extern void __VERIFIER_error() __attribute__ ((__noreturn__)); /* Generated by CIL v. 1.3.7 */ /* print_CIL_Input is false */ typedef unsigned char __u8; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned int gfp_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct module; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned char flags ; }; struct device; struct completion; struct pt_regs; struct pid; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion_ldv_2024_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion_ldv_2024_8 ldv_2024 ; }; typedef struct arch_spinlock arch_spinlock_t; struct task_struct; struct lockdep_map; struct mm_struct; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct_ldv_2096_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct_ldv_2111_13 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion_ldv_2112_11 { struct __anonstruct_ldv_2096_12 ldv_2096 ; struct __anonstruct_ldv_2111_13 ldv_2111 ; }; struct desc_struct { union __anonunion_ldv_2112_11 ldv_2112 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct thread_struct; struct cpumask; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion_ldv_2767_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion_ldv_2767_18 ldv_2767 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[64U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct_ldv_5125_23 { u64 rip ; u64 rdp ; }; struct __anonstruct_ldv_5131_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion_ldv_5132_22 { struct __anonstruct_ldv_5125_23 ldv_5125 ; struct __anonstruct_ldv_5131_24 ldv_5131 ; }; union __anonunion_ldv_5141_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion_ldv_5132_22 ldv_5132 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion_ldv_5141_25 ldv_5141 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; } __attribute__((__packed__)) ; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 2 ; unsigned char hardirqs_off : 1 ; unsigned short references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct_ldv_5960_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion_ldv_5961_28 { struct raw_spinlock rlock ; struct __anonstruct_ldv_5960_29 ldv_5960 ; }; struct spinlock { union __anonunion_ldv_5961_28 ldv_5961 ; }; typedef struct spinlock spinlock_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct seqcount { unsigned int sequence ; }; typedef struct seqcount seqcount_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; typedef uid_t kuid_t; typedef gid_t kgid_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct __anonstruct_nodemask_t_36 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_36 nodemask_t; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct completion { unsigned int done ; wait_queue_head_t wait ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool ignore_children ; bool early_init ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct __anonstruct_mm_context_t_101 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_101 mm_context_t; struct vm_area_struct; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct nsproxy; struct cred; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; void const *(*namespace)(struct kobject * , struct attribute const * ) ; }; struct sysfs_dirent; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct sysfs_dirent *sd ; struct kref kref ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kernel_param; struct kernel_param_ops { int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion_ldv_14007_134 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion_ldv_14007_134 ldv_14007 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct static_key { atomic_t enabled ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct kernel_symbol { unsigned long value ; char const *name ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; struct list_head source_list ; struct list_head target_list ; struct task_struct *waiter ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct mem_cgroup; struct __anonstruct_ldv_14526_136 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion_ldv_14527_135 { struct kmem_cache *memcg_caches[0U] ; struct __anonstruct_ldv_14526_136 ldv_14526 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion_ldv_14527_135 ldv_14527 ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_node { spinlock_t list_lock ; unsigned long nr_partial ; struct list_head partial ; atomic_long_t nr_slabs ; atomic_long_t total_objects ; struct list_head full ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[16U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct i2c_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct iommu_ops; struct iommu_group; struct bus_attribute { struct attribute attr ; ssize_t (*show)(struct bus_type * , char * ) ; ssize_t (*store)(struct bus_type * , char const * , size_t ) ; }; struct device_attribute; struct driver_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct bus_attribute *bus_attrs ; struct device_attribute *dev_attrs ; struct driver_attribute *drv_attrs ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct driver_attribute { struct attribute attr ; ssize_t (*show)(struct device_driver * , char * ) ; ssize_t (*store)(struct device_driver * , char const * , size_t ) ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct device_attribute *dev_attrs ; struct bin_attribute *dev_bin_attrs ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; void const *(*namespace)(struct class * , struct class_attribute const * ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_dev_node { void *handle ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct uprobe; struct uprobe_task { enum uprobe_task_state state ; struct arch_uprobe_task autask ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; unsigned long vaddr ; }; struct xol_area { wait_queue_head_t wq ; atomic_t slot_count ; unsigned long *bitmap ; struct page *page ; unsigned long vaddr ; }; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion_ldv_16028_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct_ldv_16038_144 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion_ldv_16040_143 { atomic_t _mapcount ; struct __anonstruct_ldv_16038_144 ldv_16038 ; int units ; }; struct __anonstruct_ldv_16042_142 { union __anonunion_ldv_16040_143 ldv_16040 ; atomic_t _count ; }; union __anonunion_ldv_16043_141 { unsigned long counters ; struct __anonstruct_ldv_16042_142 ldv_16042 ; }; struct __anonstruct_ldv_16044_139 { union __anonunion_ldv_16028_140 ldv_16028 ; union __anonunion_ldv_16043_141 ldv_16043 ; }; struct __anonstruct_ldv_16051_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion_ldv_16055_145 { struct list_head lru ; struct __anonstruct_ldv_16051_146 ldv_16051 ; struct list_head list ; struct slab *slab_page ; }; union __anonunion_ldv_16060_147 { unsigned long private ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; struct address_space *mapping ; struct __anonstruct_ldv_16044_139 ldv_16044 ; union __anonunion_ldv_16055_145 ldv_16055 ; union __anonunion_ldv_16060_147 ldv_16060 ; unsigned long debug_flags ; int _last_nid ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; void (*unmap_area)(struct mm_struct * , unsigned long ) ; unsigned long mmap_base ; unsigned long task_size ; unsigned long cached_hole_size ; unsigned long free_area_cache ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long nr_ptes ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[44U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct hlist_head ioctx_list ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; pgtable_t pmd_huge_pte ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_next_reset ; unsigned long numa_scan_offset ; int numa_scan_seq ; int first_nid ; struct uprobes_state uprobes_state ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct __anonstruct_sigset_t_150 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_150 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_152 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_153 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_154 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_155 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_156 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_157 { long _band ; int _fd ; }; struct __anonstruct__sigsys_158 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_151 { int _pad[28U] ; struct __anonstruct__kill_152 _kill ; struct __anonstruct__timer_153 _timer ; struct __anonstruct__rt_154 _rt ; struct __anonstruct__sigchld_155 _sigchld ; struct __anonstruct__sigfault_156 _sigfault ; struct __anonstruct__sigpoll_157 _sigpoll ; struct __anonstruct__sigsys_158 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_151 _sifields ; }; typedef struct siginfo siginfo_t; struct user_struct; struct sigpending { struct list_head list ; sigset_t signal ; }; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct rt_mutex { raw_spinlock_t wait_lock ; struct plist_head wait_list ; struct task_struct *owner ; int save_state ; char const *name ; char const *file ; int line ; void *magic ; }; struct rt_mutex_waiter; struct rlimit { unsigned long rlim_cur ; unsigned long rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[3U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_list; union __anonunion_ldv_17325_161 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion_ldv_17334_162 { time_t expiry ; time_t revoked_at ; }; union __anonunion_type_data_163 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_164 { unsigned long value ; void *rcudata ; void *data ; struct keyring_list *subscriptions ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion_ldv_17325_161 ldv_17325 ; struct key_type *type ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion_ldv_17334_162 ldv_17334 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; char *description ; union __anonunion_type_data_163 type_data ; union __anonunion_payload_164 payload ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct thread_group_cred; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; struct thread_group_cred *tgcred ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct llist_node; struct llist_node { struct llist_node *next ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct rq; struct sched_class { struct sched_class const *next ; void (*enqueue_task)(struct rq * , struct task_struct * , int ) ; void (*dequeue_task)(struct rq * , struct task_struct * , int ) ; void (*yield_task)(struct rq * ) ; bool (*yield_to_task)(struct rq * , struct task_struct * , bool ) ; void (*check_preempt_curr)(struct rq * , struct task_struct * , int ) ; struct task_struct *(*pick_next_task)(struct rq * ) ; void (*put_prev_task)(struct rq * , struct task_struct * ) ; int (*select_task_rq)(struct task_struct * , int , int ) ; void (*migrate_task_rq)(struct task_struct * , int ) ; void (*pre_schedule)(struct rq * , struct task_struct * ) ; void (*post_schedule)(struct rq * ) ; void (*task_waking)(struct task_struct * ) ; void (*task_woken)(struct rq * , struct task_struct * ) ; void (*set_cpus_allowed)(struct task_struct * , struct cpumask const * ) ; void (*rq_online)(struct rq * ) ; void (*rq_offline)(struct rq * ) ; void (*set_curr_task)(struct rq * ) ; void (*task_tick)(struct rq * , struct task_struct * , int ) ; void (*task_fork)(struct task_struct * ) ; void (*switched_from)(struct rq * , struct task_struct * ) ; void (*switched_to)(struct rq * , struct task_struct * ) ; void (*prio_changed)(struct rq * , struct task_struct * , int ) ; unsigned int (*get_rr_interval)(struct rq * , struct task_struct * ) ; void (*task_move_group)(struct task_struct * , int ) ; }; struct load_weight { unsigned long weight ; unsigned long inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct files_struct; struct css_set; struct compat_robust_list_head; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct hlist_head preempt_notifiers ; unsigned char fpu_counter ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char did_exec : 1 ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char no_new_privs : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; unsigned long stack_canary ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct plist_head pi_waiters ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; int numa_migrate_seq ; unsigned int numa_scan_period ; u64 node_stamp ; struct callback_head numa_work ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; atomic_t ptrace_bp_refcnt ; struct uprobe_task *utask ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; }; struct proc_dir_entry; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct device_node *next ; struct device_node *allnext ; struct proc_dir_entry *pde ; struct kref kref ; unsigned long _flags ; void *data ; }; struct i2c_msg { __u16 addr ; __u16 flags ; __u16 len ; __u8 *buf ; }; union i2c_smbus_data { __u8 byte ; __u16 word ; __u8 block[34U] ; }; struct i2c_algorithm; struct i2c_adapter; struct i2c_client; struct i2c_driver; struct i2c_board_info; struct i2c_driver { unsigned int class ; int (*attach_adapter)(struct i2c_adapter * ) ; int (*detach_adapter)(struct i2c_adapter * ) ; int (*probe)(struct i2c_client * , struct i2c_device_id const * ) ; int (*remove)(struct i2c_client * ) ; void (*shutdown)(struct i2c_client * ) ; int (*suspend)(struct i2c_client * , pm_message_t ) ; int (*resume)(struct i2c_client * ) ; void (*alert)(struct i2c_client * , unsigned int ) ; int (*command)(struct i2c_client * , unsigned int , void * ) ; struct device_driver driver ; struct i2c_device_id const *id_table ; int (*detect)(struct i2c_client * , struct i2c_board_info * ) ; unsigned short const *address_list ; struct list_head clients ; }; struct i2c_client { unsigned short flags ; unsigned short addr ; char name[20U] ; struct i2c_adapter *adapter ; struct i2c_driver *driver ; struct device dev ; int irq ; struct list_head detected ; }; struct i2c_board_info { char type[20U] ; unsigned short flags ; unsigned short addr ; void *platform_data ; struct dev_archdata *archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; int irq ; }; struct i2c_algorithm { int (*master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) ; int (*smbus_xfer)(struct i2c_adapter * , u16 , unsigned short , char , u8 , int , union i2c_smbus_data * ) ; u32 (*functionality)(struct i2c_adapter * ) ; }; struct i2c_adapter { struct module *owner ; unsigned int class ; struct i2c_algorithm const *algo ; void *algo_data ; struct rt_mutex bus_lock ; int timeout ; int retries ; struct device dev ; int nr ; char name[48U] ; struct completion dev_released ; struct mutex userspace_clients_lock ; struct list_head userspace_clients ; }; struct sensor_device_attribute { struct device_attribute dev_attr ; int index ; }; struct asb100_data { struct device *hwmon_dev ; struct mutex lock ; struct mutex update_lock ; unsigned long last_updated ; struct i2c_client *lm75[2U] ; char valid ; u8 in[7U] ; u8 in_max[7U] ; u8 in_min[7U] ; u8 fan[3U] ; u8 fan_min[3U] ; u16 temp[4U] ; u16 temp_max[4U] ; u16 temp_hyst[4U] ; u8 fan_div[3U] ; u8 pwm ; u8 vid ; u32 alarms ; u8 vrm ; }; typedef int ldv_func_ret_type___2; long ldv__builtin_expect(long exp , long c ) ; __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } extern int __dynamic_pr_debug(struct _ddebug * , char const * , ...) ; extern int __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern int kstrtoull(char const * , unsigned int , unsigned long long * ) ; extern int kstrtoll(char const * , unsigned int , long long * ) ; __inline static int kstrtoul(char const *s , unsigned int base , unsigned long *res ) { int tmp ; { tmp = kstrtoull(s, base, (unsigned long long *)res); return (tmp); } } __inline static int kstrtol(char const *s , unsigned int base , long *res ) { int tmp ; { tmp = kstrtoll(s, base, (long long *)res); return (tmp); } } extern int sprintf(char * , char const * , ...) ; extern size_t strlcpy(char * , char const * , size_t ) ; __inline static long PTR_ERR(void const *ptr ) { { return ((long )ptr); } } __inline static long IS_ERR(void const *ptr ) { long tmp ; { tmp = ldv__builtin_expect((unsigned long )ptr > 0xfffffffffffff000UL, 0L); return (tmp); } } extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; extern int mutex_trylock(struct mutex * ) ; int ldv_mutex_trylock_4(struct mutex *ldv_func_arg1 ) ; extern void mutex_unlock(struct mutex * ) ; void ldv_mutex_unlock_2(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_5(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_7(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_9(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_13(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_17(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_19(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_21(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_23(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_25(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_27(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_29(struct mutex *ldv_func_arg1 ) ; extern void mutex_lock(struct mutex * ) ; void ldv_mutex_lock_1(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_3(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_6(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_8(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_14(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_18(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_20(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_22(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_24(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_26(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_28(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_cred_guard_mutex_of_signal_struct(struct mutex *lock ) ; void ldv_mutex_unlock_cred_guard_mutex_of_signal_struct(struct mutex *lock ) ; void ldv_mutex_lock_lock(struct mutex *lock ) ; void ldv_mutex_unlock_lock(struct mutex *lock ) ; void ldv_mutex_lock_lock_of_asb100_data(struct mutex *lock ) ; void ldv_mutex_unlock_lock_of_asb100_data(struct mutex *lock ) ; void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) ; int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_lock_update_lock_of_asb100_data(struct mutex *lock ) ; void ldv_mutex_unlock_update_lock_of_asb100_data(struct mutex *lock ) ; int ldv_state_variable_36 ; int ldv_state_variable_8 ; int ldv_state_variable_46 ; int ldv_state_variable_47 ; int ldv_state_variable_15 ; int ldv_state_variable_20 ; int ldv_state_variable_10 ; int ldv_state_variable_59 ; int ldv_state_variable_48 ; int ldv_state_variable_30 ; int ldv_state_variable_6 ; int ldv_state_variable_0 ; int ldv_state_variable_21 ; int ldv_state_variable_5 ; int ldv_state_variable_45 ; int ldv_state_variable_33 ; int ldv_state_variable_16 ; int ldv_state_variable_13 ; int ldv_state_variable_43 ; int ldv_state_variable_2 ; int ldv_state_variable_25 ; int ldv_state_variable_50 ; int ldv_state_variable_12 ; int ldv_state_variable_26 ; int ldv_state_variable_57 ; int ldv_state_variable_28 ; int ldv_state_variable_22 ; int ldv_state_variable_54 ; int ldv_state_variable_14 ; int ldv_state_variable_11 ; int ldv_state_variable_44 ; int ldv_state_variable_53 ; int ldv_state_variable_38 ; int ldv_state_variable_37 ; int ldv_state_variable_29 ; int ldv_state_variable_17 ; int ldv_state_variable_51 ; int ldv_state_variable_18 ; int ldv_state_variable_58 ; int ldv_state_variable_39 ; int ldv_state_variable_19 ; int ldv_state_variable_49 ; int ldv_state_variable_56 ; int ldv_state_variable_9 ; int ldv_state_variable_27 ; int ldv_state_variable_24 ; int ldv_state_variable_3 ; int ldv_state_variable_32 ; int ref_cnt ; int ldv_state_variable_42 ; int ldv_state_variable_34 ; int ldv_state_variable_31 ; extern int __VERIFIER_nondet_int(void) ; int ldv_state_variable_52 ; int ldv_state_variable_1 ; int ldv_state_variable_41 ; int ldv_state_variable_7 ; int ldv_state_variable_4 ; int ldv_state_variable_23 ; int ldv_state_variable_40 ; int ldv_state_variable_55 ; int ldv_state_variable_35 ; extern unsigned long volatile jiffies ; extern int sysfs_create_group(struct kobject * , struct attribute_group const * ) ; extern void sysfs_remove_group(struct kobject * , struct attribute_group const * ) ; extern struct module __this_module ; extern void *devm_kzalloc(struct device * , size_t , gfp_t ) ; extern void *dev_get_drvdata(struct device const * ) ; extern int dev_set_drvdata(struct device * , void * ) ; extern int dev_err(struct device const * , char const * , ...) ; extern s32 i2c_smbus_read_byte_data(struct i2c_client const * , u8 ) ; extern s32 i2c_smbus_write_byte_data(struct i2c_client const * , u8 , u8 ) ; extern s32 i2c_smbus_read_word_data(struct i2c_client const * , u8 ) ; extern s32 i2c_smbus_write_word_data(struct i2c_client const * , u8 , u16 ) ; __inline static s32 i2c_smbus_read_word_swapped(struct i2c_client const *client , u8 command ) { s32 value ; s32 tmp ; __u16 tmp___0 ; s32 tmp___1 ; { tmp = i2c_smbus_read_word_data(client, (int )command); value = tmp; if (value >= 0) { tmp___0 = __fswab16((int )((__u16 )value)); tmp___1 = (s32 )tmp___0; } else { tmp___1 = value; } return (tmp___1); } } __inline static s32 i2c_smbus_write_word_swapped(struct i2c_client const *client , u8 command , u16 value ) { __u16 tmp ; s32 tmp___0 ; { tmp = __fswab16((int )value); tmp___0 = i2c_smbus_write_word_data(client, (int )command, (int )tmp); return (tmp___0); } } __inline static void *i2c_get_clientdata(struct i2c_client const *dev ) { void *tmp ; { tmp = dev_get_drvdata(& dev->dev); return (tmp); } } __inline static void i2c_set_clientdata(struct i2c_client *dev , void *data ) { { dev_set_drvdata(& dev->dev, data); return; } } extern struct i2c_client *i2c_new_dummy(struct i2c_adapter * , u16 ) ; extern void i2c_unregister_device(struct i2c_client * ) ; extern int i2c_register_driver(struct module * , struct i2c_driver * ) ; extern void i2c_del_driver(struct i2c_driver * ) ; __inline static u32 i2c_get_functionality(struct i2c_adapter *adap ) { u32 tmp ; { tmp = (*((adap->algo)->functionality))(adap); return (tmp); } } __inline static int i2c_check_functionality(struct i2c_adapter *adap , u32 func ) { u32 tmp ; { tmp = i2c_get_functionality(adap); return ((tmp & func) == func); } } __inline static int i2c_adapter_id(struct i2c_adapter *adap ) { { return (adap->nr); } } extern struct device *hwmon_device_register(struct device * ) ; extern void hwmon_device_unregister(struct device * ) ; __inline static int SENSORS_LIMIT(long value , long low , long high ) { { if (value < low) { return ((int )low); } else if (value > high) { return ((int )high); } else { return ((int )value); } } } extern int vid_from_reg(int , u8 ) ; extern u8 vid_which_vrm(void) ; __inline static u16 LM75_TEMP_TO_REG(long temp ) { int ntemp ; int tmp ; int tmp___0 ; { tmp = SENSORS_LIMIT(temp, -55000L, 125000L); ntemp = tmp; if (ntemp < 0) { tmp___0 = -250; } else { tmp___0 = 250; } ntemp = tmp___0 + ntemp; return ((u16 )((int )((unsigned short )(ntemp / 500)) << 7U)); } } __inline static int LM75_TEMP_FROM_REG(u16 reg ) { { return (((int )((short )reg) / 128) * 500); } } static unsigned short const normal_i2c[2U] = { 45U, 65534U}; static unsigned short force_subclients[4U] ; static u16 const asb100_reg_temp[5U] = { 0U, 39U, 336U, 592U, 23U}; static u16 const asb100_reg_temp_max[5U] = { 0U, 57U, 341U, 597U, 24U}; static u16 const asb100_reg_temp_hyst[5U] = { 0U, 58U, 339U, 595U, 25U}; static u8 IN_TO_REG(unsigned int val ) { unsigned int nval ; int tmp ; { tmp = SENSORS_LIMIT((long )val, 0L, 4080L); nval = (unsigned int )tmp; return ((u8 )((nval + 8U) / 16U)); } } static unsigned int IN_FROM_REG(u8 reg ) { { return ((unsigned int )((int )reg * 16)); } } static u8 FAN_TO_REG(long rpm , int div ) { int tmp ; int tmp___0 ; { if (rpm == -1L) { return (0U); } else { } if (rpm == 0L) { return (255U); } else { } tmp = SENSORS_LIMIT(rpm, 1L, 1000000L); rpm = (long )tmp; tmp___0 = SENSORS_LIMIT((((long )div * rpm) / 2L + 1350000L) / ((long )div * rpm), 1L, 254L); return ((u8 )tmp___0); } } static int FAN_FROM_REG(u8 val , int div ) { int tmp ; int tmp___0 ; { if ((unsigned int )val != 0U) { if ((unsigned int )val != 255U) { tmp = 1350000 / ((int )val * div); } else { tmp = 0; } tmp___0 = tmp; } else { tmp___0 = -1; } return (tmp___0); } } static u8 TEMP_TO_REG(long temp ) { int ntemp ; int tmp ; int tmp___0 ; { tmp = SENSORS_LIMIT(temp, -128000L, 127000L); ntemp = tmp; if (ntemp < 0) { tmp___0 = -500; } else { tmp___0 = 500; } ntemp = tmp___0 + ntemp; return ((u8 )(ntemp / 1000)); } } static int TEMP_FROM_REG(u8 reg ) { { return ((int )((signed char )reg) * 1000); } } static u8 ASB100_PWM_TO_REG(int pwm ) { { pwm = SENSORS_LIMIT((long )pwm, 0L, 255L); return ((u8 )(pwm / 16)); } } static int ASB100_PWM_FROM_REG(u8 reg ) { { return ((int )reg * 16); } } static u8 DIV_TO_REG(long val ) { unsigned int tmp ; unsigned int tmp___0 ; { if (val != 8L) { if (val != 4L) { tmp = val != 1L; } else { tmp = 2U; } tmp___0 = tmp; } else { tmp___0 = 3U; } return (tmp___0); } } static int asb100_read_value(struct i2c_client *client , u16 reg ) ; static void asb100_write_value(struct i2c_client *client , u16 reg , u16 value ) ; static int asb100_probe(struct i2c_client *client , struct i2c_device_id const *id ) ; static int asb100_detect(struct i2c_client *client , struct i2c_board_info *info ) ; static int asb100_remove(struct i2c_client *client ) ; static struct asb100_data *asb100_update_device(struct device *dev ) ; static void asb100_init_client(struct i2c_client *client ) ; static struct i2c_device_id const asb100_id[2U] = { {{'a', 's', 'b', '1', '0', '0', '\000', (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0UL}, {{(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, 0UL}}; struct i2c_device_id const __mod_i2c_device_table ; static struct i2c_driver asb100_driver = {1U, 0, 0, & asb100_probe, & asb100_remove, 0, 0, 0, 0, 0, {"asb100", 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, (struct i2c_device_id const *)(& asb100_id), & asb100_detect, (unsigned short const *)(& normal_i2c), {0, 0}}; static ssize_t show_in(struct device *dev , struct device_attribute *attr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct asb100_data *data ; struct asb100_data *tmp ; unsigned int tmp___0 ; int tmp___1 ; { __mptr = (struct device_attribute const *)attr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = asb100_update_device(dev); data = tmp; tmp___0 = IN_FROM_REG((int )data->in[nr]); tmp___1 = sprintf(buf, "%d\n", tmp___0); return ((ssize_t )tmp___1); } } static ssize_t show_in_min(struct device *dev , struct device_attribute *attr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct asb100_data *data ; struct asb100_data *tmp ; unsigned int tmp___0 ; int tmp___1 ; { __mptr = (struct device_attribute const *)attr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = asb100_update_device(dev); data = tmp; tmp___0 = IN_FROM_REG((int )data->in_min[nr]); tmp___1 = sprintf(buf, "%d\n", tmp___0); return ((ssize_t )tmp___1); } } static ssize_t show_in_max(struct device *dev , struct device_attribute *attr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct asb100_data *data ; struct asb100_data *tmp ; unsigned int tmp___0 ; int tmp___1 ; { __mptr = (struct device_attribute const *)attr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = asb100_update_device(dev); data = tmp; tmp___0 = IN_FROM_REG((int )data->in_max[nr]); tmp___1 = sprintf(buf, "%d\n", tmp___0); return ((ssize_t )tmp___1); } } static ssize_t set_in_min(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { int nr ; struct device_attribute const *__mptr ; struct i2c_client *client ; struct device const *__mptr___0 ; struct asb100_data *data ; void *tmp ; unsigned long val ; int err ; int tmp___0 ; { __mptr = (struct device_attribute const *)attr; nr = ((struct sensor_device_attribute *)__mptr)->index; __mptr___0 = (struct device const *)dev; client = (struct i2c_client *)__mptr___0 + 0xffffffffffffffd8UL; tmp = i2c_get_clientdata((struct i2c_client const *)client); data = (struct asb100_data *)tmp; tmp___0 = kstrtoul(buf, 10U, & val); err = tmp___0; if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_8(& data->update_lock); data->in_min[nr] = IN_TO_REG((unsigned int )val); asb100_write_value(client, (int )((unsigned int )((u16 )(nr + 22)) * 2U), (int )data->in_min[nr]); ldv_mutex_unlock_9(& data->update_lock); return ((ssize_t )count); } } static ssize_t set_in_max(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { int nr ; struct device_attribute const *__mptr ; struct i2c_client *client ; struct device const *__mptr___0 ; struct asb100_data *data ; void *tmp ; unsigned long val ; int err ; int tmp___0 ; { __mptr = (struct device_attribute const *)attr; nr = ((struct sensor_device_attribute *)__mptr)->index; __mptr___0 = (struct device const *)dev; client = (struct i2c_client *)__mptr___0 + 0xffffffffffffffd8UL; tmp = i2c_get_clientdata((struct i2c_client const *)client); data = (struct asb100_data *)tmp; tmp___0 = kstrtoul(buf, 10U, & val); err = tmp___0; if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_10(& data->update_lock); data->in_max[nr] = IN_TO_REG((unsigned int )val); asb100_write_value(client, (int )((unsigned int )((u16 )nr) * 2U + 43U), (int )data->in_max[nr]); ldv_mutex_unlock_11(& data->update_lock); return ((ssize_t )count); } } static struct sensor_device_attribute sensor_dev_attr_in0_input = {{{"in0_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in, 0}, 0}; static struct sensor_device_attribute sensor_dev_attr_in0_min = {{{"in0_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & set_in_min}, 0}; static struct sensor_device_attribute sensor_dev_attr_in0_max = {{{"in0_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & set_in_max}, 0}; static struct sensor_device_attribute sensor_dev_attr_in1_input = {{{"in1_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in, 0}, 1}; static struct sensor_device_attribute sensor_dev_attr_in1_min = {{{"in1_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & set_in_min}, 1}; static struct sensor_device_attribute sensor_dev_attr_in1_max = {{{"in1_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & set_in_max}, 1}; static struct sensor_device_attribute sensor_dev_attr_in2_input = {{{"in2_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in, 0}, 2}; static struct sensor_device_attribute sensor_dev_attr_in2_min = {{{"in2_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & set_in_min}, 2}; static struct sensor_device_attribute sensor_dev_attr_in2_max = {{{"in2_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & set_in_max}, 2}; static struct sensor_device_attribute sensor_dev_attr_in3_input = {{{"in3_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in, 0}, 3}; static struct sensor_device_attribute sensor_dev_attr_in3_min = {{{"in3_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & set_in_min}, 3}; static struct sensor_device_attribute sensor_dev_attr_in3_max = {{{"in3_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & set_in_max}, 3}; static struct sensor_device_attribute sensor_dev_attr_in4_input = {{{"in4_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in, 0}, 4}; static struct sensor_device_attribute sensor_dev_attr_in4_min = {{{"in4_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & set_in_min}, 4}; static struct sensor_device_attribute sensor_dev_attr_in4_max = {{{"in4_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & set_in_max}, 4}; static struct sensor_device_attribute sensor_dev_attr_in5_input = {{{"in5_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in, 0}, 5}; static struct sensor_device_attribute sensor_dev_attr_in5_min = {{{"in5_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & set_in_min}, 5}; static struct sensor_device_attribute sensor_dev_attr_in5_max = {{{"in5_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & set_in_max}, 5}; static struct sensor_device_attribute sensor_dev_attr_in6_input = {{{"in6_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in, 0}, 6}; static struct sensor_device_attribute sensor_dev_attr_in6_min = {{{"in6_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_min, & set_in_min}, 6}; static struct sensor_device_attribute sensor_dev_attr_in6_max = {{{"in6_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_in_max, & set_in_max}, 6}; static ssize_t show_fan(struct device *dev , struct device_attribute *attr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct asb100_data *data ; struct asb100_data *tmp ; int tmp___0 ; int tmp___1 ; { __mptr = (struct device_attribute const *)attr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = asb100_update_device(dev); data = tmp; tmp___0 = FAN_FROM_REG((int )data->fan[nr], 1 << (int )data->fan_div[nr]); tmp___1 = sprintf(buf, "%d\n", tmp___0); return ((ssize_t )tmp___1); } } static ssize_t show_fan_min(struct device *dev , struct device_attribute *attr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct asb100_data *data ; struct asb100_data *tmp ; int tmp___0 ; int tmp___1 ; { __mptr = (struct device_attribute const *)attr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = asb100_update_device(dev); data = tmp; tmp___0 = FAN_FROM_REG((int )data->fan_min[nr], 1 << (int )data->fan_div[nr]); tmp___1 = sprintf(buf, "%d\n", tmp___0); return ((ssize_t )tmp___1); } } static ssize_t show_fan_div(struct device *dev , struct device_attribute *attr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct asb100_data *data ; struct asb100_data *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)attr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = asb100_update_device(dev); data = tmp; tmp___0 = sprintf(buf, "%d\n", 1 << (int )data->fan_div[nr]); return ((ssize_t )tmp___0); } } static ssize_t set_fan_min(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { int nr ; struct device_attribute const *__mptr ; struct i2c_client *client ; struct device const *__mptr___0 ; struct asb100_data *data ; void *tmp ; unsigned long val ; int err ; { __mptr = (struct device_attribute const *)attr; nr = ((struct sensor_device_attribute *)__mptr)->index; __mptr___0 = (struct device const *)dev; client = (struct i2c_client *)__mptr___0 + 0xffffffffffffffd8UL; tmp = i2c_get_clientdata((struct i2c_client const *)client); data = (struct asb100_data *)tmp; err = kstrtoul(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_12(& data->update_lock); data->fan_min[nr] = FAN_TO_REG((long )val, 1 << (int )data->fan_div[nr]); asb100_write_value(client, (int )((unsigned int )((u16 )nr) + 59U), (int )data->fan_min[nr]); ldv_mutex_unlock_13(& data->update_lock); return ((ssize_t )count); } } static ssize_t set_fan_div(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { int nr ; struct device_attribute const *__mptr ; struct i2c_client *client ; struct device const *__mptr___0 ; struct asb100_data *data ; void *tmp ; unsigned long min ; int reg ; unsigned long val ; int err ; int tmp___0 ; { __mptr = (struct device_attribute const *)attr; nr = ((struct sensor_device_attribute *)__mptr)->index; __mptr___0 = (struct device const *)dev; client = (struct i2c_client *)__mptr___0 + 0xffffffffffffffd8UL; tmp = i2c_get_clientdata((struct i2c_client const *)client); data = (struct asb100_data *)tmp; err = kstrtoul(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_14(& data->update_lock); tmp___0 = FAN_FROM_REG((int )data->fan_min[nr], 1 << (int )data->fan_div[nr]); min = (unsigned long )tmp___0; data->fan_div[nr] = DIV_TO_REG((long )val); switch (nr) { case 0: reg = asb100_read_value(client, 71); reg = (reg & 207) | ((int )data->fan_div[0] << 4); asb100_write_value(client, 71, (int )((u16 )reg)); goto ldv_19909; case 1: reg = asb100_read_value(client, 71); reg = (reg & 63) | ((int )data->fan_div[1] << 6); asb100_write_value(client, 71, (int )((u16 )reg)); goto ldv_19909; case 2: reg = asb100_read_value(client, 75); reg = (reg & 63) | ((int )data->fan_div[2] << 6); asb100_write_value(client, 75, (int )((u16 )reg)); goto ldv_19909; } ldv_19909: data->fan_min[nr] = FAN_TO_REG((long )min, 1 << (int )data->fan_div[nr]); asb100_write_value(client, (int )((unsigned int )((u16 )nr) + 59U), (int )data->fan_min[nr]); ldv_mutex_unlock_15(& data->update_lock); return ((ssize_t )count); } } static struct sensor_device_attribute sensor_dev_attr_fan1_input = {{{"fan1_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan, 0}, 0}; static struct sensor_device_attribute sensor_dev_attr_fan1_min = {{{"fan1_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_min, & set_fan_min}, 0}; static struct sensor_device_attribute sensor_dev_attr_fan1_div = {{{"fan1_div", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_div, & set_fan_div}, 0}; static struct sensor_device_attribute sensor_dev_attr_fan2_input = {{{"fan2_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan, 0}, 1}; static struct sensor_device_attribute sensor_dev_attr_fan2_min = {{{"fan2_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_min, & set_fan_min}, 1}; static struct sensor_device_attribute sensor_dev_attr_fan2_div = {{{"fan2_div", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_div, & set_fan_div}, 1}; static struct sensor_device_attribute sensor_dev_attr_fan3_input = {{{"fan3_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan, 0}, 2}; static struct sensor_device_attribute sensor_dev_attr_fan3_min = {{{"fan3_min", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_min, & set_fan_min}, 2}; static struct sensor_device_attribute sensor_dev_attr_fan3_div = {{{"fan3_div", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_fan_div, & set_fan_div}, 2}; static int sprintf_temp_from_reg(u16 reg , char *buf , int nr ) { int ret ; int tmp ; int tmp___0 ; { ret = 0; switch (nr) { case 1: ; case 2: tmp = LM75_TEMP_FROM_REG((int )reg); ret = sprintf(buf, "%d\n", tmp); goto ldv_19929; case 0: ; case 3: ; default: tmp___0 = TEMP_FROM_REG((int )((u8 )reg)); ret = sprintf(buf, "%d\n", tmp___0); goto ldv_19929; } ldv_19929: ; return (ret); } } static ssize_t show_temp(struct device *dev , struct device_attribute *attr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct asb100_data *data ; struct asb100_data *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)attr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = asb100_update_device(dev); data = tmp; tmp___0 = sprintf_temp_from_reg((int )data->temp[nr], buf, nr); return ((ssize_t )tmp___0); } } static ssize_t show_temp_max(struct device *dev , struct device_attribute *attr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct asb100_data *data ; struct asb100_data *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)attr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = asb100_update_device(dev); data = tmp; tmp___0 = sprintf_temp_from_reg((int )data->temp_max[nr], buf, nr); return ((ssize_t )tmp___0); } } static ssize_t show_temp_hyst(struct device *dev , struct device_attribute *attr , char *buf ) { int nr ; struct device_attribute const *__mptr ; struct asb100_data *data ; struct asb100_data *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)attr; nr = ((struct sensor_device_attribute *)__mptr)->index; tmp = asb100_update_device(dev); data = tmp; tmp___0 = sprintf_temp_from_reg((int )data->temp_hyst[nr], buf, nr); return ((ssize_t )tmp___0); } } static ssize_t set_temp_max(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { int nr ; struct device_attribute const *__mptr ; struct i2c_client *client ; struct device const *__mptr___0 ; struct asb100_data *data ; void *tmp ; long val ; int err ; int tmp___0 ; u8 tmp___1 ; { __mptr = (struct device_attribute const *)attr; nr = ((struct sensor_device_attribute *)__mptr)->index; __mptr___0 = (struct device const *)dev; client = (struct i2c_client *)__mptr___0 + 0xffffffffffffffd8UL; tmp = i2c_get_clientdata((struct i2c_client const *)client); data = (struct asb100_data *)tmp; tmp___0 = kstrtol(buf, 10U, & val); err = tmp___0; if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_16(& data->update_lock); switch (nr) { case 1: ; case 2: data->temp_max[nr] = LM75_TEMP_TO_REG(val); goto ldv_19977; case 0: ; case 3: ; default: tmp___1 = TEMP_TO_REG(val); data->temp_max[nr] = (u16 )tmp___1; goto ldv_19977; } ldv_19977: asb100_write_value(client, (int )asb100_reg_temp_max[nr + 1], (int )data->temp_max[nr]); ldv_mutex_unlock_17(& data->update_lock); return ((ssize_t )count); } } static ssize_t set_temp_hyst(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { int nr ; struct device_attribute const *__mptr ; struct i2c_client *client ; struct device const *__mptr___0 ; struct asb100_data *data ; void *tmp ; long val ; int err ; int tmp___0 ; u8 tmp___1 ; { __mptr = (struct device_attribute const *)attr; nr = ((struct sensor_device_attribute *)__mptr)->index; __mptr___0 = (struct device const *)dev; client = (struct i2c_client *)__mptr___0 + 0xffffffffffffffd8UL; tmp = i2c_get_clientdata((struct i2c_client const *)client); data = (struct asb100_data *)tmp; tmp___0 = kstrtol(buf, 10U, & val); err = tmp___0; if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_18(& data->update_lock); switch (nr) { case 1: ; case 2: data->temp_hyst[nr] = LM75_TEMP_TO_REG(val); goto ldv_19998; case 0: ; case 3: ; default: tmp___1 = TEMP_TO_REG(val); data->temp_hyst[nr] = (u16 )tmp___1; goto ldv_19998; } ldv_19998: asb100_write_value(client, (int )asb100_reg_temp_hyst[nr + 1], (int )data->temp_hyst[nr]); ldv_mutex_unlock_19(& data->update_lock); return ((ssize_t )count); } } static struct sensor_device_attribute sensor_dev_attr_temp1_input = {{{"temp1_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp, 0}, 0}; static struct sensor_device_attribute sensor_dev_attr_temp1_max = {{{"temp1_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_max, & set_temp_max}, 0}; static struct sensor_device_attribute sensor_dev_attr_temp1_max_hyst = {{{"temp1_max_hyst", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_hyst, & set_temp_hyst}, 0}; static struct sensor_device_attribute sensor_dev_attr_temp2_input = {{{"temp2_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp, 0}, 1}; static struct sensor_device_attribute sensor_dev_attr_temp2_max = {{{"temp2_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_max, & set_temp_max}, 1}; static struct sensor_device_attribute sensor_dev_attr_temp2_max_hyst = {{{"temp2_max_hyst", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_hyst, & set_temp_hyst}, 1}; static struct sensor_device_attribute sensor_dev_attr_temp3_input = {{{"temp3_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp, 0}, 2}; static struct sensor_device_attribute sensor_dev_attr_temp3_max = {{{"temp3_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_max, & set_temp_max}, 2}; static struct sensor_device_attribute sensor_dev_attr_temp3_max_hyst = {{{"temp3_max_hyst", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_hyst, & set_temp_hyst}, 2}; static struct sensor_device_attribute sensor_dev_attr_temp4_input = {{{"temp4_input", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp, 0}, 3}; static struct sensor_device_attribute sensor_dev_attr_temp4_max = {{{"temp4_max", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_max, & set_temp_max}, 3}; static struct sensor_device_attribute sensor_dev_attr_temp4_max_hyst = {{{"temp4_max_hyst", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_temp_hyst, & set_temp_hyst}, 3}; static ssize_t show_vid(struct device *dev , struct device_attribute *attr , char *buf ) { struct asb100_data *data ; struct asb100_data *tmp ; int tmp___0 ; int tmp___1 ; { tmp = asb100_update_device(dev); data = tmp; tmp___0 = vid_from_reg((int )data->vid, (int )data->vrm); tmp___1 = sprintf(buf, "%d\n", tmp___0); return ((ssize_t )tmp___1); } } static struct device_attribute dev_attr_cpu0_vid = {{"cpu0_vid", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_vid, 0}; static ssize_t show_vrm(struct device *dev , struct device_attribute *attr , char *buf ) { struct asb100_data *data ; void *tmp ; int tmp___0 ; { tmp = dev_get_drvdata((struct device const *)dev); data = (struct asb100_data *)tmp; tmp___0 = sprintf(buf, "%d\n", (int )data->vrm); return ((ssize_t )tmp___0); } } static ssize_t set_vrm(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct asb100_data *data ; void *tmp ; unsigned long val ; int err ; { tmp = dev_get_drvdata((struct device const *)dev); data = (struct asb100_data *)tmp; err = kstrtoul(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } data->vrm = (u8 )val; return ((ssize_t )count); } } static struct device_attribute dev_attr_vrm = {{"vrm", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_vrm, & set_vrm}; static ssize_t show_alarms(struct device *dev , struct device_attribute *attr , char *buf ) { struct asb100_data *data ; struct asb100_data *tmp ; int tmp___0 ; { tmp = asb100_update_device(dev); data = tmp; tmp___0 = sprintf(buf, "%u\n", data->alarms); return ((ssize_t )tmp___0); } } static struct device_attribute dev_attr_alarms = {{"alarms", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarms, 0}; static ssize_t show_alarm(struct device *dev , struct device_attribute *attr , char *buf ) { int bitnr ; struct device_attribute const *__mptr ; struct asb100_data *data ; struct asb100_data *tmp ; int tmp___0 ; { __mptr = (struct device_attribute const *)attr; bitnr = ((struct sensor_device_attribute *)__mptr)->index; tmp = asb100_update_device(dev); data = tmp; tmp___0 = sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1U); return ((ssize_t )tmp___0); } } static struct sensor_device_attribute sensor_dev_attr_in0_alarm = {{{"in0_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, 0}, 0}; static struct sensor_device_attribute sensor_dev_attr_in1_alarm = {{{"in1_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, 0}, 1}; static struct sensor_device_attribute sensor_dev_attr_in2_alarm = {{{"in2_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, 0}, 2}; static struct sensor_device_attribute sensor_dev_attr_in3_alarm = {{{"in3_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, 0}, 3}; static struct sensor_device_attribute sensor_dev_attr_in4_alarm = {{{"in4_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, 0}, 8}; static struct sensor_device_attribute sensor_dev_attr_fan1_alarm = {{{"fan1_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, 0}, 6}; static struct sensor_device_attribute sensor_dev_attr_fan2_alarm = {{{"fan2_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, 0}, 7}; static struct sensor_device_attribute sensor_dev_attr_fan3_alarm = {{{"fan3_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, 0}, 11}; static struct sensor_device_attribute sensor_dev_attr_temp1_alarm = {{{"temp1_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, 0}, 4}; static struct sensor_device_attribute sensor_dev_attr_temp2_alarm = {{{"temp2_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, 0}, 5}; static struct sensor_device_attribute sensor_dev_attr_temp3_alarm = {{{"temp3_alarm", 292U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_alarm, 0}, 13}; static ssize_t show_pwm1(struct device *dev , struct device_attribute *attr , char *buf ) { struct asb100_data *data ; struct asb100_data *tmp ; int tmp___0 ; int tmp___1 ; { tmp = asb100_update_device(dev); data = tmp; tmp___0 = ASB100_PWM_FROM_REG((int )data->pwm & 15); tmp___1 = sprintf(buf, "%d\n", tmp___0); return ((ssize_t )tmp___1); } } static ssize_t set_pwm1(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct i2c_client *client ; struct device const *__mptr ; struct asb100_data *data ; void *tmp ; unsigned long val ; int err ; u8 tmp___0 ; { __mptr = (struct device const *)dev; client = (struct i2c_client *)__mptr + 0xffffffffffffffd8UL; tmp = i2c_get_clientdata((struct i2c_client const *)client); data = (struct asb100_data *)tmp; err = kstrtoul(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_20(& data->update_lock); data->pwm = (unsigned int )data->pwm & 128U; tmp___0 = ASB100_PWM_TO_REG((int )val); data->pwm = (u8 )((unsigned int )data->pwm | ((unsigned int )tmp___0 & 15U)); asb100_write_value(client, 89, (int )data->pwm); ldv_mutex_unlock_21(& data->update_lock); return ((ssize_t )count); } } static ssize_t show_pwm_enable1(struct device *dev , struct device_attribute *attr , char *buf ) { struct asb100_data *data ; struct asb100_data *tmp ; int tmp___0 ; { tmp = asb100_update_device(dev); data = tmp; tmp___0 = sprintf(buf, "%d\n", (int )((signed char )data->pwm) < 0); return ((ssize_t )tmp___0); } } static ssize_t set_pwm_enable1(struct device *dev , struct device_attribute *attr , char const *buf , size_t count ) { struct i2c_client *client ; struct device const *__mptr ; struct asb100_data *data ; void *tmp ; unsigned long val ; int err ; int tmp___0 ; { __mptr = (struct device const *)dev; client = (struct i2c_client *)__mptr + 0xffffffffffffffd8UL; tmp = i2c_get_clientdata((struct i2c_client const *)client); data = (struct asb100_data *)tmp; err = kstrtoul(buf, 10U, & val); if (err != 0) { return ((ssize_t )err); } else { } ldv_mutex_lock_22(& data->update_lock); data->pwm = (unsigned int )data->pwm & 15U; if (val != 0UL) { tmp___0 = -128; } else { tmp___0 = 0; } data->pwm = (u8 )((int )((signed char )data->pwm) | tmp___0); asb100_write_value(client, 89, (int )data->pwm); ldv_mutex_unlock_23(& data->update_lock); return ((ssize_t )count); } } static struct device_attribute dev_attr_pwm1 = {{"pwm1", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm1, & set_pwm1}; static struct device_attribute dev_attr_pwm1_enable = {{"pwm1_enable", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & show_pwm_enable1, & set_pwm_enable1}; static struct attribute *asb100_attributes[59U] = { & sensor_dev_attr_in0_input.dev_attr.attr, & sensor_dev_attr_in0_min.dev_attr.attr, & sensor_dev_attr_in0_max.dev_attr.attr, & sensor_dev_attr_in1_input.dev_attr.attr, & sensor_dev_attr_in1_min.dev_attr.attr, & sensor_dev_attr_in1_max.dev_attr.attr, & sensor_dev_attr_in2_input.dev_attr.attr, & sensor_dev_attr_in2_min.dev_attr.attr, & sensor_dev_attr_in2_max.dev_attr.attr, & sensor_dev_attr_in3_input.dev_attr.attr, & sensor_dev_attr_in3_min.dev_attr.attr, & sensor_dev_attr_in3_max.dev_attr.attr, & sensor_dev_attr_in4_input.dev_attr.attr, & sensor_dev_attr_in4_min.dev_attr.attr, & sensor_dev_attr_in4_max.dev_attr.attr, & sensor_dev_attr_in5_input.dev_attr.attr, & sensor_dev_attr_in5_min.dev_attr.attr, & sensor_dev_attr_in5_max.dev_attr.attr, & sensor_dev_attr_in6_input.dev_attr.attr, & sensor_dev_attr_in6_min.dev_attr.attr, & sensor_dev_attr_in6_max.dev_attr.attr, & sensor_dev_attr_fan1_input.dev_attr.attr, & sensor_dev_attr_fan1_min.dev_attr.attr, & sensor_dev_attr_fan1_div.dev_attr.attr, & sensor_dev_attr_fan2_input.dev_attr.attr, & sensor_dev_attr_fan2_min.dev_attr.attr, & sensor_dev_attr_fan2_div.dev_attr.attr, & sensor_dev_attr_fan3_input.dev_attr.attr, & sensor_dev_attr_fan3_min.dev_attr.attr, & sensor_dev_attr_fan3_div.dev_attr.attr, & sensor_dev_attr_temp1_input.dev_attr.attr, & sensor_dev_attr_temp1_max.dev_attr.attr, & sensor_dev_attr_temp1_max_hyst.dev_attr.attr, & sensor_dev_attr_temp2_input.dev_attr.attr, & sensor_dev_attr_temp2_max.dev_attr.attr, & sensor_dev_attr_temp2_max_hyst.dev_attr.attr, & sensor_dev_attr_temp3_input.dev_attr.attr, & sensor_dev_attr_temp3_max.dev_attr.attr, & sensor_dev_attr_temp3_max_hyst.dev_attr.attr, & sensor_dev_attr_temp4_input.dev_attr.attr, & sensor_dev_attr_temp4_max.dev_attr.attr, & sensor_dev_attr_temp4_max_hyst.dev_attr.attr, & sensor_dev_attr_in0_alarm.dev_attr.attr, & sensor_dev_attr_in1_alarm.dev_attr.attr, & sensor_dev_attr_in2_alarm.dev_attr.attr, & sensor_dev_attr_in3_alarm.dev_attr.attr, & sensor_dev_attr_in4_alarm.dev_attr.attr, & sensor_dev_attr_fan1_alarm.dev_attr.attr, & sensor_dev_attr_fan2_alarm.dev_attr.attr, & sensor_dev_attr_fan3_alarm.dev_attr.attr, & sensor_dev_attr_temp1_alarm.dev_attr.attr, & sensor_dev_attr_temp2_alarm.dev_attr.attr, & sensor_dev_attr_temp3_alarm.dev_attr.attr, & dev_attr_cpu0_vid.attr, & dev_attr_vrm.attr, & dev_attr_alarms.attr, & dev_attr_pwm1.attr, & dev_attr_pwm1_enable.attr, 0}; static struct attribute_group const asb100_group = {0, 0, (struct attribute **)(& asb100_attributes)}; static int asb100_detect_subclients(struct i2c_client *client ) { int i ; int id ; int err ; int address ; unsigned short sc_addr[2U] ; struct asb100_data *data ; void *tmp ; struct i2c_adapter *adapter ; int val ; int tmp___0 ; { address = (int )client->addr; tmp = i2c_get_clientdata((struct i2c_client const *)client); data = (struct asb100_data *)tmp; adapter = client->adapter; id = i2c_adapter_id(adapter); if ((int )force_subclients[0] == id && (int )force_subclients[1] == address) { i = 2; goto ldv_20116; ldv_20115: ; if ((unsigned int )force_subclients[i] <= 71U || (unsigned int )force_subclients[i] > 79U) { dev_err((struct device const *)(& client->dev), "invalid subclient address %d; must be 0x48-0x4f\n", (int )force_subclients[i]); err = -19; goto ERROR_SC_2; } else { } i = i + 1; ldv_20116: ; if (i <= 3) { goto ldv_20115; } else { goto ldv_20117; } ldv_20117: asb100_write_value(client, 74, (int )((u16 )(((int )((short )force_subclients[2]) & 7) | (int )((short )(((int )force_subclients[3] & 7) << 4))))); sc_addr[0] = force_subclients[2]; sc_addr[1] = force_subclients[3]; } else { tmp___0 = asb100_read_value(client, 74); val = tmp___0; sc_addr[0] = ((unsigned int )((unsigned short )val) & 7U) + 72U; sc_addr[1] = ((unsigned int )((unsigned short )(val >> 4)) & 7U) + 72U; } if ((int )sc_addr[0] == (int )sc_addr[1]) { dev_err((struct device const *)(& client->dev), "duplicate addresses 0x%x for subclients\n", (int )sc_addr[0]); err = -19; goto ERROR_SC_2; } else { } data->lm75[0] = i2c_new_dummy(adapter, (int )sc_addr[0]); if ((unsigned long )data->lm75[0] == (unsigned long )((struct i2c_client *)0)) { dev_err((struct device const *)(& client->dev), "subclient %d registration at address 0x%x failed.\n", 1, (int )sc_addr[0]); err = -12; goto ERROR_SC_2; } else { } data->lm75[1] = i2c_new_dummy(adapter, (int )sc_addr[1]); if ((unsigned long )data->lm75[1] == (unsigned long )((struct i2c_client *)0)) { dev_err((struct device const *)(& client->dev), "subclient %d registration at address 0x%x failed.\n", 2, (int )sc_addr[1]); err = -12; goto ERROR_SC_3; } else { } return (0); ERROR_SC_3: i2c_unregister_device(data->lm75[0]); ERROR_SC_2: ; return (err); } } static int asb100_detect(struct i2c_client *client , struct i2c_board_info *info ) { struct i2c_adapter *adapter ; int val1 ; int val2 ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; struct _ddebug descriptor___0 ; long tmp___1 ; s32 tmp___2 ; { adapter = client->adapter; tmp___0 = i2c_check_functionality(adapter, 1572864U); if (tmp___0 == 0) { descriptor.modname = "asb100"; descriptor.function = "asb100_detect"; descriptor.filename = "/work/ldvuser/zakharov_benchmarks/bench/cpa/work/current--X--drivers/hwmon/asb100.ko--X--x1linux-3.8-rc1--X--32_7a--X--cpachecker/linux-3.8-rc1/csd_deg_dscv/12/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/asb100.c.prepared"; descriptor.format = "detect failed, smbus byte data not supported!\n"; descriptor.lineno = 861U; descriptor.flags = 1U; tmp = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp != 0L) { __dynamic_pr_debug(& descriptor, "asb100: detect failed, smbus byte data not supported!\n"); } else { } return (-19); } else { } val1 = i2c_smbus_read_byte_data((struct i2c_client const *)client, 78); val2 = i2c_smbus_read_byte_data((struct i2c_client const *)client, 79); if ((val1 & 7) == 0 && (((val1 & 128) == 0 && val2 != 148) || ((val1 & 128) != 0 && val2 != 6))) { descriptor___0.modname = "asb100"; descriptor___0.function = "asb100_detect"; descriptor___0.filename = "/work/ldvuser/zakharov_benchmarks/bench/cpa/work/current--X--drivers/hwmon/asb100.ko--X--x1linux-3.8-rc1--X--32_7a--X--cpachecker/linux-3.8-rc1/csd_deg_dscv/12/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/asb100.c.prepared"; descriptor___0.format = "detect failed, bad chip id 0x%02x!\n"; descriptor___0.lineno = 874U; descriptor___0.flags = 1U; tmp___1 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___1 != 0L) { __dynamic_pr_debug(& descriptor___0, "asb100: detect failed, bad chip id 0x%02x!\n", val2); } else { } return (-19); } else { } tmp___2 = i2c_smbus_read_byte_data((struct i2c_client const *)client, 78); i2c_smbus_write_byte_data((struct i2c_client const *)client, 78, (int )((u8 )(((int )((signed char )tmp___2) & 120) | -128))); val1 = i2c_smbus_read_byte_data((struct i2c_client const *)client, 88); val2 = i2c_smbus_read_byte_data((struct i2c_client const *)client, 79); if (val1 != 49 || val2 != 6) { return (-19); } else { } strlcpy((char *)(& info->type), "asb100", 20UL); return (0); } } static int asb100_probe(struct i2c_client *client , struct i2c_device_id const *id ) { int err ; struct asb100_data *data ; void *tmp ; struct lock_class_key __key ; struct lock_class_key __key___0 ; int tmp___0 ; int tmp___1 ; int tmp___2 ; long tmp___3 ; long tmp___4 ; { tmp = devm_kzalloc(& client->dev, 440UL, 208U); data = (struct asb100_data *)tmp; if ((unsigned long )data == (unsigned long )((struct asb100_data *)0)) { return (-12); } else { } i2c_set_clientdata(client, (void *)data); __mutex_init(& data->lock, "&data->lock", & __key); __mutex_init(& data->update_lock, "&data->update_lock", & __key___0); err = asb100_detect_subclients(client); if (err != 0) { return (err); } else { } asb100_init_client(client); tmp___0 = asb100_read_value(client, 59); data->fan_min[0] = (u8 )tmp___0; tmp___1 = asb100_read_value(client, 60); data->fan_min[1] = (u8 )tmp___1; tmp___2 = asb100_read_value(client, 61); data->fan_min[2] = (u8 )tmp___2; err = sysfs_create_group(& client->dev.kobj, & asb100_group); if (err != 0) { goto ERROR3; } else { } data->hwmon_dev = hwmon_device_register(& client->dev); tmp___4 = IS_ERR((void const *)data->hwmon_dev); if (tmp___4 != 0L) { tmp___3 = PTR_ERR((void const *)data->hwmon_dev); err = (int )tmp___3; goto ERROR4; } else { } return (0); ERROR4: sysfs_remove_group(& client->dev.kobj, & asb100_group); ERROR3: i2c_unregister_device(data->lm75[1]); i2c_unregister_device(data->lm75[0]); return (err); } } static int asb100_remove(struct i2c_client *client ) { struct asb100_data *data ; void *tmp ; { tmp = i2c_get_clientdata((struct i2c_client const *)client); data = (struct asb100_data *)tmp; hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(& client->dev.kobj, & asb100_group); i2c_unregister_device(data->lm75[1]); i2c_unregister_device(data->lm75[0]); return (0); } } static int asb100_read_value(struct i2c_client *client , u16 reg ) { struct asb100_data *data ; void *tmp ; struct i2c_client *cl ; int res ; int bank ; { tmp = i2c_get_clientdata((struct i2c_client const *)client); data = (struct asb100_data *)tmp; ldv_mutex_lock_24(& data->lock); bank = ((int )reg >> 8) & 15; if (bank > 2) { i2c_smbus_write_byte_data((struct i2c_client const *)client, 78, (int )((u8 )bank)); } else { } if (bank == 0 || bank > 2) { res = i2c_smbus_read_byte_data((struct i2c_client const *)client, (int )((u8 )reg)); } else { cl = data->lm75[bank + -1]; switch ((int )reg & 255) { case 80: res = i2c_smbus_read_word_swapped((struct i2c_client const *)cl, 0); goto ldv_20153; case 82: res = i2c_smbus_read_byte_data((struct i2c_client const *)cl, 1); goto ldv_20153; case 83: res = i2c_smbus_read_word_swapped((struct i2c_client const *)cl, 2); goto ldv_20153; case 85: ; default: res = i2c_smbus_read_word_swapped((struct i2c_client const *)cl, 3); goto ldv_20153; } ldv_20153: ; } if (bank > 2) { i2c_smbus_write_byte_data((struct i2c_client const *)client, 78, 0); } else { } ldv_mutex_unlock_25(& data->lock); return (res); } } static void asb100_write_value(struct i2c_client *client , u16 reg , u16 value ) { struct asb100_data *data ; void *tmp ; struct i2c_client *cl ; int bank ; { tmp = i2c_get_clientdata((struct i2c_client const *)client); data = (struct asb100_data *)tmp; ldv_mutex_lock_26(& data->lock); bank = ((int )reg >> 8) & 15; if (bank > 2) { i2c_smbus_write_byte_data((struct i2c_client const *)client, 78, (int )((u8 )bank)); } else { } if (bank == 0 || bank > 2) { i2c_smbus_write_byte_data((struct i2c_client const *)client, (int )((u8 )reg), (int )((u8 )value)); } else { cl = data->lm75[bank + -1]; switch ((int )reg & 255) { case 82: i2c_smbus_write_byte_data((struct i2c_client const *)cl, 1, (int )((u8 )value)); goto ldv_20167; case 83: i2c_smbus_write_word_swapped((struct i2c_client const *)cl, 2, (int )value); goto ldv_20167; case 85: i2c_smbus_write_word_swapped((struct i2c_client const *)cl, 3, (int )value); goto ldv_20167; } ldv_20167: ; } if (bank > 2) { i2c_smbus_write_byte_data((struct i2c_client const *)client, 78, 0); } else { } ldv_mutex_unlock_27(& data->lock); return; } } static void asb100_init_client(struct i2c_client *client ) { struct asb100_data *data ; void *tmp ; int tmp___0 ; { tmp = i2c_get_clientdata((struct i2c_client const *)client); data = (struct asb100_data *)tmp; data->vrm = vid_which_vrm(); tmp___0 = asb100_read_value(client, 64); asb100_write_value(client, 64, (int )((u16 )(((int )((short )tmp___0) & 246) | 1))); return; } } static struct asb100_data *asb100_update_device(struct device *dev ) { struct i2c_client *client ; struct device const *__mptr ; struct asb100_data *data ; void *tmp ; int i ; struct _ddebug descriptor ; long tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; struct _ddebug descriptor___0 ; long tmp___14 ; { __mptr = (struct device const *)dev; client = (struct i2c_client *)__mptr + 0xffffffffffffffd8UL; tmp = i2c_get_clientdata((struct i2c_client const *)client); data = (struct asb100_data *)tmp; ldv_mutex_lock_28(& data->update_lock); if ((long )(data->last_updated + 375UL) - (long )jiffies < 0L || (int )((signed char )data->valid) == 0) { descriptor.modname = "asb100"; descriptor.function = "asb100_update_device"; descriptor.filename = "/work/ldvuser/zakharov_benchmarks/bench/cpa/work/current--X--drivers/hwmon/asb100.ko--X--x1linux-3.8-rc1--X--32_7a--X--cpachecker/linux-3.8-rc1/csd_deg_dscv/12/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/asb100.c.prepared"; descriptor.format = "starting device update...\n"; descriptor.lineno = 1067U; descriptor.flags = 1U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); if (tmp___0 != 0L) { __dynamic_dev_dbg(& descriptor, (struct device const *)(& client->dev), "starting device update...\n"); } else { } i = 0; goto ldv_20191; ldv_20190: tmp___1 = asb100_read_value(client, (int )((unsigned int )((u16 )i) + 32U)); data->in[i] = (u8 )tmp___1; tmp___2 = asb100_read_value(client, (int )((unsigned int )((u16 )(i + 22)) * 2U)); data->in_min[i] = (u8 )tmp___2; tmp___3 = asb100_read_value(client, (int )((unsigned int )((u16 )i) * 2U + 43U)); data->in_max[i] = (u8 )tmp___3; i = i + 1; ldv_20191: ; if (i <= 6) { goto ldv_20190; } else { goto ldv_20192; } ldv_20192: i = 0; goto ldv_20194; ldv_20193: tmp___4 = asb100_read_value(client, (int )((unsigned int )((u16 )i) + 40U)); data->fan[i] = (u8 )tmp___4; tmp___5 = asb100_read_value(client, (int )((unsigned int )((u16 )i) + 59U)); data->fan_min[i] = (u8 )tmp___5; i = i + 1; ldv_20194: ; if (i <= 2) { goto ldv_20193; } else { goto ldv_20195; } ldv_20195: i = 1; goto ldv_20197; ldv_20196: tmp___6 = asb100_read_value(client, (int )asb100_reg_temp[i]); data->temp[i + -1] = (u16 )tmp___6; tmp___7 = asb100_read_value(client, (int )asb100_reg_temp_max[i]); data->temp_max[i + -1] = (u16 )tmp___7; tmp___8 = asb100_read_value(client, (int )asb100_reg_temp_hyst[i]); data->temp_hyst[i + -1] = (u16 )tmp___8; i = i + 1; ldv_20197: ; if (i <= 4) { goto ldv_20196; } else { goto ldv_20198; } ldv_20198: i = asb100_read_value(client, 71); data->vid = (unsigned int )((u8 )i) & 15U; tmp___9 = asb100_read_value(client, 73); data->vid = (u8 )((int )((signed char )data->vid) | (int )((signed char )((tmp___9 & 1) << 4))); data->fan_div[0] = (unsigned int )((u8 )(i >> 4)) & 3U; data->fan_div[1] = (unsigned int )((u8 )(i >> 6)) & 3U; tmp___10 = asb100_read_value(client, 75); data->fan_div[2] = (unsigned int )((u8 )(tmp___10 >> 6)) & 3U; tmp___11 = asb100_read_value(client, 89); data->pwm = (u8 )tmp___11; tmp___12 = asb100_read_value(client, 65); tmp___13 = asb100_read_value(client, 66); data->alarms = (u32 )(tmp___12 + (tmp___13 << 8)); data->last_updated = jiffies; data->valid = 1; descriptor___0.modname = "asb100"; descriptor___0.function = "asb100_update_device"; descriptor___0.filename = "/work/ldvuser/zakharov_benchmarks/bench/cpa/work/current--X--drivers/hwmon/asb100.ko--X--x1linux-3.8-rc1--X--32_7a--X--cpachecker/linux-3.8-rc1/csd_deg_dscv/12/dscv_tempdir/dscv/ri/32_7a/drivers/hwmon/asb100.c.prepared"; descriptor___0.format = "... device update complete\n"; descriptor___0.lineno = 1117U; descriptor___0.flags = 1U; tmp___14 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); if (tmp___14 != 0L) { __dynamic_dev_dbg(& descriptor___0, (struct device const *)(& client->dev), "... device update complete\n"); } else { } } else { } ldv_mutex_unlock_29(& data->update_lock); return (data); } } static int asb100_driver_init(void) { int tmp ; { tmp = i2c_register_driver(& __this_module, & asb100_driver); return (tmp); } } static void asb100_driver_exit(void) { { i2c_del_driver(& asb100_driver); return; } } struct device *sensor_dev_attr_in3_min_group0 ; struct device *sensor_dev_attr_in6_max_group0 ; struct device *ldvarg131 ; struct device *ldvarg51 ; char *ldvarg134 ; char *ldvarg101 ; struct device *ldvarg146 ; struct device *ldvarg42 ; char *ldvarg157 ; struct device *sensor_dev_attr_in2_min_group0 ; char *ldvarg58 ; char *ldvarg174 ; int ldv_retval_1 ; struct device_attribute *ldvarg53 ; struct device *sensor_dev_attr_temp1_max_group0 ; struct device *sensor_dev_attr_fan3_div_group0 ; struct device_attribute *ldvarg64 ; size_t ldvarg114 ; char *ldvarg155 ; struct device *sensor_dev_attr_in4_min_group0 ; char *ldvarg103 ; char *ldvarg83 ; struct device *dev_attr_vrm_group0 ; struct device_attribute *sensor_dev_attr_temp4_max_hyst_group1 ; char *ldvarg0 ; char *ldvarg69 ; char *ldvarg33 ; char *ldvarg6 ; struct device *sensor_dev_attr_in0_min_group0 ; size_t ldvarg4 ; size_t ldvarg129 ; struct device_attribute *sensor_dev_attr_temp1_max_hyst_group1 ; struct device_attribute *sensor_dev_attr_temp3_max_hyst_group1 ; struct device_attribute *ldvarg169 ; struct device *sensor_dev_attr_in3_max_group0 ; char *ldvarg107 ; struct device_attribute *ldvarg47 ; struct device_attribute *ldvarg175 ; char *ldvarg20 ; char *ldvarg3 ; size_t ldvarg49 ; struct device_attribute *ldvarg79 ; char *ldvarg112 ; void ldv_initialize(void) ; size_t ldvarg13 ; size_t ldvarg120 ; struct device *ldvarg36 ; char *ldvarg10 ; size_t ldvarg40 ; struct device_attribute *sensor_dev_attr_temp2_max_hyst_group1 ; struct device *ldvarg45 ; struct device_attribute *ldvarg124 ; struct device_attribute *ldvarg133 ; char *ldvarg90 ; struct device_attribute *sensor_dev_attr_in3_max_group1 ; struct device *ldvarg30 ; struct device_attribute *sensor_dev_attr_fan2_min_group1 ; char *ldvarg150 ; struct device_attribute *sensor_dev_attr_fan3_min_group1 ; char *ldvarg82 ; char *ldvarg76 ; size_t ldvarg19 ; char *ldvarg139 ; struct device_attribute *ldvarg148 ; struct device *ldvarg77 ; struct device_attribute *ldvarg11 ; struct device_attribute *ldvarg91 ; char *ldvarg67 ; char *ldvarg23 ; struct device *sensor_dev_attr_in1_min_group0 ; char *ldvarg141 ; char *ldvarg72 ; char *ldvarg56 ; char *ldvarg98 ; char *ldvarg37 ; char *ldvarg165 ; char *ldvarg29 ; struct device *ldvarg167 ; char *ldvarg24 ; struct device *sensor_dev_attr_temp2_max_hyst_group0 ; char *ldvarg35 ; char *ldvarg105 ; struct device_attribute *ldvarg38 ; struct device *ldvarg152 ; char *ldvarg132 ; struct device_attribute *sensor_dev_attr_in6_min_group1 ; struct device *dev_attr_pwm1_group0 ; struct device *sensor_dev_attr_in2_max_group0 ; char *ldvarg93 ; char *ldvarg48 ; char *ldvarg170 ; struct device_attribute *sensor_dev_attr_in4_max_group1 ; struct device *ldvarg89 ; struct device_attribute *sensor_dev_attr_in0_min_group1 ; struct device_attribute *sensor_dev_attr_temp2_max_group1 ; struct device *sensor_dev_attr_temp1_max_hyst_group0 ; struct device_attribute *ldvarg154 ; char *ldvarg137 ; char *ldvarg80 ; size_t ldvarg87 ; char *ldvarg128 ; char *ldvarg126 ; struct device *ldvarg62 ; char *ldvarg123 ; char *ldvarg65 ; char *ldvarg8 ; size_t ldvarg135 ; struct device *sensor_dev_attr_temp2_max_group0 ; char *ldvarg96 ; struct device *sensor_dev_attr_fan1_div_group0 ; char *ldvarg27 ; struct device_attribute *sensor_dev_attr_in2_max_group1 ; struct device_attribute *sensor_dev_attr_in1_max_group1 ; struct device *sensor_dev_attr_fan2_div_group0 ; char *ldvarg15 ; struct device *dev_attr_pwm1_enable_group0 ; char *ldvarg21 ; size_t ldvarg171 ; size_t ldvarg108 ; size_t ldvarg25 ; char *ldvarg143 ; size_t ldvarg159 ; struct device *sensor_dev_attr_in5_min_group0 ; char *ldvarg117 ; char *ldvarg74 ; struct device_attribute *sensor_dev_attr_in5_max_group1 ; struct device *sensor_dev_attr_temp3_max_group0 ; size_t ldvarg7 ; struct device_attribute *ldvarg32 ; size_t ldvarg84 ; struct device_attribute *ldvarg106 ; char *ldvarg12 ; char *ldvarg100 ; char *ldvarg115 ; char *ldvarg46 ; char *ldvarg50 ; size_t ldvarg1 ; int ldv_retval_0 ; struct device *sensor_dev_attr_temp4_max_hyst_group0 ; struct device *ldvarg125 ; struct device_attribute *ldvarg44 ; struct device_attribute *sensor_dev_attr_fan1_min_group1 ; char *ldvarg145 ; struct device *sensor_dev_attr_in0_max_group0 ; char *ldvarg5 ; size_t ldvarg16 ; struct device_attribute *sensor_dev_attr_in4_min_group1 ; size_t ldvarg138 ; struct device_attribute *dev_attr_pwm1_enable_group1 ; struct device *ldvarg149 ; char *ldvarg2 ; size_t ldvarg28 ; char *ldvarg121 ; struct device *ldvarg104 ; struct device_attribute *sensor_dev_attr_temp4_max_group1 ; char *ldvarg31 ; struct i2c_client *asb100_driver_group0 ; char *ldvarg41 ; struct i2c_device_id *ldvarg60 ; struct device_attribute *ldvarg59 ; char *ldvarg86 ; size_t ldvarg111 ; struct device *sensor_dev_attr_temp4_max_group0 ; struct device *sensor_dev_attr_fan3_min_group0 ; size_t ldvarg102 ; char *ldvarg113 ; size_t ldvarg55 ; char *ldvarg119 ; struct device *sensor_dev_attr_fan2_min_group0 ; size_t ldvarg99 ; char *ldvarg147 ; struct device_attribute *sensor_dev_attr_fan3_div_group1 ; size_t ldvarg81 ; struct device *ldvarg164 ; char *ldvarg63 ; struct device_attribute *ldvarg70 ; struct device *ldvarg68 ; struct device *ldvarg173 ; char *ldvarg54 ; struct device *ldvarg92 ; char *ldvarg130 ; char *ldvarg162 ; size_t ldvarg75 ; struct device_attribute *sensor_dev_attr_temp1_max_group1 ; char *ldvarg18 ; struct device_attribute *ldvarg94 ; char *ldvarg43 ; struct device *ldvarg71 ; struct device *sensor_dev_attr_in4_max_group0 ; struct device_attribute *ldvarg118 ; char *ldvarg109 ; char *ldvarg136 ; struct device_attribute *ldvarg97 ; char *ldvarg168 ; struct device *sensor_dev_attr_in5_max_group0 ; struct device *sensor_dev_attr_in6_min_group0 ; struct device *ldvarg95 ; char *ldvarg85 ; struct device_attribute *sensor_dev_attr_in5_min_group1 ; struct device *ldvarg140 ; struct device *sensor_dev_attr_temp3_max_hyst_group0 ; struct device_attribute *sensor_dev_attr_in2_min_group1 ; char *ldvarg110 ; char *ldvarg14 ; struct device_attribute *ldvarg163 ; struct device_attribute *dev_attr_vrm_group1 ; struct device *sensor_dev_attr_fan1_min_group0 ; void ldv_check_final_state(void) ; struct device *ldvarg161 ; struct device_attribute *ldvarg142 ; size_t ldvarg34 ; char *ldvarg160 ; char *ldvarg158 ; struct device_attribute *sensor_dev_attr_in0_max_group1 ; char *ldvarg39 ; struct device_attribute *ldvarg151 ; struct device *ldvarg122 ; size_t ldvarg144 ; struct device_attribute *dev_attr_pwm1_group1 ; char *ldvarg172 ; struct device *ldvarg57 ; char *ldvarg153 ; struct device_attribute *sensor_dev_attr_in1_min_group1 ; size_t ldvarg156 ; struct device_attribute *ldvarg166 ; size_t ldvarg66 ; struct device *ldvarg9 ; struct device_attribute *sensor_dev_attr_in3_min_group1 ; char *ldvarg26 ; struct device_attribute *ldvarg127 ; struct device *ldvarg116 ; struct device_attribute *ldvarg73 ; char *ldvarg88 ; struct device_attribute *sensor_dev_attr_fan1_div_group1 ; char *ldvarg78 ; struct device *sensor_dev_attr_in1_max_group0 ; struct device_attribute *sensor_dev_attr_fan2_div_group1 ; char *ldvarg17 ; struct i2c_board_info *ldvarg61 ; struct device_attribute *sensor_dev_attr_temp3_max_group1 ; size_t ldvarg22 ; struct device_attribute *sensor_dev_attr_in6_max_group1 ; char *ldvarg52 ; int main(void) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; int tmp___20 ; int tmp___21 ; int tmp___22 ; int tmp___23 ; int tmp___24 ; int tmp___25 ; int tmp___26 ; int tmp___27 ; int tmp___28 ; int tmp___29 ; int tmp___30 ; int tmp___31 ; int tmp___32 ; int tmp___33 ; int tmp___34 ; int tmp___35 ; int tmp___36 ; int tmp___37 ; int tmp___38 ; int tmp___39 ; int tmp___40 ; int tmp___41 ; int tmp___42 ; int tmp___43 ; int tmp___44 ; int tmp___45 ; int tmp___46 ; int tmp___47 ; int tmp___48 ; int tmp___49 ; int tmp___50 ; int tmp___51 ; int tmp___52 ; int tmp___53 ; int tmp___54 ; int tmp___55 ; int tmp___56 ; int tmp___57 ; int tmp___58 ; int tmp___59 ; { ldv_initialize(); ldv_state_variable_33 = 0; ldv_state_variable_32 = 0; ldv_state_variable_21 = 0; ldv_state_variable_7 = 0; ldv_state_variable_26 = 0; ldv_state_variable_17 = 0; ldv_state_variable_2 = 0; ldv_state_variable_1 = 0; ldv_state_variable_18 = 0; ldv_state_variable_30 = 0; ldv_state_variable_16 = 0; ldv_state_variable_44 = 0; ldv_state_variable_55 = 0; ldv_state_variable_27 = 0; ldv_state_variable_25 = 0; ldv_state_variable_28 = 0; ldv_state_variable_57 = 0; ldv_state_variable_40 = 0; ldv_state_variable_20 = 0; ldv_state_variable_14 = 0; ldv_state_variable_59 = 0; ldv_state_variable_49 = 0; ldv_state_variable_24 = 0; ldv_state_variable_10 = 0; ldv_state_variable_31 = 0; ldv_state_variable_35 = 0; ldv_state_variable_11 = 0; ldv_state_variable_53 = 0; ldv_state_variable_48 = 0; ldv_state_variable_42 = 0; ldv_state_variable_22 = 0; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_state_variable_46 = 0; ldv_state_variable_13 = 0; ldv_state_variable_23 = 0; ldv_state_variable_29 = 0; ldv_state_variable_6 = 0; ldv_state_variable_50 = 0; ldv_state_variable_39 = 0; ldv_state_variable_36 = 0; ldv_state_variable_3 = 0; ldv_state_variable_51 = 0; ldv_state_variable_9 = 0; ldv_state_variable_58 = 0; ldv_state_variable_41 = 0; ldv_state_variable_12 = 0; ldv_state_variable_47 = 0; ldv_state_variable_15 = 0; ldv_state_variable_52 = 0; ldv_state_variable_38 = 0; ldv_state_variable_8 = 0; ldv_state_variable_4 = 0; ldv_state_variable_34 = 0; ldv_state_variable_56 = 0; ldv_state_variable_45 = 0; ldv_state_variable_37 = 0; ldv_state_variable_43 = 0; ldv_state_variable_19 = 0; ldv_state_variable_54 = 0; ldv_state_variable_5 = 0; ldv_20864: tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_state_variable_33 != 0) { tmp___0 = __VERIFIER_nondet_int(); switch (tmp___0) { case 0: ; if (ldv_state_variable_33 == 1) { set_fan_min(sensor_dev_attr_fan2_min_group0, sensor_dev_attr_fan2_min_group1, (char const *)ldvarg2, ldvarg1); ldv_state_variable_33 = 1; } else { } goto ldv_20589; case 1: ; if (ldv_state_variable_33 == 1) { show_fan_min(sensor_dev_attr_fan2_min_group0, sensor_dev_attr_fan2_min_group1, ldvarg0); ldv_state_variable_33 = 1; } else { } goto ldv_20589; default: ; goto ldv_20589; } ldv_20589: ; } else { } goto ldv_20592; case 1: ; if (ldv_state_variable_32 != 0) { tmp___1 = __VERIFIER_nondet_int(); switch (tmp___1) { case 0: ; if (ldv_state_variable_32 == 1) { set_fan_div(sensor_dev_attr_fan2_div_group0, sensor_dev_attr_fan2_div_group1, (char const *)ldvarg5, ldvarg4); ldv_state_variable_32 = 1; } else { } goto ldv_20595; case 1: ; if (ldv_state_variable_32 == 1) { show_fan_div(sensor_dev_attr_fan2_div_group0, sensor_dev_attr_fan2_div_group1, ldvarg3); ldv_state_variable_32 = 1; } else { } goto ldv_20595; default: ; goto ldv_20595; } ldv_20595: ; } else { } goto ldv_20592; case 2: ; if (ldv_state_variable_21 != 0) { tmp___2 = __VERIFIER_nondet_int(); switch (tmp___2) { case 0: ; if (ldv_state_variable_21 == 1) { set_temp_max(sensor_dev_attr_temp3_max_group0, sensor_dev_attr_temp3_max_group1, (char const *)ldvarg8, ldvarg7); ldv_state_variable_21 = 1; } else { } goto ldv_20600; case 1: ; if (ldv_state_variable_21 == 1) { show_temp_max(sensor_dev_attr_temp3_max_group0, sensor_dev_attr_temp3_max_group1, ldvarg6); ldv_state_variable_21 = 1; } else { } goto ldv_20600; default: ; goto ldv_20600; } ldv_20600: ; } else { } goto ldv_20592; case 3: ; if (ldv_state_variable_7 != 0) { tmp___3 = __VERIFIER_nondet_int(); switch (tmp___3) { case 0: ; if (ldv_state_variable_7 == 1) { show_alarm(ldvarg9, ldvarg11, ldvarg10); ldv_state_variable_7 = 1; } else { } goto ldv_20605; default: ; goto ldv_20605; } ldv_20605: ; } else { } goto ldv_20592; case 4: ; if (ldv_state_variable_26 != 0) { tmp___4 = __VERIFIER_nondet_int(); switch (tmp___4) { case 0: ; if (ldv_state_variable_26 == 1) { set_temp_hyst(sensor_dev_attr_temp1_max_hyst_group0, sensor_dev_attr_temp1_max_hyst_group1, (char const *)ldvarg14, ldvarg13); ldv_state_variable_26 = 1; } else { } goto ldv_20609; case 1: ; if (ldv_state_variable_26 == 1) { show_temp_hyst(sensor_dev_attr_temp1_max_hyst_group0, sensor_dev_attr_temp1_max_hyst_group1, ldvarg12); ldv_state_variable_26 = 1; } else { } goto ldv_20609; default: ; goto ldv_20609; } ldv_20609: ; } else { } goto ldv_20592; case 5: ; if (ldv_state_variable_17 != 0) { tmp___5 = __VERIFIER_nondet_int(); switch (tmp___5) { case 0: ; if (ldv_state_variable_17 == 1) { set_temp_hyst(sensor_dev_attr_temp4_max_hyst_group0, sensor_dev_attr_temp4_max_hyst_group1, (char const *)ldvarg17, ldvarg16); ldv_state_variable_17 = 1; } else { } goto ldv_20614; case 1: ; if (ldv_state_variable_17 == 1) { show_temp_hyst(sensor_dev_attr_temp4_max_hyst_group0, sensor_dev_attr_temp4_max_hyst_group1, ldvarg15); ldv_state_variable_17 = 1; } else { } goto ldv_20614; default: ; goto ldv_20614; } ldv_20614: ; } else { } goto ldv_20592; case 6: ; if (ldv_state_variable_2 != 0) { tmp___6 = __VERIFIER_nondet_int(); switch (tmp___6) { case 0: ; if (ldv_state_variable_2 == 1) { set_pwm1(dev_attr_pwm1_group0, dev_attr_pwm1_group1, (char const *)ldvarg20, ldvarg19); ldv_state_variable_2 = 1; } else { } goto ldv_20619; case 1: ; if (ldv_state_variable_2 == 1) { show_pwm1(dev_attr_pwm1_group0, dev_attr_pwm1_group1, ldvarg18); ldv_state_variable_2 = 1; } else { } goto ldv_20619; default: ; goto ldv_20619; } ldv_20619: ; } else { } goto ldv_20592; case 7: ; if (ldv_state_variable_1 != 0) { tmp___7 = __VERIFIER_nondet_int(); switch (tmp___7) { case 0: ; if (ldv_state_variable_1 == 1) { set_pwm_enable1(dev_attr_pwm1_enable_group0, dev_attr_pwm1_enable_group1, (char const *)ldvarg23, ldvarg22); ldv_state_variable_1 = 1; } else { } goto ldv_20624; case 1: ; if (ldv_state_variable_1 == 1) { show_pwm_enable1(dev_attr_pwm1_enable_group0, dev_attr_pwm1_enable_group1, ldvarg21); ldv_state_variable_1 = 1; } else { } goto ldv_20624; default: ; goto ldv_20624; } ldv_20624: ; } else { } goto ldv_20592; case 8: ; if (ldv_state_variable_18 != 0) { tmp___8 = __VERIFIER_nondet_int(); switch (tmp___8) { case 0: ; if (ldv_state_variable_18 == 1) { set_temp_max(sensor_dev_attr_temp4_max_group0, sensor_dev_attr_temp4_max_group1, (char const *)ldvarg26, ldvarg25); ldv_state_variable_18 = 1; } else { } goto ldv_20629; case 1: ; if (ldv_state_variable_18 == 1) { show_temp_max(sensor_dev_attr_temp4_max_group0, sensor_dev_attr_temp4_max_group1, ldvarg24); ldv_state_variable_18 = 1; } else { } goto ldv_20629; default: ; goto ldv_20629; } ldv_20629: ; } else { } goto ldv_20592; case 9: ; if (ldv_state_variable_30 != 0) { tmp___9 = __VERIFIER_nondet_int(); switch (tmp___9) { case 0: ; if (ldv_state_variable_30 == 1) { set_fan_min(sensor_dev_attr_fan3_min_group0, sensor_dev_attr_fan3_min_group1, (char const *)ldvarg29, ldvarg28); ldv_state_variable_30 = 1; } else { } goto ldv_20634; case 1: ; if (ldv_state_variable_30 == 1) { show_fan_min(sensor_dev_attr_fan3_min_group0, sensor_dev_attr_fan3_min_group1, ldvarg27); ldv_state_variable_30 = 1; } else { } goto ldv_20634; default: ; goto ldv_20634; } ldv_20634: ; } else { } goto ldv_20592; case 10: ; if (ldv_state_variable_16 != 0) { tmp___10 = __VERIFIER_nondet_int(); switch (tmp___10) { case 0: ; if (ldv_state_variable_16 == 1) { show_vid(ldvarg30, ldvarg32, ldvarg31); ldv_state_variable_16 = 1; } else { } goto ldv_20639; default: ; goto ldv_20639; } ldv_20639: ; } else { } goto ldv_20592; case 11: ; if (ldv_state_variable_44 != 0) { tmp___11 = __VERIFIER_nondet_int(); switch (tmp___11) { case 0: ; if (ldv_state_variable_44 == 1) { set_in_max(sensor_dev_attr_in4_max_group0, sensor_dev_attr_in4_max_group1, (char const *)ldvarg35, ldvarg34); ldv_state_variable_44 = 1; } else { } goto ldv_20643; case 1: ; if (ldv_state_variable_44 == 1) { show_in_max(sensor_dev_attr_in4_max_group0, sensor_dev_attr_in4_max_group1, ldvarg33); ldv_state_variable_44 = 1; } else { } goto ldv_20643; default: ; goto ldv_20643; } ldv_20643: ; } else { } goto ldv_20592; case 12: ; if (ldv_state_variable_55 != 0) { tmp___12 = __VERIFIER_nondet_int(); switch (tmp___12) { case 0: ; if (ldv_state_variable_55 == 1) { show_in(ldvarg36, ldvarg38, ldvarg37); ldv_state_variable_55 = 1; } else { } goto ldv_20648; default: ; goto ldv_20648; } ldv_20648: ; } else { } goto ldv_20592; case 13: ; if (ldv_state_variable_27 != 0) { tmp___13 = __VERIFIER_nondet_int(); switch (tmp___13) { case 0: ; if (ldv_state_variable_27 == 1) { set_temp_max(sensor_dev_attr_temp1_max_group0, sensor_dev_attr_temp1_max_group1, (char const *)ldvarg41, ldvarg40); ldv_state_variable_27 = 1; } else { } goto ldv_20652; case 1: ; if (ldv_state_variable_27 == 1) { show_temp_max(sensor_dev_attr_temp1_max_group0, sensor_dev_attr_temp1_max_group1, ldvarg39); ldv_state_variable_27 = 1; } else { } goto ldv_20652; default: ; goto ldv_20652; } ldv_20652: ; } else { } goto ldv_20592; case 14: ; if (ldv_state_variable_25 != 0) { tmp___14 = __VERIFIER_nondet_int(); switch (tmp___14) { case 0: ; if (ldv_state_variable_25 == 1) { show_temp(ldvarg42, ldvarg44, ldvarg43); ldv_state_variable_25 = 1; } else { } goto ldv_20657; default: ; goto ldv_20657; } ldv_20657: ; } else { } goto ldv_20592; case 15: ; if (ldv_state_variable_28 != 0) { tmp___15 = __VERIFIER_nondet_int(); switch (tmp___15) { case 0: ; if (ldv_state_variable_28 == 1) { show_temp(ldvarg45, ldvarg47, ldvarg46); ldv_state_variable_28 = 1; } else { } goto ldv_20661; default: ; goto ldv_20661; } ldv_20661: ; } else { } goto ldv_20592; case 16: ; if (ldv_state_variable_57 != 0) { tmp___16 = __VERIFIER_nondet_int(); switch (tmp___16) { case 0: ; if (ldv_state_variable_57 == 1) { set_in_min(sensor_dev_attr_in0_min_group0, sensor_dev_attr_in0_min_group1, (char const *)ldvarg50, ldvarg49); ldv_state_variable_57 = 1; } else { } goto ldv_20665; case 1: ; if (ldv_state_variable_57 == 1) { show_in_min(sensor_dev_attr_in0_min_group0, sensor_dev_attr_in0_min_group1, ldvarg48); ldv_state_variable_57 = 1; } else { } goto ldv_20665; default: ; goto ldv_20665; } ldv_20665: ; } else { } goto ldv_20592; case 17: ; if (ldv_state_variable_40 != 0) { tmp___17 = __VERIFIER_nondet_int(); switch (tmp___17) { case 0: ; if (ldv_state_variable_40 == 1) { show_in(ldvarg51, ldvarg53, ldvarg52); ldv_state_variable_40 = 1; } else { } goto ldv_20670; default: ; goto ldv_20670; } ldv_20670: ; } else { } goto ldv_20592; case 18: ; if (ldv_state_variable_20 != 0) { tmp___18 = __VERIFIER_nondet_int(); switch (tmp___18) { case 0: ; if (ldv_state_variable_20 == 1) { set_temp_hyst(sensor_dev_attr_temp3_max_hyst_group0, sensor_dev_attr_temp3_max_hyst_group1, (char const *)ldvarg56, ldvarg55); ldv_state_variable_20 = 1; } else { } goto ldv_20674; case 1: ; if (ldv_state_variable_20 == 1) { show_temp_hyst(sensor_dev_attr_temp3_max_hyst_group0, sensor_dev_attr_temp3_max_hyst_group1, ldvarg54); ldv_state_variable_20 = 1; } else { } goto ldv_20674; default: ; goto ldv_20674; } ldv_20674: ; } else { } goto ldv_20592; case 19: ; if (ldv_state_variable_14 != 0) { tmp___19 = __VERIFIER_nondet_int(); switch (tmp___19) { case 0: ; if (ldv_state_variable_14 == 1) { show_alarms(ldvarg57, ldvarg59, ldvarg58); ldv_state_variable_14 = 1; } else { } goto ldv_20679; default: ; goto ldv_20679; } ldv_20679: ; } else { } goto ldv_20592; case 20: ; if (ldv_state_variable_59 != 0) { tmp___20 = __VERIFIER_nondet_int(); switch (tmp___20) { case 0: ; if (ldv_state_variable_59 == 1) { asb100_detect(asb100_driver_group0, ldvarg61); ldv_state_variable_59 = 1; } else { } if (ldv_state_variable_59 == 2) { asb100_detect(asb100_driver_group0, ldvarg61); ldv_state_variable_59 = 2; } else { } goto ldv_20683; case 1: ; if (ldv_state_variable_59 == 1) { ldv_retval_0 = asb100_probe(asb100_driver_group0, (struct i2c_device_id const *)ldvarg60); if (ldv_retval_0 == 0) { ldv_state_variable_59 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_20683; case 2: ; if (ldv_state_variable_59 == 2) { asb100_remove(asb100_driver_group0); ldv_state_variable_59 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_20683; default: ; goto ldv_20683; } ldv_20683: ; } else { } goto ldv_20592; case 21: ; if (ldv_state_variable_49 != 0) { tmp___21 = __VERIFIER_nondet_int(); switch (tmp___21) { case 0: ; if (ldv_state_variable_49 == 1) { show_in(ldvarg62, ldvarg64, ldvarg63); ldv_state_variable_49 = 1; } else { } goto ldv_20689; default: ; goto ldv_20689; } ldv_20689: ; } else { } goto ldv_20592; case 22: ; if (ldv_state_variable_24 != 0) { tmp___22 = __VERIFIER_nondet_int(); switch (tmp___22) { case 0: ; if (ldv_state_variable_24 == 1) { set_temp_max(sensor_dev_attr_temp2_max_group0, sensor_dev_attr_temp2_max_group1, (char const *)ldvarg67, ldvarg66); ldv_state_variable_24 = 1; } else { } goto ldv_20693; case 1: ; if (ldv_state_variable_24 == 1) { show_temp_max(sensor_dev_attr_temp2_max_group0, sensor_dev_attr_temp2_max_group1, ldvarg65); ldv_state_variable_24 = 1; } else { } goto ldv_20693; default: ; goto ldv_20693; } ldv_20693: ; } else { } goto ldv_20592; case 23: ; if (ldv_state_variable_10 != 0) { tmp___23 = __VERIFIER_nondet_int(); switch (tmp___23) { case 0: ; if (ldv_state_variable_10 == 1) { show_alarm(ldvarg68, ldvarg70, ldvarg69); ldv_state_variable_10 = 1; } else { } goto ldv_20698; default: ; goto ldv_20698; } ldv_20698: ; } else { } goto ldv_20592; case 24: ; if (ldv_state_variable_31 != 0) { tmp___24 = __VERIFIER_nondet_int(); switch (tmp___24) { case 0: ; if (ldv_state_variable_31 == 1) { show_fan(ldvarg71, ldvarg73, ldvarg72); ldv_state_variable_31 = 1; } else { } goto ldv_20702; default: ; goto ldv_20702; } ldv_20702: ; } else { } goto ldv_20592; case 25: ; if (ldv_state_variable_35 != 0) { tmp___25 = __VERIFIER_nondet_int(); switch (tmp___25) { case 0: ; if (ldv_state_variable_35 == 1) { set_fan_div(sensor_dev_attr_fan1_div_group0, sensor_dev_attr_fan1_div_group1, (char const *)ldvarg76, ldvarg75); ldv_state_variable_35 = 1; } else { } goto ldv_20706; case 1: ; if (ldv_state_variable_35 == 1) { show_fan_div(sensor_dev_attr_fan1_div_group0, sensor_dev_attr_fan1_div_group1, ldvarg74); ldv_state_variable_35 = 1; } else { } goto ldv_20706; default: ; goto ldv_20706; } ldv_20706: ; } else { } goto ldv_20592; case 26: ; if (ldv_state_variable_11 != 0) { tmp___26 = __VERIFIER_nondet_int(); switch (tmp___26) { case 0: ; if (ldv_state_variable_11 == 1) { show_alarm(ldvarg77, ldvarg79, ldvarg78); ldv_state_variable_11 = 1; } else { } goto ldv_20711; default: ; goto ldv_20711; } ldv_20711: ; } else { } goto ldv_20592; case 27: ; if (ldv_state_variable_53 != 0) { tmp___27 = __VERIFIER_nondet_int(); switch (tmp___27) { case 0: ; if (ldv_state_variable_53 == 1) { set_in_max(sensor_dev_attr_in1_max_group0, sensor_dev_attr_in1_max_group1, (char const *)ldvarg82, ldvarg81); ldv_state_variable_53 = 1; } else { } goto ldv_20715; case 1: ; if (ldv_state_variable_53 == 1) { show_in_max(sensor_dev_attr_in1_max_group0, sensor_dev_attr_in1_max_group1, ldvarg80); ldv_state_variable_53 = 1; } else { } goto ldv_20715; default: ; goto ldv_20715; } ldv_20715: ; } else { } goto ldv_20592; case 28: ; if (ldv_state_variable_48 != 0) { tmp___28 = __VERIFIER_nondet_int(); switch (tmp___28) { case 0: ; if (ldv_state_variable_48 == 1) { set_in_min(sensor_dev_attr_in3_min_group0, sensor_dev_attr_in3_min_group1, (char const *)ldvarg85, ldvarg84); ldv_state_variable_48 = 1; } else { } goto ldv_20720; case 1: ; if (ldv_state_variable_48 == 1) { show_in_min(sensor_dev_attr_in3_min_group0, sensor_dev_attr_in3_min_group1, ldvarg83); ldv_state_variable_48 = 1; } else { } goto ldv_20720; default: ; goto ldv_20720; } ldv_20720: ; } else { } goto ldv_20592; case 29: ; if (ldv_state_variable_42 != 0) { tmp___29 = __VERIFIER_nondet_int(); switch (tmp___29) { case 0: ; if (ldv_state_variable_42 == 1) { set_in_min(sensor_dev_attr_in5_min_group0, sensor_dev_attr_in5_min_group1, (char const *)ldvarg88, ldvarg87); ldv_state_variable_42 = 1; } else { } goto ldv_20725; case 1: ; if (ldv_state_variable_42 == 1) { show_in_min(sensor_dev_attr_in5_min_group0, sensor_dev_attr_in5_min_group1, ldvarg86); ldv_state_variable_42 = 1; } else { } goto ldv_20725; default: ; goto ldv_20725; } ldv_20725: ; } else { } goto ldv_20592; case 30: ; if (ldv_state_variable_22 != 0) { tmp___30 = __VERIFIER_nondet_int(); switch (tmp___30) { case 0: ; if (ldv_state_variable_22 == 1) { show_temp(ldvarg89, ldvarg91, ldvarg90); ldv_state_variable_22 = 1; } else { } goto ldv_20730; default: ; goto ldv_20730; } ldv_20730: ; } else { } goto ldv_20592; case 31: ; if (ldv_state_variable_0 != 0) { tmp___31 = __VERIFIER_nondet_int(); switch (tmp___31) { case 0: ; if (ldv_state_variable_0 == 3 && ref_cnt == 0) { asb100_driver_exit(); ldv_state_variable_0 = 2; goto ldv_final; } else { } goto ldv_20735; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_1 = asb100_driver_init(); if (ldv_retval_1 == 0) { ldv_state_variable_0 = 3; ldv_state_variable_5 = 1; ldv_state_variable_54 = 1; ldv_state_variable_19 = 1; ldv_state_variable_43 = 1; ldv_state_variable_37 = 1; ldv_state_variable_45 = 1; ldv_state_variable_56 = 1; ldv_state_variable_34 = 1; ldv_state_variable_4 = 1; ldv_state_variable_8 = 1; ldv_state_variable_38 = 1; ldv_state_variable_52 = 1; ldv_state_variable_15 = 1; ldv_state_variable_47 = 1; ldv_state_variable_12 = 1; ldv_state_variable_41 = 1; ldv_state_variable_58 = 1; ldv_state_variable_9 = 1; ldv_state_variable_51 = 1; ldv_state_variable_3 = 1; ldv_state_variable_36 = 1; ldv_state_variable_39 = 1; ldv_state_variable_50 = 1; ldv_state_variable_6 = 1; ldv_state_variable_29 = 1; ldv_state_variable_23 = 1; ldv_state_variable_13 = 1; ldv_state_variable_46 = 1; ldv_state_variable_22 = 1; ldv_state_variable_42 = 1; ldv_state_variable_48 = 1; ldv_state_variable_53 = 1; ldv_state_variable_11 = 1; ldv_state_variable_35 = 1; ldv_state_variable_31 = 1; ldv_state_variable_10 = 1; ldv_state_variable_24 = 1; ldv_state_variable_49 = 1; ldv_state_variable_59 = 1; ldv_state_variable_14 = 1; ldv_state_variable_20 = 1; ldv_state_variable_40 = 1; ldv_state_variable_57 = 1; ldv_state_variable_28 = 1; ldv_state_variable_25 = 1; ldv_state_variable_27 = 1; ldv_state_variable_55 = 1; ldv_state_variable_44 = 1; ldv_state_variable_16 = 1; ldv_state_variable_30 = 1; ldv_state_variable_18 = 1; ldv_state_variable_1 = 1; ldv_state_variable_2 = 1; ldv_state_variable_17 = 1; ldv_state_variable_26 = 1; ldv_state_variable_7 = 1; ldv_state_variable_21 = 1; ldv_state_variable_32 = 1; ldv_state_variable_33 = 1; } else { } if (ldv_retval_1 != 0) { ldv_state_variable_0 = 2; goto ldv_final; } else { } } else { } goto ldv_20735; default: ; goto ldv_20735; } ldv_20735: ; } else { } goto ldv_20592; case 32: ; if (ldv_state_variable_46 != 0) { tmp___32 = __VERIFIER_nondet_int(); switch (tmp___32) { case 0: ; if (ldv_state_variable_46 == 1) { show_in(ldvarg92, ldvarg94, ldvarg93); ldv_state_variable_46 = 1; } else { } goto ldv_20740; default: ; goto ldv_20740; } ldv_20740: ; } else { } goto ldv_20592; case 33: ; if (ldv_state_variable_13 != 0) { tmp___33 = __VERIFIER_nondet_int(); switch (tmp___33) { case 0: ; if (ldv_state_variable_13 == 1) { show_alarm(ldvarg95, ldvarg97, ldvarg96); ldv_state_variable_13 = 1; } else { } goto ldv_20744; default: ; goto ldv_20744; } ldv_20744: ; } else { } goto ldv_20592; case 34: ; if (ldv_state_variable_23 != 0) { tmp___34 = __VERIFIER_nondet_int(); switch (tmp___34) { case 0: ; if (ldv_state_variable_23 == 1) { set_temp_hyst(sensor_dev_attr_temp2_max_hyst_group0, sensor_dev_attr_temp2_max_hyst_group1, (char const *)ldvarg100, ldvarg99); ldv_state_variable_23 = 1; } else { } goto ldv_20748; case 1: ; if (ldv_state_variable_23 == 1) { show_temp_hyst(sensor_dev_attr_temp2_max_hyst_group0, sensor_dev_attr_temp2_max_hyst_group1, ldvarg98); ldv_state_variable_23 = 1; } else { } goto ldv_20748; default: ; goto ldv_20748; } ldv_20748: ; } else { } goto ldv_20592; case 35: ; if (ldv_state_variable_29 != 0) { tmp___35 = __VERIFIER_nondet_int(); switch (tmp___35) { case 0: ; if (ldv_state_variable_29 == 1) { set_fan_div(sensor_dev_attr_fan3_div_group0, sensor_dev_attr_fan3_div_group1, (char const *)ldvarg103, ldvarg102); ldv_state_variable_29 = 1; } else { } goto ldv_20753; case 1: ; if (ldv_state_variable_29 == 1) { show_fan_div(sensor_dev_attr_fan3_div_group0, sensor_dev_attr_fan3_div_group1, ldvarg101); ldv_state_variable_29 = 1; } else { } goto ldv_20753; default: ; goto ldv_20753; } ldv_20753: ; } else { } goto ldv_20592; case 36: ; if (ldv_state_variable_6 != 0) { tmp___36 = __VERIFIER_nondet_int(); switch (tmp___36) { case 0: ; if (ldv_state_variable_6 == 1) { show_alarm(ldvarg104, ldvarg106, ldvarg105); ldv_state_variable_6 = 1; } else { } goto ldv_20758; default: ; goto ldv_20758; } ldv_20758: ; } else { } goto ldv_20592; case 37: ; if (ldv_state_variable_50 != 0) { tmp___37 = __VERIFIER_nondet_int(); switch (tmp___37) { case 0: ; if (ldv_state_variable_50 == 1) { set_in_max(sensor_dev_attr_in2_max_group0, sensor_dev_attr_in2_max_group1, (char const *)ldvarg109, ldvarg108); ldv_state_variable_50 = 1; } else { } goto ldv_20762; case 1: ; if (ldv_state_variable_50 == 1) { show_in_max(sensor_dev_attr_in2_max_group0, sensor_dev_attr_in2_max_group1, ldvarg107); ldv_state_variable_50 = 1; } else { } goto ldv_20762; default: ; goto ldv_20762; } ldv_20762: ; } else { } goto ldv_20592; case 38: ; if (ldv_state_variable_39 != 0) { tmp___38 = __VERIFIER_nondet_int(); switch (tmp___38) { case 0: ; if (ldv_state_variable_39 == 1) { set_in_min(sensor_dev_attr_in6_min_group0, sensor_dev_attr_in6_min_group1, (char const *)ldvarg112, ldvarg111); ldv_state_variable_39 = 1; } else { } goto ldv_20767; case 1: ; if (ldv_state_variable_39 == 1) { show_in_min(sensor_dev_attr_in6_min_group0, sensor_dev_attr_in6_min_group1, ldvarg110); ldv_state_variable_39 = 1; } else { } goto ldv_20767; default: ; goto ldv_20767; } ldv_20767: ; } else { } goto ldv_20592; case 39: ; if (ldv_state_variable_36 != 0) { tmp___39 = __VERIFIER_nondet_int(); switch (tmp___39) { case 0: ; if (ldv_state_variable_36 == 1) { set_fan_min(sensor_dev_attr_fan1_min_group0, sensor_dev_attr_fan1_min_group1, (char const *)ldvarg115, ldvarg114); ldv_state_variable_36 = 1; } else { } goto ldv_20772; case 1: ; if (ldv_state_variable_36 == 1) { show_fan_min(sensor_dev_attr_fan1_min_group0, sensor_dev_attr_fan1_min_group1, ldvarg113); ldv_state_variable_36 = 1; } else { } goto ldv_20772; default: ; goto ldv_20772; } ldv_20772: ; } else { } goto ldv_20592; case 40: ; if (ldv_state_variable_3 != 0) { tmp___40 = __VERIFIER_nondet_int(); switch (tmp___40) { case 0: ; if (ldv_state_variable_3 == 1) { show_alarm(ldvarg116, ldvarg118, ldvarg117); ldv_state_variable_3 = 1; } else { } goto ldv_20777; default: ; goto ldv_20777; } ldv_20777: ; } else { } goto ldv_20592; case 41: ; if (ldv_state_variable_51 != 0) { tmp___41 = __VERIFIER_nondet_int(); switch (tmp___41) { case 0: ; if (ldv_state_variable_51 == 1) { set_in_min(sensor_dev_attr_in2_min_group0, sensor_dev_attr_in2_min_group1, (char const *)ldvarg121, ldvarg120); ldv_state_variable_51 = 1; } else { } goto ldv_20781; case 1: ; if (ldv_state_variable_51 == 1) { show_in_min(sensor_dev_attr_in2_min_group0, sensor_dev_attr_in2_min_group1, ldvarg119); ldv_state_variable_51 = 1; } else { } goto ldv_20781; default: ; goto ldv_20781; } ldv_20781: ; } else { } goto ldv_20592; case 42: ; if (ldv_state_variable_9 != 0) { tmp___42 = __VERIFIER_nondet_int(); switch (tmp___42) { case 0: ; if (ldv_state_variable_9 == 1) { show_alarm(ldvarg122, ldvarg124, ldvarg123); ldv_state_variable_9 = 1; } else { } goto ldv_20786; default: ; goto ldv_20786; } ldv_20786: ; } else { } goto ldv_20592; case 43: ; if (ldv_state_variable_58 != 0) { tmp___43 = __VERIFIER_nondet_int(); switch (tmp___43) { case 0: ; if (ldv_state_variable_58 == 1) { show_in(ldvarg125, ldvarg127, ldvarg126); ldv_state_variable_58 = 1; } else { } goto ldv_20790; default: ; goto ldv_20790; } ldv_20790: ; } else { } goto ldv_20592; case 44: ; if (ldv_state_variable_41 != 0) { tmp___44 = __VERIFIER_nondet_int(); switch (tmp___44) { case 0: ; if (ldv_state_variable_41 == 1) { set_in_max(sensor_dev_attr_in5_max_group0, sensor_dev_attr_in5_max_group1, (char const *)ldvarg130, ldvarg129); ldv_state_variable_41 = 1; } else { } goto ldv_20794; case 1: ; if (ldv_state_variable_41 == 1) { show_in_max(sensor_dev_attr_in5_max_group0, sensor_dev_attr_in5_max_group1, ldvarg128); ldv_state_variable_41 = 1; } else { } goto ldv_20794; default: ; goto ldv_20794; } ldv_20794: ; } else { } goto ldv_20592; case 45: ; if (ldv_state_variable_12 != 0) { tmp___45 = __VERIFIER_nondet_int(); switch (tmp___45) { case 0: ; if (ldv_state_variable_12 == 1) { show_alarm(ldvarg131, ldvarg133, ldvarg132); ldv_state_variable_12 = 1; } else { } goto ldv_20799; default: ; goto ldv_20799; } ldv_20799: ; } else { } goto ldv_20592; case 46: ; if (ldv_state_variable_47 != 0) { tmp___46 = __VERIFIER_nondet_int(); switch (tmp___46) { case 0: ; if (ldv_state_variable_47 == 1) { set_in_max(sensor_dev_attr_in3_max_group0, sensor_dev_attr_in3_max_group1, (char const *)ldvarg136, ldvarg135); ldv_state_variable_47 = 1; } else { } goto ldv_20803; case 1: ; if (ldv_state_variable_47 == 1) { show_in_max(sensor_dev_attr_in3_max_group0, sensor_dev_attr_in3_max_group1, ldvarg134); ldv_state_variable_47 = 1; } else { } goto ldv_20803; default: ; goto ldv_20803; } ldv_20803: ; } else { } goto ldv_20592; case 47: ; if (ldv_state_variable_15 != 0) { tmp___47 = __VERIFIER_nondet_int(); switch (tmp___47) { case 0: ; if (ldv_state_variable_15 == 1) { set_vrm(dev_attr_vrm_group0, dev_attr_vrm_group1, (char const *)ldvarg139, ldvarg138); ldv_state_variable_15 = 1; } else { } goto ldv_20808; case 1: ; if (ldv_state_variable_15 == 1) { show_vrm(dev_attr_vrm_group0, dev_attr_vrm_group1, ldvarg137); ldv_state_variable_15 = 1; } else { } goto ldv_20808; default: ; goto ldv_20808; } ldv_20808: ; } else { } goto ldv_20592; case 48: ; if (ldv_state_variable_52 != 0) { tmp___48 = __VERIFIER_nondet_int(); switch (tmp___48) { case 0: ; if (ldv_state_variable_52 == 1) { show_in(ldvarg140, ldvarg142, ldvarg141); ldv_state_variable_52 = 1; } else { } goto ldv_20813; default: ; goto ldv_20813; } ldv_20813: ; } else { } goto ldv_20592; case 49: ; if (ldv_state_variable_38 != 0) { tmp___49 = __VERIFIER_nondet_int(); switch (tmp___49) { case 0: ; if (ldv_state_variable_38 == 1) { set_in_max(sensor_dev_attr_in6_max_group0, sensor_dev_attr_in6_max_group1, (char const *)ldvarg145, ldvarg144); ldv_state_variable_38 = 1; } else { } goto ldv_20817; case 1: ; if (ldv_state_variable_38 == 1) { show_in_max(sensor_dev_attr_in6_max_group0, sensor_dev_attr_in6_max_group1, ldvarg143); ldv_state_variable_38 = 1; } else { } goto ldv_20817; default: ; goto ldv_20817; } ldv_20817: ; } else { } goto ldv_20592; case 50: ; if (ldv_state_variable_8 != 0) { tmp___50 = __VERIFIER_nondet_int(); switch (tmp___50) { case 0: ; if (ldv_state_variable_8 == 1) { show_alarm(ldvarg146, ldvarg148, ldvarg147); ldv_state_variable_8 = 1; } else { } goto ldv_20822; default: ; goto ldv_20822; } ldv_20822: ; } else { } goto ldv_20592; case 51: ; if (ldv_state_variable_4 != 0) { tmp___51 = __VERIFIER_nondet_int(); switch (tmp___51) { case 0: ; if (ldv_state_variable_4 == 1) { show_alarm(ldvarg149, ldvarg151, ldvarg150); ldv_state_variable_4 = 1; } else { } goto ldv_20826; default: ; goto ldv_20826; } ldv_20826: ; } else { } goto ldv_20592; case 52: ; if (ldv_state_variable_34 != 0) { tmp___52 = __VERIFIER_nondet_int(); switch (tmp___52) { case 0: ; if (ldv_state_variable_34 == 1) { show_fan(ldvarg152, ldvarg154, ldvarg153); ldv_state_variable_34 = 1; } else { } goto ldv_20830; default: ; goto ldv_20830; } ldv_20830: ; } else { } goto ldv_20592; case 53: ; if (ldv_state_variable_56 != 0) { tmp___53 = __VERIFIER_nondet_int(); switch (tmp___53) { case 0: ; if (ldv_state_variable_56 == 1) { set_in_max(sensor_dev_attr_in0_max_group0, sensor_dev_attr_in0_max_group1, (char const *)ldvarg157, ldvarg156); ldv_state_variable_56 = 1; } else { } goto ldv_20834; case 1: ; if (ldv_state_variable_56 == 1) { show_in_max(sensor_dev_attr_in0_max_group0, sensor_dev_attr_in0_max_group1, ldvarg155); ldv_state_variable_56 = 1; } else { } goto ldv_20834; default: ; goto ldv_20834; } ldv_20834: ; } else { } goto ldv_20592; case 54: ; if (ldv_state_variable_45 != 0) { tmp___54 = __VERIFIER_nondet_int(); switch (tmp___54) { case 0: ; if (ldv_state_variable_45 == 1) { set_in_min(sensor_dev_attr_in4_min_group0, sensor_dev_attr_in4_min_group1, (char const *)ldvarg160, ldvarg159); ldv_state_variable_45 = 1; } else { } goto ldv_20839; case 1: ; if (ldv_state_variable_45 == 1) { show_in_min(sensor_dev_attr_in4_min_group0, sensor_dev_attr_in4_min_group1, ldvarg158); ldv_state_variable_45 = 1; } else { } goto ldv_20839; default: ; goto ldv_20839; } ldv_20839: ; } else { } goto ldv_20592; case 55: ; if (ldv_state_variable_37 != 0) { tmp___55 = __VERIFIER_nondet_int(); switch (tmp___55) { case 0: ; if (ldv_state_variable_37 == 1) { show_fan(ldvarg161, ldvarg163, ldvarg162); ldv_state_variable_37 = 1; } else { } goto ldv_20844; default: ; goto ldv_20844; } ldv_20844: ; } else { } goto ldv_20592; case 56: ; if (ldv_state_variable_43 != 0) { tmp___56 = __VERIFIER_nondet_int(); switch (tmp___56) { case 0: ; if (ldv_state_variable_43 == 1) { show_in(ldvarg164, ldvarg166, ldvarg165); ldv_state_variable_43 = 1; } else { } goto ldv_20848; default: ; goto ldv_20848; } ldv_20848: ; } else { } goto ldv_20592; case 57: ; if (ldv_state_variable_19 != 0) { tmp___57 = __VERIFIER_nondet_int(); switch (tmp___57) { case 0: ; if (ldv_state_variable_19 == 1) { show_temp(ldvarg167, ldvarg169, ldvarg168); ldv_state_variable_19 = 1; } else { } goto ldv_20852; default: ; goto ldv_20852; } ldv_20852: ; } else { } goto ldv_20592; case 58: ; if (ldv_state_variable_54 != 0) { tmp___58 = __VERIFIER_nondet_int(); switch (tmp___58) { case 0: ; if (ldv_state_variable_54 == 1) { set_in_min(sensor_dev_attr_in1_min_group0, sensor_dev_attr_in1_min_group1, (char const *)ldvarg172, ldvarg171); ldv_state_variable_54 = 1; } else { } goto ldv_20856; case 1: ; if (ldv_state_variable_54 == 1) { show_in_min(sensor_dev_attr_in1_min_group0, sensor_dev_attr_in1_min_group1, ldvarg170); ldv_state_variable_54 = 1; } else { } goto ldv_20856; default: ; goto ldv_20856; } ldv_20856: ; } else { } goto ldv_20592; case 59: ; if (ldv_state_variable_5 != 0) { tmp___59 = __VERIFIER_nondet_int(); switch (tmp___59) { case 0: ; if (ldv_state_variable_5 == 1) { show_alarm(ldvarg173, ldvarg175, ldvarg174); ldv_state_variable_5 = 1; } else { } goto ldv_20861; default: ; goto ldv_20861; } ldv_20861: ; } else { } goto ldv_20592; default: ; goto ldv_20592; } ldv_20592: ; goto ldv_20864; ldv_final: ldv_check_final_state(); return 0; } } void ldv_mutex_lock_1(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_2(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_3(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_4(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_5(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_6(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_cred_guard_mutex_of_signal_struct(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_7(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_cred_guard_mutex_of_signal_struct(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_8(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_asb100_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_9(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_asb100_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_10(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_asb100_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_11(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_asb100_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_12(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_asb100_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_13(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_asb100_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_14(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_asb100_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_15(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_asb100_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_16(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_asb100_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_17(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_asb100_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_18(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_asb100_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_19(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_asb100_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_20(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_asb100_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_21(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_asb100_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_22(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_asb100_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_23(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_asb100_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_24(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock_of_asb100_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_25(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock_of_asb100_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_26(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock_of_asb100_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_27(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock_of_asb100_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_28(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_update_lock_of_asb100_data(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_29(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_update_lock_of_asb100_data(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } __inline static void ldv_error(void) __attribute__((__no_instrument_function__)) ; __inline static void ldv_error(void) { { ERROR: __VERIFIER_error(); } } extern int __VERIFIER_nondet_int(void) ; long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { ldv_error(); return; } } static int ldv_mutex_cred_guard_mutex_of_signal_struct ; int ldv_mutex_lock_interruptible_cred_guard_mutex_of_signal_struct(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_cred_guard_mutex_of_signal_struct = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_cred_guard_mutex_of_signal_struct(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_cred_guard_mutex_of_signal_struct = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_cred_guard_mutex_of_signal_struct(struct mutex *lock ) { { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { } else { ldv_error(); } ldv_mutex_cred_guard_mutex_of_signal_struct = 2; return; } } int ldv_mutex_trylock_cred_guard_mutex_of_signal_struct(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_cred_guard_mutex_of_signal_struct = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_cred_guard_mutex_of_signal_struct(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_cred_guard_mutex_of_signal_struct = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_cred_guard_mutex_of_signal_struct(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_cred_guard_mutex_of_signal_struct(struct mutex *lock ) { { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 2) { } else { ldv_error(); } ldv_mutex_cred_guard_mutex_of_signal_struct = 1; return; } } static int ldv_mutex_lock ; int ldv_mutex_lock_interruptible_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock(struct mutex *lock ) { { if (ldv_mutex_lock == 1) { } else { ldv_error(); } ldv_mutex_lock = 2; return; } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_lock = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { if (ldv_mutex_lock == 2) { } else { ldv_error(); } ldv_mutex_lock = 1; return; } } static int ldv_mutex_lock_of_asb100_data ; int ldv_mutex_lock_interruptible_lock_of_asb100_data(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock_of_asb100_data == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_lock_of_asb100_data = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock_of_asb100_data(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock_of_asb100_data == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_lock_of_asb100_data = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock_of_asb100_data(struct mutex *lock ) { { if (ldv_mutex_lock_of_asb100_data == 1) { } else { ldv_error(); } ldv_mutex_lock_of_asb100_data = 2; return; } } int ldv_mutex_trylock_lock_of_asb100_data(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock_of_asb100_data == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_lock_of_asb100_data = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock_of_asb100_data(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock_of_asb100_data == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock_of_asb100_data = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock_of_asb100_data(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock_of_asb100_data == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock_of_asb100_data(struct mutex *lock ) { { if (ldv_mutex_lock_of_asb100_data == 2) { } else { ldv_error(); } ldv_mutex_lock_of_asb100_data = 1; return; } } static int ldv_mutex_mutex_of_device ; int ldv_mutex_lock_interruptible_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } ldv_mutex_mutex_of_device = 2; return; } } int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_mutex_of_device = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mutex_of_device = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device == 2) { } else { ldv_error(); } ldv_mutex_mutex_of_device = 1; return; } } static int ldv_mutex_update_lock_of_asb100_data ; int ldv_mutex_lock_interruptible_update_lock_of_asb100_data(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_update_lock_of_asb100_data == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_update_lock_of_asb100_data = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_update_lock_of_asb100_data(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_update_lock_of_asb100_data == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_update_lock_of_asb100_data = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_update_lock_of_asb100_data(struct mutex *lock ) { { if (ldv_mutex_update_lock_of_asb100_data == 1) { } else { ldv_error(); } ldv_mutex_update_lock_of_asb100_data = 2; return; } } int ldv_mutex_trylock_update_lock_of_asb100_data(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_update_lock_of_asb100_data == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_update_lock_of_asb100_data = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_update_lock_of_asb100_data(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_update_lock_of_asb100_data == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_update_lock_of_asb100_data = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_update_lock_of_asb100_data(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_update_lock_of_asb100_data == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_update_lock_of_asb100_data(struct mutex *lock ) { { if (ldv_mutex_update_lock_of_asb100_data == 2) { } else { ldv_error(); } ldv_mutex_update_lock_of_asb100_data = 1; return; } } void ldv_initialize(void) { { ldv_mutex_cred_guard_mutex_of_signal_struct = 1; ldv_mutex_lock = 1; ldv_mutex_lock_of_asb100_data = 1; ldv_mutex_mutex_of_device = 1; ldv_mutex_update_lock_of_asb100_data = 1; return; } } void ldv_check_final_state(void) { { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { } else { ldv_error(); } if (ldv_mutex_lock == 1) { } else { ldv_error(); } if (ldv_mutex_lock_of_asb100_data == 1) { } else { ldv_error(); } if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } if (ldv_mutex_update_lock_of_asb100_data == 1) { } else { ldv_error(); } return; } }