extern void __VERIFIER_error() __attribute__ ((__noreturn__)); /* Generated by CIL v. 1.3.7 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef long long __s64; typedef unsigned long long __u64; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct module; typedef void (*ctor_fn_t)(void); struct file_operations; struct device; struct completion; struct pt_regs; struct pid; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion_ldv_2024_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion_ldv_2024_8 ldv_2024 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct_ldv_2031_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct_ldv_2031_10 ldv_2031 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct mm_struct; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct_ldv_2096_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct_ldv_2111_13 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion_ldv_2112_11 { struct __anonstruct_ldv_2096_12 ldv_2096 ; struct __anonstruct_ldv_2111_13 ldv_2111 ; }; struct desc_struct { union __anonunion_ldv_2112_11 ldv_2112 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct cpumask; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion_ldv_2767_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion_ldv_2767_18 ldv_2767 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[64U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct_ldv_5125_23 { u64 rip ; u64 rdp ; }; struct __anonstruct_ldv_5131_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion_ldv_5132_22 { struct __anonstruct_ldv_5125_23 ldv_5125 ; struct __anonstruct_ldv_5131_24 ldv_5131 ; }; union __anonunion_ldv_5141_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion_ldv_5132_22 ldv_5132 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion_ldv_5141_25 ldv_5141 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; } __attribute__((__packed__)) ; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 2 ; unsigned char hardirqs_off : 1 ; unsigned short references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct_ldv_5960_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion_ldv_5961_28 { struct raw_spinlock rlock ; struct __anonstruct_ldv_5960_29 ldv_5960 ; }; struct spinlock { union __anonunion_ldv_5961_28 ldv_5961 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct inode; struct dentry; struct user_namespace; struct timespec; struct seqcount { unsigned int sequence ; }; typedef struct seqcount seqcount_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct __anonstruct_nodemask_t_37 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_37 nodemask_t; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct vm_area_struct; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; int cpu ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct uprobe; struct uprobe_task { enum uprobe_task_state state ; struct arch_uprobe_task autask ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; unsigned long vaddr ; }; struct xol_area { wait_queue_head_t wq ; atomic_t slot_count ; unsigned long *bitmap ; struct page *page ; unsigned long vaddr ; }; struct uprobes_state { struct xol_area *xol_area ; }; struct __anonstruct_mm_context_t_38 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_38 mm_context_t; struct address_space; union __anonunion_ldv_8513_40 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct_ldv_8523_44 { unsigned short inuse ; unsigned short objects : 15 ; unsigned char frozen : 1 ; }; union __anonunion_ldv_8525_43 { atomic_t _mapcount ; struct __anonstruct_ldv_8523_44 ldv_8523 ; int units ; }; struct __anonstruct_ldv_8527_42 { union __anonunion_ldv_8525_43 ldv_8525 ; atomic_t _count ; }; union __anonunion_ldv_8528_41 { unsigned long counters ; struct __anonstruct_ldv_8527_42 ldv_8527 ; }; struct __anonstruct_ldv_8529_39 { union __anonunion_ldv_8513_40 ldv_8513 ; union __anonunion_ldv_8528_41 ldv_8528 ; }; struct __anonstruct_ldv_8536_46 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion_ldv_8540_45 { struct list_head lru ; struct __anonstruct_ldv_8536_46 ldv_8536 ; struct list_head list ; struct slab *slab_page ; }; union __anonunion_ldv_8545_47 { unsigned long private ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; struct address_space *mapping ; struct __anonstruct_ldv_8529_39 ldv_8529 ; union __anonunion_ldv_8540_45 ldv_8540 ; union __anonunion_ldv_8545_47 ldv_8545 ; unsigned long debug_flags ; int _last_nid ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_49 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_48 { struct __anonstruct_linear_49 linear ; struct list_head nonlinear ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_48 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; void (*unmap_area)(struct mm_struct * , unsigned long ) ; unsigned long mmap_base ; unsigned long task_size ; unsigned long cached_hole_size ; unsigned long free_area_cache ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long nr_ptes ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[44U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct hlist_head ioctx_list ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; pgtable_t pmd_huge_pte ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_next_reset ; unsigned long numa_scan_offset ; int numa_scan_seq ; int first_nid ; struct uprobes_state uprobes_state ; }; typedef unsigned long cputime_t; struct call_single_data { struct list_head list ; void (*func)(void * ) ; void *info ; u16 flags ; u16 priv ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; bool ignore_children ; bool early_init ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path ; bool syscore ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct bio_vec; typedef uid_t kuid_t; typedef gid_t kgid_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct __anonstruct_sigset_t_140 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_140 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_142 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_143 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_144 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_145 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_146 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_147 { long _band ; int _fd ; }; struct __anonstruct__sigsys_148 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_141 { int _pad[28U] ; struct __anonstruct__kill_142 _kill ; struct __anonstruct__timer_143 _timer ; struct __anonstruct__rt_144 _rt ; struct __anonstruct__sigchld_145 _sigchld ; struct __anonstruct__sigfault_146 _sigfault ; struct __anonstruct__sigpoll_147 _sigpoll ; struct __anonstruct__sigsys_148 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_141 _sifields ; }; typedef struct siginfo siginfo_t; struct user_struct; struct sigpending { struct list_head list ; sigset_t signal ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct rt_mutex_waiter; struct rlimit { unsigned long rlim_cur ; unsigned long rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[3U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct cred; struct key_type; struct keyring_list; union __anonunion_ldv_14497_153 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion_ldv_14506_154 { time_t expiry ; time_t revoked_at ; }; union __anonunion_type_data_155 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_156 { unsigned long value ; void *rcudata ; void *data ; struct keyring_list *subscriptions ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion_ldv_14497_153 ldv_14497 ; struct key_type *type ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion_ldv_14506_154 ldv_14506 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; char *description ; union __anonunion_type_data_155 type_data ; union __anonunion_payload_156 payload ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct thread_group_cred; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; struct thread_group_cred *tgcred ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct llist_node; struct llist_node { struct llist_node *next ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct io_event { __u64 data ; __u64 obj ; __s64 res ; __s64 res2 ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct kioctx; union __anonunion_ki_obj_157 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct list_head ki_run_list ; unsigned long ki_flags ; int ki_users ; unsigned int ki_key ; struct file *ki_filp ; struct kioctx *ki_ctx ; int (*ki_cancel)(struct kiocb * , struct io_event * ) ; ssize_t (*ki_retry)(struct kiocb * ) ; void (*ki_dtor)(struct kiocb * ) ; union __anonunion_ki_obj_157 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; void *private ; unsigned short ki_opcode ; size_t ki_nbytes ; char *ki_buf ; size_t ki_left ; struct iovec ki_inline_vec ; struct iovec *ki_iovec ; unsigned long ki_nr_segs ; unsigned long ki_cur_seg ; struct list_head ki_list ; struct list_head ki_batch ; struct eventfd_ctx *ki_eventfd ; }; struct aio_ring_info { unsigned long mmap_base ; unsigned long mmap_size ; struct page **ring_pages ; spinlock_t ring_lock ; long nr_pages ; unsigned int nr ; unsigned int tail ; struct page *internal_pages[8U] ; }; struct kioctx { atomic_t users ; int dead ; struct mm_struct *mm ; unsigned long user_id ; struct hlist_node list ; wait_queue_head_t wait ; spinlock_t ctx_lock ; int reqs_active ; struct list_head active_reqs ; struct list_head run_list ; unsigned int max_reqs ; struct aio_ring_info ring_info ; struct delayed_work wq ; struct callback_head callback_head ; }; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned char is_child_subreaper : 1 ; unsigned char has_child_subreaper : 1 ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct rq; struct sched_class { struct sched_class const *next ; void (*enqueue_task)(struct rq * , struct task_struct * , int ) ; void (*dequeue_task)(struct rq * , struct task_struct * , int ) ; void (*yield_task)(struct rq * ) ; bool (*yield_to_task)(struct rq * , struct task_struct * , bool ) ; void (*check_preempt_curr)(struct rq * , struct task_struct * , int ) ; struct task_struct *(*pick_next_task)(struct rq * ) ; void (*put_prev_task)(struct rq * , struct task_struct * ) ; int (*select_task_rq)(struct task_struct * , int , int ) ; void (*migrate_task_rq)(struct task_struct * , int ) ; void (*pre_schedule)(struct rq * , struct task_struct * ) ; void (*post_schedule)(struct rq * ) ; void (*task_waking)(struct task_struct * ) ; void (*task_woken)(struct rq * , struct task_struct * ) ; void (*set_cpus_allowed)(struct task_struct * , struct cpumask const * ) ; void (*rq_online)(struct rq * ) ; void (*rq_offline)(struct rq * ) ; void (*set_curr_task)(struct rq * ) ; void (*task_tick)(struct rq * , struct task_struct * , int ) ; void (*task_fork)(struct task_struct * ) ; void (*switched_from)(struct rq * , struct task_struct * ) ; void (*switched_to)(struct rq * , struct task_struct * ) ; void (*prio_changed)(struct rq * , struct task_struct * , int ) ; unsigned int (*get_rr_interval)(struct rq * , struct task_struct * ) ; void (*task_move_group)(struct task_struct * , int ) ; }; struct load_weight { unsigned long weight ; unsigned long inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct files_struct; struct css_set; struct compat_robust_list_head; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct hlist_head preempt_notifiers ; unsigned char fpu_counter ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned char did_exec : 1 ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char no_new_privs : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; unsigned long stack_canary ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct plist_head pi_waiters ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; int numa_migrate_seq ; unsigned int numa_scan_period ; u64 node_stamp ; struct callback_head numa_work ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; atomic_t ptrace_bp_refcnt ; struct uprobe_task *utask ; }; struct __anonstruct_ldv_16592_160 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion_ldv_16593_159 { struct kmem_cache *memcg_caches[0U] ; struct __anonstruct_ldv_16592_160 ldv_16592 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion_ldv_16593_159 ldv_16593 ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; void const *(*namespace)(struct kobject * , struct attribute const * ) ; }; struct sysfs_dirent; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct sysfs_dirent *sd ; struct kref kref ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_node { spinlock_t list_lock ; unsigned long nr_partial ; struct list_head partial ; atomic_long_t nr_slabs ; atomic_long_t total_objects ; struct list_head full ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct device_type; struct class; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct subsys_private; struct bus_type; struct device_node; struct iommu_ops; struct iommu_group; struct bus_attribute { struct attribute attr ; ssize_t (*show)(struct bus_type * , char * ) ; ssize_t (*store)(struct bus_type * , char const * , size_t ) ; }; struct device_attribute; struct driver_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct bus_attribute *bus_attrs ; struct device_attribute *dev_attrs ; struct driver_attribute *drv_attrs ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; }; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct driver_attribute { struct attribute attr ; ssize_t (*show)(struct device_driver * , char * ) ; ssize_t (*store)(struct device_driver * , char const * , size_t ) ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct device_attribute *dev_attrs ; struct bin_attribute *dev_bin_attrs ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; void const *(*namespace)(struct class * , struct class_attribute const * ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_dev_node { void *handle ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active ; bool autosleep_enabled ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct nameidata; struct path; struct vfsmount; struct __anonstruct_ldv_18140_162 { u32 hash ; u32 len ; }; union __anonunion_ldv_18142_161 { struct __anonstruct_ldv_18140_162 ldv_18140 ; u64 hash_len ; }; struct qstr { union __anonunion_ldv_18142_161 ldv_18142 ; unsigned char const *name ; }; struct dentry_operations; struct super_block; union __anonunion_d_u_163 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; unsigned int d_count ; spinlock_t d_lock ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_163 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct inode const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct inode const * , struct dentry const * , struct inode const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; }; struct shrinker { int (*shrink)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; struct list_head list ; atomic_long_t nr_in_batch ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct bio_set; struct bio; struct bio_integrity_payload; struct block_device; struct cgroup_subsys_state; typedef void bio_end_io_t(struct bio * , int ); struct bio_vec { struct page *bv_page ; unsigned int bv_len ; unsigned int bv_offset ; }; struct bio { sector_t bi_sector ; struct bio *bi_next ; struct block_device *bi_bdev ; unsigned long bi_flags ; unsigned long bi_rw ; unsigned short bi_vcnt ; unsigned short bi_idx ; unsigned int bi_phys_segments ; unsigned int bi_size ; unsigned int bi_seg_front_size ; unsigned int bi_seg_back_size ; bio_end_io_t *bi_end_io ; void *bi_private ; struct io_context *bi_ioc ; struct cgroup_subsys_state *bi_css ; struct bio_integrity_payload *bi_integrity ; unsigned int bi_max_vecs ; atomic_t bi_cnt ; struct bio_vec *bi_io_vec ; struct bio_set *bi_pool ; struct bio_vec bi_inline_vecs[0U] ; }; struct export_operations; struct hd_geometry; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct dquot; typedef __kernel_uid32_t projid_t; typedef projid_t kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion_ldv_18936_164 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion_ldv_18936_164 ldv_18936 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct writeback_control; union __anonunion_arg_166 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_165 { size_t written ; size_t count ; union __anonunion_arg_166 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_165 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned long ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion_ldv_19370_167 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion_ldv_19390_168 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion_ldv_19406_169 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion_ldv_19370_167 ldv_19370 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion_ldv_19390_168 ldv_19390 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion_ldv_19406_169 ldv_19406 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_170 { struct list_head fu_list ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_170 f_u ; struct path f_path ; struct file_operations const *f_op ; spinlock_t f_lock ; int f_sb_list_cpu ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_172 { struct list_head link ; int state ; }; union __anonunion_fl_u_171 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_172 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_171 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct file_system_type; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head *s_files ; struct list_head s_mounts ; struct list_head s_dentry_lru ; int s_nr_dentry_unused ; spinlock_t s_inode_lru_lock ; struct list_head s_inode_lru ; int s_nr_inodes_unused ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct block_device_operations; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*readdir)(struct file * , void * , int (*)(void * , char const * , int , loff_t , u64 , unsigned int ) ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; int (*nr_cached_objects)(struct super_block * ) ; void (*free_cached_objects)(struct super_block * , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct disk_stats { unsigned long sectors[2U] ; unsigned long ios[2U] ; unsigned long merges[2U] ; unsigned long ticks[2U] ; unsigned long io_ticks ; unsigned long time_in_queue ; }; struct partition_meta_info { char uuid[37U] ; u8 volname[64U] ; }; struct hd_struct { sector_t start_sect ; sector_t nr_sects ; seqcount_t nr_sects_seq ; sector_t alignment_offset ; unsigned int discard_alignment ; struct device __dev ; struct kobject *holder_dir ; int policy ; int partno ; struct partition_meta_info *info ; int make_it_fail ; unsigned long stamp ; atomic_t in_flight[2U] ; struct disk_stats *dkstats ; atomic_t ref ; struct callback_head callback_head ; }; struct disk_part_tbl { struct callback_head callback_head ; int len ; struct hd_struct *last_lookup ; struct hd_struct *part[] ; }; struct disk_events; struct timer_rand_state; struct blk_integrity; struct gendisk { int major ; int first_minor ; int minors ; char disk_name[32U] ; char *(*devnode)(struct gendisk * , umode_t * ) ; unsigned int events ; unsigned int async_events ; struct disk_part_tbl *part_tbl ; struct hd_struct part0 ; struct block_device_operations const *fops ; struct request_queue *queue ; void *private_data ; int flags ; struct device *driverfs_dev ; struct kobject *slave_dir ; struct timer_rand_state *random ; atomic_t sync_io ; struct disk_events *ev ; struct blk_integrity *integrity ; int node_id ; }; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct exception_table_entry { int insn ; int fixup ; }; struct fprop_local_percpu { struct percpu_counter events ; unsigned int period ; raw_spinlock_t lock ; }; enum writeback_sync_modes { WB_SYNC_NONE = 0, WB_SYNC_ALL = 1 } ; struct writeback_control { long nr_to_write ; long pages_skipped ; loff_t range_start ; loff_t range_end ; enum writeback_sync_modes sync_mode ; unsigned char for_kupdate : 1 ; unsigned char for_background : 1 ; unsigned char tagged_writepages : 1 ; unsigned char for_reclaim : 1 ; unsigned char range_cyclic : 1 ; }; struct bdi_writeback; typedef int congested_fn(void * , int ); struct bdi_writeback { struct backing_dev_info *bdi ; unsigned int nr ; unsigned long last_old_flush ; unsigned long last_active ; struct task_struct *task ; struct timer_list wakeup_timer ; struct list_head b_dirty ; struct list_head b_io ; struct list_head b_more_io ; spinlock_t list_lock ; }; struct backing_dev_info { struct list_head bdi_list ; unsigned long ra_pages ; unsigned long state ; unsigned int capabilities ; congested_fn *congested_fn ; void *congested_data ; char *name ; struct percpu_counter bdi_stat[4U] ; unsigned long bw_time_stamp ; unsigned long dirtied_stamp ; unsigned long written_stamp ; unsigned long write_bandwidth ; unsigned long avg_write_bandwidth ; unsigned long dirty_ratelimit ; unsigned long balanced_dirty_ratelimit ; struct fprop_local_percpu completions ; int dirty_exceeded ; unsigned int min_ratio ; unsigned int max_ratio ; unsigned int max_prop_frac ; struct bdi_writeback wb ; spinlock_t wb_lock ; struct list_head work_list ; struct device *dev ; struct timer_list laptop_mode_wb_timer ; struct dentry *debug_dir ; struct dentry *debug_stats ; }; typedef void *mempool_alloc_t(gfp_t , void * ); typedef void mempool_free_t(void * , void * ); struct mempool_s { spinlock_t lock ; int min_nr ; int curr_nr ; void **elements ; void *pool_data ; mempool_alloc_t *alloc ; mempool_free_t *free ; wait_queue_head_t wait ; }; typedef struct mempool_s mempool_t; union __anonunion_ldv_26553_174 { struct list_head q_node ; struct kmem_cache *__rcu_icq_cache ; }; union __anonunion_ldv_26557_175 { struct hlist_node ioc_node ; struct callback_head __rcu_head ; }; struct io_cq { struct request_queue *q ; struct io_context *ioc ; union __anonunion_ldv_26553_174 ldv_26553 ; union __anonunion_ldv_26557_175 ldv_26557 ; unsigned int flags ; }; struct io_context { atomic_long_t refcount ; atomic_t active_ref ; atomic_t nr_tasks ; spinlock_t lock ; unsigned short ioprio ; int nr_batch_requests ; unsigned long last_waited ; struct radix_tree_root icq_tree ; struct io_cq *icq_hint ; struct hlist_head icq_list ; struct work_struct release_work ; }; struct bio_integrity_payload { struct bio *bip_bio ; sector_t bip_sector ; void *bip_buf ; bio_end_io_t *bip_end_io ; unsigned int bip_size ; unsigned short bip_slab ; unsigned short bip_vcnt ; unsigned short bip_idx ; struct work_struct bip_work ; struct bio_vec bip_vec[0U] ; }; struct bio_set { struct kmem_cache *bio_slab ; unsigned int front_pad ; mempool_t *bio_pool ; mempool_t *bio_integrity_pool ; mempool_t *bvec_pool ; }; struct bio_list { struct bio *head ; struct bio *tail ; }; struct bsg_class_device { struct device *class_dev ; struct device *parent ; int minor ; struct request_queue *queue ; struct kref ref ; void (*release)(struct device * ) ; }; struct elevator_queue; struct request; struct bsg_job; struct blkcg_gq; typedef void rq_end_io_fn(struct request * , int ); struct request_list { struct request_queue *q ; struct blkcg_gq *blkg ; int count[2U] ; int starved[2U] ; mempool_t *rq_pool ; wait_queue_head_t wait[2U] ; unsigned int flags ; }; enum rq_cmd_type_bits { REQ_TYPE_FS = 1, REQ_TYPE_BLOCK_PC = 2, REQ_TYPE_SENSE = 3, REQ_TYPE_PM_SUSPEND = 4, REQ_TYPE_PM_RESUME = 5, REQ_TYPE_PM_SHUTDOWN = 6, REQ_TYPE_SPECIAL = 7, REQ_TYPE_ATA_TASKFILE = 8, REQ_TYPE_ATA_PC = 9 } ; union __anonunion_ldv_27011_176 { struct rb_node rb_node ; void *completion_data ; }; struct __anonstruct_elv_178 { struct io_cq *icq ; void *priv[2U] ; }; struct __anonstruct_flush_179 { unsigned int seq ; struct list_head list ; rq_end_io_fn *saved_end_io ; }; union __anonunion_ldv_27022_177 { struct __anonstruct_elv_178 elv ; struct __anonstruct_flush_179 flush ; }; struct request { struct list_head queuelist ; struct call_single_data csd ; struct request_queue *q ; unsigned int cmd_flags ; enum rq_cmd_type_bits cmd_type ; unsigned long atomic_flags ; int cpu ; unsigned int __data_len ; sector_t __sector ; struct bio *bio ; struct bio *biotail ; struct hlist_node hash ; union __anonunion_ldv_27011_176 ldv_27011 ; union __anonunion_ldv_27022_177 ldv_27022 ; struct gendisk *rq_disk ; struct hd_struct *part ; unsigned long start_time ; struct request_list *rl ; unsigned long long start_time_ns ; unsigned long long io_start_time_ns ; unsigned short nr_phys_segments ; unsigned short nr_integrity_segments ; unsigned short ioprio ; int ref_count ; void *special ; char *buffer ; int tag ; int errors ; unsigned char __cmd[16U] ; unsigned char *cmd ; unsigned short cmd_len ; unsigned int extra_len ; unsigned int sense_len ; unsigned int resid_len ; void *sense ; unsigned long deadline ; struct list_head timeout_list ; unsigned int timeout ; int retries ; rq_end_io_fn *end_io ; void *end_io_data ; struct request *next_rq ; }; typedef int elevator_merge_fn(struct request_queue * , struct request ** , struct bio * ); typedef void elevator_merge_req_fn(struct request_queue * , struct request * , struct request * ); typedef void elevator_merged_fn(struct request_queue * , struct request * , int ); typedef int elevator_allow_merge_fn(struct request_queue * , struct request * , struct bio * ); typedef void elevator_bio_merged_fn(struct request_queue * , struct request * , struct bio * ); typedef int elevator_dispatch_fn(struct request_queue * , int ); typedef void elevator_add_req_fn(struct request_queue * , struct request * ); typedef struct request *elevator_request_list_fn(struct request_queue * , struct request * ); typedef void elevator_completed_req_fn(struct request_queue * , struct request * ); typedef int elevator_may_queue_fn(struct request_queue * , int ); typedef void elevator_init_icq_fn(struct io_cq * ); typedef void elevator_exit_icq_fn(struct io_cq * ); typedef int elevator_set_req_fn(struct request_queue * , struct request * , struct bio * , gfp_t ); typedef void elevator_put_req_fn(struct request * ); typedef void elevator_activate_req_fn(struct request_queue * , struct request * ); typedef void elevator_deactivate_req_fn(struct request_queue * , struct request * ); typedef int elevator_init_fn(struct request_queue * ); typedef void elevator_exit_fn(struct elevator_queue * ); struct elevator_ops { elevator_merge_fn *elevator_merge_fn ; elevator_merged_fn *elevator_merged_fn ; elevator_merge_req_fn *elevator_merge_req_fn ; elevator_allow_merge_fn *elevator_allow_merge_fn ; elevator_bio_merged_fn *elevator_bio_merged_fn ; elevator_dispatch_fn *elevator_dispatch_fn ; elevator_add_req_fn *elevator_add_req_fn ; elevator_activate_req_fn *elevator_activate_req_fn ; elevator_deactivate_req_fn *elevator_deactivate_req_fn ; elevator_completed_req_fn *elevator_completed_req_fn ; elevator_request_list_fn *elevator_former_req_fn ; elevator_request_list_fn *elevator_latter_req_fn ; elevator_init_icq_fn *elevator_init_icq_fn ; elevator_exit_icq_fn *elevator_exit_icq_fn ; elevator_set_req_fn *elevator_set_req_fn ; elevator_put_req_fn *elevator_put_req_fn ; elevator_may_queue_fn *elevator_may_queue_fn ; elevator_init_fn *elevator_init_fn ; elevator_exit_fn *elevator_exit_fn ; }; struct elv_fs_entry { struct attribute attr ; ssize_t (*show)(struct elevator_queue * , char * ) ; ssize_t (*store)(struct elevator_queue * , char const * , size_t ) ; }; struct elevator_type { struct kmem_cache *icq_cache ; struct elevator_ops ops ; size_t icq_size ; size_t icq_align ; struct elv_fs_entry *elevator_attrs ; char elevator_name[16U] ; struct module *elevator_owner ; char icq_cache_name[21U] ; struct list_head list ; }; struct elevator_queue { struct elevator_type *type ; void *elevator_data ; struct kobject kobj ; struct mutex sysfs_lock ; struct hlist_head *hash ; unsigned char registered : 1 ; }; typedef void request_fn_proc(struct request_queue * ); typedef void make_request_fn(struct request_queue * , struct bio * ); typedef int prep_rq_fn(struct request_queue * , struct request * ); typedef void unprep_rq_fn(struct request_queue * , struct request * ); struct bvec_merge_data { struct block_device *bi_bdev ; sector_t bi_sector ; unsigned int bi_size ; unsigned long bi_rw ; }; typedef int merge_bvec_fn(struct request_queue * , struct bvec_merge_data * , struct bio_vec * ); typedef void softirq_done_fn(struct request * ); typedef int dma_drain_needed_fn(struct request * ); typedef int lld_busy_fn(struct request_queue * ); typedef int bsg_job_fn(struct bsg_job * ); enum blk_eh_timer_return { BLK_EH_NOT_HANDLED = 0, BLK_EH_HANDLED = 1, BLK_EH_RESET_TIMER = 2 } ; typedef enum blk_eh_timer_return rq_timed_out_fn(struct request * ); struct blk_queue_tag { struct request **tag_index ; unsigned long *tag_map ; int busy ; int max_depth ; int real_max_depth ; atomic_t refcnt ; }; struct queue_limits { unsigned long bounce_pfn ; unsigned long seg_boundary_mask ; unsigned int max_hw_sectors ; unsigned int max_sectors ; unsigned int max_segment_size ; unsigned int physical_block_size ; unsigned int alignment_offset ; unsigned int io_min ; unsigned int io_opt ; unsigned int max_discard_sectors ; unsigned int max_write_same_sectors ; unsigned int discard_granularity ; unsigned int discard_alignment ; unsigned short logical_block_size ; unsigned short max_segments ; unsigned short max_integrity_segments ; unsigned char misaligned ; unsigned char discard_misaligned ; unsigned char cluster ; unsigned char discard_zeroes_data ; }; struct throtl_data; struct request_queue { struct list_head queue_head ; struct request *last_merge ; struct elevator_queue *elevator ; int nr_rqs[2U] ; int nr_rqs_elvpriv ; struct request_list root_rl ; request_fn_proc *request_fn ; make_request_fn *make_request_fn ; prep_rq_fn *prep_rq_fn ; unprep_rq_fn *unprep_rq_fn ; merge_bvec_fn *merge_bvec_fn ; softirq_done_fn *softirq_done_fn ; rq_timed_out_fn *rq_timed_out_fn ; dma_drain_needed_fn *dma_drain_needed ; lld_busy_fn *lld_busy_fn ; sector_t end_sector ; struct request *boundary_rq ; struct delayed_work delay_work ; struct backing_dev_info backing_dev_info ; void *queuedata ; unsigned long queue_flags ; int id ; gfp_t bounce_gfp ; spinlock_t __queue_lock ; spinlock_t *queue_lock ; struct kobject kobj ; unsigned long nr_requests ; unsigned int nr_congestion_on ; unsigned int nr_congestion_off ; unsigned int nr_batching ; unsigned int dma_drain_size ; void *dma_drain_buffer ; unsigned int dma_pad_mask ; unsigned int dma_alignment ; struct blk_queue_tag *queue_tags ; struct list_head tag_busy_list ; unsigned int nr_sorted ; unsigned int in_flight[2U] ; unsigned int request_fn_active ; unsigned int rq_timeout ; struct timer_list timeout ; struct list_head timeout_list ; struct list_head icq_list ; unsigned long blkcg_pols[1U] ; struct blkcg_gq *root_blkg ; struct list_head blkg_list ; struct queue_limits limits ; unsigned int sg_timeout ; unsigned int sg_reserved_size ; int node ; unsigned int flush_flags ; unsigned char flush_not_queueable : 1 ; unsigned char flush_queue_delayed : 1 ; unsigned char flush_pending_idx : 1 ; unsigned char flush_running_idx : 1 ; unsigned long flush_pending_since ; struct list_head flush_queue[2U] ; struct list_head flush_data_in_flight ; struct request flush_rq ; struct mutex sysfs_lock ; int bypass_depth ; bsg_job_fn *bsg_job_fn ; int bsg_job_size ; struct bsg_class_device bsg_dev ; struct list_head all_q_node ; struct throtl_data *td ; }; struct blk_plug { unsigned long magic ; struct list_head list ; struct list_head cb_list ; unsigned int should_sort ; }; struct blk_integrity_exchg { void *prot_buf ; void *data_buf ; sector_t sector ; unsigned int data_size ; unsigned short sector_size ; char const *disk_name ; }; typedef void integrity_gen_fn(struct blk_integrity_exchg * ); typedef int integrity_vrfy_fn(struct blk_integrity_exchg * ); typedef void integrity_set_tag_fn(void * , void * , unsigned int ); typedef void integrity_get_tag_fn(void * , void * , unsigned int ); struct blk_integrity { integrity_gen_fn *generate_fn ; integrity_vrfy_fn *verify_fn ; integrity_set_tag_fn *set_tag_fn ; integrity_get_tag_fn *get_tag_fn ; unsigned short flags ; unsigned short tuple_size ; unsigned short sector_size ; unsigned short tag_size ; char const *name ; struct kobject kobj ; }; struct block_device_operations { int (*open)(struct block_device * , fmode_t ) ; int (*release)(struct gendisk * , fmode_t ) ; int (*ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct block_device * , fmode_t , unsigned int , unsigned long ) ; int (*direct_access)(struct block_device * , sector_t , void ** , unsigned long * ) ; unsigned int (*check_events)(struct gendisk * , unsigned int ) ; int (*media_changed)(struct gendisk * ) ; void (*unlock_native_capacity)(struct gendisk * ) ; int (*revalidate_disk)(struct gendisk * ) ; int (*getgeo)(struct block_device * , struct hd_geometry * ) ; void (*swap_slot_free_notify)(struct block_device * , unsigned long ) ; struct module *owner ; }; struct dm_dev; struct dm_target; struct dm_table; enum ldv_22431 { STATUSTYPE_INFO = 0, STATUSTYPE_TABLE = 1 } ; typedef enum ldv_22431 status_type_t; union map_info { void *ptr ; unsigned long long ll ; }; struct dm_dev { struct block_device *bdev ; fmode_t mode ; char name[16U] ; }; struct target_type { uint64_t features ; char const *name ; struct module *module ; unsigned int version[3U] ; int (*ctr)(struct dm_target * , unsigned int , char ** ) ; void (*dtr)(struct dm_target * ) ; int (*map)(struct dm_target * , struct bio * ) ; int (*map_rq)(struct dm_target * , struct request * , union map_info * ) ; int (*end_io)(struct dm_target * , struct bio * , int ) ; int (*rq_end_io)(struct dm_target * , struct request * , int , union map_info * ) ; void (*presuspend)(struct dm_target * ) ; void (*postsuspend)(struct dm_target * ) ; int (*preresume)(struct dm_target * ) ; void (*resume)(struct dm_target * ) ; int (*status)(struct dm_target * , status_type_t , unsigned int , char * , unsigned int ) ; int (*message)(struct dm_target * , unsigned int , char ** ) ; int (*ioctl)(struct dm_target * , unsigned int , unsigned long ) ; int (*merge)(struct dm_target * , struct bvec_merge_data * , struct bio_vec * , int ) ; int (*busy)(struct dm_target * ) ; int (*iterate_devices)(struct dm_target * , int (*)(struct dm_target * , struct dm_dev * , sector_t , sector_t , void * ) , void * ) ; void (*io_hints)(struct dm_target * , struct queue_limits * ) ; struct list_head list ; }; struct dm_target { struct dm_table *table ; struct target_type *type ; sector_t begin ; sector_t len ; uint32_t max_io_len ; unsigned int num_flush_requests ; unsigned int num_discard_requests ; unsigned int num_write_same_requests ; unsigned int per_bio_data_size ; void *private ; char *error ; bool flush_supported ; bool discards_supported ; bool split_discard_requests ; bool discard_zeroes_data_unsupported ; }; struct dm_io; struct dm_target_io { struct dm_io *io ; struct dm_target *ti ; union map_info info ; unsigned int target_request_nr ; struct bio clone ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion_ldv_28855_185 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion_ldv_28855_185 ldv_28855 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct static_key { atomic_t enabled ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct kernel_symbol { unsigned long value ; char const *name ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; struct list_head source_list ; struct list_head target_list ; struct task_struct *waiter ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct dm_io_region { struct block_device *bdev ; sector_t sector ; sector_t count ; }; struct dm_kcopyd_client; typedef sector_t chunk_t; struct dm_exception { struct list_head hash_list ; chunk_t old_chunk ; chunk_t new_chunk ; }; struct dm_exception_store; struct dm_exception_store_type { char const *name ; struct module *module ; int (*ctr)(struct dm_exception_store * , unsigned int , char ** ) ; void (*dtr)(struct dm_exception_store * ) ; int (*read_metadata)(struct dm_exception_store * , int (*)(void * , chunk_t , chunk_t ) , void * ) ; int (*prepare_exception)(struct dm_exception_store * , struct dm_exception * ) ; void (*commit_exception)(struct dm_exception_store * , struct dm_exception * , void (*)(void * , int ) , void * ) ; int (*prepare_merge)(struct dm_exception_store * , chunk_t * , chunk_t * ) ; int (*commit_merge)(struct dm_exception_store * , int ) ; void (*drop_snapshot)(struct dm_exception_store * ) ; unsigned int (*status)(struct dm_exception_store * , status_type_t , char * , unsigned int ) ; void (*usage)(struct dm_exception_store * , sector_t * , sector_t * , sector_t * ) ; struct list_head list ; }; struct dm_snapshot; struct dm_exception_store { struct dm_exception_store_type *type ; struct dm_snapshot *snap ; unsigned int chunk_size ; unsigned int chunk_mask ; unsigned int chunk_shift ; void *context ; }; struct dm_exception_table { uint32_t hash_mask ; unsigned int hash_shift ; struct list_head *table ; }; struct dm_snapshot { struct rw_semaphore lock ; struct dm_dev *origin ; struct dm_dev *cow ; struct dm_target *ti ; struct list_head list ; int valid ; int active ; atomic_t pending_exceptions_count ; mempool_t *pending_pool ; struct dm_exception_table pending ; struct dm_exception_table complete ; spinlock_t pe_lock ; spinlock_t tracked_chunk_lock ; struct hlist_head tracked_chunk_hash[16U] ; struct dm_exception_store *store ; struct dm_kcopyd_client *kcopyd_client ; unsigned long state_bits ; chunk_t first_merging_chunk ; int num_merging_chunks ; int merge_failed ; struct bio_list bios_queued_during_merge ; }; struct dm_snap_pending_exception { struct dm_exception e ; struct bio_list origin_bios ; struct bio_list snapshot_bios ; struct dm_snapshot *snap ; int started ; struct bio *full_bio ; bio_end_io_t *full_bio_end_io ; void *full_bio_private ; }; struct dm_snap_tracked_chunk { struct hlist_node node ; chunk_t chunk ; }; struct origin { struct block_device *bdev ; struct list_head hash_list ; struct list_head snapshots ; }; union __anonunion_u_188 { struct dm_exception_table table_swap ; struct dm_exception_store *store_swap ; }; typedef int ldv_func_ret_type___4; enum hrtimer_restart; enum hrtimer_restart; struct transient_c { sector_t next_free ; }; typedef __u32 __le32; typedef __u64 __le64; enum hrtimer_restart; struct workqueue_struct; struct page_list { struct page_list *next ; struct page *page ; }; enum dm_io_mem_type { DM_IO_PAGE_LIST = 0, DM_IO_BVEC = 1, DM_IO_VMA = 2, DM_IO_KMEM = 3 } ; union __anonunion_ptr_181 { struct page_list *pl ; struct bio_vec *bvec ; void *vma ; void *addr ; }; struct dm_io_memory { enum dm_io_mem_type type ; unsigned int offset ; union __anonunion_ptr_181 ptr ; }; struct dm_io_notify { void (*fn)(unsigned long , void * ) ; void *context ; }; struct dm_io_client; struct dm_io_request { int bi_rw ; struct dm_io_memory mem ; struct dm_io_notify notify ; struct dm_io_client *client ; }; struct disk_header { __le32 magic ; __le32 valid ; __le32 version ; __le32 chunk_size ; }; struct disk_exception { __le64 old_chunk ; __le64 new_chunk ; }; struct core_exception { uint64_t old_chunk ; uint64_t new_chunk ; }; struct commit_callback { void (*callback)(void * , int ) ; void *context ; }; struct pstore { struct dm_exception_store *store ; int version ; int valid ; uint32_t exceptions_per_area ; void *area ; void *zero_area ; void *header_area ; chunk_t current_area ; chunk_t next_free ; uint32_t current_committed ; atomic_t pending_count ; uint32_t callback_count ; struct commit_callback *callbacks ; struct dm_io_client *io_client ; struct workqueue_struct *metadata_wq ; }; struct mdata_req { struct dm_io_region *where ; struct dm_io_request *io_req ; struct work_struct work ; int result ; }; long ldv__builtin_expect(long exp , long c ) ; __inline static void set_bit(unsigned int nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(int nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static void clear_bit_unlock(unsigned int nr , unsigned long volatile *addr ) { { __asm__ volatile ("": : : "memory"); clear_bit((int )nr, addr); return; } } __inline static int test_and_set_bit(int nr , unsigned long volatile *addr ) { int oldbit ; { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %2,%1\n\tsbb %0,%0": "=r" (oldbit), "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return (oldbit); } } __inline static int constant_test_bit(unsigned int nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr / 64U)) >> ((int )nr & 63)) & 1); } } __inline static int variable_test_bit(int nr , unsigned long const volatile *addr ) { int oldbit ; { __asm__ volatile ("bt %2,%1\n\tsbb %0,%0": "=r" (oldbit): "m" (*((unsigned long *)addr)), "Ir" (nr)); return (oldbit); } } __inline static int fls64(__u64 x ) { int bitpos ; { bitpos = -1; __asm__ ("bsrq %1,%q0": "+r" (bitpos): "rm" (x)); return (bitpos + 1); } } __inline static unsigned int fls_long(unsigned long l ) { int tmp___0 ; { tmp___0 = fls64((__u64 )l); return ((unsigned int )tmp___0); } } __inline static unsigned long __rounddown_pow_of_two(unsigned long n ) { unsigned int tmp ; { tmp = fls_long(n); return (1UL << (int )(tmp - 1U)); } } extern int printk(char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; extern int scnprintf(char * , size_t , char const * , ...) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { __list_add(new, head, head->next); return; } } __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { __list_add(new, head->prev, head); return; } } extern void list_del(struct list_head * ) ; __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } __inline static void INIT_HLIST_NODE(struct hlist_node *h ) { { h->next = 0; h->pprev = 0; return; } } __inline static int hlist_unhashed(struct hlist_node const *h ) { { return ((unsigned long )h->pprev == (unsigned long )((struct hlist_node **/* const */)0)); } } __inline static int hlist_empty(struct hlist_head const *h ) { { return ((unsigned long )h->first == (unsigned long )((struct hlist_node */* const */)0)); } } __inline static void __hlist_del(struct hlist_node *n ) { struct hlist_node *next ; struct hlist_node **pprev ; { next = n->next; pprev = n->pprev; *pprev = next; if ((unsigned long )next != (unsigned long )((struct hlist_node *)0)) { next->pprev = pprev; } else { } return; } } __inline static void hlist_del(struct hlist_node *n ) { { __hlist_del(n); n->next = 0xdead000000100100UL; n->pprev = 0xdead000000200200UL; return; } } __inline static void hlist_add_head(struct hlist_node *n , struct hlist_head *h ) { struct hlist_node *first ; { first = h->first; n->next = first; if ((unsigned long )first != (unsigned long )((struct hlist_node *)0)) { first->pprev = & n->next; } else { } h->first = n; n->pprev = & h->first; return; } } extern void __bad_percpu_size(void) ; extern struct task_struct *current_task ; __inline static struct task_struct *get_current(void) { struct task_struct *pfo_ret__ ; { switch (8UL) { case 1: __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& current_task)); goto ldv_2861; case 2: __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2861; case 4: __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2861; case 8: __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2861; default: __bad_percpu_size(); } ldv_2861: ; return (pfo_ret__); } } __inline static long PTR_ERR(void const *ptr ) { { return ((long )ptr); } } __inline static long IS_ERR(void const *ptr ) { long tmp ; { tmp = ldv__builtin_expect((unsigned long )ptr > 0xfffffffffffff000UL, 0L); return (tmp); } } __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } __inline static void atomic_dec(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; decl %0": "+m" (v->counter)); return; } } extern int mutex_trylock(struct mutex * ) ; int ldv_mutex_trylock_6(struct mutex *ldv_func_arg1 ) ; extern void mutex_unlock(struct mutex * ) ; void ldv_mutex_unlock_2(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_4(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_7(struct mutex *ldv_func_arg1 ) ; extern void mutex_lock(struct mutex * ) ; void ldv_mutex_lock_1(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_3(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_5(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_cred_guard_mutex_of_signal_struct(struct mutex *lock ) ; void ldv_mutex_unlock_cred_guard_mutex_of_signal_struct(struct mutex *lock ) ; void ldv_mutex_lock_lock(struct mutex *lock ) ; void ldv_mutex_unlock_lock(struct mutex *lock ) ; void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) ; int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) ; void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) ; int ldv_state_variable_3 ; int ldv_state_variable_2 ; int ref_cnt ; extern int __VERIFIER_nondet_int(void) ; int ldv_state_variable_1 ; int ldv_state_variable_7 ; int ldv_state_variable_4 ; int ldv_state_variable_6 ; int ldv_state_variable_0 ; int ldv_state_variable_5 ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_irq(raw_spinlock_t * ) ; extern unsigned long _raw_spin_lock_irqsave(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->ldv_5961.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { _raw_spin_lock(& lock->ldv_5961.rlock); return; } } __inline static void spin_lock_irq(spinlock_t *lock ) { { _raw_spin_lock_irq(& lock->ldv_5961.rlock); return; } } __inline static void spin_unlock(spinlock_t *lock ) { { _raw_spin_unlock(& lock->ldv_5961.rlock); return; } } __inline static void spin_unlock_irq(spinlock_t *lock ) { { _raw_spin_unlock_irq(& lock->ldv_5961.rlock); return; } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { _raw_spin_unlock_irqrestore(& lock->ldv_5961.rlock, flags); return; } } extern void __init_rwsem(struct rw_semaphore * , char const * , struct lock_class_key * ) ; extern void down_read(struct rw_semaphore * ) ; extern void down_write(struct rw_semaphore * ) ; extern void up_read(struct rw_semaphore * ) ; extern void up_write(struct rw_semaphore * ) ; extern void down_write_nested(struct rw_semaphore * , int ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern void wake_up_bit(void * , int ) ; extern int out_of_line_wait_on_bit(void * , int , int (*)(void * ) , unsigned int ) ; extern void prepare_to_wait(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; extern int autoremove_wake_function(wait_queue_t * , unsigned int , int , void * ) ; __inline static int wait_on_bit(void *word , int bit , int (*action)(void * ) , unsigned int mode ) { int tmp ; int tmp___0 ; { tmp = variable_test_bit(bit, (unsigned long const volatile *)word); if (tmp == 0) { return (0); } else { } tmp___0 = out_of_line_wait_on_bit(word, bit, action, mode); return (tmp___0); } } extern void vfree(void const * ) ; extern void schedule(void) ; extern struct kmem_cache *kmem_cache_create(char const * , size_t , size_t , unsigned long , void (*)(void * ) ) ; extern void kmem_cache_destroy(struct kmem_cache * ) ; extern void kmem_cache_free(struct kmem_cache * , void * ) ; extern void kfree(void const * ) ; extern void *kmem_cache_alloc(struct kmem_cache * , gfp_t ) ; extern void *__kmalloc(size_t , gfp_t ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { tmp___2 = __kmalloc(size, flags); return (tmp___2); } } __inline static loff_t i_size_read(struct inode const *inode ) { { return ((loff_t )inode->i_size); } } extern mempool_t *mempool_create(int , mempool_alloc_t * , mempool_free_t * , void * ) ; extern void mempool_destroy(mempool_t * ) ; extern void *mempool_alloc(mempool_t * , gfp_t ) ; extern void mempool_free(void * , mempool_t * ) ; extern void *mempool_alloc_slab(gfp_t , void * ) ; extern void mempool_free_slab(void * , void * ) ; __inline static mempool_t *mempool_create_slab_pool(int min_nr , struct kmem_cache *kc ) { mempool_t *tmp ; { tmp = mempool_create(min_nr, & mempool_alloc_slab, & mempool_free_slab, (void *)kc); return (tmp); } } extern void bio_endio(struct bio * , int ) ; __inline static void bio_list_init(struct bio_list *bl ) { struct bio *tmp ; { tmp = 0; bl->tail = tmp; bl->head = tmp; return; } } __inline static void bio_list_add(struct bio_list *bl , struct bio *bio ) { { bio->bi_next = 0; if ((unsigned long )bl->tail != (unsigned long )((struct bio *)0)) { (bl->tail)->bi_next = bio; } else { bl->head = bio; } bl->tail = bio; return; } } __inline static struct bio *bio_list_get(struct bio_list *bl ) { struct bio *bio ; struct bio *tmp ; { bio = bl->head; tmp = 0; bl->tail = tmp; bl->head = tmp; return (bio); } } extern void generic_make_request(struct bio * ) ; __inline static struct request_queue *bdev_get_queue(struct block_device *bdev ) { { return ((bdev->bd_disk)->queue); } } extern int dm_get_device(struct dm_target * , char const * , fmode_t , struct dm_dev ** ) ; extern void dm_put_device(struct dm_target * , struct dm_dev * ) ; __inline static void *dm_per_bio_data(struct bio *bio , size_t data_size ) { { return ((void *)bio + (0xffffffffffffffe0UL - data_size)); } } __inline static unsigned int dm_bio_get_target_request_nr(struct bio const *bio ) { struct bio const *__mptr ; { __mptr = bio; return (((struct dm_target_io *)__mptr + 0xffffffffffffffe0UL)->target_request_nr); } } extern int dm_register_target(struct target_type * ) ; extern void dm_unregister_target(struct target_type * ) ; extern int dm_suspended(struct dm_target * ) ; extern int dm_set_target_max_io_len(struct dm_target * , sector_t ) ; extern sector_t dm_table_get_size(struct dm_table * ) ; extern fmode_t dm_table_get_mode(struct dm_table * ) ; extern void dm_table_event(struct dm_table * ) ; extern void *dm_vcalloc(unsigned long , unsigned long ) ; extern void msleep(unsigned int ) ; extern struct module __this_module ; extern struct dm_kcopyd_client *dm_kcopyd_client_create(void) ; extern void dm_kcopyd_client_destroy(struct dm_kcopyd_client * ) ; extern int dm_kcopyd_copy(struct dm_kcopyd_client * , struct dm_io_region * , unsigned int , struct dm_io_region * , unsigned int , void (*)(int , unsigned long , void * ) , void * ) ; extern void *dm_kcopyd_prepare_callback(struct dm_kcopyd_client * , void (*)(int , unsigned long , void * ) , void * ) ; extern void dm_kcopyd_do_callback(void * , int , unsigned long ) ; struct dm_dev *dm_snap_origin(struct dm_snapshot *s ) ; struct dm_dev *dm_snap_cow(struct dm_snapshot *s ) ; __inline static chunk_t dm_chunk_number(chunk_t chunk ) { { return (chunk & 72057594037927935UL); } } __inline static unsigned int dm_consecutive_chunk_count(struct dm_exception *e ) { { return ((unsigned int )(e->new_chunk >> 56)); } } __inline static void dm_consecutive_chunk_count_inc(struct dm_exception *e ) { unsigned int tmp ; long tmp___0 ; { e->new_chunk = (chunk_t )((unsigned long long )e->new_chunk + 72057594037927936ULL); tmp = dm_consecutive_chunk_count(e); tmp___0 = ldv__builtin_expect(tmp == 0U, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/zakharov/workspace/benchmarks/bench_1/inst/current/envs/linux-3.8-rc1/linux-3.8-rc1/drivers/md/dm-exception-store.h"), "i" (155), "i" (12UL)); ldv_29480: ; goto ldv_29480; } else { } return; } } __inline static void dm_consecutive_chunk_count_dec(struct dm_exception *e ) { unsigned int tmp ; long tmp___0 ; { tmp = dm_consecutive_chunk_count(e); tmp___0 = ldv__builtin_expect(tmp == 0U, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/zakharov/workspace/benchmarks/bench_1/inst/current/envs/linux-3.8-rc1/linux-3.8-rc1/drivers/md/dm-exception-store.h"), "i" (160), "i" (12UL)); ldv_29484: ; goto ldv_29484; } else { } e->new_chunk = (chunk_t )((unsigned long long )e->new_chunk - 72057594037927936ULL); return; } } __inline static sector_t get_dev_size(struct block_device *bdev ) { loff_t tmp ; { tmp = i_size_read((struct inode const *)bdev->bd_inode); return ((sector_t )(tmp >> 9)); } } __inline static chunk_t sector_to_chunk(struct dm_exception_store *store , sector_t sector ) { { return (sector >> (int )store->chunk_shift); } } int dm_exception_store_create(struct dm_target *ti , int argc , char **argv , struct dm_snapshot *snap , unsigned int *args_used , struct dm_exception_store **store ) ; void dm_exception_store_destroy(struct dm_exception_store *store ) ; int dm_exception_store_init(void) ; void dm_exception_store_exit(void) ; static char const dm_snapshot_merge_target_name[15U] = { 's', 'n', 'a', 'p', 's', 'h', 'o', 't', '-', 'm', 'e', 'r', 'g', 'e', '\000'}; struct dm_dev *dm_snap_origin(struct dm_snapshot *s ) { { return (s->origin); } } struct dm_dev *dm_snap_cow(struct dm_snapshot *s ) { { return (s->cow); } } static sector_t chunk_to_sector(struct dm_exception_store *store , chunk_t chunk ) { { return (chunk << (int )store->chunk_shift); } } static int bdev_equal(struct block_device *lhs , struct block_device *rhs ) { { return ((unsigned long )lhs == (unsigned long )rhs); } } static struct kmem_cache *exception_cache ; static struct kmem_cache *pending_cache ; static void init_tracked_chunk(struct bio *bio ) { struct dm_snap_tracked_chunk *c ; void *tmp ; { tmp = dm_per_bio_data(bio, 24UL); c = (struct dm_snap_tracked_chunk *)tmp; INIT_HLIST_NODE(& c->node); return; } } static bool is_bio_tracked(struct bio *bio ) { struct dm_snap_tracked_chunk *c ; void *tmp ; int tmp___0 ; { tmp = dm_per_bio_data(bio, 24UL); c = (struct dm_snap_tracked_chunk *)tmp; tmp___0 = hlist_unhashed((struct hlist_node const *)(& c->node)); return (tmp___0 == 0); } } static void track_chunk(struct dm_snapshot *s , struct bio *bio , chunk_t chunk ) { struct dm_snap_tracked_chunk *c ; void *tmp ; { tmp = dm_per_bio_data(bio, 24UL); c = (struct dm_snap_tracked_chunk *)tmp; c->chunk = chunk; spin_lock_irq(& s->tracked_chunk_lock); hlist_add_head(& c->node, (struct hlist_head *)(& s->tracked_chunk_hash) + (chunk & 15UL)); spin_unlock_irq(& s->tracked_chunk_lock); return; } } static void stop_tracking_chunk(struct dm_snapshot *s , struct bio *bio ) { struct dm_snap_tracked_chunk *c ; void *tmp ; unsigned long flags ; raw_spinlock_t *tmp___0 ; { tmp = dm_per_bio_data(bio, 24UL); c = (struct dm_snap_tracked_chunk *)tmp; tmp___0 = spinlock_check(& s->tracked_chunk_lock); flags = _raw_spin_lock_irqsave(tmp___0); hlist_del(& c->node); spin_unlock_irqrestore(& s->tracked_chunk_lock, flags); return; } } static int __chunk_is_tracked(struct dm_snapshot *s , chunk_t chunk ) { struct dm_snap_tracked_chunk *c ; struct hlist_node *hn ; int found ; struct hlist_node const *__mptr ; { found = 0; spin_lock_irq(& s->tracked_chunk_lock); hn = ((struct hlist_head *)(& s->tracked_chunk_hash) + (chunk & 15UL))->first; goto ldv_29622; ldv_29621: ; if (c->chunk == chunk) { found = 1; goto ldv_29620; } else { } hn = hn->next; ldv_29622: ; if ((unsigned long )hn != (unsigned long )((struct hlist_node *)0)) { __mptr = (struct hlist_node const *)hn; c = (struct dm_snap_tracked_chunk *)__mptr; goto ldv_29621; } else { goto ldv_29620; } ldv_29620: spin_unlock_irq(& s->tracked_chunk_lock); return (found); } } static void __check_for_conflicting_io(struct dm_snapshot *s , chunk_t chunk ) { int tmp ; { goto ldv_29628; ldv_29627: msleep(1U); ldv_29628: tmp = __chunk_is_tracked(s, chunk); if (tmp != 0) { goto ldv_29627; } else { goto ldv_29629; } ldv_29629: ; return; } } static struct list_head *_origins ; static struct rw_semaphore _origins_lock ; static wait_queue_head_t _pending_exceptions_done = {{{{{{0U}}, 3735899821U, 4294967295U, 0xffffffffffffffffUL, {0, {0, 0}, "_pending_exceptions_done.lock", 0, 0UL}}}}, {& _pending_exceptions_done.task_list, & _pending_exceptions_done.task_list}}; static spinlock_t _pending_exceptions_done_spinlock = {{{{{0U}}, 3735899821U, 4294967295U, 0xffffffffffffffffUL, {0, {0, 0}, "_pending_exceptions_done_spinlock", 0, 0UL}}}}; static uint64_t _pending_exceptions_done_count ; static int init_origin_hash(void) { int i ; void *tmp ; struct lock_class_key __key ; { tmp = kmalloc(4096UL, 208U); _origins = (struct list_head *)tmp; if ((unsigned long )_origins == (unsigned long )((struct list_head *)0)) { printk("\vdevice-mapper: snapshots: unable to allocate memory\n"); return (-12); } else { } i = 0; goto ldv_29646; ldv_29645: INIT_LIST_HEAD(_origins + (unsigned long )i); i = i + 1; ldv_29646: ; if (i <= 255) { goto ldv_29645; } else { goto ldv_29647; } ldv_29647: __init_rwsem(& _origins_lock, "&_origins_lock", & __key); return (0); } } static void exit_origin_hash(void) { { kfree((void const *)_origins); return; } } static unsigned int origin_hash(struct block_device *bdev ) { { return (bdev->bd_dev & 255U); } } static struct origin *__lookup_origin(struct block_device *origin ) { struct list_head *ol ; struct origin *o ; unsigned int tmp ; struct list_head const *__mptr ; int tmp___0 ; struct list_head const *__mptr___0 ; { tmp = origin_hash(origin); ol = _origins + (unsigned long )tmp; __mptr = (struct list_head const *)ol->next; o = (struct origin *)__mptr + 0xfffffffffffffff8UL; goto ldv_29665; ldv_29664: tmp___0 = bdev_equal(o->bdev, origin); if (tmp___0 != 0) { return (o); } else { } __mptr___0 = (struct list_head const *)o->hash_list.next; o = (struct origin *)__mptr___0 + 0xfffffffffffffff8UL; ldv_29665: ; if ((unsigned long )(& o->hash_list) != (unsigned long )ol) { goto ldv_29664; } else { goto ldv_29666; } ldv_29666: ; return (0); } } static void __insert_origin(struct origin *o ) { struct list_head *sl ; unsigned int tmp ; { tmp = origin_hash(o->bdev); sl = _origins + (unsigned long )tmp; list_add_tail(& o->hash_list, sl); return; } } static int __find_snapshots_sharing_cow(struct dm_snapshot *snap , struct dm_snapshot **snap_src , struct dm_snapshot **snap_dest , struct dm_snapshot **snap_merge ) { struct dm_snapshot *s ; struct origin *o ; int count ; int active ; struct list_head const *__mptr ; int tmp ; struct list_head const *__mptr___0 ; { count = 0; o = __lookup_origin((snap->origin)->bdev); if ((unsigned long )o == (unsigned long )((struct origin *)0)) { goto out; } else { } __mptr = (struct list_head const *)o->snapshots.next; s = (struct dm_snapshot *)__mptr + 0xffffffffffffff58UL; goto ldv_29688; ldv_29687: ; if ((unsigned long )((s->ti)->type)->name == (unsigned long )((char const *)(& dm_snapshot_merge_target_name)) && (unsigned long )snap_merge != (unsigned long )((struct dm_snapshot **)0)) { *snap_merge = s; } else { } tmp = bdev_equal((s->cow)->bdev, (snap->cow)->bdev); if (tmp == 0) { goto ldv_29686; } else { } down_read(& s->lock); active = s->active; up_read(& s->lock); if (active != 0) { if ((unsigned long )snap_src != (unsigned long )((struct dm_snapshot **)0)) { *snap_src = s; } else { } } else if ((unsigned long )snap_dest != (unsigned long )((struct dm_snapshot **)0)) { *snap_dest = s; } else { } count = count + 1; ldv_29686: __mptr___0 = (struct list_head const *)s->list.next; s = (struct dm_snapshot *)__mptr___0 + 0xffffffffffffff58UL; ldv_29688: ; if ((unsigned long )(& s->list) != (unsigned long )(& o->snapshots)) { goto ldv_29687; } else { goto ldv_29689; } ldv_29689: ; out: ; return (count); } } static int __validate_exception_handover(struct dm_snapshot *snap ) { struct dm_snapshot *snap_src ; struct dm_snapshot *snap_dest ; struct dm_snapshot *snap_merge ; int tmp ; { snap_src = 0; snap_dest = 0; snap_merge = 0; tmp = __find_snapshots_sharing_cow(snap, & snap_src, & snap_dest, & snap_merge); if (tmp == 2 || (unsigned long )snap_dest != (unsigned long )((struct dm_snapshot *)0)) { (snap->ti)->error = (char *)"Snapshot cow pairing for exception table handover failed"; return (-22); } else { } if ((unsigned long )snap_src == (unsigned long )((struct dm_snapshot *)0)) { return (0); } else { } if ((unsigned long )((snap->ti)->type)->name != (unsigned long )((char const *)(& dm_snapshot_merge_target_name))) { return (1); } else { } if ((unsigned long )snap_merge != (unsigned long )((struct dm_snapshot *)0)) { (snap->ti)->error = (char *)"A snapshot is already merging."; return (-22); } else { } if ((unsigned long )((snap_src->store)->type)->prepare_merge == (unsigned long )((int (*)(struct dm_exception_store * , chunk_t * , chunk_t * ))0) || (unsigned long )((snap_src->store)->type)->commit_merge == (unsigned long )((int (*)(struct dm_exception_store * , int ))0)) { (snap->ti)->error = (char *)"Snapshot exception store does not support snapshot-merge."; return (-22); } else { } return (1); } } static void __insert_snapshot(struct origin *o , struct dm_snapshot *s ) { struct dm_snapshot *l ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { __mptr = (struct list_head const *)o->snapshots.next; l = (struct dm_snapshot *)__mptr + 0xffffffffffffff58UL; goto ldv_29707; ldv_29706: ; if ((l->store)->chunk_size < (s->store)->chunk_size) { goto ldv_29705; } else { } __mptr___0 = (struct list_head const *)l->list.next; l = (struct dm_snapshot *)__mptr___0 + 0xffffffffffffff58UL; ldv_29707: ; if ((unsigned long )(& l->list) != (unsigned long )(& o->snapshots)) { goto ldv_29706; } else { goto ldv_29705; } ldv_29705: list_add_tail(& s->list, & l->list); return; } } static int register_snapshot(struct dm_snapshot *snap ) { struct origin *o ; struct origin *new_o ; struct block_device *bdev ; int r ; void *tmp ; { new_o = 0; bdev = (snap->origin)->bdev; r = 0; tmp = kmalloc(40UL, 208U); new_o = (struct origin *)tmp; if ((unsigned long )new_o == (unsigned long )((struct origin *)0)) { return (-12); } else { } down_write(& _origins_lock); r = __validate_exception_handover(snap); if (r < 0) { kfree((void const *)new_o); goto out; } else { } o = __lookup_origin(bdev); if ((unsigned long )o != (unsigned long )((struct origin *)0)) { kfree((void const *)new_o); } else { o = new_o; INIT_LIST_HEAD(& o->snapshots); o->bdev = bdev; __insert_origin(o); } __insert_snapshot(o, snap); out: up_write(& _origins_lock); return (r); } } static void reregister_snapshot(struct dm_snapshot *s ) { struct block_device *bdev ; struct origin *tmp ; { bdev = (s->origin)->bdev; down_write(& _origins_lock); list_del(& s->list); tmp = __lookup_origin(bdev); __insert_snapshot(tmp, s); up_write(& _origins_lock); return; } } static void unregister_snapshot(struct dm_snapshot *s ) { struct origin *o ; int tmp ; { down_write(& _origins_lock); o = __lookup_origin((s->origin)->bdev); list_del(& s->list); if ((unsigned long )o != (unsigned long )((struct origin *)0)) { tmp = list_empty((struct list_head const *)(& o->snapshots)); if (tmp != 0) { list_del(& o->hash_list); kfree((void const *)o); } else { } } else { } up_write(& _origins_lock); return; } } static int dm_exception_table_init(struct dm_exception_table *et , uint32_t size , unsigned int hash_shift ) { unsigned int i ; void *tmp ; { et->hash_shift = hash_shift; et->hash_mask = size - 1U; tmp = dm_vcalloc((unsigned long )size, 16UL); et->table = (struct list_head *)tmp; if ((unsigned long )et->table == (unsigned long )((struct list_head *)0)) { return (-12); } else { } i = 0U; goto ldv_29731; ldv_29730: INIT_LIST_HEAD(et->table + (unsigned long )i); i = i + 1U; ldv_29731: ; if (i < size) { goto ldv_29730; } else { goto ldv_29732; } ldv_29732: ; return (0); } } static void dm_exception_table_exit(struct dm_exception_table *et , struct kmem_cache *mem ) { struct list_head *slot ; struct dm_exception *ex ; struct dm_exception *next ; int i ; int size ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; { size = (int )(et->hash_mask + 1U); i = 0; goto ldv_29752; ldv_29751: slot = et->table + (unsigned long )i; __mptr = (struct list_head const *)slot->next; ex = (struct dm_exception *)__mptr; __mptr___0 = (struct list_head const *)ex->hash_list.next; next = (struct dm_exception *)__mptr___0; goto ldv_29749; ldv_29748: kmem_cache_free(mem, (void *)ex); ex = next; __mptr___1 = (struct list_head const *)next->hash_list.next; next = (struct dm_exception *)__mptr___1; ldv_29749: ; if ((unsigned long )(& ex->hash_list) != (unsigned long )slot) { goto ldv_29748; } else { goto ldv_29750; } ldv_29750: i = i + 1; ldv_29752: ; if (i < size) { goto ldv_29751; } else { goto ldv_29753; } ldv_29753: vfree((void const *)et->table); return; } } static uint32_t exception_hash(struct dm_exception_table *et , chunk_t chunk ) { { return ((uint32_t )(chunk >> (int )et->hash_shift) & et->hash_mask); } } static void dm_remove_exception(struct dm_exception *e ) { { list_del(& e->hash_list); return; } } static struct dm_exception *dm_lookup_exception(struct dm_exception_table *et , chunk_t chunk ) { struct list_head *slot ; struct dm_exception *e ; uint32_t tmp ; struct list_head const *__mptr ; unsigned int tmp___0 ; struct list_head const *__mptr___0 ; { tmp = exception_hash(et, chunk); slot = et->table + (unsigned long )tmp; __mptr = (struct list_head const *)slot->next; e = (struct dm_exception *)__mptr; goto ldv_29772; ldv_29771: ; if (e->old_chunk <= chunk) { tmp___0 = dm_consecutive_chunk_count(e); if (e->old_chunk + (chunk_t )tmp___0 >= chunk) { return (e); } else { } } else { } __mptr___0 = (struct list_head const *)e->hash_list.next; e = (struct dm_exception *)__mptr___0; ldv_29772: ; if ((unsigned long )(& e->hash_list) != (unsigned long )slot) { goto ldv_29771; } else { goto ldv_29773; } ldv_29773: ; return (0); } } static struct dm_exception *alloc_completed_exception(void) { struct dm_exception *e ; void *tmp ; void *tmp___0 ; { tmp = kmem_cache_alloc(exception_cache, 16U); e = (struct dm_exception *)tmp; if ((unsigned long )e == (unsigned long )((struct dm_exception *)0)) { tmp___0 = kmem_cache_alloc(exception_cache, 32U); e = (struct dm_exception *)tmp___0; } else { } return (e); } } static void free_completed_exception(struct dm_exception *e ) { { kmem_cache_free(exception_cache, (void *)e); return; } } static struct dm_snap_pending_exception *alloc_pending_exception(struct dm_snapshot *s ) { struct dm_snap_pending_exception *pe ; void *tmp ; { tmp = mempool_alloc(s->pending_pool, 16U); pe = (struct dm_snap_pending_exception *)tmp; atomic_inc(& s->pending_exceptions_count); pe->snap = s; return (pe); } } static void free_pending_exception(struct dm_snap_pending_exception *pe ) { struct dm_snapshot *s ; { s = pe->snap; mempool_free((void *)pe, s->pending_pool); __asm__ volatile ("": : : "memory"); atomic_dec(& s->pending_exceptions_count); return; } } static void dm_insert_exception(struct dm_exception_table *eh , struct dm_exception *new_e ) { struct list_head *l ; struct dm_exception *e ; uint32_t tmp ; struct list_head const *__mptr ; unsigned int tmp___0 ; chunk_t tmp___1 ; unsigned int tmp___2 ; chunk_t tmp___3 ; struct list_head const *__mptr___0 ; struct list_head *tmp___4 ; { e = 0; tmp = exception_hash(eh, new_e->old_chunk); l = eh->table + (unsigned long )tmp; if (eh->hash_shift == 0U) { goto out; } else { } __mptr = (struct list_head const *)l->prev; e = (struct dm_exception *)__mptr; goto ldv_29802; ldv_29801: tmp___0 = dm_consecutive_chunk_count(e); if (new_e->old_chunk == (e->old_chunk + (chunk_t )tmp___0) + 1UL) { tmp___1 = dm_chunk_number(e->new_chunk); tmp___2 = dm_consecutive_chunk_count(e); if (new_e->new_chunk == (tmp___1 + (chunk_t )tmp___2) + 1UL) { dm_consecutive_chunk_count_inc(e); free_completed_exception(new_e); return; } else { } } else { } if (new_e->old_chunk == e->old_chunk - 1UL) { tmp___3 = dm_chunk_number(e->new_chunk); if (new_e->new_chunk == tmp___3 - 1UL) { dm_consecutive_chunk_count_inc(e); e->old_chunk = e->old_chunk - 1UL; e->new_chunk = e->new_chunk - 1UL; free_completed_exception(new_e); return; } else { } } else { } if (new_e->old_chunk > e->old_chunk) { goto ldv_29800; } else { } __mptr___0 = (struct list_head const *)e->hash_list.prev; e = (struct dm_exception *)__mptr___0; ldv_29802: ; if ((unsigned long )(& e->hash_list) != (unsigned long )l) { goto ldv_29801; } else { goto ldv_29800; } ldv_29800: ; out: ; if ((unsigned long )e != (unsigned long )((struct dm_exception *)0)) { tmp___4 = & e->hash_list; } else { tmp___4 = l; } list_add(& new_e->hash_list, tmp___4); return; } } static int dm_add_exception(void *context , chunk_t old , chunk_t new ) { struct dm_snapshot *s ; struct dm_exception *e ; { s = (struct dm_snapshot *)context; e = alloc_completed_exception(); if ((unsigned long )e == (unsigned long )((struct dm_exception *)0)) { return (-12); } else { } e->old_chunk = old; e->new_chunk = new; dm_insert_exception(& s->complete, e); return (0); } } static uint32_t __minimum_chunk_size(struct origin *o ) { struct dm_snapshot *snap ; unsigned int chunk_size ; struct list_head const *__mptr ; unsigned int __x ; unsigned int __y ; unsigned int _min1 ; unsigned int _min2 ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; struct list_head const *__mptr___0 ; { chunk_size = 0U; if ((unsigned long )o != (unsigned long )((struct origin *)0)) { __mptr = (struct list_head const *)o->snapshots.next; snap = (struct dm_snapshot *)__mptr + 0xffffffffffffff58UL; goto ldv_29826; ldv_29825: __x = chunk_size; __y = (snap->store)->chunk_size; if (__x != 0U) { if (__y != 0U) { _min1 = __x; _min2 = __y; if (_min1 < _min2) { tmp = _min1; } else { tmp = _min2; } tmp___0 = tmp; } else { tmp___0 = __x; } tmp___1 = tmp___0; } else { tmp___1 = __y; } chunk_size = tmp___1; __mptr___0 = (struct list_head const *)snap->list.next; snap = (struct dm_snapshot *)__mptr___0 + 0xffffffffffffff58UL; ldv_29826: ; if ((unsigned long )(& snap->list) != (unsigned long )(& o->snapshots)) { goto ldv_29825; } else { goto ldv_29827; } ldv_29827: ; } else { } return (chunk_size); } } static int calc_max_buckets(void) { unsigned long mem ; { mem = 2097152UL; mem = mem / 16UL; return ((int )mem); } } static int init_hash_tables(struct dm_snapshot *s ) { sector_t hash_size ; sector_t cow_dev_size ; sector_t origin_dev_size ; sector_t max_buckets ; int tmp ; sector_t _min1 ; sector_t _min2 ; sector_t tmp___0 ; sector_t _min1___0 ; sector_t _min2___0 ; sector_t tmp___1 ; int tmp___2 ; int tmp___3 ; { cow_dev_size = get_dev_size((s->cow)->bdev); origin_dev_size = get_dev_size((s->origin)->bdev); tmp = calc_max_buckets(); max_buckets = (sector_t )tmp; _min1 = origin_dev_size; _min2 = cow_dev_size; if (_min1 < _min2) { tmp___0 = _min1; } else { tmp___0 = _min2; } hash_size = tmp___0 >> (int )(s->store)->chunk_shift; _min1___0 = hash_size; _min2___0 = max_buckets; if (_min1___0 < _min2___0) { tmp___1 = _min1___0; } else { tmp___1 = _min2___0; } hash_size = tmp___1; if (hash_size <= 63UL) { hash_size = 64UL; } else { } hash_size = __rounddown_pow_of_two(hash_size); tmp___2 = dm_exception_table_init(& s->complete, (uint32_t )hash_size, 8U); if (tmp___2 != 0) { return (-12); } else { } hash_size = hash_size >> 3; if (hash_size <= 63UL) { hash_size = 64UL; } else { } tmp___3 = dm_exception_table_init(& s->pending, (uint32_t )hash_size, 0U); if (tmp___3 != 0) { dm_exception_table_exit(& s->complete, exception_cache); return (-12); } else { } return (0); } } static void merge_shutdown(struct dm_snapshot *s ) { { clear_bit_unlock(0U, (unsigned long volatile *)(& s->state_bits)); __asm__ volatile ("": : : "memory"); wake_up_bit((void *)(& s->state_bits), 0); return; } } static struct bio *__release_queued_bios_after_merge(struct dm_snapshot *s ) { struct bio *tmp ; { s->first_merging_chunk = 0UL; s->num_merging_chunks = 0; tmp = bio_list_get(& s->bios_queued_during_merge); return (tmp); } } static int __remove_single_exception_chunk(struct dm_snapshot *s , chunk_t old_chunk ) { struct dm_exception *e ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; { e = dm_lookup_exception(& s->complete, old_chunk); if ((unsigned long )e == (unsigned long )((struct dm_exception *)0)) { printk("\vdevice-mapper: snapshots: Corruption detected: exception for block %llu is on disk but not in memory\n", (unsigned long long )old_chunk); return (-22); } else { } tmp = dm_consecutive_chunk_count(e); if (tmp == 0U) { dm_remove_exception(e); free_completed_exception(e); return (0); } else { } if (e->old_chunk == old_chunk) { e->old_chunk = e->old_chunk + 1UL; e->new_chunk = e->new_chunk + 1UL; } else { tmp___1 = dm_consecutive_chunk_count(e); if (e->old_chunk + (chunk_t )tmp___1 != old_chunk) { tmp___0 = dm_consecutive_chunk_count(e); printk("\vdevice-mapper: snapshots: Attempt to merge block %llu from the middle of a chunk range [%llu - %llu]\n", (unsigned long long )old_chunk, (unsigned long long )e->old_chunk, (unsigned long long )e->old_chunk + (unsigned long long )tmp___0); return (-22); } else { } } dm_consecutive_chunk_count_dec(e); return (0); } } static void flush_bios(struct bio *bio ) ; static int remove_single_exception_chunk(struct dm_snapshot *s ) { struct bio *b ; int r ; chunk_t old_chunk ; chunk_t tmp ; { b = 0; old_chunk = (s->first_merging_chunk + (chunk_t )s->num_merging_chunks) - 1UL; down_write(& s->lock); ldv_29865: r = __remove_single_exception_chunk(s, old_chunk); if (r != 0) { goto out; } else { } tmp = old_chunk; old_chunk = old_chunk - 1UL; if (tmp > s->first_merging_chunk) { goto ldv_29865; } else { goto ldv_29866; } ldv_29866: b = __release_queued_bios_after_merge(s); out: up_write(& s->lock); if ((unsigned long )b != (unsigned long )((struct bio *)0)) { flush_bios(b); } else { } return (r); } } static int origin_write_extent(struct dm_snapshot *merging_snap , sector_t sector , unsigned int size ) ; static void merge_callback(int read_err , unsigned long write_err , void *context ) ; static uint64_t read_pending_exceptions_done_count(void) { uint64_t pending_exceptions_done ; { spin_lock(& _pending_exceptions_done_spinlock); pending_exceptions_done = _pending_exceptions_done_count; spin_unlock(& _pending_exceptions_done_spinlock); return (pending_exceptions_done); } } static void increment_pending_exceptions_done_count(void) { { spin_lock(& _pending_exceptions_done_spinlock); _pending_exceptions_done_count = _pending_exceptions_done_count + 1ULL; spin_unlock(& _pending_exceptions_done_spinlock); __wake_up(& _pending_exceptions_done, 3U, 0, 0); return; } } static void snapshot_merge_next_chunks(struct dm_snapshot *s ) { int i ; int linear_chunks ; chunk_t old_chunk ; chunk_t new_chunk ; struct dm_io_region src ; struct dm_io_region dest ; sector_t io_size ; uint64_t previous_count ; int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; sector_t _min1 ; sector_t _min2 ; sector_t tmp___3 ; sector_t tmp___4 ; uint64_t tmp___5 ; wait_queue_t __wait ; struct task_struct *tmp___6 ; uint64_t tmp___7 ; int tmp___8 ; { tmp = constant_test_bit(0U, (unsigned long const volatile *)(& s->state_bits)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/zakharov/workspace/benchmarks/bench_1/work/current--X--drivers/md/dm-snapshot.ko--X--deg2_cpalinux-3.8-rc1--X--32_7a--X--cpachecker/linux-3.8-rc1/csd_deg_dscv/35/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-snap.c.prepared"), "i" (936), "i" (12UL)); ldv_29893: ; goto ldv_29893; } else { } tmp___1 = constant_test_bit(1U, (unsigned long const volatile *)(& s->state_bits)); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); if (tmp___2 != 0L) { goto shut; } else { } if (s->valid == 0) { printk("\vdevice-mapper: snapshots: Snapshot is invalid: can\'t merge\n"); goto shut; } else { } linear_chunks = (*(((s->store)->type)->prepare_merge))(s->store, & old_chunk, & new_chunk); if (linear_chunks <= 0) { if (linear_chunks < 0) { printk("\vdevice-mapper: snapshots: Read error in exception store: shutting down merge\n"); down_write(& s->lock); s->merge_failed = 1; up_write(& s->lock); } else { } goto shut; } else { } old_chunk = (old_chunk - (chunk_t )linear_chunks) + 1UL; new_chunk = (new_chunk - (chunk_t )linear_chunks) + 1UL; io_size = (sector_t )((s->store)->chunk_size * (unsigned int )linear_chunks); dest.bdev = (s->origin)->bdev; dest.sector = chunk_to_sector(s->store, old_chunk); _min1 = io_size; tmp___3 = get_dev_size(dest.bdev); _min2 = tmp___3 - dest.sector; if (_min1 < _min2) { tmp___4 = _min1; } else { tmp___4 = _min2; } dest.count = tmp___4; src.bdev = (s->cow)->bdev; src.sector = chunk_to_sector(s->store, new_chunk); src.count = dest.count; previous_count = read_pending_exceptions_done_count(); goto ldv_29903; ldv_29902: tmp___5 = read_pending_exceptions_done_count(); if (tmp___5 != previous_count) { goto ldv_29898; } else { } tmp___6 = get_current(); __wait.flags = 0U; __wait.private = (void *)tmp___6; __wait.func = & autoremove_wake_function; __wait.task_list.next = & __wait.task_list; __wait.task_list.prev = & __wait.task_list; ldv_29901: prepare_to_wait(& _pending_exceptions_done, & __wait, 2); tmp___7 = read_pending_exceptions_done_count(); if (tmp___7 != previous_count) { goto ldv_29900; } else { } schedule(); goto ldv_29901; ldv_29900: finish_wait(& _pending_exceptions_done, & __wait); ldv_29898: previous_count = read_pending_exceptions_done_count(); ldv_29903: tmp___8 = origin_write_extent(s, dest.sector, (unsigned int )io_size); if (tmp___8 != 0) { goto ldv_29902; } else { goto ldv_29904; } ldv_29904: down_write(& s->lock); s->first_merging_chunk = old_chunk; s->num_merging_chunks = linear_chunks; up_write(& s->lock); i = 0; goto ldv_29906; ldv_29905: __check_for_conflicting_io(s, (chunk_t )i + old_chunk); i = i + 1; ldv_29906: ; if (i < linear_chunks) { goto ldv_29905; } else { goto ldv_29907; } ldv_29907: dm_kcopyd_copy(s->kcopyd_client, & src, 1U, & dest, 0U, & merge_callback, (void *)s); return; shut: merge_shutdown(s); return; } } static void error_bios(struct bio *bio ) ; static void merge_callback(int read_err , unsigned long write_err , void *context ) { struct dm_snapshot *s ; struct bio *b ; int tmp ; int tmp___0 ; { s = (struct dm_snapshot *)context; b = 0; if (read_err != 0 || write_err != 0UL) { if (read_err != 0) { printk("\vdevice-mapper: snapshots: Read error: shutting down merge.\n"); } else { printk("\vdevice-mapper: snapshots: Write error: shutting down merge.\n"); } goto shut; } else { } tmp = (*(((s->store)->type)->commit_merge))(s->store, s->num_merging_chunks); if (tmp < 0) { printk("\vdevice-mapper: snapshots: Write error in exception store: shutting down merge\n"); goto shut; } else { } tmp___0 = remove_single_exception_chunk(s); if (tmp___0 < 0) { goto shut; } else { } snapshot_merge_next_chunks(s); return; shut: down_write(& s->lock); s->merge_failed = 1; b = __release_queued_bios_after_merge(s); up_write(& s->lock); error_bios(b); merge_shutdown(s); return; } } static void start_merge(struct dm_snapshot *s ) { int tmp ; { tmp = test_and_set_bit(0, (unsigned long volatile *)(& s->state_bits)); if (tmp == 0) { snapshot_merge_next_chunks(s); } else { } return; } } static int wait_schedule(void *ptr ) { { schedule(); return (0); } } static void stop_merge(struct dm_snapshot *s ) { { set_bit(1U, (unsigned long volatile *)(& s->state_bits)); wait_on_bit((void *)(& s->state_bits), 0, & wait_schedule, 2U); clear_bit(1, (unsigned long volatile *)(& s->state_bits)); return; } } static int snapshot_ctr(struct dm_target *ti , unsigned int argc , char **argv ) { struct dm_snapshot *s ; int i ; int r ; char *origin_path ; char *cow_path ; unsigned int args_used ; unsigned int num_flush_requests ; fmode_t origin_mode ; void *tmp ; fmode_t tmp___0 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; struct lock_class_key __key___1 ; { r = -22; num_flush_requests = 1U; origin_mode = 1U; if (argc != 4U) { ti->error = (char *)"requires exactly 4 arguments"; r = -22; goto bad; } else { } if ((unsigned long )(ti->type)->name == (unsigned long )((char const *)(& dm_snapshot_merge_target_name))) { num_flush_requests = 2U; origin_mode = 2U; } else { } tmp = kmalloc(568UL, 208U); s = (struct dm_snapshot *)tmp; if ((unsigned long )s == (unsigned long )((struct dm_snapshot *)0)) { ti->error = (char *)"Cannot allocate private snapshot structure"; r = -12; goto bad; } else { } origin_path = *argv; argv = argv + 1; argc = argc - 1U; r = dm_get_device(ti, (char const *)origin_path, origin_mode, & s->origin); if (r != 0) { ti->error = (char *)"Cannot get origin device"; goto bad_origin; } else { } cow_path = *argv; argv = argv + 1; argc = argc - 1U; tmp___0 = dm_table_get_mode(ti->table); r = dm_get_device(ti, (char const *)cow_path, tmp___0, & s->cow); if (r != 0) { ti->error = (char *)"Cannot get COW device"; goto bad_cow; } else { } r = dm_exception_store_create(ti, (int )argc, argv, s, & args_used, & s->store); if (r != 0) { ti->error = (char *)"Couldn\'t create exception store"; r = -22; goto bad_store; } else { } argv = argv + (unsigned long )args_used; argc = argc - args_used; s->ti = ti; s->valid = 1; s->active = 0; atomic_set(& s->pending_exceptions_count, 0); __init_rwsem(& s->lock, "&s->lock", & __key); INIT_LIST_HEAD(& s->list); spinlock_check(& s->pe_lock); __raw_spin_lock_init(& s->pe_lock.ldv_5961.rlock, "&(&s->pe_lock)->rlock", & __key___0); s->state_bits = 0UL; s->merge_failed = 0; s->first_merging_chunk = 0UL; s->num_merging_chunks = 0; bio_list_init(& s->bios_queued_during_merge); tmp___1 = init_hash_tables(s); if (tmp___1 != 0) { ti->error = (char *)"Unable to allocate hash table space"; r = -12; goto bad_hash_tables; } else { } s->kcopyd_client = dm_kcopyd_client_create(); tmp___3 = IS_ERR((void const *)s->kcopyd_client); if (tmp___3 != 0L) { tmp___2 = PTR_ERR((void const *)s->kcopyd_client); r = (int )tmp___2; ti->error = (char *)"Could not create kcopyd client"; goto bad_kcopyd; } else { } s->pending_pool = mempool_create_slab_pool(256, pending_cache); if ((unsigned long )s->pending_pool == (unsigned long )((mempool_t *)0)) { ti->error = (char *)"Could not allocate mempool for pending exceptions"; goto bad_pending_pool; } else { } i = 0; goto ldv_29950; ldv_29949: ((struct hlist_head *)(& s->tracked_chunk_hash) + (unsigned long )i)->first = 0; i = i + 1; ldv_29950: ; if (i <= 15) { goto ldv_29949; } else { goto ldv_29951; } ldv_29951: spinlock_check(& s->tracked_chunk_lock); __raw_spin_lock_init(& s->tracked_chunk_lock.ldv_5961.rlock, "&(&s->tracked_chunk_lock)->rlock", & __key___1); ti->private = (void *)s; ti->num_flush_requests = num_flush_requests; ti->per_bio_data_size = 24U; r = register_snapshot(s); if (r == -12) { ti->error = (char *)"Snapshot origin struct allocation failed"; goto bad_load_and_register; } else if (r < 0) { goto bad_load_and_register; } else { } if (r > 0) { (s->store)->chunk_size = 0U; return (0); } else { } r = (*(((s->store)->type)->read_metadata))(s->store, & dm_add_exception, (void *)s); if (r < 0) { ti->error = (char *)"Failed to read snapshot metadata"; goto bad_read_metadata; } else if (r > 0) { s->valid = 0; printk("\fdevice-mapper: snapshots: Snapshot is marked invalid.\n"); } else { } if ((s->store)->chunk_size == 0U) { ti->error = (char *)"Chunk size not set"; goto bad_read_metadata; } else { } r = dm_set_target_max_io_len(ti, (sector_t )(s->store)->chunk_size); if (r != 0) { goto bad_read_metadata; } else { } return (0); bad_read_metadata: unregister_snapshot(s); bad_load_and_register: mempool_destroy(s->pending_pool); bad_pending_pool: dm_kcopyd_client_destroy(s->kcopyd_client); bad_kcopyd: dm_exception_table_exit(& s->pending, pending_cache); dm_exception_table_exit(& s->complete, exception_cache); bad_hash_tables: dm_exception_store_destroy(s->store); bad_store: dm_put_device(ti, s->cow); bad_cow: dm_put_device(ti, s->origin); bad_origin: kfree((void const *)s); bad: ; return (r); } } static void __free_exceptions(struct dm_snapshot *s ) { { dm_kcopyd_client_destroy(s->kcopyd_client); s->kcopyd_client = 0; dm_exception_table_exit(& s->pending, pending_cache); dm_exception_table_exit(& s->complete, exception_cache); return; } } static void __handover_exceptions(struct dm_snapshot *snap_src , struct dm_snapshot *snap_dest ) { union __anonunion_u_188 u ; { u.table_swap = snap_dest->complete; snap_dest->complete = snap_src->complete; snap_src->complete = u.table_swap; u.store_swap = snap_dest->store; snap_dest->store = snap_src->store; snap_src->store = u.store_swap; (snap_dest->store)->snap = snap_dest; (snap_src->store)->snap = snap_src; (snap_dest->ti)->max_io_len = (snap_dest->store)->chunk_size; snap_dest->valid = snap_src->valid; snap_src->valid = 0; return; } } static void snapshot_dtr(struct dm_target *ti ) { int i ; struct dm_snapshot *s ; struct dm_snapshot *snap_src ; struct dm_snapshot *snap_dest ; int tmp ; int tmp___0 ; long tmp___1 ; { s = (struct dm_snapshot *)ti->private; snap_src = 0; snap_dest = 0; down_read(& _origins_lock); __find_snapshots_sharing_cow(s, & snap_src, & snap_dest, 0); if (((unsigned long )snap_src != (unsigned long )((struct dm_snapshot *)0) && (unsigned long )snap_dest != (unsigned long )((struct dm_snapshot *)0)) && (unsigned long )s == (unsigned long )snap_src) { down_write(& snap_dest->lock); snap_dest->valid = 0; up_write(& snap_dest->lock); printk("\vdevice-mapper: snapshots: Cancelling snapshot handover.\n"); } else { } up_read(& _origins_lock); if ((unsigned long )(ti->type)->name == (unsigned long )((char const *)(& dm_snapshot_merge_target_name))) { stop_merge(s); } else { } unregister_snapshot(s); goto ldv_29974; ldv_29973: msleep(1U); ldv_29974: tmp = atomic_read((atomic_t const *)(& s->pending_exceptions_count)); if (tmp != 0) { goto ldv_29973; } else { goto ldv_29975; } ldv_29975: __asm__ volatile ("mfence": : : "memory"); i = 0; goto ldv_29978; ldv_29977: tmp___0 = hlist_empty((struct hlist_head const *)(& s->tracked_chunk_hash) + (unsigned long )i); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/zakharov/workspace/benchmarks/bench_1/work/current--X--drivers/md/dm-snapshot.ko--X--deg2_cpalinux-3.8-rc1--X--32_7a--X--cpachecker/linux-3.8-rc1/csd_deg_dscv/35/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-snap.c.prepared"), "i" (1325), "i" (12UL)); ldv_29976: ; goto ldv_29976; } else { } i = i + 1; ldv_29978: ; if (i <= 15) { goto ldv_29977; } else { goto ldv_29979; } ldv_29979: __free_exceptions(s); mempool_destroy(s->pending_pool); dm_exception_store_destroy(s->store); dm_put_device(ti, s->cow); dm_put_device(ti, s->origin); kfree((void const *)s); return; } } static void flush_bios(struct bio *bio ) { struct bio *n ; { goto ldv_29985; ldv_29984: n = bio->bi_next; bio->bi_next = 0; generic_make_request(bio); bio = n; ldv_29985: ; if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_29984; } else { goto ldv_29986; } ldv_29986: ; return; } } static int do_origin(struct dm_dev *origin , struct bio *bio ) ; static void retry_origin_bios(struct dm_snapshot *s , struct bio *bio ) { struct bio *n ; int r ; { goto ldv_29997; ldv_29996: n = bio->bi_next; bio->bi_next = 0; r = do_origin(s->origin, bio); if (r == 1) { generic_make_request(bio); } else { } bio = n; ldv_29997: ; if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_29996; } else { goto ldv_29998; } ldv_29998: ; return; } } static void error_bios(struct bio *bio ) { struct bio *n ; { goto ldv_30004; ldv_30003: n = bio->bi_next; bio->bi_next = 0; bio_endio(bio, -5); bio = n; ldv_30004: ; if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { goto ldv_30003; } else { goto ldv_30005; } ldv_30005: ; return; } } static void __invalidate_snapshot(struct dm_snapshot *s , int err ) { { if (s->valid == 0) { return; } else { } if (err == -5) { printk("\vdevice-mapper: snapshots: Invalidating snapshot: Error reading/writing.\n"); } else if (err == -12) { printk("\vdevice-mapper: snapshots: Invalidating snapshot: Unable to allocate exception.\n"); } else { } if ((unsigned long )((s->store)->type)->drop_snapshot != (unsigned long )((void (*)(struct dm_exception_store * ))0)) { (*(((s->store)->type)->drop_snapshot))(s->store); } else { } s->valid = 0; dm_table_event((s->ti)->table); return; } } static void pending_complete(struct dm_snap_pending_exception *pe , int success ) { struct dm_exception *e ; struct dm_snapshot *s ; struct bio *origin_bios ; struct bio *snapshot_bios ; struct bio *full_bio ; int error ; { s = pe->snap; origin_bios = 0; snapshot_bios = 0; full_bio = 0; error = 0; if (success == 0) { down_write(& s->lock); __invalidate_snapshot(s, -5); error = 1; goto out; } else { } e = alloc_completed_exception(); if ((unsigned long )e == (unsigned long )((struct dm_exception *)0)) { down_write(& s->lock); __invalidate_snapshot(s, -12); error = 1; goto out; } else { } *e = pe->e; down_write(& s->lock); if (s->valid == 0) { free_completed_exception(e); error = 1; goto out; } else { } __check_for_conflicting_io(s, pe->e.old_chunk); dm_insert_exception(& s->complete, e); out: dm_remove_exception(& pe->e); snapshot_bios = bio_list_get(& pe->snapshot_bios); origin_bios = bio_list_get(& pe->origin_bios); full_bio = pe->full_bio; if ((unsigned long )full_bio != (unsigned long )((struct bio *)0)) { full_bio->bi_end_io = pe->full_bio_end_io; full_bio->bi_private = pe->full_bio_private; } else { } free_pending_exception(pe); increment_pending_exceptions_done_count(); up_write(& s->lock); if (error != 0) { if ((unsigned long )full_bio != (unsigned long )((struct bio *)0)) { bio_endio(full_bio, -5); } else { } error_bios(snapshot_bios); } else { if ((unsigned long )full_bio != (unsigned long )((struct bio *)0)) { bio_endio(full_bio, 0); } else { } flush_bios(snapshot_bios); } retry_origin_bios(s, origin_bios); return; } } static void commit_callback(void *context , int success ) { struct dm_snap_pending_exception *pe ; { pe = (struct dm_snap_pending_exception *)context; pending_complete(pe, success); return; } } static void copy_callback(int read_err , unsigned long write_err , void *context ) { struct dm_snap_pending_exception *pe ; struct dm_snapshot *s ; { pe = (struct dm_snap_pending_exception *)context; s = pe->snap; if (read_err != 0 || write_err != 0UL) { pending_complete(pe, 0); } else { (*(((s->store)->type)->commit_exception))(s->store, & pe->e, & commit_callback, (void *)pe); } return; } } static void start_copy(struct dm_snap_pending_exception *pe ) { struct dm_snapshot *s ; struct dm_io_region src ; struct dm_io_region dest ; struct block_device *bdev ; sector_t dev_size ; unsigned long _min1 ; sector_t _min2 ; unsigned long tmp ; { s = pe->snap; bdev = (s->origin)->bdev; dev_size = get_dev_size(bdev); src.bdev = bdev; src.sector = chunk_to_sector(s->store, pe->e.old_chunk); _min1 = (unsigned long )(s->store)->chunk_size; _min2 = dev_size - src.sector; if (_min1 < _min2) { tmp = _min1; } else { tmp = _min2; } src.count = tmp; dest.bdev = (s->cow)->bdev; dest.sector = chunk_to_sector(s->store, pe->e.new_chunk); dest.count = src.count; dm_kcopyd_copy(s->kcopyd_client, & src, 1U, & dest, 0U, & copy_callback, (void *)pe); return; } } static void full_bio_end_io(struct bio *bio , int error ) { void *callback_data ; { callback_data = bio->bi_private; dm_kcopyd_do_callback(callback_data, 0, error != 0); return; } } static void start_full_bio(struct dm_snap_pending_exception *pe , struct bio *bio ) { struct dm_snapshot *s ; void *callback_data ; { s = pe->snap; pe->full_bio = bio; pe->full_bio_end_io = bio->bi_end_io; pe->full_bio_private = bio->bi_private; callback_data = dm_kcopyd_prepare_callback(s->kcopyd_client, & copy_callback, (void *)pe); bio->bi_end_io = & full_bio_end_io; bio->bi_private = callback_data; generic_make_request(bio); return; } } static struct dm_snap_pending_exception *__lookup_pending_exception(struct dm_snapshot *s , chunk_t chunk ) { struct dm_exception *e ; struct dm_exception *tmp ; struct dm_exception const *__mptr ; { tmp = dm_lookup_exception(& s->pending, chunk); e = tmp; if ((unsigned long )e == (unsigned long )((struct dm_exception *)0)) { return (0); } else { } __mptr = (struct dm_exception const *)e; return ((struct dm_snap_pending_exception *)__mptr); } } static struct dm_snap_pending_exception *__find_pending_exception(struct dm_snapshot *s , struct dm_snap_pending_exception *pe , chunk_t chunk ) { struct dm_snap_pending_exception *pe2 ; int tmp ; { pe2 = __lookup_pending_exception(s, chunk); if ((unsigned long )pe2 != (unsigned long )((struct dm_snap_pending_exception *)0)) { free_pending_exception(pe); return (pe2); } else { } pe->e.old_chunk = chunk; bio_list_init(& pe->origin_bios); bio_list_init(& pe->snapshot_bios); pe->started = 0; pe->full_bio = 0; tmp = (*(((s->store)->type)->prepare_exception))(s->store, & pe->e); if (tmp != 0) { free_pending_exception(pe); return (0); } else { } dm_insert_exception(& s->pending, & pe->e); return (pe); } } static void remap_exception(struct dm_snapshot *s , struct dm_exception *e , struct bio *bio , chunk_t chunk ) { chunk_t tmp ; sector_t tmp___0 ; { bio->bi_bdev = (s->cow)->bdev; tmp = dm_chunk_number(e->new_chunk); tmp___0 = chunk_to_sector(s->store, tmp + (chunk - e->old_chunk)); bio->bi_sector = tmp___0 + (bio->bi_sector & (sector_t )(s->store)->chunk_mask); return; } } static int snapshot_map(struct dm_target *ti , struct bio *bio ) { struct dm_exception *e ; struct dm_snapshot *s ; int r ; chunk_t chunk ; struct dm_snap_pending_exception *pe ; { s = (struct dm_snapshot *)ti->private; r = 1; pe = 0; init_tracked_chunk(bio); if ((bio->bi_rw & 4096UL) != 0UL) { bio->bi_bdev = (s->cow)->bdev; return (1); } else { } chunk = sector_to_chunk(s->store, bio->bi_sector); if (s->valid == 0) { return (-5); } else { } down_write(& s->lock); if (s->valid == 0) { r = -5; goto out_unlock; } else { } e = dm_lookup_exception(& s->complete, chunk); if ((unsigned long )e != (unsigned long )((struct dm_exception *)0)) { remap_exception(s, e, bio, chunk); goto out_unlock; } else { } if ((bio->bi_rw & 8193UL) == 1UL) { pe = __lookup_pending_exception(s, chunk); if ((unsigned long )pe == (unsigned long )((struct dm_snap_pending_exception *)0)) { up_write(& s->lock); pe = alloc_pending_exception(s); down_write(& s->lock); if (s->valid == 0) { free_pending_exception(pe); r = -5; goto out_unlock; } else { } e = dm_lookup_exception(& s->complete, chunk); if ((unsigned long )e != (unsigned long )((struct dm_exception *)0)) { free_pending_exception(pe); remap_exception(s, e, bio, chunk); goto out_unlock; } else { } pe = __find_pending_exception(s, pe, chunk); if ((unsigned long )pe == (unsigned long )((struct dm_snap_pending_exception *)0)) { __invalidate_snapshot(s, -12); r = -5; goto out_unlock; } else { } } else { } remap_exception(s, & pe->e, bio, chunk); r = 0; if (pe->started == 0 && bio->bi_size == (s->store)->chunk_size << 9) { pe->started = 1; up_write(& s->lock); start_full_bio(pe, bio); goto out; } else { } bio_list_add(& pe->snapshot_bios, bio); if (pe->started == 0) { pe->started = 1; up_write(& s->lock); start_copy(pe); goto out; } else { } } else { bio->bi_bdev = (s->origin)->bdev; track_chunk(s, bio, chunk); } out_unlock: up_write(& s->lock); out: ; return (r); } } static int snapshot_merge_map(struct dm_target *ti , struct bio *bio ) { struct dm_exception *e ; struct dm_snapshot *s ; int r ; chunk_t chunk ; unsigned int tmp ; int tmp___0 ; { s = (struct dm_snapshot *)ti->private; r = 1; init_tracked_chunk(bio); if ((bio->bi_rw & 4096UL) != 0UL) { tmp = dm_bio_get_target_request_nr((struct bio const *)bio); if (tmp == 0U) { bio->bi_bdev = (s->origin)->bdev; } else { bio->bi_bdev = (s->cow)->bdev; } return (1); } else { } chunk = sector_to_chunk(s->store, bio->bi_sector); down_write(& s->lock); if (s->valid == 0) { goto redirect_to_origin; } else { } e = dm_lookup_exception(& s->complete, chunk); if ((unsigned long )e != (unsigned long )((struct dm_exception *)0)) { if (((bio->bi_rw & 8193UL) == 1UL && s->first_merging_chunk <= chunk) && s->first_merging_chunk + (chunk_t )s->num_merging_chunks > chunk) { bio->bi_bdev = (s->origin)->bdev; bio_list_add(& s->bios_queued_during_merge, bio); r = 0; goto out_unlock; } else { } remap_exception(s, e, bio, chunk); if ((bio->bi_rw & 8193UL) == 1UL) { track_chunk(s, bio, chunk); } else { } goto out_unlock; } else { } redirect_to_origin: bio->bi_bdev = (s->origin)->bdev; if ((bio->bi_rw & 8193UL) == 1UL) { up_write(& s->lock); tmp___0 = do_origin(s->origin, bio); return (tmp___0); } else { } out_unlock: up_write(& s->lock); return (r); } } static int snapshot_end_io(struct dm_target *ti , struct bio *bio , int error ) { struct dm_snapshot *s ; bool tmp ; { s = (struct dm_snapshot *)ti->private; tmp = is_bio_tracked(bio); if ((int )tmp) { stop_tracking_chunk(s, bio); } else { } return (0); } } static void snapshot_merge_presuspend(struct dm_target *ti ) { struct dm_snapshot *s ; { s = (struct dm_snapshot *)ti->private; stop_merge(s); return; } } static int snapshot_preresume(struct dm_target *ti ) { int r ; struct dm_snapshot *s ; struct dm_snapshot *snap_src ; struct dm_snapshot *snap_dest ; int tmp ; { r = 0; s = (struct dm_snapshot *)ti->private; snap_src = 0; snap_dest = 0; down_read(& _origins_lock); __find_snapshots_sharing_cow(s, & snap_src, & snap_dest, 0); if ((unsigned long )snap_src != (unsigned long )((struct dm_snapshot *)0) && (unsigned long )snap_dest != (unsigned long )((struct dm_snapshot *)0)) { down_read(& snap_src->lock); if ((unsigned long )s == (unsigned long )snap_src) { printk("\vdevice-mapper: snapshots: Unable to resume snapshot source until handover completes.\n"); r = -22; } else { tmp = dm_suspended(snap_src->ti); if (tmp == 0) { printk("\vdevice-mapper: snapshots: Unable to perform snapshot handover until source is suspended.\n"); r = -22; } else { } } up_read(& snap_src->lock); } else { } up_read(& _origins_lock); return (r); } } static void snapshot_resume(struct dm_target *ti ) { struct dm_snapshot *s ; struct dm_snapshot *snap_src ; struct dm_snapshot *snap_dest ; { s = (struct dm_snapshot *)ti->private; snap_src = 0; snap_dest = 0; down_read(& _origins_lock); __find_snapshots_sharing_cow(s, & snap_src, & snap_dest, 0); if ((unsigned long )snap_src != (unsigned long )((struct dm_snapshot *)0) && (unsigned long )snap_dest != (unsigned long )((struct dm_snapshot *)0)) { down_write(& snap_src->lock); down_write_nested(& snap_dest->lock, 1); __handover_exceptions(snap_src, snap_dest); up_write(& snap_dest->lock); up_write(& snap_src->lock); } else { } up_read(& _origins_lock); reregister_snapshot(s); down_write(& s->lock); s->active = 1; up_write(& s->lock); return; } } static uint32_t get_origin_minimum_chunksize(struct block_device *bdev ) { uint32_t min_chunksize ; struct origin *tmp ; { down_read(& _origins_lock); tmp = __lookup_origin(bdev); min_chunksize = __minimum_chunk_size(tmp); up_read(& _origins_lock); return (min_chunksize); } } static void snapshot_merge_resume(struct dm_target *ti ) { struct dm_snapshot *s ; { s = (struct dm_snapshot *)ti->private; snapshot_resume(ti); ti->max_io_len = get_origin_minimum_chunksize((s->origin)->bdev); start_merge(s); return; } } static int snapshot_status(struct dm_target *ti , status_type_t type , unsigned int status_flags , char *result , unsigned int maxlen ) { unsigned int sz ; struct dm_snapshot *snap ; int tmp ; unsigned int tmp___0 ; int tmp___1 ; unsigned int tmp___2 ; sector_t total_sectors ; sector_t sectors_allocated ; sector_t metadata_sectors ; int tmp___3 ; unsigned int tmp___4 ; int tmp___5 ; unsigned int tmp___6 ; int tmp___7 ; unsigned int tmp___8 ; { sz = 0U; snap = (struct dm_snapshot *)ti->private; switch ((unsigned int )type) { case 0: down_write(& snap->lock); if (snap->valid == 0) { if (sz < maxlen) { tmp = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "Invalid"); tmp___0 = (unsigned int )tmp; } else { tmp___0 = 0U; } sz = tmp___0 + sz; } else if (snap->merge_failed != 0) { if (sz < maxlen) { tmp___1 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "Merge failed"); tmp___2 = (unsigned int )tmp___1; } else { tmp___2 = 0U; } sz = tmp___2 + sz; } else if ((unsigned long )((snap->store)->type)->usage != (unsigned long )((void (*)(struct dm_exception_store * , sector_t * , sector_t * , sector_t * ))0)) { (*(((snap->store)->type)->usage))(snap->store, & total_sectors, & sectors_allocated, & metadata_sectors); if (sz < maxlen) { tmp___3 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "%llu/%llu %llu", (unsigned long long )sectors_allocated, (unsigned long long )total_sectors, (unsigned long long )metadata_sectors); tmp___4 = (unsigned int )tmp___3; } else { tmp___4 = 0U; } sz = tmp___4 + sz; } else { if (sz < maxlen) { tmp___5 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "Unknown"); tmp___6 = (unsigned int )tmp___5; } else { tmp___6 = 0U; } sz = tmp___6 + sz; } up_write(& snap->lock); goto ldv_30139; case 1: ; if (sz < maxlen) { tmp___7 = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), "%s %s", (char *)(& (snap->origin)->name), (char *)(& (snap->cow)->name)); tmp___8 = (unsigned int )tmp___7; } else { tmp___8 = 0U; } sz = tmp___8 + sz; (*(((snap->store)->type)->status))(snap->store, type, result + (unsigned long )sz, maxlen - sz); goto ldv_30139; } ldv_30139: ; return (0); } } static int snapshot_iterate_devices(struct dm_target *ti , int (*fn)(struct dm_target * , struct dm_dev * , sector_t , sector_t , void * ) , void *data ) { struct dm_snapshot *snap ; int r ; sector_t tmp ; { snap = (struct dm_snapshot *)ti->private; r = (*fn)(ti, snap->origin, 0UL, ti->len, data); if (r == 0) { tmp = get_dev_size((snap->cow)->bdev); r = (*fn)(ti, snap->cow, 0UL, tmp, data); } else { } return (r); } } static int __origin_write(struct list_head *snapshots , sector_t sector , struct bio *bio ) { int r ; struct dm_snapshot *snap ; struct dm_exception *e ; struct dm_snap_pending_exception *pe ; struct dm_snap_pending_exception *pe_to_start_now ; struct dm_snap_pending_exception *pe_to_start_last ; chunk_t chunk ; struct list_head const *__mptr ; sector_t tmp ; struct list_head const *__mptr___0 ; { r = 1; pe_to_start_now = 0; pe_to_start_last = 0; __mptr = (struct list_head const *)snapshots->next; snap = (struct dm_snapshot *)__mptr + 0xffffffffffffff58UL; goto ldv_30167; ldv_30166: ; if ((unsigned long )((snap->ti)->type)->name == (unsigned long )((char const *)(& dm_snapshot_merge_target_name))) { goto ldv_30164; } else { } down_write(& snap->lock); if (snap->valid == 0 || snap->active == 0) { goto next_snapshot; } else { } tmp = dm_table_get_size((snap->ti)->table); if (tmp <= sector) { goto next_snapshot; } else { } chunk = sector_to_chunk(snap->store, sector); e = dm_lookup_exception(& snap->complete, chunk); if ((unsigned long )e != (unsigned long )((struct dm_exception *)0)) { goto next_snapshot; } else { } pe = __lookup_pending_exception(snap, chunk); if ((unsigned long )pe == (unsigned long )((struct dm_snap_pending_exception *)0)) { up_write(& snap->lock); pe = alloc_pending_exception(snap); down_write(& snap->lock); if (snap->valid == 0) { free_pending_exception(pe); goto next_snapshot; } else { } e = dm_lookup_exception(& snap->complete, chunk); if ((unsigned long )e != (unsigned long )((struct dm_exception *)0)) { free_pending_exception(pe); goto next_snapshot; } else { } pe = __find_pending_exception(snap, pe, chunk); if ((unsigned long )pe == (unsigned long )((struct dm_snap_pending_exception *)0)) { __invalidate_snapshot(snap, -12); goto next_snapshot; } else { } } else { } r = 0; if ((unsigned long )bio != (unsigned long )((struct bio *)0)) { bio_list_add(& pe->origin_bios, bio); bio = 0; if (pe->started == 0) { pe->started = 1; pe_to_start_last = pe; } else { } } else { } if (pe->started == 0) { pe->started = 1; pe_to_start_now = pe; } else { } next_snapshot: up_write(& snap->lock); if ((unsigned long )pe_to_start_now != (unsigned long )((struct dm_snap_pending_exception *)0)) { start_copy(pe_to_start_now); pe_to_start_now = 0; } else { } ldv_30164: __mptr___0 = (struct list_head const *)snap->list.next; snap = (struct dm_snapshot *)__mptr___0 + 0xffffffffffffff58UL; ldv_30167: ; if ((unsigned long )(& snap->list) != (unsigned long )snapshots) { goto ldv_30166; } else { goto ldv_30168; } ldv_30168: ; if ((unsigned long )pe_to_start_last != (unsigned long )((struct dm_snap_pending_exception *)0)) { start_copy(pe_to_start_last); } else { } return (r); } } static int do_origin(struct dm_dev *origin , struct bio *bio ) { struct origin *o ; int r ; { r = 1; down_read(& _origins_lock); o = __lookup_origin(origin->bdev); if ((unsigned long )o != (unsigned long )((struct origin *)0)) { r = __origin_write(& o->snapshots, bio->bi_sector, bio); } else { } up_read(& _origins_lock); return (r); } } static int origin_write_extent(struct dm_snapshot *merging_snap , sector_t sector , unsigned int size ) { int must_wait ; sector_t n ; struct origin *o ; int tmp ; { must_wait = 0; down_read(& _origins_lock); o = __lookup_origin((merging_snap->origin)->bdev); n = 0UL; goto ldv_30184; ldv_30183: tmp = __origin_write(& o->snapshots, sector + n, 0); if (tmp == 0) { must_wait = 1; } else { } n = (sector_t )(merging_snap->ti)->max_io_len + n; ldv_30184: ; if ((sector_t )size > n) { goto ldv_30183; } else { goto ldv_30185; } ldv_30185: up_read(& _origins_lock); return (must_wait); } } static int origin_ctr(struct dm_target *ti , unsigned int argc , char **argv ) { int r ; struct dm_dev *dev ; fmode_t tmp ; { if (argc != 1U) { ti->error = (char *)"origin: incorrect number of arguments"; return (-22); } else { } tmp = dm_table_get_mode(ti->table); r = dm_get_device(ti, (char const *)*argv, tmp, & dev); if (r != 0) { ti->error = (char *)"Cannot get target device"; return (r); } else { } ti->private = (void *)dev; ti->num_flush_requests = 1U; return (0); } } static void origin_dtr(struct dm_target *ti ) { struct dm_dev *dev ; { dev = (struct dm_dev *)ti->private; dm_put_device(ti, dev); return; } } static int origin_map(struct dm_target *ti , struct bio *bio ) { struct dm_dev *dev ; int tmp ; int tmp___0 ; { dev = (struct dm_dev *)ti->private; bio->bi_bdev = dev->bdev; if ((bio->bi_rw & 4096UL) != 0UL) { return (1); } else { } if ((bio->bi_rw & 8193UL) == 1UL) { tmp = do_origin(dev, bio); tmp___0 = tmp; } else { tmp___0 = 1; } return (tmp___0); } } static void origin_resume(struct dm_target *ti ) { struct dm_dev *dev ; { dev = (struct dm_dev *)ti->private; ti->max_io_len = get_origin_minimum_chunksize(dev->bdev); return; } } static int origin_status(struct dm_target *ti , status_type_t type , unsigned int status_flags , char *result , unsigned int maxlen ) { struct dm_dev *dev ; { dev = (struct dm_dev *)ti->private; switch ((unsigned int )type) { case 0: *result = 0; goto ldv_30215; case 1: snprintf(result, (size_t )maxlen, "%s", (char *)(& dev->name)); goto ldv_30215; } ldv_30215: ; return (0); } } static int origin_merge(struct dm_target *ti , struct bvec_merge_data *bvm , struct bio_vec *biovec , int max_size ) { struct dm_dev *dev ; struct request_queue *q ; struct request_queue *tmp ; int _min1 ; int _min2 ; int tmp___0 ; int tmp___1 ; { dev = (struct dm_dev *)ti->private; tmp = bdev_get_queue(dev->bdev); q = tmp; if ((unsigned long )q->merge_bvec_fn == (unsigned long )((merge_bvec_fn *)0)) { return (max_size); } else { } bvm->bi_bdev = dev->bdev; _min1 = max_size; tmp___0 = (*(q->merge_bvec_fn))(q, bvm, biovec); _min2 = tmp___0; if (_min1 < _min2) { tmp___1 = _min1; } else { tmp___1 = _min2; } return (tmp___1); } } static int origin_iterate_devices(struct dm_target *ti , int (*fn)(struct dm_target * , struct dm_dev * , sector_t , sector_t , void * ) , void *data ) { struct dm_dev *dev ; int tmp ; { dev = (struct dm_dev *)ti->private; tmp = (*fn)(ti, dev, 0UL, ti->len, data); return (tmp); } } static struct target_type origin_target = {0ULL, "snapshot-origin", & __this_module, {1U, 8U, 0U}, & origin_ctr, & origin_dtr, & origin_map, 0, 0, 0, 0, 0, 0, & origin_resume, & origin_status, 0, 0, & origin_merge, 0, & origin_iterate_devices, 0, {0, 0}}; static struct target_type snapshot_target = {0ULL, "snapshot", & __this_module, {1U, 11U, 0U}, & snapshot_ctr, & snapshot_dtr, & snapshot_map, 0, & snapshot_end_io, 0, 0, 0, & snapshot_preresume, & snapshot_resume, & snapshot_status, 0, 0, 0, 0, & snapshot_iterate_devices, 0, {0, 0}}; static struct target_type merge_target = {0ULL, (char const *)(& dm_snapshot_merge_target_name), & __this_module, {1U, 2U, 0U}, & snapshot_ctr, & snapshot_dtr, & snapshot_merge_map, 0, & snapshot_end_io, 0, & snapshot_merge_presuspend, 0, & snapshot_preresume, & snapshot_merge_resume, & snapshot_status, 0, 0, 0, 0, & snapshot_iterate_devices, 0, {0, 0}}; static int dm_snapshot_init(void) { int r ; { r = dm_exception_store_init(); if (r != 0) { printk("\vdevice-mapper: snapshots: Failed to initialize exception stores\n"); return (r); } else { } r = dm_register_target(& snapshot_target); if (r < 0) { printk("\vdevice-mapper: snapshots: snapshot target register failed %d\n", r); goto bad_register_snapshot_target; } else { } r = dm_register_target(& origin_target); if (r < 0) { printk("\vdevice-mapper: snapshots: Origin target register failed %d\n", r); goto bad_register_origin_target; } else { } r = dm_register_target(& merge_target); if (r < 0) { printk("\vdevice-mapper: snapshots: Merge target register failed %d\n", r); goto bad_register_merge_target; } else { } r = init_origin_hash(); if (r != 0) { printk("\vdevice-mapper: snapshots: init_origin_hash failed.\n"); goto bad_origin_hash; } else { } exception_cache = kmem_cache_create("dm_exception", 32UL, 8UL, 0UL, 0); if ((unsigned long )exception_cache == (unsigned long )((struct kmem_cache *)0)) { printk("\vdevice-mapper: snapshots: Couldn\'t create exception cache.\n"); r = -12; goto bad_exception_cache; } else { } pending_cache = kmem_cache_create("dm_snap_pending_exception", 104UL, 8UL, 0UL, 0); if ((unsigned long )pending_cache == (unsigned long )((struct kmem_cache *)0)) { printk("\vdevice-mapper: snapshots: Couldn\'t create pending cache.\n"); r = -12; goto bad_pending_cache; } else { } return (0); bad_pending_cache: kmem_cache_destroy(exception_cache); bad_exception_cache: exit_origin_hash(); bad_origin_hash: dm_unregister_target(& merge_target); bad_register_merge_target: dm_unregister_target(& origin_target); bad_register_origin_target: dm_unregister_target(& snapshot_target); bad_register_snapshot_target: dm_exception_store_exit(); return (r); } } static void dm_snapshot_exit(void) { { dm_unregister_target(& snapshot_target); dm_unregister_target(& origin_target); dm_unregister_target(& merge_target); exit_origin_hash(); kmem_cache_destroy(pending_cache); kmem_cache_destroy(exception_cache); dm_exception_store_exit(); return; } } char *ldvarg18 ; int (*ldvarg51)(struct dm_target * , struct dm_dev * , sector_t , sector_t , void * ) ; struct dm_target *ldvarg23 ; struct bio *ldvarg43 ; int ldvarg42 ; char **ldvarg12 ; struct dm_target *ldvarg56 ; extern int ldv_origin_target_presuspend(void) ; void *ldvarg50 ; unsigned int ldvarg46 ; status_type_t ldvarg58 ; unsigned int ldvarg53 ; struct dm_target *ldvarg64 ; char *ldvarg44 ; struct dm_target *merge_target_group1 ; int ldv_retval_origin_ctr ; void *ldvarg24 ; extern int ldv_origin_target_postsuspend(void) ; char **ldvarg38 ; extern int ldv_merge_target_postsuspend(void) ; int ldvarg16 ; unsigned int ldvarg48 ; struct bio *ldvarg14 ; int ldv_retval_snapshot_preresume ; void ldv_check_final_state(void) ; extern int ldv_snapshot_target_postsuspend(void) ; status_type_t ldvarg47 ; unsigned int ldvarg39 ; unsigned int ldvarg20 ; int ldvarg60 ; struct dm_target *ldvarg41 ; unsigned int ldvarg59 ; struct dm_target *ldvarg49 ; struct bio_vec *ldvarg62 ; void *ldvarg65 ; unsigned int ldvarg57 ; void ldv_initialize(void) ; unsigned int ldvarg13 ; int (*ldvarg66)(struct dm_target * , struct dm_dev * , sector_t , sector_t , void * ) ; char *ldvarg55 ; struct bio *ldvarg40 ; struct dm_target *origin_target_group1 ; struct dm_target *ldvarg45 ; struct bvec_merge_data *ldvarg63 ; struct dm_target *snapshot_target_group1 ; int ldv_retval_snapshot_ctr ; int ldv_retval_dm_snapshot_init ; int ldv_retval_ldv_origin_target_preresume ; struct dm_target *ldvarg15 ; status_type_t ldvarg21 ; struct bio *ldvarg54 ; struct dm_target *ldvarg61 ; struct bio *ldvarg17 ; int (*ldvarg25)(struct dm_target * , struct dm_dev * , sector_t , sector_t , void * ) ; extern int ldv_origin_target_preresume(void) ; unsigned int ldvarg22 ; extern int ldv_snapshot_target_presuspend(void) ; struct dm_target *ldvarg19 ; char **ldvarg52 ; void ldv_main_exported_4(void) ; void ldv_main_exported_5(void) ; void ldv_main_exported_6(void) ; void ldv_main_exported_7(void) ; int main(void) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { ldv_initialize(); ldv_state_variable_6 = 0; ldv_state_variable_3 = 0; ldv_state_variable_7 = 0; ldv_state_variable_2 = 0; ldv_state_variable_1 = 0; ldv_state_variable_4 = 0; ref_cnt = 0; ldv_state_variable_0 = 1; ldv_state_variable_5 = 0; ldv_30392: tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_state_variable_6 != 0) { ldv_main_exported_6(); } else { } goto ldv_30342; case 1: ; if (ldv_state_variable_3 != 0) { tmp___0 = __VERIFIER_nondet_int(); switch (tmp___0) { case 0: ; if (ldv_state_variable_3 == 4) { snapshot_iterate_devices(ldvarg23, ldvarg25, ldvarg24); ldv_state_variable_3 = 4; } else { } if (ldv_state_variable_3 == 1) { snapshot_iterate_devices(ldvarg23, ldvarg25, ldvarg24); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 3) { snapshot_iterate_devices(ldvarg23, ldvarg25, ldvarg24); ldv_state_variable_3 = 3; } else { } if (ldv_state_variable_3 == 2) { snapshot_iterate_devices(ldvarg23, ldvarg25, ldvarg24); ldv_state_variable_3 = 2; } else { } if (ldv_state_variable_3 == 5) { snapshot_iterate_devices(ldvarg23, ldvarg25, ldvarg24); ldv_state_variable_3 = 5; } else { } goto ldv_30345; case 1: ; if (ldv_state_variable_3 == 4) { snapshot_status(ldvarg19, ldvarg21, ldvarg20, ldvarg18, ldvarg22); ldv_state_variable_3 = 4; } else { } if (ldv_state_variable_3 == 1) { snapshot_status(ldvarg19, ldvarg21, ldvarg20, ldvarg18, ldvarg22); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 3) { snapshot_status(ldvarg19, ldvarg21, ldvarg20, ldvarg18, ldvarg22); ldv_state_variable_3 = 3; } else { } if (ldv_state_variable_3 == 2) { snapshot_status(ldvarg19, ldvarg21, ldvarg20, ldvarg18, ldvarg22); ldv_state_variable_3 = 2; } else { } if (ldv_state_variable_3 == 5) { snapshot_status(ldvarg19, ldvarg21, ldvarg20, ldvarg18, ldvarg22); ldv_state_variable_3 = 5; } else { } goto ldv_30345; case 2: ; if (ldv_state_variable_3 == 5) { snapshot_merge_resume(merge_target_group1); ldv_state_variable_3 = 2; } else { } goto ldv_30345; case 3: ; if (ldv_state_variable_3 == 4) { ldv_retval_snapshot_preresume = snapshot_preresume(merge_target_group1); if (ldv_retval_snapshot_preresume == 0) { ldv_state_variable_3 = 5; } else { } } else { } goto ldv_30345; case 4: ; if (ldv_state_variable_3 == 2) { snapshot_merge_presuspend(merge_target_group1); ldv_state_variable_3 = 3; } else { } goto ldv_30345; case 5: ; if (ldv_state_variable_3 == 4) { snapshot_end_io(ldvarg15, ldvarg17, ldvarg16); ldv_state_variable_3 = 4; } else { } if (ldv_state_variable_3 == 1) { snapshot_end_io(ldvarg15, ldvarg17, ldvarg16); ldv_state_variable_3 = 1; } else { } if (ldv_state_variable_3 == 3) { snapshot_end_io(ldvarg15, ldvarg17, ldvarg16); ldv_state_variable_3 = 3; } else { } if (ldv_state_variable_3 == 2) { snapshot_end_io(ldvarg15, ldvarg17, ldvarg16); ldv_state_variable_3 = 2; } else { } if (ldv_state_variable_3 == 5) { snapshot_end_io(ldvarg15, ldvarg17, ldvarg16); ldv_state_variable_3 = 5; } else { } goto ldv_30345; case 6: ; if (ldv_state_variable_3 == 4) { snapshot_merge_map(merge_target_group1, ldvarg14); ldv_state_variable_3 = 4; } else { } if (ldv_state_variable_3 == 3) { snapshot_merge_map(merge_target_group1, ldvarg14); ldv_state_variable_3 = 3; } else { } if (ldv_state_variable_3 == 2) { snapshot_merge_map(merge_target_group1, ldvarg14); ldv_state_variable_3 = 2; } else { } if (ldv_state_variable_3 == 5) { snapshot_merge_map(merge_target_group1, ldvarg14); ldv_state_variable_3 = 5; } else { } goto ldv_30345; case 7: ; if (ldv_state_variable_3 == 4) { snapshot_dtr(merge_target_group1); ldv_state_variable_3 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_3 == 3) { snapshot_dtr(merge_target_group1); ldv_state_variable_3 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_3 == 2) { snapshot_dtr(merge_target_group1); ldv_state_variable_3 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_3 == 5) { snapshot_dtr(merge_target_group1); ldv_state_variable_3 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_30345; case 8: ; if (ldv_state_variable_3 == 1) { ldv_retval_snapshot_ctr = snapshot_ctr(merge_target_group1, ldvarg13, ldvarg12); if (ldv_retval_snapshot_ctr == 0) { ldv_state_variable_3 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_30345; case 9: ; if (ldv_state_variable_3 == 3) { ldv_merge_target_postsuspend(); ldv_state_variable_3 = 4; } else { } goto ldv_30345; default: ; goto ldv_30345; } ldv_30345: ; } else { } goto ldv_30342; case 2: ; if (ldv_state_variable_7 != 0) { ldv_main_exported_7(); } else { } goto ldv_30342; case 3: ; if (ldv_state_variable_2 != 0) { tmp___1 = __VERIFIER_nondet_int(); switch (tmp___1) { case 0: ; if (ldv_state_variable_2 == 4) { snapshot_iterate_devices(ldvarg49, ldvarg51, ldvarg50); ldv_state_variable_2 = 4; } else { } if (ldv_state_variable_2 == 1) { snapshot_iterate_devices(ldvarg49, ldvarg51, ldvarg50); ldv_state_variable_2 = 1; } else { } if (ldv_state_variable_2 == 3) { snapshot_iterate_devices(ldvarg49, ldvarg51, ldvarg50); ldv_state_variable_2 = 3; } else { } if (ldv_state_variable_2 == 2) { snapshot_iterate_devices(ldvarg49, ldvarg51, ldvarg50); ldv_state_variable_2 = 2; } else { } if (ldv_state_variable_2 == 5) { snapshot_iterate_devices(ldvarg49, ldvarg51, ldvarg50); ldv_state_variable_2 = 5; } else { } goto ldv_30359; case 1: ; if (ldv_state_variable_2 == 4) { snapshot_status(ldvarg45, ldvarg47, ldvarg46, ldvarg44, ldvarg48); ldv_state_variable_2 = 4; } else { } if (ldv_state_variable_2 == 1) { snapshot_status(ldvarg45, ldvarg47, ldvarg46, ldvarg44, ldvarg48); ldv_state_variable_2 = 1; } else { } if (ldv_state_variable_2 == 3) { snapshot_status(ldvarg45, ldvarg47, ldvarg46, ldvarg44, ldvarg48); ldv_state_variable_2 = 3; } else { } if (ldv_state_variable_2 == 2) { snapshot_status(ldvarg45, ldvarg47, ldvarg46, ldvarg44, ldvarg48); ldv_state_variable_2 = 2; } else { } if (ldv_state_variable_2 == 5) { snapshot_status(ldvarg45, ldvarg47, ldvarg46, ldvarg44, ldvarg48); ldv_state_variable_2 = 5; } else { } goto ldv_30359; case 2: ; if (ldv_state_variable_2 == 5) { snapshot_resume(snapshot_target_group1); ldv_state_variable_2 = 2; } else { } goto ldv_30359; case 3: ; if (ldv_state_variable_2 == 4) { ldv_retval_snapshot_preresume = snapshot_preresume(snapshot_target_group1); if (ldv_retval_snapshot_preresume == 0) { ldv_state_variable_2 = 5; } else { } } else { } goto ldv_30359; case 4: ; if (ldv_state_variable_2 == 4) { snapshot_end_io(ldvarg41, ldvarg43, ldvarg42); ldv_state_variable_2 = 4; } else { } if (ldv_state_variable_2 == 1) { snapshot_end_io(ldvarg41, ldvarg43, ldvarg42); ldv_state_variable_2 = 1; } else { } if (ldv_state_variable_2 == 3) { snapshot_end_io(ldvarg41, ldvarg43, ldvarg42); ldv_state_variable_2 = 3; } else { } if (ldv_state_variable_2 == 2) { snapshot_end_io(ldvarg41, ldvarg43, ldvarg42); ldv_state_variable_2 = 2; } else { } if (ldv_state_variable_2 == 5) { snapshot_end_io(ldvarg41, ldvarg43, ldvarg42); ldv_state_variable_2 = 5; } else { } goto ldv_30359; case 5: ; if (ldv_state_variable_2 == 4) { snapshot_map(snapshot_target_group1, ldvarg40); ldv_state_variable_2 = 4; } else { } if (ldv_state_variable_2 == 3) { snapshot_map(snapshot_target_group1, ldvarg40); ldv_state_variable_2 = 3; } else { } if (ldv_state_variable_2 == 2) { snapshot_map(snapshot_target_group1, ldvarg40); ldv_state_variable_2 = 2; } else { } if (ldv_state_variable_2 == 5) { snapshot_map(snapshot_target_group1, ldvarg40); ldv_state_variable_2 = 5; } else { } goto ldv_30359; case 6: ; if (ldv_state_variable_2 == 4) { snapshot_dtr(snapshot_target_group1); ldv_state_variable_2 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_2 == 3) { snapshot_dtr(snapshot_target_group1); ldv_state_variable_2 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_2 == 2) { snapshot_dtr(snapshot_target_group1); ldv_state_variable_2 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_2 == 5) { snapshot_dtr(snapshot_target_group1); ldv_state_variable_2 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_30359; case 7: ; if (ldv_state_variable_2 == 1) { ldv_retval_snapshot_ctr = snapshot_ctr(snapshot_target_group1, ldvarg39, ldvarg38); if (ldv_retval_snapshot_ctr == 0) { ldv_state_variable_2 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_30359; case 8: ; if (ldv_state_variable_2 == 2) { ldv_snapshot_target_presuspend(); ldv_state_variable_2 = 3; } else { } goto ldv_30359; case 9: ; if (ldv_state_variable_2 == 3) { ldv_snapshot_target_postsuspend(); ldv_state_variable_2 = 4; } else { } goto ldv_30359; default: ; goto ldv_30359; } ldv_30359: ; } else { } goto ldv_30342; case 4: ; if (ldv_state_variable_1 != 0) { tmp___2 = __VERIFIER_nondet_int(); switch (tmp___2) { case 0: ; if (ldv_state_variable_1 == 4) { origin_iterate_devices(ldvarg64, ldvarg66, ldvarg65); ldv_state_variable_1 = 4; } else { } if (ldv_state_variable_1 == 1) { origin_iterate_devices(ldvarg64, ldvarg66, ldvarg65); ldv_state_variable_1 = 1; } else { } if (ldv_state_variable_1 == 3) { origin_iterate_devices(ldvarg64, ldvarg66, ldvarg65); ldv_state_variable_1 = 3; } else { } if (ldv_state_variable_1 == 2) { origin_iterate_devices(ldvarg64, ldvarg66, ldvarg65); ldv_state_variable_1 = 2; } else { } if (ldv_state_variable_1 == 5) { origin_iterate_devices(ldvarg64, ldvarg66, ldvarg65); ldv_state_variable_1 = 5; } else { } goto ldv_30372; case 1: ; if (ldv_state_variable_1 == 4) { origin_merge(ldvarg61, ldvarg63, ldvarg62, ldvarg60); ldv_state_variable_1 = 4; } else { } if (ldv_state_variable_1 == 1) { origin_merge(ldvarg61, ldvarg63, ldvarg62, ldvarg60); ldv_state_variable_1 = 1; } else { } if (ldv_state_variable_1 == 3) { origin_merge(ldvarg61, ldvarg63, ldvarg62, ldvarg60); ldv_state_variable_1 = 3; } else { } if (ldv_state_variable_1 == 2) { origin_merge(ldvarg61, ldvarg63, ldvarg62, ldvarg60); ldv_state_variable_1 = 2; } else { } if (ldv_state_variable_1 == 5) { origin_merge(ldvarg61, ldvarg63, ldvarg62, ldvarg60); ldv_state_variable_1 = 5; } else { } goto ldv_30372; case 2: ; if (ldv_state_variable_1 == 4) { origin_status(ldvarg56, ldvarg58, ldvarg57, ldvarg55, ldvarg59); ldv_state_variable_1 = 4; } else { } if (ldv_state_variable_1 == 1) { origin_status(ldvarg56, ldvarg58, ldvarg57, ldvarg55, ldvarg59); ldv_state_variable_1 = 1; } else { } if (ldv_state_variable_1 == 3) { origin_status(ldvarg56, ldvarg58, ldvarg57, ldvarg55, ldvarg59); ldv_state_variable_1 = 3; } else { } if (ldv_state_variable_1 == 2) { origin_status(ldvarg56, ldvarg58, ldvarg57, ldvarg55, ldvarg59); ldv_state_variable_1 = 2; } else { } if (ldv_state_variable_1 == 5) { origin_status(ldvarg56, ldvarg58, ldvarg57, ldvarg55, ldvarg59); ldv_state_variable_1 = 5; } else { } goto ldv_30372; case 3: ; if (ldv_state_variable_1 == 5) { origin_resume(origin_target_group1); ldv_state_variable_1 = 2; } else { } goto ldv_30372; case 4: ; if (ldv_state_variable_1 == 4) { origin_map(origin_target_group1, ldvarg54); ldv_state_variable_1 = 4; } else { } if (ldv_state_variable_1 == 3) { origin_map(origin_target_group1, ldvarg54); ldv_state_variable_1 = 3; } else { } if (ldv_state_variable_1 == 2) { origin_map(origin_target_group1, ldvarg54); ldv_state_variable_1 = 2; } else { } if (ldv_state_variable_1 == 5) { origin_map(origin_target_group1, ldvarg54); ldv_state_variable_1 = 5; } else { } goto ldv_30372; case 5: ; if (ldv_state_variable_1 == 4) { origin_dtr(origin_target_group1); ldv_state_variable_1 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_1 == 3) { origin_dtr(origin_target_group1); ldv_state_variable_1 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_1 == 2) { origin_dtr(origin_target_group1); ldv_state_variable_1 = 1; ref_cnt = ref_cnt - 1; } else { } if (ldv_state_variable_1 == 5) { origin_dtr(origin_target_group1); ldv_state_variable_1 = 1; ref_cnt = ref_cnt - 1; } else { } goto ldv_30372; case 6: ; if (ldv_state_variable_1 == 1) { ldv_retval_origin_ctr = origin_ctr(origin_target_group1, ldvarg53, ldvarg52); if (ldv_retval_origin_ctr == 0) { ldv_state_variable_1 = 2; ref_cnt = ref_cnt + 1; } else { } } else { } goto ldv_30372; case 7: ; if (ldv_state_variable_1 == 2) { ldv_origin_target_presuspend(); ldv_state_variable_1 = 3; } else { } goto ldv_30372; case 8: ; if (ldv_state_variable_1 == 3) { ldv_origin_target_postsuspend(); ldv_state_variable_1 = 4; } else { } goto ldv_30372; case 9: ; if (ldv_state_variable_1 == 4) { ldv_retval_ldv_origin_target_preresume = ldv_origin_target_preresume(); if (ldv_retval_ldv_origin_target_preresume == 0) { ldv_state_variable_1 = 5; } else { } } else { } goto ldv_30372; default: ; goto ldv_30372; } ldv_30372: ; } else { } goto ldv_30342; case 5: ; if (ldv_state_variable_4 != 0) { ldv_main_exported_4(); } else { } goto ldv_30342; case 6: ; if (ldv_state_variable_0 != 0) { tmp___3 = __VERIFIER_nondet_int(); switch (tmp___3) { case 0: ; if (ldv_state_variable_0 == 3 && ref_cnt == 0) { dm_snapshot_exit(); ldv_state_variable_0 = 2; goto ldv_final; } else { } goto ldv_30387; case 1: ; if (ldv_state_variable_0 == 1) { ldv_retval_dm_snapshot_init = dm_snapshot_init(); if (ldv_retval_dm_snapshot_init == 0) { ldv_state_variable_0 = 3; ldv_state_variable_5 = 1; ldv_state_variable_2 = 1; ldv_state_variable_7 = 1; ldv_state_variable_3 = 1; ldv_state_variable_1 = 1; ldv_state_variable_4 = 1; ldv_state_variable_6 = 1; } else { } if (ldv_retval_dm_snapshot_init != 0) { ldv_state_variable_0 = 2; goto ldv_final; } else { } } else { } goto ldv_30387; default: ; goto ldv_30387; } ldv_30387: ; } else { } goto ldv_30342; case 7: ; if (ldv_state_variable_5 != 0) { ldv_main_exported_5(); } else { } goto ldv_30342; default: ; goto ldv_30342; } ldv_30342: ; goto ldv_30392; ldv_final: ldv_check_final_state(); return 0; } } void ldv_mutex_lock_1(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_cred_guard_mutex_of_signal_struct(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_2(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_cred_guard_mutex_of_signal_struct(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_3(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_4(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_5(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_6(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_7(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } __inline static int ffs(int x ) { int r ; { __asm__ ("bsfl %1,%0": "=r" (r): "rm" (x), "0" (-1)); return (r + 1); } } __inline static bool is_power_of_2(unsigned long n ) { { return ((bool )(n != 0UL && ((n - 1UL) & n) == 0UL)); } } extern int kstrtouint(char const * , unsigned int , unsigned int * ) ; extern int strcmp(char const * , char const * ) ; extern char *strrchr(char const * , int ) ; extern char *kstrdup(char const * , gfp_t ) ; int ldv_mutex_trylock_20(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_16(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_18(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_21(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_15(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_17(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_19(struct mutex *ldv_func_arg1 ) ; __inline static unsigned short queue_logical_block_size(struct request_queue *q ) { int retval ; { retval = 512; if ((unsigned long )q != (unsigned long )((struct request_queue *)0) && (unsigned int )q->limits.logical_block_size != 0U) { retval = (int )q->limits.logical_block_size; } else { } return ((unsigned short )retval); } } __inline static unsigned short bdev_logical_block_size(struct block_device *bdev ) { struct request_queue *tmp ; unsigned short tmp___0 ; { tmp = bdev_get_queue(bdev); tmp___0 = queue_logical_block_size(tmp); return (tmp___0); } } int dm_exception_store_type_register(struct dm_exception_store_type *type ) ; int dm_exception_store_type_unregister(struct dm_exception_store_type *type ) ; int dm_exception_store_set_chunk_size(struct dm_exception_store *store , unsigned int chunk_size , char **error ) ; int dm_persistent_snapshot_init(void) ; void dm_persistent_snapshot_exit(void) ; int dm_transient_snapshot_init(void) ; void dm_transient_snapshot_exit(void) ; extern unsigned char const _ctype[] ; __inline static unsigned char __toupper(unsigned char c ) { { if (((int )_ctype[(int )c] & 2) != 0) { c = (unsigned int )c + 224U; } else { } return (c); } } extern int __request_module(bool , char const * , ...) ; extern bool try_module_get(struct module * ) ; extern void module_put(struct module * ) ; static struct list_head _exception_store_types = {& _exception_store_types, & _exception_store_types}; static spinlock_t _lock = {{{{{0U}}, 3735899821U, 4294967295U, 0xffffffffffffffffUL, {0, {0, 0}, "_lock", 0, 0UL}}}}; static struct dm_exception_store_type *__find_exception_store_type(char const *name ) { struct dm_exception_store_type *type ; struct list_head const *__mptr ; int tmp ; struct list_head const *__mptr___0 ; { __mptr = (struct list_head const *)_exception_store_types.next; type = (struct dm_exception_store_type *)__mptr + 0xffffffffffffffa0UL; goto ldv_29441; ldv_29440: tmp = strcmp(name, type->name); if (tmp == 0) { return (type); } else { } __mptr___0 = (struct list_head const *)type->list.next; type = (struct dm_exception_store_type *)__mptr___0 + 0xffffffffffffffa0UL; ldv_29441: ; if ((unsigned long )(& type->list) != (unsigned long )(& _exception_store_types)) { goto ldv_29440; } else { goto ldv_29442; } ldv_29442: ; return (0); } } static struct dm_exception_store_type *_get_exception_store_type(char const *name ) { struct dm_exception_store_type *type ; bool tmp ; int tmp___0 ; { spin_lock(& _lock); type = __find_exception_store_type(name); if ((unsigned long )type != (unsigned long )((struct dm_exception_store_type *)0)) { tmp = try_module_get(type->module); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { type = 0; } else { } } else { } spin_unlock(& _lock); return (type); } } static struct dm_exception_store_type *get_type(char const *type_name ) { char *p ; char *type_name_dup ; struct dm_exception_store_type *type ; int tmp ; { type = _get_exception_store_type(type_name); if ((unsigned long )type != (unsigned long )((struct dm_exception_store_type *)0)) { return (type); } else { } type_name_dup = kstrdup(type_name, 208U); if ((unsigned long )type_name_dup == (unsigned long )((char *)0)) { printk("\vdevice-mapper: snapshot exception stores: No memory left to attempt load for \"%s\"\n", type_name); return (0); } else { } goto ldv_29455; ldv_29454: p = strrchr((char const *)type_name_dup, 45); if ((unsigned long )p == (unsigned long )((char *)0)) { goto ldv_29453; } else { } *p = 0; ldv_29455: tmp = __request_module(1, "dm-exstore-%s", type_name_dup); if (tmp != 0) { goto ldv_29454; } else { type = _get_exception_store_type(type_name); if ((unsigned long )type == (unsigned long )((struct dm_exception_store_type *)0)) { goto ldv_29454; } else { goto ldv_29453; } } ldv_29453: ; if ((unsigned long )type == (unsigned long )((struct dm_exception_store_type *)0)) { printk("\fdevice-mapper: snapshot exception stores: Module for exstore type \"%s\" not found.\n", type_name); } else { } kfree((void const *)type_name_dup); return (type); } } static void put_type(struct dm_exception_store_type *type ) { { spin_lock(& _lock); module_put(type->module); spin_unlock(& _lock); return; } } int dm_exception_store_type_register(struct dm_exception_store_type *type ) { int r ; struct dm_exception_store_type *tmp ; { r = 0; spin_lock(& _lock); tmp = __find_exception_store_type(type->name); if ((unsigned long )tmp == (unsigned long )((struct dm_exception_store_type *)0)) { list_add(& type->list, & _exception_store_types); } else { r = -17; } spin_unlock(& _lock); return (r); } } int dm_exception_store_type_unregister(struct dm_exception_store_type *type ) { struct dm_exception_store_type *tmp ; { spin_lock(& _lock); tmp = __find_exception_store_type(type->name); if ((unsigned long )tmp == (unsigned long )((struct dm_exception_store_type *)0)) { spin_unlock(& _lock); return (-22); } else { } list_del(& type->list); spin_unlock(& _lock); return (0); } } static int set_chunk_size(struct dm_exception_store *store , char const *chunk_size_arg , char **error ) { unsigned int chunk_size ; int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; int tmp___2 ; { tmp = kstrtouint(chunk_size_arg, 10U, & chunk_size); if (tmp != 0) { *error = (char *)"Invalid chunk size"; return (-22); } else { } if (chunk_size == 0U) { tmp___1 = 0U; store->chunk_shift = tmp___1; tmp___0 = tmp___1; store->chunk_mask = tmp___0; store->chunk_size = tmp___0; return (0); } else { } tmp___2 = dm_exception_store_set_chunk_size(store, chunk_size, error); return (tmp___2); } } int dm_exception_store_set_chunk_size(struct dm_exception_store *store , unsigned int chunk_size , char **error ) { bool tmp ; int tmp___0 ; struct dm_dev *tmp___1 ; unsigned short tmp___2 ; struct dm_dev *tmp___3 ; unsigned short tmp___4 ; int tmp___5 ; { tmp = is_power_of_2((unsigned long )chunk_size); if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { *error = (char *)"Chunk size is not a power of 2"; return (-22); } else { } tmp___1 = dm_snap_cow(store->snap); tmp___2 = bdev_logical_block_size(tmp___1->bdev); if (chunk_size % (unsigned int )((int )tmp___2 >> 9) != 0U) { *error = (char *)"Chunk size is not a multiple of device blocksize"; return (-22); } else { tmp___3 = dm_snap_origin(store->snap); tmp___4 = bdev_logical_block_size(tmp___3->bdev); if (chunk_size % (unsigned int )((int )tmp___4 >> 9) != 0U) { *error = (char *)"Chunk size is not a multiple of device blocksize"; return (-22); } else { } } if (chunk_size > 4194303U) { *error = (char *)"Chunk size is too high"; return (-22); } else { } store->chunk_size = chunk_size; store->chunk_mask = chunk_size - 1U; tmp___5 = ffs((int )chunk_size); store->chunk_shift = (unsigned int )(tmp___5 + -1); return (0); } } int dm_exception_store_create(struct dm_target *ti , int argc , char **argv , struct dm_snapshot *snap , unsigned int *args_used , struct dm_exception_store **store ) { int r ; struct dm_exception_store_type *type ; struct dm_exception_store *tmp_store ; char persistent ; void *tmp ; unsigned char tmp___0 ; { r = 0; type = 0; if (argc <= 1) { ti->error = (char *)"Insufficient exception store arguments"; return (-22); } else { } tmp = kmalloc(40UL, 208U); tmp_store = (struct dm_exception_store *)tmp; if ((unsigned long )tmp_store == (unsigned long )((struct dm_exception_store *)0)) { ti->error = (char *)"Exception store allocation failed"; return (-12); } else { } tmp___0 = __toupper((int )((unsigned char )*(*argv))); persistent = (char )tmp___0; if ((int )((signed char )persistent) == 80) { type = get_type("P"); } else if ((int )((signed char )persistent) == 78) { type = get_type("N"); } else { ti->error = (char *)"Persistent flag is not P or N"; r = -22; goto bad_type; } if ((unsigned long )type == (unsigned long )((struct dm_exception_store_type *)0)) { ti->error = (char *)"Exception store type not recognised"; r = -22; goto bad_type; } else { } tmp_store->type = type; tmp_store->snap = snap; r = set_chunk_size(tmp_store, (char const *)*(argv + 1UL), & ti->error); if (r != 0) { goto bad; } else { } r = (*(type->ctr))(tmp_store, 0U, 0); if (r != 0) { ti->error = (char *)"Exception store type constructor failed"; goto bad; } else { } *args_used = 2U; *store = tmp_store; return (0); bad: put_type(type); bad_type: kfree((void const *)tmp_store); return (r); } } void dm_exception_store_destroy(struct dm_exception_store *store ) { { (*((store->type)->dtr))(store); put_type(store->type); kfree((void const *)store); return; } } int dm_exception_store_init(void) { int r ; { r = dm_transient_snapshot_init(); if (r != 0) { printk("\vdevice-mapper: snapshot exception stores: Unable to register transient exception store type.\n"); goto transient_fail; } else { } r = dm_persistent_snapshot_init(); if (r != 0) { printk("\vdevice-mapper: snapshot exception stores: Unable to register persistent exception store type\n"); goto persistent_fail; } else { } return (0); persistent_fail: dm_transient_snapshot_exit(); transient_fail: ; return (r); } } void dm_exception_store_exit(void) { { dm_persistent_snapshot_exit(); dm_transient_snapshot_exit(); return; } } void ldv_mutex_lock_15(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_cred_guard_mutex_of_signal_struct(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_16(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_cred_guard_mutex_of_signal_struct(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_17(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_18(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_19(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_20(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_21(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } int ldv_mutex_trylock_34(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_30(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_32(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_35(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_29(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_31(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_33(struct mutex *ldv_func_arg1 ) ; static void transient_dtr(struct dm_exception_store *store ) { { kfree((void const *)store->context); return; } } static int transient_read_metadata(struct dm_exception_store *store , int (*callback)(void * , chunk_t , chunk_t ) , void *callback_context ) { { return (0); } } static int transient_prepare_exception(struct dm_exception_store *store , struct dm_exception *e ) { struct transient_c *tc ; sector_t size ; struct dm_dev *tmp ; sector_t tmp___0 ; { tc = (struct transient_c *)store->context; tmp = dm_snap_cow(store->snap); tmp___0 = get_dev_size(tmp->bdev); size = tmp___0; if (tc->next_free + (sector_t )store->chunk_size > size) { return (-1); } else { } e->new_chunk = sector_to_chunk(store, tc->next_free); tc->next_free = tc->next_free + (sector_t )store->chunk_size; return (0); } } static void transient_commit_exception(struct dm_exception_store *store , struct dm_exception *e , void (*callback)(void * , int ) , void *callback_context ) { { (*callback)(callback_context, 1); return; } } static void transient_usage(struct dm_exception_store *store , sector_t *total_sectors , sector_t *sectors_allocated , sector_t *metadata_sectors ) { struct dm_dev *tmp ; { *sectors_allocated = ((struct transient_c *)store->context)->next_free; tmp = dm_snap_cow(store->snap); *total_sectors = get_dev_size(tmp->bdev); *metadata_sectors = 0UL; return; } } static int transient_ctr(struct dm_exception_store *store , unsigned int argc , char **argv ) { struct transient_c *tc ; void *tmp ; { tmp = kmalloc(8UL, 208U); tc = (struct transient_c *)tmp; if ((unsigned long )tc == (unsigned long )((struct transient_c *)0)) { return (-12); } else { } tc->next_free = 0UL; store->context = (void *)tc; return (0); } } static unsigned int transient_status(struct dm_exception_store *store , status_type_t status , char *result , unsigned int maxlen ) { unsigned int sz ; int tmp ; unsigned int tmp___0 ; { sz = 0U; switch ((unsigned int )status) { case 0: ; goto ldv_28676; case 1: ; if (sz < maxlen) { tmp = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " N %llu", (unsigned long long )store->chunk_size); tmp___0 = (unsigned int )tmp; } else { tmp___0 = 0U; } sz = tmp___0 + sz; } ldv_28676: ; return (sz); } } static struct dm_exception_store_type _transient_type = {"transient", & __this_module, & transient_ctr, & transient_dtr, & transient_read_metadata, & transient_prepare_exception, & transient_commit_exception, 0, 0, 0, & transient_status, & transient_usage, {0, 0}}; static struct dm_exception_store_type _transient_compat_type = {"N", & __this_module, & transient_ctr, & transient_dtr, & transient_read_metadata, & transient_prepare_exception, & transient_commit_exception, 0, 0, 0, & transient_status, & transient_usage, {0, 0}}; int dm_transient_snapshot_init(void) { int r ; { r = dm_exception_store_type_register(& _transient_type); if (r != 0) { printk("\fdevice-mapper: transient snapshot: Unable to register transient exception store type\n"); return (r); } else { } r = dm_exception_store_type_register(& _transient_compat_type); if (r != 0) { printk("\fdevice-mapper: transient snapshot: Unable to register old-style transient exception store type\n"); dm_exception_store_type_unregister(& _transient_type); return (r); } else { } return (r); } } void dm_transient_snapshot_exit(void) { { dm_exception_store_type_unregister(& _transient_type); dm_exception_store_type_unregister(& _transient_compat_type); return; } } unsigned int ldvarg77 ; status_type_t ldvarg84 ; char **ldvarg67 ; sector_t *ldvarg80 ; sector_t *ldvarg71 ; sector_t *ldvarg72 ; sector_t *ldvarg79 ; char *ldvarg83 ; sector_t *ldvarg81 ; unsigned int ldvarg73 ; struct dm_exception_store *_transient_type_group0 ; sector_t *ldvarg70 ; struct dm_exception_store *_transient_compat_type_group0 ; struct dm_exception *ldvarg78 ; unsigned int ldvarg68 ; struct dm_exception *ldvarg69 ; unsigned int ldvarg82 ; char *ldvarg74 ; char **ldvarg76 ; status_type_t ldvarg75 ; void ldv_main_exported_4(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_state_variable_4 == 1) { transient_status(_transient_type_group0, ldvarg75, ldvarg74, ldvarg73); ldv_state_variable_4 = 1; } else { } goto ldv_28711; case 1: ; if (ldv_state_variable_4 == 1) { transient_usage(_transient_type_group0, ldvarg72, ldvarg71, ldvarg70); ldv_state_variable_4 = 1; } else { } goto ldv_28711; case 2: ; if (ldv_state_variable_4 == 1) { transient_prepare_exception(_transient_type_group0, ldvarg69); ldv_state_variable_4 = 1; } else { } goto ldv_28711; case 3: ; if (ldv_state_variable_4 == 1) { transient_dtr(_transient_type_group0); ldv_state_variable_4 = 1; } else { } goto ldv_28711; case 4: ; if (ldv_state_variable_4 == 1) { transient_ctr(_transient_type_group0, ldvarg68, ldvarg67); ldv_state_variable_4 = 1; } else { } goto ldv_28711; default: ; goto ldv_28711; } ldv_28711: ; return; } } void ldv_main_exported_5(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_state_variable_5 == 1) { transient_status(_transient_compat_type_group0, ldvarg84, ldvarg83, ldvarg82); ldv_state_variable_5 = 1; } else { } goto ldv_28721; case 1: ; if (ldv_state_variable_5 == 1) { transient_usage(_transient_compat_type_group0, ldvarg81, ldvarg80, ldvarg79); ldv_state_variable_5 = 1; } else { } goto ldv_28721; case 2: ; if (ldv_state_variable_5 == 1) { transient_prepare_exception(_transient_compat_type_group0, ldvarg78); ldv_state_variable_5 = 1; } else { } goto ldv_28721; case 3: ; if (ldv_state_variable_5 == 1) { transient_dtr(_transient_compat_type_group0); ldv_state_variable_5 = 1; } else { } goto ldv_28721; case 4: ; if (ldv_state_variable_5 == 1) { transient_ctr(_transient_compat_type_group0, ldvarg77, ldvarg76); ldv_state_variable_5 = 1; } else { } goto ldv_28721; default: ; goto ldv_28721; } ldv_28721: ; return; } } void ldv_mutex_lock_29(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_cred_guard_mutex_of_signal_struct(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_30(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_cred_guard_mutex_of_signal_struct(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_31(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_32(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_33(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_34(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_35(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } extern void *memset(void * , int , size_t ) ; __inline static int atomic_dec_and_test(atomic_t *v ) { unsigned char c ; { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; decl %0; sete %1": "+m" (v->counter), "=qm" (c): : "memory"); return ((unsigned int )c != 0U); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; int ldv_mutex_trylock_48(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_44(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_46(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_unlock_49(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_43(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_45(struct mutex *ldv_func_arg1 ) ; void ldv_mutex_lock_47(struct mutex *ldv_func_arg1 ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *__alloc_workqueue_key(char const * , unsigned int , int , struct lock_class_key * , char const * , ...) ; extern void destroy_workqueue(struct workqueue_struct * ) ; extern bool queue_work(struct workqueue_struct * , struct work_struct * ) ; extern bool flush_work(struct work_struct * ) ; extern void *vmalloc(unsigned long ) ; extern void *vzalloc(unsigned long ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { tmp = kmalloc(size, flags | 32768U); return (tmp); } } extern struct dm_io_client *dm_io_client_create(void) ; extern void dm_io_client_destroy(struct dm_io_client * ) ; extern int dm_io(struct dm_io_request * , unsigned int , struct dm_io_region * , unsigned long * ) ; static int alloc_area(struct pstore *ps ) { int r ; size_t len ; { r = -12; len = (size_t )((ps->store)->chunk_size << 9); ps->area = vmalloc(len); if ((unsigned long )ps->area == (unsigned long )((void *)0)) { goto err_area; } else { } ps->zero_area = vzalloc(len); if ((unsigned long )ps->zero_area == (unsigned long )((void *)0)) { goto err_zero_area; } else { } ps->header_area = vmalloc(len); if ((unsigned long )ps->header_area == (unsigned long )((void *)0)) { goto err_header_area; } else { } return (0); err_header_area: vfree((void const *)ps->zero_area); err_zero_area: vfree((void const *)ps->area); err_area: ; return (r); } } static void free_area(struct pstore *ps ) { { if ((unsigned long )ps->area != (unsigned long )((void *)0)) { vfree((void const *)ps->area); } else { } ps->area = 0; if ((unsigned long )ps->zero_area != (unsigned long )((void *)0)) { vfree((void const *)ps->zero_area); } else { } ps->zero_area = 0; if ((unsigned long )ps->header_area != (unsigned long )((void *)0)) { vfree((void const *)ps->header_area); } else { } ps->header_area = 0; return; } } static void do_metadata(struct work_struct *work ) { struct mdata_req *req ; struct work_struct const *__mptr ; { __mptr = (struct work_struct const *)work; req = (struct mdata_req *)__mptr + 0xfffffffffffffff0UL; req->result = dm_io(req->io_req, 1U, req->where, 0); return; } } static int chunk_io(struct pstore *ps , void *area , chunk_t chunk , int rw , int metadata ) { struct dm_io_region where ; struct dm_dev *tmp ; struct dm_io_request io_req ; struct mdata_req req ; int tmp___0 ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; { tmp = dm_snap_cow((ps->store)->snap); where.bdev = tmp->bdev; where.sector = (chunk_t )(ps->store)->chunk_size * chunk; where.count = (unsigned long )(ps->store)->chunk_size; io_req.bi_rw = rw; io_req.mem.type = 2; io_req.mem.offset = 0U; io_req.mem.ptr.vma = area; io_req.notify.fn = 0; io_req.notify.context = 0; io_req.client = ps->io_client; if (metadata == 0) { tmp___0 = dm_io(& io_req, 1U, & where, 0); return (tmp___0); } else { } req.where = & where; req.io_req = & io_req; __init_work(& req.work, 1); __constr_expr_0.counter = 4195328L; req.work.data = __constr_expr_0; lockdep_init_map(& req.work.lockdep_map, "(&req.work)", & __key, 0); INIT_LIST_HEAD(& req.work.entry); req.work.func = & do_metadata; queue_work(ps->metadata_wq, & req.work); flush_work(& req.work); return (req.result); } } static chunk_t area_location(struct pstore *ps , chunk_t area ) { { return ((chunk_t )(ps->exceptions_per_area + 1U) * area + 1UL); } } static int area_io(struct pstore *ps , int rw ) { int r ; chunk_t chunk ; { chunk = area_location(ps, ps->current_area); r = chunk_io(ps, ps->area, chunk, rw, 0); if (r != 0) { return (r); } else { } return (0); } } static void zero_memory_area(struct pstore *ps ) { { memset(ps->area, 0, (size_t )((ps->store)->chunk_size << 9)); return; } } static int zero_disk_area(struct pstore *ps , chunk_t area ) { chunk_t tmp ; int tmp___0 ; { tmp = area_location(ps, area); tmp___0 = chunk_io(ps, ps->zero_area, tmp, 1, 0); return (tmp___0); } } static int read_header(struct pstore *ps , int *new_snapshot ) { int r ; struct disk_header *dh ; unsigned int chunk_size ; int chunk_size_supplied ; char *chunk_err ; int _max1 ; int _max2 ; struct dm_dev *tmp ; unsigned short tmp___0 ; int tmp___1 ; int tmp___2 ; long tmp___3 ; long tmp___4 ; { chunk_size_supplied = 1; if ((ps->store)->chunk_size == 0U) { _max1 = 32; tmp = dm_snap_cow((ps->store)->snap); tmp___0 = bdev_logical_block_size(tmp->bdev); _max2 = (int )tmp___0 >> 9; if (_max1 > _max2) { tmp___1 = _max1; } else { tmp___1 = _max2; } (ps->store)->chunk_size = (unsigned int )tmp___1; (ps->store)->chunk_mask = (ps->store)->chunk_size - 1U; tmp___2 = ffs((int )(ps->store)->chunk_size); (ps->store)->chunk_shift = (unsigned int )(tmp___2 + -1); chunk_size_supplied = 0; } else { } ps->io_client = dm_io_client_create(); tmp___4 = IS_ERR((void const *)ps->io_client); if (tmp___4 != 0L) { tmp___3 = PTR_ERR((void const *)ps->io_client); return ((int )tmp___3); } else { } r = alloc_area(ps); if (r != 0) { return (r); } else { } r = chunk_io(ps, ps->header_area, 0UL, 0, 1); if (r != 0) { goto bad; } else { } dh = (struct disk_header *)ps->header_area; if (dh->magic == 0U) { *new_snapshot = 1; return (0); } else { } if (dh->magic != 1883336275U) { printk("\fdevice-mapper: persistent snapshot: Invalid or corrupt snapshot\n"); r = -6; goto bad; } else { } *new_snapshot = 0; ps->valid = (int )dh->valid; ps->version = (int )dh->version; chunk_size = dh->chunk_size; if ((ps->store)->chunk_size == chunk_size) { return (0); } else { } if (chunk_size_supplied != 0) { printk("\fdevice-mapper: persistent snapshot: chunk size %u in device metadata overrides table chunk size of %u.\n", chunk_size, (ps->store)->chunk_size); } else { } free_area(ps); r = dm_exception_store_set_chunk_size(ps->store, chunk_size, & chunk_err); if (r != 0) { printk("\vdevice-mapper: persistent snapshot: invalid on-disk chunk size %u: %s.\n", chunk_size, chunk_err); return (r); } else { } r = alloc_area(ps); return (r); bad: free_area(ps); return (r); } } static int write_header(struct pstore *ps ) { struct disk_header *dh ; int tmp ; { memset(ps->header_area, 0, (size_t )((ps->store)->chunk_size << 9)); dh = (struct disk_header *)ps->header_area; dh->magic = 1883336275U; dh->valid = (unsigned int )ps->valid; dh->version = (unsigned int )ps->version; dh->chunk_size = (ps->store)->chunk_size; tmp = chunk_io(ps, ps->header_area, 0UL, 1, 1); return (tmp); } } static struct disk_exception *get_exception(struct pstore *ps , uint32_t index ) { long tmp ; { tmp = ldv__builtin_expect(ps->exceptions_per_area <= index, 0L); if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/zakharov/workspace/benchmarks/bench_1/work/current--X--drivers/md/dm-snapshot.ko--X--deg2_cpalinux-3.8-rc1--X--32_7a--X--cpachecker/linux-3.8-rc1/csd_deg_dscv/35/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-snap-persistent.c.prepared"), "i" (441), "i" (12UL)); ldv_28733: ; goto ldv_28733; } else { } return ((struct disk_exception *)ps->area + (unsigned long )index); } } static void read_exception(struct pstore *ps , uint32_t index , struct core_exception *result ) { struct disk_exception *de ; struct disk_exception *tmp ; { tmp = get_exception(ps, index); de = tmp; result->old_chunk = de->old_chunk; result->new_chunk = de->new_chunk; return; } } static void write_exception(struct pstore *ps , uint32_t index , struct core_exception *e ) { struct disk_exception *de ; struct disk_exception *tmp ; { tmp = get_exception(ps, index); de = tmp; de->old_chunk = e->old_chunk; de->new_chunk = e->new_chunk; return; } } static void clear_exception(struct pstore *ps , uint32_t index ) { struct disk_exception *de ; struct disk_exception *tmp ; { tmp = get_exception(ps, index); de = tmp; de->old_chunk = 0ULL; de->new_chunk = 0ULL; return; } } static int insert_exceptions(struct pstore *ps , int (*callback)(void * , chunk_t , chunk_t ) , void *callback_context , int *full ) { int r ; unsigned int i ; struct core_exception e ; { *full = 1; i = 0U; goto ldv_28765; ldv_28764: read_exception(ps, i, & e); if (e.new_chunk == 0ULL) { ps->current_committed = i; *full = 0; goto ldv_28763; } else { } if ((unsigned long long )ps->next_free <= e.new_chunk) { ps->next_free = (chunk_t )(e.new_chunk + 1ULL); } else { } r = (*callback)(callback_context, (chunk_t )e.old_chunk, (chunk_t )e.new_chunk); if (r != 0) { return (r); } else { } i = i + 1U; ldv_28765: ; if (ps->exceptions_per_area > i) { goto ldv_28764; } else { goto ldv_28763; } ldv_28763: ; return (0); } } static int read_exceptions(struct pstore *ps , int (*callback)(void * , chunk_t , chunk_t ) , void *callback_context ) { int r ; int full ; { full = 1; ps->current_area = 0UL; goto ldv_28777; ldv_28776: r = area_io(ps, 0); if (r != 0) { return (r); } else { } r = insert_exceptions(ps, callback, callback_context, & full); if (r != 0) { return (r); } else { } ps->current_area = ps->current_area + 1UL; ldv_28777: ; if (full != 0) { goto ldv_28776; } else { goto ldv_28778; } ldv_28778: ps->current_area = ps->current_area - 1UL; return (0); } } static struct pstore *get_info(struct dm_exception_store *store ) { { return ((struct pstore *)store->context); } } static void persistent_usage(struct dm_exception_store *store , sector_t *total_sectors , sector_t *sectors_allocated , sector_t *metadata_sectors ) { struct pstore *ps ; struct pstore *tmp ; struct dm_dev *tmp___0 ; { tmp = get_info(store); ps = tmp; *sectors_allocated = ps->next_free * (chunk_t )store->chunk_size; tmp___0 = dm_snap_cow(store->snap); *total_sectors = get_dev_size(tmp___0->bdev); *metadata_sectors = (ps->current_area + 2UL) * (chunk_t )store->chunk_size; return; } } static void persistent_dtr(struct dm_exception_store *store ) { struct pstore *ps ; struct pstore *tmp ; { tmp = get_info(store); ps = tmp; destroy_workqueue(ps->metadata_wq); if ((unsigned long )ps->io_client != (unsigned long )((struct dm_io_client *)0)) { dm_io_client_destroy(ps->io_client); } else { } free_area(ps); if ((unsigned long )ps->callbacks != (unsigned long )((struct commit_callback *)0)) { vfree((void const *)ps->callbacks); } else { } kfree((void const *)ps); return; } } static int persistent_read_metadata(struct dm_exception_store *store , int (*callback)(void * , chunk_t , chunk_t ) , void *callback_context ) { int r ; int new_snapshot ; struct pstore *ps ; struct pstore *tmp ; void *tmp___0 ; { new_snapshot = new_snapshot; tmp = get_info(store); ps = tmp; r = read_header(ps, & new_snapshot); if (r != 0) { return (r); } else { } ps->exceptions_per_area = ((ps->store)->chunk_size << 9) / 16U; tmp___0 = dm_vcalloc((unsigned long )ps->exceptions_per_area, 16UL); ps->callbacks = (struct commit_callback *)tmp___0; if ((unsigned long )ps->callbacks == (unsigned long )((struct commit_callback *)0)) { return (-12); } else { } if (new_snapshot != 0) { r = write_header(ps); if (r != 0) { printk("\fdevice-mapper: persistent snapshot: write_header failed\n"); return (r); } else { } ps->current_area = 0UL; zero_memory_area(ps); r = zero_disk_area(ps, 0UL); if (r != 0) { printk("\fdevice-mapper: persistent snapshot: zero_disk_area(0) failed\n"); } else { } return (r); } else { } if (ps->version != 1) { printk("\fdevice-mapper: persistent snapshot: unable to handle snapshot disk version %d\n", ps->version); return (-22); } else { } if (ps->valid == 0) { return (1); } else { } r = read_exceptions(ps, callback, callback_context); return (r); } } static int persistent_prepare_exception(struct dm_exception_store *store , struct dm_exception *e ) { struct pstore *ps ; struct pstore *tmp ; uint32_t stride ; chunk_t next_free ; sector_t size ; struct dm_dev *tmp___0 ; sector_t tmp___1 ; int _res ; { tmp = get_info(store); ps = tmp; tmp___0 = dm_snap_cow(store->snap); tmp___1 = get_dev_size(tmp___0->bdev); size = tmp___1; if ((ps->next_free + 1UL) * (chunk_t )store->chunk_size > size) { return (-28); } else { } e->new_chunk = ps->next_free; stride = ps->exceptions_per_area + 1U; ps->next_free = ps->next_free + 1UL; next_free = ps->next_free; _res = (int )(next_free % (chunk_t )stride); next_free = next_free / (chunk_t )stride; if (_res == 1) { ps->next_free = ps->next_free + 1UL; } else { } atomic_inc(& ps->pending_count); return (0); } } static void persistent_commit_exception(struct dm_exception_store *store , struct dm_exception *e , void (*callback)(void * , int ) , void *callback_context ) { unsigned int i ; struct pstore *ps ; struct pstore *tmp ; struct core_exception ce ; struct commit_callback *cb ; uint32_t tmp___0 ; uint32_t tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { tmp = get_info(store); ps = tmp; ce.old_chunk = (uint64_t )e->old_chunk; ce.new_chunk = (uint64_t )e->new_chunk; tmp___0 = ps->current_committed; ps->current_committed = ps->current_committed + 1U; write_exception(ps, tmp___0, & ce); tmp___1 = ps->callback_count; ps->callback_count = ps->callback_count + 1U; cb = ps->callbacks + (unsigned long )tmp___1; cb->callback = callback; cb->context = callback_context; tmp___2 = atomic_dec_and_test(& ps->pending_count); if (tmp___2 == 0 && ps->current_committed != ps->exceptions_per_area) { return; } else { } if (ps->current_committed == ps->exceptions_per_area) { tmp___3 = zero_disk_area(ps, ps->current_area + 1UL); if (tmp___3 != 0) { ps->valid = 0; } else { } } else { } if (ps->valid != 0) { tmp___4 = area_io(ps, 7185); if (tmp___4 != 0) { ps->valid = 0; } else { } } else { } if (ps->current_committed == ps->exceptions_per_area) { ps->current_committed = 0U; ps->current_area = ps->current_area + 1UL; zero_memory_area(ps); } else { } i = 0U; goto ldv_28827; ldv_28826: cb = ps->callbacks + (unsigned long )i; (*(cb->callback))(cb->context, ps->valid); i = i + 1U; ldv_28827: ; if (ps->callback_count > i) { goto ldv_28826; } else { goto ldv_28828; } ldv_28828: ps->callback_count = 0U; return; } } static int persistent_prepare_merge(struct dm_exception_store *store , chunk_t *last_old_chunk , chunk_t *last_new_chunk ) { struct pstore *ps ; struct pstore *tmp ; struct core_exception ce ; int nr_consecutive ; int r ; { tmp = get_info(store); ps = tmp; if (ps->current_committed == 0U) { if (ps->current_area == 0UL) { return (0); } else { } ps->current_area = ps->current_area - 1UL; r = area_io(ps, 0); if (r < 0) { return (r); } else { } ps->current_committed = ps->exceptions_per_area; } else { } read_exception(ps, ps->current_committed - 1U, & ce); *last_old_chunk = (chunk_t )ce.old_chunk; *last_new_chunk = (chunk_t )ce.new_chunk; nr_consecutive = 1; goto ldv_28840; ldv_28839: read_exception(ps, (ps->current_committed - (uint32_t )nr_consecutive) - 1U, & ce); if (ce.old_chunk != (unsigned long long )(*last_old_chunk - (chunk_t )nr_consecutive) || ce.new_chunk != (unsigned long long )(*last_new_chunk - (chunk_t )nr_consecutive)) { goto ldv_28838; } else { } nr_consecutive = nr_consecutive + 1; ldv_28840: ; if ((uint32_t )nr_consecutive < ps->current_committed) { goto ldv_28839; } else { goto ldv_28838; } ldv_28838: ; return (nr_consecutive); } } static int persistent_commit_merge(struct dm_exception_store *store , int nr_merged ) { int r ; int i ; struct pstore *ps ; struct pstore *tmp ; long tmp___0 ; chunk_t tmp___1 ; { tmp = get_info(store); ps = tmp; tmp___0 = ldv__builtin_expect((uint32_t )nr_merged > ps->current_committed, 0L); if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/zakharov/workspace/benchmarks/bench_1/work/current--X--drivers/md/dm-snapshot.ko--X--deg2_cpalinux-3.8-rc1--X--32_7a--X--cpachecker/linux-3.8-rc1/csd_deg_dscv/35/dscv_tempdir/dscv/ri/32_7a/drivers/md/dm-snap-persistent.c.prepared"), "i" (799), "i" (12UL)); ldv_28848: ; goto ldv_28848; } else { } i = 0; goto ldv_28850; ldv_28849: clear_exception(ps, (ps->current_committed - (uint32_t )i) - 1U); i = i + 1; ldv_28850: ; if (i < nr_merged) { goto ldv_28849; } else { goto ldv_28851; } ldv_28851: r = area_io(ps, 7185); if (r < 0) { return (r); } else { } ps->current_committed = ps->current_committed - (uint32_t )nr_merged; tmp___1 = area_location(ps, ps->current_area); ps->next_free = (tmp___1 + (chunk_t )ps->current_committed) + 1UL; return (0); } } static void persistent_drop_snapshot(struct dm_exception_store *store ) { struct pstore *ps ; struct pstore *tmp ; int tmp___0 ; { tmp = get_info(store); ps = tmp; ps->valid = 0; tmp___0 = write_header(ps); if (tmp___0 != 0) { printk("\fdevice-mapper: persistent snapshot: write header failed\n"); } else { } return; } } static int persistent_ctr(struct dm_exception_store *store , unsigned int argc , char **argv ) { struct pstore *ps ; void *tmp ; struct lock_class_key __key ; char const *__lock_name ; struct workqueue_struct *tmp___0 ; { tmp = kzalloc(104UL, 208U); ps = (struct pstore *)tmp; if ((unsigned long )ps == (unsigned long )((struct pstore *)0)) { return (-12); } else { } ps->store = store; ps->valid = 1; ps->version = 1; ps->area = 0; ps->zero_area = 0; ps->header_area = 0; ps->next_free = 2UL; ps->current_committed = 0U; ps->callback_count = 0U; atomic_set(& ps->pending_count, 0); ps->callbacks = 0; __lock_name = "ksnaphd"; tmp___0 = __alloc_workqueue_key("ksnaphd", 8U, 0, & __key, __lock_name); ps->metadata_wq = tmp___0; if ((unsigned long )ps->metadata_wq == (unsigned long )((struct workqueue_struct *)0)) { kfree((void const *)ps); printk("\vdevice-mapper: persistent snapshot: couldn\'t start header metadata update thread\n"); return (-12); } else { } store->context = (void *)ps; return (0); } } static unsigned int persistent_status(struct dm_exception_store *store , status_type_t status , char *result , unsigned int maxlen ) { unsigned int sz ; int tmp ; unsigned int tmp___0 ; { sz = 0U; switch ((unsigned int )status) { case 0: ; goto ldv_28873; case 1: ; if (sz < maxlen) { tmp = scnprintf(result + (unsigned long )sz, (size_t )(maxlen - sz), " P %llu", (unsigned long long )store->chunk_size); tmp___0 = (unsigned int )tmp; } else { tmp___0 = 0U; } sz = tmp___0 + sz; } ldv_28873: ; return (sz); } } static struct dm_exception_store_type _persistent_type = {"persistent", & __this_module, & persistent_ctr, & persistent_dtr, & persistent_read_metadata, & persistent_prepare_exception, & persistent_commit_exception, & persistent_prepare_merge, & persistent_commit_merge, & persistent_drop_snapshot, & persistent_status, & persistent_usage, {0, 0}}; static struct dm_exception_store_type _persistent_compat_type = {"P", & __this_module, & persistent_ctr, & persistent_dtr, & persistent_read_metadata, & persistent_prepare_exception, & persistent_commit_exception, & persistent_prepare_merge, & persistent_commit_merge, & persistent_drop_snapshot, & persistent_status, & persistent_usage, {0, 0}}; int dm_persistent_snapshot_init(void) { int r ; { r = dm_exception_store_type_register(& _persistent_type); if (r != 0) { printk("\vdevice-mapper: persistent snapshot: Unable to register persistent exception store type\n"); return (r); } else { } r = dm_exception_store_type_register(& _persistent_compat_type); if (r != 0) { printk("\vdevice-mapper: persistent snapshot: Unable to register old-style persistent exception store type\n"); dm_exception_store_type_unregister(& _persistent_type); return (r); } else { } return (r); } } void dm_persistent_snapshot_exit(void) { { dm_exception_store_type_unregister(& _persistent_type); dm_exception_store_type_unregister(& _persistent_compat_type); return; } } status_type_t ldvarg11 ; sector_t *ldvarg32 ; int ldvarg31 ; sector_t *ldvarg7 ; struct dm_exception_store *_persistent_type_group0 ; chunk_t *ldvarg3 ; struct dm_exception_store *_persistent_compat_type_group0 ; sector_t *ldvarg8 ; unsigned int ldvarg1 ; status_type_t ldvarg37 ; char *ldvarg36 ; chunk_t *ldvarg29 ; char *ldvarg10 ; unsigned int ldvarg9 ; char **ldvarg26 ; unsigned int ldvarg27 ; unsigned int ldvarg35 ; char **ldvarg0 ; int ldvarg5 ; sector_t *ldvarg33 ; chunk_t *ldvarg30 ; sector_t *ldvarg6 ; chunk_t *ldvarg4 ; sector_t *ldvarg34 ; struct dm_exception *ldvarg28 ; struct dm_exception *ldvarg2 ; void ldv_main_exported_6(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_state_variable_6 == 1) { persistent_status(_persistent_type_group0, ldvarg11, ldvarg10, ldvarg9); ldv_state_variable_6 = 1; } else { } goto ldv_28914; case 1: ; if (ldv_state_variable_6 == 1) { persistent_usage(_persistent_type_group0, ldvarg8, ldvarg7, ldvarg6); ldv_state_variable_6 = 1; } else { } goto ldv_28914; case 2: ; if (ldv_state_variable_6 == 1) { persistent_drop_snapshot(_persistent_type_group0); ldv_state_variable_6 = 1; } else { } goto ldv_28914; case 3: ; if (ldv_state_variable_6 == 1) { persistent_commit_merge(_persistent_type_group0, ldvarg5); ldv_state_variable_6 = 1; } else { } goto ldv_28914; case 4: ; if (ldv_state_variable_6 == 1) { persistent_prepare_merge(_persistent_type_group0, ldvarg4, ldvarg3); ldv_state_variable_6 = 1; } else { } goto ldv_28914; case 5: ; if (ldv_state_variable_6 == 1) { persistent_prepare_exception(_persistent_type_group0, ldvarg2); ldv_state_variable_6 = 1; } else { } goto ldv_28914; case 6: ; if (ldv_state_variable_6 == 1) { persistent_dtr(_persistent_type_group0); ldv_state_variable_6 = 1; } else { } goto ldv_28914; case 7: ; if (ldv_state_variable_6 == 1) { persistent_ctr(_persistent_type_group0, ldvarg1, ldvarg0); ldv_state_variable_6 = 1; } else { } goto ldv_28914; default: ; goto ldv_28914; } ldv_28914: ; return; } } void ldv_main_exported_7(void) { int tmp ; { tmp = __VERIFIER_nondet_int(); switch (tmp) { case 0: ; if (ldv_state_variable_7 == 1) { persistent_status(_persistent_compat_type_group0, ldvarg37, ldvarg36, ldvarg35); ldv_state_variable_7 = 1; } else { } goto ldv_28927; case 1: ; if (ldv_state_variable_7 == 1) { persistent_usage(_persistent_compat_type_group0, ldvarg34, ldvarg33, ldvarg32); ldv_state_variable_7 = 1; } else { } goto ldv_28927; case 2: ; if (ldv_state_variable_7 == 1) { persistent_drop_snapshot(_persistent_compat_type_group0); ldv_state_variable_7 = 1; } else { } goto ldv_28927; case 3: ; if (ldv_state_variable_7 == 1) { persistent_commit_merge(_persistent_compat_type_group0, ldvarg31); ldv_state_variable_7 = 1; } else { } goto ldv_28927; case 4: ; if (ldv_state_variable_7 == 1) { persistent_prepare_merge(_persistent_compat_type_group0, ldvarg30, ldvarg29); ldv_state_variable_7 = 1; } else { } goto ldv_28927; case 5: ; if (ldv_state_variable_7 == 1) { persistent_prepare_exception(_persistent_compat_type_group0, ldvarg28); ldv_state_variable_7 = 1; } else { } goto ldv_28927; case 6: ; if (ldv_state_variable_7 == 1) { persistent_dtr(_persistent_compat_type_group0); ldv_state_variable_7 = 1; } else { } goto ldv_28927; case 7: ; if (ldv_state_variable_7 == 1) { persistent_ctr(_persistent_compat_type_group0, ldvarg27, ldvarg26); ldv_state_variable_7 = 1; } else { } goto ldv_28927; default: ; goto ldv_28927; } ldv_28927: ; return; } } void ldv_mutex_lock_43(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_cred_guard_mutex_of_signal_struct(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_44(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_cred_guard_mutex_of_signal_struct(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_45(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_lock(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } void ldv_mutex_unlock_46(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_lock(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } void ldv_mutex_lock_47(struct mutex *ldv_func_arg1 ) { { ldv_mutex_lock_mutex_of_device(ldv_func_arg1); mutex_lock(ldv_func_arg1); return; } } int ldv_mutex_trylock_48(struct mutex *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { tmp = mutex_trylock(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_mutex_trylock_mutex_of_device(ldv_func_arg1); return (tmp___0); return (ldv_func_res); } } void ldv_mutex_unlock_49(struct mutex *ldv_func_arg1 ) { { ldv_mutex_unlock_mutex_of_device(ldv_func_arg1); mutex_unlock(ldv_func_arg1); return; } } __inline static void ldv_error(void) __attribute__((__no_instrument_function__)) ; __inline static void ldv_error(void) { { ERROR: __VERIFIER_error(); } } extern int __VERIFIER_nondet_int(void) ; long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { ldv_error(); return; } } static int ldv_mutex_cred_guard_mutex_of_signal_struct ; int ldv_mutex_lock_interruptible_cred_guard_mutex_of_signal_struct(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_cred_guard_mutex_of_signal_struct = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_cred_guard_mutex_of_signal_struct(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_cred_guard_mutex_of_signal_struct = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_cred_guard_mutex_of_signal_struct(struct mutex *lock ) { { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { } else { ldv_error(); } ldv_mutex_cred_guard_mutex_of_signal_struct = 2; return; } } int ldv_mutex_trylock_cred_guard_mutex_of_signal_struct(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_cred_guard_mutex_of_signal_struct = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_cred_guard_mutex_of_signal_struct(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_cred_guard_mutex_of_signal_struct = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_cred_guard_mutex_of_signal_struct(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_cred_guard_mutex_of_signal_struct(struct mutex *lock ) { { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 2) { } else { ldv_error(); } ldv_mutex_cred_guard_mutex_of_signal_struct = 1; return; } } static int ldv_mutex_lock ; int ldv_mutex_lock_interruptible_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_lock = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_lock(struct mutex *lock ) { { if (ldv_mutex_lock == 1) { } else { ldv_error(); } ldv_mutex_lock = 2; return; } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_lock = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_lock == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_lock = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_lock == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { if (ldv_mutex_lock == 2) { } else { ldv_error(); } ldv_mutex_lock = 1; return; } } static int ldv_mutex_mutex_of_device ; int ldv_mutex_lock_interruptible_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } int ldv_mutex_lock_killable_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { ldv_mutex_mutex_of_device = 2; return (0); } else { return (-4); } } } void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } ldv_mutex_mutex_of_device = 2; return; } } int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) { int is_mutex_held_by_another_thread ; { if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } is_mutex_held_by_another_thread = __VERIFIER_nondet_int(); if (is_mutex_held_by_another_thread) { return (0); } else { ldv_mutex_mutex_of_device = 2; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { int atomic_value_after_dec ; { if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } atomic_value_after_dec = __VERIFIER_nondet_int(); if (atomic_value_after_dec == 0) { ldv_mutex_mutex_of_device = 2; return (1); } else { } return (0); } } int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int nondetermined ; { if (ldv_mutex_mutex_of_device == 1) { nondetermined = __VERIFIER_nondet_int(); if (nondetermined) { return (0); } else { return (1); } } else { return (1); } } } void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) { { if (ldv_mutex_mutex_of_device == 2) { } else { ldv_error(); } ldv_mutex_mutex_of_device = 1; return; } } void ldv_initialize(void) { { ldv_mutex_cred_guard_mutex_of_signal_struct = 1; ldv_mutex_lock = 1; ldv_mutex_mutex_of_device = 1; return; } } void ldv_check_final_state(void) { { if (ldv_mutex_cred_guard_mutex_of_signal_struct == 1) { } else { ldv_error(); } if (ldv_mutex_lock == 1) { } else { ldv_error(); } if (ldv_mutex_mutex_of_device == 1) { } else { ldv_error(); } return; } }