extern void __VERIFIER_error() __attribute__ ((__noreturn__)); typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef long long __s64; typedef unsigned long long __u64; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef unsigned short umode_t; typedef unsigned int __kernel_mode_t; typedef unsigned long __kernel_nlink_t; typedef long __kernel_off_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid_t; typedef unsigned int __kernel_gid_t; typedef unsigned long __kernel_size_t; typedef long __kernel_ssize_t; typedef long __kernel_time_t; typedef long __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef long long __kernel_loff_t; typedef __kernel_uid_t __kernel_uid32_t; typedef __kernel_gid_t __kernel_gid32_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef __kernel_mode_t mode_t; typedef __kernel_nlink_t nlink_t; typedef __kernel_off_t off_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u16 __sum16; typedef __u32 __wsum; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct module; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 24 ; unsigned char flags ; char enabled ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct completion; struct pt_regs; struct pid; struct timespec; struct compat_timespec; struct __anonstruct_futex_9 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_10 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_11 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion_ldv_2052_8 { struct __anonstruct_futex_9 futex ; struct __anonstruct_nanosleep_10 nanosleep ; struct __anonstruct_poll_11 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion_ldv_2052_8 ldv_2052 ; }; struct page; struct task_struct; struct exec_domain; struct mm_struct; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion_ldv_2292_12 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion_ldv_2292_12 ldv_2292 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; typedef struct page *pgtable_t; struct file; struct seq_file; struct __anonstruct_ldv_2526_19 { unsigned int a ; unsigned int b ; }; struct __anonstruct_ldv_2541_20 { u16 limit0 ; u16 base0 ; unsigned char base1 ; unsigned char type : 4 ; unsigned char s : 1 ; unsigned char dpl : 2 ; unsigned char p : 1 ; unsigned char limit : 4 ; unsigned char avl : 1 ; unsigned char l : 1 ; unsigned char d : 1 ; unsigned char g : 1 ; unsigned char base2 ; }; union __anonunion_ldv_2542_18 { struct __anonstruct_ldv_2526_19 ldv_2526 ; struct __anonstruct_ldv_2541_20 ldv_2541 ; }; struct desc_struct { union __anonunion_ldv_2542_18 ldv_2542 ; }; struct thread_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; struct arch_spinlock; struct cpumask { unsigned long bits[64U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct map_segment; struct exec_domain { char const *name ; void (*handler)(int , struct pt_regs * ) ; unsigned char pers_low ; unsigned char pers_high ; unsigned long *signal_map ; unsigned long *signal_invmap ; struct map_segment *err_map ; struct map_segment *socktype_map ; struct map_segment *sockopt_map ; struct map_segment *af_map ; struct module *module ; struct exec_domain *next ; }; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct_ldv_5171_24 { u64 rip ; u64 rdp ; }; struct __anonstruct_ldv_5177_25 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion_ldv_5178_23 { struct __anonstruct_ldv_5171_24 ldv_5171 ; struct __anonstruct_ldv_5177_25 ldv_5177 ; }; union __anonunion_ldv_5187_26 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion_ldv_5178_23 ldv_5178 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion_ldv_5187_26 ldv_5187 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_no ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; }; struct __anonstruct_mm_segment_t_28 { unsigned long seg ; }; typedef struct __anonstruct_mm_segment_t_28 mm_segment_t; typedef atomic64_t atomic_long_t; struct thread_info { struct task_struct *task ; struct exec_domain *exec_domain ; __u32 flags ; __u32 status ; __u32 cpu ; int preempt_count ; mm_segment_t addr_limit ; struct restart_block restart_block ; void *sysenter_return ; int uaccess_err ; }; struct arch_spinlock { unsigned int slock ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct_arch_rwlock_t_29 { unsigned int lock ; }; typedef struct __anonstruct_arch_rwlock_t_29 arch_rwlock_t; struct lockdep_map; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned short class_idx : 13 ; unsigned char irq_context : 2 ; unsigned char trylock : 1 ; unsigned char read : 2 ; unsigned char check : 2 ; unsigned char hardirqs_off : 1 ; unsigned short references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct_ldv_6059_31 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion_ldv_6060_30 { struct raw_spinlock rlock ; struct __anonstruct_ldv_6059_31 ldv_6059 ; }; struct spinlock { union __anonunion_ldv_6060_30 ldv_6060 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_32 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_32 rwlock_t; struct __anonstruct_seqlock_t_33 { unsigned int sequence ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_33 seqlock_t; struct seqcount { unsigned int sequence ; }; typedef struct seqcount seqcount_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; uid_t uid ; gid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct __anonstruct_nodemask_t_34 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_34 nodemask_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct rw_semaphore; struct rw_semaphore { long count ; spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct ctl_table; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pci_dev; struct device; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; enum hrtimer_restart; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; }; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct dev_pm_info { pm_message_t power_state ; unsigned char can_wakeup : 1 ; unsigned char async_suspend : 1 ; bool is_prepared ; bool is_suspended ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned char disable_depth : 3 ; unsigned char ignore_children : 1 ; unsigned char idle_notification : 1 ; unsigned char request_pending : 1 ; unsigned char deferred_resume : 1 ; unsigned char run_wake : 1 ; unsigned char runtime_auto : 1 ; unsigned char no_callbacks : 1 ; unsigned char irq_safe : 1 ; unsigned char use_autosuspend : 1 ; unsigned char timer_autosuspends : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; void *subsys_data ; }; struct dev_power_domain { struct dev_pm_ops ops ; }; struct pci_bus; struct __anonstruct_mm_context_t_99 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_99 mm_context_t; struct vm_area_struct; struct rcu_head { struct rcu_head *next ; void (*func)(struct rcu_head * ) ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_set { struct list_head list ; struct ctl_table_set *parent ; int (*is_seen)(struct ctl_table_set * ) ; }; struct ctl_table_header; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table { char const *procname ; void *data ; int maxlen ; mode_t mode ; struct ctl_table *child ; struct ctl_table *parent ; proc_handler *proc_handler ; void *extra1 ; void *extra2 ; }; struct ctl_table_root { struct list_head root_list ; struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_root * , struct nsproxy * , struct ctl_table * ) ; }; struct __anonstruct_ldv_12193_124 { struct ctl_table *ctl_table ; struct list_head ctl_entry ; int used ; int count ; }; union __anonunion_ldv_12195_123 { struct __anonstruct_ldv_12193_124 ldv_12193 ; struct rcu_head rcu ; }; struct ctl_table_header { union __anonunion_ldv_12195_123 ldv_12195 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_table *attached_by ; struct ctl_table *attached_to ; struct ctl_table_header *parent ; }; struct cred; struct linux_binprm; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct attribute { char const *name ; mode_t mode ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; mode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct sysfs_dirent; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct sysfs_dirent *sd ; struct kref kref ; unsigned char state_initialized : 1 ; unsigned char state_in_sysfs : 1 ; unsigned char state_add_uevent_sent : 1 ; unsigned char state_remove_uevent_sent : 1 ; unsigned char uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kernel_param; struct kernel_param_ops { int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion_ldv_12924_129 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; u16 flags ; union __anonunion_ldv_12924_129 ldv_12924 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct jump_label_key { atomic_t enabled ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct jump_label_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2 } ; struct module_ref { unsigned int incs ; unsigned int decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; struct task_struct *waiter ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void *data ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct dma_map_ops; struct dev_archdata { void *acpi_handle ; struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct device_node; struct bus_attribute { struct attribute attr ; ssize_t (*show)(struct bus_type * , char * ) ; ssize_t (*store)(struct bus_type * , char const * , size_t ) ; }; struct device_attribute; struct driver_attribute; struct bus_type { char const *name ; struct bus_attribute *bus_attrs ; struct device_attribute *dev_attrs ; struct driver_attribute *drv_attrs ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct driver_attribute { struct attribute attr ; ssize_t (*show)(struct device_driver * , char * ) ; ssize_t (*store)(struct device_driver * , char const * , size_t ) ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct device_attribute *dev_attrs ; struct bin_attribute *dev_bin_attrs ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , mode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct device_type; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , mode_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_power_domain *pwr_domain ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; dev_t devt ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; }; struct wakeup_source { char *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long hit_count ; unsigned char active : 1 ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion_ldv_14722_131 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 pcie_type ; u8 rom_base_reg ; u8 pin ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; int pm_cap ; unsigned char pme_support : 5 ; unsigned char pme_interrupt : 1 ; unsigned char d1_support : 1 ; unsigned char d2_support : 1 ; unsigned char no_d1d2 : 1 ; unsigned char mmio_always_on : 1 ; unsigned char wakeup_prepared : 1 ; unsigned int d3_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[18U] ; resource_size_t fw_addr[18U] ; unsigned char transparent : 1 ; unsigned char multifunction : 1 ; unsigned char is_added : 1 ; unsigned char is_busmaster : 1 ; unsigned char no_msi : 1 ; unsigned char block_ucfg_access : 1 ; unsigned char broken_parity_status : 1 ; unsigned char irq_reroute_variant : 2 ; unsigned char msi_enabled : 1 ; unsigned char msix_enabled : 1 ; unsigned char ari_enabled : 1 ; unsigned char is_managed : 1 ; unsigned char is_pcie : 1 ; unsigned char needs_freset : 1 ; unsigned char state_saved : 1 ; unsigned char is_physfn : 1 ; unsigned char is_virtfn : 1 ; unsigned char reset_fn : 1 ; unsigned char is_hotplug_bridge : 1 ; unsigned char __aer_firmware_first_valid : 1 ; unsigned char __aer_firmware_first : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[18U] ; struct bin_attribute *res_attr_wc[18U] ; struct list_head msi_list ; struct pci_vpd *vpd ; union __anonunion_ldv_14722_131 ldv_14722 ; struct pci_ats *ats ; }; struct pci_ops; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct pci_ops *ops ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char secondary ; unsigned char subordinate ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned char is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; struct pci_error_handlers *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct rb_node { unsigned long rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct prio_tree_node; struct raw_prio_tree_node { struct prio_tree_node *left ; struct prio_tree_node *right ; struct prio_tree_node *parent ; }; struct prio_tree_node { struct prio_tree_node *left ; struct prio_tree_node *right ; struct prio_tree_node *parent ; unsigned long start ; unsigned long last ; }; struct prio_tree_root { struct prio_tree_node *prio_tree_node ; unsigned short index_bits ; unsigned short raw ; }; struct address_space; struct __anonstruct_ldv_15597_133 { u16 inuse ; u16 objects ; }; union __anonunion_ldv_15598_132 { atomic_t _mapcount ; struct __anonstruct_ldv_15597_133 ldv_15597 ; }; struct __anonstruct_ldv_15603_135 { unsigned long private ; struct address_space *mapping ; }; union __anonunion_ldv_15606_134 { struct __anonstruct_ldv_15603_135 ldv_15603 ; struct kmem_cache *slab ; struct page *first_page ; }; union __anonunion_ldv_15610_136 { unsigned long index ; void *freelist ; }; struct page { unsigned long flags ; atomic_t _count ; union __anonunion_ldv_15598_132 ldv_15598 ; union __anonunion_ldv_15606_134 ldv_15606 ; union __anonunion_ldv_15610_136 ldv_15610 ; struct list_head lru ; }; struct __anonstruct_vm_set_138 { struct list_head list ; void *parent ; struct vm_area_struct *head ; }; union __anonunion_shared_137 { struct __anonstruct_vm_set_138 vm_set ; struct raw_prio_tree_node prio_tree_node ; }; struct anon_vma; struct vm_operations_struct; struct mempolicy; struct vm_area_struct { struct mm_struct *vm_mm ; unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; pgprot_t vm_page_prot ; unsigned long vm_flags ; struct rb_node vm_rb ; union __anonunion_shared_137 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; void (*unmap_area)(struct mm_struct * , unsigned long ) ; unsigned long mmap_base ; unsigned long task_size ; unsigned long cached_hole_size ; unsigned long free_area_cache ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long reserved_vm ; unsigned long def_flags ; unsigned long nr_ptes ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[44U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned int faultstamp ; unsigned int token_priority ; unsigned int last_interval ; atomic_t oom_disable_count ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct hlist_head ioctx_list ; struct task_struct *owner ; struct file *exe_file ; unsigned long num_exe_file_vmas ; struct mmu_notifier_mm *mmu_notifier_mm ; pgtable_t pmd_huge_pte ; struct cpumask cpumask_allocation ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; }; struct inode; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; int node ; unsigned int stat[19U] ; }; struct kmem_cache_node { spinlock_t list_lock ; unsigned long nr_partial ; struct list_head partial ; atomic_long_t nr_slabs ; atomic_long_t total_objects ; struct list_head full ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int objsize ; int offset ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc_coherent)(struct device * , size_t , dma_addr_t * , gfp_t ) ; void (*free_coherent)(struct device * , size_t , void * , dma_addr_t ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; typedef unsigned short sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_139 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_139 sync_serial_settings; struct __anonstruct_te1_settings_140 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_140 te1_settings; struct __anonstruct_raw_hdlc_proto_141 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_141 raw_hdlc_proto; struct __anonstruct_fr_proto_142 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_142 fr_proto; struct __anonstruct_fr_proto_pvc_143 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_143 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_144 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_144 fr_proto_pvc_info; struct __anonstruct_cisco_proto_145 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_145 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_146 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_146 ifs_ifsu ; }; union __anonunion_ifr_ifrn_147 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_148 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_147 ifr_ifrn ; union __anonunion_ifr_ifru_148 ifr_ifru ; }; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; enum ldv_17356 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_17356 socket_state; struct poll_table_struct; struct pipe_inode_info; struct net; struct fasync_struct; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct rcu_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct kiocb; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; }; struct exception_table_entry { unsigned long insn ; unsigned long fixup ; }; struct in6_addr; struct sk_buff; typedef s32 dma_cookie_t; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned long active_bases ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[3U] ; }; struct net_device; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned int mask ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct skb_frag_struct { struct page *page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned short nr_frags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; __be32 ip6_frag_id ; __u8 tx_flags ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[18U] ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct_ldv_21037_152 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion_ldv_21038_151 { __wsum csum ; struct __anonstruct_ldv_21037_152 ldv_21037 ; }; union __anonunion_ldv_21068_153 { __u32 mark ; __u32 dropcount ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion_ldv_21038_151 ldv_21038 ; __u32 priority ; unsigned char local_df : 1 ; unsigned char cloned : 1 ; unsigned char ip_summed : 2 ; unsigned char nohdr : 1 ; unsigned char nfctinfo : 3 ; unsigned char pkt_type : 3 ; unsigned char fclone : 2 ; unsigned char ipvs_property : 1 ; unsigned char peeked : 1 ; unsigned char nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct sk_buff *nfct_reasm ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u16 tc_index ; __u16 tc_verd ; __u32 rxhash ; __u16 queue_mapping ; unsigned char ndisc_nodetype : 2 ; unsigned char ooo_okay : 1 ; dma_cookie_t dma_cookie ; __u32 secmark ; union __anonunion_ldv_21068_153 ldv_21068 ; __u16 vlan_tci ; sk_buff_data_t transport_header ; sk_buff_data_t network_header ; sk_buff_data_t mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct dentry; struct user_namespace; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; }; struct plist_head { struct list_head node_list ; raw_spinlock_t *rawlock ; spinlock_t *spinlock ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct file_operations; struct pm_qos_request_list { struct plist_node list ; int pm_qos_class ; }; struct sem_undo_list; struct sem_undo_list { atomic_t refcnt ; spinlock_t lock ; struct list_head list_proc ; }; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct block_device; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct nameidata; struct path; struct vfsmount; struct qstr { unsigned int hash ; unsigned int len ; unsigned char const *name ; }; struct dentry_operations; struct super_block; union __anonunion_d_u_155 { struct list_head d_child ; struct rcu_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; unsigned int d_count ; spinlock_t d_lock ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_155 d_u ; struct list_head d_subdirs ; struct list_head d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , struct nameidata * ) ; int (*d_hash)(struct dentry const * , struct inode const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct inode const * , struct dentry const * , struct inode const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct rcu_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; struct export_operations; struct kstatfs; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; uid_t ia_uid ; gid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; struct percpu_counter { spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct dquot; typedef __kernel_uid32_t qid_t; typedef long long qsize_t; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; unsigned int dq_id ; loff_t dq_off ; unsigned long dq_flags ; short dq_type ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , int , qid_t , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , int , qid_t , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_157 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_156 { size_t written ; size_t count ; union __anonunion_arg_157 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_156 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned long ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct prio_tree_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; struct address_space *assoc_mapping ; }; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion_ldv_24012_158 { struct list_head i_dentry ; struct rcu_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion_ldv_24038_159 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; uid_t i_uid ; gid_t i_gid ; struct inode_operations const *i_op ; struct super_block *i_sb ; spinlock_t i_lock ; unsigned int i_flags ; unsigned long i_state ; void *i_security ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion_ldv_24012_158 ldv_24012 ; unsigned long i_ino ; atomic_t i_count ; unsigned int i_nlink ; dev_t i_rdev ; unsigned int i_blkbits ; u64 i_version ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; blkcnt_t i_blocks ; unsigned short i_bytes ; struct rw_semaphore i_alloc_sem ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space *i_mapping ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion_ldv_24038_159 ldv_24038 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; atomic_t i_writecount ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; uid_t uid ; uid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_160 { struct list_head fu_list ; struct rcu_head fu_rcuhead ; }; struct file { union __anonunion_f_u_160 f_u ; struct path f_path ; struct file_operations const *f_op ; spinlock_t f_lock ; int f_sb_list_cpu ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*fl_compare_owner)(struct file_lock * , struct file_lock * ) ; void (*fl_notify)(struct file_lock * ) ; int (*fl_grant)(struct file_lock * , struct file_lock * , int ) ; void (*fl_release_private)(struct file_lock * ) ; void (*fl_break)(struct file_lock * ) ; int (*fl_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct __anonstruct_afs_162 { struct list_head link ; int state ; }; union __anonunion_fl_u_161 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_162 afs ; }; struct file_lock { struct file_lock *fl_next ; struct list_head fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned char fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_161 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct rcu_head fa_rcu ; }; struct file_system_type; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_dirt ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; struct mutex s_lock ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head *s_files ; struct list_head s_dentry_lru ; int s_nr_dentry_unused ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct list_head s_instances ; struct quota_info s_dquot ; int s_frozen ; wait_queue_head_t s_wait_unfrozen ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*readdir)(struct file * , void * , int (*)(void * , char const * , int , loff_t , u64 , unsigned int ) ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , struct nameidata * ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int , unsigned int ) ; int (*check_acl)(struct inode * , int , unsigned int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , int , struct nameidata * ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , int ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , int , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; void (*truncate)(struct inode * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; void (*truncate_range)(struct inode * , loff_t , loff_t ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; void (*write_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct vfsmount * ) ; int (*show_devname)(struct seq_file * , struct vfsmount * ) ; int (*show_path)(struct seq_file * , struct vfsmount * ) ; int (*show_stats)(struct seq_file * , struct vfsmount * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct list_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; struct lock_class_key i_alloc_sem_key ; }; struct io_event { __u64 data ; __u64 obj ; __s64 res ; __s64 res2 ; }; typedef unsigned long cputime_t; struct siginfo; struct __anonstruct_sigset_t_163 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_163 sigset_t; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_165 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_166 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_167 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_168 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_169 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_170 { long _band ; int _fd ; }; union __anonunion__sifields_164 { int _pad[28U] ; struct __anonstruct__kill_165 _kill ; struct __anonstruct__timer_166 _timer ; struct __anonstruct__rt_167 _rt ; struct __anonstruct__sigchld_168 _sigchld ; struct __anonstruct__sigfault_169 _sigfault ; struct __anonstruct__sigpoll_170 _sigpoll ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_164 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct prop_local_single { unsigned long events ; unsigned long period ; int shift ; spinlock_t lock ; }; struct __anonstruct_seccomp_t_173 { int mode ; }; typedef struct __anonstruct_seccomp_t_173 seccomp_t; struct rt_mutex_waiter; struct rlimit { unsigned long rlim_cur ; unsigned long rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_list; struct key_user; union __anonunion_ldv_26592_174 { time_t expiry ; time_t revoked_at ; }; union __anonunion_type_data_175 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_176 { unsigned long value ; void *rcudata ; void *data ; struct keyring_list *subscriptions ; }; struct key { atomic_t usage ; key_serial_t serial ; struct rb_node serial_node ; struct key_type *type ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion_ldv_26592_174 ldv_26592 ; uid_t uid ; gid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; char *description ; union __anonunion_type_data_175 type_data ; union __anonunion_payload_176 payload ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; gid_t small_block[32U] ; gid_t *blocks[0U] ; }; struct thread_group_cred { atomic_t usage ; pid_t tgid ; spinlock_t lock ; struct key *session_keyring ; struct key *process_keyring ; struct rcu_head rcu ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; uid_t uid ; gid_t gid ; uid_t suid ; gid_t sgid ; uid_t euid ; gid_t egid ; uid_t fsuid ; gid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; struct thread_group_cred *tgcred ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct rcu_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct kioctx; union __anonunion_ki_obj_177 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct list_head ki_run_list ; unsigned long ki_flags ; int ki_users ; unsigned int ki_key ; struct file *ki_filp ; struct kioctx *ki_ctx ; int (*ki_cancel)(struct kiocb * , struct io_event * ) ; ssize_t (*ki_retry)(struct kiocb * ) ; void (*ki_dtor)(struct kiocb * ) ; union __anonunion_ki_obj_177 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; void *private ; unsigned short ki_opcode ; size_t ki_nbytes ; char *ki_buf ; size_t ki_left ; struct iovec ki_inline_vec ; struct iovec *ki_iovec ; unsigned long ki_nr_segs ; unsigned long ki_cur_seg ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct aio_ring_info { unsigned long mmap_base ; unsigned long mmap_size ; struct page **ring_pages ; spinlock_t ring_lock ; long nr_pages ; unsigned int nr ; unsigned int tail ; struct page *internal_pages[8U] ; }; struct kioctx { atomic_t users ; int dead ; struct mm_struct *mm ; unsigned long user_id ; struct hlist_node list ; wait_queue_head_t wait ; spinlock_t ctx_lock ; int reqs_active ; struct list_head active_reqs ; struct list_head run_list ; unsigned int max_reqs ; struct aio_ring_info ring_info ; struct delayed_work wq ; struct rcu_head rcu_head ; }; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; cputime_t prev_utime ; cputime_t prev_stime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore threadgroup_fork_lock ; int oom_adj ; int oom_score_adj ; int oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; uid_t uid ; struct user_namespace *user_ns ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct rq; struct sched_class { struct sched_class const *next ; void (*enqueue_task)(struct rq * , struct task_struct * , int ) ; void (*dequeue_task)(struct rq * , struct task_struct * , int ) ; void (*yield_task)(struct rq * ) ; bool (*yield_to_task)(struct rq * , struct task_struct * , bool ) ; void (*check_preempt_curr)(struct rq * , struct task_struct * , int ) ; struct task_struct *(*pick_next_task)(struct rq * ) ; void (*put_prev_task)(struct rq * , struct task_struct * ) ; int (*select_task_rq)(struct task_struct * , int , int ) ; void (*pre_schedule)(struct rq * , struct task_struct * ) ; void (*post_schedule)(struct rq * ) ; void (*task_waking)(struct task_struct * ) ; void (*task_woken)(struct rq * , struct task_struct * ) ; void (*set_cpus_allowed)(struct task_struct * , struct cpumask const * ) ; void (*rq_online)(struct rq * ) ; void (*rq_offline)(struct rq * ) ; void (*set_curr_task)(struct rq * ) ; void (*task_tick)(struct rq * , struct task_struct * , int ) ; void (*task_fork)(struct task_struct * ) ; void (*switched_from)(struct rq * , struct task_struct * ) ; void (*switched_to)(struct rq * , struct task_struct * ) ; void (*prio_changed)(struct rq * , struct task_struct * , int ) ; unsigned int (*get_rr_interval)(struct rq * , struct task_struct * ) ; void (*task_move_group)(struct task_struct * , int ) ; }; struct load_weight { unsigned long weight ; unsigned long inv_weight ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned int time_slice ; int nr_cpus_allowed ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct irqaction; struct css_set; struct compat_robust_list_head; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct task_struct *wake_entry ; int on_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct hlist_head preempt_notifiers ; unsigned char fpu_counter ; unsigned int btrace_seq ; unsigned int policy ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned char brk_randomized : 1 ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int group_stop ; unsigned int personality ; unsigned char did_exec : 1 ; unsigned char in_execve : 1 ; unsigned char in_iowait : 1 ; unsigned char sched_reset_on_fork : 1 ; unsigned char sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; unsigned long stack_canary ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; cputime_t prev_utime ; cputime_t prev_stime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; struct cred *replacement_session_keyring ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct audit_context *audit_context ; uid_t loginuid ; unsigned int sessionid ; seccomp_t seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; struct irqaction *irqaction ; raw_spinlock_t pi_lock ; struct plist_head pi_waiters ; struct rt_mutex_waiter *pi_blocked_on ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; int mems_allowed_change_disable ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; atomic_t fs_excl ; struct rcu_head rcu ; struct pipe_inode_info *splice_pipe ; struct task_delay_info *delays ; int make_it_fail ; struct prop_local_single dirties ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; struct list_head *scm_work_list ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; atomic_t ptrace_bp_refcnt ; }; typedef s32 compat_time_t; typedef s32 compat_long_t; struct compat_timespec { compat_time_t tv_sec ; s32 tv_nsec ; }; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 reserved2 ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[60U] ; }; struct ethtool_flow_ext { __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_rxfh_indir { __u32 cmd ; __u32 size ; __u32 ring_index[0U] ; }; union __anonunion_h_u_184 { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[72U] ; }; union __anonunion_m_u_185 { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[72U] ; }; struct ethtool_rx_ntuple_flow_spec { __u32 flow_type ; union __anonunion_h_u_184 h_u ; union __anonunion_m_u_185 m_u ; __u16 vlan_tag ; __u16 vlan_tag_mask ; __u64 data ; __u64 data_mask ; __s32 action ; }; struct ethtool_rx_ntuple { __u32 cmd ; struct ethtool_rx_ntuple_flow_spec fs ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_rx_ntuple_list { struct list_head list ; unsigned int count ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; u32 (*get_rx_csum)(struct net_device * ) ; int (*set_rx_csum)(struct net_device * , u32 ) ; u32 (*get_tx_csum)(struct net_device * ) ; int (*set_tx_csum)(struct net_device * , u32 ) ; u32 (*get_sg)(struct net_device * ) ; int (*set_sg)(struct net_device * , u32 ) ; u32 (*get_tso)(struct net_device * ) ; int (*set_tso)(struct net_device * , u32 ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_ufo)(struct net_device * ) ; int (*set_ufo)(struct net_device * , u32 ) ; u32 (*get_flags)(struct net_device * ) ; int (*set_flags)(struct net_device * , u32 ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , void * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; int (*set_rx_ntuple)(struct net_device * , struct ethtool_rx_ntuple * ) ; int (*get_rx_ntuple)(struct net_device * , u32 , void * ) ; int (*get_rxfh_indir)(struct net_device * , struct ethtool_rxfh_indir * ) ; int (*set_rxfh_indir)(struct net_device * , struct ethtool_rxfh_indir const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[31U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[27U] ; }; struct icmpmsg_mib { unsigned long mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[5U] ; }; struct icmpv6msg_mib { unsigned long mibs[512U] ; }; struct tcp_mib { unsigned long mibs[15U] ; }; struct udp_mib { unsigned long mibs[7U] ; }; struct linux_mib { unsigned long mibs[80U] ; }; struct linux_xfrm_mib { unsigned long mibs[27U] ; }; struct netns_mib { struct tcp_mib *tcp_statistics[2U] ; struct ipstats_mib *ip_statistics[2U] ; struct linux_mib *net_statistics[2U] ; struct udp_mib *udp_statistics[2U] ; struct udp_mib *udplite_statistics[2U] ; struct icmp_mib *icmp_statistics[2U] ; struct icmpmsg_mib *icmpmsg_statistics[2U] ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[2U] ; struct udp_mib *udplite_stats_in6[2U] ; struct ipstats_mib *ipv6_statistics[2U] ; struct icmpv6_mib *icmpv6_statistics[2U] ; struct icmpv6msg_mib *icmpv6msg_statistics[2U] ; struct linux_xfrm_mib *xfrm_statistics[2U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { spinlock_t sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; atomic_t mem ; struct list_head lru_list ; int timeout ; int high_thresh ; int low_thresh ; }; struct ipv4_devconf; struct fib_rules_ops; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct sock *tcp_sock ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; int sysctl_rt_cache_rebuild_count ; int current_rt_cache_rebuild_count ; unsigned int sysctl_ping_group_range[2U] ; atomic_t rt_genid ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; }; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*default_mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , u32 ) ; int (*local_out)(struct sk_buff * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *table ; struct ctl_table_header *frags_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int icmpv6_time ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; union __anonunion_in6_u_186 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_186 in6_u ; }; typedef int read_proc_t(char * , char ** , off_t , int , int * , void * ); typedef int write_proc_t(struct file * , char const * , unsigned long , void * ); struct proc_dir_entry { unsigned int low_ino ; unsigned int namelen ; char const *name ; mode_t mode ; nlink_t nlink ; uid_t uid ; gid_t gid ; loff_t size ; struct inode_operations const *proc_iops ; struct file_operations const *proc_fops ; struct proc_dir_entry *next ; struct proc_dir_entry *parent ; struct proc_dir_entry *subdir ; void *data ; read_proc_t *read_proc ; write_proc_t *write_proc ; atomic_t count ; int pde_users ; spinlock_t pde_unload_lock ; struct completion *pde_unload_completion ; struct list_head pde_openers ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct ip_conntrack_stat; struct netns_ct { atomic_t count ; unsigned int expect_count ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct ip_conntrack_stat *stat ; int sysctl_events ; unsigned int sysctl_events_retry_timeout ; int sysctl_acct ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int sysctl_log_invalid ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; char *slabname ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; wait_queue_head_t km_waitq ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_dccp dccp ; struct netns_xt xt ; struct netns_ct ct ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; }; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; u8 (*getnumtcs)(struct net_device * , int , u8 * ) ; u8 (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct vlan_group; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neighbour; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool synced ; bool global_use ; int refcount ; struct rcu_head rcu_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { struct hh_cache *hh_next ; atomic_t hh_refcnt ; __be16 hh_type ; u16 hh_len ; int (*hh_output)(struct sk_buff * ) ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; unsigned int gro_count ; struct net_device *dev ; struct list_head dev_list ; struct sk_buff *gro_list ; struct sk_buff *skb ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; unsigned long state ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; }; struct rps_map { unsigned int len ; struct rcu_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct rcu_head rcu ; struct work_struct free_work ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct rcu_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct rcu_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; void (*ndo_set_multicast_list)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; void (*ndo_vlan_rx_register)(struct net_device * , struct vlan_group * ) ; void (*ndo_vlan_rx_add_vid)(struct net_device * , unsigned short ) ; void (*ndo_vlan_rx_kill_vid)(struct net_device * , unsigned short ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; u32 (*ndo_fix_features)(struct net_device * , u32 ) ; int (*ndo_set_features)(struct net_device * , u32 ) ; }; struct iw_handler_def; struct iw_public_data; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_tstats; struct pcpu_dstats; union __anonunion_ldv_32366_193 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_tstats *tstats ; struct pcpu_dstats *dstats ; }; struct garp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct pm_qos_request_list pm_qos_req ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; unsigned int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; u32 features ; u32 hw_features ; u32 wanted_features ; u32 vlan_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; int uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_group *vlgrp ; void *dsa_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ec_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; struct net_device *master ; unsigned char *dev_addr ; struct netdev_hw_addr_list dev_addrs ; unsigned char broadcast[32U] ; struct kset *queues_kset ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; struct cpu_rmap *rx_cpu_rmap ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; unsigned char reg_state ; bool dismantle ; unsigned short rtnl_link_state ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion_ldv_32366_193 ldv_32366 ; struct garp_port *garp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct ethtool_rx_ntuple_list ethtool_ntuple_list ; struct phy_device *phydev ; int group ; }; struct irqaction { irqreturn_t (*handler)(int , void * ) ; unsigned long flags ; void *dev_id ; struct irqaction *next ; int irq ; irqreturn_t (*thread_fn)(int , void * ) ; struct task_struct *thread ; unsigned long thread_flags ; unsigned long thread_mask ; char const *name ; struct proc_dir_entry *dir ; }; struct iphdr { unsigned char ihl : 4 ; unsigned char version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct ipv6hdr { unsigned char priority : 4 ; unsigned char version : 4 ; __u8 flow_lbl[3U] ; __be16 payload_len ; __u8 nexthdr ; __u8 hop_limit ; struct in6_addr saddr ; struct in6_addr daddr ; }; struct ipv6_devconf { __s32 forwarding ; __s32 hop_limit ; __s32 mtu6 ; __s32 accept_ra ; __s32 accept_redirects ; __s32 autoconf ; __s32 dad_transmits ; __s32 rtr_solicits ; __s32 rtr_solicit_interval ; __s32 rtr_solicit_delay ; __s32 force_mld_version ; __s32 use_tempaddr ; __s32 temp_valid_lft ; __s32 temp_prefered_lft ; __s32 regen_max_retry ; __s32 max_desync_factor ; __s32 max_addresses ; __s32 accept_ra_defrtr ; __s32 accept_ra_pinfo ; __s32 accept_ra_rtr_pref ; __s32 rtr_probe_interval ; __s32 accept_ra_rt_info_max_plen ; __s32 proxy_ndp ; __s32 accept_source_route ; __s32 optimistic_dad ; __s32 mc_forwarding ; __s32 disable_ipv6 ; __s32 accept_dad ; __s32 force_tllao ; void *sysctl ; }; struct tcphdr { __be16 source ; __be16 dest ; __be32 seq ; __be32 ack_seq ; unsigned char res1 : 4 ; unsigned char doff : 4 ; unsigned char fin : 1 ; unsigned char syn : 1 ; unsigned char rst : 1 ; unsigned char psh : 1 ; unsigned char ack : 1 ; unsigned char urg : 1 ; unsigned char ece : 1 ; unsigned char cwr : 1 ; __be16 window ; __sum16 check ; __be16 urg_ptr ; }; struct linux_binprm { char buf[128U] ; struct vm_area_struct *vma ; unsigned long vma_pages ; struct mm_struct *mm ; unsigned long p ; unsigned char cred_prepared : 1 ; unsigned char cap_effective : 1 ; unsigned int recursion_depth ; struct file *file ; struct cred *cred ; int unsafe ; unsigned int per_clear ; int argc ; int envc ; char const *filename ; char const *interp ; unsigned int interp_flags ; unsigned int interp_data ; unsigned long loader ; unsigned long exec ; }; struct coredump_params { long signr ; struct pt_regs *regs ; struct file *file ; unsigned long limit ; unsigned long mm_flags ; }; struct linux_binfmt { struct list_head lh ; struct module *module ; int (*load_binary)(struct linux_binprm * , struct pt_regs * ) ; int (*load_shlib)(struct file * ) ; int (*core_dump)(struct coredump_params * ) ; unsigned long min_coredump ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; struct sk_filter { atomic_t refcnt ; unsigned int len ; unsigned int (*bpf_func)(struct sk_buff const * , struct sock_filter const * ) ; struct rcu_head rcu ; struct sock_filter insns[0U] ; }; struct pollfd { int fd ; short events ; short revents ; }; struct poll_table_struct { void (*qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; int (*get_tx_queues)(struct net * , struct nlattr ** , unsigned int * , unsigned int * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct neigh_parms *next ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct rcu_head rcu_head ; int base_reachable_time ; int retrans_time ; int gc_staletime ; int reachable_time ; int delay_probe_time ; int queue_len ; int ucast_probes ; int app_probes ; int mcast_probes ; int anycast_delay ; int proxy_delay ; int proxy_qlen ; int locktime ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache *hh ; int (*output)(struct sk_buff * ) ; struct neigh_ops const *ops ; struct rcu_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; int (*connected_output)(struct sk_buff * ) ; int (*hh_output)(struct sk_buff * ) ; int (*queue_xmit)(struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_mask ; __u32 hash_rnd ; struct rcu_head rcu ; }; struct neigh_table { struct neigh_table *next ; int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct kmem_cache *kmem_cachep ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion_ldv_38814_203 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct rcu_head rcu_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct neighbour *neighbour ; struct hh_cache *hh ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[1U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; int flags ; union __anonunion_ldv_38814_203 ldv_38814 ; }; struct __anonstruct_socket_lock_t_204 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_204 socket_lock_t; struct proto; union __anonunion_ldv_39015_205 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; union __anonunion_ldv_39023_206 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion_ldv_39030_207 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { __be32 skc_daddr ; __be32 skc_rcv_saddr ; union __anonunion_ldv_39015_205 ldv_39015 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse ; int skc_bound_dev_if ; union __anonunion_ldv_39023_206 ldv_39023 ; struct proto *skc_prot ; struct net *skc_net ; int skc_dontcopy_begin[0U] ; union __anonunion_ldv_39030_207 ldv_39030 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct __anonstruct_sk_backlog_208 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_208 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct sk_buff_head sk_async_wait_queue ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned char sk_shutdown : 2 ; unsigned char sk_no_check : 2 ; unsigned char sk_userlocks : 4 ; unsigned char sk_protocol ; unsigned short sk_type ; int sk_wmem_queued ; gfp_t sk_allocation ; int sk_route_caps ; int sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; struct socket *sk_socket ; void *sk_user_data ; struct page *sk_sndmsg_page ; struct sk_buff *sk_send_head ; __u32 sk_sndmsg_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * , int ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_209 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_209 h ; struct module *owner ; char name[32U] ; struct list_head node ; }; struct request_values { }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * , struct request_values * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct request_sock *dl_next ; u16 mss ; u8 retrans ; u8 cookie_ts ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; void *(*twsk_getpeer)(struct sock * ) ; }; struct mii_ioctl_data { __u16 phy_id ; __u16 reg_num ; __u16 val_in ; __u16 val_out ; }; struct mii_if_info { int phy_id ; int advertising ; int phy_id_mask ; int reg_num_mask ; unsigned char full_duplex : 1 ; unsigned char force_media : 1 ; unsigned char supports_gmii : 1 ; struct net_device *dev ; int (*mdio_read)(struct net_device * , int , int ) ; void (*mdio_write)(struct net_device * , int , int , int ) ; }; struct vlan_group { struct net_device *real_dev ; unsigned int nr_vlans ; struct hlist_node hlist ; struct net_device **vlan_devices_arrays[8U] ; struct rcu_head rcu ; }; struct atl1c_adapter; struct atl1c_hw; struct atl1c_tpd_desc { __le16 buffer_len ; __le16 vlan_tag ; __le32 word1 ; __le64 buffer_addr ; }; struct atl1c_tpd_ext_desc { u32 reservd_0 ; __le32 word1 ; __le32 pkt_len ; u32 reservd_1 ; }; struct atl1c_recv_ret_status { __le32 word0 ; __le32 rss_hash ; __le16 vlan_tag ; __le16 flag ; __le32 word3 ; }; struct atl1c_rx_free_desc { __le64 buffer_addr ; }; enum atl1c_dma_order { atl1c_dma_ord_in = 1, atl1c_dma_ord_enh = 2, atl1c_dma_ord_out = 4 } ; enum atl1c_dma_rcb { atl1c_rcb_64 = 0, atl1c_rcb_128 = 1 } ; enum atl1c_mac_speed { atl1c_mac_speed_0 = 0, atl1c_mac_speed_10_100 = 1, atl1c_mac_speed_1000 = 2 } ; enum atl1c_dma_req_block { atl1c_dma_req_128 = 0, atl1c_dma_req_256 = 1, atl1c_dma_req_512 = 2, atl1c_dma_req_1024 = 3, atl1c_dma_req_2048 = 4, atl1c_dma_req_4096 = 5 } ; enum atl1c_rss_mode { atl1c_rss_mode_disable = 0, atl1c_rss_sig_que = 1, atl1c_rss_mul_que_sig_int = 2, atl1c_rss_mul_que_mul_int = 4 } ; enum atl1c_rss_type { atl1c_rss_disable = 0, atl1c_rss_ipv4 = 1, atl1c_rss_ipv4_tcp = 2, atl1c_rss_ipv6 = 4, atl1c_rss_ipv6_tcp = 8 } ; enum atl1c_nic_type { athr_l1c = 0, athr_l2c = 1, athr_l2c_b = 2, athr_l2c_b2 = 3, athr_l1d = 4, athr_l1d_2 = 5 } ; enum atl1c_trans_queue { atl1c_trans_normal = 0, atl1c_trans_high = 1 } ; struct atl1c_hw_stats { unsigned long rx_ok ; unsigned long rx_bcast ; unsigned long rx_mcast ; unsigned long rx_pause ; unsigned long rx_ctrl ; unsigned long rx_fcs_err ; unsigned long rx_len_err ; unsigned long rx_byte_cnt ; unsigned long rx_runt ; unsigned long rx_frag ; unsigned long rx_sz_64 ; unsigned long rx_sz_65_127 ; unsigned long rx_sz_128_255 ; unsigned long rx_sz_256_511 ; unsigned long rx_sz_512_1023 ; unsigned long rx_sz_1024_1518 ; unsigned long rx_sz_1519_max ; unsigned long rx_sz_ov ; unsigned long rx_rxf_ov ; unsigned long rx_rrd_ov ; unsigned long rx_align_err ; unsigned long rx_bcast_byte_cnt ; unsigned long rx_mcast_byte_cnt ; unsigned long rx_err_addr ; unsigned long tx_ok ; unsigned long tx_bcast ; unsigned long tx_mcast ; unsigned long tx_pause ; unsigned long tx_exc_defer ; unsigned long tx_ctrl ; unsigned long tx_defer ; unsigned long tx_byte_cnt ; unsigned long tx_sz_64 ; unsigned long tx_sz_65_127 ; unsigned long tx_sz_128_255 ; unsigned long tx_sz_256_511 ; unsigned long tx_sz_512_1023 ; unsigned long tx_sz_1024_1518 ; unsigned long tx_sz_1519_max ; unsigned long tx_1_col ; unsigned long tx_2_col ; unsigned long tx_late_col ; unsigned long tx_abort_col ; unsigned long tx_underrun ; unsigned long tx_rd_eop ; unsigned long tx_len_err ; unsigned long tx_trunc ; unsigned long tx_bcast_byte ; unsigned long tx_mcast_byte ; }; struct atl1c_hw { u8 *hw_addr ; struct atl1c_adapter *adapter ; enum atl1c_nic_type nic_type ; enum atl1c_dma_order dma_order ; enum atl1c_dma_rcb rcb_value ; enum atl1c_dma_req_block dmar_block ; enum atl1c_dma_req_block dmaw_block ; u16 device_id ; u16 vendor_id ; u16 subsystem_id ; u16 subsystem_vendor_id ; u8 revision_id ; u16 phy_id1 ; u16 phy_id2 ; u32 intr_mask ; u8 dmaw_dly_cnt ; u8 dmar_dly_cnt ; u8 preamble_len ; u16 max_frame_size ; u16 min_frame_size ; enum atl1c_mac_speed mac_speed ; bool mac_duplex ; bool hibernate ; u16 media_type ; u16 autoneg_advertised ; u16 mii_autoneg_adv_reg ; u16 mii_1000t_ctrl_reg ; u16 tx_imt ; u16 rx_imt ; u16 ict ; u16 ctrl_flags ; u16 link_cap_flags ; u16 cmb_tpd ; u16 cmb_rrd ; u16 cmb_rx_timer ; u16 cmb_tx_timer ; u32 smb_timer ; u16 rrd_thresh ; u16 tpd_thresh ; u8 tpd_burst ; u8 rfd_burst ; enum atl1c_rss_type rss_type ; enum atl1c_rss_mode rss_mode ; u8 rss_hash_bits ; u32 base_cpu ; u32 indirect_tab ; u8 mac_addr[6U] ; u8 perm_mac_addr[6U] ; bool phy_configured ; bool re_autoneg ; bool emi_ca ; }; struct atl1c_ring_header { void *desc ; dma_addr_t dma ; unsigned int size ; }; struct atl1c_buffer { struct sk_buff *skb ; u16 length ; u16 flags ; dma_addr_t dma ; }; struct atl1c_tpd_ring { void *desc ; dma_addr_t dma ; u16 size ; u16 count ; u16 next_to_use ; atomic_t next_to_clean ; struct atl1c_buffer *buffer_info ; }; struct atl1c_rfd_ring { void *desc ; dma_addr_t dma ; u16 size ; u16 count ; u16 next_to_use ; u16 next_to_clean ; struct atl1c_buffer *buffer_info ; }; struct atl1c_rrd_ring { void *desc ; dma_addr_t dma ; u16 size ; u16 count ; u16 next_to_use ; u16 next_to_clean ; }; struct atl1c_cmb { void *cmb ; dma_addr_t dma ; }; struct atl1c_smb { void *smb ; dma_addr_t dma ; }; struct atl1c_adapter { struct net_device *netdev ; struct pci_dev *pdev ; struct vlan_group *vlgrp ; struct napi_struct napi ; struct atl1c_hw hw ; struct atl1c_hw_stats hw_stats ; struct mii_if_info mii ; u16 rx_buffer_len ; unsigned long flags ; unsigned long work_event ; u32 msg_enable ; bool have_msi ; u32 wol ; u16 link_speed ; u16 link_duplex ; spinlock_t mdio_lock ; spinlock_t tx_lock ; atomic_t irq_sem ; struct work_struct common_task ; struct timer_list watchdog_timer ; struct timer_list phy_config_timer ; struct atl1c_ring_header ring_header ; struct atl1c_tpd_ring tpd_ring[2U] ; struct atl1c_rfd_ring rfd_ring[4U] ; struct atl1c_rrd_ring rrd_ring[4U] ; struct atl1c_cmb cmb ; struct atl1c_smb smb ; int num_rx_queues ; u32 bd_number ; }; enum hrtimer_restart; enum hrtimer_restart; enum hrtimer_restart; enum hrtimer_restart; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } __inline static void set_bit(unsigned int nr , unsigned long volatile *addr ) { { __asm__ volatile (".section .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.previous\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(int nr , unsigned long volatile *addr ) { { __asm__ volatile (".section .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.previous\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(int nr , unsigned long volatile *addr ) { int oldbit ; { __asm__ volatile (".section .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.previous\n671:\n\tlock; bts %2,%1\n\tsbb %0,%0": "=r" (oldbit), "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return (oldbit); } } __inline static int test_and_clear_bit(int nr , unsigned long volatile *addr ) { int oldbit ; { __asm__ volatile (".section .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.previous\n671:\n\tlock; btr %2,%1\n\tsbb %0,%0": "=r" (oldbit), "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return (oldbit); } } __inline static int constant_test_bit(unsigned int nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr / 64U)) >> ((int )nr & 63)) & 1); } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } extern int printk(char const * , ...) ; extern void warn_slowpath_null(char const * , int const ) ; extern unsigned long __phys_addr(unsigned long ) ; extern void __bad_percpu_size(void) ; extern struct pv_irq_ops pv_irq_ops ; extern void *__memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = __builtin_expect((long )((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0)), 0L); } if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/anthill/stuff/tacas-comp/inst/current/envs/linux-3.0.1/linux-3.0.1/arch/x86/include/asm/paravirt.h"), "i" (853), "i" (12UL)); ldv_4705: ; goto ldv_4705; } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (46UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static void arch_local_irq_restore(unsigned long f ) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = __builtin_expect((long )((unsigned long )pv_irq_ops.restore_fl.func == (unsigned long )((void *)0)), 0L); } if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/anthill/stuff/tacas-comp/inst/current/envs/linux-3.0.1/linux-3.0.1/arch/x86/include/asm/paravirt.h"), "i" (858), "i" (12UL)); ldv_4715: ; goto ldv_4715; } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (47UL), [paravirt_opptr] "i" (& pv_irq_ops.restore_fl.func), [paravirt_clobber] "i" (1), "D" (f): "memory", "cc"); return; } } __inline static void arch_local_irq_disable(void) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = __builtin_expect((long )((unsigned long )pv_irq_ops.irq_disable.func == (unsigned long )((void *)0)), 0L); } if (tmp != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/anthill/stuff/tacas-comp/inst/current/envs/linux-3.0.1/linux-3.0.1/arch/x86/include/asm/paravirt.h"), "i" (863), "i" (12UL)); ldv_4724: ; goto ldv_4724; } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (48UL), [paravirt_opptr] "i" (& pv_irq_ops.irq_disable.func), [paravirt_clobber] "i" (1): "memory", "cc"); return; } } __inline static unsigned long arch_local_irq_save(void) { unsigned long f ; { { f = arch_local_save_flags(); arch_local_irq_disable(); } return (f); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void trace_hardirqs_on(void) ; extern void trace_hardirqs_off(void) ; __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".section .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.previous\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { unsigned char c ; { __asm__ volatile (".section .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.previous\n671:\n\tlock; decl %0; sete %1": "+m" (v->counter), "=qm" (c): : "memory"); return ((unsigned int )c != 0U); } } extern unsigned long kernel_stack ; __inline static struct thread_info *current_thread_info(void) { struct thread_info *ti ; unsigned long pfo_ret__ ; { if (1) { goto case_8; } else { goto switch_default; if (0) { __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& kernel_stack)); goto ldv_5782; __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_5782; __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_5782; case_8: __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_5782; switch_default: { __bad_percpu_size(); } } else { } } ldv_5782: ti = (struct thread_info *)(pfo_ret__ - 8152UL); return (ti); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern unsigned long _raw_spin_lock_irqsave(raw_spinlock_t * ) ; extern int _raw_spin_trylock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->ldv_6060.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->ldv_6060.rlock); } return; } } __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->ldv_6060.rlock); } return; } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->ldv_6060.rlock, flags); } return; } } extern void init_timer_key(struct timer_list * , char const * , struct lock_class_key * ) ; __inline static void setup_timer_key(struct timer_list *timer , char const *name , struct lock_class_key *key , void (*function)(unsigned long ) , unsigned long data ) { { { timer->function = function; timer->data = data; init_timer_key(timer, name, key); } return; } } extern int del_timer_sync(struct timer_list * ) ; extern void __init_work(struct work_struct * , int ) ; extern int schedule_work(struct work_struct * ) ; __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writew(unsigned short val , void volatile *addr ) { { __asm__ volatile ("movw %0,%1": : "r" (val), "m" (*((unsigned short volatile *)addr)): "memory"); return; } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void *ioremap_nocache(resource_size_t , unsigned long ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { { tmp = ioremap_nocache(offset, size); } return (tmp); } } extern void iounmap(void volatile * ) ; extern void kfree(void const * ) ; extern struct module __this_module ; int ldv_try_module_get(struct module *module ) ; void ldv_module_get(struct module *module ) ; void ldv_module_put(struct module *module ) ; unsigned int ldv_module_refcount(void) ; void ldv_module_put_and_exit(void) ; extern int device_set_wakeup_enable(struct device * , bool ) ; extern void *dev_get_drvdata(struct device const * ) ; extern int dev_set_drvdata(struct device * , void * ) ; extern int dev_printk(char const * , struct device const * , char const * , ...) ; extern int dev_err(struct device const * , char const * , ...) ; extern int dev_warn(struct device const * , char const * , ...) ; extern int _dev_info(struct device const * , char const * , ...) ; extern int pci_enable_device(struct pci_dev * ) ; extern int pci_enable_device_mem(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern int __pci_enable_wake(struct pci_dev * , pci_power_t , bool , bool ) ; extern int pci_wake_from_d3(struct pci_dev * , bool ) ; __inline static int pci_enable_wake(struct pci_dev *dev , pci_power_t state , bool enable ) { int tmp ; { { tmp = __pci_enable_wake(dev, state, (bool )0, (bool )((int )enable)); } return (tmp); } } extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; extern void pci_unregister_driver(struct pci_driver * ) ; extern int pci_enable_msi_block(struct pci_dev * , unsigned int ) ; extern void pci_disable_msi(struct pci_dev * ) ; __inline static void *lowmem_page_address(struct page *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 56L) << 12) + 0x0fff880000000000UL)); } } extern void *__kmalloc(size_t , gfp_t ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { { tmp___2 = __kmalloc(size, flags); } return (tmp___2); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = kmalloc(size, flags | 32768U); } return (tmp); } } __inline static int valid_dma_direction(int dma_direction ) { int tmp ; { if (dma_direction == 0) { tmp = 1; } else if (dma_direction == 1) { tmp = 1; } else if (dma_direction == 2) { tmp = 1; } else { tmp = 0; } return (tmp); } } __inline static int is_device_dma_capable(struct device *dev ) { int tmp ; { if ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0)) { if (*(dev->dma_mask) != 0ULL) { tmp = 1; } else { tmp = 0; } } else { tmp = 0; } return (tmp); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = __builtin_expect((long )((unsigned long )dev == (unsigned long )((struct device *)0)), 0L); } if (tmp != 0L) { return (dma_ops); } else if ((unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = __builtin_expect((long )(tmp___0 == 0), 0L); } if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (18), "i" (12UL)); ldv_18949: ; goto ldv_18949; } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)(0x0fffea0000000000UL + (tmp___2 >> 12)), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)(0x0fffea0000000000UL + (tmp___3 >> 12)), (unsigned long )ptr & 4095UL, size, (int )dir, addr, (bool )1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = __builtin_expect((long )(tmp___0 == 0), 0L); } if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (35), "i" (12UL)); ldv_18958: ; goto ldv_18958; } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, (bool )1); } return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address(page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = __builtin_expect((long )(tmp___1 == 0), 0L); } if (tmp___2 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (78), "i" (12UL)); ldv_18992: ; goto ldv_18992; } else { } { addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, (bool )0); } return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = __builtin_expect((long )(tmp___0 == 0), 0L); } if (tmp___1 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (90), "i" (12UL)); ldv_19000: ; goto ldv_19000; } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, (bool )0); } return; } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { if ((int )gfp & 1) { dma_mask = 16777215UL; } else { dma_mask = 4294967295UL; } } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL) { if ((gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } } else { } return (gfp); } } __inline static void *dma_alloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc_coherent == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc_coherent))(dev, size, dma_handle, tmp___1); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_coherent(struct device *dev , size_t size , void *vaddr , dma_addr_t bus ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = __builtin_expect((long )(__ret_warn_on != 0), 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/anthill/stuff/tacas-comp/inst/current/envs/linux-3.0.1/linux-3.0.1/arch/x86/include/asm/dma-mapping.h", (int const )147); } } else { } { __builtin_expect((long )(__ret_warn_on != 0), 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free_coherent != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t ))0)) { { (*(ops->free_coherent))(dev, size, vaddr, bus); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { struct device *tmp ; void *tmp___0 ; { if ((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0)) { tmp = & hwdev->dev; } else { tmp = (struct device *)0; } { tmp___0 = dma_alloc_coherent(tmp, size, dma_handle, 32U); } return (tmp___0); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { struct device *tmp ; { if ((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0)) { tmp = & hwdev->dev; } else { tmp = (struct device *)0; } { dma_free_coherent(tmp, size, vaddr, dma_handle); } return; } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { struct device *tmp ; dma_addr_t tmp___0 ; { if ((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0)) { tmp = & hwdev->dev; } else { tmp = (struct device *)0; } { tmp___0 = dma_map_single_attrs(tmp, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp___0); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { struct device *tmp ; { if ((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0)) { tmp = & hwdev->dev; } else { tmp = (struct device *)0; } { dma_unmap_single_attrs(tmp, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } __inline static dma_addr_t pci_map_page(struct pci_dev *hwdev , struct page *page , unsigned long offset , size_t size , int direction ) { struct device *tmp ; dma_addr_t tmp___0 ; { if ((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0)) { tmp = & hwdev->dev; } else { tmp = (struct device *)0; } { tmp___0 = dma_map_page(tmp, page, offset, size, (enum dma_data_direction )direction); } return (tmp___0); } } __inline static void pci_unmap_page(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) { struct device *tmp ; { if ((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0)) { tmp = & hwdev->dev; } else { tmp = (struct device *)0; } { dma_unmap_page(tmp, dma_address, size, (enum dma_data_direction )direction); } return; } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = dev_get_drvdata((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { dev_set_drvdata(& pdev->dev, data); } return; } } __inline static __sum16 csum_fold(__wsum sum ) { { __asm__ (" addl %1,%0\n adcl $0xffff,%0": "=r" (sum): "r" (sum << 16), "0" (sum & 4294901760U)); return ((__sum16 )(~ sum >> 16)); } } __inline static __wsum csum_tcpudp_nofold(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { { __asm__ (" addl %1, %0\n adcl %2, %0\n adcl %3, %0\n adcl $0, %0\n": "=r" (sum): "g" (daddr), "g" (saddr), "g" (((int )len + (int )proto) << 8), "0" (sum)); return (sum); } } __inline static __sum16 csum_tcpudp_magic(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { __wsum tmp ; __sum16 tmp___0 ; { { tmp = csum_tcpudp_nofold(saddr, daddr, (unsigned short )((int )len), (unsigned short )((int )proto), sum); tmp___0 = csum_fold(tmp); } return (tmp___0); } } extern __sum16 csum_ipv6_magic(struct in6_addr const * , struct in6_addr const * , __u32 , unsigned short , __wsum ) ; extern void consume_skb(struct sk_buff * ) ; extern int pskb_expand_head(struct sk_buff * , int , int , gfp_t ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static int skb_header_cloned(struct sk_buff const *skb ) { int dataref ; unsigned char *tmp ; { if ((unsigned int )*((unsigned char *)skb + 124UL) == 0U) { return (0); } else { } { tmp = skb_end_pointer(skb); dataref = atomic_read((atomic_t const *)(& ((struct skb_shared_info *)tmp)->dataref)); dataref = (dataref & 65535) - (dataref >> 16); } return (dataref != 1); } } __inline static int skb_is_nonlinear(struct sk_buff const *skb ) { { return ((int )skb->data_len); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } __inline static void skb_reset_tail_pointer(struct sk_buff *skb ) { { skb->tail = (sk_buff_data_t )((long )skb->data) - (sk_buff_data_t )((long )skb->head); return; } } __inline static void skb_set_tail_pointer(struct sk_buff *skb , int const offset ) { { { skb_reset_tail_pointer(skb); skb->tail = skb->tail + (sk_buff_data_t )offset; } return; } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static unsigned int skb_headroom(struct sk_buff const *skb ) { { return ((unsigned int )((long )skb->data) - (unsigned int )((long )skb->head)); } } __inline static unsigned char *skb_transport_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->transport_header); } } __inline static unsigned char *skb_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->network_header); } } __inline static int skb_checksum_start_offset(struct sk_buff const *skb ) { unsigned int tmp ; { { tmp = skb_headroom(skb); } return ((int )((unsigned int )skb->ldv_21038.ldv_21037.csum_start - tmp)); } } __inline static int skb_transport_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } __inline static int skb_network_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } extern int ___pskb_trim(struct sk_buff * , unsigned int ) ; __inline static void __skb_trim(struct sk_buff *skb , unsigned int len ) { int __ret_warn_on ; long tmp ; int tmp___0 ; long tmp___1 ; { { tmp___0 = skb_is_nonlinear((struct sk_buff const *)skb); tmp___1 = __builtin_expect((long )(tmp___0 != 0), 0L); } if (tmp___1 != 0L) { { __ret_warn_on = 1; tmp = __builtin_expect((long )(__ret_warn_on != 0), 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/skbuff.h", (int const )1451); } } else { } { __builtin_expect((long )(__ret_warn_on != 0), 0L); } return; } else { } { skb->len = len; skb_set_tail_pointer(skb, (int const )len); } return; } } __inline static int __pskb_trim(struct sk_buff *skb , unsigned int len ) { int tmp ; { if (skb->data_len != 0U) { { tmp = ___pskb_trim(skb, len); } return (tmp); } else { } { __skb_trim(skb, len); } return (0); } } __inline static int pskb_trim(struct sk_buff *skb , unsigned int len ) { int tmp ; int tmp___0 ; { if (skb->len > len) { { tmp = __pskb_trim(skb, len); tmp___0 = tmp; } } else { tmp___0 = 0; } return (tmp___0); } } extern struct sk_buff *dev_alloc_skb(unsigned int ) ; __inline static int skb_is_gso(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_end_pointer(skb); } return ((int )((struct skb_shared_info *)tmp)->gso_size); } } __inline static void skb_checksum_none_assert(struct sk_buff *skb ) { { return; } } extern void msleep(unsigned int ) ; extern void __napi_schedule(struct napi_struct * ) ; __inline static int napi_disable_pending(struct napi_struct *n ) { int tmp ; { { tmp = constant_test_bit(1U, (unsigned long const volatile *)(& n->state)); } return (tmp); } } __inline static int napi_schedule_prep(struct napi_struct *n ) { int tmp ; int tmp___0 ; int tmp___1 ; { { tmp = napi_disable_pending(n); } if (tmp == 0) { { tmp___0 = test_and_set_bit(0, (unsigned long volatile *)(& n->state)); } if (tmp___0 == 0) { tmp___1 = 1; } else { tmp___1 = 0; } } else { tmp___1 = 0; } return (tmp___1); } } extern void napi_complete(struct napi_struct * ) ; __inline static void napi_disable(struct napi_struct *n ) { int tmp ; { { set_bit(1U, (unsigned long volatile *)(& n->state)); } goto ldv_32033; ldv_32032: { msleep(1U); } ldv_32033: { tmp = test_and_set_bit(0, (unsigned long volatile *)(& n->state)); } if (tmp != 0) { goto ldv_32032; } else { goto ldv_32034; } ldv_32034: { clear_bit(1, (unsigned long volatile *)(& n->state)); } return; } } __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0U, (unsigned long const volatile *)(& n->state)); tmp___0 = __builtin_expect((long )(tmp == 0), 0L); } if (tmp___0 != 0L) { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (521), "i" (12UL)); ldv_32038: ; goto ldv_32038; } else { } { __asm__ volatile ("": : : "memory"); clear_bit(0, (unsigned long volatile *)(& n->state)); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 2560U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void synchronize_irq(unsigned int ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } extern void free_irq(unsigned int , void * ) ; extern void disable_irq(unsigned int ) ; extern void enable_irq(unsigned int ) ; extern void free_netdev(struct net_device * ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_start_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_start_queue(tmp); } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_clear_bit(0, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = __builtin_expect((long )(__ret_warn_on != 0), 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", (int const )1866); } } else { } { tmp___0 = __builtin_expect((long )(__ret_warn_on != 0), 0L); } if (tmp___0 != 0L) { { printk("<6>netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0U, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); } return; } } __inline static int netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { { tmp = constant_test_bit(0U, (unsigned long const volatile *)(& dev_queue->state)); } return (tmp); } } __inline static int netif_queue_stopped(struct net_device const *dev ) { struct netdev_queue *tmp ; int tmp___0 ; { { tmp = netdev_get_tx_queue(dev, 0U); tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)tmp); } return (tmp___0); } } __inline static int netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0U, (unsigned long const volatile *)(& dev->state)); } return (tmp); } } extern void dev_kfree_skb_irq(struct sk_buff * ) ; extern void dev_kfree_skb_any(struct sk_buff * ) ; extern int netif_receive_skb(struct sk_buff * ) ; __inline static int netif_carrier_ok(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(2U, (unsigned long const volatile *)(& dev->state)); } return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; __inline static u32 netif_msg_init(int debug_value , int default_msg_enable_bits ) { { if (debug_value < 0) { return ((u32 )default_msg_enable_bits); } else if ((unsigned int )debug_value > 31U) { return ((u32 )default_msg_enable_bits); } else { } if (debug_value == 0) { return (0U); } else { } return ((u32 )((1 << debug_value) + -1)); } } extern int register_netdev(struct net_device * ) ; extern void unregister_netdev(struct net_device * ) ; extern void netdev_update_features(struct net_device * ) ; extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; __inline static int is_zero_ether_addr(u8 const *addr ) { { return ((unsigned int )((((((int )((unsigned char )*addr) | (int )((unsigned char )*(addr + 1UL))) | (int )((unsigned char )*(addr + 2UL))) | (int )((unsigned char )*(addr + 3UL))) | (int )((unsigned char )*(addr + 4UL))) | (int )((unsigned char )*(addr + 5UL))) == 0U); } } __inline static int is_multicast_ether_addr(u8 const *addr ) { { return ((int )*addr & 1); } } __inline static int is_valid_ether_addr(u8 const *addr ) { int tmp ; int tmp___0 ; int tmp___1 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp == 0) { { tmp___0 = is_zero_ether_addr(addr); } if (tmp___0 == 0) { tmp___1 = 1; } else { tmp___1 = 0; } } else { tmp___1 = 0; } return (tmp___1); } } __inline static struct iphdr *ip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct iphdr *)tmp); } } __inline static struct tcphdr *tcp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((struct tcphdr *)tmp); } } __inline static unsigned int tcp_hdrlen(struct sk_buff const *skb ) { struct tcphdr *tmp ; { { tmp = tcp_hdr(skb); } return ((unsigned int )((int )tmp->doff * 4)); } } __inline static struct ipv6hdr *ipv6_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct ipv6hdr *)tmp); } } __inline static struct mii_ioctl_data *if_mii(struct ifreq *rq ) { { return ((struct mii_ioctl_data *)(& rq->ifr_ifru)); } } extern int __vlan_hwaccel_rx(struct sk_buff * , struct vlan_group * , u16 , int ) ; __inline static int vlan_hwaccel_receive_skb(struct sk_buff *skb , struct vlan_group *grp , u16 vlan_tci ) { int tmp ; { { tmp = __vlan_hwaccel_rx(skb, grp, (u16 )((int )vlan_tci), 1); } return (tmp); } } void atl1c_phy_disable(struct atl1c_hw *hw ) ; void atl1c_hw_set_mac_addr(struct atl1c_hw *hw ) ; int atl1c_phy_reset(struct atl1c_hw *hw ) ; int atl1c_read_mac_addr(struct atl1c_hw *hw ) ; int atl1c_get_speed_and_duplex(struct atl1c_hw *hw , u16 *speed , u16 *duplex ) ; u32 atl1c_hash_mc_addr(struct atl1c_hw *hw , u8 *mc_addr ) ; void atl1c_hash_set(struct atl1c_hw *hw , u32 hash_value ) ; int atl1c_read_phy_reg(struct atl1c_hw *hw , u16 reg_addr , u16 *phy_data ) ; int atl1c_write_phy_reg(struct atl1c_hw *hw , u32 reg_addr , u16 phy_data ) ; int atl1c_phy_init(struct atl1c_hw *hw ) ; int atl1c_restart_autoneg(struct atl1c_hw *hw ) ; int atl1c_phy_power_saving(struct atl1c_hw *hw ) ; char atl1c_driver_name[6U] ; char atl1c_driver_version[13U] ; void atl1c_reinit_locked(struct atl1c_adapter *adapter ) ; void atl1c_set_ethtool_ops(struct net_device *netdev ) ; char atl1c_driver_name[6U] = { (char )'a', (char )'t', (char )'l', (char )'1', (char )'c', (char )'\000'}; char atl1c_driver_version[13U] = { (char )'1', (char )'.', (char )'0', (char )'.', (char )'1', (char )'.', (char )'0', (char )'-', (char )'N', (char )'A', (char )'P', (char )'I', (char )'\000'}; static struct pci_device_id const atl1c_pci_tbl[7U] = { {6505U, 4195U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {6505U, 4194U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {6505U, 8288U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {6505U, 8290U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {6505U, 4211U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {6505U, 4227U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; static int atl1c_stop_mac(struct atl1c_hw *hw ) ; static void atl1c_enable_rx_ctrl(struct atl1c_hw *hw ) ; static void atl1c_enable_tx_ctrl(struct atl1c_hw *hw ) ; static void atl1c_disable_l0s_l1(struct atl1c_hw *hw ) ; static void atl1c_set_aspm(struct atl1c_hw *hw , bool linkup ) ; static void atl1c_setup_mac_ctrl(struct atl1c_adapter *adapter ) ; static void atl1c_clean_rx_irq(struct atl1c_adapter *adapter , u8 que , int *work_done , int work_to_do ) ; static int atl1c_up(struct atl1c_adapter *adapter ) ; static void atl1c_down(struct atl1c_adapter *adapter ) ; static u16 const atl1c_pay_load_size[6U] = { (u16 const )128U, (u16 const )256U, (u16 const )512U, (u16 const )1024U, (u16 const )2048U, (u16 const )4096U}; static u16 const atl1c_rfd_prod_idx_regs[4U] = { (u16 const )5600U, (u16 const )5604U, (u16 const )5608U, (u16 const )5612U}; static u16 const atl1c_rfd_addr_lo_regs[4U] = { (u16 const )5456U, (u16 const )5460U, (u16 const )5464U, (u16 const )5468U}; static u16 const atl1c_rrd_addr_lo_regs[4U] = { (u16 const )5480U, (u16 const )5484U, (u16 const )5488U, (u16 const )5492U}; static unsigned int const atl1c_default_msg = (u32 const )63U; static void atl1c_pcie_patch(struct atl1c_hw *hw ) { u32 data ; long tmp ; long tmp___0 ; { { tmp = __builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 4096U); data = readl((void const volatile *)hw->hw_addr + 4096U); } } else { { data = readl((void const volatile *)hw->hw_addr + 4096U); } } { data = data | 4U; writel(data, (void volatile *)hw->hw_addr + 4096U); } if ((unsigned int )hw->nic_type == 2U) { if ((unsigned int )hw->revision_id == 192U) { { tmp___0 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 4100U); data = readl((void const volatile *)hw->hw_addr + 4100U); } } else { { data = readl((void const volatile *)hw->hw_addr + 4100U); } } { data = data & 4294770687U; data = data | 196608U; data = data & 4294180863U; data = data | 786432U; writel(data, (void volatile *)hw->hw_addr + 4100U); } } else { } } else { } return; } } static void atl1c_reset_pcie(struct atl1c_hw *hw , u32 flag ) { u32 data ; u32 pci_cmd ; struct pci_dev *pdev ; long tmp ; long tmp___0 ; long tmp___1 ; { { pdev = (hw->adapter)->pdev; tmp = __builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 4U); pci_cmd = readl((void const volatile *)hw->hw_addr + 4U); } } else { { pci_cmd = readl((void const volatile *)hw->hw_addr + 4U); } } { pci_cmd = pci_cmd & 4294966271U; pci_cmd = pci_cmd | 7U; writel(pci_cmd, (void volatile *)hw->hw_addr + 4U); pci_enable_wake(pdev, 3, (bool )0); pci_enable_wake(pdev, 4, (bool )0); tmp___0 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 268U); data = readl((void const volatile *)hw->hw_addr + 268U); } } else { { data = readl((void const volatile *)hw->hw_addr + 268U); } } { data = data & 4294967279U; data = data & 4294959103U; writel(data, (void volatile *)hw->hw_addr + 268U); tmp___1 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___1 != 0L) { { readl((void const volatile *)hw->hw_addr + 4860U); data = readl((void const volatile *)hw->hw_addr + 4860U); } } else { { data = readl((void const volatile *)hw->hw_addr + 4860U); } } { data = data & 4294963199U; writel(data, (void volatile *)hw->hw_addr + 4860U); atl1c_pcie_patch(hw); } if ((int )flag & 1) { { atl1c_disable_l0s_l1(hw); } } else { } if ((flag & 2U) != 0U) { { writel(7168U, (void volatile *)hw->hw_addr + 5132U); } } else { { writel(7169U, (void volatile *)hw->hw_addr + 5132U); } } { msleep(5U); } return; } } __inline static void atl1c_irq_enable(struct atl1c_adapter *adapter ) { int tmp ; long tmp___0 ; { { tmp = atomic_dec_and_test(& adapter->irq_sem); tmp___0 = __builtin_expect((long )(tmp != 0), 1L); } if (tmp___0 != 0L) { { writel(2147483647U, (void volatile *)adapter->hw.hw_addr + 5632U); writel(adapter->hw.intr_mask, (void volatile *)adapter->hw.hw_addr + 5636U); readl((void const volatile *)adapter->hw.hw_addr); } } else { } return; } } __inline static void atl1c_irq_disable(struct atl1c_adapter *adapter ) { { { atomic_inc(& adapter->irq_sem); writel(0U, (void volatile *)adapter->hw.hw_addr + 5636U); writel(2147483648U, (void volatile *)adapter->hw.hw_addr + 5632U); readl((void const volatile *)adapter->hw.hw_addr); synchronize_irq((adapter->pdev)->irq); } return; } } static u32 atl1c_wait_until_idle(struct atl1c_hw *hw ) { int timeout ; u32 data ; long tmp ; { timeout = 0; goto ldv_42453; ldv_42452: { tmp = __builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 5136U); data = readl((void const volatile *)hw->hw_addr + 5136U); } } else { { data = readl((void const volatile *)hw->hw_addr + 5136U); } } if ((data & 255U) == 0U) { return (0U); } else { } { msleep(1U); timeout = timeout + 1; } ldv_42453: ; if (timeout <= 9) { goto ldv_42452; } else { goto ldv_42454; } ldv_42454: ; return (data); } } static void atl1c_phy_config(unsigned long data ) { struct atl1c_adapter *adapter ; struct atl1c_hw *hw ; unsigned long flags ; raw_spinlock_t *tmp ; { { adapter = (struct atl1c_adapter *)data; hw = & adapter->hw; tmp = spinlock_check(& adapter->mdio_lock); flags = _raw_spin_lock_irqsave(tmp); atl1c_restart_autoneg(hw); spin_unlock_irqrestore(& adapter->mdio_lock, flags); } return; } } void atl1c_reinit_locked(struct atl1c_adapter *adapter ) { int __ret_warn_on ; struct thread_info *tmp ; long tmp___0 ; { { tmp = current_thread_info(); __ret_warn_on = ((unsigned long )tmp->preempt_count & 134217472UL) != 0UL; tmp___0 = __builtin_expect((long )(__ret_warn_on != 0), 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("/anthill/stuff/tacas-comp/work/current--X--drivers/net/atl1c/atl1c.ko--X--bulklinux-3.0.1--X--08_1/linux-3.0.1/csd_deg_dscv/13/dscv_tempdir/dscv/ri/08_1/drivers/net/atl1c/atl1c_main.c.p", (int const )249); } } else { } { __builtin_expect((long )(__ret_warn_on != 0), 0L); atl1c_down(adapter); atl1c_up(adapter); clear_bit(2, (unsigned long volatile *)(& adapter->flags)); } return; } } static void atl1c_check_link_status(struct atl1c_adapter *adapter ) { struct atl1c_hw *hw ; struct net_device *netdev ; struct pci_dev *pdev ; int err ; unsigned long flags ; u16 speed ; u16 duplex ; u16 phy_data ; raw_spinlock_t *tmp ; int tmp___0 ; raw_spinlock_t *tmp___1 ; long tmp___2 ; char *tmp___3 ; int tmp___4 ; { { hw = & adapter->hw; netdev = adapter->netdev; pdev = adapter->pdev; tmp = spinlock_check(& adapter->mdio_lock); flags = _raw_spin_lock_irqsave(tmp); atl1c_read_phy_reg(hw, (u16 )1, & phy_data); atl1c_read_phy_reg(hw, (u16 )1, & phy_data); spin_unlock_irqrestore(& adapter->mdio_lock, flags); } if (((int )phy_data & 4) == 0) { { hw->hibernate = (bool )1; tmp___0 = atl1c_stop_mac(hw); } if (tmp___0 != 0) { if ((adapter->msg_enable & 8192U) != 0U) { { dev_warn((struct device const *)(& pdev->dev), "stop mac failed\n"); } } else { } } else { } { atl1c_set_aspm(hw, (bool )0); netif_carrier_off(netdev); netif_stop_queue(netdev); atl1c_phy_reset(hw); atl1c_phy_init(& adapter->hw); } } else { { hw->hibernate = (bool )0; tmp___1 = spinlock_check(& adapter->mdio_lock); flags = _raw_spin_lock_irqsave(tmp___1); err = atl1c_get_speed_and_duplex(hw, & speed, & duplex); spin_unlock_irqrestore(& adapter->mdio_lock, flags); tmp___2 = __builtin_expect((long )(err != 0), 0L); } if (tmp___2 != 0L) { return; } else { } if ((int )adapter->link_speed != (int )speed) { goto _L; } else if ((int )adapter->link_duplex != (int )duplex) { _L: { adapter->link_speed = speed; adapter->link_duplex = duplex; atl1c_set_aspm(hw, (bool )1); atl1c_enable_tx_ctrl(hw); atl1c_enable_rx_ctrl(hw); atl1c_setup_mac_ctrl(adapter); } if ((adapter->msg_enable & 4U) != 0U) { if ((unsigned int )adapter->link_duplex == 2U) { tmp___3 = (char *)"Full Duplex"; } else { tmp___3 = (char *)"Half Duplex"; } { _dev_info((struct device const *)(& pdev->dev), "%s: %s NIC Link is Up<%d Mbps %s>\n", (char *)(& atl1c_driver_name), (char *)(& netdev->name), (int )adapter->link_speed, tmp___3); } } else { } } else { } { tmp___4 = netif_carrier_ok((struct net_device const *)netdev); } if (tmp___4 == 0) { { netif_carrier_on(netdev); } } else { } } return; } } static void atl1c_link_chg_event(struct atl1c_adapter *adapter ) { struct net_device *netdev ; struct pci_dev *pdev ; u16 phy_data ; u16 link_up ; int tmp ; { { netdev = adapter->netdev; pdev = adapter->pdev; spin_lock(& adapter->mdio_lock); atl1c_read_phy_reg(& adapter->hw, (u16 )1, & phy_data); atl1c_read_phy_reg(& adapter->hw, (u16 )1, & phy_data); spin_unlock(& adapter->mdio_lock); link_up = (u16 )((unsigned int )phy_data & 4U); } if ((unsigned int )link_up == 0U) { { tmp = netif_carrier_ok((struct net_device const *)netdev); } if (tmp != 0) { { netif_carrier_off(netdev); } if ((adapter->msg_enable & 4U) != 0U) { { _dev_info((struct device const *)(& pdev->dev), "%s: %s NIC Link is Down\n", (char *)(& atl1c_driver_name), (char *)(& netdev->name)); } } else { } adapter->link_speed = (u16 )65535U; } else { } } else { } { set_bit(1U, (unsigned long volatile *)(& adapter->work_event)); schedule_work(& adapter->common_task); } return; } } static void atl1c_common_task(struct work_struct *work ) { struct atl1c_adapter *adapter ; struct net_device *netdev ; struct work_struct const *__mptr ; int tmp ; int tmp___0 ; { { __mptr = (struct work_struct const *)work; adapter = (struct atl1c_adapter *)__mptr + 0x0ffffffffffffc40UL; netdev = adapter->netdev; tmp = test_and_clear_bit(0, (unsigned long volatile *)(& adapter->work_event)); } if (tmp != 0) { { netif_device_detach(netdev); atl1c_down(adapter); atl1c_up(adapter); netif_device_attach(netdev); } } else { } { tmp___0 = test_and_clear_bit(1, (unsigned long volatile *)(& adapter->work_event)); } if (tmp___0 != 0) { { atl1c_check_link_status(adapter); } } else { } return; } } static void atl1c_del_timer(struct atl1c_adapter *adapter ) { { { del_timer_sync(& adapter->phy_config_timer); } return; } } static void atl1c_tx_timeout(struct net_device *netdev ) { struct atl1c_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; set_bit(0U, (unsigned long volatile *)(& adapter->work_event)); schedule_work(& adapter->common_task); } return; } } static void atl1c_set_multi(struct net_device *netdev ) { struct atl1c_adapter *adapter ; void *tmp ; struct atl1c_hw *hw ; struct netdev_hw_addr *ha ; u32 mac_ctrl_data ; u32 hash_value ; long tmp___0 ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; hw = & adapter->hw; tmp___0 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 5248U); mac_ctrl_data = readl((void const volatile *)hw->hw_addr + 5248U); } } else { { mac_ctrl_data = readl((void const volatile *)hw->hw_addr + 5248U); } } if ((netdev->flags & 256U) != 0U) { mac_ctrl_data = mac_ctrl_data | 32768U; } else if ((netdev->flags & 512U) != 0U) { mac_ctrl_data = mac_ctrl_data | 33554432U; mac_ctrl_data = mac_ctrl_data & 4294934527U; } else { mac_ctrl_data = mac_ctrl_data & 4261380095U; } { writel(mac_ctrl_data, (void volatile *)hw->hw_addr + 5248U); writel(0U, (void volatile *)hw->hw_addr + 5264U); writel(0U, (void volatile *)hw->hw_addr + 5268U); __mptr = (struct list_head const *)netdev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; } goto ldv_42520; ldv_42519: { hash_value = atl1c_hash_mc_addr(hw, (u8 *)(& ha->addr)); atl1c_hash_set(hw, hash_value); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; } ldv_42520: ; if ((unsigned long )(& ha->list) != (unsigned long )(& netdev->mc.list)) { goto ldv_42519; } else { goto ldv_42521; } ldv_42521: ; return; } } static void atl1c_vlan_rx_register(struct net_device *netdev , struct vlan_group *grp ) { struct atl1c_adapter *adapter ; void *tmp ; struct pci_dev *pdev ; u32 mac_ctrl_data ; struct _ddebug descriptor ; long tmp___0 ; long tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; pdev = adapter->pdev; mac_ctrl_data = 0U; } if ((adapter->msg_enable & 4096U) != 0U) { { descriptor.modname = "atl1c"; descriptor.function = "atl1c_vlan_rx_register"; descriptor.filename = "/anthill/stuff/tacas-comp/work/current--X--drivers/net/atl1c/atl1c.ko--X--bulklinux-3.0.1--X--08_1/linux-3.0.1/csd_deg_dscv/13/dscv_tempdir/dscv/ri/08_1/drivers/net/atl1c/atl1c_main.c.p"; descriptor.format = "atl1c_vlan_rx_register\n"; descriptor.lineno = 430U; descriptor.flags = (unsigned char)0; descriptor.enabled = (char)0; tmp___0 = __builtin_expect((long )((int )((signed char )descriptor.enabled) != 0), 0L); } if (tmp___0 != 0L) { { dev_printk("<7>", (struct device const *)(& pdev->dev), "atl1c_vlan_rx_register\n"); } } else { } } else { } { atl1c_irq_disable(adapter); adapter->vlgrp = grp; tmp___1 = __builtin_expect((long )adapter->hw.hibernate, 0L); } if (tmp___1 != 0L) { { readl((void const volatile *)adapter->hw.hw_addr + 5248U); mac_ctrl_data = readl((void const volatile *)adapter->hw.hw_addr + 5248U); } } else { { mac_ctrl_data = readl((void const volatile *)adapter->hw.hw_addr + 5248U); } } if ((unsigned long )grp != (unsigned long )((struct vlan_group *)0)) { mac_ctrl_data = mac_ctrl_data | 16384U; } else { mac_ctrl_data = mac_ctrl_data & 4294950911U; } { writel(mac_ctrl_data, (void volatile *)adapter->hw.hw_addr + 5248U); atl1c_irq_enable(adapter); } return; } } static void atl1c_restore_vlan(struct atl1c_adapter *adapter ) { struct pci_dev *pdev ; struct _ddebug descriptor ; long tmp ; { pdev = adapter->pdev; if ((adapter->msg_enable & 4096U) != 0U) { { descriptor.modname = "atl1c"; descriptor.function = "atl1c_restore_vlan"; descriptor.filename = "/anthill/stuff/tacas-comp/work/current--X--drivers/net/atl1c/atl1c.ko--X--bulklinux-3.0.1--X--08_1/linux-3.0.1/csd_deg_dscv/13/dscv_tempdir/dscv/ri/08_1/drivers/net/atl1c/atl1c_main.c.p"; descriptor.format = "atl1c_restore_vlan !"; descriptor.lineno = 454U; descriptor.flags = (unsigned char)0; descriptor.enabled = (char)0; tmp = __builtin_expect((long )((int )((signed char )descriptor.enabled) != 0), 0L); } if (tmp != 0L) { { dev_printk("<7>", (struct device const *)(& pdev->dev), "atl1c_restore_vlan !"); } } else { } } else { } { atl1c_vlan_rx_register(adapter->netdev, adapter->vlgrp); } return; } } static int atl1c_set_mac_addr(struct net_device *netdev , void *p ) { struct atl1c_adapter *adapter ; void *tmp ; struct sockaddr *addr ; int tmp___0 ; int tmp___1 ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; addr = (struct sockaddr *)p; tmp___0 = is_valid_ether_addr((u8 const *)(& addr->sa_data)); } if (tmp___0 == 0) { return (-99); } else { } { tmp___1 = netif_running((struct net_device const *)netdev); } if (tmp___1 != 0) { return (-16); } else { } { __len = (size_t )netdev->addr_len; __ret = __builtin_memcpy((void *)netdev->dev_addr, (void const *)(& addr->sa_data), __len); __len___0 = (size_t )netdev->addr_len; __ret___0 = __builtin_memcpy((void *)(& adapter->hw.mac_addr), (void const *)(& addr->sa_data), __len___0); atl1c_hw_set_mac_addr(& adapter->hw); } return (0); } } static void atl1c_set_rxbufsize(struct atl1c_adapter *adapter , struct net_device *dev ) { int mtu ; int __y ; { mtu = (int )dev->mtu; if (mtu > 1522) { __y = 8; adapter->rx_buffer_len = (u16 )((((mtu + 22) + (__y + -1)) / __y) * __y); } else { adapter->rx_buffer_len = (u16 )1522U; } return; } } static u32 atl1c_fix_features(struct net_device *netdev , u32 features ) { { if (netdev->mtu > 7168U) { features = features & 4293853183U; } else { } return (features); } } static int atl1c_change_mtu(struct net_device *netdev , int new_mtu ) { struct atl1c_adapter *adapter ; void *tmp ; int old_mtu ; int max_frame ; int tmp___0 ; u32 phy_data ; long tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; old_mtu = (int )netdev->mtu; max_frame = new_mtu + 22; } if (max_frame <= 63) { goto _L; } else if (max_frame > 6144) { _L: if ((adapter->msg_enable & 4U) != 0U) { { dev_warn((struct device const *)(& (adapter->pdev)->dev), "invalid MTU setting\n"); } } else { } return (-22); } else { } if (old_mtu != new_mtu) { { tmp___2 = netif_running((struct net_device const *)netdev); } if (tmp___2 != 0) { goto ldv_42568; ldv_42567: { msleep(1U); } ldv_42568: { tmp___0 = test_and_set_bit(2, (unsigned long volatile *)(& adapter->flags)); } if (tmp___0 != 0) { goto ldv_42567; } else { goto ldv_42569; } ldv_42569: { netdev->mtu = (unsigned int )new_mtu; adapter->hw.max_frame_size = (u16 )new_mtu; atl1c_set_rxbufsize(adapter, netdev); atl1c_down(adapter); netdev_update_features(netdev); atl1c_up(adapter); clear_bit(2, (unsigned long volatile *)(& adapter->flags)); } if ((int )((short )adapter->hw.ctrl_flags) < 0) { { tmp___1 = __builtin_expect((long )adapter->hw.hibernate, 0L); } if (tmp___1 != 0L) { { readl((void const volatile *)adapter->hw.hw_addr + 5140U); phy_data = readl((void const volatile *)adapter->hw.hw_addr + 5140U); } } else { { phy_data = readl((void const volatile *)adapter->hw.hw_addr + 5140U); } } { phy_data = phy_data | 268435456U; writel(phy_data, (void volatile *)adapter->hw.hw_addr + 5140U); } } else { } } else { } } else { } return (0); } } static int atl1c_mdio_read(struct net_device *netdev , int phy_id , int reg_num ) { struct atl1c_adapter *adapter ; void *tmp ; u16 result ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; atl1c_read_phy_reg(& adapter->hw, (u16 )((int )((u16 )reg_num) & 31), & result); } return ((int )result); } } static void atl1c_mdio_write(struct net_device *netdev , int phy_id , int reg_num , int val ) { struct atl1c_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; atl1c_write_phy_reg(& adapter->hw, (u32 )reg_num & 31U, (u16 )((int )((u16 )val))); } return; } } static int atl1c_mii_ioctl(struct net_device *netdev , struct ifreq *ifr , int cmd ) { struct atl1c_adapter *adapter ; void *tmp ; struct pci_dev *pdev ; struct mii_ioctl_data *data ; struct mii_ioctl_data *tmp___0 ; unsigned long flags ; int retval ; int tmp___1 ; raw_spinlock_t *tmp___2 ; int tmp___3 ; struct _ddebug descriptor ; long tmp___4 ; int tmp___5 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; pdev = adapter->pdev; tmp___0 = if_mii(ifr); data = tmp___0; retval = 0; tmp___1 = netif_running((struct net_device const *)netdev); } if (tmp___1 == 0) { return (-22); } else { } { tmp___2 = spinlock_check(& adapter->mdio_lock); flags = _raw_spin_lock_irqsave(tmp___2); } if (cmd == 35143) { goto case_35143; } else if (cmd == 35144) { goto case_35144; } else if (cmd == 35145) { goto case_35145; } else { goto switch_default; if (0) { case_35143: data->phy_id = (__u16 )0U; goto ldv_42599; case_35144: { tmp___3 = atl1c_read_phy_reg(& adapter->hw, (u16 )((int )data->reg_num & 31), & data->val_out); } if (tmp___3 != 0) { retval = -5; goto out; } else { } goto ldv_42599; case_35145: ; if (((int )data->reg_num & -32) != 0) { retval = -14; goto out; } else { } { descriptor.modname = "atl1c"; descriptor.function = "atl1c_mii_ioctl"; descriptor.filename = "/anthill/stuff/tacas-comp/work/current--X--drivers/net/atl1c/atl1c.ko--X--bulklinux-3.0.1--X--08_1/linux-3.0.1/csd_deg_dscv/13/dscv_tempdir/dscv/ri/08_1/drivers/net/atl1c/atl1c_main.c.p"; descriptor.format = " write %x %x"; descriptor.lineno = 601U; descriptor.flags = (unsigned char)0; descriptor.enabled = (char)0; tmp___4 = __builtin_expect((long )((int )((signed char )descriptor.enabled) != 0), 0L); } if (tmp___4 != 0L) { { dev_printk("<7>", (struct device const *)(& pdev->dev), " write %x %x", (int )data->reg_num, (int )data->val_in); } } else { } { tmp___5 = atl1c_write_phy_reg(& adapter->hw, (u32 )data->reg_num, (u16 )((int )data->val_in)); } if (tmp___5 != 0) { retval = -5; goto out; } else { } goto ldv_42599; switch_default: retval = -95; goto ldv_42599; } else { } } ldv_42599: ; out: { spin_unlock_irqrestore(& adapter->mdio_lock, flags); } return (retval); } } static int atl1c_ioctl(struct net_device *netdev , struct ifreq *ifr , int cmd ) { int tmp ; { if (cmd == 35143) { goto case_35143; } else if (cmd == 35144) { goto case_35144; } else if (cmd == 35145) { goto case_35145; } else { goto switch_default; if (0) { case_35143: ; case_35144: ; case_35145: { tmp = atl1c_mii_ioctl(netdev, ifr, cmd); } return (tmp); switch_default: ; return (-95); } else { } } } } static int atl1c_alloc_queues(struct atl1c_adapter *adapter ) { { return (0); } } static void atl1c_set_mac_type(struct atl1c_hw *hw ) { { if ((int )hw->device_id == 4194) { goto case_4194; } else if ((int )hw->device_id == 4195) { goto case_4195; } else if ((int )hw->device_id == 8288) { goto case_8288; } else if ((int )hw->device_id == 8290) { goto case_8290; } else if ((int )hw->device_id == 4211) { goto case_4211; } else if ((int )hw->device_id == 4227) { goto case_4227; } else { goto switch_default; if (0) { case_4194: hw->nic_type = (enum atl1c_nic_type )1; goto ldv_42622; case_4195: hw->nic_type = (enum atl1c_nic_type )0; goto ldv_42622; case_8288: hw->nic_type = (enum atl1c_nic_type )2; goto ldv_42622; case_8290: hw->nic_type = (enum atl1c_nic_type )3; goto ldv_42622; case_4211: hw->nic_type = (enum atl1c_nic_type )4; goto ldv_42622; case_4227: hw->nic_type = (enum atl1c_nic_type )5; goto ldv_42622; switch_default: ; goto ldv_42622; } else { } } ldv_42622: ; return; } } static int atl1c_setup_mac_funcs(struct atl1c_hw *hw ) { u32 phy_status_data ; u32 link_ctrl_data ; long tmp ; long tmp___0 ; { { atl1c_set_mac_type(hw); tmp = __builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 5144U); phy_status_data = readl((void const volatile *)hw->hw_addr + 5144U); } } else { { phy_status_data = readl((void const volatile *)hw->hw_addr + 5144U); } } { tmp___0 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 104U); link_ctrl_data = readl((void const volatile *)hw->hw_addr + 104U); } } else { { link_ctrl_data = readl((void const volatile *)hw->hw_addr + 104U); } } hw->ctrl_flags = (u16 )34U; if ((int )link_ctrl_data & 1) { hw->ctrl_flags = (u16 )((unsigned int )hw->ctrl_flags | 128U); } else { } if ((link_ctrl_data & 2U) != 0U) { hw->ctrl_flags = (u16 )((unsigned int )hw->ctrl_flags | 256U); } else { } if ((link_ctrl_data & 128U) != 0U) { hw->ctrl_flags = (u16 )((unsigned int )hw->ctrl_flags | 4096U); } else { } hw->ctrl_flags = (u16 )((unsigned int )hw->ctrl_flags | 512U); if ((unsigned int )hw->nic_type == 0U) { hw->link_cap_flags = (u16 )((unsigned int )hw->link_cap_flags | 1U); } else if ((unsigned int )hw->nic_type == 4U) { hw->link_cap_flags = (u16 )((unsigned int )hw->link_cap_flags | 1U); } else if ((unsigned int )hw->nic_type == 5U) { hw->link_cap_flags = (u16 )((unsigned int )hw->link_cap_flags | 1U); } else { } return (0); } } static int atl1c_sw_init(struct atl1c_adapter *adapter ) { struct atl1c_hw *hw ; struct pci_dev *pdev ; u32 revision ; long tmp ; int tmp___0 ; int tmp___1 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; { { hw = & adapter->hw; pdev = adapter->pdev; adapter->wol = 0U; device_set_wakeup_enable(& pdev->dev, (bool )0); adapter->link_speed = (u16 )65535U; adapter->link_duplex = (u16 )2U; adapter->num_rx_queues = 1; adapter->tpd_ring[0].count = (u16 )1024U; adapter->rfd_ring[0].count = (u16 )512U; hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_id = pdev->subsystem_device; tmp = __builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 8U); revision = readl((void const volatile *)hw->hw_addr + 8U); } } else { { revision = readl((void const volatile *)hw->hw_addr + 8U); } } { hw->revision_id = (u8 )revision; hw->hibernate = (bool )1; hw->media_type = (u16 )0U; tmp___0 = atl1c_setup_mac_funcs(hw); } if (tmp___0 != 0) { { dev_err((struct device const *)(& pdev->dev), "set mac function pointers failed\n"); } return (-1); } else { } hw->intr_mask = 67237660U; hw->phy_configured = (bool )0; hw->preamble_len = (u8 )7U; hw->max_frame_size = (u16 )(adapter->netdev)->mtu; if (adapter->num_rx_queues <= 1) { hw->rss_type = (enum atl1c_rss_type )0; hw->rss_mode = (enum atl1c_rss_mode )0; } else { hw->rss_type = (enum atl1c_rss_type )1; hw->rss_mode = (enum atl1c_rss_mode )4; hw->rss_hash_bits = (u8 )16U; } { hw->autoneg_advertised = (u16 )64U; hw->indirect_tab = 3840206052U; hw->base_cpu = 0U; hw->ict = (u16 )50000U; hw->smb_timer = 200000U; hw->cmb_tpd = (u16 )4U; hw->cmb_tx_timer = (u16 )1U; hw->rx_imt = (u16 )200U; hw->tx_imt = (u16 )1000U; hw->tpd_burst = (u8 )5U; hw->rfd_burst = (u8 )8U; hw->dma_order = (enum atl1c_dma_order )4; hw->dmar_block = (enum atl1c_dma_req_block )3; hw->dmaw_block = (enum atl1c_dma_req_block )3; hw->dmar_dly_cnt = (u8 )15U; hw->dmaw_dly_cnt = (u8 )4U; tmp___1 = atl1c_alloc_queues(adapter); } if (tmp___1 != 0) { { dev_err((struct device const *)(& pdev->dev), "Unable to allocate memory for queues\n"); } return (-12); } else { } { atl1c_set_rxbufsize(adapter, adapter->netdev); atomic_set(& adapter->irq_sem, 1); spinlock_check(& adapter->mdio_lock); __raw_spin_lock_init(& adapter->mdio_lock.ldv_6060.rlock, "&(&adapter->mdio_lock)->rlock", & __key); spinlock_check(& adapter->tx_lock); __raw_spin_lock_init(& adapter->tx_lock.ldv_6060.rlock, "&(&adapter->tx_lock)->rlock", & __key___0); set_bit(3U, (unsigned long volatile *)(& adapter->flags)); } return (0); } } __inline static void atl1c_clean_buffer(struct pci_dev *pdev , struct atl1c_buffer *buffer_info , int in_irq ) { u16 pci_driection ; { if ((int )buffer_info->flags & 1) { return; } else { } if (buffer_info->dma != 0ULL) { if (((int )buffer_info->flags & 32) != 0) { pci_driection = (u16 )2U; } else { pci_driection = (u16 )1U; } if (((int )buffer_info->flags & 4) != 0) { { pci_unmap_single(pdev, buffer_info->dma, (size_t )buffer_info->length, (int )pci_driection); } } else if (((int )buffer_info->flags & 8) != 0) { { pci_unmap_page(pdev, buffer_info->dma, (size_t )buffer_info->length, (int )pci_driection); } } else { } } else { } if ((unsigned long )buffer_info->skb != (unsigned long )((struct sk_buff *)0)) { if (in_irq != 0) { { dev_kfree_skb_irq(buffer_info->skb); } } else { { consume_skb(buffer_info->skb); } } } else { } buffer_info->dma = 0ULL; buffer_info->skb = (struct sk_buff *)0; buffer_info->flags = (u16 )((unsigned int )buffer_info->flags & 65532U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 1U); return; } } static void atl1c_clean_tx_ring(struct atl1c_adapter *adapter , enum atl1c_trans_queue type ) { struct atl1c_tpd_ring *tpd_ring ; struct atl1c_buffer *buffer_info ; struct pci_dev *pdev ; u16 index ; u16 ring_count ; { tpd_ring = (struct atl1c_tpd_ring *)(& adapter->tpd_ring) + (unsigned long )type; pdev = adapter->pdev; ring_count = tpd_ring->count; index = (u16 )0U; goto ldv_42658; ldv_42657: { buffer_info = tpd_ring->buffer_info + (unsigned long )index; atl1c_clean_buffer(pdev, buffer_info, 0); index = (u16 )((int )index + 1); } ldv_42658: ; if ((int )index < (int )ring_count) { goto ldv_42657; } else { goto ldv_42659; } ldv_42659: { memset(tpd_ring->desc, 0, (unsigned long )ring_count * 16UL); atomic_set(& tpd_ring->next_to_clean, 0); tpd_ring->next_to_use = (u16 )0U; } return; } } static void atl1c_clean_rx_ring(struct atl1c_adapter *adapter ) { struct atl1c_rfd_ring *rfd_ring ; struct atl1c_rrd_ring *rrd_ring ; struct atl1c_buffer *buffer_info ; struct pci_dev *pdev ; int i ; int j ; { rfd_ring = (struct atl1c_rfd_ring *)(& adapter->rfd_ring); rrd_ring = (struct atl1c_rrd_ring *)(& adapter->rrd_ring); pdev = adapter->pdev; i = 0; goto ldv_42673; ldv_42672: j = 0; goto ldv_42670; ldv_42669: { buffer_info = (rfd_ring + (unsigned long )i)->buffer_info + (unsigned long )j; atl1c_clean_buffer(pdev, buffer_info, 0); j = j + 1; } ldv_42670: ; if ((int )(rfd_ring + (unsigned long )i)->count > j) { goto ldv_42669; } else { goto ldv_42671; } ldv_42671: { memset((rfd_ring + (unsigned long )i)->desc, 0, (size_t )(rfd_ring + (unsigned long )i)->size); (rfd_ring + (unsigned long )i)->next_to_clean = (u16 )0U; (rfd_ring + (unsigned long )i)->next_to_use = (u16 )0U; (rrd_ring + (unsigned long )i)->next_to_use = (u16 )0U; (rrd_ring + (unsigned long )i)->next_to_clean = (u16 )0U; i = i + 1; } ldv_42673: ; if (adapter->num_rx_queues > i) { goto ldv_42672; } else { goto ldv_42674; } ldv_42674: ; return; } } static void atl1c_init_ring_ptrs(struct atl1c_adapter *adapter ) { struct atl1c_tpd_ring *tpd_ring ; struct atl1c_rfd_ring *rfd_ring ; struct atl1c_rrd_ring *rrd_ring ; struct atl1c_buffer *buffer_info ; int i ; int j ; { tpd_ring = (struct atl1c_tpd_ring *)(& adapter->tpd_ring); rfd_ring = (struct atl1c_rfd_ring *)(& adapter->rfd_ring); rrd_ring = (struct atl1c_rrd_ring *)(& adapter->rrd_ring); i = 0; goto ldv_42688; ldv_42687: { (tpd_ring + (unsigned long )i)->next_to_use = (u16 )0U; atomic_set(& (tpd_ring + (unsigned long )i)->next_to_clean, 0); buffer_info = (tpd_ring + (unsigned long )i)->buffer_info; j = 0; } goto ldv_42685; ldv_42684: (buffer_info + (unsigned long )i)->flags = (u16 )((unsigned int )(buffer_info + (unsigned long )i)->flags & 65532U); (buffer_info + (unsigned long )i)->flags = (u16 )((unsigned int )(buffer_info + (unsigned long )i)->flags | 1U); j = j + 1; ldv_42685: ; if ((int )tpd_ring->count > j) { goto ldv_42684; } else { goto ldv_42686; } ldv_42686: i = i + 1; ldv_42688: ; if (i <= 1) { goto ldv_42687; } else { goto ldv_42689; } ldv_42689: i = 0; goto ldv_42694; ldv_42693: (rfd_ring + (unsigned long )i)->next_to_use = (u16 )0U; (rfd_ring + (unsigned long )i)->next_to_clean = (u16 )0U; (rrd_ring + (unsigned long )i)->next_to_use = (u16 )0U; (rrd_ring + (unsigned long )i)->next_to_clean = (u16 )0U; j = 0; goto ldv_42691; ldv_42690: buffer_info = (rfd_ring + (unsigned long )i)->buffer_info + (unsigned long )j; buffer_info->flags = (u16 )((unsigned int )buffer_info->flags & 65532U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 1U); j = j + 1; ldv_42691: ; if ((int )(rfd_ring + (unsigned long )i)->count > j) { goto ldv_42690; } else { goto ldv_42692; } ldv_42692: i = i + 1; ldv_42694: ; if (adapter->num_rx_queues > i) { goto ldv_42693; } else { goto ldv_42695; } ldv_42695: ; return; } } static void atl1c_free_ring_resources(struct atl1c_adapter *adapter ) { struct pci_dev *pdev ; { { pdev = adapter->pdev; pci_free_consistent(pdev, (size_t )adapter->ring_header.size, adapter->ring_header.desc, adapter->ring_header.dma); adapter->ring_header.desc = (void *)0; } if ((unsigned long )adapter->tpd_ring[0].buffer_info != (unsigned long )((struct atl1c_buffer *)0)) { { kfree((void const *)adapter->tpd_ring[0].buffer_info); adapter->tpd_ring[0].buffer_info = (struct atl1c_buffer *)0; } } else { } return; } } static int atl1c_setup_ring_resources(struct atl1c_adapter *adapter ) { struct pci_dev *pdev ; struct atl1c_tpd_ring *tpd_ring ; struct atl1c_rfd_ring *rfd_ring ; struct atl1c_rrd_ring *rrd_ring ; struct atl1c_ring_header *ring_header ; int num_rx_queues ; int size ; int i ; int count ; int rx_desc_count ; u32 offset ; u16 tmp ; void *tmp___0 ; long tmp___1 ; long tmp___2 ; int __y ; int __y___0 ; int __y___1 ; int __y___2 ; { pdev = adapter->pdev; tpd_ring = (struct atl1c_tpd_ring *)(& adapter->tpd_ring); rfd_ring = (struct atl1c_rfd_ring *)(& adapter->rfd_ring); rrd_ring = (struct atl1c_rrd_ring *)(& adapter->rrd_ring); ring_header = & adapter->ring_header; num_rx_queues = adapter->num_rx_queues; count = 0; rx_desc_count = 0; offset = 0U; rrd_ring->count = rfd_ring->count; i = 1; goto ldv_42715; ldv_42714: (tpd_ring + (unsigned long )i)->count = tpd_ring->count; i = i + 1; ldv_42715: ; if (i <= 1) { goto ldv_42714; } else { goto ldv_42716; } ldv_42716: i = 1; goto ldv_42718; ldv_42717: tmp = rfd_ring->count; (rrd_ring + (unsigned long )i)->count = tmp; (rfd_ring + (unsigned long )i)->count = tmp; i = i + 1; ldv_42718: ; if (adapter->num_rx_queues > i) { goto ldv_42717; } else { goto ldv_42719; } ldv_42719: { size = (int )((unsigned int )((int )tpd_ring->count * 2 + (int )rfd_ring->count * num_rx_queues) * 24U); tmp___0 = kzalloc((size_t )size, 208U); tpd_ring->buffer_info = (struct atl1c_buffer *)tmp___0; tmp___1 = __builtin_expect((long )((unsigned long )tpd_ring->buffer_info == (unsigned long )((struct atl1c_buffer *)0)), 0L); } if (tmp___1 != 0L) { { dev_err((struct device const *)(& pdev->dev), "kzalloc failed, size = %d\n", size); } goto err_nomem; } else { } i = 0; goto ldv_42722; ldv_42721: (tpd_ring + (unsigned long )i)->buffer_info = tpd_ring->buffer_info + (unsigned long )count; count = (int )(tpd_ring + (unsigned long )i)->count + count; i = i + 1; ldv_42722: ; if (i <= 1) { goto ldv_42721; } else { goto ldv_42723; } ldv_42723: i = 0; goto ldv_42725; ldv_42724: (rfd_ring + (unsigned long )i)->buffer_info = tpd_ring->buffer_info + (unsigned long )count; count = (int )(rfd_ring + (unsigned long )i)->count + count; rx_desc_count = (int )(rfd_ring + (unsigned long )i)->count + rx_desc_count; i = i + 1; ldv_42725: ; if (i < num_rx_queues) { goto ldv_42724; } else { goto ldv_42726; } ldv_42726: { size = (int )(((unsigned int )((((unsigned long )tpd_ring->count * 2UL + (unsigned long )rx_desc_count) * 2UL + (unsigned long )rx_desc_count) + 53UL) + (unsigned int )(num_rx_queues * 2)) * 8U); ring_header->size = (unsigned int )size; ring_header->desc = pci_alloc_consistent(pdev, (size_t )ring_header->size, & ring_header->dma); tmp___2 = __builtin_expect((long )((unsigned long )ring_header->desc == (unsigned long )((void *)0)), 0L); } if (tmp___2 != 0L) { { dev_err((struct device const *)(& pdev->dev), "pci_alloc_consistend failed\n"); } goto err_nomem; } else { } { memset(ring_header->desc, 0, (size_t )ring_header->size); __y = 8; tpd_ring->dma = ((ring_header->dma + (dma_addr_t )(__y + -1)) / (dma_addr_t )__y) * (dma_addr_t )__y; offset = (u32 )tpd_ring->dma - (u32 )ring_header->dma; i = 0; } goto ldv_42732; ldv_42731: (tpd_ring + (unsigned long )i)->dma = ring_header->dma + (dma_addr_t )offset; (tpd_ring + (unsigned long )i)->desc = ring_header->desc + (unsigned long )offset; (tpd_ring + (unsigned long )i)->size = (u16 )((unsigned int )(tpd_ring + (unsigned long )i)->count * 16U); __y___0 = 8; offset = (u32 )((((int )(tpd_ring + (unsigned long )i)->size + (__y___0 + -1)) / __y___0) * __y___0) + offset; i = i + 1; ldv_42732: ; if (i <= 1) { goto ldv_42731; } else { goto ldv_42733; } ldv_42733: i = 0; goto ldv_42737; ldv_42736: (rfd_ring + (unsigned long )i)->dma = ring_header->dma + (dma_addr_t )offset; (rfd_ring + (unsigned long )i)->desc = ring_header->desc + (unsigned long )offset; (rfd_ring + (unsigned long )i)->size = (u16 )((unsigned int )(rfd_ring + (unsigned long )i)->count * 8U); __y___1 = 8; offset = (u32 )((((int )(rfd_ring + (unsigned long )i)->size + (__y___1 + -1)) / __y___1) * __y___1) + offset; i = i + 1; ldv_42737: ; if (i < num_rx_queues) { goto ldv_42736; } else { goto ldv_42738; } ldv_42738: i = 0; goto ldv_42742; ldv_42741: (rrd_ring + (unsigned long )i)->dma = ring_header->dma + (dma_addr_t )offset; (rrd_ring + (unsigned long )i)->desc = ring_header->desc + (unsigned long )offset; (rrd_ring + (unsigned long )i)->size = (u16 )((unsigned int )(rrd_ring + (unsigned long )i)->count * 16U); __y___2 = 8; offset = (u32 )((((int )(rrd_ring + (unsigned long )i)->size + (__y___2 + -1)) / __y___2) * __y___2) + offset; i = i + 1; ldv_42742: ; if (i < num_rx_queues) { goto ldv_42741; } else { goto ldv_42743; } ldv_42743: adapter->smb.dma = ring_header->dma + (dma_addr_t )offset; adapter->smb.smb = ring_header->desc + (unsigned long )offset; return (0); err_nomem: { kfree((void const *)tpd_ring->buffer_info); } return (-12); } } static void atl1c_configure_des_ring(struct atl1c_adapter *adapter ) { struct atl1c_hw *hw ; struct atl1c_rfd_ring *rfd_ring ; struct atl1c_rrd_ring *rrd_ring ; struct atl1c_tpd_ring *tpd_ring ; struct atl1c_cmb *cmb ; struct atl1c_smb *smb ; int i ; u32 data ; long tmp ; { { hw = & adapter->hw; rfd_ring = (struct atl1c_rfd_ring *)(& adapter->rfd_ring); rrd_ring = (struct atl1c_rrd_ring *)(& adapter->rrd_ring); tpd_ring = (struct atl1c_tpd_ring *)(& adapter->tpd_ring); cmb = & adapter->cmb; smb = & adapter->smb; writel((unsigned int )(tpd_ring->dma >> 32), (void volatile *)hw->hw_addr + 5444U); writel((unsigned int )tpd_ring->dma, (void volatile *)hw->hw_addr + 5504U); writel((unsigned int )(tpd_ring + 1UL)->dma, (void volatile *)hw->hw_addr + 5500U); writel((unsigned int )tpd_ring->count, (void volatile *)hw->hw_addr + 5508U); writel((unsigned int )(rfd_ring->dma >> 32), (void volatile *)hw->hw_addr + 5440U); i = 0; } goto ldv_42756; ldv_42755: { writel((unsigned int )(rfd_ring + (unsigned long )i)->dma, (void volatile *)hw->hw_addr + (unsigned long )atl1c_rfd_addr_lo_regs[i]); i = i + 1; } ldv_42756: ; if (adapter->num_rx_queues > i) { goto ldv_42755; } else { goto ldv_42757; } ldv_42757: { writel((unsigned int )rfd_ring->count & 4095U, (void volatile *)hw->hw_addr + 5472U); writel((unsigned int )adapter->rx_buffer_len, (void volatile *)hw->hw_addr + 5476U); i = 0; } goto ldv_42759; ldv_42758: { writel((unsigned int )(rrd_ring + (unsigned long )i)->dma, (void volatile *)hw->hw_addr + (unsigned long )atl1c_rrd_addr_lo_regs[i]); i = i + 1; } ldv_42759: ; if (adapter->num_rx_queues > i) { goto ldv_42758; } else { goto ldv_42760; } ldv_42760: { writel((unsigned int )rrd_ring->count & 4095U, (void volatile *)hw->hw_addr + 5496U); writel((unsigned int )cmb->dma, (void volatile *)hw->hw_addr + 5512U); writel((unsigned int )(smb->dma >> 32), (void volatile *)hw->hw_addr + 5448U); writel((unsigned int )smb->dma, (void volatile *)hw->hw_addr + 5452U); } if ((unsigned int )hw->nic_type == 2U) { { writel(672U, (void volatile *)hw->hw_addr + 5412U); writel(256U, (void volatile *)hw->hw_addr + 5420U); writel(43974656U, (void volatile *)hw->hw_addr + 5408U); writel(46072480U, (void volatile *)hw->hw_addr + 5376U); writel(62849728U, (void volatile *)hw->hw_addr + 5416U); writel(64947136U, (void volatile *)hw->hw_addr + 5400U); writel(0U, (void volatile *)hw->hw_addr + 5528U); writel(0U, (void volatile *)hw->hw_addr + 5548U); } } else { } if ((unsigned int )hw->nic_type == 2U) { goto _L; } else if ((unsigned int )hw->nic_type == 5U) { _L: { tmp = __builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 5156U); data = readl((void const volatile *)hw->hw_addr + 5156U); } } else { { data = readl((void const volatile *)hw->hw_addr + 5156U); } } { data = data | 131072U; data = data | 262144U; writel(data, (void volatile *)hw->hw_addr + 5156U); } } else { } { writel(1U, (void volatile *)hw->hw_addr + 5428U); } return; } } static void atl1c_configure_tx(struct atl1c_adapter *adapter ) { struct atl1c_hw *hw ; u32 dev_ctrl_data ; u32 max_pay_load ; u16 tx_offload_thresh ; u32 txq_ctrl_data ; u32 max_pay_load_data ; long tmp ; u32 __min1 ; u32 __min2 ; u32 tmp___0 ; u32 __min1___0 ; u32 __min2___0 ; u32 tmp___1 ; { { hw = & adapter->hw; tx_offload_thresh = (u16 )9216U; writel((unsigned int )((int )tx_offload_thresh >> 3) & 2047U, (void volatile *)hw->hw_addr + 5524U); tmp = __builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 96U); dev_ctrl_data = readl((void const volatile *)hw->hw_addr + 96U); } } else { { dev_ctrl_data = readl((void const volatile *)hw->hw_addr + 96U); } } max_pay_load = (dev_ctrl_data >> 5) & 7U; __min1 = max_pay_load; __min2 = (u32 )hw->dmaw_block; if (__min1 < __min2) { tmp___0 = __min1; } else { tmp___0 = __min2; } hw->dmaw_block = (enum atl1c_dma_req_block )tmp___0; max_pay_load = (dev_ctrl_data >> 12) & 7U; __min1___0 = max_pay_load; __min2___0 = (u32 )hw->dmar_block; if (__min1___0 < __min2___0) { tmp___1 = __min1___0; } else { tmp___1 = __min2___0; } hw->dmar_block = (enum atl1c_dma_req_block )tmp___1; txq_ctrl_data = (u32 )hw->tpd_burst & 15U; if (((int )hw->ctrl_flags & 32) != 0) { txq_ctrl_data = txq_ctrl_data | 64U; } else { } max_pay_load_data = (u32 )((int )atl1c_pay_load_size[(unsigned int )hw->dmar_block] << 16); if ((unsigned int )hw->nic_type == 2U) { max_pay_load_data = max_pay_load_data >> 1; } else if ((unsigned int )hw->nic_type == 3U) { max_pay_load_data = max_pay_load_data >> 1; } else { } { txq_ctrl_data = txq_ctrl_data | max_pay_load_data; writel(txq_ctrl_data, (void volatile *)hw->hw_addr + 5520U); } return; } } static void atl1c_configure_rx(struct atl1c_adapter *adapter ) { struct atl1c_hw *hw ; u32 rxq_ctrl_data ; { hw = & adapter->hw; rxq_ctrl_data = (u32 )(((int )hw->rfd_burst & 63) << 20); if (((int )hw->ctrl_flags & 64) != 0) { rxq_ctrl_data = rxq_ctrl_data | 128U; } else { } if ((unsigned int )hw->rss_type == 1U) { rxq_ctrl_data = rxq_ctrl_data | 65536U; } else { } if ((unsigned int )hw->rss_type == 2U) { rxq_ctrl_data = rxq_ctrl_data | 131072U; } else { } if ((unsigned int )hw->rss_type == 4U) { rxq_ctrl_data = rxq_ctrl_data | 262144U; } else { } if ((unsigned int )hw->rss_type == 8U) { rxq_ctrl_data = rxq_ctrl_data | 524288U; } else { } if ((unsigned int )hw->rss_type != 0U) { rxq_ctrl_data = rxq_ctrl_data | 536870912U; } else { } rxq_ctrl_data = (((unsigned int )hw->rss_mode & 3U) << 26) | rxq_ctrl_data; rxq_ctrl_data = (u32 )((int )hw->rss_hash_bits << 8) | rxq_ctrl_data; if (((int )hw->ctrl_flags & 512) != 0) { rxq_ctrl_data = rxq_ctrl_data | 1U; } else { } { writel(rxq_ctrl_data, (void volatile *)hw->hw_addr + 5536U); } return; } } static void atl1c_configure_rss(struct atl1c_adapter *adapter ) { struct atl1c_hw *hw ; { { hw = & adapter->hw; writel(hw->indirect_tab, (void volatile *)hw->hw_addr + 5344U); writel(hw->base_cpu, (void volatile *)hw->hw_addr + 5560U); } return; } } static void atl1c_configure_dma(struct atl1c_adapter *adapter ) { struct atl1c_hw *hw ; u32 dma_ctrl_data ; { hw = & adapter->hw; dma_ctrl_data = 1024U; if (((int )hw->ctrl_flags & 4) != 0) { dma_ctrl_data = dma_ctrl_data | 1048576U; } else { } if (((int )hw->ctrl_flags & 16) != 0) { dma_ctrl_data = dma_ctrl_data | 2097152U; } else { dma_ctrl_data = dma_ctrl_data | 16777216U; } if ((int )((unsigned int )hw->dma_order) == 1) { goto case_1; } else if ((int )((unsigned int )hw->dma_order) == 2) { goto case_2; } else if ((int )((unsigned int )hw->dma_order) == 4) { goto case_4; } else { goto switch_default; if (0) { case_1: dma_ctrl_data = dma_ctrl_data | 1U; goto ldv_42791; case_2: dma_ctrl_data = dma_ctrl_data | 2U; goto ldv_42791; case_4: dma_ctrl_data = dma_ctrl_data | 4U; goto ldv_42791; switch_default: ; goto ldv_42791; } else { } } ldv_42791: { dma_ctrl_data = (((unsigned int )hw->dmar_block & 7U) << 4) | dma_ctrl_data; dma_ctrl_data = (((unsigned int )hw->dmaw_block & 7U) << 7) | dma_ctrl_data; dma_ctrl_data = (((unsigned int )hw->dmar_dly_cnt << 11) & 65535U) | dma_ctrl_data; dma_ctrl_data = (((unsigned int )hw->dmaw_dly_cnt & 15U) << 16) | dma_ctrl_data; writel(dma_ctrl_data, (void volatile *)hw->hw_addr + 5568U); } return; } } static int atl1c_stop_mac(struct atl1c_hw *hw ) { u32 data ; long tmp ; long tmp___0 ; long tmp___1 ; u32 tmp___2 ; { { tmp = __builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 5536U); data = readl((void const volatile *)hw->hw_addr + 5536U); } } else { { data = readl((void const volatile *)hw->hw_addr + 5536U); } } { data = data & 2147483535U; writel(data, (void volatile *)hw->hw_addr + 5536U); tmp___0 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 5520U); data = readl((void const volatile *)hw->hw_addr + 5520U); } } else { { data = readl((void const volatile *)hw->hw_addr + 5520U); } } { data = data & 4294967263U; writel(data, (void volatile *)hw->hw_addr + 536U); atl1c_wait_until_idle(hw); tmp___1 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___1 != 0L) { { readl((void const volatile *)hw->hw_addr + 5248U); data = readl((void const volatile *)hw->hw_addr + 5248U); } } else { { data = readl((void const volatile *)hw->hw_addr + 5248U); } } { data = data & 4294967292U; writel(data, (void volatile *)hw->hw_addr + 5248U); tmp___2 = atl1c_wait_until_idle(hw); } return ((int )tmp___2); } } static void atl1c_enable_rx_ctrl(struct atl1c_hw *hw ) { u32 data ; long tmp ; { { tmp = __builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 5536U); data = readl((void const volatile *)hw->hw_addr + 5536U); } } else { { data = readl((void const volatile *)hw->hw_addr + 5536U); } } if ((hw->adapter)->num_rx_queues == 4) { goto case_4; } else if ((hw->adapter)->num_rx_queues == 3) { goto case_3; } else if ((hw->adapter)->num_rx_queues == 2) { goto case_2; } else { goto switch_default; if (0) { case_4: data = data | 112U; goto ldv_42804; case_3: data = data | 48U; goto ldv_42804; case_2: data = data | 16U; goto ldv_42804; switch_default: ; goto ldv_42804; } else { } } ldv_42804: { data = data | 2147483648U; writel(data, (void volatile *)hw->hw_addr + 5536U); } return; } } static void atl1c_enable_tx_ctrl(struct atl1c_hw *hw ) { u32 data ; long tmp ; { { tmp = __builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 5520U); data = readl((void const volatile *)hw->hw_addr + 5520U); } } else { { data = readl((void const volatile *)hw->hw_addr + 5520U); } } { data = data | 32U; writel(data, (void volatile *)hw->hw_addr + 5520U); } return; } } static int atl1c_reset_mac(struct atl1c_hw *hw ) { struct atl1c_adapter *adapter ; struct pci_dev *pdev ; u32 master_ctrl_data ; long tmp ; u32 tmp___0 ; { { adapter = hw->adapter; pdev = adapter->pdev; master_ctrl_data = 0U; writel(0U, (void volatile *)hw->hw_addr + 5636U); writel(2147483648U, (void volatile *)hw->hw_addr + 5632U); atl1c_stop_mac(hw); tmp = __builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 5120U); master_ctrl_data = readl((void const volatile *)hw->hw_addr + 5120U); } } else { { master_ctrl_data = readl((void const volatile *)hw->hw_addr + 5120U); } } { master_ctrl_data = master_ctrl_data | 64U; writew((unsigned short )((int )((unsigned int )((unsigned short )master_ctrl_data) | 1U)), (void volatile *)hw->hw_addr + 5120U); readl((void const volatile *)hw->hw_addr); msleep(10U); tmp___0 = atl1c_wait_until_idle(hw); } if (tmp___0 != 0U) { { dev_err((struct device const *)(& pdev->dev), "MAC state machine can\'t be idle since disabled for 10ms second\n"); } return (-1); } else { } return (0); } } static void atl1c_disable_l0s_l1(struct atl1c_hw *hw ) { u32 pm_ctrl_data ; long tmp ; { { tmp = __builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 4856U); pm_ctrl_data = readl((void const volatile *)hw->hw_addr + 4856U); } } else { { pm_ctrl_data = readl((void const volatile *)hw->hw_addr + 4856U); } } { pm_ctrl_data = pm_ctrl_data & 4293984255U; pm_ctrl_data = pm_ctrl_data & 4294959103U; pm_ctrl_data = pm_ctrl_data & 4294963199U; pm_ctrl_data = pm_ctrl_data & 4294967287U; pm_ctrl_data = pm_ctrl_data & 3221225471U; pm_ctrl_data = pm_ctrl_data & 4294967231U; pm_ctrl_data = pm_ctrl_data | 128U; pm_ctrl_data = pm_ctrl_data | 32U; pm_ctrl_data = pm_ctrl_data | 16U; writel(pm_ctrl_data, (void volatile *)hw->hw_addr + 4856U); } return; } } static void atl1c_set_aspm(struct atl1c_hw *hw , bool linkup ) { u32 pm_ctrl_data ; u32 link_ctrl_data ; u32 link_l1_timer ; long tmp ; long tmp___0 ; { { link_l1_timer = 15U; tmp = __builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 4856U); pm_ctrl_data = readl((void const volatile *)hw->hw_addr + 4856U); } } else { { pm_ctrl_data = readl((void const volatile *)hw->hw_addr + 4856U); } } { tmp___0 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 104U); link_ctrl_data = readl((void const volatile *)hw->hw_addr + 104U); } } else { { link_ctrl_data = readl((void const volatile *)hw->hw_addr + 104U); } } pm_ctrl_data = pm_ctrl_data & 4294967231U; pm_ctrl_data = pm_ctrl_data & 4293984255U; pm_ctrl_data = pm_ctrl_data & 4043309055U; pm_ctrl_data = pm_ctrl_data | 201326592U; if ((unsigned int )hw->nic_type == 2U) { goto _L; } else if ((unsigned int )hw->nic_type == 4U) { goto _L; } else if ((unsigned int )hw->nic_type == 3U) { goto _L; } else if ((unsigned int )hw->nic_type == 5U) { _L: link_ctrl_data = link_ctrl_data & 4294967167U; if (((int )hw->ctrl_flags & 2048) == 0) { if ((unsigned int )hw->nic_type == 2U) { if ((unsigned int )hw->revision_id == 192U) { link_ctrl_data = link_ctrl_data | 128U; } else { } } else { } } else { } { writel(link_ctrl_data, (void volatile *)hw->hw_addr + 104U); pm_ctrl_data = pm_ctrl_data | 32768U; pm_ctrl_data = pm_ctrl_data & 4279238655U; pm_ctrl_data = pm_ctrl_data | 12582912U; pm_ctrl_data = pm_ctrl_data & 3758096383U; pm_ctrl_data = pm_ctrl_data & 2147483647U; pm_ctrl_data = pm_ctrl_data | 65536U; pm_ctrl_data = pm_ctrl_data | 64U; } } else { } pm_ctrl_data = pm_ctrl_data | 1073741824U; if ((int )linkup) { pm_ctrl_data = pm_ctrl_data & 4294967287U; pm_ctrl_data = pm_ctrl_data & 4294963199U; if (((int )hw->ctrl_flags & 256) != 0) { pm_ctrl_data = pm_ctrl_data | 8U; } else { } if (((int )hw->ctrl_flags & 128) != 0) { pm_ctrl_data = pm_ctrl_data | 4096U; } else { } if ((unsigned int )hw->nic_type == 2U) { goto _L___1; } else if ((unsigned int )hw->nic_type == 4U) { goto _L___1; } else if ((unsigned int )hw->nic_type == 3U) { goto _L___1; } else if ((unsigned int )hw->nic_type == 5U) { _L___1: if ((unsigned int )hw->nic_type == 2U) { if (((int )hw->ctrl_flags & 2048) == 0) { pm_ctrl_data = pm_ctrl_data & 4294963199U; } else { } } else { } pm_ctrl_data = pm_ctrl_data & 4294967279U; pm_ctrl_data = pm_ctrl_data & 4294967263U; pm_ctrl_data = pm_ctrl_data & 4294967167U; pm_ctrl_data = pm_ctrl_data | 8192U; if ((unsigned int )(hw->adapter)->link_speed == 100U) { goto _L___0; } else if ((unsigned int )(hw->adapter)->link_speed == 1000U) { _L___0: pm_ctrl_data = pm_ctrl_data & 4293984255U; if ((unsigned int )hw->nic_type == 2U) { link_l1_timer = 7U; } else if ((unsigned int )hw->nic_type == 3U) { link_l1_timer = 4U; } else if ((unsigned int )hw->nic_type == 5U) { link_l1_timer = 4U; } else { } pm_ctrl_data = (link_l1_timer << 16) | pm_ctrl_data; } else { } } else { pm_ctrl_data = pm_ctrl_data | 16U; pm_ctrl_data = pm_ctrl_data | 32U; pm_ctrl_data = pm_ctrl_data | 128U; pm_ctrl_data = pm_ctrl_data & 4294959103U; pm_ctrl_data = pm_ctrl_data & 4294963199U; pm_ctrl_data = pm_ctrl_data & 4294967287U; } } else { pm_ctrl_data = pm_ctrl_data & 4294967279U; pm_ctrl_data = pm_ctrl_data & 4294963199U; pm_ctrl_data = pm_ctrl_data & 4294967263U; pm_ctrl_data = pm_ctrl_data | 8192U; if (((int )hw->ctrl_flags & 256) != 0) { pm_ctrl_data = pm_ctrl_data | 8U; } else { pm_ctrl_data = pm_ctrl_data & 4294967287U; } } { writel(pm_ctrl_data, (void volatile *)hw->hw_addr + 4856U); } return; } } static void atl1c_setup_mac_ctrl(struct atl1c_adapter *adapter ) { struct atl1c_hw *hw ; struct net_device *netdev ; u32 mac_ctrl_data ; { hw = & adapter->hw; netdev = adapter->netdev; mac_ctrl_data = 3U; mac_ctrl_data = mac_ctrl_data | 12U; if ((unsigned int )adapter->link_duplex == 2U) { hw->mac_duplex = (bool )1; mac_ctrl_data = mac_ctrl_data | 32U; } else { } if ((unsigned int )adapter->link_speed == 1000U) { hw->mac_speed = (enum atl1c_mac_speed )2; } else { hw->mac_speed = (enum atl1c_mac_speed )1; } mac_ctrl_data = (((unsigned int )hw->mac_speed & 3U) << 20) | mac_ctrl_data; mac_ctrl_data = mac_ctrl_data | 192U; mac_ctrl_data = (u32 )(((int )hw->preamble_len & 15) << 10) | mac_ctrl_data; if ((unsigned long )adapter->vlgrp != (unsigned long )((struct vlan_group *)0)) { mac_ctrl_data = mac_ctrl_data | 16384U; } else { } mac_ctrl_data = mac_ctrl_data | 67108864U; if ((netdev->flags & 256U) != 0U) { mac_ctrl_data = mac_ctrl_data | 32768U; } else { } if ((netdev->flags & 512U) != 0U) { mac_ctrl_data = mac_ctrl_data | 33554432U; } else { } mac_ctrl_data = mac_ctrl_data | 268435456U; if ((unsigned int )hw->nic_type == 4U) { mac_ctrl_data = mac_ctrl_data | 1073741824U; mac_ctrl_data = mac_ctrl_data | 536870912U; } else if ((unsigned int )hw->nic_type == 3U) { mac_ctrl_data = mac_ctrl_data | 1073741824U; mac_ctrl_data = mac_ctrl_data | 536870912U; } else if ((unsigned int )hw->nic_type == 5U) { mac_ctrl_data = mac_ctrl_data | 1073741824U; mac_ctrl_data = mac_ctrl_data | 536870912U; } else { } { writel(mac_ctrl_data, (void volatile *)hw->hw_addr + 5248U); } return; } } static int atl1c_configure(struct atl1c_adapter *adapter ) { struct atl1c_hw *hw ; u32 master_ctrl_data ; u32 intr_modrt_data ; u32 data ; { { hw = & adapter->hw; master_ctrl_data = 0U; writel(4294967295U, (void volatile *)hw->hw_addr + 5632U); writel(0U, (void volatile *)hw->hw_addr + 5280U); data = 63U; } if (((int )hw->ctrl_flags & 8192) != 0) { if ((unsigned int )hw->nic_type == 2U) { data = data & 4294967263U; } else { data = 0U; } } else { } { writel(data, (void volatile *)hw->hw_addr + 6164U); writel((unsigned int )hw->ict, (void volatile *)hw->hw_addr + 5640U); atl1c_configure_des_ring(adapter); } if (((int )hw->ctrl_flags & 2) != 0) { { intr_modrt_data = (u32 )hw->tx_imt; intr_modrt_data = (u32 )((int )hw->rx_imt << 16) | intr_modrt_data; writel(intr_modrt_data, (void volatile *)hw->hw_addr + 5128U); master_ctrl_data = master_ctrl_data | 3072U; } } else { } if ((int )hw->ctrl_flags & 1) { master_ctrl_data = master_ctrl_data | 16384U; } else { } { master_ctrl_data = master_ctrl_data | 128U; writel(master_ctrl_data, (void volatile *)hw->hw_addr + 5120U); } if (((int )hw->ctrl_flags & 4) != 0) { { writel((unsigned int )hw->cmb_tpd, (void volatile *)hw->hw_addr + 5576U); writel((unsigned int )hw->cmb_tx_timer, (void volatile *)hw->hw_addr + 5580U); } } else { } if (((int )hw->ctrl_flags & 16) != 0) { { writel(hw->smb_timer & 16777215U, (void volatile *)hw->hw_addr + 5572U); } } else { } { writel((unsigned int )((int )hw->max_frame_size + 22), (void volatile *)hw->hw_addr + 5276U); writel(0U, (void volatile *)hw->hw_addr + 5644U); atl1c_configure_tx(adapter); atl1c_configure_rx(adapter); atl1c_configure_rss(adapter); atl1c_configure_dma(adapter); } return (0); } } static void atl1c_update_hw_stats(struct atl1c_adapter *adapter ) { u16 hw_reg_addr ; unsigned long *stats_item ; u32 data ; long tmp ; long tmp___0 ; { hw_reg_addr = (u16 )0U; stats_item = (unsigned long *)0; hw_reg_addr = (u16 )5888U; stats_item = & adapter->hw_stats.rx_ok; goto ldv_42849; ldv_42848: { tmp = __builtin_expect((long )adapter->hw.hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)adapter->hw.hw_addr + (unsigned long )hw_reg_addr); data = readl((void const volatile *)adapter->hw.hw_addr + (unsigned long )hw_reg_addr); } } else { { data = readl((void const volatile *)adapter->hw.hw_addr + (unsigned long )hw_reg_addr); } } *stats_item = *stats_item + (unsigned long )data; stats_item = stats_item + 1; hw_reg_addr = (u16 )((unsigned int )hw_reg_addr + 4U); ldv_42849: ; if ((unsigned int )hw_reg_addr <= 5980U) { goto ldv_42848; } else { goto ldv_42850; } ldv_42850: hw_reg_addr = (u16 )5984U; stats_item = & adapter->hw_stats.tx_ok; goto ldv_42852; ldv_42851: { tmp___0 = __builtin_expect((long )adapter->hw.hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)adapter->hw.hw_addr + (unsigned long )hw_reg_addr); data = readl((void const volatile *)adapter->hw.hw_addr + (unsigned long )hw_reg_addr); } } else { { data = readl((void const volatile *)adapter->hw.hw_addr + (unsigned long )hw_reg_addr); } } *stats_item = *stats_item + (unsigned long )data; stats_item = stats_item + 1; hw_reg_addr = (u16 )((unsigned int )hw_reg_addr + 4U); ldv_42852: ; if ((unsigned int )hw_reg_addr <= 6080U) { goto ldv_42851; } else { goto ldv_42853; } ldv_42853: ; return; } } static struct net_device_stats *atl1c_get_stats(struct net_device *netdev ) { struct atl1c_adapter *adapter ; void *tmp ; struct atl1c_hw_stats *hw_stats ; struct net_device_stats *net_stats ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; hw_stats = & adapter->hw_stats; net_stats = & netdev->stats; atl1c_update_hw_stats(adapter); net_stats->rx_packets = hw_stats->rx_ok; net_stats->tx_packets = hw_stats->tx_ok; net_stats->rx_bytes = hw_stats->rx_byte_cnt; net_stats->tx_bytes = hw_stats->tx_byte_cnt; net_stats->multicast = hw_stats->rx_mcast; net_stats->collisions = ((hw_stats->tx_1_col + hw_stats->tx_2_col * 2UL) + hw_stats->tx_late_col) + hw_stats->tx_abort_col; net_stats->rx_errors = ((((hw_stats->rx_frag + hw_stats->rx_fcs_err) + hw_stats->rx_len_err) + hw_stats->rx_sz_ov) + hw_stats->rx_rrd_ov) + hw_stats->rx_align_err; net_stats->rx_fifo_errors = hw_stats->rx_rxf_ov; net_stats->rx_length_errors = hw_stats->rx_len_err; net_stats->rx_crc_errors = hw_stats->rx_fcs_err; net_stats->rx_frame_errors = hw_stats->rx_align_err; net_stats->rx_over_errors = hw_stats->rx_rrd_ov + hw_stats->rx_rxf_ov; net_stats->rx_missed_errors = hw_stats->rx_rrd_ov + hw_stats->rx_rxf_ov; net_stats->tx_errors = ((hw_stats->tx_late_col + hw_stats->tx_abort_col) + hw_stats->tx_underrun) + hw_stats->tx_trunc; net_stats->tx_fifo_errors = hw_stats->tx_underrun; net_stats->tx_aborted_errors = hw_stats->tx_abort_col; net_stats->tx_window_errors = hw_stats->tx_late_col; } return (net_stats); } } __inline static void atl1c_clear_phy_int(struct atl1c_adapter *adapter ) { u16 phy_data ; { { spin_lock(& adapter->mdio_lock); atl1c_read_phy_reg(& adapter->hw, (u16 )19, & phy_data); spin_unlock(& adapter->mdio_lock); } return; } } static bool atl1c_clean_tx_irq(struct atl1c_adapter *adapter , enum atl1c_trans_queue type ) { struct atl1c_tpd_ring *tpd_ring ; struct atl1c_buffer *buffer_info ; struct pci_dev *pdev ; u16 next_to_clean ; int tmp ; u16 hw_next_to_clean ; u16 shift ; u32 data ; long tmp___0 ; int tmp___1 ; int tmp___2 ; { { tpd_ring = (struct atl1c_tpd_ring *)(& adapter->tpd_ring) + (unsigned long )type; pdev = adapter->pdev; tmp = atomic_read((atomic_t const *)(& tpd_ring->next_to_clean)); next_to_clean = (u16 )tmp; } if ((unsigned int )type == 1U) { shift = (u16 )0U; } else { shift = (u16 )16U; } { tmp___0 = __builtin_expect((long )adapter->hw.hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)adapter->hw.hw_addr + 5620U); data = readl((void const volatile *)adapter->hw.hw_addr + 5620U); } } else { { data = readl((void const volatile *)adapter->hw.hw_addr + 5620U); } } hw_next_to_clean = (u16 )(data >> (int )shift); goto ldv_42876; ldv_42875: { buffer_info = tpd_ring->buffer_info + (unsigned long )next_to_clean; atl1c_clean_buffer(pdev, buffer_info, 1); next_to_clean = (u16 )((int )next_to_clean + 1); } if ((int )next_to_clean == (int )tpd_ring->count) { next_to_clean = (u16 )0U; } else { } { atomic_set(& tpd_ring->next_to_clean, (int )next_to_clean); } ldv_42876: ; if ((int )next_to_clean != (int )hw_next_to_clean) { goto ldv_42875; } else { goto ldv_42877; } ldv_42877: { tmp___1 = netif_queue_stopped((struct net_device const *)adapter->netdev); } if (tmp___1 != 0) { { tmp___2 = netif_carrier_ok((struct net_device const *)adapter->netdev); } if (tmp___2 != 0) { { netif_wake_queue(adapter->netdev); } } else { } } else { } return ((bool )1); } } static irqreturn_t atl1c_intr(int irq , void *data ) { struct net_device *netdev ; struct atl1c_adapter *adapter ; void *tmp ; struct pci_dev *pdev ; struct atl1c_hw *hw ; int max_ints ; int handled ; u32 status ; u32 reg_data ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { { netdev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; pdev = adapter->pdev; hw = & adapter->hw; max_ints = 5; handled = 0; } ldv_42891: { tmp___0 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 5632U); reg_data = readl((void const volatile *)hw->hw_addr + 5632U); } } else { { reg_data = readl((void const volatile *)hw->hw_addr + 5632U); } } status = hw->intr_mask & reg_data; if (status == 0U) { goto _L; } else if ((int )status < 0) { _L: if (max_ints != 5) { handled = 1; } else { } goto ldv_42890; } else { } if ((status & 4096U) != 0U) { { atl1c_clear_phy_int(adapter); } } else { } { writel(status | 2147483648U, (void volatile *)hw->hw_addr + 5632U); } if ((status & 983040U) != 0U) { { tmp___1 = napi_schedule_prep(& adapter->napi); tmp___2 = __builtin_expect((long )(tmp___1 != 0), 1L); } if (tmp___2 != 0L) { { hw->intr_mask = hw->intr_mask & 4293984255U; writel(hw->intr_mask, (void volatile *)hw->hw_addr + 5636U); __napi_schedule(& adapter->napi); } } else { } } else { } if ((status & 32768U) != 0U) { { atl1c_clean_tx_irq(adapter, (enum atl1c_trans_queue )0); } } else { } handled = 1; if ((status & 67126784U) != 0U) { if ((adapter->msg_enable & 8192U) != 0U) { { dev_err((struct device const *)(& pdev->dev), "atl1c hardware error (status = 0x%x)\n", status & 67126784U); } } else { } { adapter->work_event = adapter->work_event; schedule_work(& adapter->common_task); } return ((irqreturn_t )1); } else { } if ((status & 504U) != 0U) { if ((adapter->msg_enable & 512U) != 0U) { { dev_warn((struct device const *)(& pdev->dev), "TX/RX overflow (status = 0x%x)\n", status & 504U); } } else { } } else { } if ((status & 4100U) != 0U) { { netdev->stats.tx_carrier_errors = netdev->stats.tx_carrier_errors + 1UL; atl1c_link_chg_event(adapter); } goto ldv_42890; } else { } max_ints = max_ints - 1; if (max_ints > 0) { goto ldv_42891; } else { goto ldv_42890; } ldv_42890: { writel(0U, (void volatile *)adapter->hw.hw_addr + 5632U); } return ((irqreturn_t )handled); } } __inline static void atl1c_rx_checksum(struct atl1c_adapter *adapter , struct sk_buff *skb , struct atl1c_recv_ret_status *prrs ) { { { skb_checksum_none_assert(skb); } return; } } static int atl1c_alloc_rx_buffer(struct atl1c_adapter *adapter , int const ringid ) { struct atl1c_rfd_ring *rfd_ring ; struct pci_dev *pdev ; struct atl1c_buffer *buffer_info ; struct atl1c_buffer *next_info ; struct sk_buff *skb ; void *vir_addr ; u16 num_alloc ; u16 rfd_next_to_use ; u16 next_next ; struct atl1c_rx_free_desc *rfd_desc ; long tmp ; { rfd_ring = (struct atl1c_rfd_ring *)(& adapter->rfd_ring) + (unsigned long )ringid; pdev = adapter->pdev; vir_addr = (void *)0; num_alloc = (u16 )0U; rfd_next_to_use = rfd_ring->next_to_use; next_next = rfd_next_to_use; next_next = (u16 )((int )next_next + 1); if ((int )next_next == (int )rfd_ring->count) { next_next = (u16 )0U; } else { } buffer_info = rfd_ring->buffer_info + (unsigned long )rfd_next_to_use; next_info = rfd_ring->buffer_info + (unsigned long )next_next; goto ldv_42913; ldv_42912: { rfd_desc = (struct atl1c_rx_free_desc *)rfd_ring->desc + (unsigned long )rfd_next_to_use; skb = dev_alloc_skb((unsigned int )adapter->rx_buffer_len); tmp = __builtin_expect((long )((unsigned long )skb == (unsigned long )((struct sk_buff *)0)), 0L); } if (tmp != 0L) { if ((adapter->msg_enable & 64U) != 0U) { { dev_warn((struct device const *)(& pdev->dev), "alloc rx buffer failed\n"); } } else { } goto ldv_42911; } else { } { vir_addr = (void *)skb->data; buffer_info->flags = (u16 )((unsigned int )buffer_info->flags & 65532U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 2U); buffer_info->skb = skb; buffer_info->length = adapter->rx_buffer_len; buffer_info->dma = pci_map_single(pdev, vir_addr, (size_t )buffer_info->length, 2); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags & 65523U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 4U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags & 65487U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 32U); rfd_desc->buffer_addr = buffer_info->dma; rfd_next_to_use = next_next; next_next = (u16 )((int )next_next + 1); } if ((int )next_next == (int )rfd_ring->count) { next_next = (u16 )0U; } else { } buffer_info = rfd_ring->buffer_info + (unsigned long )rfd_next_to_use; next_info = rfd_ring->buffer_info + (unsigned long )next_next; num_alloc = (u16 )((int )num_alloc + 1); ldv_42913: ; if ((int )next_info->flags & 1) { goto ldv_42912; } else { goto ldv_42911; } ldv_42911: ; if ((unsigned int )num_alloc != 0U) { { __asm__ volatile ("sfence": : : "memory"); rfd_ring->next_to_use = rfd_next_to_use; writel((unsigned int )rfd_ring->next_to_use, (void volatile *)adapter->hw.hw_addr + (unsigned long )atl1c_rfd_prod_idx_regs[ringid]); } } else { } return ((int )num_alloc); } } static void atl1c_clean_rrd(struct atl1c_rrd_ring *rrd_ring , struct atl1c_recv_ret_status *rrs , u16 num ) { u16 i ; { i = (u16 )0U; goto ldv_42921; ldv_42920: rrs->word3 = rrs->word3 & 2147483647U; rrd_ring->next_to_clean = (u16 )((int )rrd_ring->next_to_clean + 1); if ((int )rrd_ring->next_to_clean == (int )rrd_ring->count) { rrd_ring->next_to_clean = (u16 )0U; } else { } i = (u16 )((int )i + 1); rrs = (struct atl1c_recv_ret_status *)rrd_ring->desc + (unsigned long )rrd_ring->next_to_clean; ldv_42921: ; if ((int )i < (int )num) { goto ldv_42920; } else { goto ldv_42922; } ldv_42922: ; return; } } static void atl1c_clean_rfd(struct atl1c_rfd_ring *rfd_ring , struct atl1c_recv_ret_status *rrs , u16 num ) { u16 i ; u16 rfd_index ; struct atl1c_buffer *buffer_info ; { buffer_info = rfd_ring->buffer_info; rfd_index = (u16 )(rrs->word0 >> 20); i = (u16 )0U; goto ldv_42932; ldv_42931: (buffer_info + (unsigned long )rfd_index)->skb = (struct sk_buff *)0; (buffer_info + (unsigned long )rfd_index)->flags = (u16 )((unsigned int )(buffer_info + (unsigned long )rfd_index)->flags & 65532U); (buffer_info + (unsigned long )rfd_index)->flags = (u16 )((unsigned int )(buffer_info + (unsigned long )rfd_index)->flags | 1U); rfd_index = (u16 )((int )rfd_index + 1); if ((int )rfd_index == (int )rfd_ring->count) { rfd_index = (u16 )0U; } else { } i = (u16 )((int )i + 1); ldv_42932: ; if ((int )i < (int )num) { goto ldv_42931; } else { goto ldv_42933; } ldv_42933: rfd_ring->next_to_clean = rfd_index; return; } } static void atl1c_clean_rx_irq(struct atl1c_adapter *adapter , u8 que , int *work_done , int work_to_do ) { u16 rfd_num ; u16 rfd_index ; u16 count ; u16 length ; struct pci_dev *pdev ; struct net_device *netdev ; struct atl1c_rfd_ring *rfd_ring ; struct atl1c_rrd_ring *rrd_ring ; struct sk_buff *skb ; struct atl1c_recv_ret_status *rrs ; struct atl1c_buffer *buffer_info ; long tmp ; long tmp___0 ; long tmp___1 ; u16 vlan ; long tmp___2 ; { count = (u16 )0U; pdev = adapter->pdev; netdev = adapter->netdev; rfd_ring = (struct atl1c_rfd_ring *)(& adapter->rfd_ring) + (unsigned long )que; rrd_ring = (struct atl1c_rrd_ring *)(& adapter->rrd_ring) + (unsigned long )que; ldv_42955: ; if (*work_done >= work_to_do) { goto ldv_42951; } else { } { rrs = (struct atl1c_recv_ret_status *)rrd_ring->desc + (unsigned long )rrd_ring->next_to_clean; tmp___0 = __builtin_expect((long )(rrs->word3 >> 31 == 1U), 1L); } if (tmp___0 != 0L) { { rfd_num = (u16 )((unsigned int )((u16 )(rrs->word0 >> 16)) & 15U); tmp = __builtin_expect((long )((unsigned int )rfd_num != 1U), 0L); } if (tmp != 0L) { if ((adapter->msg_enable & 64U) != 0U) { { dev_warn((struct device const *)(& pdev->dev), "Multi rfd not support yet!\n"); } } else { } } else { } goto rrs_checked; } else { goto ldv_42951; } rrs_checked: { atl1c_clean_rrd(rrd_ring, rrs, (u16 )((int )rfd_num)); } if ((rrs->word3 & 1074790400U) != 0U) { { atl1c_clean_rfd(rfd_ring, rrs, (u16 )((int )rfd_num)); } if ((adapter->msg_enable & 64U) != 0U) { { dev_warn((struct device const *)(& pdev->dev), "wrong packet! rrs word3 is %x\n", rrs->word3); } } else { } goto ldv_42953; } else { } { length = (u16 )((unsigned int )((unsigned short )rrs->word3) & 16383U); tmp___1 = __builtin_expect((long )((unsigned int )rfd_num == 1U), 1L); } if (tmp___1 != 0L) { { rfd_index = (u16 )(rrs->word0 >> 20); buffer_info = rfd_ring->buffer_info + (unsigned long )rfd_index; pci_unmap_single(pdev, buffer_info->dma, (size_t )buffer_info->length, 2); skb = buffer_info->skb; } } else { if ((adapter->msg_enable & 64U) != 0U) { { dev_warn((struct device const *)(& pdev->dev), "Multi rfd not support yet!\n"); } } else { } goto ldv_42951; } { atl1c_clean_rfd(rfd_ring, rrs, (u16 )((int )rfd_num)); skb_put(skb, (unsigned int )((int )length + -4)); skb->protocol = eth_type_trans(skb, netdev); atl1c_rx_checksum(adapter, skb, rrs); tmp___2 = __builtin_expect((long )((unsigned long )adapter->vlgrp != (unsigned long )((struct vlan_group *)0)), 0L); } if (tmp___2 != 0L) { if ((rrs->word3 & 65536U) != 0U) { { vlan = (u16 )((int )((short )((int )rrs->vlan_tag >> 8)) | (int )((short )((int )rrs->vlan_tag << 8))); vlan = vlan; vlan_hwaccel_receive_skb(skb, adapter->vlgrp, (u16 )((int )vlan)); } } else { { netif_receive_skb(skb); } } } else { { netif_receive_skb(skb); } } *work_done = *work_done + 1; count = (u16 )((int )count + 1); ldv_42953: ; goto ldv_42955; ldv_42951: ; if ((unsigned int )count != 0U) { { atl1c_alloc_rx_buffer(adapter, (int const )que); } } else { } return; } } static int atl1c_clean(struct napi_struct *napi , int budget ) { struct atl1c_adapter *adapter ; struct napi_struct const *__mptr ; int work_done ; int tmp ; { { __mptr = (struct napi_struct const *)napi; adapter = (struct atl1c_adapter *)__mptr + 0x0fffffffffffffe8UL; work_done = 0; tmp = netif_carrier_ok((struct net_device const *)adapter->netdev); } if (tmp == 0) { goto quit_polling; } else { } { atl1c_clean_rx_irq(adapter, (u8 )0, & work_done, budget); } if (work_done < budget) { quit_polling: { napi_complete(napi); adapter->hw.intr_mask = adapter->hw.intr_mask | 983040U; writel(adapter->hw.intr_mask, (void volatile *)adapter->hw.hw_addr + 5636U); } } else { } return (work_done); } } static void atl1c_netpoll(struct net_device *netdev ) { struct atl1c_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; disable_irq((adapter->pdev)->irq); atl1c_intr((int )(adapter->pdev)->irq, (void *)netdev); enable_irq((adapter->pdev)->irq); } return; } } __inline static u16 atl1c_tpd_avail(struct atl1c_adapter *adapter , enum atl1c_trans_queue type ) { struct atl1c_tpd_ring *tpd_ring ; u16 next_to_use ; u16 next_to_clean ; int tmp ; unsigned int tmp___0 ; { { tpd_ring = (struct atl1c_tpd_ring *)(& adapter->tpd_ring) + (unsigned long )type; next_to_use = (u16 )0U; next_to_clean = (u16 )0U; tmp = atomic_read((atomic_t const *)(& tpd_ring->next_to_clean)); next_to_clean = (u16 )tmp; next_to_use = tpd_ring->next_to_use; } if ((int )next_to_clean > (int )next_to_use) { tmp___0 = (unsigned int )((int )next_to_clean - (int )next_to_use) + 65535U; } else { tmp___0 = (unsigned int )(((int )tpd_ring->count + (int )next_to_clean) - (int )next_to_use) + 65535U; } return ((u16 )tmp___0); } } static struct atl1c_tpd_desc *atl1c_get_tpd(struct atl1c_adapter *adapter , enum atl1c_trans_queue type ) { struct atl1c_tpd_ring *tpd_ring ; struct atl1c_tpd_desc *tpd_desc ; u16 next_to_use ; { tpd_ring = (struct atl1c_tpd_ring *)(& adapter->tpd_ring) + (unsigned long )type; next_to_use = (u16 )0U; next_to_use = tpd_ring->next_to_use; tpd_ring->next_to_use = (u16 )((int )tpd_ring->next_to_use + 1); if ((int )tpd_ring->next_to_use == (int )tpd_ring->count) { tpd_ring->next_to_use = (u16 )0U; } else { } { tpd_desc = (struct atl1c_tpd_desc *)tpd_ring->desc + (unsigned long )next_to_use; memset((void *)tpd_desc, 0, 16UL); } return (tpd_desc); } } static struct atl1c_buffer *atl1c_get_tx_buffer(struct atl1c_adapter *adapter , struct atl1c_tpd_desc *tpd ) { struct atl1c_tpd_ring *tpd_ring ; { tpd_ring = (struct atl1c_tpd_ring *)(& adapter->tpd_ring); return (tpd_ring->buffer_info + (unsigned long )(((long )tpd - (long )tpd_ring->desc) / 16L)); } } static u16 atl1c_cal_tpd_req(struct sk_buff const *skb ) { u16 tpd_req ; u16 proto_hdr_len ; unsigned char *tmp ; int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned char *tmp___3 ; int tmp___4 ; { { proto_hdr_len = (u16 )0U; tmp = skb_end_pointer(skb); tpd_req = (u16 )((unsigned int )((struct skb_shared_info *)tmp)->nr_frags + 1U); tmp___4 = skb_is_gso(skb); } if (tmp___4 != 0) { { tmp___0 = skb_transport_offset(skb); tmp___1 = tcp_hdrlen(skb); proto_hdr_len = (u16 )((int )((u16 )tmp___0) + (int )((u16 )tmp___1)); tmp___2 = skb_headlen(skb); } if ((unsigned int )proto_hdr_len < tmp___2) { tpd_req = (u16 )((int )tpd_req + 1); } else { } { tmp___3 = skb_end_pointer(skb); } if (((int )((struct skb_shared_info *)tmp___3)->gso_type & 16) != 0) { tpd_req = (u16 )((int )tpd_req + 1); } else { } } else { } return (tpd_req); } } static int atl1c_tso_csum(struct atl1c_adapter *adapter , struct sk_buff *skb , struct atl1c_tpd_desc **tpd , enum atl1c_trans_queue type ) { struct pci_dev *pdev ; u8 hdr_len ; u32 real_len ; unsigned short offload_type ; int err ; long tmp ; int tmp___0 ; unsigned char *tmp___1 ; struct iphdr *tmp___2 ; struct iphdr *tmp___3 ; __u16 tmp___4 ; int tmp___5 ; unsigned int tmp___6 ; struct iphdr *tmp___7 ; struct tcphdr *tmp___8 ; struct iphdr *tmp___9 ; struct iphdr *tmp___10 ; __sum16 tmp___11 ; long tmp___12 ; struct atl1c_tpd_ext_desc *etpd ; struct ipv6hdr *tmp___13 ; int tmp___14 ; unsigned int tmp___15 ; struct tcphdr *tmp___16 ; struct ipv6hdr *tmp___17 ; struct ipv6hdr *tmp___18 ; __sum16 tmp___19 ; long tmp___20 ; int tmp___21 ; unsigned char *tmp___22 ; int tmp___23 ; u8 css ; u8 cso ; int tmp___24 ; long tmp___25 ; long tmp___26 ; { { pdev = adapter->pdev; tmp___23 = skb_is_gso((struct sk_buff const *)skb); } if (tmp___23 != 0) { { tmp___0 = skb_header_cloned((struct sk_buff const *)skb); } if (tmp___0 != 0) { { err = pskb_expand_head(skb, 0, 0, 32U); tmp = __builtin_expect((long )(err != 0), 0L); } if (tmp != 0L) { return (-1); } else { } } else { } { tmp___1 = skb_end_pointer((struct sk_buff const *)skb); offload_type = ((struct skb_shared_info *)tmp___1)->gso_type; } if ((int )offload_type & 1) { { tmp___2 = ip_hdr((struct sk_buff const *)skb); tmp___3 = ip_hdr((struct sk_buff const *)skb); tmp___4 = __fswab16((__u16 )((int )tmp___3->tot_len)); real_len = ((u32 )((long )tmp___2) - (u32 )((long )skb->data)) + (u32 )tmp___4; } if (skb->len > real_len) { { pskb_trim(skb, real_len); } } else { } { tmp___5 = skb_transport_offset((struct sk_buff const *)skb); tmp___6 = tcp_hdrlen((struct sk_buff const *)skb); hdr_len = (u8 )((int )((u8 )tmp___5) + (int )((u8 )tmp___6)); tmp___12 = __builtin_expect((long )(skb->len == (unsigned int )hdr_len), 0L); } if (tmp___12 != 0L) { if ((adapter->msg_enable & 256U) != 0U) { { dev_warn((struct device const *)(& pdev->dev), "IPV4 tso with zero data??\n"); } } else { } goto check_sum; } else { { tmp___7 = ip_hdr((struct sk_buff const *)skb); tmp___7->check = (__sum16 )0U; tmp___8 = tcp_hdr((struct sk_buff const *)skb); tmp___9 = ip_hdr((struct sk_buff const *)skb); tmp___10 = ip_hdr((struct sk_buff const *)skb); tmp___11 = csum_tcpudp_magic(tmp___10->saddr, tmp___9->daddr, (unsigned short)0, (unsigned short)6, 0U); tmp___8->check = (__sum16 )(~ ((int )tmp___11)); (*tpd)->word1 = (*tpd)->word1 | 65536U; } } } else { } if (((int )offload_type & 16) != 0) { { etpd = *((struct atl1c_tpd_ext_desc **)tpd); memset((void *)etpd, 0, 16UL); *tpd = atl1c_get_tpd(adapter, type); tmp___13 = ipv6_hdr((struct sk_buff const *)skb); tmp___13->payload_len = (__be16 )0U; tmp___14 = skb_transport_offset((struct sk_buff const *)skb); tmp___15 = tcp_hdrlen((struct sk_buff const *)skb); hdr_len = (u8 )((int )((u8 )tmp___14) + (int )((u8 )tmp___15)); tmp___20 = __builtin_expect((long )(skb->len == (unsigned int )hdr_len), 0L); } if (tmp___20 != 0L) { if ((adapter->msg_enable & 256U) != 0U) { { dev_warn((struct device const *)(& pdev->dev), "IPV6 tso with zero data??\n"); } } else { } goto check_sum; } else { { tmp___16 = tcp_hdr((struct sk_buff const *)skb); tmp___17 = ipv6_hdr((struct sk_buff const *)skb); tmp___18 = ipv6_hdr((struct sk_buff const *)skb); tmp___19 = csum_ipv6_magic((struct in6_addr const *)(& tmp___18->saddr), (struct in6_addr const *)(& tmp___17->daddr), 0U, (unsigned short)6, 0U); tmp___16->check = (__sum16 )(~ ((int )tmp___19)); } } etpd->word1 = etpd->word1 | 4096U; etpd->word1 = etpd->word1 | 8192U; etpd->pkt_len = skb->len; (*tpd)->word1 = (*tpd)->word1 | 8192U; } else { } { (*tpd)->word1 = (*tpd)->word1 | 4096U; tmp___21 = skb_transport_offset((struct sk_buff const *)skb); (*tpd)->word1 = (*tpd)->word1 | ((__le32 )tmp___21 & 255U); tmp___22 = skb_end_pointer((struct sk_buff const *)skb); (*tpd)->word1 = (*tpd)->word1 | (__le32 )(((int )((struct skb_shared_info *)tmp___22)->gso_size & 8191) << 18); } return (0); } else { } check_sum: { tmp___26 = __builtin_expect((long )((unsigned int )*((unsigned char *)skb + 124UL) == 12U), 1L); } if (tmp___26 != 0L) { { tmp___24 = skb_checksum_start_offset((struct sk_buff const *)skb); cso = (u8 )tmp___24; tmp___25 = __builtin_expect((long )cso & 1L, 0L); } if (tmp___25 != 0L) { if ((adapter->msg_enable & 128U) != 0U) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "payload offset should not an event number\n"); } } else { } return (-1); } else { css = (u8 )((int )((u8 )skb->ldv_21038.ldv_21037.csum_offset) + (int )cso); (*tpd)->word1 = (*tpd)->word1 | (__le32 )((int )cso >> 1); (*tpd)->word1 = (*tpd)->word1 | (__le32 )(((int )css >> 1) << 18); (*tpd)->word1 = (*tpd)->word1 | 256U; } } else { } return (0); } } static void atl1c_tx_map(struct atl1c_adapter *adapter , struct sk_buff *skb , struct atl1c_tpd_desc *tpd , enum atl1c_trans_queue type ) { struct atl1c_tpd_desc *use_tpd ; struct atl1c_buffer *buffer_info ; u16 buf_len ; unsigned int tmp ; u16 map_len ; u16 mapped_len ; u16 hdr_len ; u16 nr_frags ; u16 f ; int tso ; unsigned char *tmp___0 ; int tmp___1 ; unsigned int tmp___2 ; size_t __len ; void *__ret ; struct skb_frag_struct *frag ; unsigned char *tmp___3 ; size_t __len___0 ; void *__ret___0 ; { { use_tpd = (struct atl1c_tpd_desc *)0; buffer_info = (struct atl1c_buffer *)0; tmp = skb_headlen((struct sk_buff const *)skb); buf_len = (u16 )tmp; map_len = (u16 )0U; mapped_len = (u16 )0U; hdr_len = (u16 )0U; tmp___0 = skb_end_pointer((struct sk_buff const *)skb); nr_frags = ((struct skb_shared_info *)tmp___0)->nr_frags; tso = (int )(tpd->word1 >> 12) & 1; } if (tso != 0) { { tmp___1 = skb_transport_offset((struct sk_buff const *)skb); tmp___2 = tcp_hdrlen((struct sk_buff const *)skb); hdr_len = (u16 )((int )((u16 )tmp___1) + (int )((u16 )tmp___2)); map_len = hdr_len; use_tpd = tpd; buffer_info = atl1c_get_tx_buffer(adapter, use_tpd); buffer_info->length = map_len; buffer_info->dma = pci_map_single(adapter->pdev, (void *)skb->data, (size_t )hdr_len, 1); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags & 65532U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 2U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags & 65523U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 4U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags & 65487U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 16U); mapped_len = (u16 )((int )mapped_len + (int )map_len); use_tpd->buffer_addr = buffer_info->dma; use_tpd->buffer_len = buffer_info->length; } } else { } if ((int )mapped_len < (int )buf_len) { if ((unsigned int )mapped_len == 0U) { use_tpd = tpd; } else { { use_tpd = atl1c_get_tpd(adapter, type); __len = 16UL; } if (__len > 63UL) { { __ret = __memcpy((void *)use_tpd, (void const *)tpd, __len); } } else { { __ret = __builtin_memcpy((void *)use_tpd, (void const *)tpd, __len); } } } { buffer_info = atl1c_get_tx_buffer(adapter, use_tpd); buffer_info->length = (u16 )((int )buf_len - (int )mapped_len); buffer_info->dma = pci_map_single(adapter->pdev, (void *)skb->data + (unsigned long )mapped_len, (size_t )buffer_info->length, 1); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags & 65532U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 2U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags & 65523U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 4U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags & 65487U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 16U); use_tpd->buffer_addr = buffer_info->dma; use_tpd->buffer_len = buffer_info->length; } } else { } f = (u16 )0U; goto ldv_43031; ldv_43030: { tmp___3 = skb_end_pointer((struct sk_buff const *)skb); frag = (struct skb_frag_struct *)(& ((struct skb_shared_info *)tmp___3)->frags) + (unsigned long )f; use_tpd = atl1c_get_tpd(adapter, type); __len___0 = 16UL; } if (__len___0 > 63UL) { { __ret___0 = __memcpy((void *)use_tpd, (void const *)tpd, __len___0); } } else { { __ret___0 = __builtin_memcpy((void *)use_tpd, (void const *)tpd, __len___0); } } { buffer_info = atl1c_get_tx_buffer(adapter, use_tpd); buffer_info->length = (u16 )frag->size; buffer_info->dma = pci_map_page(adapter->pdev, frag->page, (unsigned long )frag->page_offset, (size_t )buffer_info->length, 1); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags & 65532U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 2U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags & 65523U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 8U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags & 65487U); buffer_info->flags = (u16 )((unsigned int )buffer_info->flags | 16U); use_tpd->buffer_addr = buffer_info->dma; use_tpd->buffer_len = buffer_info->length; f = (u16 )((int )f + 1); } ldv_43031: ; if ((int )f < (int )nr_frags) { goto ldv_43030; } else { goto ldv_43032; } ldv_43032: use_tpd->word1 = use_tpd->word1 | 2147483648U; buffer_info->skb = skb; return; } } static void atl1c_tx_queue(struct atl1c_adapter *adapter , struct sk_buff *skb , struct atl1c_tpd_desc *tpd , enum atl1c_trans_queue type ) { struct atl1c_tpd_ring *tpd_ring ; u32 prod_data ; long tmp ; { { tpd_ring = (struct atl1c_tpd_ring *)(& adapter->tpd_ring) + (unsigned long )type; tmp = __builtin_expect((long )adapter->hw.hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)adapter->hw.hw_addr + 5616U); prod_data = readl((void const volatile *)adapter->hw.hw_addr + 5616U); } } else { { prod_data = readl((void const volatile *)adapter->hw.hw_addr + 5616U); } } if ((int )((unsigned int )type) == 1) { goto case_1; } else if ((int )((unsigned int )type) == 0) { goto case_0; } else { goto switch_default; if (0) { case_1: prod_data = prod_data & 4294901760U; prod_data = (u32 )tpd_ring->next_to_use | prod_data; goto ldv_43042; case_0: prod_data = prod_data & 65535U; prod_data = (u32 )((int )tpd_ring->next_to_use << 16) | prod_data; goto ldv_43042; switch_default: ; goto ldv_43042; } else { } } ldv_43042: { __asm__ volatile ("sfence": : : "memory"); writel(prod_data, (void volatile *)adapter->hw.hw_addr + 5616U); } return; } } static netdev_tx_t atl1c_xmit_frame(struct sk_buff *skb , struct net_device *netdev ) { struct atl1c_adapter *adapter ; void *tmp ; unsigned long flags ; u16 tpd_req ; struct atl1c_tpd_desc *tpd ; enum atl1c_trans_queue type ; int tmp___0 ; int tmp___3 ; int tmp___4 ; raw_spinlock_t *tmp___5 ; int tmp___6 ; u16 tmp___7 ; int tmp___8 ; u16 vlan ; __le16 tag ; long tmp___9 ; int tmp___10 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; tpd_req = (u16 )1U; type = (enum atl1c_trans_queue )0; tmp___0 = constant_test_bit(3U, (unsigned long const volatile *)(& adapter->flags)); } if (tmp___0 != 0) { { dev_kfree_skb_any(skb); } return ((netdev_tx_t )0); } else { } { tpd_req = atl1c_cal_tpd_req((struct sk_buff const *)skb); flags = arch_local_irq_save(); trace_hardirqs_off(); tmp___5 = spinlock_check(& adapter->tx_lock); tmp___6 = _raw_spin_trylock(tmp___5); } if (tmp___6 == 0) { { tmp___3 = arch_irqs_disabled_flags(flags); } if (tmp___3 != 0) { { arch_local_irq_restore(flags); trace_hardirqs_off(); } } else { { trace_hardirqs_on(); arch_local_irq_restore(flags); } } tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4 == 0) { if ((adapter->msg_enable & 4096U) != 0U) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "tx locked\n"); } } else { } return ((netdev_tx_t )32); } else { } if (skb->ldv_21068.mark == 1U) { type = (enum atl1c_trans_queue )1; } else { type = (enum atl1c_trans_queue )0; } { tmp___7 = atl1c_tpd_avail(adapter, type); } if ((int )tmp___7 < (int )tpd_req) { { netif_stop_queue(netdev); spin_unlock_irqrestore(& adapter->tx_lock, flags); } return ((netdev_tx_t )16); } else { } { tpd = atl1c_get_tpd(adapter, type); tmp___8 = atl1c_tso_csum(adapter, skb, & tpd, type); } if (tmp___8 != 0) { { spin_unlock_irqrestore(& adapter->tx_lock, flags); dev_kfree_skb_any(skb); } return ((netdev_tx_t )0); } else { } { tmp___9 = __builtin_expect((long )(((int )skb->vlan_tci & 4096) != 0), 0L); } if (tmp___9 != 0L) { vlan = (u16 )((unsigned int )skb->vlan_tci & 61439U); vlan = vlan; tag = (__le16 )((int )((short )((int )vlan >> 8)) | (int )((short )((int )vlan << 8))); tpd->word1 = tpd->word1 | 32768U; tpd->vlan_tag = tag; } else { } { tmp___10 = skb_network_offset((struct sk_buff const *)skb); } if (tmp___10 != 14) { tpd->word1 = tpd->word1 | 131072U; } else { } { atl1c_tx_map(adapter, skb, tpd, type); atl1c_tx_queue(adapter, skb, tpd, type); spin_unlock_irqrestore(& adapter->tx_lock, flags); } return ((netdev_tx_t )0); } } static void atl1c_free_irq(struct atl1c_adapter *adapter ) { struct net_device *netdev ; { { netdev = adapter->netdev; free_irq((adapter->pdev)->irq, (void *)netdev); } if ((int )adapter->have_msi) { { pci_disable_msi(adapter->pdev); } } else { } return; } } static int atl1c_request_irq(struct atl1c_adapter *adapter ) { struct pci_dev *pdev ; struct net_device *netdev ; int flags ; int err ; struct _ddebug descriptor ; long tmp ; { { pdev = adapter->pdev; netdev = adapter->netdev; flags = 0; err = 0; adapter->have_msi = (bool )1; err = pci_enable_msi_block(adapter->pdev, 1U); } if (err != 0) { if ((adapter->msg_enable & 32U) != 0U) { { dev_err((struct device const *)(& pdev->dev), "Unable to allocate MSI interrupt Error: %d\n", err); } } else { } adapter->have_msi = (bool )0; } else { netdev->irq = pdev->irq; } if (! adapter->have_msi) { flags = flags | 128; } else { } { err = request_irq((adapter->pdev)->irq, & atl1c_intr, (unsigned long )flags, (char const *)(& netdev->name), (void *)netdev); } if (err != 0) { if ((adapter->msg_enable & 32U) != 0U) { { dev_err((struct device const *)(& pdev->dev), "Unable to allocate interrupt Error: %d\n", err); } } else { } if ((int )adapter->have_msi) { { pci_disable_msi(adapter->pdev); } } else { } return (err); } else { } if ((adapter->msg_enable & 32U) != 0U) { { descriptor.modname = "atl1c"; descriptor.function = "atl1c_request_irq"; descriptor.filename = "/anthill/stuff/tacas-comp/work/current--X--drivers/net/atl1c/atl1c.ko--X--bulklinux-3.0.1--X--08_1/linux-3.0.1/csd_deg_dscv/13/dscv_tempdir/dscv/ri/08_1/drivers/net/atl1c/atl1c_main.c.p"; descriptor.format = "atl1c_request_irq OK\n"; descriptor.lineno = 2317U; descriptor.flags = (unsigned char)0; descriptor.enabled = (char)0; tmp = __builtin_expect((long )((int )((signed char )descriptor.enabled) != 0), 0L); } if (tmp != 0L) { { dev_printk("<7>", (struct device const *)(& pdev->dev), "atl1c_request_irq OK\n"); } } else { } } else { } return (err); } } static int atl1c_up(struct atl1c_adapter *adapter ) { struct net_device *netdev ; int num ; int err ; int i ; long tmp ; int tmp___0 ; long tmp___1 ; { { netdev = adapter->netdev; netif_carrier_off(netdev); atl1c_init_ring_ptrs(adapter); atl1c_set_multi(netdev); atl1c_restore_vlan(adapter); i = 0; } goto ldv_43093; ldv_43092: { num = atl1c_alloc_rx_buffer(adapter, (int const )i); tmp = __builtin_expect((long )(num == 0), 0L); } if (tmp != 0L) { err = -12; goto err_alloc_rx; } else { } i = i + 1; ldv_43093: ; if (adapter->num_rx_queues > i) { goto ldv_43092; } else { goto ldv_43094; } ldv_43094: { tmp___0 = atl1c_configure(adapter); } if (tmp___0 != 0) { err = -5; goto err_up; } else { } { err = atl1c_request_irq(adapter); tmp___1 = __builtin_expect((long )(err != 0), 0L); } if (tmp___1 != 0L) { goto err_up; } else { } { clear_bit(3, (unsigned long volatile *)(& adapter->flags)); napi_enable(& adapter->napi); atl1c_irq_enable(adapter); atl1c_check_link_status(adapter); netif_start_queue(netdev); } return (err); err_up: ; err_alloc_rx: { atl1c_clean_rx_ring(adapter); } return (err); } } static void atl1c_down(struct atl1c_adapter *adapter ) { struct net_device *netdev ; { { netdev = adapter->netdev; atl1c_del_timer(adapter); adapter->work_event = 0UL; set_bit(3U, (unsigned long volatile *)(& adapter->flags)); netif_carrier_off(netdev); napi_disable(& adapter->napi); atl1c_irq_disable(adapter); atl1c_free_irq(adapter); atl1c_reset_mac(& adapter->hw); msleep(1U); adapter->link_speed = (u16 )65535U; adapter->link_duplex = (u16 )65535U; atl1c_clean_tx_ring(adapter, (enum atl1c_trans_queue )0); atl1c_clean_tx_ring(adapter, (enum atl1c_trans_queue )1); atl1c_clean_rx_ring(adapter); } return; } } static int atl1c_open(struct net_device *netdev ) { struct atl1c_adapter *adapter ; void *tmp ; int err ; int tmp___0 ; long tmp___1 ; long tmp___2 ; u32 phy_data ; long tmp___3 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; tmp___0 = constant_test_bit(1U, (unsigned long const volatile *)(& adapter->flags)); } if (tmp___0 != 0) { return (-16); } else { } { err = atl1c_setup_ring_resources(adapter); tmp___1 = __builtin_expect((long )(err != 0), 0L); } if (tmp___1 != 0L) { return (err); } else { } { err = atl1c_up(adapter); tmp___2 = __builtin_expect((long )(err != 0), 0L); } if (tmp___2 != 0L) { goto err_up; } else { } if ((int )((short )adapter->hw.ctrl_flags) < 0) { { tmp___3 = __builtin_expect((long )adapter->hw.hibernate, 0L); } if (tmp___3 != 0L) { { readl((void const volatile *)adapter->hw.hw_addr + 5140U); phy_data = readl((void const volatile *)adapter->hw.hw_addr + 5140U); } } else { { phy_data = readl((void const volatile *)adapter->hw.hw_addr + 5140U); } } { phy_data = phy_data | 268435456U; writel(phy_data, (void volatile *)adapter->hw.hw_addr + 5140U); } } else { } return (0); err_up: { atl1c_free_irq(adapter); atl1c_free_ring_resources(adapter); atl1c_reset_mac(& adapter->hw); } return (err); } } static int atl1c_close(struct net_device *netdev ) { struct atl1c_adapter *adapter ; void *tmp ; int __ret_warn_on ; int tmp___0 ; long tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; tmp___0 = constant_test_bit(2U, (unsigned long const volatile *)(& adapter->flags)); __ret_warn_on = tmp___0 != 0; tmp___1 = __builtin_expect((long )(__ret_warn_on != 0), 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/anthill/stuff/tacas-comp/work/current--X--drivers/net/atl1c/atl1c.ko--X--bulklinux-3.0.1--X--08_1/linux-3.0.1/csd_deg_dscv/13/dscv_tempdir/dscv/ri/08_1/drivers/net/atl1c/atl1c_main.c.p", (int const )2448); } } else { } { __builtin_expect((long )(__ret_warn_on != 0), 0L); atl1c_down(adapter); atl1c_free_ring_resources(adapter); } return (0); } } static int atl1c_suspend(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *netdev ; void *tmp ; struct atl1c_adapter *adapter ; void *tmp___0 ; struct atl1c_hw *hw ; u32 mac_ctrl_data ; u32 master_ctrl_data ; u32 wol_ctrl_data ; u16 mii_intr_status_data ; u32 wufc ; int __ret_warn_on ; int tmp___1 ; long tmp___2 ; int tmp___3 ; struct _ddebug descriptor ; long tmp___4 ; int tmp___5 ; long tmp___6 ; long tmp___7 ; struct _ddebug descriptor___0 ; long tmp___8 ; int tmp___9 ; struct _ddebug descriptor___1 ; long tmp___10 ; { { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0x0fffffffffffff70UL; tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp___0; hw = & adapter->hw; mac_ctrl_data = 0U; master_ctrl_data = 0U; wol_ctrl_data = 0U; mii_intr_status_data = (u16 )0U; wufc = adapter->wol; atl1c_disable_l0s_l1(hw); tmp___3 = netif_running((struct net_device const *)netdev); } if (tmp___3 != 0) { { tmp___1 = constant_test_bit(2U, (unsigned long const volatile *)(& adapter->flags)); __ret_warn_on = tmp___1 != 0; tmp___2 = __builtin_expect((long )(__ret_warn_on != 0), 0L); } if (tmp___2 != 0L) { { warn_slowpath_null("/anthill/stuff/tacas-comp/work/current--X--drivers/net/atl1c/atl1c.ko--X--bulklinux-3.0.1--X--08_1/linux-3.0.1/csd_deg_dscv/13/dscv_tempdir/dscv/ri/08_1/drivers/net/atl1c/atl1c_main.c.p", (int const )2468); } } else { } { __builtin_expect((long )(__ret_warn_on != 0), 0L); atl1c_down(adapter); } } else { } { netif_device_detach(netdev); } if (wufc != 0U) { { tmp___5 = atl1c_phy_power_saving(hw); } if (tmp___5 != 0) { { descriptor.modname = "atl1c"; descriptor.function = "atl1c_suspend"; descriptor.filename = "/anthill/stuff/tacas-comp/work/current--X--drivers/net/atl1c/atl1c.ko--X--bulklinux-3.0.1--X--08_1/linux-3.0.1/csd_deg_dscv/13/dscv_tempdir/dscv/ri/08_1/drivers/net/atl1c/atl1c_main.c.p"; descriptor.format = "phy power saving failed"; descriptor.lineno = 2475U; descriptor.flags = (unsigned char)0; descriptor.enabled = (char)0; tmp___4 = __builtin_expect((long )((int )((signed char )descriptor.enabled) != 0), 0L); } if (tmp___4 != 0L) { { dev_printk("<7>", (struct device const *)(& pdev->dev), "phy power saving failed"); } } else { } } else { } } else { } { tmp___6 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___6 != 0L) { { readl((void const volatile *)hw->hw_addr + 5120U); master_ctrl_data = readl((void const volatile *)hw->hw_addr + 5120U); } } else { { master_ctrl_data = readl((void const volatile *)hw->hw_addr + 5120U); } } { tmp___7 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___7 != 0L) { { readl((void const volatile *)hw->hw_addr + 5248U); mac_ctrl_data = readl((void const volatile *)hw->hw_addr + 5248U); } } else { { mac_ctrl_data = readl((void const volatile *)hw->hw_addr + 5248U); } } master_ctrl_data = master_ctrl_data & 4294963199U; mac_ctrl_data = mac_ctrl_data & 4294951935U; mac_ctrl_data = (((unsigned int )adapter->hw.preamble_len & 15U) << 10) | mac_ctrl_data; mac_ctrl_data = mac_ctrl_data & 4291821567U; mac_ctrl_data = mac_ctrl_data & 4294967263U; if (wufc != 0U) { mac_ctrl_data = mac_ctrl_data | 2U; if ((unsigned int )adapter->link_speed == 1000U) { mac_ctrl_data = mac_ctrl_data | 2097152U; mac_ctrl_data = mac_ctrl_data | 32U; } else if ((unsigned int )adapter->link_speed == 65535U) { mac_ctrl_data = mac_ctrl_data | 2097152U; mac_ctrl_data = mac_ctrl_data | 32U; } else { mac_ctrl_data = mac_ctrl_data | 1048576U; } if ((unsigned int )adapter->link_duplex == 1U) { mac_ctrl_data = mac_ctrl_data | 32U; } else { } if ((wufc & 2U) != 0U) { wol_ctrl_data = wol_ctrl_data | 12U; } else { } if ((int )wufc & 1) { { wol_ctrl_data = wol_ctrl_data | 48U; tmp___9 = atl1c_write_phy_reg(hw, 18U, (u16 )1024); } if (tmp___9 != 0) { { descriptor___0.modname = "atl1c"; descriptor___0.function = "atl1c_suspend"; descriptor___0.filename = "/anthill/stuff/tacas-comp/work/current--X--drivers/net/atl1c/atl1c.ko--X--bulklinux-3.0.1--X--08_1/linux-3.0.1/csd_deg_dscv/13/dscv_tempdir/dscv/ri/08_1/drivers/net/atl1c/atl1c_main.c.p"; descriptor___0.format = "%s: read write phy register failed.\n"; descriptor___0.lineno = 2512U; descriptor___0.flags = (unsigned char)0; descriptor___0.enabled = (char)0; tmp___8 = __builtin_expect((long )((int )((signed char )descriptor___0.enabled) != 0), 0L); } if (tmp___8 != 0L) { { dev_printk("<7>", (struct device const *)(& pdev->dev), "%s: read write phy register failed.\n", (char *)(& atl1c_driver_name)); } } else { } } else { } } else { } { atl1c_read_phy_reg(hw, (u16 )19, & mii_intr_status_data); } if ((unsigned long )adapter->vlgrp != (unsigned long )((struct vlan_group *)0)) { mac_ctrl_data = mac_ctrl_data | 16384U; } else { } if ((wufc & 2U) != 0U) { mac_ctrl_data = mac_ctrl_data | 67108864U; } else { } { descriptor___1.modname = "atl1c"; descriptor___1.function = "atl1c_suspend"; descriptor___1.filename = "/anthill/stuff/tacas-comp/work/current--X--drivers/net/atl1c/atl1c.ko--X--bulklinux-3.0.1--X--08_1/linux-3.0.1/csd_deg_dscv/13/dscv_tempdir/dscv/ri/08_1/drivers/net/atl1c/atl1c_main.c.p"; descriptor___1.format = "%s: suspend MAC=0x%x\n"; descriptor___1.lineno = 2527U; descriptor___1.flags = (unsigned char)0; descriptor___1.enabled = (char)0; tmp___10 = __builtin_expect((long )((int )((signed char )descriptor___1.enabled) != 0), 0L); } if (tmp___10 != 0L) { { dev_printk("<7>", (struct device const *)(& pdev->dev), "%s: suspend MAC=0x%x\n", (char *)(& atl1c_driver_name), mac_ctrl_data); } } else { } { writel(master_ctrl_data, (void volatile *)hw->hw_addr + 5120U); writel(wol_ctrl_data, (void volatile *)hw->hw_addr + 5280U); writel(mac_ctrl_data, (void volatile *)hw->hw_addr + 5248U); writel(7169U, (void volatile *)hw->hw_addr + 5132U); } } else { { writel(23680U, (void volatile *)hw->hw_addr + 5132U); master_ctrl_data = master_ctrl_data | 4096U; mac_ctrl_data = mac_ctrl_data | 1048576U; mac_ctrl_data = mac_ctrl_data | 32U; writel(master_ctrl_data, (void volatile *)hw->hw_addr + 5120U); writel(mac_ctrl_data, (void volatile *)hw->hw_addr + 5248U); writel(0U, (void volatile *)hw->hw_addr + 5280U); hw->phy_configured = (bool )0; } } return (0); } } static int atl1c_resume(struct device *dev ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *netdev ; void *tmp ; struct atl1c_adapter *adapter ; void *tmp___0 ; int tmp___1 ; { { __mptr = (struct device const *)dev; pdev = (struct pci_dev *)__mptr + 0x0fffffffffffff70UL; tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp___0; writel(0U, (void volatile *)adapter->hw.hw_addr + 5280U); atl1c_reset_pcie(& adapter->hw, 3U); atl1c_phy_reset(& adapter->hw); atl1c_reset_mac(& adapter->hw); atl1c_phy_init(& adapter->hw); netif_device_attach(netdev); tmp___1 = netif_running((struct net_device const *)netdev); } if (tmp___1 != 0) { { atl1c_up(adapter); } } else { } return (0); } } static void atl1c_shutdown(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct atl1c_adapter *adapter ; void *tmp___0 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp___0; atl1c_suspend(& pdev->dev); pci_wake_from_d3(pdev, (bool )(adapter->wol != 0U)); pci_set_power_state(pdev, 3); } return; } } static struct net_device_ops const atl1c_netdev_ops = {(int (*)(struct net_device * ))0, (void (*)(struct net_device * ))0, & atl1c_open, & atl1c_close, & atl1c_xmit_frame, (u16 (*)(struct net_device * , struct sk_buff * ))0, (void (*)(struct net_device * , int ))0, (void (*)(struct net_device * ))0, & atl1c_set_multi, & atl1c_set_mac_addr, & eth_validate_addr, & atl1c_ioctl, (int (*)(struct net_device * , struct ifmap * ))0, & atl1c_change_mtu, (int (*)(struct net_device * , struct neigh_parms * ))0, & atl1c_tx_timeout, (struct rtnl_link_stats64 *(*)(struct net_device * , struct rtnl_link_stats64 * ))0, & atl1c_get_stats, & atl1c_vlan_rx_register, (void (*)(struct net_device * , unsigned short ))0, (void (*)(struct net_device * , unsigned short ))0, & atl1c_netpoll, (int (*)(struct net_device * , struct netpoll_info * ))0, (void (*)(struct net_device * ))0, (int (*)(struct net_device * , int , u8 * ))0, (int (*)(struct net_device * , int , u16 , u8 ))0, (int (*)(struct net_device * , int , int ))0, (int (*)(struct net_device * , int , struct ifla_vf_info * ))0, (int (*)(struct net_device * , int , struct nlattr ** ))0, (int (*)(struct net_device * , int , struct sk_buff * ))0, (int (*)(struct net_device * , u8 ))0, (int (*)(struct net_device * ))0, (int (*)(struct net_device * ))0, (int (*)(struct net_device * , u16 , struct scatterlist * , unsigned int ))0, (int (*)(struct net_device * , u16 ))0, (int (*)(struct net_device * , u16 , struct scatterlist * , unsigned int ))0, (int (*)(struct net_device * , u64 * , int ))0, (int (*)(struct net_device * , struct sk_buff const * , u16 , u32 ))0, (int (*)(struct net_device * , struct net_device * ))0, (int (*)(struct net_device * , struct net_device * ))0, & atl1c_fix_features, (int (*)(struct net_device * , u32 ))0}; static int atl1c_init_netdev(struct net_device *netdev , struct pci_dev *pdev ) { { { netdev->dev.parent = & pdev->dev; pci_set_drvdata(pdev, (void *)netdev); netdev->irq = pdev->irq; netdev->netdev_ops = & atl1c_netdev_ops; netdev->watchdog_timeo = 1250; atl1c_set_ethtool_ops(netdev); netdev->hw_features = 1114249U; netdev->features = netdev->hw_features | 256U; } return (0); } } static int atl1c_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) { struct net_device *netdev ; struct atl1c_adapter *adapter ; int cards_found ; int err ; int tmp ; int tmp___0 ; void *tmp___1 ; unsigned long tmp___2 ; void *tmp___3 ; struct lock_class_key __key ; int tmp___4 ; size_t __len ; void *__ret ; size_t __len___0 ; void *__ret___0 ; struct _ddebug descriptor ; long tmp___5 ; struct lock_class_key __key___0 ; atomic_long_t __constr_expr_0 ; { { err = 0; err = pci_enable_device_mem(pdev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "cannot enable PCI device\n"); } return (err); } else { } { tmp = pci_set_dma_mask(pdev, 4294967295ULL); } if (tmp != 0) { { dev_err((struct device const *)(& pdev->dev), "No usable DMA configuration,aborting\n"); } goto err_dma; } else { { tmp___0 = pci_set_consistent_dma_mask(pdev, 4294967295ULL); } if (tmp___0 != 0) { { dev_err((struct device const *)(& pdev->dev), "No usable DMA configuration,aborting\n"); } goto err_dma; } else { } } { err = pci_request_regions(pdev, (char const *)(& atl1c_driver_name)); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "cannot obtain PCI resources\n"); } goto err_pci_reg; } else { } { pci_set_master(pdev); netdev = alloc_etherdev_mqs(1664, 1U, 1U); } if ((unsigned long )netdev == (unsigned long )((struct net_device *)0)) { { err = -12; dev_err((struct device const *)(& pdev->dev), "etherdev alloc failed\n"); } goto err_alloc_etherdev; } else { } { err = atl1c_init_netdev(netdev, pdev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "init netdevice failed\n"); } goto err_init_netdev; } else { } { tmp___1 = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp___1; adapter->bd_number = (u32 )cards_found; adapter->netdev = netdev; adapter->pdev = pdev; adapter->hw.adapter = adapter; adapter->msg_enable = netif_msg_init(-1, (int )atl1c_default_msg); } if (pdev->resource[0].start != 0ULL) { tmp___2 = (unsigned long )((pdev->resource[0].end - pdev->resource[0].start) + 1ULL); } else if (pdev->resource[0].end != pdev->resource[0].start) { tmp___2 = (unsigned long )((pdev->resource[0].end - pdev->resource[0].start) + 1ULL); } else { tmp___2 = 0UL; } { tmp___3 = ioremap(pdev->resource[0].start, tmp___2); adapter->hw.hw_addr = (u8 *)tmp___3; } if ((unsigned long )adapter->hw.hw_addr == (unsigned long )((u8 *)0)) { { err = -5; dev_err((struct device const *)(& pdev->dev), "cannot map device registers\n"); } goto err_ioremap; } else { } { netdev->base_addr = (unsigned long )adapter->hw.hw_addr; adapter->mii.dev = netdev; adapter->mii.mdio_read = & atl1c_mdio_read; adapter->mii.mdio_write = & atl1c_mdio_write; adapter->mii.phy_id_mask = 31; adapter->mii.reg_num_mask = 31; netif_napi_add(netdev, & adapter->napi, & atl1c_clean, 64); setup_timer_key(& adapter->phy_config_timer, "&adapter->phy_config_timer", & __key, & atl1c_phy_config, (unsigned long )adapter); err = atl1c_sw_init(adapter); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "net device private data init failed\n"); } goto err_sw_init; } else { } { atl1c_reset_pcie(& adapter->hw, 3U); atl1c_phy_reset(& adapter->hw); err = atl1c_reset_mac(& adapter->hw); } if (err != 0) { err = -5; goto err_reset; } else { } { err = atl1c_phy_init(& adapter->hw); } if (err != 0) { err = -5; goto err_reset; } else { } { tmp___4 = atl1c_read_mac_addr(& adapter->hw); } if (tmp___4 != 0) { { err = -5; dev_err((struct device const *)(& pdev->dev), "get mac address failed\n"); } goto err_eeprom; } else { } { __len = (size_t )netdev->addr_len; __ret = __builtin_memcpy((void *)netdev->dev_addr, (void const *)(& adapter->hw.mac_addr), __len); __len___0 = (size_t )netdev->addr_len; __ret___0 = __builtin_memcpy((void *)(& netdev->perm_addr), (void const *)(& adapter->hw.mac_addr), __len___0); } if ((adapter->msg_enable & 2U) != 0U) { { descriptor.modname = "atl1c"; descriptor.function = "atl1c_probe"; descriptor.filename = "/anthill/stuff/tacas-comp/work/current--X--drivers/net/atl1c/atl1c.ko--X--bulklinux-3.0.1--X--08_1/linux-3.0.1/csd_deg_dscv/13/dscv_tempdir/dscv/ri/08_1/drivers/net/atl1c/atl1c_main.c.p"; descriptor.format = "mac address : %pM\n"; descriptor.lineno = 2746U; descriptor.flags = (unsigned char)0; descriptor.enabled = (char)0; tmp___5 = __builtin_expect((long )((int )((signed char )descriptor.enabled) != 0), 0L); } if (tmp___5 != 0L) { { dev_printk("<7>", (struct device const *)(& pdev->dev), "mac address : %pM\n", (u8 *)(& adapter->hw.mac_addr)); } } else { } } else { } { atl1c_hw_set_mac_addr(& adapter->hw); __init_work(& adapter->common_task, 0); __constr_expr_0.counter = 2097664L; adapter->common_task.data = __constr_expr_0; lockdep_init_map(& adapter->common_task.lockdep_map, "(&adapter->common_task)", & __key___0, 0); INIT_LIST_HEAD(& adapter->common_task.entry); adapter->common_task.func = & atl1c_common_task; adapter->work_event = 0UL; err = register_netdev(netdev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "register netdevice failed\n"); } goto err_register; } else { } if ((adapter->msg_enable & 2U) != 0U) { { _dev_info((struct device const *)(& pdev->dev), "version %s\n", (char *)"1.0.1.0-NAPI"); } } else { } cards_found = cards_found + 1; return (0); err_reset: ; err_register: ; err_sw_init: ; err_eeprom: { iounmap((void volatile *)adapter->hw.hw_addr); } err_init_netdev: ; err_ioremap: { free_netdev(netdev); } err_alloc_etherdev: { pci_release_regions(pdev); } err_pci_reg: ; err_dma: { pci_disable_device(pdev); } return (err); } } static void atl1c_remove(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct atl1c_adapter *adapter ; void *tmp___0 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp___0; unregister_netdev(netdev); atl1c_phy_disable(& adapter->hw); iounmap((void volatile *)adapter->hw.hw_addr); pci_release_regions(pdev); pci_disable_device(pdev); free_netdev(netdev); } return; } } static pci_ers_result_t atl1c_io_error_detected(struct pci_dev *pdev , pci_channel_state_t state ) { struct net_device *netdev ; void *tmp ; struct atl1c_adapter *adapter ; void *tmp___0 ; int tmp___1 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp___0; netif_device_detach(netdev); } if (state == 3U) { return (4U); } else { } { tmp___1 = netif_running((struct net_device const *)netdev); } if (tmp___1 != 0) { { atl1c_down(adapter); } } else { } { pci_disable_device(pdev); } return (3U); } } static pci_ers_result_t atl1c_io_slot_reset(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct atl1c_adapter *adapter ; void *tmp___0 ; int tmp___1 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp___0; tmp___1 = pci_enable_device(pdev); } if (tmp___1 != 0) { if ((adapter->msg_enable & 8192U) != 0U) { { dev_err((struct device const *)(& pdev->dev), "Cannot re-enable PCI device after reset\n"); } } else { } return (4U); } else { } { pci_set_master(pdev); pci_enable_wake(pdev, 3, (bool )0); pci_enable_wake(pdev, 4, (bool )0); atl1c_reset_mac(& adapter->hw); } return (5U); } } static void atl1c_io_resume(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct atl1c_adapter *adapter ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp___0; tmp___2 = netif_running((struct net_device const *)netdev); } if (tmp___2 != 0) { { tmp___1 = atl1c_up(adapter); } if (tmp___1 != 0) { if ((adapter->msg_enable & 8192U) != 0U) { { dev_err((struct device const *)(& pdev->dev), "Cannot bring device back up after reset\n"); } } else { } return; } else { } } else { } { netif_device_attach(netdev); } return; } } static struct pci_error_handlers atl1c_err_handler = {(pci_ers_result_t (*)(struct pci_dev * , enum pci_channel_state ))(& atl1c_io_error_detected), (pci_ers_result_t (*)(struct pci_dev * ))0, (pci_ers_result_t (*)(struct pci_dev * ))0, & atl1c_io_slot_reset, & atl1c_io_resume}; static struct dev_pm_ops const atl1c_pm_ops = {(int (*)(struct device * ))0, (void (*)(struct device * ))0, & atl1c_suspend, & atl1c_resume, & atl1c_suspend, & atl1c_resume, & atl1c_suspend, & atl1c_resume, (int (*)(struct device * ))0, (int (*)(struct device * ))0, (int (*)(struct device * ))0, (int (*)(struct device * ))0, (int (*)(struct device * ))0, (int (*)(struct device * ))0, (int (*)(struct device * ))0, (int (*)(struct device * ))0, (int (*)(struct device * ))0}; static struct pci_driver atl1c_driver = {{(struct list_head *)0, (struct list_head *)0}, (char const *)(& atl1c_driver_name), (struct pci_device_id const *)(& atl1c_pci_tbl), & atl1c_probe, & atl1c_remove, (int (*)(struct pci_dev * , pm_message_t ))0, (int (*)(struct pci_dev * , pm_message_t ))0, (int (*)(struct pci_dev * ))0, (int (*)(struct pci_dev * ))0, & atl1c_shutdown, & atl1c_err_handler, {(char const *)0, (struct bus_type *)0, (struct module *)0, (char const *)0, (_Bool)0, (struct of_device_id const *)0, (int (*)(struct device * ))0, (int (*)(struct device * ))0, (void (*)(struct device * ))0, (int (*)(struct device * , pm_message_t ))0, (int (*)(struct device * ))0, (struct attribute_group const **)0, & atl1c_pm_ops, (struct driver_private *)0}, {{{{{0U}, 0U, 0U, (void *)0, {(struct lock_class_key *)0, {(struct lock_class *)0, (struct lock_class *)0}, (char const *)0, 0, 0UL}}}}, {(struct list_head *)0, (struct list_head *)0}}}; static int atl1c_init_module(void) { int tmp ; { { tmp = __pci_register_driver(& atl1c_driver, & __this_module, "atl1c"); } return (tmp); } } static void atl1c_exit_module(void) { { { pci_unregister_driver(& atl1c_driver); } return; } } void ldv_check_final_state(void) ; extern void ldv_check_return_value(int ) ; extern void ldv_initialize(void) ; extern int __VERIFIER_nondet_int(void) ; int LDV_IN_INTERRUPT ; void ldv_blast_assert(void) { { ERROR: __VERIFIER_error(); } } extern int ldv_undefined_int(void) ; int ldv_module_refcounter = 1; void ldv_module_get(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { ldv_module_refcounter = ldv_module_refcounter + 1; } else { } return; } } int ldv_try_module_get(struct module *module ) { int module_get_succeeded ; { if ((unsigned long )module != (unsigned long )((struct module *)0)) { { module_get_succeeded = ldv_undefined_int(); } if (module_get_succeeded == 1) { ldv_module_refcounter = ldv_module_refcounter + 1; return (1); } else { return (0); } } else { } return (0); } } void ldv_module_put(struct module *module ) { { if ((unsigned long )module != (unsigned long )((struct module *)0)) { if (ldv_module_refcounter <= 1) { { ldv_blast_assert(); } } else { } ldv_module_refcounter = ldv_module_refcounter - 1; } else { } return; } } void ldv_module_put_and_exit(void) { { { ldv_module_put((struct module *)1); } LDV_STOP: ; goto LDV_STOP; } } unsigned int ldv_module_refcount(void) { { return ((unsigned int )(ldv_module_refcounter + -1)); } } void ldv_check_final_state(void) { { if (ldv_module_refcounter != 1) { { ldv_blast_assert(); } } else { } return; } } __inline static __u32 __arch_swab32(__u32 val ) { { __asm__ ("bswapl %0": "=r" (val): "0" (val)); return (val); } } __inline static __u32 __fswab32(__u32 val ) { __u32 tmp ; { { tmp = __arch_swab32(val); } return (tmp); } } extern void __const_udelay(unsigned long ) ; extern u32 crc32_le(u32 , unsigned char const * , size_t ) ; extern void get_random_bytes(void * , int ) ; __inline static void random_ether_addr(u8 *addr ) { { { get_random_bytes((void *)addr, 6); *addr = (u8 )((unsigned int )*addr & 254U); *addr = (u8 )((unsigned int )*addr | 2U); } return; } } bool atl1c_read_eeprom(struct atl1c_hw *hw , u32 offset , u32 *p_value ) ; int atl1c_check_eeprom_exist(struct atl1c_hw *hw ) ; int atl1c_check_eeprom_exist(struct atl1c_hw *hw ) { u32 data ; long tmp ; long tmp___0 ; { { tmp = __builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 4360U); data = readl((void const volatile *)hw->hw_addr + 4360U); } } else { { data = readl((void const volatile *)hw->hw_addr + 4360U); } } if ((data & 536870912U) != 0U) { return (1); } else { } { tmp___0 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 5120U); data = readl((void const volatile *)hw->hw_addr + 5120U); } } else { { data = readl((void const volatile *)hw->hw_addr + 5120U); } } if ((int )data < 0) { return (1); } else { } return (0); } } void atl1c_hw_set_mac_addr(struct atl1c_hw *hw ) { u32 value ; { { value = ((((unsigned int )hw->mac_addr[2] << 24) | ((unsigned int )hw->mac_addr[3] << 16)) | ((unsigned int )hw->mac_addr[4] << 8)) | (unsigned int )hw->mac_addr[5]; writel(value, (void volatile *)hw->hw_addr + 5256U); value = ((unsigned int )hw->mac_addr[0] << 8) | (unsigned int )hw->mac_addr[1]; writel(value, (void volatile *)hw->hw_addr + 5260U); } return; } } static int atl1c_get_permanent_address(struct atl1c_hw *hw ) { u32 addr[2U] ; u32 i ; u32 otp_ctrl_data ; u32 twsi_ctrl_data ; u32 ltssm_ctrl_data ; u32 wol_data ; u8 eth_addr[6U] ; u16 phy_data ; bool raise_vol ; long tmp ; int tmp___0 ; int tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; long tmp___9 ; long tmp___10 ; __u32 tmp___11 ; __u16 tmp___12 ; size_t __len ; void *__ret ; int tmp___13 ; { { raise_vol = (bool )0; addr[1] = 0U; addr[0] = addr[1]; tmp = __builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 4848U); otp_ctrl_data = readl((void const volatile *)hw->hw_addr + 4848U); } } else { { otp_ctrl_data = readl((void const volatile *)hw->hw_addr + 4848U); } } { tmp___6 = atl1c_check_eeprom_exist(hw); } if (tmp___6 != 0) { if ((unsigned int )hw->nic_type == 0U) { goto _L; } else if ((unsigned int )hw->nic_type == 1U) { _L: if ((otp_ctrl_data & 2U) == 0U) { { otp_ctrl_data = otp_ctrl_data | 2U; writel(otp_ctrl_data, (void volatile *)hw->hw_addr + 4848U); readl((void const volatile *)hw->hw_addr); msleep(1U); } } else { } } else { } if ((unsigned int )hw->nic_type == 2U) { goto _L___0; } else if ((unsigned int )hw->nic_type == 3U) { goto _L___0; } else if ((unsigned int )hw->nic_type == 4U) { _L___0: { atl1c_write_phy_reg(hw, 29U, (u16 )0); tmp___0 = atl1c_read_phy_reg(hw, (u16 )30, & phy_data); } if (tmp___0 != 0) { goto out; } else { } { phy_data = (u16 )((unsigned int )phy_data & 65407U); atl1c_write_phy_reg(hw, 30U, (u16 )((int )phy_data)); atl1c_write_phy_reg(hw, 29U, (u16 )59); tmp___1 = atl1c_read_phy_reg(hw, (u16 )30, & phy_data); } if (tmp___1 != 0) { goto out; } else { } { phy_data = (u16 )((unsigned int )phy_data | 8U); atl1c_write_phy_reg(hw, 30U, (u16 )((int )phy_data)); __const_udelay(85900UL); raise_vol = (bool )1; } } else { } { tmp___2 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___2 != 0L) { { readl((void const volatile *)hw->hw_addr + 4860U); ltssm_ctrl_data = readl((void const volatile *)hw->hw_addr + 4860U); } } else { { ltssm_ctrl_data = readl((void const volatile *)hw->hw_addr + 4860U); } } { ltssm_ctrl_data = ltssm_ctrl_data & 4294963199U; writel(ltssm_ctrl_data, (void volatile *)hw->hw_addr + 4860U); writel(0U, (void volatile *)hw->hw_addr + 5280U); tmp___3 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___3 != 0L) { { readl((void const volatile *)hw->hw_addr + 5280U); wol_data = readl((void const volatile *)hw->hw_addr + 5280U); } } else { { wol_data = readl((void const volatile *)hw->hw_addr + 5280U); } } { tmp___4 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___4 != 0L) { { readl((void const volatile *)hw->hw_addr + 536U); twsi_ctrl_data = readl((void const volatile *)hw->hw_addr + 536U); } } else { { twsi_ctrl_data = readl((void const volatile *)hw->hw_addr + 536U); } } { twsi_ctrl_data = twsi_ctrl_data | 2048U; writel(twsi_ctrl_data, (void volatile *)hw->hw_addr + 536U); i = 0U; } goto ldv_42431; ldv_42430: { msleep(10U); tmp___5 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___5 != 0L) { { readl((void const volatile *)hw->hw_addr + 536U); twsi_ctrl_data = readl((void const volatile *)hw->hw_addr + 536U); } } else { { twsi_ctrl_data = readl((void const volatile *)hw->hw_addr + 536U); } } if ((twsi_ctrl_data & 2048U) == 0U) { goto ldv_42429; } else { } i = i + 1U; ldv_42431: ; if (i <= 99U) { goto ldv_42430; } else { goto ldv_42429; } ldv_42429: ; if (i > 99U) { return (-1); } else { } } else { } if ((unsigned int )hw->nic_type == 0U) { { otp_ctrl_data = otp_ctrl_data & 4294967293U; writel(otp_ctrl_data, (void volatile *)hw->hw_addr + 4848U); msleep(1U); } } else if ((unsigned int )hw->nic_type == 1U) { { otp_ctrl_data = otp_ctrl_data & 4294967293U; writel(otp_ctrl_data, (void volatile *)hw->hw_addr + 4848U); msleep(1U); } } else { } if ((int )raise_vol) { if ((unsigned int )hw->nic_type == 2U) { goto _L___1; } else if ((unsigned int )hw->nic_type == 3U) { goto _L___1; } else if ((unsigned int )hw->nic_type == 4U) { goto _L___1; } else if ((unsigned int )hw->nic_type == 5U) { _L___1: { atl1c_write_phy_reg(hw, 29U, (u16 )0); tmp___7 = atl1c_read_phy_reg(hw, (u16 )30, & phy_data); } if (tmp___7 != 0) { goto out; } else { } { phy_data = (u16 )((unsigned int )phy_data | 128U); atl1c_write_phy_reg(hw, 30U, (u16 )((int )phy_data)); atl1c_write_phy_reg(hw, 29U, (u16 )59); tmp___8 = atl1c_read_phy_reg(hw, (u16 )30, & phy_data); } if (tmp___8 != 0) { goto out; } else { } { phy_data = (u16 )((unsigned int )phy_data & 65527U); atl1c_write_phy_reg(hw, 30U, (u16 )((int )phy_data)); __const_udelay(85900UL); } } else { } } else { } { tmp___9 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___9 != 0L) { { readl((void const volatile *)hw->hw_addr + 5256U); *((u32 *)(& addr)) = readl((void const volatile *)hw->hw_addr + 5256U); } } else { { *((u32 *)(& addr)) = readl((void const volatile *)hw->hw_addr + 5256U); } } { tmp___10 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___10 != 0L) { { readl((void const volatile *)hw->hw_addr + 5260U); *((u32 *)(& addr) + 1UL) = readl((void const volatile *)hw->hw_addr + 5260U); } } else { { *((u32 *)(& addr) + 1UL) = readl((void const volatile *)hw->hw_addr + 5260U); } } { tmp___11 = __fswab32(addr[0]); *((u32 *)(& eth_addr) + 2U) = tmp___11; tmp___12 = __fswab16((__u16 )((int )*((u16 *)(& addr) + 1U))); *((u16 *)(& eth_addr)) = tmp___12; tmp___13 = is_valid_ether_addr((u8 const *)(& eth_addr)); } if (tmp___13 != 0) { __len = 6UL; if (__len > 63UL) { { __ret = __memcpy((void *)(& hw->perm_mac_addr), (void const *)(& eth_addr), __len); } } else { { __ret = __builtin_memcpy((void *)(& hw->perm_mac_addr), (void const *)(& eth_addr), __len); } } return (0); } else { } out: ; return (-1); } } bool atl1c_read_eeprom(struct atl1c_hw *hw , u32 offset , u32 *p_value ) { int i ; int ret ; u32 otp_ctrl_data ; u32 control ; u32 data ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; __u32 tmp___3 ; { ret = 0; if ((offset & 3U) != 0U) { return ((bool )(ret != 0)); } else { } { tmp = __builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 4848U); otp_ctrl_data = readl((void const volatile *)hw->hw_addr + 4848U); } } else { { otp_ctrl_data = readl((void const volatile *)hw->hw_addr + 4848U); } } if ((otp_ctrl_data & 2U) == 0U) { { writel(otp_ctrl_data | 2U, (void volatile *)hw->hw_addr + 4848U); } } else { } { writel(0U, (void volatile *)hw->hw_addr + 4804U); control = (offset & 1023U) << 16; writel(control, (void volatile *)hw->hw_addr + 4800U); i = 0; } goto ldv_42447; ldv_42446: { __const_udelay(429500UL); tmp___0 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___0 != 0L) { { readl((void const volatile *)hw->hw_addr + 4800U); control = readl((void const volatile *)hw->hw_addr + 4800U); } } else { { control = readl((void const volatile *)hw->hw_addr + 4800U); } } if ((int )control < 0) { goto ldv_42445; } else { } i = i + 1; ldv_42447: ; if (i <= 9) { goto ldv_42446; } else { goto ldv_42445; } ldv_42445: ; if ((int )control < 0) { { tmp___1 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___1 != 0L) { { readl((void const volatile *)hw->hw_addr + 4800U); data = readl((void const volatile *)hw->hw_addr + 4800U); } } else { { data = readl((void const volatile *)hw->hw_addr + 4800U); } } { tmp___2 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___2 != 0L) { { readl((void const volatile *)hw->hw_addr + 4804U); *p_value = readl((void const volatile *)hw->hw_addr + 4804U); } } else { { *p_value = readl((void const volatile *)hw->hw_addr + 4804U); } } { data = data & 65535U; tmp___3 = __fswab32((data << 16) | (*p_value >> 16)); *p_value = tmp___3; ret = 1; } } else { } if ((otp_ctrl_data & 2U) == 0U) { { writel(otp_ctrl_data, (void volatile *)hw->hw_addr + 4848U); } } else { } return ((bool )(ret != 0)); } } int atl1c_read_mac_addr(struct atl1c_hw *hw ) { int err ; size_t __len ; void *__ret ; { { err = 0; err = atl1c_get_permanent_address(hw); } if (err != 0) { { random_ether_addr((u8 *)(& hw->perm_mac_addr)); } } else { } __len = 6UL; if (__len > 63UL) { { __ret = __memcpy((void *)(& hw->mac_addr), (void const *)(& hw->perm_mac_addr), __len); } } else { { __ret = __builtin_memcpy((void *)(& hw->mac_addr), (void const *)(& hw->perm_mac_addr), __len); } } return (0); } } u32 atl1c_hash_mc_addr(struct atl1c_hw *hw , u8 *mc_addr ) { u32 crc32 ; u32 value ; int i ; { { value = 0U; crc32 = crc32_le(4294967295U, (unsigned char const *)mc_addr, 6UL); i = 0; } goto ldv_42463; ldv_42462: value = (((crc32 >> i) & 1U) << (31 - i)) | value; i = i + 1; ldv_42463: ; if (i <= 31) { goto ldv_42462; } else { goto ldv_42464; } ldv_42464: ; return (value); } } void atl1c_hash_set(struct atl1c_hw *hw , u32 hash_value ) { u32 hash_bit ; u32 hash_reg ; u32 mta ; { { hash_reg = hash_value >> 31; hash_bit = (hash_value >> 26) & 31U; mta = readl((void const volatile *)(hw->hw_addr + ((unsigned long )(hash_reg << 2) + 5264UL))); mta = (u32 )(1 << (int )hash_bit) | mta; writel(mta, (void volatile *)(hw->hw_addr + ((unsigned long )(hash_reg << 2) + 5264UL))); } return; } } int atl1c_read_phy_reg(struct atl1c_hw *hw , u16 reg_addr , u16 *phy_data ) { u32 val ; int i ; long tmp ; { { val = (((unsigned int )reg_addr & 31U) << 16) | 14680064U; writel(val, (void volatile *)hw->hw_addr + 5140U); i = 0; } goto ldv_42481; ldv_42480: { __const_udelay(8590UL); tmp = __builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 5140U); val = readl((void const volatile *)hw->hw_addr + 5140U); } } else { { val = readl((void const volatile *)hw->hw_addr + 5140U); } } if ((val & 142606336U) == 0U) { goto ldv_42479; } else { } i = i + 1; ldv_42481: ; if (i <= 9) { goto ldv_42480; } else { goto ldv_42479; } ldv_42479: ; if ((val & 142606336U) == 0U) { *phy_data = (unsigned short )val; return (0); } else { } return (-1); } } int atl1c_write_phy_reg(struct atl1c_hw *hw , u32 reg_addr , u16 phy_data ) { int i ; u32 val ; long tmp ; { { val = ((unsigned int )phy_data | ((reg_addr & 31U) << 16)) | 12582912U; writel(val, (void volatile *)hw->hw_addr + 5140U); i = 0; } goto ldv_42491; ldv_42490: { __const_udelay(8590UL); tmp = __builtin_expect((long )hw->hibernate, 0L); } if (tmp != 0L) { { readl((void const volatile *)hw->hw_addr + 5140U); val = readl((void const volatile *)hw->hw_addr + 5140U); } } else { { val = readl((void const volatile *)hw->hw_addr + 5140U); } } if ((val & 142606336U) == 0U) { goto ldv_42489; } else { } i = i + 1; ldv_42491: ; if (i <= 9) { goto ldv_42490; } else { goto ldv_42489; } ldv_42489: ; if ((val & 142606336U) == 0U) { return (0); } else { } return (-1); } } static int atl1c_phy_setup_adv(struct atl1c_hw *hw ) { u16 mii_adv_data ; u16 mii_giga_ctrl_data ; int tmp ; int tmp___0 ; { mii_adv_data = (u16 )3072U; mii_giga_ctrl_data = (u16 )0U; if ((int )hw->autoneg_advertised & 1) { mii_adv_data = (u16 )((unsigned int )mii_adv_data | 32U); } else { } if (((int )hw->autoneg_advertised & 2) != 0) { mii_adv_data = (u16 )((unsigned int )mii_adv_data | 64U); } else { } if (((int )hw->autoneg_advertised & 4) != 0) { mii_adv_data = (u16 )((unsigned int )mii_adv_data | 128U); } else { } if (((int )hw->autoneg_advertised & 8) != 0) { mii_adv_data = (u16 )((unsigned int )mii_adv_data | 256U); } else { } if (((int )hw->autoneg_advertised & 64) != 0) { mii_adv_data = (u16 )((unsigned int )mii_adv_data | 480U); } else { } if ((int )hw->link_cap_flags & 1) { if (((int )hw->autoneg_advertised & 16) != 0) { mii_giga_ctrl_data = (u16 )((unsigned int )mii_giga_ctrl_data | 256U); } else { } if (((int )hw->autoneg_advertised & 32) != 0) { mii_giga_ctrl_data = (u16 )((unsigned int )mii_giga_ctrl_data | 512U); } else { } if (((int )hw->autoneg_advertised & 64) != 0) { mii_giga_ctrl_data = (u16 )((unsigned int )mii_giga_ctrl_data | 768U); } else { } } else { } { tmp = atl1c_write_phy_reg(hw, 4U, (u16 )((int )mii_adv_data)); } if (tmp != 0) { return (-1); } else { { tmp___0 = atl1c_write_phy_reg(hw, 9U, (u16 )((int )mii_giga_ctrl_data)); } if (tmp___0 != 0) { return (-1); } else { } } return (0); } } void atl1c_phy_disable(struct atl1c_hw *hw ) { { { writew((unsigned short)23681, (void volatile *)hw->hw_addr + 5132U); } return; } } static void atl1c_phy_magic_data(struct atl1c_hw *hw ) { u16 data ; int tmp ; int tmp___0 ; { { data = (u16 )19460U; atl1c_write_phy_reg(hw, 29U, (u16 )18); atl1c_write_phy_reg(hw, 30U, (u16 )((int )data)); data = (u16 )11334U; atl1c_write_phy_reg(hw, 29U, (u16 )5); atl1c_write_phy_reg(hw, 30U, (u16 )((int )data)); data = (u16 )57644U; atl1c_write_phy_reg(hw, 29U, (u16 )54); atl1c_write_phy_reg(hw, 30U, (u16 )((int )data)); data = (u16 )35003U; atl1c_write_phy_reg(hw, 29U, (u16 )4); atl1c_write_phy_reg(hw, 30U, (u16 )((int )data)); data = (u16 )751U; atl1c_write_phy_reg(hw, 29U, (u16 )0); atl1c_write_phy_reg(hw, 30U, (u16 )((int )data)); } if (((int )hw->ctrl_flags & 1024) != 0) { { atl1c_write_phy_reg(hw, 29U, (u16 )41); tmp = atl1c_read_phy_reg(hw, (u16 )30, & data); } if (tmp != 0) { return; } else { } { data = (u16 )((unsigned int )data & 32767U); atl1c_write_phy_reg(hw, 30U, (u16 )((int )data)); atl1c_write_phy_reg(hw, 29U, (u16 )11); tmp___0 = atl1c_read_phy_reg(hw, (u16 )30, & data); } if (tmp___0 != 0) { return; } else { } { data = (u16 )((unsigned int )data & 32767U); atl1c_write_phy_reg(hw, 30U, (u16 )((int )data)); } } else { } return; } } int atl1c_phy_reset(struct atl1c_hw *hw ) { struct atl1c_adapter *adapter ; struct pci_dev *pdev ; u16 phy_data ; u32 phy_ctrl_data ; u32 mii_ier_data ; int err ; { adapter = hw->adapter; pdev = adapter->pdev; phy_ctrl_data = 7168U; mii_ier_data = 3072U; if (((int )hw->ctrl_flags & 1024) != 0) { phy_ctrl_data = phy_ctrl_data & 4294966271U; } else { } { writel(phy_ctrl_data, (void volatile *)hw->hw_addr + 5132U); readl((void const volatile *)hw->hw_addr); msleep(40U); phy_ctrl_data = phy_ctrl_data | 1U; writel(phy_ctrl_data, (void volatile *)hw->hw_addr + 5132U); readl((void const volatile *)hw->hw_addr); msleep(10U); } if ((unsigned int )hw->nic_type == 2U) { { atl1c_write_phy_reg(hw, 29U, (u16 )10); atl1c_read_phy_reg(hw, (u16 )30, & phy_data); atl1c_write_phy_reg(hw, 30U, (u16 )((int )phy_data & 57343)); } } else { } if ((unsigned int )hw->nic_type == 2U) { { atl1c_write_phy_reg(hw, 29U, (u16 )59); atl1c_read_phy_reg(hw, (u16 )30, & phy_data); atl1c_write_phy_reg(hw, 30U, (u16 )((int )phy_data & 65527)); msleep(20U); } } else if ((unsigned int )hw->nic_type == 3U) { { atl1c_write_phy_reg(hw, 29U, (u16 )59); atl1c_read_phy_reg(hw, (u16 )30, & phy_data); atl1c_write_phy_reg(hw, 30U, (u16 )((int )phy_data & 65527)); msleep(20U); } } else if ((unsigned int )hw->nic_type == 4U) { { atl1c_write_phy_reg(hw, 29U, (u16 )59); atl1c_read_phy_reg(hw, (u16 )30, & phy_data); atl1c_write_phy_reg(hw, 30U, (u16 )((int )phy_data & 65527)); msleep(20U); } } else if ((unsigned int )hw->nic_type == 5U) { { atl1c_write_phy_reg(hw, 29U, (u16 )59); atl1c_read_phy_reg(hw, (u16 )30, & phy_data); atl1c_write_phy_reg(hw, 30U, (u16 )((int )phy_data & 65527)); msleep(20U); } } else { } if ((unsigned int )hw->nic_type == 4U) { { atl1c_write_phy_reg(hw, 29U, (u16 )41); atl1c_write_phy_reg(hw, 30U, (u16 )37533); } } else { } if ((unsigned int )hw->nic_type == 0U) { { atl1c_write_phy_reg(hw, 29U, (u16 )41); atl1c_write_phy_reg(hw, 30U, (u16 )46813); } } else if ((unsigned int )hw->nic_type == 3U) { { atl1c_write_phy_reg(hw, 29U, (u16 )41); atl1c_write_phy_reg(hw, 30U, (u16 )46813); } } else if ((unsigned int )hw->nic_type == 1U) { { atl1c_write_phy_reg(hw, 29U, (u16 )41); atl1c_write_phy_reg(hw, 30U, (u16 )46813); } } else { } { err = atl1c_write_phy_reg(hw, 18U, (u16 )((int )((u16 )mii_ier_data))); } if (err != 0) { if ((adapter->msg_enable & 8192U) != 0U) { { dev_err((struct device const *)(& pdev->dev), "Error enable PHY linkChange Interrupt\n"); } } else { } return (err); } else { } if ((int )((short )hw->ctrl_flags) >= 0) { { atl1c_phy_magic_data(hw); } } else { } return (0); } } int atl1c_phy_init(struct atl1c_hw *hw ) { struct atl1c_adapter *adapter ; struct pci_dev *pdev ; int ret_val ; u16 mii_bmcr_data ; int tmp ; int tmp___0 ; { { adapter = hw->adapter; pdev = adapter->pdev; mii_bmcr_data = (u16 )32768U; tmp = atl1c_read_phy_reg(hw, (u16 )2, & hw->phy_id1); } if (tmp != 0) { { dev_err((struct device const *)(& pdev->dev), "Error get phy ID\n"); } return (-1); } else { { tmp___0 = atl1c_read_phy_reg(hw, (u16 )3, & hw->phy_id2); } if (tmp___0 != 0) { { dev_err((struct device const *)(& pdev->dev), "Error get phy ID\n"); } return (-1); } else { } } if ((int )hw->media_type == 0) { goto case_0; } else if ((int )hw->media_type == 1) { goto case_1; } else if ((int )hw->media_type == 2) { goto case_2; } else if ((int )hw->media_type == 3) { goto case_3; } else if ((int )hw->media_type == 4) { goto case_4; } else { goto switch_default; if (0) { case_0: { ret_val = atl1c_phy_setup_adv(hw); } if (ret_val != 0) { if ((adapter->msg_enable & 4U) != 0U) { { dev_err((struct device const *)(& pdev->dev), "Error Setting up Auto-Negotiation\n"); } } else { } return (ret_val); } else { } mii_bmcr_data = (u16 )((unsigned int )mii_bmcr_data | 4608U); goto ldv_42521; case_1: mii_bmcr_data = (u16 )((unsigned int )mii_bmcr_data | 8448U); goto ldv_42521; case_2: mii_bmcr_data = (u16 )((unsigned int )mii_bmcr_data | 8192U); goto ldv_42521; case_3: mii_bmcr_data = (u16 )((unsigned int )mii_bmcr_data | 256U); goto ldv_42521; case_4: ; goto ldv_42521; switch_default: ; if ((adapter->msg_enable & 4U) != 0U) { { dev_err((struct device const *)(& pdev->dev), "Wrong Media type %d\n", (int )hw->media_type); } } else { } return (-1); } else { } } ldv_42521: { ret_val = atl1c_write_phy_reg(hw, 0U, (u16 )((int )mii_bmcr_data)); } if (ret_val != 0) { return (ret_val); } else { } hw->phy_configured = (bool )1; return (0); } } int atl1c_get_speed_and_duplex(struct atl1c_hw *hw , u16 *speed , u16 *duplex ) { int err ; u16 phy_data ; { { err = atl1c_read_phy_reg(hw, (u16 )17, & phy_data); } if (err != 0) { return (err); } else { } if (((int )phy_data & 2048) == 0) { return (-1); } else { } if (((int )phy_data & 49152) == 32768) { goto case_32768; } else if (((int )phy_data & 49152) == 16384) { goto case_16384; } else if (((int )phy_data & 49152) == 0) { goto case_0; } else { goto switch_default; if (0) { case_32768: *speed = (u16 )1000U; goto ldv_42535; case_16384: *speed = (u16 )100U; goto ldv_42535; case_0: *speed = (u16 )10U; goto ldv_42535; switch_default: ; return (-1); } else { } } ldv_42535: ; if (((int )phy_data & 8192) != 0) { *duplex = (u16 )2U; } else { *duplex = (u16 )1U; } return (0); } } int atl1c_phy_power_saving(struct atl1c_hw *hw ) { struct atl1c_adapter *adapter ; struct pci_dev *pdev ; int ret ; u16 autoneg_advertised ; u16 save_autoneg_advertised ; u16 phy_data ; u16 mii_lpa_data ; u16 speed ; u16 duplex ; int i ; struct _ddebug descriptor ; long tmp ; int tmp___0 ; unsigned long __ms ; unsigned long tmp___1 ; struct _ddebug descriptor___0 ; long tmp___2 ; int tmp___3 ; { { adapter = hw->adapter; pdev = adapter->pdev; ret = 0; autoneg_advertised = (u16 )1U; speed = (u16 )65535U; duplex = (u16 )2U; atl1c_read_phy_reg(hw, (u16 )1, & phy_data); atl1c_read_phy_reg(hw, (u16 )1, & phy_data); } if (((int )phy_data & 4) != 0) { { atl1c_read_phy_reg(hw, (u16 )5, & mii_lpa_data); } if (((int )mii_lpa_data & 64) != 0) { autoneg_advertised = (u16 )2U; } else if (((int )mii_lpa_data & 32) != 0) { autoneg_advertised = (u16 )1U; } else if (((int )mii_lpa_data & 128) != 0) { autoneg_advertised = (u16 )4U; } else if (((int )mii_lpa_data & 256) != 0) { autoneg_advertised = (u16 )8U; } else { } { save_autoneg_advertised = hw->autoneg_advertised; hw->phy_configured = (bool )0; hw->autoneg_advertised = autoneg_advertised; tmp___0 = atl1c_restart_autoneg(hw); } if (tmp___0 != 0) { { descriptor.modname = "atl1c"; descriptor.function = "atl1c_phy_power_saving"; descriptor.filename = "/anthill/stuff/tacas-comp/work/current--X--drivers/net/atl1c/atl1c.ko--X--bulklinux-3.0.1--X--08_1/linux-3.0.1/csd_deg_dscv/13/dscv_tempdir/dscv/ri/08_1/drivers/net/atl1c/atl1c_hw.c.p"; descriptor.format = "phy autoneg failed\n"; descriptor.lineno = 629U; descriptor.flags = (unsigned char)0; descriptor.enabled = (char)0; tmp = __builtin_expect((long )((int )((signed char )descriptor.enabled) != 0), 0L); } if (tmp != 0L) { { dev_printk("<7>", (struct device const *)(& pdev->dev), "phy autoneg failed\n"); } } else { } ret = -1; } else { } hw->autoneg_advertised = save_autoneg_advertised; if ((unsigned int )mii_lpa_data != 0U) { i = 0; goto ldv_42561; ldv_42560: __ms = 100UL; goto ldv_42556; ldv_42555: { __const_udelay(4295000UL); } ldv_42556: tmp___1 = __ms; __ms = __ms - 1UL; if (tmp___1 != 0UL) { goto ldv_42555; } else { goto ldv_42557; } ldv_42557: { atl1c_read_phy_reg(hw, (u16 )1, & phy_data); atl1c_read_phy_reg(hw, (u16 )1, & phy_data); } if (((int )phy_data & 4) != 0) { { tmp___3 = atl1c_get_speed_and_duplex(hw, & speed, & duplex); } if (tmp___3 != 0) { { descriptor___0.modname = "atl1c"; descriptor___0.function = "atl1c_phy_power_saving"; descriptor___0.filename = "/anthill/stuff/tacas-comp/work/current--X--drivers/net/atl1c/atl1c.ko--X--bulklinux-3.0.1--X--08_1/linux-3.0.1/csd_deg_dscv/13/dscv_tempdir/dscv/ri/08_1/drivers/net/atl1c/atl1c_hw.c.p"; descriptor___0.format = "get speed and duplex failed\n"; descriptor___0.lineno = 643U; descriptor___0.flags = (unsigned char)0; descriptor___0.enabled = (char)0; tmp___2 = __builtin_expect((long )((int )((signed char )descriptor___0.enabled) != 0), 0L); } if (tmp___2 != 0L) { { dev_printk("<7>", (struct device const *)(& pdev->dev), "get speed and duplex failed\n"); } } else { } } else { } goto ldv_42559; } else { } i = i + 1; ldv_42561: ; if (i <= 99) { goto ldv_42560; } else { goto ldv_42559; } ldv_42559: ; } else { } } else { speed = (u16 )10U; duplex = (u16 )1U; } adapter->link_speed = speed; adapter->link_duplex = duplex; return (ret); } } int atl1c_restart_autoneg(struct atl1c_hw *hw ) { int err ; u16 mii_bmcr_data ; int tmp ; { { err = 0; mii_bmcr_data = (u16 )32768U; err = atl1c_phy_setup_adv(hw); } if (err != 0) { return (err); } else { } { mii_bmcr_data = (u16 )((unsigned int )mii_bmcr_data | 4608U); tmp = atl1c_write_phy_reg(hw, 0U, (u16 )((int )mii_bmcr_data)); } return (tmp); } } extern size_t strlcpy(char * , char const * , size_t ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const * const )0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } __inline static __u32 ethtool_cmd_speed(struct ethtool_cmd const *ep ) { { return ((__u32 )(((int )ep->speed_hi << 16) | (int )ep->speed)); } } extern u32 ethtool_op_get_link(struct net_device * ) ; __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } static int atl1c_get_settings(struct net_device *netdev , struct ethtool_cmd *ecmd ) { struct atl1c_adapter *adapter ; void *tmp ; struct atl1c_hw *hw ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; hw = & adapter->hw; ecmd->supported = 207U; } if ((int )hw->link_cap_flags & 1) { ecmd->supported = ecmd->supported | 32U; } else { } ecmd->advertising = 128U; ecmd->advertising = ecmd->advertising | (__u32 )hw->autoneg_advertised; ecmd->port = (__u8 )0U; ecmd->phy_address = (__u8 )0U; ecmd->transceiver = (__u8 )0U; if ((unsigned int )adapter->link_speed != 65535U) { { ethtool_cmd_speed_set(ecmd, (__u32 )adapter->link_speed); } if ((unsigned int )adapter->link_duplex == 2U) { ecmd->duplex = (__u8 )1U; } else { ecmd->duplex = (__u8 )0U; } } else { { ethtool_cmd_speed_set(ecmd, 4294967295U); ecmd->duplex = (__u8 )255U; } } ecmd->autoneg = (__u8 )1U; return (0); } } static int atl1c_set_settings(struct net_device *netdev , struct ethtool_cmd *ecmd ) { struct atl1c_adapter *adapter ; void *tmp ; struct atl1c_hw *hw ; u16 autoneg_advertised ; int tmp___0 ; u32 speed ; __u32 tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; hw = & adapter->hw; } goto ldv_42406; ldv_42405: { msleep(1U); } ldv_42406: { tmp___0 = test_and_set_bit(2, (unsigned long volatile *)(& adapter->flags)); } if (tmp___0 != 0) { goto ldv_42405; } else { goto ldv_42407; } ldv_42407: ; if ((unsigned int )ecmd->autoneg == 1U) { autoneg_advertised = (u16 )64U; } else { { tmp___1 = ethtool_cmd_speed((struct ethtool_cmd const *)ecmd); speed = tmp___1; } if (speed == 1000U) { if ((unsigned int )ecmd->duplex != 1U) { if ((adapter->msg_enable & 4U) != 0U) { { dev_warn((struct device const *)(& (adapter->pdev)->dev), "1000M half is invalid\n"); } } else { } { clear_bit(2, (unsigned long volatile *)(& adapter->flags)); } return (-22); } else { } autoneg_advertised = (u16 )32U; } else if (speed == 100U) { if ((unsigned int )ecmd->duplex == 1U) { autoneg_advertised = (u16 )8U; } else { autoneg_advertised = (u16 )4U; } } else if ((unsigned int )ecmd->duplex == 1U) { autoneg_advertised = (u16 )2U; } else { autoneg_advertised = (u16 )1U; } } if ((int )hw->autoneg_advertised != (int )autoneg_advertised) { { hw->autoneg_advertised = autoneg_advertised; tmp___2 = atl1c_restart_autoneg(hw); } if (tmp___2 != 0) { if ((adapter->msg_enable & 4U) != 0U) { { dev_warn((struct device const *)(& (adapter->pdev)->dev), "ethtool speed/duplex setting failed\n"); } } else { } { clear_bit(2, (unsigned long volatile *)(& adapter->flags)); } return (-22); } else { } } else { } { clear_bit(2, (unsigned long volatile *)(& adapter->flags)); } return (0); } } static u32 atl1c_get_msglevel(struct net_device *netdev ) { struct atl1c_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; } return (adapter->msg_enable); } } static void atl1c_set_msglevel(struct net_device *netdev , u32 data ) { struct atl1c_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; adapter->msg_enable = data; } return; } } static int atl1c_get_regs_len(struct net_device *netdev ) { { return (300); } } static void atl1c_get_regs(struct net_device *netdev , struct ethtool_regs *regs , void *p ) { struct atl1c_adapter *adapter ; void *tmp ; struct atl1c_hw *hw ; u32 *regs_buff ; u16 phy_data ; void *tmp___0 ; void *tmp___1 ; long tmp___2 ; void *tmp___3 ; void *tmp___4 ; long tmp___5 ; void *tmp___6 ; void *tmp___7 ; long tmp___8 ; void *tmp___9 ; void *tmp___10 ; long tmp___11 ; void *tmp___12 ; void *tmp___13 ; long tmp___14 ; void *tmp___15 ; void *tmp___16 ; long tmp___17 ; void *tmp___18 ; void *tmp___19 ; long tmp___20 ; void *tmp___21 ; void *tmp___22 ; long tmp___23 ; void *tmp___24 ; void *tmp___25 ; long tmp___26 ; void *tmp___27 ; void *tmp___28 ; long tmp___29 ; void *tmp___30 ; void *tmp___31 ; long tmp___32 ; void *tmp___33 ; void *tmp___34 ; long tmp___35 ; void *tmp___36 ; void *tmp___37 ; long tmp___38 ; void *tmp___39 ; void *tmp___40 ; long tmp___41 ; void *tmp___42 ; void *tmp___43 ; long tmp___44 ; void *tmp___45 ; void *tmp___46 ; long tmp___47 ; void *tmp___48 ; void *tmp___49 ; long tmp___50 ; void *tmp___51 ; void *tmp___52 ; long tmp___53 ; void *tmp___54 ; void *tmp___55 ; long tmp___56 ; void *tmp___57 ; void *tmp___58 ; long tmp___59 ; void *tmp___60 ; void *tmp___61 ; long tmp___62 ; void *tmp___63 ; void *tmp___64 ; long tmp___65 ; void *tmp___66 ; void *tmp___67 ; long tmp___68 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; hw = & adapter->hw; regs_buff = (u32 *)p; memset(p, 0, 300UL); regs->version = 0U; tmp___2 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___2 != 0L) { { readl((void const volatile *)hw->hw_addr + 108U); tmp___0 = p; p = p + 1; *((u32 *)tmp___0) = readl((void const volatile *)hw->hw_addr + 108U); } } else { { tmp___1 = p; p = p + 1; *((u32 *)tmp___1) = readl((void const volatile *)hw->hw_addr + 108U); } } { tmp___5 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___5 != 0L) { { readl((void const volatile *)hw->hw_addr + 4856U); tmp___3 = p; p = p + 1; *((u32 *)tmp___3) = readl((void const volatile *)hw->hw_addr + 4856U); } } else { { tmp___4 = p; p = p + 1; *((u32 *)tmp___4) = readl((void const volatile *)hw->hw_addr + 4856U); } } { tmp___8 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___8 != 0L) { { readl((void const volatile *)hw->hw_addr + 5272U); tmp___6 = p; p = p + 1; *((u32 *)tmp___6) = readl((void const volatile *)hw->hw_addr + 5272U); } } else { { tmp___7 = p; p = p + 1; *((u32 *)tmp___7) = readl((void const volatile *)hw->hw_addr + 5272U); } } { tmp___11 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___11 != 0L) { { readl((void const volatile *)hw->hw_addr + 536U); tmp___9 = p; p = p + 1; *((u32 *)tmp___9) = readl((void const volatile *)hw->hw_addr + 536U); } } else { { tmp___10 = p; p = p + 1; *((u32 *)tmp___10) = readl((void const volatile *)hw->hw_addr + 536U); } } { tmp___14 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___14 != 0L) { { readl((void const volatile *)hw->hw_addr + 540U); tmp___12 = p; p = p + 1; *((u32 *)tmp___12) = readl((void const volatile *)hw->hw_addr + 540U); } } else { { tmp___13 = p; p = p + 1; *((u32 *)tmp___13) = readl((void const volatile *)hw->hw_addr + 540U); } } { tmp___17 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___17 != 0L) { { readl((void const volatile *)hw->hw_addr + 5120U); tmp___15 = p; p = p + 1; *((u32 *)tmp___15) = readl((void const volatile *)hw->hw_addr + 5120U); } } else { { tmp___16 = p; p = p + 1; *((u32 *)tmp___16) = readl((void const volatile *)hw->hw_addr + 5120U); } } { tmp___20 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___20 != 0L) { { readl((void const volatile *)hw->hw_addr + 5124U); tmp___18 = p; p = p + 1; *((u32 *)tmp___18) = readl((void const volatile *)hw->hw_addr + 5124U); } } else { { tmp___19 = p; p = p + 1; *((u32 *)tmp___19) = readl((void const volatile *)hw->hw_addr + 5124U); } } { tmp___23 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___23 != 0L) { { readl((void const volatile *)hw->hw_addr + 5128U); tmp___21 = p; p = p + 1; *((u32 *)tmp___21) = readl((void const volatile *)hw->hw_addr + 5128U); } } else { { tmp___22 = p; p = p + 1; *((u32 *)tmp___22) = readl((void const volatile *)hw->hw_addr + 5128U); } } { tmp___26 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___26 != 0L) { { readl((void const volatile *)hw->hw_addr + 5132U); tmp___24 = p; p = p + 1; *((u32 *)tmp___24) = readl((void const volatile *)hw->hw_addr + 5132U); } } else { { tmp___25 = p; p = p + 1; *((u32 *)tmp___25) = readl((void const volatile *)hw->hw_addr + 5132U); } } { tmp___29 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___29 != 0L) { { readl((void const volatile *)hw->hw_addr + 104U); tmp___27 = p; p = p + 1; *((u32 *)tmp___27) = readl((void const volatile *)hw->hw_addr + 104U); } } else { { tmp___28 = p; p = p + 1; *((u32 *)tmp___28) = readl((void const volatile *)hw->hw_addr + 104U); } } { tmp___32 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___32 != 0L) { { readl((void const volatile *)hw->hw_addr + 5136U); tmp___30 = p; p = p + 1; *((u32 *)tmp___30) = readl((void const volatile *)hw->hw_addr + 5136U); } } else { { tmp___31 = p; p = p + 1; *((u32 *)tmp___31) = readl((void const volatile *)hw->hw_addr + 5136U); } } { tmp___35 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___35 != 0L) { { readl((void const volatile *)hw->hw_addr + 5140U); tmp___33 = p; p = p + 1; *((u32 *)tmp___33) = readl((void const volatile *)hw->hw_addr + 5140U); } } else { { tmp___34 = p; p = p + 1; *((u32 *)tmp___34) = readl((void const volatile *)hw->hw_addr + 5140U); } } { tmp___38 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___38 != 0L) { { readl((void const volatile *)hw->hw_addr + 5156U); tmp___36 = p; p = p + 1; *((u32 *)tmp___36) = readl((void const volatile *)hw->hw_addr + 5156U); } } else { { tmp___37 = p; p = p + 1; *((u32 *)tmp___37) = readl((void const volatile *)hw->hw_addr + 5156U); } } { tmp___41 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___41 != 0L) { { readl((void const volatile *)hw->hw_addr + 5248U); tmp___39 = p; p = p + 1; *((u32 *)tmp___39) = readl((void const volatile *)hw->hw_addr + 5248U); } } else { { tmp___40 = p; p = p + 1; *((u32 *)tmp___40) = readl((void const volatile *)hw->hw_addr + 5248U); } } { tmp___44 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___44 != 0L) { { readl((void const volatile *)hw->hw_addr + 5252U); tmp___42 = p; p = p + 1; *((u32 *)tmp___42) = readl((void const volatile *)hw->hw_addr + 5252U); } } else { { tmp___43 = p; p = p + 1; *((u32 *)tmp___43) = readl((void const volatile *)hw->hw_addr + 5252U); } } { tmp___47 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___47 != 0L) { { readl((void const volatile *)hw->hw_addr + 5256U); tmp___45 = p; p = p + 1; *((u32 *)tmp___45) = readl((void const volatile *)hw->hw_addr + 5256U); } } else { { tmp___46 = p; p = p + 1; *((u32 *)tmp___46) = readl((void const volatile *)hw->hw_addr + 5256U); } } { tmp___50 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___50 != 0L) { { readl((void const volatile *)hw->hw_addr + 5260U); tmp___48 = p; p = p + 1; *((u32 *)tmp___48) = readl((void const volatile *)hw->hw_addr + 5260U); } } else { { tmp___49 = p; p = p + 1; *((u32 *)tmp___49) = readl((void const volatile *)hw->hw_addr + 5260U); } } { tmp___53 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___53 != 0L) { { readl((void const volatile *)hw->hw_addr + 5264U); tmp___51 = p; p = p + 1; *((u32 *)tmp___51) = readl((void const volatile *)hw->hw_addr + 5264U); } } else { { tmp___52 = p; p = p + 1; *((u32 *)tmp___52) = readl((void const volatile *)hw->hw_addr + 5264U); } } { tmp___56 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___56 != 0L) { { readl((void const volatile *)hw->hw_addr + 5268U); tmp___54 = p; p = p + 1; *((u32 *)tmp___54) = readl((void const volatile *)hw->hw_addr + 5268U); } } else { { tmp___55 = p; p = p + 1; *((u32 *)tmp___55) = readl((void const volatile *)hw->hw_addr + 5268U); } } { tmp___59 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___59 != 0L) { { readl((void const volatile *)hw->hw_addr + 5536U); tmp___57 = p; p = p + 1; *((u32 *)tmp___57) = readl((void const volatile *)hw->hw_addr + 5536U); } } else { { tmp___58 = p; p = p + 1; *((u32 *)tmp___58) = readl((void const volatile *)hw->hw_addr + 5536U); } } { tmp___62 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___62 != 0L) { { readl((void const volatile *)hw->hw_addr + 5520U); tmp___60 = p; p = p + 1; *((u32 *)tmp___60) = readl((void const volatile *)hw->hw_addr + 5520U); } } else { { tmp___61 = p; p = p + 1; *((u32 *)tmp___61) = readl((void const volatile *)hw->hw_addr + 5520U); } } { tmp___65 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___65 != 0L) { { readl((void const volatile *)hw->hw_addr + 5276U); tmp___63 = p; p = p + 1; *((u32 *)tmp___63) = readl((void const volatile *)hw->hw_addr + 5276U); } } else { { tmp___64 = p; p = p + 1; *((u32 *)tmp___64) = readl((void const volatile *)hw->hw_addr + 5276U); } } { tmp___68 = __builtin_expect((long )hw->hibernate, 0L); } if (tmp___68 != 0L) { { readl((void const volatile *)hw->hw_addr + 5280U); tmp___66 = p; p = p + 1; *((u32 *)tmp___66) = readl((void const volatile *)hw->hw_addr + 5280U); } } else { { tmp___67 = p; p = p + 1; *((u32 *)tmp___67) = readl((void const volatile *)hw->hw_addr + 5280U); } } { atl1c_read_phy_reg(hw, (u16 )0, & phy_data); *(regs_buff + 73UL) = (unsigned int )phy_data; atl1c_read_phy_reg(hw, (u16 )1, & phy_data); *(regs_buff + 74UL) = (unsigned int )phy_data; } return; } } static int atl1c_get_eeprom_len(struct net_device *netdev ) { struct atl1c_adapter *adapter ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; tmp___0 = atl1c_check_eeprom_exist(& adapter->hw); } if (tmp___0 != 0) { return (512); } else { return (0); } } } static int atl1c_get_eeprom(struct net_device *netdev , struct ethtool_eeprom *eeprom , u8 *bytes ) { struct atl1c_adapter *adapter ; void *tmp ; struct atl1c_hw *hw ; u32 *eeprom_buff ; int first_dword ; int last_dword ; int ret_val ; int i ; int tmp___0 ; void *tmp___1 ; bool tmp___2 ; int tmp___3 ; size_t __len ; void *__ret ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; hw = & adapter->hw; ret_val = 0; } if (eeprom->len == 0U) { return (-22); } else { } { tmp___0 = atl1c_check_eeprom_exist(hw); } if (tmp___0 == 0) { return (-22); } else { } { eeprom->magic = (__u32 )((int )(adapter->pdev)->vendor | ((int )(adapter->pdev)->device << 16)); first_dword = (int )(eeprom->offset >> 2); last_dword = (int )(((eeprom->offset + eeprom->len) - 1U) >> 2); tmp___1 = kmalloc((unsigned long )((last_dword - first_dword) + 1) * 4UL, 208U); eeprom_buff = (u32 *)tmp___1; } if ((unsigned long )eeprom_buff == (unsigned long )((u32 *)0)) { return (-12); } else { } i = first_dword; goto ldv_42447; ldv_42446: { tmp___2 = atl1c_read_eeprom(hw, (u32 )(i * 4), eeprom_buff + (unsigned long )(i - first_dword)); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { { kfree((void const *)eeprom_buff); } return (-5); } else { } i = i + 1; ldv_42447: ; if (i < last_dword) { goto ldv_42446; } else { goto ldv_42448; } ldv_42448: { __len = (size_t )eeprom->len; __ret = __builtin_memcpy((void *)bytes, (void const *)eeprom_buff + ((unsigned long )eeprom->offset & 3UL), __len); kfree((void const *)eeprom_buff); } return (ret_val); return (0); } } static void atl1c_get_drvinfo(struct net_device *netdev , struct ethtool_drvinfo *drvinfo ) { struct atl1c_adapter *adapter ; void *tmp ; char const *tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; strlcpy((char *)(& drvinfo->driver), (char const *)(& atl1c_driver_name), 32UL); strlcpy((char *)(& drvinfo->version), (char const *)(& atl1c_driver_version), 32UL); strlcpy((char *)(& drvinfo->fw_version), "N/A", 32UL); tmp___0 = pci_name((struct pci_dev const *)adapter->pdev); strlcpy((char *)(& drvinfo->bus_info), tmp___0, 32UL); drvinfo->n_stats = 0U; drvinfo->testinfo_len = 0U; tmp___1 = atl1c_get_regs_len(netdev); drvinfo->regdump_len = (__u32 )tmp___1; tmp___2 = atl1c_get_eeprom_len(netdev); drvinfo->eedump_len = (__u32 )tmp___2; } return; } } static void atl1c_get_wol(struct net_device *netdev , struct ethtool_wolinfo *wol ) { struct atl1c_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; wol->supported = 33U; wol->wolopts = 0U; } if ((adapter->wol & 4U) != 0U) { wol->wolopts = wol->wolopts | 2U; } else { } if ((adapter->wol & 8U) != 0U) { wol->wolopts = wol->wolopts | 4U; } else { } if ((adapter->wol & 16U) != 0U) { wol->wolopts = wol->wolopts | 8U; } else { } if ((adapter->wol & 2U) != 0U) { wol->wolopts = wol->wolopts | 32U; } else { } if ((int )adapter->wol & 1) { wol->wolopts = wol->wolopts | 1U; } else { } return; } } static int atl1c_set_wol(struct net_device *netdev , struct ethtool_wolinfo *wol ) { struct atl1c_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; } if ((wol->wolopts & 94U) != 0U) { return (-95); } else { } adapter->wol = 0U; if ((wol->wolopts & 32U) != 0U) { adapter->wol = adapter->wol | 2U; } else { } if ((int )wol->wolopts & 1) { adapter->wol = adapter->wol | 1U; } else { } { device_set_wakeup_enable(& (adapter->pdev)->dev, (bool )(adapter->wol != 0U)); } return (0); } } static int atl1c_nway_reset(struct net_device *netdev ) { struct atl1c_adapter *adapter ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct atl1c_adapter *)tmp; tmp___0 = netif_running((struct net_device const *)netdev); } if (tmp___0 != 0) { { atl1c_reinit_locked(adapter); } } else { } return (0); } } static struct ethtool_ops const atl1c_ethtool_ops = {& atl1c_get_settings, & atl1c_set_settings, & atl1c_get_drvinfo, & atl1c_get_regs_len, & atl1c_get_regs, & atl1c_get_wol, & atl1c_set_wol, & atl1c_get_msglevel, & atl1c_set_msglevel, & atl1c_nway_reset, & ethtool_op_get_link, & atl1c_get_eeprom_len, & atl1c_get_eeprom, (int (*)(struct net_device * , struct ethtool_eeprom * , u8 * ))0, (int (*)(struct net_device * , struct ethtool_coalesce * ))0, (int (*)(struct net_device * , struct ethtool_coalesce * ))0, (void (*)(struct net_device * , struct ethtool_ringparam * ))0, (int (*)(struct net_device * , struct ethtool_ringparam * ))0, (void (*)(struct net_device * , struct ethtool_pauseparam * ))0, (int (*)(struct net_device * , struct ethtool_pauseparam * ))0, (u32 (*)(struct net_device * ))0, (int (*)(struct net_device * , u32 ))0, (u32 (*)(struct net_device * ))0, (int (*)(struct net_device * , u32 ))0, (u32 (*)(struct net_device * ))0, (int (*)(struct net_device * , u32 ))0, (u32 (*)(struct net_device * ))0, (int (*)(struct net_device * , u32 ))0, (void (*)(struct net_device * , struct ethtool_test * , u64 * ))0, (void (*)(struct net_device * , u32 , u8 * ))0, (int (*)(struct net_device * , enum ethtool_phys_id_state ))0, (void (*)(struct net_device * , struct ethtool_stats * , u64 * ))0, (int (*)(struct net_device * ))0, (void (*)(struct net_device * ))0, (u32 (*)(struct net_device * ))0, (int (*)(struct net_device * , u32 ))0, (u32 (*)(struct net_device * ))0, (int (*)(struct net_device * , u32 ))0, (u32 (*)(struct net_device * ))0, (int (*)(struct net_device * , u32 ))0, (int (*)(struct net_device * , int ))0, (int (*)(struct net_device * , struct ethtool_rxnfc * , void * ))0, (int (*)(struct net_device * , struct ethtool_rxnfc * ))0, (int (*)(struct net_device * , struct ethtool_flash * ))0, (int (*)(struct net_device * , u32 * ))0, (int (*)(struct net_device * , struct ethtool_rx_ntuple * ))0, (int (*)(struct net_device * , u32 , void * ))0, (int (*)(struct net_device * , struct ethtool_rxfh_indir * ))0, (int (*)(struct net_device * , struct ethtool_rxfh_indir const * ))0, (void (*)(struct net_device * , struct ethtool_channels * ))0, (int (*)(struct net_device * , struct ethtool_channels * ))0, (int (*)(struct net_device * , struct ethtool_dump * ))0, (int (*)(struct net_device * , struct ethtool_dump * , void * ))0, (int (*)(struct net_device * , struct ethtool_dump * ))0}; void atl1c_set_ethtool_ops(struct net_device *netdev ) { { netdev->ethtool_ops = & atl1c_ethtool_ops; return; } } int main(void) { struct net_device *var_group1 ; struct ethtool_cmd *var_group2 ; struct ethtool_drvinfo *var_group3 ; struct ethtool_regs *var_group4 ; void *var_atl1c_get_regs_5_p2 ; struct ethtool_wolinfo *var_group5 ; u32 var_atl1c_set_msglevel_3_p1 ; struct ethtool_eeprom *var_group6 ; u8 *var_atl1c_get_eeprom_7_p2 ; int tmp ; int tmp___0 ; { { LDV_IN_INTERRUPT = 1; ldv_initialize(); } goto ldv_42511; ldv_42510: { tmp = __VERIFIER_nondet_int(); } if (tmp == 0) { goto case_0; } else if (tmp == 1) { goto case_1; } else if (tmp == 2) { goto case_2; } else if (tmp == 3) { goto case_3; } else if (tmp == 4) { goto case_4; } else if (tmp == 5) { goto case_5; } else if (tmp == 6) { goto case_6; } else if (tmp == 7) { goto case_7; } else if (tmp == 8) { goto case_8; } else if (tmp == 9) { goto case_9; } else if (tmp == 10) { goto case_10; } else if (tmp == 11) { goto case_11; } else { goto switch_default; if (0) { case_0: { atl1c_get_settings(var_group1, var_group2); } goto ldv_42497; case_1: { atl1c_set_settings(var_group1, var_group2); } goto ldv_42497; case_2: { atl1c_get_drvinfo(var_group1, var_group3); } goto ldv_42497; case_3: { atl1c_get_regs_len(var_group1); } goto ldv_42497; case_4: { atl1c_get_regs(var_group1, var_group4, var_atl1c_get_regs_5_p2); } goto ldv_42497; case_5: { atl1c_get_wol(var_group1, var_group5); } goto ldv_42497; case_6: { atl1c_set_wol(var_group1, var_group5); } goto ldv_42497; case_7: { atl1c_get_msglevel(var_group1); } goto ldv_42497; case_8: { atl1c_set_msglevel(var_group1, var_atl1c_set_msglevel_3_p1); } goto ldv_42497; case_9: { atl1c_nway_reset(var_group1); } goto ldv_42497; case_10: { atl1c_get_eeprom_len(var_group1); } goto ldv_42497; case_11: { atl1c_get_eeprom(var_group1, var_group6, var_atl1c_get_eeprom_7_p2); } goto ldv_42497; switch_default: ; goto ldv_42497; } else { } } ldv_42497: ; ldv_42511: { tmp___0 = __VERIFIER_nondet_int(); } if (tmp___0 != 0) { goto ldv_42510; } else { goto ldv_42512; } ldv_42512: { ldv_check_final_state(); } return 0; } }