcnt; size = size - bcnt; tmp___7 = put_tx; put_tx = put_tx + 1; tmp___8 = ldv__builtin_expect((unsigned long )tmp___7 == (unsigned long )np->last_tx.orig, 0L); } if (tmp___8 != 0L) { put_tx = np->first_tx.orig; } else { } { tmp___9 = np->put_tx_ctx; np->put_tx_ctx = np->put_tx_ctx + 1; tmp___10 = ldv__builtin_expect((unsigned long )tmp___9 == (unsigned long )np->last_tx_ctx, 0L); } if (tmp___10 != 0L) { np->put_tx_ctx = np->first_tx_ctx; } else { } if (size != 0U) { goto ldv_44326; } else { } i = 0U; goto ldv_44335; ldv_44334: { tmp___11 = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t const *)(& ((struct skb_shared_info *)tmp___11)->frags) + (unsigned long )i; tmp___12 = skb_frag_size(frag); frag_size___0 = tmp___12; offset = 0U; } ldv_44332: prev_tx = put_tx; prev_tx_ctx = np->put_tx_ctx; if ((unsigned long )start_tx_ctx == (unsigned long )((struct nv_skb_map *)0)) { tmp_tx_ctx = np->put_tx_ctx; start_tx_ctx = tmp_tx_ctx; } else { } { bcnt = 16384U < frag_size___0 ? 16384U : frag_size___0; (np->put_tx_ctx)->dma = skb_frag_dma_map(& (np->pci_dev)->dev, frag, (size_t )offset, (size_t )bcnt, 1); tmp___15 = dma_mapping_error(& (np->pci_dev)->dev, (np->put_tx_ctx)->dma); } if (tmp___15 != 0) { ldv_44330: { nv_unmap_txskb(np, start_tx_ctx); tmp___13 = tmp_tx_ctx; tmp_tx_ctx = tmp_tx_ctx + 1; tmp___14 = ldv__builtin_expect((unsigned long )tmp___13 == (unsigned long )np->last_tx_ctx, 0L); } if (tmp___14 != 0L) { tmp_tx_ctx = np->first_tx_ctx; } else { } if ((unsigned long )tmp_tx_ctx != (unsigned long )np->put_tx_ctx) { goto ldv_44330; } else { } { kfree_skb(skb); np->put_tx_ctx = start_tx_ctx; u64_stats_update_begin(& np->swstats_tx_syncp); np->stat_tx_dropped = np->stat_tx_dropped + 1ULL; u64_stats_update_begin(& np->swstats_tx_syncp); } return (0); } else { } { (np->put_tx_ctx)->dma_len = bcnt; (np->put_tx_ctx)->dma_single = 0U; put_tx->buf = (unsigned int )(np->put_tx_ctx)->dma; put_tx->flaglen = (bcnt - 1U) | tx_flags; offset = offset + bcnt; frag_size___0 = frag_size___0 - bcnt; tmp___16 = put_tx; put_tx = put_tx + 1; tmp___17 = ldv__builtin_expect((unsigned long )tmp___16 == (unsigned long )np->last_tx.orig, 0L); } if (tmp___17 != 0L) { put_tx = np->first_tx.orig; } else { } { tmp___18 = np->put_tx_ctx; np->put_tx_ctx = np->put_tx_ctx + 1; tmp___19 = ldv__builtin_expect((unsigned long )tmp___18 == (unsigned long )np->last_tx_ctx, 0L); } if (tmp___19 != 0L) { np->put_tx_ctx = np->first_tx_ctx; } else { } if (frag_size___0 != 0U) { goto ldv_44332; } else { } i = i + 1U; ldv_44335: ; if (i < fragments) { goto ldv_44334; } else { } { prev_tx->flaglen = prev_tx->flaglen | tx_flags_extra; prev_tx_ctx->skb = skb; tmp___21 = skb_is_gso((struct sk_buff const *)skb); } if ((int )tmp___21) { { tmp___20 = skb_end_pointer((struct sk_buff const *)skb); tx_flags_extra = (u32 )(((int )((struct skb_shared_info *)tmp___20)->gso_size << 14) | 268435456); } } else { tx_flags_extra = (unsigned int )*((unsigned char *)skb + 124UL) == 12U ? 201326592U : 0U; } { tmp___22 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___22); start_tx->flaglen = start_tx->flaglen | (tx_flags | tx_flags_extra); netdev_sent_queue(np->dev, skb->len); skb_tx_timestamp(skb); np->put_tx.orig = put_tx; spin_unlock_irqrestore(& np->lock, flags); tmp___23 = get_hwbase(dev); writel(np->txrxctl_bits | 1U, (void volatile *)tmp___23 + 324U); } return (0); } } static netdev_tx_t nv_start_xmit_optimized(struct sk_buff *skb , struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u32 tx_flags ; u32 tx_flags_extra ; unsigned int fragments ; unsigned char *tmp___0 ; unsigned int i ; u32 offset ; u32 bcnt ; u32 size ; unsigned int tmp___1 ; u32 entries ; u32 empty_slots ; struct ring_desc_ex *put_tx ; struct ring_desc_ex *start_tx ; struct ring_desc_ex *prev_tx ; struct nv_skb_map *prev_tx_ctx ; struct nv_skb_map *start_tx_ctx ; struct nv_skb_map *tmp_tx_ctx ; unsigned long flags ; u32 frag_size ; unsigned char *tmp___2 ; unsigned int tmp___3 ; raw_spinlock_t *tmp___4 ; long tmp___5 ; int tmp___6 ; struct ring_desc_ex *tmp___7 ; long tmp___8 ; struct nv_skb_map *tmp___9 ; long tmp___10 ; skb_frag_t *frag ; unsigned char *tmp___11 ; u32 frag_size___0 ; unsigned int tmp___12 ; struct nv_skb_map *tmp___13 ; long tmp___14 ; int tmp___15 ; struct ring_desc_ex *tmp___16 ; long tmp___17 ; struct nv_skb_map *tmp___18 ; long tmp___19 ; unsigned char *tmp___20 ; bool tmp___21 ; raw_spinlock_t *tmp___22 ; u8 *tmp___23 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tx_flags = 0U; tmp___0 = skb_end_pointer((struct sk_buff const *)skb); fragments = (unsigned int )((struct skb_shared_info *)tmp___0)->nr_frags; offset = 0U; tmp___1 = skb_headlen((struct sk_buff const *)skb); size = tmp___1; entries = (size >> 14) + ((size & 16383U) != 0U ? 1U : 0U); start_tx_ctx = (struct nv_skb_map *)0; tmp_tx_ctx = (struct nv_skb_map *)0; i = 0U; } goto ldv_44363; ldv_44362: { tmp___2 = skb_end_pointer((struct sk_buff const *)skb); tmp___3 = skb_frag_size((skb_frag_t const *)(& ((struct skb_shared_info *)tmp___2)->frags) + (unsigned long )i); frag_size = tmp___3; entries = entries + ((frag_size >> 14) + ((frag_size & 16383U) != 0U ? 1U : 0U)); i = i + 1U; } ldv_44363: ; if (i < fragments) { goto ldv_44362; } else { } { tmp___4 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___4); empty_slots = nv_get_empty_tx_slots(np); tmp___5 = ldv__builtin_expect(empty_slots <= entries, 0L); } if (tmp___5 != 0L) { { netif_stop_queue(dev); np->tx_stop = 1; spin_unlock_irqrestore(& np->lock, flags); } return (16); } else { } { spin_unlock_irqrestore(& np->lock, flags); put_tx = np->put_tx.ex; start_tx = put_tx; start_tx_ctx = np->put_tx_ctx; } ldv_44368: { prev_tx = put_tx; prev_tx_ctx = np->put_tx_ctx; bcnt = 16384U < size ? 16384U : size; (np->put_tx_ctx)->dma = pci_map_single(np->pci_dev, (void *)skb->data + (unsigned long )offset, (size_t )bcnt, 1); tmp___6 = pci_dma_mapping_error(np->pci_dev, (np->put_tx_ctx)->dma); } if (tmp___6 != 0) { { kfree_skb(skb); u64_stats_update_begin(& np->swstats_tx_syncp); np->stat_tx_dropped = np->stat_tx_dropped + 1ULL; u64_stats_update_begin(& np->swstats_tx_syncp); } return (0); } else { } { (np->put_tx_ctx)->dma_len = bcnt; (np->put_tx_ctx)->dma_single = 1U; put_tx->bufhigh = dma_high((np->put_tx_ctx)->dma); put_tx->buflow = dma_low((np->put_tx_ctx)->dma); put_tx->flaglen = (bcnt - 1U) | tx_flags; tx_flags = 2147483648U; offset = offset + bcnt; size = size - bcnt; tmp___7 = put_tx; put_tx = put_tx + 1; tmp___8 = ldv__builtin_expect((unsigned long )tmp___7 == (unsigned long )np->last_tx.ex, 0L); } if (tmp___8 != 0L) { put_tx = np->first_tx.ex; } else { } { tmp___9 = np->put_tx_ctx; np->put_tx_ctx = np->put_tx_ctx + 1; tmp___10 = ldv__builtin_expect((unsigned long )tmp___9 == (unsigned long )np->last_tx_ctx, 0L); } if (tmp___10 != 0L) { np->put_tx_ctx = np->first_tx_ctx; } else { } if (size != 0U) { goto ldv_44368; } else { } i = 0U; goto ldv_44377; ldv_44376: { tmp___11 = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp___11)->frags) + (unsigned long )i; tmp___12 = skb_frag_size((skb_frag_t const *)frag); frag_size___0 = tmp___12; offset = 0U; } ldv_44374: prev_tx = put_tx; prev_tx_ctx = np->put_tx_ctx; bcnt = 16384U < frag_size___0 ? 16384U : frag_size___0; if ((unsigned long )start_tx_ctx == (unsigned long )((struct nv_skb_map *)0)) { tmp_tx_ctx = np->put_tx_ctx; start_tx_ctx = tmp_tx_ctx; } else { } { (np->put_tx_ctx)->dma = skb_frag_dma_map(& (np->pci_dev)->dev, (skb_frag_t const *)frag, (size_t )offset, (size_t )bcnt, 1); tmp___15 = dma_mapping_error(& (np->pci_dev)->dev, (np->put_tx_ctx)->dma); } if (tmp___15 != 0) { ldv_44372: { nv_unmap_txskb(np, start_tx_ctx); tmp___13 = tmp_tx_ctx; tmp_tx_ctx = tmp_tx_ctx + 1; tmp___14 = ldv__builtin_expect((unsigned long )tmp___13 == (unsigned long )np->last_tx_ctx, 0L); } if (tmp___14 != 0L) { tmp_tx_ctx = np->first_tx_ctx; } else { } if ((unsigned long )tmp_tx_ctx != (unsigned long )np->put_tx_ctx) { goto ldv_44372; } else { } { kfree_skb(skb); np->put_tx_ctx = start_tx_ctx; u64_stats_update_begin(& np->swstats_tx_syncp); np->stat_tx_dropped = np->stat_tx_dropped + 1ULL; u64_stats_update_begin(& np->swstats_tx_syncp); } return (0); } else { } { (np->put_tx_ctx)->dma_len = bcnt; (np->put_tx_ctx)->dma_single = 0U; put_tx->bufhigh = dma_high((np->put_tx_ctx)->dma); put_tx->buflow = dma_low((np->put_tx_ctx)->dma); put_tx->flaglen = (bcnt - 1U) | tx_flags; offset = offset + bcnt; frag_size___0 = frag_size___0 - bcnt; tmp___16 = put_tx; put_tx = put_tx + 1; tmp___17 = ldv__builtin_expect((unsigned long )tmp___16 == (unsigned long )np->last_tx.ex, 0L); } if (tmp___17 != 0L) { put_tx = np->first_tx.ex; } else { } { tmp___18 = np->put_tx_ctx; np->put_tx_ctx = np->put_tx_ctx + 1; tmp___19 = ldv__builtin_expect((unsigned long )tmp___18 == (unsigned long )np->last_tx_ctx, 0L); } if (tmp___19 != 0L) { np->put_tx_ctx = np->first_tx_ctx; } else { } if (frag_size___0 != 0U) { goto ldv_44374; } else { } i = i + 1U; ldv_44377: ; if (i < fragments) { goto ldv_44376; } else { } { prev_tx->flaglen = prev_tx->flaglen | 536870912U; prev_tx_ctx->skb = skb; tmp___21 = skb_is_gso((struct sk_buff const *)skb); } if ((int )tmp___21) { { tmp___20 = skb_end_pointer((struct sk_buff const *)skb); tx_flags_extra = (u32 )(((int )((struct skb_shared_info *)tmp___20)->gso_size << 14) | 268435456); } } else { tx_flags_extra = (unsigned int )*((unsigned char *)skb + 124UL) == 12U ? 201326592U : 0U; } if (((int )skb->vlan_tci & 4096) != 0) { start_tx->txvlan = (unsigned int )(((long )((int )skb->vlan_tci) & 4294701055L) | 262144L); } else { start_tx->txvlan = 0U; } { tmp___22 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___22); } if (np->tx_limit != 0) { if (np->tx_pkts_in_progress == 16U) { if ((unsigned long )np->tx_change_owner == (unsigned long )((struct nv_skb_map *)0)) { np->tx_change_owner = start_tx_ctx; } else { } tx_flags = tx_flags & 2147483647U; start_tx_ctx->first_tx_desc = start_tx; start_tx_ctx->next_tx_ctx = np->put_tx_ctx; np->tx_end_flip = np->put_tx_ctx; } else { np->tx_pkts_in_progress = np->tx_pkts_in_progress + 1U; } } else { } { start_tx->flaglen = start_tx->flaglen | (tx_flags | tx_flags_extra); netdev_sent_queue(np->dev, skb->len); skb_tx_timestamp(skb); np->put_tx.ex = put_tx; spin_unlock_irqrestore(& np->lock, flags); tmp___23 = get_hwbase(dev); writel(np->txrxctl_bits | 1U, (void volatile *)tmp___23 + 324U); } return (0); } } __inline static void nv_tx_flip_ownership(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u8 *tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; np->tx_pkts_in_progress = np->tx_pkts_in_progress - 1U; } if ((unsigned long )np->tx_change_owner != (unsigned long )((struct nv_skb_map *)0)) { ((np->tx_change_owner)->first_tx_desc)->flaglen = ((np->tx_change_owner)->first_tx_desc)->flaglen | 2147483648U; np->tx_pkts_in_progress = np->tx_pkts_in_progress + 1U; np->tx_change_owner = (np->tx_change_owner)->next_tx_ctx; if ((unsigned long )np->tx_change_owner == (unsigned long )np->tx_end_flip) { np->tx_change_owner = (struct nv_skb_map *)0; } else { } { tmp___0 = get_hwbase(dev); writel(np->txrxctl_bits | 1U, (void volatile *)tmp___0 + 324U); } } else { } return; } } static int nv_tx_done(struct net_device *dev , int limit ) { struct fe_priv *np ; void *tmp ; u32 flags ; int tx_work ; struct ring_desc *orig_get_tx ; unsigned int bytes_compl ; struct ring_desc *tmp___0 ; long tmp___1 ; struct nv_skb_map *tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tx_work = 0; orig_get_tx = np->get_tx.orig; bytes_compl = 0U; } goto ldv_44396; ldv_44395: { nv_unmap_txskb(np, np->get_tx_ctx); } if (np->desc_ver == 1U) { if ((flags & 65536U) != 0U) { if ((flags & 1073741824U) != 0U) { if ((flags & 16252928U) == 524288U) { { nv_legacybackoff_reseed(dev); } } else { } } else { { u64_stats_update_begin(& np->swstats_tx_syncp); np->stat_tx_packets = np->stat_tx_packets + 1ULL; np->stat_tx_bytes = np->stat_tx_bytes + (u64 )((np->get_tx_ctx)->skb)->len; u64_stats_update_begin(& np->swstats_tx_syncp); } } { bytes_compl = bytes_compl + ((np->get_tx_ctx)->skb)->len; dev_kfree_skb_any((np->get_tx_ctx)->skb); (np->get_tx_ctx)->skb = (struct sk_buff *)0; tx_work = tx_work + 1; } } else { } } else if ((flags & 536870912U) != 0U) { if ((flags & 1073741824U) != 0U) { if ((flags & 8126464U) == 262144U) { { nv_legacybackoff_reseed(dev); } } else { } } else { { u64_stats_update_begin(& np->swstats_tx_syncp); np->stat_tx_packets = np->stat_tx_packets + 1ULL; np->stat_tx_bytes = np->stat_tx_bytes + (u64 )((np->get_tx_ctx)->skb)->len; u64_stats_update_begin(& np->swstats_tx_syncp); } } { bytes_compl = bytes_compl + ((np->get_tx_ctx)->skb)->len; dev_kfree_skb_any((np->get_tx_ctx)->skb); (np->get_tx_ctx)->skb = (struct sk_buff *)0; tx_work = tx_work + 1; } } else { } { tmp___0 = np->get_tx.orig; np->get_tx.orig = np->get_tx.orig + 1; tmp___1 = ldv__builtin_expect((unsigned long )tmp___0 == (unsigned long )np->last_tx.orig, 0L); } if (tmp___1 != 0L) { np->get_tx.orig = np->first_tx.orig; } else { } { tmp___2 = np->get_tx_ctx; np->get_tx_ctx = np->get_tx_ctx + 1; tmp___3 = ldv__builtin_expect((unsigned long )tmp___2 == (unsigned long )np->last_tx_ctx, 0L); } if (tmp___3 != 0L) { np->get_tx_ctx = np->first_tx_ctx; } else { } ldv_44396: ; if ((unsigned long )np->get_tx.orig != (unsigned long )np->put_tx.orig) { flags = (np->get_tx.orig)->flaglen; if ((int )flags >= 0) { if (tx_work < limit) { goto ldv_44395; } else { goto ldv_44397; } } else { goto ldv_44397; } } else { } ldv_44397: { netdev_completed_queue(np->dev, (unsigned int )tx_work, bytes_compl); tmp___4 = ldv__builtin_expect(np->tx_stop == 1, 0L); } if (tmp___4 != 0L) { { tmp___5 = ldv__builtin_expect((unsigned long )np->get_tx.orig != (unsigned long )orig_get_tx, 0L); } if (tmp___5 != 0L) { { np->tx_stop = 0; netif_wake_queue(dev); } } else { } } else { } return (tx_work); } } static int nv_tx_done_optimized(struct net_device *dev , int limit ) { struct fe_priv *np ; void *tmp ; u32 flags ; int tx_work ; struct ring_desc_ex *orig_get_tx ; unsigned long bytes_cleaned ; struct ring_desc_ex *tmp___0 ; long tmp___1 ; struct nv_skb_map *tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tx_work = 0; orig_get_tx = np->get_tx.ex; bytes_cleaned = 0UL; } goto ldv_44408; ldv_44407: { nv_unmap_txskb(np, np->get_tx_ctx); } if ((flags & 536870912U) != 0U) { if ((flags & 1073741824U) != 0U) { if ((flags & 8126464U) == 262144U) { if ((np->driver_data & 2097152U) != 0U) { { nv_gear_backoff_reseed(dev); } } else { { nv_legacybackoff_reseed(dev); } } } else { } } else { { u64_stats_update_begin(& np->swstats_tx_syncp); np->stat_tx_packets = np->stat_tx_packets + 1ULL; np->stat_tx_bytes = np->stat_tx_bytes + (u64 )((np->get_tx_ctx)->skb)->len; u64_stats_update_begin(& np->swstats_tx_syncp); } } { bytes_cleaned = bytes_cleaned + (unsigned long )((np->get_tx_ctx)->skb)->len; dev_kfree_skb_any((np->get_tx_ctx)->skb); (np->get_tx_ctx)->skb = (struct sk_buff *)0; tx_work = tx_work + 1; } if (np->tx_limit != 0) { { nv_tx_flip_ownership(dev); } } else { } } else { } { tmp___0 = np->get_tx.ex; np->get_tx.ex = np->get_tx.ex + 1; tmp___1 = ldv__builtin_expect((unsigned long )tmp___0 == (unsigned long )np->last_tx.ex, 0L); } if (tmp___1 != 0L) { np->get_tx.ex = np->first_tx.ex; } else { } { tmp___2 = np->get_tx_ctx; np->get_tx_ctx = np->get_tx_ctx + 1; tmp___3 = ldv__builtin_expect((unsigned long )tmp___2 == (unsigned long )np->last_tx_ctx, 0L); } if (tmp___3 != 0L) { np->get_tx_ctx = np->first_tx_ctx; } else { } ldv_44408: ; if ((unsigned long )np->get_tx.ex != (unsigned long )np->put_tx.ex) { flags = (np->get_tx.ex)->flaglen; if ((int )flags >= 0) { if (tx_work < limit) { goto ldv_44407; } else { goto ldv_44409; } } else { goto ldv_44409; } } else { } ldv_44409: { netdev_completed_queue(np->dev, (unsigned int )tx_work, (unsigned int )bytes_cleaned); tmp___4 = ldv__builtin_expect(np->tx_stop == 1, 0L); } if (tmp___4 != 0L) { { tmp___5 = ldv__builtin_expect((unsigned long )np->get_tx.ex != (unsigned long )orig_get_tx, 0L); } if (tmp___5 != 0L) { { np->tx_stop = 0; netif_wake_queue(dev); } } else { } } else { } return (tx_work); } } static void nv_tx_timeout(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; u32 status ; union ring_type put_tx ; int saved_tx_limit ; unsigned int tmp___1 ; unsigned int tmp___2 ; int i ; unsigned int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; unsigned int tmp___6 ; unsigned int tmp___7 ; unsigned int tmp___8 ; unsigned int tmp___9 ; unsigned int tmp___10 ; bool tmp___11 ; int tmp___12 ; long tmp___13 ; bool tmp___14 ; int tmp___15 ; union ring_type tmp___16 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; } if ((np->msi_flags & 128U) != 0U) { { tmp___1 = readl((void const volatile *)base + 1008U); status = tmp___1 & 33791U; } } else { { tmp___2 = readl((void const volatile *)base); status = tmp___2 & 33791U; } } { netdev_warn((struct net_device const *)dev, "Got tx_timeout. irq status: %08x\n", status); tmp___13 = ldv__builtin_expect((long )debug_tx_timeout, 0L); } if (tmp___13 != 0L) { { netdev_info((struct net_device const *)dev, "Ring at %lx\n", (unsigned long )np->ring_addr); netdev_info((struct net_device const *)dev, "Dumping tx registers\n"); i = 0; } goto ldv_44420; ldv_44419: { tmp___3 = readl((void const volatile *)(base + ((unsigned long )i + 28UL))); tmp___4 = readl((void const volatile *)(base + ((unsigned long )i + 24UL))); tmp___5 = readl((void const volatile *)(base + ((unsigned long )i + 20UL))); tmp___6 = readl((void const volatile *)(base + ((unsigned long )i + 16UL))); tmp___7 = readl((void const volatile *)(base + ((unsigned long )i + 12UL))); tmp___8 = readl((void const volatile *)(base + ((unsigned long )i + 8UL))); tmp___9 = readl((void const volatile *)(base + ((unsigned long )i + 4UL))); tmp___10 = readl((void const volatile *)base + (unsigned long )i); netdev_info((struct net_device const *)dev, "%3x: %08x %08x %08x %08x %08x %08x %08x %08x\n", i, tmp___10, tmp___9, tmp___8, tmp___7, tmp___6, tmp___5, tmp___4, tmp___3); i = i + 32; } ldv_44420: ; if ((u32 )i <= np->register_size) { goto ldv_44419; } else { } { netdev_info((struct net_device const *)dev, "Dumping tx ring\n"); i = 0; } goto ldv_44423; ldv_44422: { tmp___11 = nv_optimized(np); } if (tmp___11) { tmp___12 = 0; } else { tmp___12 = 1; } if (tmp___12) { { netdev_info((struct net_device const *)dev, "%03x: %08x %08x // %08x %08x // %08x %08x // %08x %08x\n", i, (np->tx_ring.orig + (unsigned long )i)->buf, (np->tx_ring.orig + (unsigned long )i)->flaglen, (np->tx_ring.orig + ((unsigned long )i + 1UL))->buf, (np->tx_ring.orig + ((unsigned long )i + 1UL))->flaglen, (np->tx_ring.orig + ((unsigned long )i + 2UL))->buf, (np->tx_ring.orig + ((unsigned long )i + 2UL))->flaglen, (np->tx_ring.orig + ((unsigned long )i + 3UL))->buf, (np->tx_ring.orig + ((unsigned long )i + 3UL))->flaglen); } } else { { netdev_info((struct net_device const *)dev, "%03x: %08x %08x %08x // %08x %08x %08x // %08x %08x %08x // %08x %08x %08x\n", i, (np->tx_ring.ex + (unsigned long )i)->bufhigh, (np->tx_ring.ex + (unsigned long )i)->buflow, (np->tx_ring.ex + (unsigned long )i)->flaglen, (np->tx_ring.ex + ((unsigned long )i + 1UL))->bufhigh, (np->tx_ring.ex + ((unsigned long )i + 1UL))->buflow, (np->tx_ring.ex + ((unsigned long )i + 1UL))->flaglen, (np->tx_ring.ex + ((unsigned long )i + 2UL))->bufhigh, (np->tx_ring.ex + ((unsigned long )i + 2UL))->buflow, (np->tx_ring.ex + ((unsigned long )i + 2UL))->flaglen, (np->tx_ring.ex + ((unsigned long )i + 3UL))->bufhigh, (np->tx_ring.ex + ((unsigned long )i + 3UL))->buflow, (np->tx_ring.ex + ((unsigned long )i + 3UL))->flaglen); } } i = i + 4; ldv_44423: ; if (i < np->tx_ring_size) { goto ldv_44422; } else { } } else { } { spin_lock_irq(& np->lock); nv_stop_tx(dev); saved_tx_limit = np->tx_limit; np->tx_limit = 0; np->tx_stop = 0; tmp___14 = nv_optimized(np); } if (tmp___14) { tmp___15 = 0; } else { tmp___15 = 1; } if (tmp___15) { { nv_tx_done(dev, np->tx_ring_size); } } else { { nv_tx_done_optimized(dev, np->tx_ring_size); } } if ((unsigned long )np->tx_change_owner != (unsigned long )((struct nv_skb_map *)0)) { put_tx.ex = (np->tx_change_owner)->first_tx_desc; } else { put_tx = np->put_tx; } { nv_drain_tx(dev); nv_init_tx(dev); tmp___16 = put_tx; np->put_tx = tmp___16; np->get_tx = tmp___16; np->tx_limit = saved_tx_limit; nv_start_tx(dev); netif_wake_queue(dev); spin_unlock_irq(& np->lock); } return; } } static int nv_getlen(struct net_device *dev , void *packet , int datalen ) { int hdrlen ; int protolen ; __u16 tmp ; __u16 tmp___0 ; { if ((unsigned int )((struct vlan_ethhdr *)packet)->h_vlan_proto == 129U) { { tmp = __fswab16((int )((struct vlan_ethhdr *)packet)->h_vlan_encapsulated_proto); protolen = (int )tmp; hdrlen = 4; } } else { { tmp___0 = __fswab16((int )((struct ethhdr *)packet)->h_proto); protolen = (int )tmp___0; hdrlen = 14; } } if (protolen > 1500) { return (datalen); } else { } protolen = protolen + hdrlen; if (datalen > 60) { if (datalen >= protolen) { return (protolen); } else { return (-1); } } else { if (protolen > 60) { return (-1); } else { } return (datalen); } } } static int nv_rx_process(struct net_device *dev , int limit ) { struct fe_priv *np ; void *tmp ; u32 flags ; int rx_work ; struct sk_buff *skb ; int len ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; struct ring_desc *tmp___4 ; long tmp___5 ; struct nv_skb_map *tmp___6 ; long tmp___7 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; rx_work = 0; } goto ldv_44443; ldv_44442: { pci_unmap_single(np->pci_dev, (np->get_rx_ctx)->dma, (size_t )(np->get_rx_ctx)->dma_len, 2); skb = (np->get_rx_ctx)->skb; (np->get_rx_ctx)->skb = (struct sk_buff *)0; } if (np->desc_ver == 1U) { { tmp___1 = ldv__builtin_expect((flags & 65536U) != 0U, 1L); } if (tmp___1 != 0L) { { len = (int )flags & 65535; tmp___0 = ldv__builtin_expect((flags & 1073741824U) != 0U, 0L); } if (tmp___0 != 0L) { if ((flags & 1065353216U) == 67108864U) { { len = nv_getlen(dev, (void *)skb->data, len); } if (len < 0) { { consume_skb(skb); } goto next_pkt; } else { } } else if ((flags & 1065353216U) == 536870912U) { if ((flags & 262144U) != 0U) { len = len - 1; } else { } } else { if ((flags & 131072U) != 0U) { { u64_stats_update_begin(& np->swstats_rx_syncp); np->stat_rx_missed_errors = np->stat_rx_missed_errors + 1ULL; u64_stats_update_begin(& np->swstats_rx_syncp); } } else { } { consume_skb(skb); } goto next_pkt; } } else { } } else { { consume_skb(skb); } goto next_pkt; } } else { { tmp___3 = ldv__builtin_expect((flags & 536870912U) != 0U, 1L); } if (tmp___3 != 0L) { { len = (int )flags & 16383; tmp___2 = ldv__builtin_expect((flags & 1073741824U) != 0U, 0L); } if (tmp___2 != 0L) { if ((flags & 33292288U) == 2097152U) { { len = nv_getlen(dev, (void *)skb->data, len); } if (len < 0) { { consume_skb(skb); } goto next_pkt; } else { } } else if ((flags & 33292288U) == 16777216U) { if ((flags & 33554432U) != 0U) { len = len - 1; } else { } } else { { consume_skb(skb); } goto next_pkt; } } else { } if ((flags & 469762048U) == 335544320U || (flags & 469762048U) == 402653184U) { skb->ip_summed = 1U; } else { } } else { { consume_skb(skb); } goto next_pkt; } } { skb_put(skb, (unsigned int )len); skb->protocol = eth_type_trans(skb, dev); napi_gro_receive(& np->napi, skb); u64_stats_update_begin(& np->swstats_rx_syncp); np->stat_rx_packets = np->stat_rx_packets + 1ULL; np->stat_rx_bytes = np->stat_rx_bytes + (u64 )len; u64_stats_update_begin(& np->swstats_rx_syncp); } next_pkt: { tmp___4 = np->get_rx.orig; np->get_rx.orig = np->get_rx.orig + 1; tmp___5 = ldv__builtin_expect((unsigned long )tmp___4 == (unsigned long )np->last_rx.orig, 0L); } if (tmp___5 != 0L) { np->get_rx.orig = np->first_rx.orig; } else { } { tmp___6 = np->get_rx_ctx; np->get_rx_ctx = np->get_rx_ctx + 1; tmp___7 = ldv__builtin_expect((unsigned long )tmp___6 == (unsigned long )np->last_rx_ctx, 0L); } if (tmp___7 != 0L) { np->get_rx_ctx = np->first_rx_ctx; } else { } rx_work = rx_work + 1; ldv_44443: ; if ((unsigned long )np->get_rx.orig != (unsigned long )np->put_rx.orig) { flags = (np->get_rx.orig)->flaglen; if ((int )flags >= 0) { if (rx_work < limit) { goto ldv_44442; } else { goto ldv_44444; } } else { goto ldv_44444; } } else { } ldv_44444: ; return (rx_work); } } static int nv_rx_process_optimized(struct net_device *dev , int limit ) { struct fe_priv *np ; void *tmp ; u32 flags ; u32 vlanflags ; int rx_work ; struct sk_buff *skb ; int len ; long tmp___0 ; u16 vid ; long tmp___1 ; struct ring_desc_ex *tmp___2 ; long tmp___3 ; struct nv_skb_map *tmp___4 ; long tmp___5 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; vlanflags = 0U; rx_work = 0; } goto ldv_44458; ldv_44457: { pci_unmap_single(np->pci_dev, (np->get_rx_ctx)->dma, (size_t )(np->get_rx_ctx)->dma_len, 2); skb = (np->get_rx_ctx)->skb; (np->get_rx_ctx)->skb = (struct sk_buff *)0; tmp___1 = ldv__builtin_expect((flags & 536870912U) != 0U, 1L); } if (tmp___1 != 0L) { { len = (int )flags & 16383; tmp___0 = ldv__builtin_expect((flags & 1073741824U) != 0U, 0L); } if (tmp___0 != 0L) { if ((flags & 33292288U) == 2097152U) { { len = nv_getlen(dev, (void *)skb->data, len); } if (len < 0) { { consume_skb(skb); } goto next_pkt; } else { } } else if ((flags & 33292288U) == 16777216U) { if ((flags & 33554432U) != 0U) { len = len - 1; } else { } } else { { consume_skb(skb); } goto next_pkt; } } else { } if ((flags & 469762048U) == 335544320U || (flags & 469762048U) == 402653184U) { skb->ip_summed = 1U; } else { } { skb_put(skb, (unsigned int )len); skb->protocol = eth_type_trans(skb, dev); __builtin_prefetch((void const *)skb->data); vlanflags = (np->get_rx.ex)->buflow; } if ((dev->features & 256ULL) != 0ULL && (vlanflags & 65536U) != 0U) { { vid = (u16 )vlanflags; __vlan_hwaccel_put_tag(skb, 129, (int )vid); } } else { } { napi_gro_receive(& np->napi, skb); u64_stats_update_begin(& np->swstats_rx_syncp); np->stat_rx_packets = np->stat_rx_packets + 1ULL; np->stat_rx_bytes = np->stat_rx_bytes + (u64 )len; u64_stats_update_begin(& np->swstats_rx_syncp); } } else { { consume_skb(skb); } } next_pkt: { tmp___2 = np->get_rx.ex; np->get_rx.ex = np->get_rx.ex + 1; tmp___3 = ldv__builtin_expect((unsigned long )tmp___2 == (unsigned long )np->last_rx.ex, 0L); } if (tmp___3 != 0L) { np->get_rx.ex = np->first_rx.ex; } else { } { tmp___4 = np->get_rx_ctx; np->get_rx_ctx = np->get_rx_ctx + 1; tmp___5 = ldv__builtin_expect((unsigned long )tmp___4 == (unsigned long )np->last_rx_ctx, 0L); } if (tmp___5 != 0L) { np->get_rx_ctx = np->first_rx_ctx; } else { } rx_work = rx_work + 1; ldv_44458: ; if ((unsigned long )np->get_rx.ex != (unsigned long )np->put_rx.ex) { flags = (np->get_rx.ex)->flaglen; if ((int )flags >= 0) { if (rx_work < limit) { goto ldv_44457; } else { goto ldv_44459; } } else { goto ldv_44459; } } else { } ldv_44459: ; return (rx_work); } } static void set_bufsize(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; } if (dev->mtu <= 1500U) { np->rx_buf_sz = 1564U; } else { np->rx_buf_sz = dev->mtu + 64U; } return; } } static int nv_change_mtu(struct net_device *dev , int new_mtu ) { struct fe_priv *np ; void *tmp ; int old_mtu ; u8 *base ; u8 *tmp___0 ; int tmp___1 ; u8 *tmp___2 ; bool tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; } if (new_mtu <= 63 || (unsigned int )new_mtu > np->pkt_limit) { return (-22); } else { } old_mtu = (int )dev->mtu; dev->mtu = (unsigned int )new_mtu; if (old_mtu <= 1500 && new_mtu <= 1500) { return (0); } else { } if (old_mtu == new_mtu) { return (0); } else { } { tmp___3 = netif_running((struct net_device const *)dev); } if ((int )tmp___3) { { tmp___0 = get_hwbase(dev); base = tmp___0; nv_disable_irq(dev); nv_napi_disable(dev); netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock(& np->lock); nv_stop_rxtx(dev); nv_txrx_reset(dev); nv_drain_rxtx(dev); set_bufsize(dev); tmp___1 = nv_init_ring(dev); } if (tmp___1 != 0) { if (np->in_shutdown == 0) { { ldv_mod_timer_20(& np->oom_kick, (unsigned long )jiffies + 13UL); } } else { } } else { } { writel(np->rx_buf_sz, (void volatile *)base + 144U); setup_hw_rings(dev, 3); writel((unsigned int )(((np->rx_ring_size + -1) << 16) + (np->tx_ring_size + -1)), (void volatile *)base + 264U); pci_push(base); tmp___2 = get_hwbase(dev); writel(np->txrxctl_bits | 1U, (void volatile *)tmp___2 + 324U); pci_push(base); nv_start_rxtx(dev); spin_unlock(& np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); nv_napi_enable(dev); nv_enable_irq(dev); } } else { } return (0); } } static void nv_copy_mac_to_hw(struct net_device *dev ) { u8 *base ; u8 *tmp ; u32 mac[2U] ; { { tmp = get_hwbase(dev); base = tmp; mac[0] = (u32 )((((int )*(dev->dev_addr) + ((int )*(dev->dev_addr + 1UL) << 8)) + ((int )*(dev->dev_addr + 2UL) << 16)) + ((int )*(dev->dev_addr + 3UL) << 24)); mac[1] = (u32 )((int )*(dev->dev_addr + 4UL) + ((int )*(dev->dev_addr + 5UL) << 8)); writel(mac[0], (void volatile *)base + 168U); writel(mac[1], (void volatile *)base + 172U); } return; } } static int nv_set_mac_address(struct net_device *dev , void *addr ) { struct fe_priv *np ; void *tmp ; struct sockaddr *macaddr ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; macaddr = (struct sockaddr *)addr; tmp___0 = is_valid_ether_addr((u8 const *)(& macaddr->sa_data)); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-99); } else { } { memcpy((void *)dev->dev_addr, (void const *)(& macaddr->sa_data), 6UL); tmp___2 = netif_running((struct net_device const *)dev); } if ((int )tmp___2) { { netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock_irq(& np->lock); nv_stop_rx(dev); nv_copy_mac_to_hw(dev); nv_start_rx(dev); spin_unlock_irq(& np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); } } else { { nv_copy_mac_to_hw(dev); } } return (0); } } static void nv_set_multicast(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; u32 addr[2U] ; u32 mask[2U] ; u32 pff ; unsigned int tmp___1 ; u32 alwaysOff[2U] ; u32 alwaysOn[2U] ; struct netdev_hw_addr *ha ; struct list_head const *__mptr ; unsigned char *hw_addr ; u32 a ; u32 b ; struct list_head const *__mptr___0 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; tmp___1 = readl((void const volatile *)base + 140U); pff = tmp___1 & 8U; memset((void *)(& addr), 0, 8UL); memset((void *)(& mask), 0, 8UL); } if ((dev->flags & 256U) != 0U) { pff = pff | 128U; } else { pff = pff | 32U; if ((dev->flags & 512U) != 0U || dev->mc.count != 0) { alwaysOff[1] = 4294967295U; alwaysOff[0] = alwaysOff[1]; alwaysOn[1] = alwaysOff[0]; alwaysOn[0] = alwaysOn[1]; if ((dev->flags & 512U) != 0U) { alwaysOff[1] = 0U; alwaysOff[0] = alwaysOff[1]; alwaysOn[1] = alwaysOff[0]; alwaysOn[0] = alwaysOn[1]; } else { __mptr = (struct list_head const *)dev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_44501; ldv_44500: hw_addr = (unsigned char *)(& ha->addr); a = *((__le32 *)hw_addr); b = (u32 )*((__le16 *)hw_addr + 4U); alwaysOn[0] = alwaysOn[0] & a; alwaysOff[0] = alwaysOff[0] & ~ a; alwaysOn[1] = alwaysOn[1] & b; alwaysOff[1] = alwaysOff[1] & ~ b; __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; ldv_44501: ; if ((unsigned long )(& ha->list) != (unsigned long )(& dev->mc.list)) { goto ldv_44500; } else { } } addr[0] = alwaysOn[0]; addr[1] = alwaysOn[1]; mask[0] = alwaysOn[0] | alwaysOff[0]; mask[1] = alwaysOn[1] | alwaysOff[1]; } else { mask[0] = 4294967295U; mask[1] = 65535U; } } { addr[0] = addr[0] | 1U; pff = pff | 8323072U; spin_lock_irq(& np->lock); nv_stop_rx(dev); writel(addr[0], (void volatile *)base + 176U); writel(addr[1], (void volatile *)base + 180U); writel(mask[0], (void volatile *)base + 184U); writel(mask[1], (void volatile *)base + 188U); writel(pff, (void volatile *)base + 140U); nv_start_rx(dev); spin_unlock_irq(& np->lock); } return; } } static void nv_update_pause(struct net_device *dev , u32 pause_flags ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; u32 pff ; unsigned int tmp___1 ; u32 regmisc ; unsigned int tmp___2 ; u32 pause_enable ; unsigned int tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; np->pause_flags = np->pause_flags & 4294967283U; } if ((int )np->pause_flags & 1) { { tmp___1 = readl((void const volatile *)base + 140U); pff = tmp___1 & 4294967287U; } if ((pause_flags & 4U) != 0U) { { writel(pff | 8U, (void volatile *)base + 140U); np->pause_flags = np->pause_flags | 4U; } } else { { writel(pff, (void volatile *)base + 140U); } } } else { } if ((np->pause_flags & 2U) != 0U) { { tmp___2 = readl((void const volatile *)base + 128U); regmisc = tmp___2 & 4294967294U; } if ((pause_flags & 8U) != 0U) { pause_enable = 25165840U; if ((np->driver_data & 131072U) != 0U) { pause_enable = 90178544U; } else { } if ((np->driver_data & 262144U) != 0U) { { pause_enable = 166725760U; tmp___3 = readl((void const volatile *)base + 372U); writel(tmp___3 | 65536U, (void volatile *)base + 372U); } } else { } { writel(pause_enable, (void volatile *)base + 368U); writel(regmisc | 1U, (void volatile *)base + 128U); np->pause_flags = np->pause_flags | 8U; } } else { { writel(268370048U, (void volatile *)base + 368U); writel(regmisc, (void volatile *)base + 128U); } } } else { } return; } } static void nv_force_linkspeed(struct net_device *dev , int speed , int duplex ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; u32 phyreg ; u32 txreg ; int mii_status ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; np->linkspeed = (u32 )(speed | 65536); np->duplex = duplex; mii_status = mii_rw(dev, np->phyaddr, 1, -1); } if ((mii_status & 256) != 0) { { np->gigabit = 256U; phyreg = readl((void const volatile *)base + 156U); phyreg = phyreg & 4294705407U; } if ((np->linkspeed & 4095U) == 1000U) { phyreg = phyreg | 32512U; } else if ((np->linkspeed & 4095U) == 100U) { phyreg = phyreg | 32512U; } else if ((np->linkspeed & 4095U) == 50U) { phyreg = phyreg | 261888U; } else { } { writel(phyreg, (void volatile *)base + 156U); } } else { } { phyreg = readl((void const volatile *)base + 192U); phyreg = phyreg & 4294967036U; } if (np->duplex == 0) { phyreg = phyreg | 256U; } else { } if ((np->linkspeed & 4095U) == 100U) { phyreg = phyreg | 1U; } else if ((np->linkspeed & 4095U) == 50U) { phyreg = phyreg | 2U; } else { } { writel(phyreg, (void volatile *)base + 192U); } if ((phyreg & 268435456U) != 0U) { if ((np->linkspeed & 4095U) == 50U) { txreg = 1312015U; } else { txreg = 1443599U; } } else { txreg = 1377551U; } { writel(txreg, (void volatile *)base + 160U); } if (np->desc_ver == 1U) { txreg = 2097168U; } else if ((np->linkspeed & 4095U) == 50U) { txreg = 266371072U; } else { txreg = 31490048U; } { writel(txreg, (void volatile *)base + 316U); writel(np->duplex != 0 ? 3870524U : 3870526U, (void volatile *)base + 128U); pci_push(base); writel(np->linkspeed, (void volatile *)base + 272U); pci_push(base); } return; } } static int nv_update_linkspeed(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; int adv ; int lpa ; int adv_lpa ; int adv_pause ; int lpa_pause ; int newls ; int newdup ; int mii_status ; u32 bmcr ; int retval ; u32 control_1000 ; u32 status_1000 ; u32 phyreg ; u32 pause_flags ; u32 txreg ; u32 txrxFlags ; u32 phy_exp ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; bool tmp___4 ; int tmp___5 ; int tmp___6 ; unsigned int tmp___7 ; unsigned int tmp___8 ; int tmp___9 ; bool tmp___10 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; adv = 0; lpa = 0; newls = (int )np->linkspeed; newdup = np->duplex; retval = 0; txrxFlags = 0U; tmp___1 = mii_rw(dev, np->phyaddr, 0, -1); bmcr = (u32 )tmp___1; } if ((bmcr & 16384U) != 0U) { { tmp___4 = netif_running((struct net_device const *)dev); } if ((int )tmp___4) { { nv_force_linkspeed(dev, 50, 1); tmp___2 = netif_carrier_ok((struct net_device const *)dev); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { { netif_carrier_on(dev); } } else { } } else { } return (1); } else { } { mii_rw(dev, np->phyaddr, 1, -1); mii_status = mii_rw(dev, np->phyaddr, 1, -1); } if ((mii_status & 4) == 0) { newls = 66536; newdup = 0; retval = 0; goto set_speed; } else { } if (np->autoneg == 0) { if ((np->fixed_mode & 256) != 0) { newls = 65636; newdup = 1; } else if ((np->fixed_mode & 128) != 0) { newls = 65636; newdup = 0; } else if ((np->fixed_mode & 64) != 0) { newls = 66536; newdup = 1; } else { newls = 66536; newdup = 0; } retval = 1; goto set_speed; } else { } if ((mii_status & 32) == 0) { newls = 66536; newdup = 0; retval = 0; goto set_speed; } else { } { adv = mii_rw(dev, np->phyaddr, 4, -1); lpa = mii_rw(dev, np->phyaddr, 5, -1); retval = 1; } if ((unsigned int )np->gigabit == 256U) { { tmp___5 = mii_rw(dev, np->phyaddr, 9, -1); control_1000 = (u32 )tmp___5; tmp___6 = mii_rw(dev, np->phyaddr, 10, -1); status_1000 = (u32 )tmp___6; } if ((control_1000 & 512U) != 0U && (status_1000 & 2048U) != 0U) { newls = 65586; newdup = 1; goto set_speed; } else { } } else { } adv_lpa = lpa & adv; if ((adv_lpa & 256) != 0) { newls = 65636; newdup = 1; } else if ((adv_lpa & 128) != 0) { newls = 65636; newdup = 0; } else if ((adv_lpa & 64) != 0) { newls = 66536; newdup = 1; } else if ((adv_lpa & 32) != 0) { newls = 66536; newdup = 0; } else { newls = 66536; newdup = 0; } set_speed: ; if (np->duplex == newdup && np->linkspeed == (u32 )newls) { return (retval); } else { } { np->duplex = newdup; np->linkspeed = (u32 )newls; tmp___7 = readl((void const volatile *)base + 132U); } if ((int )tmp___7 & 1) { { txrxFlags = txrxFlags | 1U; nv_stop_tx(dev); } } else { } { tmp___8 = readl((void const volatile *)base + 148U); } if ((int )tmp___8 & 1) { { txrxFlags = txrxFlags | 2U; nv_stop_rx(dev); } } else { } if ((unsigned int )np->gigabit == 256U) { { phyreg = readl((void const volatile *)base + 156U); phyreg = phyreg & 4294705407U; } if ((np->linkspeed & 4095U) == 1000U || (np->linkspeed & 4095U) == 100U) { phyreg = phyreg | 32512U; } else if ((np->linkspeed & 4095U) == 50U) { phyreg = phyreg | 261888U; } else { } { writel(phyreg, (void volatile *)base + 156U); } } else { } { phyreg = readl((void const volatile *)base + 192U); phyreg = phyreg & 4294967036U; } if (np->duplex == 0) { phyreg = phyreg | 256U; } else { } if ((np->linkspeed & 4095U) == 100U) { phyreg = phyreg | 1U; } else if ((np->linkspeed & 4095U) == 50U) { phyreg = phyreg | 2U; } else { } { writel(phyreg, (void volatile *)base + 192U); tmp___9 = mii_rw(dev, np->phyaddr, 6, -1); phy_exp = (u32 )tmp___9 & 1U; } if ((phyreg & 268435456U) != 0U) { if ((np->linkspeed & 4095U) == 50U) { txreg = 1312015U; } else if ((phy_exp == 0U && np->duplex == 0) && (np->driver_data & 32768U) != 0U) { if ((np->linkspeed & 4095U) == 1000U) { txreg = 1448207U; } else { txreg = 1454095U; } } else { txreg = 1443599U; } } else if ((phy_exp == 0U && np->duplex == 0) && (np->driver_data & 32768U) != 0U) { txreg = 1384448U; } else { txreg = 1377551U; } { writel(txreg, (void volatile *)base + 160U); } if (np->desc_ver == 1U) { txreg = 2097168U; } else if ((np->linkspeed & 4095U) == 50U) { txreg = 266371072U; } else { txreg = 31490048U; } { writel(txreg, (void volatile *)base + 316U); writel(np->duplex != 0 ? 3870524U : 3870526U, (void volatile *)base + 128U); pci_push(base); writel(np->linkspeed, (void volatile *)base + 272U); pci_push(base); pause_flags = 0U; tmp___10 = netif_running((struct net_device const *)dev); } if ((int )tmp___10 && np->duplex != 0) { if (np->autoneg != 0 && (np->pause_flags & 64U) != 0U) { adv_pause = adv & 3072; lpa_pause = lpa & 3072; { if (adv_pause == 1024) { goto case_1024; } else { } if (adv_pause == 2048) { goto case_2048; } else { } if (adv_pause == 3072) { goto case_3072; } else { } goto switch_break; case_1024: /* CIL Label */ ; if ((lpa_pause & 1024) != 0) { pause_flags = pause_flags | 4U; if ((np->pause_flags & 32U) != 0U) { pause_flags = pause_flags | 8U; } else { } } else { } goto ldv_44546; case_2048: /* CIL Label */ ; if (lpa_pause == 3072) { pause_flags = pause_flags | 8U; } else { } goto ldv_44546; case_3072: /* CIL Label */ ; if ((lpa_pause & 1024) != 0) { pause_flags = pause_flags | 4U; if ((np->pause_flags & 32U) != 0U) { pause_flags = pause_flags | 8U; } else { } } else { } if (lpa_pause == 2048) { pause_flags = pause_flags | 4U; } else { } goto ldv_44546; switch_break: /* CIL Label */ ; } ldv_44546: ; } else { pause_flags = np->pause_flags; } } else { } { nv_update_pause(dev, pause_flags); } if ((int )txrxFlags & 1) { { nv_start_tx(dev); } } else { } if ((txrxFlags & 2U) != 0U) { { nv_start_rx(dev); } } else { } return (retval); } } static void nv_linkchange(struct net_device *dev ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; { { tmp___2 = nv_update_linkspeed(dev); } if (tmp___2 != 0) { { tmp = netif_carrier_ok((struct net_device const *)dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { netif_carrier_on(dev); netdev_info((struct net_device const *)dev, "link up\n"); nv_txrx_gate(dev, 0); nv_start_rx(dev); } } else { } } else { { tmp___1 = netif_carrier_ok((struct net_device const *)dev); } if ((int )tmp___1) { { netif_carrier_off(dev); netdev_info((struct net_device const *)dev, "link down\n"); nv_txrx_gate(dev, 1); nv_stop_rx(dev); } } else { } } return; } } static void nv_link_irq(struct net_device *dev ) { u8 *base ; u8 *tmp ; u32 miistat ; { { tmp = get_hwbase(dev); base = tmp; miistat = readl((void const volatile *)base + 384U); writel(8U, (void volatile *)base + 384U); } if ((miistat & 8U) != 0U) { { nv_linkchange(dev); } } else { } return; } } static void nv_msi_workaround(struct fe_priv *np ) { u8 *base ; { if ((np->msi_flags & 64U) != 0U) { { base = (u8 *)np->base; writel(0U, (void volatile *)base + 48U); writel(1U, (void volatile *)base + 48U); } } else { } return; } } __inline static int nv_change_interrupt_mode(struct net_device *dev , int total_work ) { struct fe_priv *np ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; } if (optimization_mode == 2) { if (total_work > 4) { np->quiet_count = 0; if (np->irqmask != 96U) { np->irqmask = 96U; return (1); } else { } } else if (np->quiet_count <= 2047) { np->quiet_count = np->quiet_count + 1; } else if (np->irqmask != 223U) { np->irqmask = 223U; return (1); } else { } } else { } return (0); } } static irqreturn_t nv_nic_irq(int foo , void *data ) { struct net_device *dev ; struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; bool tmp___1 ; { { dev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; } if ((np->msi_flags & 128U) == 0U) { { np->events = readl((void const volatile *)base); writel(np->events, (void volatile *)base); } } else { { np->events = readl((void const volatile *)base + 1008U); writel(np->events, (void volatile *)base + 1008U); } } if ((np->events & np->irqmask) == 0U) { return (0); } else { } { nv_msi_workaround(np); tmp___1 = napi_schedule_prep(& np->napi); } if ((int )tmp___1) { { writel(0U, (void volatile *)base + 4U); __napi_schedule(& np->napi); } } else { } return (1); } } static irqreturn_t nv_nic_irq_optimized(int foo , void *data ) { struct net_device *dev ; struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; bool tmp___1 ; { { dev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; } if ((np->msi_flags & 128U) == 0U) { { np->events = readl((void const volatile *)base); writel(np->events, (void volatile *)base); } } else { { np->events = readl((void const volatile *)base + 1008U); writel(np->events, (void volatile *)base + 1008U); } } if ((np->events & np->irqmask) == 0U) { return (0); } else { } { nv_msi_workaround(np); tmp___1 = napi_schedule_prep(& np->napi); } if ((int )tmp___1) { { writel(0U, (void volatile *)base + 4U); __napi_schedule(& np->napi); } } else { } return (1); } } static irqreturn_t nv_nic_irq_tx(int foo , void *data ) { struct net_device *dev ; struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; u32 events ; int i ; unsigned long flags ; unsigned int tmp___1 ; struct _ddebug descriptor ; long tmp___2 ; raw_spinlock_t *tmp___3 ; raw_spinlock_t *tmp___4 ; struct _ddebug descriptor___0 ; long tmp___5 ; long tmp___6 ; { { dev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; i = 0; } ldv_44600: { tmp___1 = readl((void const volatile *)base + 1008U); events = tmp___1 & 280U; writel(events, (void volatile *)base + 1008U); descriptor.modname = "forcedeth"; descriptor.function = "nv_nic_irq_tx"; descriptor.filename = "drivers/net/ethernet/nvidia/forcedeth.c"; descriptor.format = "tx irq events: %08x\n"; descriptor.lineno = 3666U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)dev, "tx irq events: %08x\n", events); } } else { } if ((events & np->irqmask) == 0U) { goto ldv_44592; } else { } { tmp___3 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___3); nv_tx_done_optimized(dev, 64); spin_unlock_irqrestore(& np->lock, flags); tmp___6 = ldv__builtin_expect(i > max_interrupt_work, 0L); } if (tmp___6 != 0L) { { tmp___4 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___4); writel(280U, (void volatile *)base + 4U); pci_push(base); } if (np->in_shutdown == 0) { { np->nic_poll_irq = np->nic_poll_irq | 280U; ldv_mod_timer_21(& np->nic_poll, (unsigned long )jiffies + 3UL); } } else { } { spin_unlock_irqrestore(& np->lock, flags); descriptor___0.modname = "forcedeth"; descriptor___0.function = "nv_nic_irq_tx"; descriptor___0.filename = "drivers/net/ethernet/nvidia/forcedeth.c"; descriptor___0.format = "%s: too many iterations (%d)\n"; descriptor___0.lineno = 3686U; descriptor___0.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___5 != 0L) { { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)dev, "%s: too many iterations (%d)\n", "nv_nic_irq_tx", i); } } else { } goto ldv_44592; } else { } i = i + 1; goto ldv_44600; ldv_44592: ; return (i != 0); } } static int nv_napi_poll(struct napi_struct *napi , int budget ) { struct fe_priv *np ; struct napi_struct const *__mptr ; struct net_device *dev ; u8 *base ; u8 *tmp ; unsigned long flags ; int retcode ; int rx_count ; int tx_work ; int rx_work ; raw_spinlock_t *tmp___0 ; int tmp___1 ; raw_spinlock_t *tmp___2 ; int tmp___3 ; bool tmp___4 ; int tmp___5 ; raw_spinlock_t *tmp___6 ; raw_spinlock_t *tmp___7 ; long tmp___8 ; raw_spinlock_t *tmp___9 ; long tmp___10 ; long tmp___11 ; long tmp___12 ; int tmp___13 ; long tmp___14 ; int tmp___15 ; raw_spinlock_t *tmp___16 ; long tmp___17 ; { { __mptr = (struct napi_struct const *)napi; np = (struct fe_priv *)__mptr + 0xffffffffffffffb0UL; dev = np->dev; tmp = get_hwbase(dev); base = tmp; tx_work = 0; rx_work = 0; } ldv_44621: { tmp___4 = nv_optimized(np); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { { tmp___0 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___0); tmp___1 = nv_tx_done(dev, np->tx_ring_size); tx_work = tx_work + tmp___1; spin_unlock_irqrestore(& np->lock, flags); rx_count = nv_rx_process(dev, budget - rx_work); retcode = nv_alloc_rx(dev); } } else { { tmp___2 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___2); tmp___3 = nv_tx_done_optimized(dev, np->tx_ring_size); tx_work = tx_work + tmp___3; spin_unlock_irqrestore(& np->lock, flags); rx_count = nv_rx_process_optimized(dev, budget - rx_work); retcode = nv_alloc_rx_optimized(dev); } } if (retcode == 0 && rx_count > 0) { rx_work = rx_work + rx_count; if (rx_work < budget) { goto ldv_44621; } else { goto ldv_44622; } } else { } ldv_44622: ; if (retcode != 0) { { tmp___6 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___6); } if (np->in_shutdown == 0) { { ldv_mod_timer_22(& np->oom_kick, (unsigned long )jiffies + 13UL); } } else { } { spin_unlock_irqrestore(& np->lock, flags); } } else { } { nv_change_interrupt_mode(dev, tx_work + rx_work); tmp___8 = ldv__builtin_expect((np->events & 64U) != 0U, 0L); } if (tmp___8 != 0L) { { tmp___7 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___7); nv_link_irq(dev); spin_unlock_irqrestore(& np->lock, flags); } } else { } { tmp___10 = ldv__builtin_expect(np->need_linktimer != 0, 0L); } if (tmp___10 != 0L) { { tmp___11 = ldv__builtin_expect(1, 0L); } if (tmp___11 != 0L) { { tmp___12 = ldv__builtin_expect(1, 0L); } if (tmp___12 != 0L) { tmp___13 = 1; } else { tmp___13 = 0; } } else { tmp___13 = 0; } if (tmp___13 != 0) { { tmp___14 = ldv__builtin_expect((long )(np->link_timeout - (unsigned long )jiffies) < 0L, 0L); } if (tmp___14 != 0L) { tmp___15 = 1; } else { tmp___15 = 0; } } else { tmp___15 = 0; } if (tmp___15 != 0) { { tmp___9 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___9); nv_linkchange(dev); spin_unlock_irqrestore(& np->lock, flags); np->link_timeout = (unsigned long )jiffies + 750UL; } } else { } } else { } { tmp___17 = ldv__builtin_expect((np->events & 33280U) != 0U, 0L); } if (tmp___17 != 0L) { { tmp___16 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___16); } if (np->in_shutdown == 0) { { np->nic_poll_irq = np->irqmask; np->recover_error = 1; ldv_mod_timer_23(& np->nic_poll, (unsigned long )jiffies + 3UL); } } else { } { spin_unlock_irqrestore(& np->lock, flags); napi_complete(napi); } return (rx_work); } else { } if (rx_work < budget) { { napi_complete(napi); writel(np->irqmask, (void volatile *)base + 4U); } } else { } return (rx_work); } } static irqreturn_t nv_nic_irq_rx(int foo , void *data ) { struct net_device *dev ; struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; u32 events ; int i ; unsigned long flags ; unsigned int tmp___1 ; struct _ddebug descriptor ; long tmp___2 ; raw_spinlock_t *tmp___3 ; int tmp___4 ; long tmp___5 ; int tmp___6 ; raw_spinlock_t *tmp___7 ; struct _ddebug descriptor___0 ; long tmp___8 ; long tmp___9 ; { { dev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; i = 0; } ldv_44661: { tmp___1 = readl((void const volatile *)base + 1008U); events = tmp___1 & 135U; writel(events, (void volatile *)base + 1008U); descriptor.modname = "forcedeth"; descriptor.function = "nv_nic_irq_rx"; descriptor.filename = "drivers/net/ethernet/nvidia/forcedeth.c"; descriptor.format = "rx irq events: %08x\n"; descriptor.lineno = 3778U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)dev, "rx irq events: %08x\n", events); } } else { } if ((events & np->irqmask) == 0U) { goto ldv_44653; } else { } { tmp___6 = nv_rx_process_optimized(dev, 64); } if (tmp___6 != 0) { { tmp___4 = nv_alloc_rx_optimized(dev); tmp___5 = ldv__builtin_expect(tmp___4 != 0, 0L); } if (tmp___5 != 0L) { { tmp___3 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___3); } if (np->in_shutdown == 0) { { ldv_mod_timer_24(& np->oom_kick, (unsigned long )jiffies + 13UL); } } else { } { spin_unlock_irqrestore(& np->lock, flags); } } else { } } else { } { tmp___9 = ldv__builtin_expect(i > max_interrupt_work, 0L); } if (tmp___9 != 0L) { { tmp___7 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___7); writel(135U, (void volatile *)base + 4U); pci_push(base); } if (np->in_shutdown == 0) { { np->nic_poll_irq = np->nic_poll_irq | 135U; ldv_mod_timer_25(& np->nic_poll, (unsigned long )jiffies + 3UL); } } else { } { spin_unlock_irqrestore(& np->lock, flags); descriptor___0.modname = "forcedeth"; descriptor___0.function = "nv_nic_irq_rx"; descriptor___0.filename = "drivers/net/ethernet/nvidia/forcedeth.c"; descriptor___0.format = "%s: too many iterations (%d)\n"; descriptor___0.lineno = 3803U; descriptor___0.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___8 != 0L) { { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)dev, "%s: too many iterations (%d)\n", "nv_nic_irq_rx", i); } } else { } goto ldv_44653; } else { } i = i + 1; goto ldv_44661; ldv_44653: ; return (i != 0); } } static irqreturn_t nv_nic_irq_other(int foo , void *data ) { struct net_device *dev ; struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; u32 events ; int i ; unsigned long flags ; unsigned int tmp___1 ; struct _ddebug descriptor ; long tmp___2 ; raw_spinlock_t *tmp___3 ; raw_spinlock_t *tmp___4 ; raw_spinlock_t *tmp___5 ; raw_spinlock_t *tmp___6 ; raw_spinlock_t *tmp___7 ; struct _ddebug descriptor___0 ; long tmp___8 ; long tmp___9 ; { { dev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; i = 0; } ldv_44697: { tmp___1 = readl((void const volatile *)base + 1008U); events = tmp___1 & 33376U; writel(events, (void volatile *)base + 1008U); descriptor.modname = "forcedeth"; descriptor.function = "nv_nic_irq_other"; descriptor.filename = "drivers/net/ethernet/nvidia/forcedeth.c"; descriptor.format = "irq events: %08x\n"; descriptor.lineno = 3823U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)dev, "irq events: %08x\n", events); } } else { } if ((events & np->irqmask) == 0U) { goto ldv_44674; } else { } { tmp___3 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___3); nv_tx_done_optimized(dev, 64); spin_unlock_irqrestore(& np->lock, flags); } if ((events & 64U) != 0U) { { tmp___4 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___4); nv_link_irq(dev); spin_unlock_irqrestore(& np->lock, flags); } } else { } if (np->need_linktimer != 0 && (long )(np->link_timeout - (unsigned long )jiffies) < 0L) { { tmp___5 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___5); nv_linkchange(dev); spin_unlock_irqrestore(& np->lock, flags); np->link_timeout = (unsigned long )jiffies + 750UL; } } else { } if ((events & 33280U) != 0U) { { tmp___6 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___6); writel(33376U, (void volatile *)base + 4U); pci_push(base); } if (np->in_shutdown == 0) { { np->nic_poll_irq = np->nic_poll_irq | 33376U; np->recover_error = 1; ldv_mod_timer_26(& np->nic_poll, (unsigned long )jiffies + 3UL); } } else { } { spin_unlock_irqrestore(& np->lock, flags); } goto ldv_44674; } else { } { tmp___9 = ldv__builtin_expect(i > max_interrupt_work, 0L); } if (tmp___9 != 0L) { { tmp___7 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___7); writel(33376U, (void volatile *)base + 4U); pci_push(base); } if (np->in_shutdown == 0) { { np->nic_poll_irq = np->nic_poll_irq | 33376U; ldv_mod_timer_27(& np->nic_poll, (unsigned long )jiffies + 3UL); } } else { } { spin_unlock_irqrestore(& np->lock, flags); descriptor___0.modname = "forcedeth"; descriptor___0.function = "nv_nic_irq_other"; descriptor___0.filename = "drivers/net/ethernet/nvidia/forcedeth.c"; descriptor___0.format = "%s: too many iterations (%d)\n"; descriptor___0.lineno = 3869U; descriptor___0.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___8 != 0L) { { __dynamic_netdev_dbg(& descriptor___0, (struct net_device const *)dev, "%s: too many iterations (%d)\n", "nv_nic_irq_other", i); } } else { } goto ldv_44674; } else { } i = i + 1; goto ldv_44697; ldv_44674: ; return (i != 0); } } static irqreturn_t nv_nic_irq_test(int foo , void *data ) { struct net_device *dev ; struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; u32 events ; unsigned int tmp___1 ; unsigned int tmp___2 ; { { dev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; } if ((np->msi_flags & 128U) == 0U) { { tmp___1 = readl((void const volatile *)base); events = tmp___1 & 33791U; writel(events & 32U, (void volatile *)base); } } else { { tmp___2 = readl((void const volatile *)base + 1008U); events = tmp___2 & 33791U; writel(events & 32U, (void volatile *)base + 1008U); } } { pci_push(base); } if ((events & 32U) == 0U) { return (0); } else { } { nv_msi_workaround(np); spin_lock(& np->lock); np->intr_test = 1; spin_unlock(& np->lock); } return (1); } } static void set_msix_vector_map(struct net_device *dev , u32 vector , u32 irqmask ) { u8 *base ; u8 *tmp ; int i ; u32 msixmap ; unsigned int tmp___0 ; unsigned int tmp___1 ; { { tmp = get_hwbase(dev); base = tmp; msixmap = 0U; i = 0; } goto ldv_44715; ldv_44714: ; if ((int )(irqmask >> i) & 1) { msixmap = msixmap | (vector << (i << 2)); } else { } i = i + 1; ldv_44715: ; if (i <= 7) { goto ldv_44714; } else { } { tmp___0 = readl((void const volatile *)base + 992U); writel(tmp___0 | msixmap, (void volatile *)base + 992U); msixmap = 0U; i = 0; } goto ldv_44718; ldv_44717: ; if ((int )(irqmask >> (i + 8)) & 1) { msixmap = msixmap | (vector << (i << 2)); } else { } i = i + 1; ldv_44718: ; if (i <= 7) { goto ldv_44717; } else { } { tmp___1 = readl((void const volatile *)base + 996U); writel(tmp___1 | msixmap, (void volatile *)base + 996U); } return; } } static int nv_request_irq(struct net_device *dev , int intr_test ) { struct fe_priv *np ; struct fe_priv *tmp ; u8 *base ; u8 *tmp___0 ; int ret ; int i ; irqreturn_t (*handler)(int , void * ) ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; { { tmp = get_nvpriv(dev); np = tmp; tmp___0 = get_hwbase(dev); base = tmp___0; ret = 1; } if (intr_test != 0) { handler = & nv_nic_irq_test; } else { { tmp___1 = nv_optimized(np); } if ((int )tmp___1) { handler = & nv_nic_irq_optimized; } else { handler = & nv_nic_irq; } } if ((np->msi_flags & 32U) != 0U) { i = 0; goto ldv_44732; ldv_44731: np->msi_x_entry[i].entry = (u16 )i; i = i + 1; ldv_44732: ; if ((u32 )i < (np->msi_flags & 15U)) { goto ldv_44731; } else { } { ret = pci_enable_msix(np->pci_dev, (struct msix_entry *)(& np->msi_x_entry), (int )np->msi_flags & 15); } if (ret == 0) { np->msi_flags = np->msi_flags | 128U; if ((optimization_mode | intr_test) == 0) { { sprintf((char *)(& np->name_rx), "%s-rx", (char *)(& dev->name)); tmp___2 = ldv_request_irq_28(np->msi_x_entry[0].vector, & nv_nic_irq_rx, 128UL, (char const *)(& np->name_rx), (void *)dev); } if (tmp___2 != 0) { { netdev_info((struct net_device const *)dev, "request_irq failed for rx %d\n", ret); pci_disable_msix(np->pci_dev); np->msi_flags = np->msi_flags & 4294967167U; } goto out_err; } else { } { sprintf((char *)(& np->name_tx), "%s-tx", (char *)(& dev->name)); tmp___3 = ldv_request_irq_29(np->msi_x_entry[1].vector, & nv_nic_irq_tx, 128UL, (char const *)(& np->name_tx), (void *)dev); } if (tmp___3 != 0) { { netdev_info((struct net_device const *)dev, "request_irq failed for tx %d\n", ret); pci_disable_msix(np->pci_dev); np->msi_flags = np->msi_flags & 4294967167U; } goto out_free_rx; } else { } { sprintf((char *)(& np->name_other), "%s-other", (char *)(& dev->name)); tmp___4 = ldv_request_irq_30(np->msi_x_entry[2].vector, & nv_nic_irq_other, 128UL, (char const *)(& np->name_other), (void *)dev); } if (tmp___4 != 0) { { netdev_info((struct net_device const *)dev, "request_irq failed for link %d\n", ret); pci_disable_msix(np->pci_dev); np->msi_flags = np->msi_flags & 4294967167U; } goto out_free_tx; } else { } { writel(0U, (void volatile *)base + 992U); writel(0U, (void volatile *)base + 996U); set_msix_vector_map(dev, 0U, 135U); set_msix_vector_map(dev, 1U, 280U); set_msix_vector_map(dev, 2U, 33376U); } } else { { tmp___5 = ldv_request_irq_31(np->msi_x_entry[0].vector, handler, 128UL, (char const *)(& dev->name), (void *)dev); } if (tmp___5 != 0) { { netdev_info((struct net_device const *)dev, "request_irq failed %d\n", ret); pci_disable_msix(np->pci_dev); np->msi_flags = np->msi_flags & 4294967167U; } goto out_err; } else { } { writel(0U, (void volatile *)base + 992U); writel(0U, (void volatile *)base + 996U); } } { netdev_info((struct net_device const *)dev, "MSI-X enabled\n"); } } else { } } else { } if (ret != 0 && (np->msi_flags & 16U) != 0U) { { ret = pci_enable_msi_block(np->pci_dev, 1); } if (ret == 0) { { np->msi_flags = np->msi_flags | 64U; tmp___6 = ldv_request_irq_32((np->pci_dev)->irq, handler, 128UL, (char const *)(& dev->name), (void *)dev); } if (tmp___6 != 0) { { netdev_info((struct net_device const *)dev, "request_irq failed %d\n", ret); pci_disable_msi(np->pci_dev); np->msi_flags = np->msi_flags & 4294967231U; } goto out_err; } else { } { writel(0U, (void volatile *)base + 32U); writel(0U, (void volatile *)base + 36U); writel(1U, (void volatile *)base + 48U); netdev_info((struct net_device const *)dev, "MSI enabled\n"); } } else { } } else { } if (ret != 0) { { tmp___7 = ldv_request_irq_33((np->pci_dev)->irq, handler, 128UL, (char const *)(& dev->name), (void *)dev); } if (tmp___7 != 0) { goto out_err; } else { } } else { } return (0); out_free_tx: { ldv_free_irq_34(np->msi_x_entry[1].vector, (void *)dev); } out_free_rx: { ldv_free_irq_35(np->msi_x_entry[0].vector, (void *)dev); } out_err: ; return (1); } } static void nv_free_irq(struct net_device *dev ) { struct fe_priv *np ; struct fe_priv *tmp ; int i ; { { tmp = get_nvpriv(dev); np = tmp; } if ((np->msi_flags & 128U) != 0U) { i = 0; goto ldv_44743; ldv_44742: { ldv_free_irq_36(np->msi_x_entry[i].vector, (void *)dev); i = i + 1; } ldv_44743: ; if ((u32 )i < (np->msi_flags & 15U)) { goto ldv_44742; } else { } { pci_disable_msix(np->pci_dev); np->msi_flags = np->msi_flags & 4294967167U; } } else { { ldv_free_irq_37((np->pci_dev)->irq, (void *)dev); } if ((np->msi_flags & 64U) != 0U) { { pci_disable_msi(np->pci_dev); np->msi_flags = np->msi_flags & 4294967231U; } } else { } } return; } } static void nv_do_nic_poll(unsigned long data ) { struct net_device *dev ; struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; u32 mask ; int tmp___1 ; int tmp___2 ; u8 *tmp___3 ; bool tmp___4 ; bool tmp___5 ; int tmp___6 ; { { dev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; mask = 0U; tmp___1 = using_multi_irqs(dev); } if (tmp___1 == 0) { if ((np->msi_flags & 128U) != 0U) { { disable_irq_lockdep(np->msi_x_entry[0].vector); } } else { { disable_irq_lockdep((np->pci_dev)->irq); } } mask = np->irqmask; } else { if ((np->nic_poll_irq & 135U) != 0U) { { disable_irq_lockdep(np->msi_x_entry[0].vector); mask = mask | 135U; } } else { } if ((np->nic_poll_irq & 280U) != 0U) { { disable_irq_lockdep(np->msi_x_entry[1].vector); mask = mask | 280U; } } else { } if ((np->nic_poll_irq & 33376U) != 0U) { { disable_irq_lockdep(np->msi_x_entry[2].vector); mask = mask | 33376U; } } else { } } if (np->recover_error != 0) { { np->recover_error = 0; netdev_info((struct net_device const *)dev, "MAC in recoverable error state\n"); tmp___4 = netif_running((struct net_device const *)dev); } if ((int )tmp___4) { { netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock(& np->lock); nv_stop_rxtx(dev); } if ((np->driver_data & 256U) != 0U) { { nv_mac_reset(dev); } } else { } { nv_txrx_reset(dev); nv_drain_rxtx(dev); set_bufsize(dev); tmp___2 = nv_init_ring(dev); } if (tmp___2 != 0) { if (np->in_shutdown == 0) { { ldv_mod_timer_38(& np->oom_kick, (unsigned long )jiffies + 13UL); } } else { } } else { } { writel(np->rx_buf_sz, (void volatile *)base + 144U); setup_hw_rings(dev, 3); writel((unsigned int )(((np->rx_ring_size + -1) << 16) + (np->tx_ring_size + -1)), (void volatile *)base + 264U); pci_push(base); tmp___3 = get_hwbase(dev); writel(np->txrxctl_bits | 1U, (void volatile *)tmp___3 + 324U); pci_push(base); } if ((np->msi_flags & 128U) == 0U) { { writel(33791U, (void volatile *)base); } } else { { writel(33791U, (void volatile *)base + 1008U); } } { nv_start_rxtx(dev); spin_unlock(& np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); } } else { } } else { } { writel(mask, (void volatile *)base + 4U); pci_push(base); tmp___6 = using_multi_irqs(dev); } if (tmp___6 == 0) { { np->nic_poll_irq = 0U; tmp___5 = nv_optimized(np); } if ((int )tmp___5) { { nv_nic_irq_optimized(0, (void *)dev); } } else { { nv_nic_irq(0, (void *)dev); } } if ((np->msi_flags & 128U) != 0U) { { enable_irq_lockdep(np->msi_x_entry[0].vector); } } else { { enable_irq_lockdep((np->pci_dev)->irq); } } } else { if ((np->nic_poll_irq & 135U) != 0U) { { np->nic_poll_irq = np->nic_poll_irq & 4294967160U; nv_nic_irq_rx(0, (void *)dev); enable_irq_lockdep(np->msi_x_entry[0].vector); } } else { } if ((np->nic_poll_irq & 280U) != 0U) { { np->nic_poll_irq = np->nic_poll_irq & 4294967015U; nv_nic_irq_tx(0, (void *)dev); enable_irq_lockdep(np->msi_x_entry[1].vector); } } else { } if ((np->nic_poll_irq & 33376U) != 0U) { { np->nic_poll_irq = np->nic_poll_irq & 4294933919U; nv_nic_irq_other(0, (void *)dev); enable_irq_lockdep(np->msi_x_entry[2].vector); } } else { } } return; } } static void nv_poll_controller(struct net_device *dev ) { { { nv_do_nic_poll((unsigned long )dev); } return; } } static void nv_do_stats_poll(unsigned long data ) { struct net_device *dev ; struct fe_priv *np ; void *tmp ; int tmp___0 ; unsigned long tmp___1 ; { { dev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = spin_trylock(& np->hwstats_lock); } if (tmp___0 != 0) { { nv_update_stats(dev); spin_unlock(& np->hwstats_lock); } } else { } if (np->in_shutdown == 0) { { tmp___1 = round_jiffies((unsigned long )jiffies + 2500UL); ldv_mod_timer_39(& np->stats_poll, tmp___1); } } else { } return; } } static void nv_get_drvinfo(struct net_device *dev , struct ethtool_drvinfo *info ) { struct fe_priv *np ; void *tmp ; char const *tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; strlcpy((char *)(& info->driver), "forcedeth", 32UL); strlcpy((char *)(& info->version), "0.64", 32UL); tmp___0 = pci_name((struct pci_dev const *)np->pci_dev); strlcpy((char *)(& info->bus_info), tmp___0, 32UL); } return; } } static void nv_get_wol(struct net_device *dev , struct ethtool_wolinfo *wolinfo ) { struct fe_priv *np ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; wolinfo->supported = 32U; spin_lock_irq(& np->lock); } if (np->wolenabled != 0) { wolinfo->wolopts = 32U; } else { } { spin_unlock_irq(& np->lock); } return; } } static int nv_set_wol(struct net_device *dev , struct ethtool_wolinfo *wolinfo ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; u32 flags ; bool tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; flags = 0U; } if (wolinfo->wolopts == 0U) { np->wolenabled = 0; } else if ((wolinfo->wolopts & 32U) != 0U) { np->wolenabled = 1; flags = 4369U; } else { } { tmp___1 = netif_running((struct net_device const *)dev); } if ((int )tmp___1) { { spin_lock_irq(& np->lock); writel(flags, (void volatile *)base + 512U); spin_unlock_irq(& np->lock); } } else { } { device_set_wakeup_enable(& (np->pci_dev)->dev, np->wolenabled != 0); } return (0); } } static int nv_get_settings(struct net_device *dev , struct ethtool_cmd *ecmd ) { struct fe_priv *np ; void *tmp ; u32 speed ; int adv ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; bool tmp___4 ; int tmp___5 ; bool tmp___6 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; spin_lock_irq(& np->lock); ecmd->port = 2U; tmp___4 = netif_running((struct net_device const *)dev); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { { tmp___3 = nv_update_linkspeed(dev); } if (tmp___3 != 0) { { tmp___0 = netif_carrier_ok((struct net_device const *)dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { netif_carrier_on(dev); } } else { } } else { { tmp___2 = netif_carrier_ok((struct net_device const *)dev); } if ((int )tmp___2) { { netif_carrier_off(dev); } } else { } } } else { } { tmp___6 = netif_carrier_ok((struct net_device const *)dev); } if ((int )tmp___6) { { if ((np->linkspeed & 4095U) == 1000U) { goto case_1000; } else { } if ((np->linkspeed & 4095U) == 100U) { goto case_100; } else { } if ((np->linkspeed & 4095U) == 50U) { goto case_50; } else { } goto switch_default; case_1000: /* CIL Label */ speed = 10U; goto ldv_44785; case_100: /* CIL Label */ speed = 100U; goto ldv_44785; case_50: /* CIL Label */ speed = 1000U; goto ldv_44785; switch_default: /* CIL Label */ speed = 4294967295U; goto ldv_44785; switch_break: /* CIL Label */ ; } ldv_44785: ecmd->duplex = 0U; if (np->duplex != 0) { ecmd->duplex = 1U; } else { } } else { speed = 4294967295U; ecmd->duplex = 255U; } { ethtool_cmd_speed_set(ecmd, speed); ecmd->autoneg = (__u8 )np->autoneg; ecmd->advertising = 512U; } if (np->autoneg != 0) { { ecmd->advertising = ecmd->advertising | 64U; adv = mii_rw(dev, np->phyaddr, 4, -1); } if ((adv & 32) != 0) { ecmd->advertising = ecmd->advertising | 1U; } else { } if ((adv & 64) != 0) { ecmd->advertising = ecmd->advertising | 2U; } else { } if ((adv & 128) != 0) { ecmd->advertising = ecmd->advertising | 4U; } else { } if ((adv & 256) != 0) { ecmd->advertising = ecmd->advertising | 8U; } else { } if ((unsigned int )np->gigabit == 256U) { { adv = mii_rw(dev, np->phyaddr, 9, -1); } if ((adv & 512) != 0) { ecmd->advertising = ecmd->advertising | 32U; } else { } } else { } } else { } ecmd->supported = 591U; if ((unsigned int )np->gigabit == 256U) { ecmd->supported = ecmd->supported | 32U; } else { } { ecmd->phy_address = (__u8 )np->phyaddr; ecmd->transceiver = 1U; spin_unlock_irq(& np->lock); } return (0); } } static int nv_set_settings(struct net_device *dev , struct ethtool_cmd *ecmd ) { struct fe_priv *np ; void *tmp ; u32 speed ; __u32 tmp___0 ; u32 mask ; unsigned long flags ; raw_spinlock_t *tmp___1 ; bool tmp___2 ; int adv ; int bmcr ; bool tmp___3 ; int tmp___4 ; int adv___0 ; int bmcr___0 ; int tmp___5 ; bool tmp___6 ; bool tmp___7 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = ethtool_cmd_speed((struct ethtool_cmd const *)ecmd); speed = tmp___0; } if ((unsigned int )ecmd->port != 2U) { return (-22); } else { } if ((unsigned int )ecmd->transceiver != 1U) { return (-22); } else { } if ((int )ecmd->phy_address != np->phyaddr) { return (-22); } else { } if ((unsigned int )ecmd->autoneg == 1U) { mask = 15U; if ((unsigned int )np->gigabit == 256U) { mask = mask | 32U; } else { } if ((ecmd->advertising & mask) == 0U) { return (-22); } else { } } else if ((unsigned int )ecmd->autoneg == 0U) { if (speed != 10U && speed != 100U) { return (-22); } else { } if ((unsigned int )ecmd->duplex > 1U) { return (-22); } else { } } else { return (-22); } { netif_carrier_off(dev); tmp___2 = netif_running((struct net_device const *)dev); } if ((int )tmp___2) { { nv_disable_irq(dev); netif_tx_lock_bh(dev); netif_addr_lock(dev); tmp___1 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___1); nv_stop_rxtx(dev); spin_unlock_irqrestore(& np->lock, flags); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); } } else { } if ((unsigned int )ecmd->autoneg == 1U) { { np->autoneg = 1; adv = mii_rw(dev, np->phyaddr, 4, -1); adv = adv & -4065; } if ((int )ecmd->advertising & 1) { adv = adv | 32; } else { } if ((ecmd->advertising & 2U) != 0U) { adv = adv | 64; } else { } if ((ecmd->advertising & 4U) != 0U) { adv = adv | 128; } else { } if ((ecmd->advertising & 8U) != 0U) { adv = adv | 256; } else { } if ((np->pause_flags & 16U) != 0U) { adv = adv | 3072; } else { } if ((np->pause_flags & 32U) != 0U) { adv = adv | 2048; } else { } { mii_rw(dev, np->phyaddr, 4, adv); } if ((unsigned int )np->gigabit == 256U) { { adv = mii_rw(dev, np->phyaddr, 9, -1); adv = adv & -513; } if ((ecmd->advertising & 32U) != 0U) { adv = adv | 512; } else { } { mii_rw(dev, np->phyaddr, 9, adv); } } else { } { tmp___3 = netif_running((struct net_device const *)dev); } if ((int )tmp___3) { { netdev_info((struct net_device const *)dev, "link down\n"); } } else { } { bmcr = mii_rw(dev, np->phyaddr, 0, -1); } if (np->phy_model == 544U) { { bmcr = bmcr | 4096; tmp___4 = phy_reset(dev, (u32 )bmcr); } if (tmp___4 != 0) { { netdev_info((struct net_device const *)dev, "phy reset failed\n"); } return (-22); } else { } } else { { bmcr = bmcr | 4608; mii_rw(dev, np->phyaddr, 0, bmcr); } } } else { { np->autoneg = 0; adv___0 = mii_rw(dev, np->phyaddr, 4, -1); adv___0 = adv___0 & -4065; } if (speed == 10U && (unsigned int )ecmd->duplex == 0U) { adv___0 = adv___0 | 32; } else { } if (speed == 10U && (unsigned int )ecmd->duplex == 1U) { adv___0 = adv___0 | 64; } else { } if (speed == 100U && (unsigned int )ecmd->duplex == 0U) { adv___0 = adv___0 | 128; } else { } if (speed == 100U && (unsigned int )ecmd->duplex == 1U) { adv___0 = adv___0 | 256; } else { } np->pause_flags = np->pause_flags & 4294967219U; if ((np->pause_flags & 16U) != 0U) { adv___0 = adv___0 | 3072; np->pause_flags = np->pause_flags | 4U; } else { } if ((np->pause_flags & 32U) != 0U) { adv___0 = adv___0 | 2048; np->pause_flags = np->pause_flags | 8U; } else { } { mii_rw(dev, np->phyaddr, 4, adv___0); np->fixed_mode = adv___0; } if ((unsigned int )np->gigabit == 256U) { { adv___0 = mii_rw(dev, np->phyaddr, 9, -1); adv___0 = adv___0 & -513; mii_rw(dev, np->phyaddr, 9, adv___0); } } else { } { bmcr___0 = mii_rw(dev, np->phyaddr, 0, -1); bmcr___0 = bmcr___0 & -12609; } if ((np->fixed_mode & 320) != 0) { bmcr___0 = bmcr___0 | 256; } else { } if ((np->fixed_mode & 384) != 0) { bmcr___0 = bmcr___0 | 8192; } else { } if (np->phy_oui == 20547U) { { tmp___5 = phy_reset(dev, (u32 )bmcr___0); } if (tmp___5 != 0) { { netdev_info((struct net_device const *)dev, "phy reset failed\n"); } return (-22); } else { } } else { { mii_rw(dev, np->phyaddr, 0, bmcr___0); tmp___6 = netif_running((struct net_device const *)dev); } if ((int )tmp___6) { { __const_udelay(42950UL); nv_linkchange(dev); } } else { } } } { tmp___7 = netif_running((struct net_device const *)dev); } if ((int )tmp___7) { { nv_start_rxtx(dev); nv_enable_irq(dev); } } else { } return (0); } } static int nv_get_regs_len(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; } return ((int )np->register_size); } } static void nv_get_regs(struct net_device *dev , struct ethtool_regs *regs , void *buf ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; u32 *rbuf ; int i ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; rbuf = (u32 *)buf; regs->version = 1U; spin_lock_irq(& np->lock); i = 0; } goto ldv_44818; ldv_44817: { *(rbuf + (unsigned long )i) = readl((void const volatile *)(base + (unsigned long )i * 4UL)); i = i + 1; } ldv_44818: ; if ((unsigned long )i < (unsigned long )(np->register_size / 4U)) { goto ldv_44817; } else { } { spin_unlock_irq(& np->lock); } return; } } static int nv_nway_reset(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; int ret ; int bmcr ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; } if (np->autoneg != 0) { { netif_carrier_off(dev); tmp___0 = netif_running((struct net_device const *)dev); } if ((int )tmp___0) { { nv_disable_irq(dev); netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock(& np->lock); nv_stop_rxtx(dev); spin_unlock(& np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); netdev_info((struct net_device const *)dev, "link down\n"); } } else { } { bmcr = mii_rw(dev, np->phyaddr, 0, -1); } if (np->phy_model == 544U) { { bmcr = bmcr | 4096; tmp___1 = phy_reset(dev, (u32 )bmcr); } if (tmp___1 != 0) { { netdev_info((struct net_device const *)dev, "phy reset failed\n"); } return (-22); } else { } } else { { bmcr = bmcr | 4608; mii_rw(dev, np->phyaddr, 0, bmcr); } } { tmp___2 = netif_running((struct net_device const *)dev); } if ((int )tmp___2) { { nv_start_rxtx(dev); nv_enable_irq(dev); } } else { } ret = 0; } else { ret = -22; } return (ret); } } static void nv_get_ringparam(struct net_device *dev , struct ethtool_ringparam *ring ) { struct fe_priv *np ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; ring->rx_max_pending = np->desc_ver == 1U ? 1024U : 16384U; ring->tx_max_pending = np->desc_ver == 1U ? 1024U : 16384U; ring->rx_pending = (__u32 )np->rx_ring_size; ring->tx_pending = (__u32 )np->tx_ring_size; } return; } } static int nv_set_ringparam(struct net_device *dev , struct ethtool_ringparam *ring ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; u8 *rxtx_ring ; u8 *rx_skbuff ; u8 *tx_skbuff ; dma_addr_t ring_addr ; void *tmp___1 ; void *tmp___2 ; bool tmp___3 ; int tmp___4 ; void *tmp___5 ; void *tmp___6 ; bool tmp___7 ; int tmp___8 ; bool tmp___9 ; bool tmp___10 ; int tmp___11 ; int tmp___12 ; u8 *tmp___13 ; bool tmp___14 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; } if (((((ring->rx_pending <= 127U || ring->tx_pending <= 63U) || ring->rx_mini_pending != 0U) || ring->rx_jumbo_pending != 0U) || (np->desc_ver == 1U && (ring->rx_pending > 1024U || ring->tx_pending > 1024U))) || (np->desc_ver != 1U && (ring->rx_pending > 16384U || ring->tx_pending > 16384U))) { return (-22); } else { } { tmp___3 = nv_optimized(np); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { { tmp___1 = pci_alloc_consistent(np->pci_dev, (unsigned long )(ring->rx_pending + ring->tx_pending) * 8UL, & ring_addr); rxtx_ring = (u8 *)tmp___1; } } else { { tmp___2 = pci_alloc_consistent(np->pci_dev, (unsigned long )(ring->rx_pending + ring->tx_pending) * 16UL, & ring_addr); rxtx_ring = (u8 *)tmp___2; } } { tmp___5 = kmalloc((unsigned long )ring->rx_pending * 40UL, 208U); rx_skbuff = (u8 *)tmp___5; tmp___6 = kmalloc((unsigned long )ring->tx_pending * 40UL, 208U); tx_skbuff = (u8 *)tmp___6; } if (((unsigned long )rxtx_ring == (unsigned long )((u8 *)0U) || (unsigned long )rx_skbuff == (unsigned long )((u8 *)0U)) || (unsigned long )tx_skbuff == (unsigned long )((u8 *)0U)) { { tmp___7 = nv_optimized(np); } if (tmp___7) { tmp___8 = 0; } else { tmp___8 = 1; } if (tmp___8) { if ((unsigned long )rxtx_ring != (unsigned long )((u8 *)0U)) { { pci_free_consistent(np->pci_dev, (unsigned long )(ring->rx_pending + ring->tx_pending) * 8UL, (void *)rxtx_ring, ring_addr); } } else { } } else if ((unsigned long )rxtx_ring != (unsigned long )((u8 *)0U)) { { pci_free_consistent(np->pci_dev, (unsigned long )(ring->rx_pending + ring->tx_pending) * 16UL, (void *)rxtx_ring, ring_addr); } } else { } { kfree((void const *)rx_skbuff); kfree((void const *)tx_skbuff); } goto exit; } else { } { tmp___9 = netif_running((struct net_device const *)dev); } if ((int )tmp___9) { { nv_disable_irq(dev); nv_napi_disable(dev); netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock(& np->lock); nv_stop_rxtx(dev); nv_txrx_reset(dev); nv_drain_rxtx(dev); free_rings(dev); } } else { } { np->rx_ring_size = (int )ring->rx_pending; np->tx_ring_size = (int )ring->tx_pending; tmp___10 = nv_optimized(np); } if (tmp___10) { tmp___11 = 0; } else { tmp___11 = 1; } if (tmp___11) { np->rx_ring.orig = (struct ring_desc *)rxtx_ring; np->tx_ring.orig = np->rx_ring.orig + (unsigned long )np->rx_ring_size; } else { np->rx_ring.ex = (struct ring_desc_ex *)rxtx_ring; np->tx_ring.ex = np->rx_ring.ex + (unsigned long )np->rx_ring_size; } { np->rx_skb = (struct nv_skb_map *)rx_skbuff; np->tx_skb = (struct nv_skb_map *)tx_skbuff; np->ring_addr = ring_addr; memset((void *)np->rx_skb, 0, (unsigned long )np->rx_ring_size * 40UL); memset((void *)np->tx_skb, 0, (unsigned long )np->tx_ring_size * 40UL); tmp___14 = netif_running((struct net_device const *)dev); } if ((int )tmp___14) { { set_bufsize(dev); tmp___12 = nv_init_ring(dev); } if (tmp___12 != 0) { if (np->in_shutdown == 0) { { ldv_mod_timer_40(& np->oom_kick, (unsigned long )jiffies + 13UL); } } else { } } else { } { writel(np->rx_buf_sz, (void volatile *)base + 144U); setup_hw_rings(dev, 3); writel((unsigned int )(((np->rx_ring_size + -1) << 16) + (np->tx_ring_size + -1)), (void volatile *)base + 264U); pci_push(base); tmp___13 = get_hwbase(dev); writel(np->txrxctl_bits | 1U, (void volatile *)tmp___13 + 324U); pci_push(base); nv_start_rxtx(dev); spin_unlock(& np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); nv_napi_enable(dev); nv_enable_irq(dev); } } else { } return (0); exit: ; return (-12); } } static void nv_get_pauseparam(struct net_device *dev , struct ethtool_pauseparam *pause ) { struct fe_priv *np ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; pause->autoneg = (np->pause_flags & 64U) != 0U; pause->rx_pause = (np->pause_flags & 4U) != 0U; pause->tx_pause = (np->pause_flags & 8U) != 0U; } return; } } static int nv_set_pauseparam(struct net_device *dev , struct ethtool_pauseparam *pause ) { struct fe_priv *np ; void *tmp ; int adv ; int bmcr ; bool tmp___0 ; bool tmp___1 ; bool tmp___2 ; int tmp___3 ; bool tmp___4 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; } if (((unsigned long )*((long *)np + 76UL) & 0xffffffffffffffffUL) == 0UL || ((np->autoneg != 0 && pause->autoneg == 0U) && np->duplex == 0)) { { netdev_info((struct net_device const *)dev, "can not set pause settings when forced link is in half duplex\n"); } return (-22); } else { } if (pause->tx_pause != 0U && (np->pause_flags & 2U) == 0U) { { netdev_info((struct net_device const *)dev, "hardware does not support tx pause frames\n"); } return (-22); } else { } { netif_carrier_off(dev); tmp___0 = netif_running((struct net_device const *)dev); } if ((int )tmp___0) { { nv_disable_irq(dev); netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock(& np->lock); nv_stop_rxtx(dev); spin_unlock(& np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); } } else { } np->pause_flags = np->pause_flags & 4294967247U; if (pause->rx_pause != 0U) { np->pause_flags = np->pause_flags | 16U; } else { } if (pause->tx_pause != 0U) { np->pause_flags = np->pause_flags | 32U; } else { } if (np->autoneg != 0 && pause->autoneg != 0U) { { np->pause_flags = np->pause_flags | 64U; adv = mii_rw(dev, np->phyaddr, 4, -1); adv = adv & -3073; } if ((np->pause_flags & 16U) != 0U) { adv = adv | 3072; } else { } if ((np->pause_flags & 32U) != 0U) { adv = adv | 2048; } else { } { mii_rw(dev, np->phyaddr, 4, adv); tmp___1 = netif_running((struct net_device const *)dev); } if ((int )tmp___1) { { netdev_info((struct net_device const *)dev, "link down\n"); } } else { } { bmcr = mii_rw(dev, np->phyaddr, 0, -1); bmcr = bmcr | 4608; mii_rw(dev, np->phyaddr, 0, bmcr); } } else { np->pause_flags = np->pause_flags & 4294967219U; if (pause->rx_pause != 0U) { np->pause_flags = np->pause_flags | 4U; } else { } if (pause->tx_pause != 0U) { np->pause_flags = np->pause_flags | 8U; } else { } { tmp___2 = netif_running((struct net_device const *)dev); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { { nv_update_linkspeed(dev); } } else { { nv_update_pause(dev, np->pause_flags); } } } { tmp___4 = netif_running((struct net_device const *)dev); } if ((int )tmp___4) { { nv_start_rxtx(dev); nv_enable_irq(dev); } } else { } return (0); } } static int nv_set_loopback(struct net_device *dev , netdev_features_t features ) { struct fe_priv *np ; void *tmp ; unsigned long flags ; u32 miicontrol ; int err ; int retval ; raw_spinlock_t *tmp___0 ; int tmp___1 ; bool tmp___2 ; raw_spinlock_t *tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; retval = 0; tmp___0 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___0); tmp___1 = mii_rw(dev, np->phyaddr, 0, -1); miicontrol = (u32 )tmp___1; } if ((features & 17179869184ULL) != 0ULL) { if ((miicontrol & 16384U) != 0U) { { spin_unlock_irqrestore(& np->lock, flags); netdev_info((struct net_device const *)dev, "Loopback already enabled\n"); } return (0); } else { } { nv_disable_irq(dev); miicontrol = miicontrol | 16704U; err = mii_rw(dev, np->phyaddr, 0, (int )miicontrol); } if (err != 0) { { retval = 2; spin_unlock_irqrestore(& np->lock, flags); phy_init(dev); } } else { { tmp___2 = netif_running((struct net_device const *)dev); } if ((int )tmp___2) { { nv_force_linkspeed(dev, 50, 1); netif_carrier_on(dev); } } else { } { spin_unlock_irqrestore(& np->lock, flags); netdev_info((struct net_device const *)dev, "Internal PHY loopback mode enabled.\n"); } } } else { if ((miicontrol & 16384U) == 0U) { { spin_unlock_irqrestore(& np->lock, flags); netdev_info((struct net_device const *)dev, "Loopback already disabled\n"); } return (0); } else { } { nv_disable_irq(dev); spin_unlock_irqrestore(& np->lock, flags); netdev_info((struct net_device const *)dev, "Internal PHY loopback mode disabled.\n"); phy_init(dev); } } { msleep(500U); tmp___3 = spinlock_check(& np->lock); flags = _raw_spin_lock_irqsave(tmp___3); nv_enable_irq(dev); spin_unlock_irqrestore(& np->lock, flags); } return (retval); } } static netdev_features_t nv_fix_features(struct net_device *dev , netdev_features_t features ) { { if ((features & 384ULL) != 0ULL) { features = features | 4294967296ULL; } else { } return (features); } } static void nv_vlan_mode(struct net_device *dev , netdev_features_t features ) { struct fe_priv *np ; struct fe_priv *tmp ; u8 *tmp___0 ; { { tmp = get_nvpriv(dev); np = tmp; spin_lock_irq(& np->lock); } if ((features & 256ULL) != 0ULL) { np->txrxctl_bits = np->txrxctl_bits | 64U; } else { np->txrxctl_bits = np->txrxctl_bits & 4294967231U; } if ((features & 128ULL) != 0ULL) { np->txrxctl_bits = np->txrxctl_bits | 128U; } else { np->txrxctl_bits = np->txrxctl_bits & 4294967167U; } { tmp___0 = get_hwbase(dev); writel(np->txrxctl_bits, (void volatile *)tmp___0 + 324U); spin_unlock_irq(& np->lock); } return; } } static int nv_set_features(struct net_device *dev , netdev_features_t features ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; netdev_features_t changed ; int retval ; bool tmp___1 ; bool tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; changed = dev->features ^ features; } if ((changed & 17179869184ULL) != 0ULL) { { tmp___1 = netif_running((struct net_device const *)dev); } if ((int )tmp___1) { { retval = nv_set_loopback(dev, features); } if (retval != 0) { return (retval); } else { } } else { } } else { } if ((changed & 4294967296ULL) != 0ULL) { { spin_lock_irq(& np->lock); } if ((features & 4294967296ULL) != 0ULL) { np->txrxctl_bits = np->txrxctl_bits | 1024U; } else { np->txrxctl_bits = np->txrxctl_bits & 4294966271U; } { tmp___2 = netif_running((struct net_device const *)dev); } if ((int )tmp___2) { { writel(np->txrxctl_bits, (void volatile *)base + 324U); } } else { } { spin_unlock_irq(& np->lock); } } else { } if ((changed & 384ULL) != 0ULL) { { nv_vlan_mode(dev, features); } } else { } return (0); } } static int nv_get_sset_count(struct net_device *dev , int sset ) { struct fe_priv *np ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; } { if (sset == 0) { goto case_0; } else { } if (sset == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ ; if ((np->driver_data & 4096U) != 0U) { return (4); } else { return (3); } case_1: /* CIL Label */ ; if ((np->driver_data & 2048U) != 0U) { return (33); } else if ((np->driver_data & 1024U) != 0U) { return (30); } else if ((np->driver_data & 512U) != 0U) { return (24); } else { return (0); } switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } } } static void nv_get_ethtool_stats(struct net_device *dev , struct ethtool_stats *estats , u64 *buffer ) { struct fe_priv *np ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; spin_lock_bh(& np->hwstats_lock); nv_update_stats(dev); tmp___0 = nv_get_sset_count(dev, 1); memcpy((void *)buffer, (void const *)(& np->estats), (unsigned long )tmp___0 * 8UL); spin_unlock_bh(& np->hwstats_lock); } return; } } static int nv_link_test(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; int mii_status ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; mii_rw(dev, np->phyaddr, 1, -1); mii_status = mii_rw(dev, np->phyaddr, 1, -1); } if ((mii_status & 4) == 0) { return (0); } else { return (1); } } } static int nv_register_test(struct net_device *dev ) { u8 *base ; u8 *tmp ; int i ; u32 orig_read ; u32 new_read ; { { tmp = get_hwbase(dev); base = tmp; i = 0; } ldv_44912: { orig_read = readl((void const volatile *)base + (unsigned long )nv_registers_test[i].reg); orig_read = orig_read ^ (u32 )nv_registers_test[i].mask; writel(orig_read, (void volatile *)base + (unsigned long )nv_registers_test[i].reg); new_read = readl((void const volatile *)base + (unsigned long )nv_registers_test[i].reg); } if (((new_read ^ orig_read) & (u32 )nv_registers_test[i].mask) != 0U) { return (0); } else { } { orig_read = orig_read ^ (u32 )nv_registers_test[i].mask; writel(orig_read, (void volatile *)base + (unsigned long )nv_registers_test[i].reg); i = i + 1; } if ((unsigned int )nv_registers_test[i].reg != 0U) { goto ldv_44912; } else { } return (1); } } static int nv_interrupt_test(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; int ret ; int testcnt ; u32 save_msi_flags ; u32 save_poll_interval ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; bool tmp___4 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; ret = 1; save_poll_interval = 0U; tmp___1 = netif_running((struct net_device const *)dev); } if ((int )tmp___1) { { nv_free_irq(dev); save_poll_interval = readl((void const volatile *)base + 12U); } } else { } { np->intr_test = 0; save_msi_flags = np->msi_flags; np->msi_flags = np->msi_flags & 4294967280U; np->msi_flags = np->msi_flags | 1U; tmp___2 = nv_request_irq(dev, 1); } if (tmp___2 != 0) { return (0); } else { } { writel(13U, (void volatile *)base + 12U); writel(3U, (void volatile *)base + 8U); nv_enable_hw_interrupts(dev, 32U); msleep(100U); spin_lock_irq(& np->lock); testcnt = np->intr_test; } if (testcnt == 0) { ret = 2; } else { } { nv_disable_hw_interrupts(dev, 32U); } if ((np->msi_flags & 128U) == 0U) { { writel(33791U, (void volatile *)base); } } else { { writel(33791U, (void volatile *)base + 1008U); } } { spin_unlock_irq(& np->lock); nv_free_irq(dev); np->msi_flags = save_msi_flags; tmp___4 = netif_running((struct net_device const *)dev); } if ((int )tmp___4) { { writel(save_poll_interval, (void volatile *)base + 12U); writel(3U, (void volatile *)base + 8U); tmp___3 = nv_request_irq(dev, 0); } if (tmp___3 != 0) { return (0); } else { } } else { } return (ret); } } static int nv_loopback_test(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; struct sk_buff *tx_skb ; struct sk_buff *rx_skb ; dma_addr_t test_dma_addr ; u32 tx_flags_extra ; u32 flags ; int len ; int i ; int pkt_len ; u8 *pkt_data ; u32 filter_flags ; u32 misc1_flags ; int ret ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; unsigned char *tmp___4 ; bool tmp___5 ; int tmp___6 ; u8 *tmp___7 ; u8 *tmp___8 ; u32 tmp___9 ; u32 tmp___10 ; bool tmp___11 ; int tmp___12 ; unsigned char *tmp___13 ; bool tmp___14 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; tx_flags_extra = np->desc_ver == 1U ? 65536U : 536870912U; filter_flags = 0U; misc1_flags = 0U; ret = 1; tmp___1 = netif_running((struct net_device const *)dev); } if ((int )tmp___1) { { nv_disable_irq(dev); filter_flags = readl((void const volatile *)base + 140U); misc1_flags = readl((void const volatile *)base + 128U); } } else { { nv_txrx_reset(dev); } } { set_bufsize(dev); nv_init_ring(dev); writel(3870524U, (void volatile *)base + 128U); writel(8323088U, (void volatile *)base + 140U); writel(np->rx_buf_sz, (void volatile *)base + 144U); setup_hw_rings(dev, 3); writel((unsigned int )(((np->rx_ring_size + -1) << 16) + (np->tx_ring_size + -1)), (void volatile *)base + 264U); pci_push(base); nv_start_rxtx(dev); pkt_len = 1500; tx_skb = netdev_alloc_skb(dev, (unsigned int )pkt_len); } if ((unsigned long )tx_skb == (unsigned long )((struct sk_buff *)0)) { ret = 0; goto out; } else { } { tmp___2 = skb_tailroom((struct sk_buff const *)tx_skb); test_dma_addr = pci_map_single(np->pci_dev, (void *)tx_skb->data, (size_t )tmp___2, 2); tmp___3 = pci_dma_mapping_error(np->pci_dev, test_dma_addr); } if (tmp___3 != 0) { { dev_kfree_skb_any(tx_skb); } goto out; } else { } { tmp___4 = skb_put(tx_skb, (unsigned int )pkt_len); pkt_data = tmp___4; i = 0; } goto ldv_44942; ldv_44941: *(pkt_data + (unsigned long )i) = (unsigned char )i; i = i + 1; ldv_44942: ; if (i < pkt_len) { goto ldv_44941; } else { } { tmp___5 = nv_optimized(np); } if (tmp___5) { tmp___6 = 0; } else { tmp___6 = 1; } if (tmp___6) { (np->tx_ring.orig)->buf = (unsigned int )test_dma_addr; (np->tx_ring.orig)->flaglen = ((u32 )(pkt_len + -1) | np->tx_flags) | tx_flags_extra; } else { { (np->tx_ring.ex)->bufhigh = dma_high(test_dma_addr); (np->tx_ring.ex)->buflow = dma_low(test_dma_addr); (np->tx_ring.ex)->flaglen = ((u32 )(pkt_len + -1) | np->tx_flags) | tx_flags_extra; } } { tmp___7 = get_hwbase(dev); writel(np->txrxctl_bits | 1U, (void volatile *)tmp___7 + 324U); tmp___8 = get_hwbase(dev); pci_push(tmp___8); msleep(500U); tmp___11 = nv_optimized(np); } if (tmp___11) { tmp___12 = 0; } else { tmp___12 = 1; } if (tmp___12) { { flags = (np->rx_ring.orig)->flaglen; tmp___9 = nv_descr_getlength(np->rx_ring.orig, np->desc_ver); len = (int )tmp___9; } } else { { flags = (np->rx_ring.ex)->flaglen; tmp___10 = nv_descr_getlength_ex(np->rx_ring.ex, np->desc_ver); len = (int )tmp___10; } } if ((int )flags < 0) { ret = 0; } else if (np->desc_ver == 1U) { if ((flags & 1073741824U) != 0U) { ret = 0; } else { } } else if ((flags & 1073741824U) != 0U) { ret = 0; } else { } if (ret != 0) { if (len != pkt_len) { ret = 0; } else { rx_skb = (np->rx_skb)->skb; i = 0; goto ldv_44946; ldv_44945: ; if ((int )*(rx_skb->data + (unsigned long )i) != (int )((unsigned char )i)) { ret = 0; goto ldv_44944; } else { } i = i + 1; ldv_44946: ; if (i < pkt_len) { goto ldv_44945; } else { } ldv_44944: ; } } else { } { tmp___13 = skb_end_pointer((struct sk_buff const *)tx_skb); pci_unmap_single(np->pci_dev, test_dma_addr, (size_t )((long )tmp___13 - (long )tx_skb->data), 1); dev_kfree_skb_any(tx_skb); } out: { nv_stop_rxtx(dev); nv_txrx_reset(dev); nv_drain_rxtx(dev); tmp___14 = netif_running((struct net_device const *)dev); } if ((int )tmp___14) { { writel(misc1_flags, (void volatile *)base + 128U); writel(filter_flags, (void volatile *)base + 140U); nv_enable_irq(dev); } } else { } return (ret); } } static void nv_self_test(struct net_device *dev , struct ethtool_test *test , u64 *buffer ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; int result ; int count ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; u8 *tmp___6 ; bool tmp___7 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; count = nv_get_sset_count(dev, 0); memset((void *)buffer, 0, (unsigned long )count * 8UL); tmp___1 = nv_link_test(dev); } if (tmp___1 == 0) { test->flags = test->flags | 2U; *buffer = 1ULL; } else { } if ((int )test->flags & 1) { { tmp___2 = netif_running((struct net_device const *)dev); } if ((int )tmp___2) { { netif_stop_queue(dev); nv_napi_disable(dev); netif_tx_lock_bh(dev); netif_addr_lock(dev); spin_lock_irq(& np->lock); nv_disable_hw_interrupts(dev, np->irqmask); } if ((np->msi_flags & 128U) == 0U) { { writel(33791U, (void volatile *)base); } } else { { writel(33791U, (void volatile *)base + 1008U); } } { nv_stop_rxtx(dev); nv_txrx_reset(dev); nv_drain_rxtx(dev); spin_unlock_irq(& np->lock); netif_addr_unlock(dev); netif_tx_unlock_bh(dev); } } else { } { tmp___3 = nv_register_test(dev); } if (tmp___3 == 0) { test->flags = test->flags | 2U; *(buffer + 1UL) = 1ULL; } else { } { result = nv_interrupt_test(dev); } if (result != 1) { test->flags = test->flags | 2U; *(buffer + 2UL) = 1ULL; } else { } if (result == 0) { return; } else { } if (count > 3) { { tmp___4 = nv_loopback_test(dev); } if (tmp___4 == 0) { test->flags = test->flags | 2U; *(buffer + 3UL) = 1ULL; } else { } } else { } { tmp___7 = netif_running((struct net_device const *)dev); } if ((int )tmp___7) { { set_bufsize(dev); tmp___5 = nv_init_ring(dev); } if (tmp___5 != 0) { if (np->in_shutdown == 0) { { ldv_mod_timer_41(& np->oom_kick, (unsigned long )jiffies + 13UL); } } else { } } else { } { writel(np->rx_buf_sz, (void volatile *)base + 144U); setup_hw_rings(dev, 3); writel((unsigned int )(((np->rx_ring_size + -1) << 16) + (np->tx_ring_size + -1)), (void volatile *)base + 264U); pci_push(base); tmp___6 = get_hwbase(dev); writel(np->txrxctl_bits | 1U, (void volatile *)tmp___6 + 324U); pci_push(base); nv_start_rxtx(dev); netif_start_queue(dev); nv_napi_enable(dev); nv_enable_hw_interrupts(dev, np->irqmask); } } else { } } else { } return; } } static void nv_get_strings(struct net_device *dev , u32 stringset , u8 *buffer ) { int tmp ; int tmp___0 ; { { if (stringset == 1U) { goto case_1; } else { } if (stringset == 0U) { goto case_0; } else { } goto switch_break; case_1: /* CIL Label */ { tmp = nv_get_sset_count(dev, 1); memcpy((void *)buffer, (void const *)(& nv_estats_str), (unsigned long )tmp * 32UL); } goto ldv_44962; case_0: /* CIL Label */ { tmp___0 = nv_get_sset_count(dev, 0); memcpy((void *)buffer, (void const *)(& nv_etests_str), (unsigned long )tmp___0 * 32UL); } goto ldv_44962; switch_break: /* CIL Label */ ; } ldv_44962: ; return; } } static struct ethtool_ops const ops = {& nv_get_settings, & nv_set_settings, & nv_get_drvinfo, & nv_get_regs_len, & nv_get_regs, & nv_get_wol, & nv_set_wol, 0, 0, & nv_nway_reset, & ethtool_op_get_link, 0, 0, 0, 0, 0, & nv_get_ringparam, & nv_set_ringparam, & nv_get_pauseparam, & nv_set_pauseparam, & nv_self_test, & nv_get_strings, 0, & nv_get_ethtool_stats, 0, 0, 0, 0, & nv_get_sset_count, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ethtool_op_get_ts_info, 0, 0, 0, 0}; static int nv_mgmt_acquire_sema(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; int i ; u32 tx_ctrl ; u32 mgmt_sema ; unsigned int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; i = 0; } goto ldv_44975; ldv_44974: { tmp___1 = readl((void const volatile *)base + 132U); mgmt_sema = tmp___1 & 3840U; } if (mgmt_sema == 0U) { goto ldv_44973; } else { } { msleep(500U); i = i + 1; } ldv_44975: ; if (i <= 9) { goto ldv_44974; } else { } ldv_44973: ; if (mgmt_sema != 0U) { return (0); } else { } i = 0; goto ldv_44977; ldv_44976: { tx_ctrl = readl((void const volatile *)base + 132U); tx_ctrl = tx_ctrl | 61440U; writel(tx_ctrl, (void volatile *)base + 132U); tx_ctrl = readl((void const volatile *)base + 132U); } if ((tx_ctrl & 65280U) == 61440U) { np->mgmt_sema = 1; return (1); } else { { __const_udelay(214750UL); } } i = i + 1; ldv_44977: ; if (i <= 1) { goto ldv_44976; } else { } return (0); } } static void nv_mgmt_release_sema(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; u32 tx_ctrl ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; } if ((np->driver_data & 8192U) != 0U) { if (np->mgmt_sema != 0) { { tx_ctrl = readl((void const volatile *)base + 132U); tx_ctrl = tx_ctrl & 4294905855U; writel(tx_ctrl, (void volatile *)base + 132U); } } else { } } else { } return; } } static int nv_mgmt_get_version(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; u32 data_ready ; unsigned int tmp___1 ; u32 data_ready2 ; unsigned long start ; int ready ; unsigned int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; tmp___1 = readl((void const volatile *)base + 132U); data_ready = tmp___1; data_ready2 = 0U; ready = 0; writel(1U, (void volatile *)base + 516U); writel(data_ready ^ 1048576U, (void volatile *)base + 132U); start = jiffies; } goto ldv_45002; ldv_45001: { data_ready2 = readl((void const volatile *)base + 132U); } if (((data_ready ^ data_ready2) & 65536U) != 0U) { ready = 1; goto ldv_45000; } else { } { schedule_timeout_uninterruptible(1L); } ldv_45002: ; if ((long )(((unsigned long )jiffies - start) - 1250UL) < 0L) { goto ldv_45001; } else { } ldv_45000: ; if (ready == 0 || (data_ready2 & 131072U) != 0U) { return (0); } else { } { tmp___2 = readl((void const volatile *)base + 520U); np->mgmt_version = (int )tmp___2 & 8; } return (1); } } static int nv_open(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u8 *base ; u8 *tmp___0 ; int ret ; int oom ; int i ; u32 low ; int tmp___1 ; unsigned int tmp___2 ; int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; unsigned int tmp___6 ; unsigned int tmp___7 ; int tmp___8 ; u32 miistat ; unsigned long tmp___9 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; tmp___0 = get_hwbase(dev); base = tmp___0; ret = 1; tmp___1 = mii_rw(dev, np->phyaddr, 0, -1); mii_rw(dev, np->phyaddr, 0, tmp___1 & -2049); nv_txrx_gate(dev, 0); } if ((np->driver_data & 256U) != 0U) { { nv_mac_reset(dev); } } else { } { writel(1U, (void volatile *)base + 176U); writel(0U, (void volatile *)base + 180U); writel(4294967295U, (void volatile *)base + 184U); writel(65535U, (void volatile *)base + 188U); writel(0U, (void volatile *)base + 140U); writel(0U, (void volatile *)base + 132U); writel(0U, (void volatile *)base + 148U); writel(0U, (void volatile *)base + 392U); } if ((np->pause_flags & 2U) != 0U) { { writel(268370048U, (void volatile *)base + 368U); } } else { } { set_bufsize(dev); oom = nv_init_ring(dev); writel(0U, (void volatile *)base + 272U); tmp___2 = readl((void const volatile *)base + 268U); writel(tmp___2 & 32768U, (void volatile *)base + 268U); nv_txrx_reset(dev); writel(0U, (void volatile *)base + 8U); np->in_shutdown = 0; setup_hw_rings(dev, 3); writel((unsigned int )(((np->rx_ring_size + -1) << 16) + (np->tx_ring_size + -1)), (void volatile *)base + 264U); writel(np->linkspeed, (void volatile *)base + 272U); } if (np->desc_ver == 1U) { { writel(2097168U, (void volatile *)base + 316U); } } else { { writel(31490048U, (void volatile *)base + 316U); } } { writel(np->txrxctl_bits, (void volatile *)base + 324U); writel(np->vlanctl_bits, (void volatile *)base + 768U); pci_push(base); writel(np->txrxctl_bits | 2U, (void volatile *)base + 324U); tmp___3 = reg_delay(dev, 304, 2147483648U, 2147483648U, 5, 50000); } if (tmp___3 != 0) { { netdev_info((struct net_device const *)dev, "%s: SetupReg5, Bit 31 remained off\n", "nv_open"); } } else { } { writel(0U, (void volatile *)base + 388U); writel(33791U, (void volatile *)base); writel(15U, (void volatile *)base + 384U); writel(3870526U, (void volatile *)base + 128U); tmp___4 = readl((void const volatile *)base + 136U); writel(tmp___4, (void volatile *)base + 136U); writel(8323072U, (void volatile *)base + 140U); writel(np->rx_buf_sz, (void volatile *)base + 144U); tmp___5 = readl((void const volatile *)base + 152U); writel(tmp___5, (void volatile *)base + 152U); get_random_bytes((void *)(& low), 4); low = low & 255U; } if (np->desc_ver == 1U) { { writel(low | 32512U, (void volatile *)base + 156U); } } else if ((np->driver_data & 2097152U) == 0U) { { writel(low | 2147516160U, (void volatile *)base + 156U); } } else { { writel(32512U, (void volatile *)base + 156U); nv_gear_backoff_reseed(dev); } } { writel(1377551U, (void volatile *)base + 160U); writel(22U, (void volatile *)base + 164U); } if (poll_interval == -1) { if (optimization_mode == 0) { { writel(65535U, (void volatile *)base + 12U); } } else { { writel(13U, (void volatile *)base + 12U); } } } else { { writel((unsigned int )poll_interval & 65535U, (void volatile *)base + 12U); } } { writel(3U, (void volatile *)base + 8U); writel((unsigned int )((np->phyaddr << 24) | 1310720), (void volatile *)base + 392U); writel(261U, (void volatile *)base + 396U); writel(8U, (void volatile *)base + 388U); } if (np->wolenabled != 0) { { writel(4369U, (void volatile *)base + 512U); } } else { } { tmp___6 = readl((void const volatile *)base + 620U); i = (int )tmp___6; } if ((i & 32768) == 0) { { writel((unsigned int )(i | 32768), (void volatile *)base + 620U); } } else { } { pci_push(base); __const_udelay(42950UL); tmp___7 = readl((void const volatile *)base + 620U); writel(tmp___7 | 256U, (void volatile *)base + 620U); nv_disable_hw_interrupts(dev, np->irqmask); pci_push(base); writel(15U, (void volatile *)base + 384U); writel(33791U, (void volatile *)base); pci_push(base); tmp___8 = nv_request_irq(dev, 0); } if (tmp___8 != 0) { goto out_drain; } else { } { nv_enable_hw_interrupts(dev, np->irqmask); spin_lock_irq(& np->lock); writel(1U, (void volatile *)base + 176U); writel(0U, (void volatile *)base + 180U); writel(4294967295U, (void volatile *)base + 184U); writel(65535U, (void volatile *)base + 188U); writel(8323104U, (void volatile *)base + 140U); miistat = readl((void const volatile *)base + 384U); writel(15U, (void volatile *)base + 384U); np->linkspeed = 0U; ret = nv_update_linkspeed(dev); nv_start_rxtx(dev); netif_start_queue(dev); nv_napi_enable(dev); } if (ret != 0) { { netif_carrier_on(dev); } } else { { netdev_info((struct net_device const *)dev, "no link during initialization\n"); netif_carrier_off(dev); } } if (oom != 0) { { ldv_mod_timer_42(& np->oom_kick, (unsigned long )jiffies + 13UL); } } else { } if ((np->driver_data & 3584U) != 0U) { { tmp___9 = round_jiffies((unsigned long )jiffies + 2500UL); ldv_mod_timer_43(& np->stats_poll, tmp___9); } } else { } { spin_unlock_irq(& np->lock); } if ((dev->features & 17179869184ULL) != 0ULL) { { nv_set_loopback(dev, dev->features); } } else { } return (0); out_drain: { nv_drain_rxtx(dev); } return (ret); } } static int nv_close(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u8 *base ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; spin_lock_irq(& np->lock); np->in_shutdown = 1; spin_unlock_irq(& np->lock); nv_napi_disable(dev); synchronize_irq((np->pci_dev)->irq); ldv_del_timer_sync_44(& np->oom_kick); ldv_del_timer_sync_45(& np->nic_poll); ldv_del_timer_sync_46(& np->stats_poll); netif_stop_queue(dev); spin_lock_irq(& np->lock); nv_update_pause(dev, 0U); nv_stop_rxtx(dev); nv_txrx_reset(dev); base = get_hwbase(dev); nv_disable_hw_interrupts(dev, np->irqmask); pci_push(base); spin_unlock_irq(& np->lock); nv_free_irq(dev); nv_drain_rxtx(dev); } if (np->wolenabled != 0 || phy_power_down == 0) { { nv_txrx_gate(dev, 0); writel(8323104U, (void volatile *)base + 140U); nv_start_rx(dev); } } else { { tmp___0 = mii_rw(dev, np->phyaddr, 0, -1); mii_rw(dev, np->phyaddr, 0, tmp___0 | 2048); nv_txrx_gate(dev, 1); } } return (0); } } static struct net_device_ops const nv_netdev_ops = {0, 0, & nv_open, & nv_close, & nv_start_xmit, 0, 0, & nv_set_multicast, & nv_set_mac_address, & eth_validate_addr, 0, 0, & nv_change_mtu, 0, & nv_tx_timeout, & nv_get_stats64, 0, 0, 0, & nv_poll_controller, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & nv_fix_features, & nv_set_features, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct net_device_ops const nv_netdev_ops_optimized = {0, 0, & nv_open, & nv_close, & nv_start_xmit_optimized, 0, 0, & nv_set_multicast, & nv_set_mac_address, & eth_validate_addr, 0, 0, & nv_change_mtu, 0, & nv_tx_timeout, & nv_get_stats64, 0, 0, 0, & nv_poll_controller, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & nv_fix_features, & nv_set_features, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int nv_probe(struct pci_dev *pci_dev , struct pci_device_id const *id ) { struct net_device *dev ; struct fe_priv *np ; unsigned long addr ; u8 *base ; int err ; int i ; u32 powerstate ; u32 txreg ; u32 phystate_orig ; u32 phystate ; int phyinitialized ; int printed_version ; int tmp ; void *tmp___0 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; struct lock_class_key __key___2 ; struct lock_class_key __key___3 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; void *tmp___4 ; bool tmp___5 ; int tmp___6 ; void *tmp___7 ; void *tmp___8 ; bool tmp___9 ; int tmp___10 ; struct _ddebug descriptor ; long tmp___11 ; bool tmp___12 ; int tmp___13 ; unsigned int tmp___14 ; unsigned int tmp___15 ; unsigned int tmp___16 ; unsigned int tmp___17 ; int tmp___18 ; int tmp___19 ; int id1 ; int id2 ; int phyaddr ; int tmp___20 ; u32 mii_status ; int tmp___21 ; u8 *tmp___22 ; { phystate_orig = 0U; phyinitialized = 0; tmp = printed_version; printed_version = printed_version + 1; if (tmp == 0) { { printk("\016forcedeth: Reverse Engineered nForce ethernet driver. Version %s.\n", (char *)"0.64"); } } else { } { dev = ldv_alloc_etherdev_mqs_47(3080, 1U, 1U); err = -12; } if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { goto out; } else { } { tmp___0 = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp___0; np->dev = dev; np->pci_dev = pci_dev; spinlock_check(& np->lock); __raw_spin_lock_init(& np->lock.__annonCompField19.rlock, "&(&np->lock)->rlock", & __key); spinlock_check(& np->hwstats_lock); __raw_spin_lock_init(& np->hwstats_lock.__annonCompField19.rlock, "&(&np->hwstats_lock)->rlock", & __key___0); dev->dev.parent = & pci_dev->dev; init_timer_key(& np->oom_kick, 0U, "(&np->oom_kick)", & __key___1); np->oom_kick.data = (unsigned long )dev; np->oom_kick.function = & nv_do_rx_refill; init_timer_key(& np->nic_poll, 0U, "(&np->nic_poll)", & __key___2); np->nic_poll.data = (unsigned long )dev; np->nic_poll.function = & nv_do_nic_poll; init_timer_key(& np->stats_poll, 1U, "(&np->stats_poll)", & __key___3); np->stats_poll.data = (unsigned long )dev; np->stats_poll.function = & nv_do_stats_poll; err = pci_enable_device(pci_dev); } if (err != 0) { goto out_free; } else { } { pci_set_master(pci_dev); err = pci_request_regions(pci_dev, "forcedeth"); } if (err < 0) { goto out_disable; } else { } if (((unsigned long )id->driver_data & 3488UL) != 0UL) { np->register_size = 1540U; } else if (((unsigned long )id->driver_data & 512UL) != 0UL) { np->register_size = 724U; } else { np->register_size = 624U; } err = -22; addr = 0UL; i = 0; goto ldv_45048; ldv_45047: ; if ((pci_dev->resource[i].flags & 512UL) != 0UL && (pci_dev->resource[i].start != 0ULL || pci_dev->resource[i].end != pci_dev->resource[i].start ? (pci_dev->resource[i].end - pci_dev->resource[i].start) + 1ULL : 0ULL) >= (resource_size_t )np->register_size) { addr = (unsigned long )pci_dev->resource[i].start; goto ldv_45046; } else { } i = i + 1; ldv_45048: ; if (i <= 16) { goto ldv_45047; } else { } ldv_45046: ; if (i == 17) { { _dev_info((struct device const *)(& pci_dev->dev), "Couldn\'t find register window\n"); } goto out_relreg; } else { } np->driver_data = (u32 )id->driver_data; np->device_id = id->device; if (((unsigned long )id->driver_data & 8UL) != 0UL) { np->desc_ver = 3U; np->txrxctl_bits = 12591616U; if (dma_64bit != 0) { { tmp___1 = pci_set_dma_mask(pci_dev, 549755813887ULL); } if (tmp___1 != 0) { { _dev_info((struct device const *)(& pci_dev->dev), "64-bit DMA failed, using 32-bit addressing\n"); } } else { dev->features = dev->features | 32ULL; } { tmp___2 = pci_set_consistent_dma_mask(pci_dev, 549755813887ULL); } if (tmp___2 != 0) { { _dev_info((struct device const *)(& pci_dev->dev), "64-bit DMA (consistent) failed, using 32-bit ring buffers\n"); } } else { } } else { } } else if (((unsigned long )id->driver_data & 4UL) != 0UL) { np->desc_ver = 2U; np->txrxctl_bits = 8448U; } else { np->desc_ver = 1U; np->txrxctl_bits = 0U; } np->pkt_limit = 1500U; if (((unsigned long )id->driver_data & 4UL) != 0UL) { np->pkt_limit = 9100U; } else { } if (((unsigned long )id->driver_data & 16UL) != 0UL) { np->txrxctl_bits = np->txrxctl_bits | 1024U; dev->hw_features = dev->hw_features | 4295032835ULL; } else { } np->vlanctl_bits = 0U; if (((unsigned long )id->driver_data & 32UL) != 0UL) { np->vlanctl_bits = 8192U; dev->hw_features = dev->hw_features | 384ULL; } else { } dev->features = dev->features | dev->hw_features; dev->hw_features = dev->hw_features | 17179869184ULL; np->pause_flags = 81U; if (*((unsigned long *)id + 3UL) != 0UL) { np->pause_flags = np->pause_flags | 34U; } else { } { err = -12; np->base = ioremap((resource_size_t )addr, (unsigned long )np->register_size); } if ((unsigned long )np->base == (unsigned long )((void *)0)) { goto out_relreg; } else { } { np->rx_ring_size = 512; np->tx_ring_size = 256; tmp___5 = nv_optimized(np); } if (tmp___5) { tmp___6 = 0; } else { tmp___6 = 1; } if (tmp___6) { { tmp___3 = pci_alloc_consistent(pci_dev, (unsigned long )(np->rx_ring_size + np->tx_ring_size) * 8UL, & np->ring_addr); np->rx_ring.orig = (struct ring_desc *)tmp___3; } if ((unsigned long )np->rx_ring.orig == (unsigned long )((struct ring_desc *)0)) { goto out_unmap; } else { } np->tx_ring.orig = np->rx_ring.orig + (unsigned long )np->rx_ring_size; } else { { tmp___4 = pci_alloc_consistent(pci_dev, (unsigned long )(np->rx_ring_size + np->tx_ring_size) * 16UL, & np->ring_addr); np->rx_ring.ex = (struct ring_desc_ex *)tmp___4; } if ((unsigned long )np->rx_ring.ex == (unsigned long )((struct ring_desc_ex *)0)) { goto out_unmap; } else { } np->tx_ring.ex = np->rx_ring.ex + (unsigned long )np->rx_ring_size; } { tmp___7 = kcalloc((size_t )np->rx_ring_size, 40UL, 208U); np->rx_skb = (struct nv_skb_map *)tmp___7; tmp___8 = kcalloc((size_t )np->tx_ring_size, 40UL, 208U); np->tx_skb = (struct nv_skb_map *)tmp___8; } if ((unsigned long )np->rx_skb == (unsigned long )((struct nv_skb_map *)0) || (unsigned long )np->tx_skb == (unsigned long )((struct nv_skb_map *)0)) { goto out_freering; } else { } { tmp___9 = nv_optimized(np); } if (tmp___9) { tmp___10 = 0; } else { tmp___10 = 1; } if (tmp___10) { dev->netdev_ops = & nv_netdev_ops; } else { dev->netdev_ops = & nv_netdev_ops_optimized; } { netif_napi_add(dev, & np->napi, & nv_napi_poll, 64); dev->ethtool_ops = & ops; dev->watchdog_timeo = 1250; pci_set_drvdata(pci_dev, (void *)dev); base = get_hwbase(dev); np->orig_mac[0] = readl((void const volatile *)base + 168U); np->orig_mac[1] = readl((void const volatile *)base + 172U); txreg = readl((void const volatile *)base + 268U); } if (((unsigned long )id->driver_data & 16384UL) != 0UL) { *(dev->dev_addr) = (unsigned char )np->orig_mac[0]; *(dev->dev_addr + 1UL) = (unsigned char )(np->orig_mac[0] >> 8); *(dev->dev_addr + 2UL) = (unsigned char )(np->orig_mac[0] >> 16); *(dev->dev_addr + 3UL) = (unsigned char )(np->orig_mac[0] >> 24); *(dev->dev_addr + 4UL) = (unsigned char )np->orig_mac[1]; *(dev->dev_addr + 5UL) = (unsigned char )(np->orig_mac[1] >> 8); } else if ((txreg & 32768U) != 0U) { *(dev->dev_addr) = (unsigned char )np->orig_mac[0]; *(dev->dev_addr + 1UL) = (unsigned char )(np->orig_mac[0] >> 8); *(dev->dev_addr + 2UL) = (unsigned char )(np->orig_mac[0] >> 16); *(dev->dev_addr + 3UL) = (unsigned char )(np->orig_mac[0] >> 24); *(dev->dev_addr + 4UL) = (unsigned char )np->orig_mac[1]; *(dev->dev_addr + 5UL) = (unsigned char )(np->orig_mac[1] >> 8); np->orig_mac[0] = (u32 )((((int )*(dev->dev_addr + 5UL) + ((int )*(dev->dev_addr + 4UL) << 8)) + ((int )*(dev->dev_addr + 3UL) << 16)) + ((int )*(dev->dev_addr + 2UL) << 24)); np->orig_mac[1] = (u32 )((int )*(dev->dev_addr + 1UL) + ((int )*(dev->dev_addr) << 8)); } else { { *(dev->dev_addr) = (unsigned char )(np->orig_mac[1] >> 8); *(dev->dev_addr + 1UL) = (unsigned char )np->orig_mac[1]; *(dev->dev_addr + 2UL) = (unsigned char )(np->orig_mac[0] >> 24); *(dev->dev_addr + 3UL) = (unsigned char )(np->orig_mac[0] >> 16); *(dev->dev_addr + 4UL) = (unsigned char )(np->orig_mac[0] >> 8); *(dev->dev_addr + 5UL) = (unsigned char )np->orig_mac[0]; writel(txreg | 32768U, (void volatile *)base + 268U); descriptor.modname = "forcedeth"; descriptor.function = "nv_probe"; descriptor.filename = "drivers/net/ethernet/nvidia/forcedeth.c"; descriptor.format = "%s: set workaround bit for reversed mac addr\n"; descriptor.lineno = 5807U; descriptor.flags = 0U; tmp___11 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___11 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& pci_dev->dev), "%s: set workaround bit for reversed mac addr\n", "nv_probe"); } } else { } } { tmp___12 = is_valid_ether_addr((u8 const *)dev->dev_addr); } if (tmp___12) { tmp___13 = 0; } else { tmp___13 = 1; } if (tmp___13) { { dev_err((struct device const *)(& pci_dev->dev), "Invalid MAC address detected: %pM - Please complain to your hardware vendor.\n", dev->dev_addr); eth_hw_addr_random(dev); dev_err((struct device const *)(& pci_dev->dev), "Using random MAC address: %pM\n", dev->dev_addr); } } else { } { nv_copy_mac_to_hw(dev); writel(0U, (void volatile *)base + 512U); np->wolenabled = 0; device_set_wakeup_enable(& pci_dev->dev, 0); } if (((unsigned long )id->driver_data & 256UL) != 0UL) { { powerstate = readl((void const volatile *)base + 1536U); powerstate = powerstate & 4294963434U; } if (((unsigned long )id->driver_data & 8388608UL) != 0UL && (unsigned int )pci_dev->revision > 162U) { powerstate = powerstate | 1U; } else { } { writel(powerstate, (void volatile *)base + 1536U); } } else { } if (np->desc_ver == 1U) { np->tx_flags = 2147483648U; } else { np->tx_flags = 2147483648U; } np->msi_flags = 0U; if (((unsigned long )id->driver_data & 64UL) != 0UL && msi != 0) { np->msi_flags = np->msi_flags | 16U; } else { } if (optimization_mode == 1) { np->irqmask = 96U; if ((np->msi_flags & 32U) != 0U) { np->msi_flags = np->msi_flags | 1U; } else { } } else if (optimization_mode == 2 && ((unsigned long )id->driver_data & 1UL) == 0UL) { np->irqmask = 223U; np->msi_flags = np->msi_flags & 4294967263U; } else { optimization_mode = 0; np->irqmask = 223U; if ((np->msi_flags & 32U) != 0U) { np->msi_flags = np->msi_flags | 3U; } else { } } if ((int )id->driver_data & 1) { np->irqmask = np->irqmask | 32U; } else { } if (((unsigned long )id->driver_data & 2UL) != 0UL) { np->need_linktimer = 1; np->link_timeout = (unsigned long )jiffies + 750UL; } else { np->need_linktimer = 0; } if (((unsigned long )id->driver_data & 524288UL) != 0UL) { np->tx_limit = 1; if (((unsigned long )id->driver_data & 1572864UL) == 1572864UL && (unsigned int )pci_dev->revision > 161U) { np->tx_limit = 0; } else { } } else { } { writel(0U, (void volatile *)base + 388U); phystate = readl((void const volatile *)base + 392U); } if ((phystate & 1048576U) != 0U) { { phystate_orig = 1U; phystate = phystate & 4293918719U; writel(phystate, (void volatile *)base + 392U); } } else { } { writel(15U, (void volatile *)base + 384U); } if (((unsigned long )id->driver_data & 8192UL) != 0UL) { { tmp___16 = readl((void const volatile *)base + 132U); } if ((tmp___16 & 1073741824U) != 0U) { { tmp___17 = readl((void const volatile *)base + 132U); } if ((tmp___17 & 262144U) != 0U) { { tmp___18 = nv_mgmt_acquire_sema(dev); } if (tmp___18 != 0) { { tmp___19 = nv_mgmt_get_version(dev); } if (tmp___19 != 0) { np->mac_in_use = 1U; if (np->mgmt_version > 0) { { tmp___14 = readl((void const volatile *)base + 632U); np->mac_in_use = tmp___14 & 131072U; } } else { } if (np->mac_in_use != 0U) { { tmp___15 = readl((void const volatile *)base + 132U); } if ((tmp___15 & 983040U) == 262144U) { phyinitialized = 1; } else { } } else { } } else { } } else { } } else { } } else { } } else { } i = 1; goto ldv_45060; ldv_45059: { phyaddr = i & 31; spin_lock_irq(& np->lock); id1 = mii_rw(dev, phyaddr, 2, -1); spin_unlock_irq(& np->lock); } if (id1 < 0 || id1 == 65535) { goto ldv_45057; } else { } { spin_lock_irq(& np->lock); id2 = mii_rw(dev, phyaddr, 3, -1); spin_unlock_irq(& np->lock); } if (id2 < 0 || id2 == 65535) { goto ldv_45057; } else { } np->phy_model = (unsigned int )id2 & 1008U; id1 = (id1 << 6) & 65535; id2 = (id2 & 64512) >> 10; np->phyaddr = phyaddr; np->phy_oui = (unsigned int )(id1 | id2); if (np->phy_oui == 32U) { np->phy_oui = 1842U; } else { } if (np->phy_oui == 1842U && np->phy_model == 272U) { { tmp___20 = mii_rw(dev, phyaddr, 23, -1); np->phy_rev = (unsigned int )tmp___20 & 1U; } } else { } goto ldv_45058; ldv_45057: i = i + 1; ldv_45060: ; if (i <= 32) { goto ldv_45059; } else { } ldv_45058: ; if (i == 33) { { _dev_info((struct device const *)(& pci_dev->dev), "open: Could not find a valid PHY\n"); } goto out_error; } else { } if (phyinitialized == 0) { { phy_init(dev); } } else { { tmp___21 = mii_rw(dev, np->phyaddr, 1, -1); mii_status = (u32 )tmp___21; } if ((mii_status & 256U) != 0U) { np->gigabit = 256U; } else { } } { np->linkspeed = 66536U; np->duplex = 0; np->autoneg = 1; err = ldv_register_netdev_48(dev); } if (err != 0) { { _dev_info((struct device const *)(& pci_dev->dev), "unable to register netdev: %d\n", err); } goto out_error; } else { } { netif_carrier_off(dev); nv_update_pause(dev, 0U); nv_start_tx(dev); nv_stop_tx(dev); } if (((unsigned long )id->driver_data & 32UL) != 0UL) { { nv_vlan_mode(dev, dev->features); } } else { } { _dev_info((struct device const *)(& pci_dev->dev), "ifname %s, PHY OUI 0x%x @ %d, addr %pM\n", (char *)(& dev->name), np->phy_oui, np->phyaddr, dev->dev_addr); _dev_info((struct device const *)(& pci_dev->dev), "%s%s%s%s%s%s%s%s%s%s%sdesc-v%u\n", (dev->features & 32ULL) != 0ULL ? (char *)"highdma " : (char *)"", (dev->features & 3ULL) != 0ULL ? (char *)"csum " : (char *)"", (dev->features & 384ULL) != 0ULL ? (char *)"vlan " : (char *)"", (dev->features & 17179869184ULL) != 0ULL ? (char *)"loopback " : (char *)"", ((unsigned long )id->driver_data & 256UL) != 0UL ? (char *)"pwrctl " : (char *)"", ((unsigned long )id->driver_data & 8192UL) != 0UL ? (char *)"mgmt " : (char *)"", (int )id->driver_data & 1 ? (char *)"timirq " : (char *)"", (unsigned int )np->gigabit == 256U ? (char *)"gbit " : (char *)"", np->need_linktimer != 0 ? (char *)"lnktim " : (char *)"", (np->msi_flags & 16U) != 0U ? (char *)"msi " : (char *)"", (np->msi_flags & 32U) != 0U ? (char *)"msi-x " : (char *)"", np->desc_ver); } return (0); out_error: ; if (phystate_orig != 0U) { { writel(phystate | 1048576U, (void volatile *)base + 392U); } } else { } out_freering: { free_rings(dev); } out_unmap: { tmp___22 = get_hwbase(dev); iounmap((void volatile *)tmp___22); } out_relreg: { pci_release_regions(pci_dev); } out_disable: { pci_disable_device(pci_dev); } out_free: { ldv_free_netdev_49(dev); } out: ; return (err); } } static void nv_restore_phy(struct net_device *dev ) { struct fe_priv *np ; void *tmp ; u16 phy_reserved ; u16 mii_control ; int tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp; } if ((np->phy_oui == 1842U && np->phy_model == 512U) && phy_cross == 0) { { mii_rw(dev, np->phyaddr, 31, 1); tmp___0 = mii_rw(dev, np->phyaddr, 25, -1); phy_reserved = (u16 )tmp___0; phy_reserved = (unsigned int )phy_reserved & 65532U; phy_reserved = (u16 )((unsigned int )phy_reserved | 3U); mii_rw(dev, np->phyaddr, 25, (int )phy_reserved); mii_rw(dev, np->phyaddr, 31, 0); tmp___1 = mii_rw(dev, np->phyaddr, 0, -1); mii_control = (u16 )tmp___1; mii_control = (u16 )((unsigned int )mii_control | 4608U); mii_rw(dev, np->phyaddr, 0, (int )mii_control); } } else { } return; } } static void nv_restore_mac_addr(struct pci_dev *pci_dev ) { struct net_device *dev ; void *tmp ; struct fe_priv *np ; void *tmp___0 ; u8 *base ; u8 *tmp___1 ; unsigned int tmp___2 ; { { tmp = pci_get_drvdata(pci_dev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp___0; tmp___1 = get_hwbase(dev); base = tmp___1; writel(np->orig_mac[0], (void volatile *)base + 168U); writel(np->orig_mac[1], (void volatile *)base + 172U); tmp___2 = readl((void const volatile *)base + 268U); writel(tmp___2 & 4294934527U, (void volatile *)base + 268U); } return; } } static void nv_remove(struct pci_dev *pci_dev ) { struct net_device *dev ; void *tmp ; u8 *tmp___0 ; { { tmp = pci_get_drvdata(pci_dev); dev = (struct net_device *)tmp; ldv_unregister_netdev_50(dev); nv_restore_mac_addr(pci_dev); nv_restore_phy(dev); nv_mgmt_release_sema(dev); free_rings(dev); tmp___0 = get_hwbase(dev); iounmap((void volatile *)tmp___0); pci_release_regions(pci_dev); pci_disable_device(pci_dev); ldv_free_netdev_51(dev); } return; } } static int nv_suspend(struct device *device ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *dev ; void *tmp ; struct fe_priv *np ; void *tmp___0 ; u8 *base ; u8 *tmp___1 ; int i ; bool tmp___2 ; { { __mptr = (struct device const *)device; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp___0; tmp___1 = get_hwbase(dev); base = tmp___1; tmp___2 = netif_running((struct net_device const *)dev); } if ((int )tmp___2) { { nv_close(dev); } } else { } { netif_device_detach(dev); i = 0; } goto ldv_45090; ldv_45089: { np->saved_config_space[i] = readl((void const volatile *)(base + (unsigned long )i * 4UL)); i = i + 1; } ldv_45090: ; if ((unsigned long )i <= (unsigned long )(np->register_size / 4U)) { goto ldv_45089; } else { } return (0); } } static int nv_resume(struct device *device ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *dev ; void *tmp ; struct fe_priv *np ; void *tmp___0 ; u8 *base ; u8 *tmp___1 ; int i ; int rc ; bool tmp___2 ; { { __mptr = (struct device const *)device; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp___0; tmp___1 = get_hwbase(dev); base = tmp___1; rc = 0; i = 0; } goto ldv_45104; ldv_45103: { writel(np->saved_config_space[i], (void volatile *)(base + (unsigned long )i * 4UL)); i = i + 1; } ldv_45104: ; if ((unsigned long )i <= (unsigned long )(np->register_size / 4U)) { goto ldv_45103; } else { } if ((np->driver_data & 16777216U) != 0U) { { pci_write_config_dword((struct pci_dev const *)pdev, 104, 4294967295U); } } else { } { phy_init(dev); netif_device_attach(dev); tmp___2 = netif_running((struct net_device const *)dev); } if ((int )tmp___2) { { rc = nv_open(dev); nv_set_multicast(dev); } } else { } return (rc); } } static struct dev_pm_ops const nv_pm_ops = {0, 0, & nv_suspend, & nv_resume, & nv_suspend, & nv_resume, & nv_suspend, & nv_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static void nv_shutdown(struct pci_dev *pdev ) { struct net_device *dev ; void *tmp ; struct fe_priv *np ; void *tmp___0 ; bool tmp___1 ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); np = (struct fe_priv *)tmp___0; tmp___1 = netif_running((struct net_device const *)dev); } if ((int )tmp___1) { { nv_close(dev); } } else { } if ((unsigned int )system_state != 3U) { { nv_restore_mac_addr(pdev); } } else { } { pci_disable_device(pdev); } if ((unsigned int )system_state == 3U) { { pci_wake_from_d3(pdev, np->wolenabled != 0); pci_set_power_state(pdev, 3); } } else { } return; } } static struct pci_device_id const pci_tbl[41U] = { {4318U, 451U, 4294967295U, 4294967295U, 0U, 0U, 3UL}, {4318U, 102U, 4294967295U, 4294967295U, 0U, 0U, 3UL}, {4318U, 214U, 4294967295U, 4294967295U, 0U, 0U, 3UL}, {4318U, 134U, 4294967295U, 4294967295U, 0U, 0U, 23UL}, {4318U, 140U, 4294967295U, 4294967295U, 0U, 0U, 23UL}, {4318U, 230U, 4294967295U, 4294967295U, 0U, 0U, 23UL}, {4318U, 223U, 4294967295U, 4294967295U, 0U, 0U, 23UL}, {4318U, 86U, 4294967295U, 4294967295U, 0U, 0U, 524830UL}, {4318U, 87U, 4294967295U, 4294967295U, 0U, 0U, 524830UL}, {4318U, 55U, 4294967295U, 4294967295U, 0U, 0U, 524830UL}, {4318U, 56U, 4294967295U, 4294967295U, 0U, 0U, 524830UL}, {4318U, 616U, 4294967295U, 4294967295U, 0U, 0U, 8389386UL}, {4318U, 617U, 4294967295U, 4294967295U, 0U, 0U, 8389386UL}, {4318U, 882U, 4294967295U, 4294967295U, 0U, 0U, 17381374UL}, {4318U, 883U, 4294967295U, 4294967295U, 0U, 0U, 17381374UL}, {4318U, 997U, 4294967295U, 4294967295U, 0U, 0U, 16873290UL}, {4318U, 998U, 4294967295U, 4294967295U, 0U, 0U, 16873290UL}, {4318U, 1006U, 4294967295U, 4294967295U, 0U, 0U, 16873290UL}, {4318U, 1007U, 4294967295U, 4294967295U, 0U, 0U, 16873290UL}, {4318U, 1104U, 4294967295U, 4294967295U, 0U, 0U, 19494734UL}, {4318U, 1105U, 4294967295U, 4294967295U, 0U, 0U, 19494734UL}, {4318U, 1106U, 4294967295U, 4294967295U, 0U, 0U, 19494734UL}, {4318U, 1107U, 4294967295U, 4294967295U, 0U, 0U, 19494734UL}, {4318U, 1356U, 4294967295U, 4294967295U, 0U, 0U, 18970442UL}, {4318U, 1357U, 4294967295U, 4294967295U, 0U, 0U, 18970442UL}, {4318U, 1358U, 4294967295U, 4294967295U, 0U, 0U, 18970442UL}, {4318U, 1359U, 4294967295U, 4294967295U, 0U, 0U, 18970442UL}, {4318U, 2012U, 4294967295U, 4294967295U, 0U, 0U, 19003210UL}, {4318U, 2013U, 4294967295U, 4294967295U, 0U, 0U, 19003210UL}, {4318U, 2014U, 4294967295U, 4294967295U, 0U, 0U, 19003210UL}, {4318U, 2015U, 4294967295U, 4294967295U, 0U, 0U, 19003210UL}, {4318U, 1888U, 4294967295U, 4294967295U, 0U, 0U, 24837978UL}, {4318U, 1889U, 4294967295U, 4294967295U, 0U, 0U, 24837978UL}, {4318U, 1890U, 4294967295U, 4294967295U, 0U, 0U, 24837978UL}, {4318U, 1891U, 4294967295U, 4294967295U, 0U, 0U, 24837978UL}, {4318U, 2736U, 4294967295U, 4294967295U, 0U, 0U, 24960862UL}, {4318U, 2737U, 4294967295U, 4294967295U, 0U, 0U, 24960862UL}, {4318U, 2738U, 4294967295U, 4294967295U, 0U, 0U, 24960862UL}, {4318U, 2739U, 4294967295U, 4294967295U, 0U, 0U, 24960862UL}, {4318U, 3453U, 4294967295U, 4294967295U, 0U, 0U, 6610782UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; static struct pci_driver forcedeth_pci_driver = {{0, 0}, "forcedeth", (struct pci_device_id const *)(& pci_tbl), & nv_probe, & nv_remove, 0, 0, 0, 0, & nv_shutdown, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, & nv_pm_ops, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int forcedeth_pci_driver_init(void) { int tmp ; { { tmp = ldv___pci_register_driver_52(& forcedeth_pci_driver, & __this_module, "forcedeth"); } return (tmp); } } static void forcedeth_pci_driver_exit(void) { { { ldv_pci_unregister_driver_53(& forcedeth_pci_driver); } return; } } struct pci_device_id const __mod_pci_device_table ; void ldv_EMGentry_exit_forcedeth_pci_driver_exit_20_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_forcedeth_pci_driver_init_20_9(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_deregister_17_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_18_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_platform_instance_15_20_4(void) ; void ldv_dispatch_instance_deregister_9_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_12_2(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_10_1(int arg0 ) ; void ldv_dispatch_irq_register_14_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_15_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_16_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_pm_deregister_6_5(void) ; void ldv_dispatch_pm_register_6_6(void) ; void ldv_dispatch_register_13_4(struct net_device *arg0 ) ; void ldv_dispatch_register_19_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_platform_instance_15_20_5(void) ; void ldv_dummy_resourceless_instance_callback_3_10(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_11(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_12(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_13(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_14(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_15(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_16(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_19(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_22(int (*arg0)(struct net_device * , struct ethtool_ts_info * ) , struct net_device *arg1 , struct ethtool_ts_info *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_23(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_24(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_27(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_30(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_31(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_32(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_35(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_36(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_37(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_38(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_39(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_40(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_41(void (*arg0)(struct net_device * , struct ethtool_test * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_test *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_44(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_45(int (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_46(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_47(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_7(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_entry_EMGentry_20(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_2_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_2_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_interrupt_interrupt_instance_1(void *arg0 ) ; void ldv_interrupt_interrupt_instance_2(void *arg0 ) ; int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) ; void ldv_net_dummy_resourceless_instance_3(void *arg0 ) ; int ldv_pci_instance_probe_4_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_4_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_4_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_4_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_4_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_4_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_4_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_4(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_platform_instance_probe_6_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_instance_release_6_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_pm_ops_instance_complete_5_3(void (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_5_15(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_late_5_14(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_noirq_5_12(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_5_9(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_late_5_8(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_noirq_5_6(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_prepare_5_22(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_5_4(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_early_5_7(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_noirq_5_5(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_5_16(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_early_5_17(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_noirq_5_19(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_idle_5_27(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_resume_5_24(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_suspend_5_25(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_5_21(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_late_5_18(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_noirq_5_20(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_5_10(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_early_5_13(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_noirq_5_11(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_platform_instance_6(void *arg0 ) ; void ldv_pm_pm_ops_instance_5(void *arg0 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_13_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_timer_instance_callback_7_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_7(void *arg0 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_17_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_20 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; struct ldv_thread ldv_thread_6 ; struct ldv_thread ldv_thread_7 ; void ldv_EMGentry_exit_forcedeth_pci_driver_exit_20_2(void (*arg0)(void) ) { { { forcedeth_pci_driver_exit(); } return; } } int ldv_EMGentry_init_forcedeth_pci_driver_init_20_9(int (*arg0)(void) ) { int tmp ; { { tmp = forcedeth_pci_driver_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_19_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_19_pci_driver_pci_driver = arg1; ldv_dispatch_register_19_2(ldv_19_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_8_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3200UL); ldv_8_netdev_net_device = (struct net_device *)tmp; } return (ldv_8_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_9_timer_list_timer_list ; { { ldv_9_timer_list_timer_list = arg1; ldv_dispatch_instance_deregister_9_1(ldv_9_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_deregister_17_1(struct net_device *arg0 ) { { return; } } void ldv_dispatch_deregister_18_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_platform_instance_15_20_4(void) { { return; } } void ldv_dispatch_instance_deregister_9_1(struct timer_list *arg0 ) { { return; } } void ldv_dispatch_instance_register_12_2(struct timer_list *arg0 ) { struct ldv_struct_timer_instance_7 *cf_arg_7 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_7 = (struct ldv_struct_timer_instance_7 *)tmp; cf_arg_7->arg0 = arg0; ldv_timer_timer_instance_7((void *)cf_arg_7); } return; } } void ldv_dispatch_irq_deregister_10_1(int arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; goto ldv_45795; case_1: /* CIL Label */ ; goto ldv_45795; case_2: /* CIL Label */ ; goto ldv_45795; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_45795: ; return; } } void ldv_dispatch_irq_register_14_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_0 *cf_arg_0 ; struct ldv_struct_interrupt_instance_0 *cf_arg_1 ; struct ldv_struct_interrupt_instance_0 *cf_arg_2 ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ { tmp___0 = ldv_xmalloc(40UL); cf_arg_0 = (struct ldv_struct_interrupt_instance_0 *)tmp___0; cf_arg_0->arg0 = arg0; cf_arg_0->arg1 = arg1; cf_arg_0->arg2 = arg2; cf_arg_0->arg3 = arg3; ldv_interrupt_interrupt_instance_0((void *)cf_arg_0); } goto ldv_45814; case_1: /* CIL Label */ { tmp___1 = ldv_xmalloc(40UL); cf_arg_1 = (struct ldv_struct_interrupt_instance_0 *)tmp___1; cf_arg_1->arg0 = arg0; cf_arg_1->arg1 = arg1; cf_arg_1->arg2 = arg2; cf_arg_1->arg3 = arg3; ldv_interrupt_interrupt_instance_1((void *)cf_arg_1); } goto ldv_45814; case_2: /* CIL Label */ { tmp___2 = ldv_xmalloc(40UL); cf_arg_2 = (struct ldv_struct_interrupt_instance_0 *)tmp___2; cf_arg_2->arg0 = arg0; cf_arg_2->arg1 = arg1; cf_arg_2->arg2 = arg2; cf_arg_2->arg3 = arg3; ldv_interrupt_interrupt_instance_2((void *)cf_arg_2); } goto ldv_45814; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_45814: ; return; } } void ldv_dispatch_irq_register_15_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_0 *cf_arg_0 ; struct ldv_struct_interrupt_instance_0 *cf_arg_1 ; struct ldv_struct_interrupt_instance_0 *cf_arg_2 ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ { tmp___0 = ldv_xmalloc(40UL); cf_arg_0 = (struct ldv_struct_interrupt_instance_0 *)tmp___0; cf_arg_0->arg0 = arg0; cf_arg_0->arg1 = arg1; cf_arg_0->arg2 = arg2; cf_arg_0->arg3 = arg3; ldv_interrupt_interrupt_instance_0((void *)cf_arg_0); } goto ldv_45833; case_1: /* CIL Label */ { tmp___1 = ldv_xmalloc(40UL); cf_arg_1 = (struct ldv_struct_interrupt_instance_0 *)tmp___1; cf_arg_1->arg0 = arg0; cf_arg_1->arg1 = arg1; cf_arg_1->arg2 = arg2; cf_arg_1->arg3 = arg3; ldv_interrupt_interrupt_instance_1((void *)cf_arg_1); } goto ldv_45833; case_2: /* CIL Label */ { tmp___2 = ldv_xmalloc(40UL); cf_arg_2 = (struct ldv_struct_interrupt_instance_0 *)tmp___2; cf_arg_2->arg0 = arg0; cf_arg_2->arg1 = arg1; cf_arg_2->arg2 = arg2; cf_arg_2->arg3 = arg3; ldv_interrupt_interrupt_instance_2((void *)cf_arg_2); } goto ldv_45833; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_45833: ; return; } } void ldv_dispatch_irq_register_16_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_0 *cf_arg_0 ; struct ldv_struct_interrupt_instance_0 *cf_arg_1 ; struct ldv_struct_interrupt_instance_0 *cf_arg_2 ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ { tmp___0 = ldv_xmalloc(40UL); cf_arg_0 = (struct ldv_struct_interrupt_instance_0 *)tmp___0; cf_arg_0->arg0 = arg0; cf_arg_0->arg1 = arg1; cf_arg_0->arg2 = arg2; cf_arg_0->arg3 = arg3; ldv_interrupt_interrupt_instance_0((void *)cf_arg_0); } goto ldv_45852; case_1: /* CIL Label */ { tmp___1 = ldv_xmalloc(40UL); cf_arg_1 = (struct ldv_struct_interrupt_instance_0 *)tmp___1; cf_arg_1->arg0 = arg0; cf_arg_1->arg1 = arg1; cf_arg_1->arg2 = arg2; cf_arg_1->arg3 = arg3; ldv_interrupt_interrupt_instance_1((void *)cf_arg_1); } goto ldv_45852; case_2: /* CIL Label */ { tmp___2 = ldv_xmalloc(40UL); cf_arg_2 = (struct ldv_struct_interrupt_instance_0 *)tmp___2; cf_arg_2->arg0 = arg0; cf_arg_2->arg1 = arg1; cf_arg_2->arg2 = arg2; cf_arg_2->arg3 = arg3; ldv_interrupt_interrupt_instance_2((void *)cf_arg_2); } goto ldv_45852; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_45852: ; return; } } void ldv_dispatch_pm_deregister_6_5(void) { { return; } } void ldv_dispatch_pm_register_6_6(void) { struct ldv_struct_platform_instance_6 *cf_arg_5 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_5 = (struct ldv_struct_platform_instance_6 *)tmp; ldv_pm_pm_ops_instance_5((void *)cf_arg_5); } return; } } void ldv_dispatch_register_13_4(struct net_device *arg0 ) { struct ldv_struct_dummy_resourceless_instance_3 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_3 = (struct ldv_struct_dummy_resourceless_instance_3 *)tmp; cf_arg_3->arg0 = arg0; ldv_net_dummy_resourceless_instance_3((void *)cf_arg_3); } return; } } void ldv_dispatch_register_19_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_4 *cf_arg_4 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_4 = (struct ldv_struct_pci_instance_4 *)tmp; cf_arg_4->arg0 = arg0; ldv_pci_pci_instance_4((void *)cf_arg_4); } return; } } void ldv_dispatch_register_platform_instance_15_20_5(void) { struct ldv_struct_platform_instance_6 *cf_arg_6 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_6 = (struct ldv_struct_platform_instance_6 *)tmp; ldv_pm_platform_instance_6((void *)cf_arg_6); } return; } } void ldv_dummy_resourceless_instance_callback_3_10(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ethtool_op_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_11(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { nv_get_pauseparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_12(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) { { { nv_get_regs(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_13(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { nv_get_regs_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_14(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { nv_get_ringparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_15(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { nv_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_16(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { nv_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_19(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { nv_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_22(int (*arg0)(struct net_device * , struct ethtool_ts_info * ) , struct net_device *arg1 , struct ethtool_ts_info *arg2 ) { { { ethtool_op_get_ts_info(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_23(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { nv_get_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_24(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { nv_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_27(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { nv_fix_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { nv_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_30(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) { { { nv_get_stats64(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_31(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { nv_poll_controller(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_32(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { nv_set_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_35(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { nv_set_mac_address(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_36(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { nv_set_multicast(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_37(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { nv_start_xmit_optimized(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_38(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { nv_tx_timeout(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_39(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_40(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { nv_nway_reset(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_41(void (*arg0)(struct net_device * , struct ethtool_test * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_test *arg2 , unsigned long long *arg3 ) { { { nv_self_test(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_44(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { nv_set_pauseparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_45(int (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { nv_set_ringparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_46(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { nv_set_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_47(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { nv_set_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_7(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { nv_get_ethtool_stats(arg1, arg2, arg3); } return; } } void ldv_entry_EMGentry_20(void *arg0 ) { void (*ldv_20_exit_forcedeth_pci_driver_exit_default)(void) ; int (*ldv_20_init_forcedeth_pci_driver_init_default)(void) ; int ldv_20_ret_default ; int tmp ; int tmp___0 ; { { ldv_20_ret_default = ldv_EMGentry_init_forcedeth_pci_driver_init_20_9(ldv_20_init_forcedeth_pci_driver_init_default); ldv_20_ret_default = ldv_post_init(ldv_20_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_20_ret_default != 0); ldv_check_final_state(); ldv_stop(); } return; } else { { ldv_assume(ldv_20_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_platform_instance_15_20_5(); ldv_dispatch_deregister_platform_instance_15_20_4(); } } else { } { ldv_EMGentry_exit_forcedeth_pci_driver_exit_20_2(ldv_20_exit_forcedeth_pci_driver_exit_default); ldv_check_final_state(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_initialize(); ldv_entry_EMGentry_20((void *)0); } return 0; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_10_line_line ; { { ldv_10_line_line = arg1; ldv_dispatch_irq_deregister_10_1(ldv_10_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_11_netdev_net_device ; { { ldv_11_netdev_net_device = arg1; ldv_free((void *)ldv_11_netdev_net_device); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = nv_nic_irq_other(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = nv_nic_irq_rx(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_2_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = nv_nic_irq_tx(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_2_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_0 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_0 *)0)) { { ldv_0_line_line = data->arg0; ldv_0_callback_handler = data->arg1; ldv_0_thread_thread = data->arg2; ldv_0_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); } } return; return; } } void ldv_interrupt_interrupt_instance_1(void *arg0 ) { enum irqreturn (*ldv_1_callback_handler)(int , void * ) ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_0 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_0 *)0)) { { ldv_1_line_line = data->arg0; ldv_1_callback_handler = data->arg1; ldv_1_thread_thread = data->arg2; ldv_1_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_1_ret_val_default = ldv_interrupt_instance_handler_1_5(ldv_1_callback_handler, ldv_1_line_line, ldv_1_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_1_ret_val_default == 2U); } if ((unsigned long )ldv_1_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_1_3(ldv_1_thread_thread, ldv_1_line_line, ldv_1_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_1_ret_val_default != 2U); } } return; return; } } void ldv_interrupt_interrupt_instance_2(void *arg0 ) { enum irqreturn (*ldv_2_callback_handler)(int , void * ) ; void *ldv_2_data_data ; int ldv_2_line_line ; enum irqreturn ldv_2_ret_val_default ; enum irqreturn (*ldv_2_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_0 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_0 *)0)) { { ldv_2_line_line = data->arg0; ldv_2_callback_handler = data->arg1; ldv_2_thread_thread = data->arg2; ldv_2_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); ldv_2_ret_val_default = ldv_interrupt_instance_handler_2_5(ldv_2_callback_handler, ldv_2_line_line, ldv_2_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_2_ret_val_default == 2U); } if ((unsigned long )ldv_2_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_2_3(ldv_2_thread_thread, ldv_2_line_line, ldv_2_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_2_ret_val_default != 2U); } } return; return; } } int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) { struct timer_list *ldv_12_timer_list_timer_list ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_12_timer_list_timer_list = arg1; ldv_dispatch_instance_register_12_2(ldv_12_timer_list_timer_list); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_net_dummy_resourceless_instance_3(void *arg0 ) { void (*ldv_3_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; void (*ldv_3_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_3_callback_get_link)(struct net_device * ) ; void (*ldv_3_callback_get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*ldv_3_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; int (*ldv_3_callback_get_regs_len)(struct net_device * ) ; void (*ldv_3_callback_get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_3_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_3_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_3_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; int (*ldv_3_callback_get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; void (*ldv_3_callback_get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*ldv_3_callback_ndo_change_mtu)(struct net_device * , int ) ; unsigned long long (*ldv_3_callback_ndo_fix_features)(struct net_device * , unsigned long long ) ; struct rtnl_link_stats64 *(*ldv_3_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; void (*ldv_3_callback_ndo_poll_controller)(struct net_device * ) ; int (*ldv_3_callback_ndo_set_features)(struct net_device * , unsigned long long ) ; int (*ldv_3_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_3_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_3_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_3_callback_ndo_tx_timeout)(struct net_device * ) ; int (*ldv_3_callback_ndo_validate_addr)(struct net_device * ) ; int (*ldv_3_callback_nway_reset)(struct net_device * ) ; void (*ldv_3_callback_self_test)(struct net_device * , struct ethtool_test * , unsigned long long * ) ; int (*ldv_3_callback_set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*ldv_3_callback_set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_3_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_3_callback_set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; struct net_device *ldv_3_container_net_device ; struct ethtool_cmd *ldv_3_container_struct_ethtool_cmd_ptr ; struct ethtool_drvinfo *ldv_3_container_struct_ethtool_drvinfo_ptr ; struct ethtool_pauseparam *ldv_3_container_struct_ethtool_pauseparam_ptr ; struct ethtool_regs *ldv_3_container_struct_ethtool_regs_ptr ; struct ethtool_ringparam *ldv_3_container_struct_ethtool_ringparam_ptr ; struct ethtool_stats *ldv_3_container_struct_ethtool_stats_ptr ; struct ethtool_test *ldv_3_container_struct_ethtool_test_ptr ; struct ethtool_ts_info *ldv_3_container_struct_ethtool_ts_info_ptr ; struct ethtool_wolinfo *ldv_3_container_struct_ethtool_wolinfo_ptr ; struct rtnl_link_stats64 *ldv_3_container_struct_rtnl_link_stats64_ptr ; struct sk_buff *ldv_3_container_struct_sk_buff_ptr ; int ldv_3_ldv_param_16_1_default ; unsigned int ldv_3_ldv_param_19_1_default ; unsigned char *ldv_3_ldv_param_19_2_default ; int ldv_3_ldv_param_24_1_default ; unsigned long long ldv_3_ldv_param_27_1_default ; unsigned long long ldv_3_ldv_param_32_1_default ; unsigned long long *ldv_3_ldv_param_41_2_default ; unsigned long long *ldv_3_ldv_param_7_2_default ; struct ldv_struct_dummy_resourceless_instance_3 *data ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; { data = (struct ldv_struct_dummy_resourceless_instance_3 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_3 *)0)) { { ldv_3_container_net_device = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_3; return; ldv_call_3: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } if (tmp == 22) { goto case_22; } else { } if (tmp == 23) { goto case_23; } else { } if (tmp == 24) { goto case_24; } else { } if (tmp == 25) { goto case_25; } else { } if (tmp == 26) { goto case_26; } else { } if (tmp == 27) { goto case_27; } else { } if (tmp == 28) { goto case_28; } else { } if (tmp == 29) { goto case_29; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_47(ldv_3_callback_set_wol, ldv_3_container_net_device, ldv_3_container_struct_ethtool_wolinfo_ptr); } goto ldv_call_3; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_46(ldv_3_callback_set_settings, ldv_3_container_net_device, ldv_3_container_struct_ethtool_cmd_ptr); } goto ldv_call_3; goto ldv_call_3; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_45(ldv_3_callback_set_ringparam, ldv_3_container_net_device, ldv_3_container_struct_ethtool_ringparam_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_44(ldv_3_callback_set_pauseparam, ldv_3_container_net_device, ldv_3_container_struct_ethtool_pauseparam_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_5: /* CIL Label */ { tmp___0 = ldv_xmalloc(8UL); ldv_3_ldv_param_41_2_default = (unsigned long long *)tmp___0; ldv_dummy_resourceless_instance_callback_3_41(ldv_3_callback_self_test, ldv_3_container_net_device, ldv_3_container_struct_ethtool_test_ptr, ldv_3_ldv_param_41_2_default); ldv_free((void *)ldv_3_ldv_param_41_2_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_6: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_40(ldv_3_callback_nway_reset, ldv_3_container_net_device); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_39(ldv_3_callback_ndo_validate_addr, ldv_3_container_net_device); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_38(ldv_3_callback_ndo_tx_timeout, ldv_3_container_net_device); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_37(ldv_3_callback_ndo_start_xmit, ldv_3_container_struct_sk_buff_ptr, ldv_3_container_net_device); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_36(ldv_3_callback_ndo_set_rx_mode, ldv_3_container_net_device); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_35(ldv_3_callback_ndo_set_mac_address, ldv_3_container_net_device, (void *)ldv_3_container_struct_ethtool_cmd_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_32(ldv_3_callback_ndo_set_features, ldv_3_container_net_device, ldv_3_ldv_param_32_1_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_31(ldv_3_callback_ndo_poll_controller, ldv_3_container_net_device); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_30(ldv_3_callback_ndo_get_stats64, ldv_3_container_net_device, ldv_3_container_struct_rtnl_link_stats64_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_27(ldv_3_callback_ndo_fix_features, ldv_3_container_net_device, ldv_3_ldv_param_27_1_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_24(ldv_3_callback_ndo_change_mtu, ldv_3_container_net_device, ldv_3_ldv_param_24_1_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_17: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_23(ldv_3_callback_get_wol, ldv_3_container_net_device, ldv_3_container_struct_ethtool_wolinfo_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_18: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_22(ldv_3_callback_get_ts_info, ldv_3_container_net_device, ldv_3_container_struct_ethtool_ts_info_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_19: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_3_ldv_param_19_2_default = (unsigned char *)tmp___1; ldv_dummy_resourceless_instance_callback_3_19(ldv_3_callback_get_strings, ldv_3_container_net_device, ldv_3_ldv_param_19_1_default, ldv_3_ldv_param_19_2_default); ldv_free((void *)ldv_3_ldv_param_19_2_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_20: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_16(ldv_3_callback_get_sset_count, ldv_3_container_net_device, ldv_3_ldv_param_16_1_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_21: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_15(ldv_3_callback_get_settings, ldv_3_container_net_device, ldv_3_container_struct_ethtool_cmd_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_22: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_14(ldv_3_callback_get_ringparam, ldv_3_container_net_device, ldv_3_container_struct_ethtool_ringparam_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_23: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_13(ldv_3_callback_get_regs_len, ldv_3_container_net_device); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_24: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_12(ldv_3_callback_get_regs, ldv_3_container_net_device, ldv_3_container_struct_ethtool_regs_ptr, (void *)ldv_3_container_struct_ethtool_cmd_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_25: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_11(ldv_3_callback_get_pauseparam, ldv_3_container_net_device, ldv_3_container_struct_ethtool_pauseparam_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_26: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_10(ldv_3_callback_get_link, ldv_3_container_net_device); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_27: /* CIL Label */ { tmp___2 = ldv_xmalloc(8UL); ldv_3_ldv_param_7_2_default = (unsigned long long *)tmp___2; ldv_dummy_resourceless_instance_callback_3_7(ldv_3_callback_get_ethtool_stats, ldv_3_container_net_device, ldv_3_container_struct_ethtool_stats_ptr, ldv_3_ldv_param_7_2_default); ldv_free((void *)ldv_3_ldv_param_7_2_default); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_28: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_3(ldv_3_callback_get_drvinfo, ldv_3_container_net_device, ldv_3_container_struct_ethtool_drvinfo_ptr); } goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; goto ldv_call_3; case_29: /* CIL Label */ ; return; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } int ldv_pci_instance_probe_4_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = nv_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_4_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { nv_remove(arg1); } return; } } void ldv_pci_instance_resume_4_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_4_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_4_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { nv_shutdown(arg1); } return; } } int ldv_pci_instance_suspend_4_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_4_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_4(void *arg0 ) { struct pci_driver *ldv_4_container_pci_driver ; struct pci_dev *ldv_4_resource_dev ; struct pm_message ldv_4_resource_pm_message ; struct pci_device_id *ldv_4_resource_struct_pci_device_id_ptr ; int ldv_4_ret_default ; struct ldv_struct_pci_instance_4 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_4 *)arg0; ldv_4_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_4 *)0)) { { ldv_4_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2936UL); ldv_4_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_4_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_4; return; ldv_main_4: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_pre_probe(); ldv_4_ret_default = ldv_pci_instance_probe_4_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_4_container_pci_driver->probe, ldv_4_resource_dev, ldv_4_resource_struct_pci_device_id_ptr); ldv_4_ret_default = ldv_ldv_post_probe_54(ldv_4_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_4_ret_default == 0); } goto ldv_call_4; } else { { ldv_assume(ldv_4_ret_default != 0); } goto ldv_main_4; } } else { { ldv_free((void *)ldv_4_resource_dev); ldv_free((void *)ldv_4_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_4: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_call_4; case_2: /* CIL Label */ ; if ((unsigned long )ldv_4_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_4_ret_default = ldv_pci_instance_suspend_4_8(ldv_4_container_pci_driver->suspend, ldv_4_resource_dev, ldv_4_resource_pm_message); } } else { } { ldv_4_ret_default = ldv_filter_err_code(ldv_4_ret_default); } if ((unsigned long )ldv_4_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_4_ret_default = ldv_pci_instance_suspend_late_4_7(ldv_4_container_pci_driver->suspend_late, ldv_4_resource_dev, ldv_4_resource_pm_message); } } else { } { ldv_4_ret_default = ldv_filter_err_code(ldv_4_ret_default); } if ((unsigned long )ldv_4_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_4_6(ldv_4_container_pci_driver->resume_early, ldv_4_resource_dev); } } else { } if ((unsigned long )ldv_4_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_4_5(ldv_4_container_pci_driver->resume, ldv_4_resource_dev); } } else { } goto ldv_call_4; case_3: /* CIL Label */ { ldv_pci_instance_shutdown_4_3(ldv_4_container_pci_driver->shutdown, ldv_4_resource_dev); ldv_pci_instance_release_4_2(ldv_4_container_pci_driver->remove, ldv_4_resource_dev); } goto ldv_main_4; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_18_pci_driver_pci_driver ; { { ldv_18_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_18_1(ldv_18_pci_driver_pci_driver); } return; return; } } int ldv_platform_instance_probe_6_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_platform_instance_release_6_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_complete_5_3(void (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_5_15(int (*arg0)(struct device * ) , struct device *arg1 ) { { { nv_suspend(arg1); } return; } } void ldv_pm_ops_instance_freeze_late_5_14(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_noirq_5_12(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_5_9(int (*arg0)(struct device * ) , struct device *arg1 ) { { { nv_suspend(arg1); } return; } } void ldv_pm_ops_instance_poweroff_late_5_8(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_noirq_5_6(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_prepare_5_22(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_5_4(int (*arg0)(struct device * ) , struct device *arg1 ) { { { nv_resume(arg1); } return; } } void ldv_pm_ops_instance_restore_early_5_7(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_noirq_5_5(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_5_16(int (*arg0)(struct device * ) , struct device *arg1 ) { { { nv_resume(arg1); } return; } } void ldv_pm_ops_instance_resume_early_5_17(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_noirq_5_19(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_idle_5_27(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_resume_5_24(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_suspend_5_25(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_5_21(int (*arg0)(struct device * ) , struct device *arg1 ) { { { nv_suspend(arg1); } return; } } void ldv_pm_ops_instance_suspend_late_5_18(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_noirq_5_20(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_5_10(int (*arg0)(struct device * ) , struct device *arg1 ) { { { nv_resume(arg1); } return; } } void ldv_pm_ops_instance_thaw_early_5_13(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_noirq_5_11(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_platform_instance_6(void *arg0 ) { struct platform_driver *ldv_6_container_platform_driver ; struct platform_device *ldv_6_ldv_param_14_0_default ; struct platform_device *ldv_6_ldv_param_3_0_default ; int ldv_6_probed_default ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; { ldv_6_probed_default = 1; goto ldv_main_6; return; ldv_main_6: { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(1432UL); ldv_6_ldv_param_14_0_default = (struct platform_device *)tmp; ldv_pre_probe(); } if ((unsigned long )ldv_6_container_platform_driver->probe != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_6_probed_default = ldv_platform_instance_probe_6_14(ldv_6_container_platform_driver->probe, ldv_6_ldv_param_14_0_default); } } else { } { ldv_6_probed_default = ldv_ldv_post_probe_55(ldv_6_probed_default); ldv_free((void *)ldv_6_ldv_param_14_0_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_6_probed_default == 0); } goto ldv_call_6; } else { { ldv_assume(ldv_6_probed_default != 0); } goto ldv_main_6; } } else { return; } return; ldv_call_6: { tmp___2 = ldv_undef_int(); } { if (tmp___2 == 1) { goto case_1; } else { } if (tmp___2 == 2) { goto case_2; } else { } if (tmp___2 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___3 = ldv_xmalloc(1432UL); ldv_6_ldv_param_3_0_default = (struct platform_device *)tmp___3; } if ((unsigned long )ldv_6_container_platform_driver->remove != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_platform_instance_release_6_3(ldv_6_container_platform_driver->remove, ldv_6_ldv_param_3_0_default); } } else { } { ldv_free((void *)ldv_6_ldv_param_3_0_default); ldv_6_probed_default = 1; } goto ldv_main_6; case_2: /* CIL Label */ ; goto ldv_call_6; case_3: /* CIL Label */ { ldv_dispatch_pm_register_6_6(); ldv_dispatch_pm_deregister_6_5(); } goto ldv_call_6; goto ldv_call_6; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pm_pm_ops_instance_5(void *arg0 ) { struct device *ldv_5_device_device ; struct dev_pm_ops *ldv_5_pm_ops_dev_pm_ops ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { goto ldv_do_5; return; ldv_do_5: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default___0; case_1: /* CIL Label */ ; if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->runtime_idle != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_idle_5_27(ldv_5_pm_ops_dev_pm_ops->runtime_idle, ldv_5_device_device); } } else { } goto ldv_do_5; case_2: /* CIL Label */ ; if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->runtime_suspend != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_suspend_5_25(ldv_5_pm_ops_dev_pm_ops->runtime_suspend, ldv_5_device_device); } } else { } if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->runtime_resume != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_resume_5_24(ldv_5_pm_ops_dev_pm_ops->runtime_resume, ldv_5_device_device); } } else { } goto ldv_do_5; case_3: /* CIL Label */ ; if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->prepare != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_prepare_5_22(ldv_5_pm_ops_dev_pm_ops->prepare, ldv_5_device_device); } } else { } { tmp___0 = ldv_undef_int(); } { if (tmp___0 == 1) { goto case_1___0; } else { } if (tmp___0 == 2) { goto case_2___0; } else { } if (tmp___0 == 3) { goto case_3___0; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_pm_ops_instance_suspend_5_21(ldv_5_pm_ops_dev_pm_ops->suspend, ldv_5_device_device); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->suspend_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_noirq_5_20(ldv_5_pm_ops_dev_pm_ops->suspend_noirq, ldv_5_device_device); } } else { } if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->resume_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_noirq_5_19(ldv_5_pm_ops_dev_pm_ops->resume_noirq, ldv_5_device_device); } } else { } } else { if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->suspend_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_late_5_18(ldv_5_pm_ops_dev_pm_ops->suspend_late, ldv_5_device_device); } } else { } if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->resume_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_early_5_17(ldv_5_pm_ops_dev_pm_ops->resume_early, ldv_5_device_device); } } else { } } { ldv_pm_ops_instance_resume_5_16(ldv_5_pm_ops_dev_pm_ops->resume, ldv_5_device_device); } goto ldv_46521; case_2___0: /* CIL Label */ { ldv_pm_ops_instance_freeze_5_15(ldv_5_pm_ops_dev_pm_ops->freeze, ldv_5_device_device); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->freeze_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_late_5_14(ldv_5_pm_ops_dev_pm_ops->freeze_late, ldv_5_device_device); } } else { } if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->thaw_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_early_5_13(ldv_5_pm_ops_dev_pm_ops->thaw_early, ldv_5_device_device); } } else { } } else { if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->freeze_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_noirq_5_12(ldv_5_pm_ops_dev_pm_ops->freeze_noirq, ldv_5_device_device); } } else { } if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->thaw_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_noirq_5_11(ldv_5_pm_ops_dev_pm_ops->thaw_noirq, ldv_5_device_device); } } else { } } { ldv_pm_ops_instance_thaw_5_10(ldv_5_pm_ops_dev_pm_ops->thaw, ldv_5_device_device); } goto ldv_46521; case_3___0: /* CIL Label */ { ldv_pm_ops_instance_poweroff_5_9(ldv_5_pm_ops_dev_pm_ops->poweroff, ldv_5_device_device); tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->poweroff_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_late_5_8(ldv_5_pm_ops_dev_pm_ops->poweroff_late, ldv_5_device_device); } } else { } if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->restore_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_early_5_7(ldv_5_pm_ops_dev_pm_ops->restore_early, ldv_5_device_device); } } else { } } else { if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->poweroff_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_noirq_5_6(ldv_5_pm_ops_dev_pm_ops->poweroff_noirq, ldv_5_device_device); } } else { } if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->restore_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_noirq_5_5(ldv_5_pm_ops_dev_pm_ops->restore_noirq, ldv_5_device_device); } } else { } } { ldv_pm_ops_instance_restore_5_4(ldv_5_pm_ops_dev_pm_ops->restore, ldv_5_device_device); } goto ldv_46521; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_46521: ; if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->complete != (unsigned long )((void (*)(struct device * ))0)) { { ldv_pm_ops_instance_complete_5_3(ldv_5_pm_ops_dev_pm_ops->complete, ldv_5_device_device); } } else { } goto ldv_do_5; case_4: /* CIL Label */ ; return; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_13_netdev_net_device ; int ldv_13_ret_default ; int tmp ; int tmp___0 ; { { ldv_13_ret_default = 1; ldv_13_ret_default = ldv_pre_register_netdev(); ldv_13_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_13_ret_default == 0); ldv_13_ret_default = ldv_register_netdev_open_13_6((ldv_13_netdev_net_device->netdev_ops)->ndo_open, ldv_13_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_13_ret_default == 0); ldv_dispatch_register_13_4(ldv_13_netdev_net_device); } } else { { ldv_assume(ldv_13_ret_default != 0); } } } else { { ldv_assume(ldv_13_ret_default != 0); } } return (ldv_13_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_13_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = nv_open(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_16_callback_handler)(int , void * ) ; void *ldv_16_data_data ; int ldv_16_line_line ; enum irqreturn (*ldv_16_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_16_line_line = (int )arg1; ldv_16_callback_handler = arg2; ldv_16_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_16_data_data = arg5; ldv_dispatch_irq_register_16_2(ldv_16_line_line, ldv_16_callback_handler, ldv_16_thread_thread, ldv_16_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_timer_instance_callback_7_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_7(void *arg0 ) { struct timer_list *ldv_7_container_timer_list ; struct ldv_struct_timer_instance_7 *data ; { data = (struct ldv_struct_timer_instance_7 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_timer_instance_7 *)0)) { { ldv_7_container_timer_list = data->arg0; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_7_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_7_2(ldv_7_container_timer_list->function, ldv_7_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); } return; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_17_netdev_net_device ; { { ldv_17_netdev_net_device = arg1; ldv_unregister_netdev_stop_17_2((ldv_17_netdev_net_device->netdev_ops)->ndo_stop, ldv_17_netdev_net_device); ldv_dispatch_deregister_17_1(ldv_17_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_17_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { nv_close(arg1); } return; } } static void *ldv_dev_get_drvdata_16(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_17(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } static int ldv_mod_timer_20(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_21(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_22(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_23(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_24(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_25(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_26(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_27(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_28(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___7 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_29(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___8 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_30(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___9 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_31(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___10 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_32(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___11 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_33(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___12 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_34(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_35(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_36(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_37(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static int ldv_mod_timer_38(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___13 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_39(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___14 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_40(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___15 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_41(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___16 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_42(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___17 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_43(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___18 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_sync_44(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___19 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_sync_45(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___20 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_sync_46(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___21 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static struct net_device *ldv_alloc_etherdev_mqs_47(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___22 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_48(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___23 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_49(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_50(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_51(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv___pci_register_driver_52(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___24 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_53(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_probe_54(int ldv_func_arg1 ) { int tmp ; { { ldv_check_return_value_probe(ldv_func_arg1); tmp = ldv_post_probe(ldv_func_arg1); } return (tmp); } } static int ldv_ldv_post_probe_55(int ldv_func_arg1 ) { int tmp ; { { ldv_check_return_value_probe(ldv_func_arg1); tmp = ldv_post_probe(ldv_func_arg1); } return (tmp); } } void ldv_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_check_alloc_flags(gfp_t ) ; extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_USB_DEV_REF_COUNTS = LDV_USB_DEV_REF_COUNTS != 0 ? LDV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_USB_DEV_REF_COUNTS > 0); } if (LDV_USB_DEV_REF_COUNTS > 1) { LDV_USB_DEV_REF_COUNTS = LDV_USB_DEV_REF_COUNTS + -1; } else { LDV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_initialize(void) { { LDV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_USB_DEV_REF_COUNTS == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_malloc_unknown_size(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }