/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef long long __s64; typedef unsigned long long __u64; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef __kernel_long_t __kernel_suseconds_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u32 __le32; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct device; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; typedef void (*ctor_fn_t)(void); struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; typedef unsigned long kernel_ulong_t; struct usb_device_id { __u16 match_flags ; __u16 idVendor ; __u16 idProduct ; __u16 bcdDevice_lo ; __u16 bcdDevice_hi ; __u8 bDeviceClass ; __u8 bDeviceSubClass ; __u8 bDeviceProtocol ; __u8 bInterfaceClass ; __u8 bInterfaceSubClass ; __u8 bInterfaceProtocol ; __u8 bInterfaceNumber ; kernel_ulong_t driver_info ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct input_device_id { kernel_ulong_t flags ; __u16 bustype ; __u16 vendor ; __u16 product ; __u16 version ; kernel_ulong_t evbit[1U] ; kernel_ulong_t keybit[12U] ; kernel_ulong_t relbit[1U] ; kernel_ulong_t absbit[1U] ; kernel_ulong_t mscbit[1U] ; kernel_ulong_t ledbit[1U] ; kernel_ulong_t sndbit[1U] ; kernel_ulong_t ffbit[2U] ; kernel_ulong_t swbit[1U] ; kernel_ulong_t driver_info ; }; struct usb_device_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 bcdUSB ; __u8 bDeviceClass ; __u8 bDeviceSubClass ; __u8 bDeviceProtocol ; __u8 bMaxPacketSize0 ; __le16 idVendor ; __le16 idProduct ; __le16 bcdDevice ; __u8 iManufacturer ; __u8 iProduct ; __u8 iSerialNumber ; __u8 bNumConfigurations ; }; struct usb_config_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumInterfaces ; __u8 bConfigurationValue ; __u8 iConfiguration ; __u8 bmAttributes ; __u8 bMaxPower ; }; struct usb_interface_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bInterfaceNumber ; __u8 bAlternateSetting ; __u8 bNumEndpoints ; __u8 bInterfaceClass ; __u8 bInterfaceSubClass ; __u8 bInterfaceProtocol ; __u8 iInterface ; }; struct usb_endpoint_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bEndpointAddress ; __u8 bmAttributes ; __le16 wMaxPacketSize ; __u8 bInterval ; __u8 bRefresh ; __u8 bSynchAddress ; }; struct usb_ss_ep_comp_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bMaxBurst ; __u8 bmAttributes ; __le16 wBytesPerInterval ; }; struct usb_interface_assoc_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bFirstInterface ; __u8 bInterfaceCount ; __u8 bFunctionClass ; __u8 bFunctionSubClass ; __u8 bFunctionProtocol ; __u8 iFunction ; }; struct usb_bos_descriptor { __u8 bLength ; __u8 bDescriptorType ; __le16 wTotalLength ; __u8 bNumDeviceCaps ; }; struct usb_ext_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __le32 bmAttributes ; }; struct usb_ss_cap_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bmAttributes ; __le16 wSpeedSupported ; __u8 bFunctionalitySupport ; __u8 bU1devExitLat ; __le16 bU2DevExitLat ; }; struct usb_ss_container_id_descriptor { __u8 bLength ; __u8 bDescriptorType ; __u8 bDevCapabilityType ; __u8 bReserved ; __u8 ContainerID[16U] ; }; enum usb_device_speed { USB_SPEED_UNKNOWN = 0, USB_SPEED_LOW = 1, USB_SPEED_FULL = 2, USB_SPEED_HIGH = 3, USB_SPEED_WIRELESS = 4, USB_SPEED_SUPER = 5 } ; enum usb_device_state { USB_STATE_NOTATTACHED = 0, USB_STATE_ATTACHED = 1, USB_STATE_POWERED = 2, USB_STATE_RECONNECTING = 3, USB_STATE_UNAUTHENTICATED = 4, USB_STATE_DEFAULT = 5, USB_STATE_ADDRESS = 6, USB_STATE_CONFIGURED = 7, USB_STATE_SUSPENDED = 8 } ; struct timespec; struct llist_node; struct llist_node { struct llist_node *next ; }; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct timeval { __kernel_time_t tv_sec ; __kernel_suseconds_t tv_usec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct __anonstruct_nodemask_t_104 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_104 nodemask_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct vm_area_struct; struct device_node; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct exception_table_entry { int insn ; int fixup ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct kref { atomic_t refcount ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct dentry; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_134 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_135 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_134 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_135 __annonCompField33 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_136 { uid_t val ; }; typedef struct __anonstruct_kuid_t_136 kuid_t; struct __anonstruct_kgid_t_137 { gid_t val ; }; typedef struct __anonstruct_kgid_t_137 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_139 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_138 { struct __anonstruct____missing_field_name_139 __annonCompField34 ; }; struct lockref { union __anonunion____missing_field_name_138 __annonCompField35 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_141 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_140 { struct __anonstruct____missing_field_name_141 __annonCompField36 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_140 __annonCompField37 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_142 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_142 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct export_operations; struct iovec; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct cred; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_144 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_144 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_145 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_145 __annonCompField38 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space; struct writeback_control; union __anonunion_arg_147 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_146 { size_t written ; size_t count ; union __anonunion_arg_147 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_146 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_148 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_149 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_150 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_148 __annonCompField39 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_149 __annonCompField40 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_150 __annonCompField41 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_151 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_151 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_153 { struct list_head link ; int state ; }; union __anonunion_fl_u_152 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_153 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_152 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_156 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_157 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_155 { struct __anonstruct____missing_field_name_156 __annonCompField43 ; struct __anonstruct____missing_field_name_157 __annonCompField44 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_155 __annonCompField45 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; union __anonunion____missing_field_name_158 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_160 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_164 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_163 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_164 __annonCompField48 ; int units ; }; struct __anonstruct____missing_field_name_162 { union __anonunion____missing_field_name_163 __annonCompField49 ; atomic_t _count ; }; union __anonunion____missing_field_name_161 { unsigned long counters ; struct __anonstruct____missing_field_name_162 __annonCompField50 ; unsigned int active ; }; struct __anonstruct____missing_field_name_159 { union __anonunion____missing_field_name_160 __annonCompField47 ; union __anonunion____missing_field_name_161 __annonCompField51 ; }; struct __anonstruct____missing_field_name_166 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_165 { struct list_head lru ; struct __anonstruct____missing_field_name_166 __annonCompField53 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_167 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_158 __annonCompField46 ; struct __anonstruct____missing_field_name_159 __annonCompField52 ; union __anonunion____missing_field_name_165 __annonCompField54 ; union __anonunion____missing_field_name_167 __annonCompField55 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_169 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_168 { struct __anonstruct_linear_169 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_168 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct __anonstruct_sigset_t_170 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_170 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_172 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_173 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_174 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_175 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_176 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_177 { long _band ; int _fd ; }; struct __anonstruct__sigsys_178 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_171 { int _pad[28U] ; struct __anonstruct__kill_172 _kill ; struct __anonstruct__timer_173 _timer ; struct __anonstruct__rt_174 _rt ; struct __anonstruct__sigchld_175 _sigchld ; struct __anonstruct__sigfault_176 _sigfault ; struct __anonstruct__sigpoll_177 _sigpoll ; struct __anonstruct__sigsys_178 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_171 _sifields ; }; typedef struct siginfo siginfo_t; struct user_struct; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_183 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_184 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_186 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_185 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_186 __annonCompField60 ; }; union __anonunion_type_data_187 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_189 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_188 { union __anonunion_payload_189 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_183 __annonCompField58 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_184 __annonCompField59 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_185 __annonCompField61 ; union __anonunion_type_data_187 type_data ; union __anonunion____missing_field_name_188 __annonCompField62 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; struct usb_device; struct usb_driver; struct wusb_dev; struct ep_device; struct usb_host_endpoint { struct usb_endpoint_descriptor desc ; struct usb_ss_ep_comp_descriptor ss_ep_comp ; struct list_head urb_list ; void *hcpriv ; struct ep_device *ep_dev ; unsigned char *extra ; int extralen ; int enabled ; }; struct usb_host_interface { struct usb_interface_descriptor desc ; int extralen ; unsigned char *extra ; struct usb_host_endpoint *endpoint ; char *string ; }; enum usb_interface_condition { USB_INTERFACE_UNBOUND = 0, USB_INTERFACE_BINDING = 1, USB_INTERFACE_BOUND = 2, USB_INTERFACE_UNBINDING = 3 } ; struct usb_interface { struct usb_host_interface *altsetting ; struct usb_host_interface *cur_altsetting ; unsigned int num_altsetting ; struct usb_interface_assoc_descriptor *intf_assoc ; int minor ; enum usb_interface_condition condition ; unsigned int sysfs_files_created : 1 ; unsigned int ep_devs_created : 1 ; unsigned int unregistering : 1 ; unsigned int needs_remote_wakeup : 1 ; unsigned int needs_altsetting0 : 1 ; unsigned int needs_binding : 1 ; unsigned int reset_running : 1 ; unsigned int resetting_device : 1 ; struct device dev ; struct device *usb_dev ; atomic_t pm_usage_cnt ; struct work_struct reset_ws ; }; struct usb_interface_cache { unsigned int num_altsetting ; struct kref ref ; struct usb_host_interface altsetting[0U] ; }; struct usb_host_config { struct usb_config_descriptor desc ; char *string ; struct usb_interface_assoc_descriptor *intf_assoc[16U] ; struct usb_interface *interface[32U] ; struct usb_interface_cache *intf_cache[32U] ; unsigned char *extra ; int extralen ; }; struct usb_host_bos { struct usb_bos_descriptor *desc ; struct usb_ext_cap_descriptor *ext_cap ; struct usb_ss_cap_descriptor *ss_cap ; struct usb_ss_container_id_descriptor *ss_id ; }; struct usb_devmap { unsigned long devicemap[2U] ; }; struct mon_bus; struct usb_bus { struct device *controller ; int busnum ; char const *bus_name ; u8 uses_dma ; u8 uses_pio_for_control ; u8 otg_port ; unsigned int is_b_host : 1 ; unsigned int b_hnp_enable : 1 ; unsigned int no_stop_on_short : 1 ; unsigned int no_sg_constraint : 1 ; unsigned int sg_tablesize ; int devnum_next ; struct usb_devmap devmap ; struct usb_device *root_hub ; struct usb_bus *hs_companion ; struct list_head bus_list ; int bandwidth_allocated ; int bandwidth_int_reqs ; int bandwidth_isoc_reqs ; unsigned int resuming_ports ; struct mon_bus *mon_bus ; int monitored ; }; struct usb_tt; enum usb_device_removable { USB_DEVICE_REMOVABLE_UNKNOWN = 0, USB_DEVICE_REMOVABLE = 1, USB_DEVICE_FIXED = 2 } ; struct usb2_lpm_parameters { unsigned int besl ; int timeout ; }; struct usb3_lpm_parameters { unsigned int mel ; unsigned int pel ; unsigned int sel ; int timeout ; }; struct usb_device { int devnum ; char devpath[16U] ; u32 route ; enum usb_device_state state ; enum usb_device_speed speed ; struct usb_tt *tt ; int ttport ; unsigned int toggle[2U] ; struct usb_device *parent ; struct usb_bus *bus ; struct usb_host_endpoint ep0 ; struct device dev ; struct usb_device_descriptor descriptor ; struct usb_host_bos *bos ; struct usb_host_config *config ; struct usb_host_config *actconfig ; struct usb_host_endpoint *ep_in[16U] ; struct usb_host_endpoint *ep_out[16U] ; char **rawdescriptors ; unsigned short bus_mA ; u8 portnum ; u8 level ; unsigned int can_submit : 1 ; unsigned int persist_enabled : 1 ; unsigned int have_langid : 1 ; unsigned int authorized : 1 ; unsigned int authenticated : 1 ; unsigned int wusb : 1 ; unsigned int lpm_capable : 1 ; unsigned int usb2_hw_lpm_capable : 1 ; unsigned int usb2_hw_lpm_besl_capable : 1 ; unsigned int usb2_hw_lpm_enabled : 1 ; unsigned int usb2_hw_lpm_allowed : 1 ; unsigned int usb3_lpm_enabled : 1 ; int string_langid ; char *product ; char *manufacturer ; char *serial ; struct list_head filelist ; int maxchild ; u32 quirks ; atomic_t urbnum ; unsigned long active_duration ; unsigned long connect_time ; unsigned int do_remote_wakeup : 1 ; unsigned int reset_resume : 1 ; unsigned int port_is_suspended : 1 ; struct wusb_dev *wusb_dev ; int slot_id ; enum usb_device_removable removable ; struct usb2_lpm_parameters l1_params ; struct usb3_lpm_parameters u1_params ; struct usb3_lpm_parameters u2_params ; unsigned int lpm_disable_count ; }; struct usb_dynids { spinlock_t lock ; struct list_head list ; }; struct usbdrv_wrap { struct device_driver driver ; int for_devices ; }; struct usb_driver { char const *name ; int (*probe)(struct usb_interface * , struct usb_device_id const * ) ; void (*disconnect)(struct usb_interface * ) ; int (*unlocked_ioctl)(struct usb_interface * , unsigned int , void * ) ; int (*suspend)(struct usb_interface * , pm_message_t ) ; int (*resume)(struct usb_interface * ) ; int (*reset_resume)(struct usb_interface * ) ; int (*pre_reset)(struct usb_interface * ) ; int (*post_reset)(struct usb_interface * ) ; struct usb_device_id const *id_table ; struct usb_dynids dynids ; struct usbdrv_wrap drvwrap ; unsigned int no_dynamic_id : 1 ; unsigned int supports_autosuspend : 1 ; unsigned int disable_hub_initiated_lpm : 1 ; unsigned int soft_unbind : 1 ; }; struct usb_iso_packet_descriptor { unsigned int offset ; unsigned int length ; unsigned int actual_length ; int status ; }; struct urb; struct usb_anchor { struct list_head urb_list ; wait_queue_head_t wait ; spinlock_t lock ; atomic_t suspend_wakeups ; unsigned int poisoned : 1 ; }; struct scatterlist; struct urb { struct kref kref ; void *hcpriv ; atomic_t use_count ; atomic_t reject ; int unlinked ; struct list_head urb_list ; struct list_head anchor_list ; struct usb_anchor *anchor ; struct usb_device *dev ; struct usb_host_endpoint *ep ; unsigned int pipe ; unsigned int stream_id ; int status ; unsigned int transfer_flags ; void *transfer_buffer ; dma_addr_t transfer_dma ; struct scatterlist *sg ; int num_mapped_sgs ; int num_sgs ; u32 transfer_buffer_length ; u32 actual_length ; unsigned char *setup_packet ; dma_addr_t setup_dma ; int start_frame ; int number_of_packets ; int interval ; int error_count ; void *context ; void (*complete)(struct urb * ) ; struct usb_iso_packet_descriptor iso_frame_desc[0U] ; }; struct input_id { __u16 bustype ; __u16 vendor ; __u16 product ; __u16 version ; }; struct input_absinfo { __s32 value ; __s32 minimum ; __s32 maximum ; __s32 fuzz ; __s32 flat ; __s32 resolution ; }; struct input_keymap_entry { __u8 flags ; __u8 len ; __u16 index ; __u32 keycode ; __u8 scancode[32U] ; }; struct ff_replay { __u16 length ; __u16 delay ; }; struct ff_trigger { __u16 button ; __u16 interval ; }; struct ff_envelope { __u16 attack_length ; __u16 attack_level ; __u16 fade_length ; __u16 fade_level ; }; struct ff_constant_effect { __s16 level ; struct ff_envelope envelope ; }; struct ff_ramp_effect { __s16 start_level ; __s16 end_level ; struct ff_envelope envelope ; }; struct ff_condition_effect { __u16 right_saturation ; __u16 left_saturation ; __s16 right_coeff ; __s16 left_coeff ; __u16 deadband ; __s16 center ; }; struct ff_periodic_effect { __u16 waveform ; __u16 period ; __s16 magnitude ; __s16 offset ; __u16 phase ; struct ff_envelope envelope ; __u32 custom_len ; __s16 *custom_data ; }; struct ff_rumble_effect { __u16 strong_magnitude ; __u16 weak_magnitude ; }; union __anonunion_u_191 { struct ff_constant_effect constant ; struct ff_ramp_effect ramp ; struct ff_periodic_effect periodic ; struct ff_condition_effect condition[2U] ; struct ff_rumble_effect rumble ; }; struct ff_effect { __u16 type ; __s16 id ; __u16 direction ; struct ff_trigger trigger ; struct ff_replay replay ; union __anonunion_u_191 u ; }; struct input_value { __u16 type ; __u16 code ; __s32 value ; }; struct ff_device; struct input_mt; struct input_handle; struct input_dev { char const *name ; char const *phys ; char const *uniq ; struct input_id id ; unsigned long propbit[1U] ; unsigned long evbit[1U] ; unsigned long keybit[12U] ; unsigned long relbit[1U] ; unsigned long absbit[1U] ; unsigned long mscbit[1U] ; unsigned long ledbit[1U] ; unsigned long sndbit[1U] ; unsigned long ffbit[2U] ; unsigned long swbit[1U] ; unsigned int hint_events_per_packet ; unsigned int keycodemax ; unsigned int keycodesize ; void *keycode ; int (*setkeycode)(struct input_dev * , struct input_keymap_entry const * , unsigned int * ) ; int (*getkeycode)(struct input_dev * , struct input_keymap_entry * ) ; struct ff_device *ff ; unsigned int repeat_key ; struct timer_list timer ; int rep[2U] ; struct input_mt *mt ; struct input_absinfo *absinfo ; unsigned long key[12U] ; unsigned long led[1U] ; unsigned long snd[1U] ; unsigned long sw[1U] ; int (*open)(struct input_dev * ) ; void (*close)(struct input_dev * ) ; int (*flush)(struct input_dev * , struct file * ) ; int (*event)(struct input_dev * , unsigned int , unsigned int , int ) ; struct input_handle *grab ; spinlock_t event_lock ; struct mutex mutex ; unsigned int users ; bool going_away ; struct device dev ; struct list_head h_list ; struct list_head node ; unsigned int num_vals ; unsigned int max_vals ; struct input_value *vals ; bool devres_managed ; }; struct input_handler { void *private ; void (*event)(struct input_handle * , unsigned int , unsigned int , int ) ; void (*events)(struct input_handle * , struct input_value const * , unsigned int ) ; bool (*filter)(struct input_handle * , unsigned int , unsigned int , int ) ; bool (*match)(struct input_handler * , struct input_dev * ) ; int (*connect)(struct input_handler * , struct input_dev * , struct input_device_id const * ) ; void (*disconnect)(struct input_handle * ) ; void (*start)(struct input_handle * ) ; bool legacy_minors ; int minor ; char const *name ; struct input_device_id const *id_table ; struct list_head h_list ; struct list_head node ; }; struct input_handle { void *private ; int open ; char const *name ; struct input_dev *dev ; struct input_handler *handler ; struct list_head d_node ; struct list_head h_node ; }; struct ff_device { int (*upload)(struct input_dev * , struct ff_effect * , struct ff_effect * ) ; int (*erase)(struct input_dev * , int ) ; int (*playback)(struct input_dev * , int , int ) ; void (*set_gain)(struct input_dev * , u16 ) ; void (*set_autocenter)(struct input_dev * , u16 ) ; void (*destroy)(struct ff_device * ) ; void *private ; unsigned long ffbit[2U] ; struct mutex mutex ; int max_effects ; struct ff_effect *effects ; struct file *effect_owners[] ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_193 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_194 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_192 { struct __anonstruct____missing_field_name_193 __annonCompField64 ; struct __anonstruct____missing_field_name_194 __annonCompField65 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_192 __annonCompField66 ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_199 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_199 __annonCompField67 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; enum v4l2_priority { V4L2_PRIORITY_UNSET = 0, V4L2_PRIORITY_BACKGROUND = 1, V4L2_PRIORITY_INTERACTIVE = 2, V4L2_PRIORITY_RECORD = 3, V4L2_PRIORITY_DEFAULT = 2 } ; struct v4l2_rect { __s32 left ; __s32 top ; __u32 width ; __u32 height ; }; struct v4l2_fract { __u32 numerator ; __u32 denominator ; }; struct v4l2_pix_format { __u32 width ; __u32 height ; __u32 pixelformat ; __u32 field ; __u32 bytesperline ; __u32 sizeimage ; __u32 colorspace ; __u32 priv ; }; struct v4l2_frmsize_discrete { __u32 width ; __u32 height ; }; struct v4l2_frmsize_stepwise { __u32 min_width ; __u32 max_width ; __u32 step_width ; __u32 min_height ; __u32 max_height ; __u32 step_height ; }; union __anonunion____missing_field_name_200 { struct v4l2_frmsize_discrete discrete ; struct v4l2_frmsize_stepwise stepwise ; }; struct v4l2_frmsizeenum { __u32 index ; __u32 pixel_format ; __u32 type ; union __anonunion____missing_field_name_200 __annonCompField68 ; __u32 reserved[2U] ; }; struct v4l2_frmival_stepwise { struct v4l2_fract min ; struct v4l2_fract max ; struct v4l2_fract step ; }; union __anonunion____missing_field_name_201 { struct v4l2_fract discrete ; struct v4l2_frmival_stepwise stepwise ; }; struct v4l2_frmivalenum { __u32 index ; __u32 pixel_format ; __u32 width ; __u32 height ; __u32 type ; union __anonunion____missing_field_name_201 __annonCompField69 ; __u32 reserved[2U] ; }; struct v4l2_timecode { __u32 type ; __u32 flags ; __u8 frames ; __u8 seconds ; __u8 minutes ; __u8 hours ; __u8 userbits[4U] ; }; struct v4l2_jpegcompression { int quality ; int APPn ; int APP_len ; char APP_data[60U] ; int COM_len ; char COM_data[60U] ; __u32 jpeg_markers ; }; union __anonunion_m_202 { __u32 mem_offset ; unsigned long userptr ; __s32 fd ; }; struct v4l2_plane { __u32 bytesused ; __u32 length ; union __anonunion_m_202 m ; __u32 data_offset ; __u32 reserved[11U] ; }; union __anonunion_m_203 { __u32 offset ; unsigned long userptr ; struct v4l2_plane *planes ; __s32 fd ; }; struct v4l2_buffer { __u32 index ; __u32 type ; __u32 bytesused ; __u32 flags ; __u32 field ; struct timeval timestamp ; struct v4l2_timecode timecode ; __u32 sequence ; __u32 memory ; union __anonunion_m_203 m ; __u32 length ; __u32 reserved2 ; __u32 reserved ; }; struct v4l2_clip { struct v4l2_rect c ; struct v4l2_clip *next ; }; struct v4l2_window { struct v4l2_rect w ; __u32 field ; __u32 chromakey ; struct v4l2_clip *clips ; __u32 clipcount ; void *bitmap ; __u8 global_alpha ; }; struct v4l2_captureparm { __u32 capability ; __u32 capturemode ; struct v4l2_fract timeperframe ; __u32 extendedmode ; __u32 readbuffers ; __u32 reserved[4U] ; }; struct v4l2_outputparm { __u32 capability ; __u32 outputmode ; struct v4l2_fract timeperframe ; __u32 extendedmode ; __u32 writebuffers ; __u32 reserved[4U] ; }; struct v4l2_cropcap { __u32 type ; struct v4l2_rect bounds ; struct v4l2_rect defrect ; struct v4l2_fract pixelaspect ; }; struct v4l2_crop { __u32 type ; struct v4l2_rect c ; }; typedef __u64 v4l2_std_id; struct v4l2_bt_timings { __u32 width ; __u32 height ; __u32 interlaced ; __u32 polarities ; __u64 pixelclock ; __u32 hfrontporch ; __u32 hsync ; __u32 hbackporch ; __u32 vfrontporch ; __u32 vsync ; __u32 vbackporch ; __u32 il_vfrontporch ; __u32 il_vsync ; __u32 il_vbackporch ; __u32 standards ; __u32 flags ; __u32 reserved[14U] ; }; union __anonunion____missing_field_name_204 { struct v4l2_bt_timings bt ; __u32 reserved[32U] ; }; struct v4l2_dv_timings { __u32 type ; union __anonunion____missing_field_name_204 __annonCompField70 ; }; struct v4l2_enum_dv_timings { __u32 index ; __u32 reserved[3U] ; struct v4l2_dv_timings timings ; }; struct v4l2_bt_timings_cap { __u32 min_width ; __u32 max_width ; __u32 min_height ; __u32 max_height ; __u64 min_pixelclock ; __u64 max_pixelclock ; __u32 standards ; __u32 capabilities ; __u32 reserved[16U] ; }; union __anonunion____missing_field_name_205 { struct v4l2_bt_timings_cap bt ; __u32 raw_data[32U] ; }; struct v4l2_dv_timings_cap { __u32 type ; __u32 reserved[3U] ; union __anonunion____missing_field_name_205 __annonCompField71 ; }; struct v4l2_control { __u32 id ; __s32 value ; }; union __anonunion____missing_field_name_206 { __s32 value ; __s64 value64 ; char *string ; }; struct v4l2_ext_control { __u32 id ; __u32 size ; __u32 reserved2[1U] ; union __anonunion____missing_field_name_206 __annonCompField72 ; }; struct v4l2_ext_controls { __u32 ctrl_class ; __u32 count ; __u32 error_idx ; __u32 reserved[2U] ; struct v4l2_ext_control *controls ; }; enum v4l2_ctrl_type { V4L2_CTRL_TYPE_INTEGER = 1, V4L2_CTRL_TYPE_BOOLEAN = 2, V4L2_CTRL_TYPE_MENU = 3, V4L2_CTRL_TYPE_BUTTON = 4, V4L2_CTRL_TYPE_INTEGER64 = 5, V4L2_CTRL_TYPE_CTRL_CLASS = 6, V4L2_CTRL_TYPE_STRING = 7, V4L2_CTRL_TYPE_BITMASK = 8, V4L2_CTRL_TYPE_INTEGER_MENU = 9 } ; struct v4l2_queryctrl { __u32 id ; __u32 type ; __u8 name[32U] ; __s32 minimum ; __s32 maximum ; __s32 step ; __s32 default_value ; __u32 flags ; __u32 reserved[2U] ; }; union __anonunion____missing_field_name_207 { __u8 name[32U] ; __s64 value ; }; struct v4l2_querymenu { __u32 id ; __u32 index ; union __anonunion____missing_field_name_207 __annonCompField73 ; __u32 reserved ; }; struct v4l2_tuner { __u32 index ; __u8 name[32U] ; __u32 type ; __u32 capability ; __u32 rangelow ; __u32 rangehigh ; __u32 rxsubchans ; __u32 audmode ; __s32 signal ; __s32 afc ; __u32 reserved[4U] ; }; struct v4l2_modulator { __u32 index ; __u8 name[32U] ; __u32 capability ; __u32 rangelow ; __u32 rangehigh ; __u32 txsubchans ; __u32 reserved[4U] ; }; struct v4l2_frequency { __u32 tuner ; __u32 type ; __u32 frequency ; __u32 reserved[8U] ; }; struct v4l2_vbi_format { __u32 sampling_rate ; __u32 offset ; __u32 samples_per_line ; __u32 sample_format ; __s32 start[2U] ; __u32 count[2U] ; __u32 flags ; __u32 reserved[2U] ; }; struct v4l2_sliced_vbi_format { __u16 service_set ; __u16 service_lines[2U][24U] ; __u32 io_size ; __u32 reserved[2U] ; }; struct v4l2_sliced_vbi_cap { __u16 service_set ; __u16 service_lines[2U][24U] ; __u32 type ; __u32 reserved[3U] ; }; struct v4l2_sliced_vbi_data { __u32 id ; __u32 field ; __u32 line ; __u32 reserved ; __u8 data[48U] ; }; struct v4l2_plane_pix_format { __u32 sizeimage ; __u16 bytesperline ; __u16 reserved[7U] ; }; struct v4l2_pix_format_mplane { __u32 width ; __u32 height ; __u32 pixelformat ; __u32 field ; __u32 colorspace ; struct v4l2_plane_pix_format plane_fmt[8U] ; __u8 num_planes ; __u8 reserved[11U] ; }; union __anonunion_fmt_215 { struct v4l2_pix_format pix ; struct v4l2_pix_format_mplane pix_mp ; struct v4l2_window win ; struct v4l2_vbi_format vbi ; struct v4l2_sliced_vbi_format sliced ; __u8 raw_data[200U] ; }; struct v4l2_format { __u32 type ; union __anonunion_fmt_215 fmt ; }; union __anonunion_parm_216 { struct v4l2_captureparm capture ; struct v4l2_outputparm output ; __u8 raw_data[200U] ; }; struct v4l2_streamparm { __u32 type ; union __anonunion_parm_216 parm ; }; struct v4l2_event_subscription { __u32 type ; __u32 id ; __u32 flags ; __u32 reserved[5U] ; }; union __anonunion____missing_field_name_219 { __u32 addr ; char name[32U] ; }; struct v4l2_dbg_match { __u32 type ; union __anonunion____missing_field_name_219 __annonCompField78 ; }; struct v4l2_dbg_register { struct v4l2_dbg_match match ; __u32 size ; __u64 reg ; __u64 val ; }; struct v4l2_dbg_chip_info { struct v4l2_dbg_match match ; char name[32U] ; __u32 flags ; __u32 reserved[32U] ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct media_pipeline { }; struct media_pad; struct media_link { struct media_pad *source ; struct media_pad *sink ; struct media_link *reverse ; unsigned long flags ; }; struct media_entity; struct media_pad { struct media_entity *entity ; u16 index ; unsigned long flags ; }; struct media_entity_operations { int (*link_setup)(struct media_entity * , struct media_pad const * , struct media_pad const * , u32 ) ; int (*link_validate)(struct media_link * ) ; }; struct media_device; struct __anonstruct_v4l_226 { u32 major ; u32 minor ; }; struct __anonstruct_fb_227 { u32 major ; u32 minor ; }; struct __anonstruct_alsa_228 { u32 card ; u32 device ; u32 subdevice ; }; union __anonunion_info_225 { struct __anonstruct_v4l_226 v4l ; struct __anonstruct_fb_227 fb ; struct __anonstruct_alsa_228 alsa ; int dvb ; }; struct media_entity { struct list_head list ; struct media_device *parent ; u32 id ; char const *name ; u32 type ; u32 revision ; unsigned long flags ; u32 group_id ; u16 num_pads ; u16 num_links ; u16 num_backlinks ; u16 max_links ; struct media_pad *pads ; struct media_link *links ; struct media_entity_operations const *ops ; int stream_count ; int use_count ; struct media_pipeline *pipe ; union __anonunion_info_225 info ; }; struct video_device; struct v4l2_device; struct v4l2_ctrl_handler; struct v4l2_prio_state { atomic_t prios[4U] ; }; struct v4l2_file_operations { struct module *owner ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*ioctl)(struct file * , unsigned int , unsigned long ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl32)(struct file * , unsigned int , unsigned long ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct file * ) ; int (*release)(struct file * ) ; }; struct vb2_queue; struct v4l2_ioctl_ops; struct video_device { struct media_entity entity ; struct v4l2_file_operations const *fops ; struct device dev ; struct cdev *cdev ; struct v4l2_device *v4l2_dev ; struct device *dev_parent ; struct v4l2_ctrl_handler *ctrl_handler ; struct vb2_queue *queue ; struct v4l2_prio_state *prio ; char name[32U] ; int vfl_type ; int vfl_dir ; int minor ; u16 num ; unsigned long flags ; int index ; spinlock_t fh_lock ; struct list_head fh_list ; int debug ; v4l2_std_id tvnorms ; void (*release)(struct video_device * ) ; struct v4l2_ioctl_ops const *ioctl_ops ; unsigned long valid_ioctls[3U] ; unsigned long disable_locking[3U] ; struct mutex *lock ; }; struct v4l2_subdev; struct v4l2_subdev_ops; struct v4l2_priv_tun_config { int tuner ; void *priv ; }; struct v4l2_ctrl_helper; struct v4l2_ctrl; struct v4l2_fh; struct v4l2_ctrl_ops { int (*g_volatile_ctrl)(struct v4l2_ctrl * ) ; int (*try_ctrl)(struct v4l2_ctrl * ) ; int (*s_ctrl)(struct v4l2_ctrl * ) ; }; union __anonunion____missing_field_name_230 { u32 step ; u32 menu_skip_mask ; }; union __anonunion____missing_field_name_231 { char const * const *qmenu ; s64 const *qmenu_int ; }; union __anonunion_cur_232 { s32 val ; s64 val64 ; char *string ; }; union __anonunion____missing_field_name_233 { s32 val ; s64 val64 ; char *string ; }; struct v4l2_ctrl { struct list_head node ; struct list_head ev_subs ; struct v4l2_ctrl_handler *handler ; struct v4l2_ctrl **cluster ; unsigned int ncontrols ; unsigned int done : 1 ; unsigned int is_new : 1 ; unsigned int is_private : 1 ; unsigned int is_auto : 1 ; unsigned int has_volatiles : 1 ; unsigned int call_notify : 1 ; unsigned int manual_mode_value : 8 ; struct v4l2_ctrl_ops const *ops ; u32 id ; char const *name ; enum v4l2_ctrl_type type ; s32 minimum ; s32 maximum ; s32 default_value ; union __anonunion____missing_field_name_230 __annonCompField80 ; union __anonunion____missing_field_name_231 __annonCompField81 ; unsigned long flags ; union __anonunion_cur_232 cur ; union __anonunion____missing_field_name_233 __annonCompField82 ; void *priv ; }; struct v4l2_ctrl_ref { struct list_head node ; struct v4l2_ctrl_ref *next ; struct v4l2_ctrl *ctrl ; struct v4l2_ctrl_helper *helper ; }; struct v4l2_ctrl_handler { struct mutex _lock ; struct mutex *lock ; struct list_head ctrls ; struct list_head ctrl_refs ; struct v4l2_ctrl_ref *cached ; struct v4l2_ctrl_ref **buckets ; void (*notify)(struct v4l2_ctrl * , void * ) ; void *notify_priv ; u16 nr_of_buckets ; int error ; }; struct media_file_operations { struct module *owner ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*open)(struct file * ) ; int (*release)(struct file * ) ; }; struct media_devnode { struct media_file_operations const *fops ; struct device dev ; struct cdev cdev ; struct device *parent ; int minor ; unsigned long flags ; void (*release)(struct media_devnode * ) ; }; struct media_device { struct device *dev ; struct media_devnode devnode ; char model[32U] ; char serial[40U] ; char bus_info[32U] ; u32 hw_revision ; u32 driver_version ; u32 entity_id ; struct list_head entities ; spinlock_t lock ; struct mutex graph_mutex ; int (*link_notify)(struct media_link * , u32 , unsigned int ) ; }; enum v4l2_mbus_pixelcode { V4L2_MBUS_FMT_FIXED = 1, V4L2_MBUS_FMT_RGB444_2X8_PADHI_BE = 4097, V4L2_MBUS_FMT_RGB444_2X8_PADHI_LE = 4098, V4L2_MBUS_FMT_RGB555_2X8_PADHI_BE = 4099, V4L2_MBUS_FMT_RGB555_2X8_PADHI_LE = 4100, V4L2_MBUS_FMT_BGR565_2X8_BE = 4101, V4L2_MBUS_FMT_BGR565_2X8_LE = 4102, V4L2_MBUS_FMT_RGB565_2X8_BE = 4103, V4L2_MBUS_FMT_RGB565_2X8_LE = 4104, V4L2_MBUS_FMT_RGB666_1X18 = 4105, V4L2_MBUS_FMT_RGB888_1X24 = 4106, V4L2_MBUS_FMT_RGB888_2X12_BE = 4107, V4L2_MBUS_FMT_RGB888_2X12_LE = 4108, V4L2_MBUS_FMT_ARGB8888_1X32 = 4109, V4L2_MBUS_FMT_Y8_1X8 = 8193, V4L2_MBUS_FMT_UV8_1X8 = 8213, V4L2_MBUS_FMT_UYVY8_1_5X8 = 8194, V4L2_MBUS_FMT_VYUY8_1_5X8 = 8195, V4L2_MBUS_FMT_YUYV8_1_5X8 = 8196, V4L2_MBUS_FMT_YVYU8_1_5X8 = 8197, V4L2_MBUS_FMT_UYVY8_2X8 = 8198, V4L2_MBUS_FMT_VYUY8_2X8 = 8199, V4L2_MBUS_FMT_YUYV8_2X8 = 8200, V4L2_MBUS_FMT_YVYU8_2X8 = 8201, V4L2_MBUS_FMT_Y10_1X10 = 8202, V4L2_MBUS_FMT_YUYV10_2X10 = 8203, V4L2_MBUS_FMT_YVYU10_2X10 = 8204, V4L2_MBUS_FMT_Y12_1X12 = 8211, V4L2_MBUS_FMT_UYVY8_1X16 = 8207, V4L2_MBUS_FMT_VYUY8_1X16 = 8208, V4L2_MBUS_FMT_YUYV8_1X16 = 8209, V4L2_MBUS_FMT_YVYU8_1X16 = 8210, V4L2_MBUS_FMT_YDYUYDYV8_1X16 = 8212, V4L2_MBUS_FMT_YUYV10_1X20 = 8205, V4L2_MBUS_FMT_YVYU10_1X20 = 8206, V4L2_MBUS_FMT_YUV10_1X30 = 8214, V4L2_MBUS_FMT_AYUV8_1X32 = 8215, V4L2_MBUS_FMT_SBGGR8_1X8 = 12289, V4L2_MBUS_FMT_SGBRG8_1X8 = 12307, V4L2_MBUS_FMT_SGRBG8_1X8 = 12290, V4L2_MBUS_FMT_SRGGB8_1X8 = 12308, V4L2_MBUS_FMT_SBGGR10_ALAW8_1X8 = 12309, V4L2_MBUS_FMT_SGBRG10_ALAW8_1X8 = 12310, V4L2_MBUS_FMT_SGRBG10_ALAW8_1X8 = 12311, V4L2_MBUS_FMT_SRGGB10_ALAW8_1X8 = 12312, V4L2_MBUS_FMT_SBGGR10_DPCM8_1X8 = 12299, V4L2_MBUS_FMT_SGBRG10_DPCM8_1X8 = 12300, V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8 = 12297, V4L2_MBUS_FMT_SRGGB10_DPCM8_1X8 = 12301, V4L2_MBUS_FMT_SBGGR10_2X8_PADHI_BE = 12291, V4L2_MBUS_FMT_SBGGR10_2X8_PADHI_LE = 12292, V4L2_MBUS_FMT_SBGGR10_2X8_PADLO_BE = 12293, V4L2_MBUS_FMT_SBGGR10_2X8_PADLO_LE = 12294, V4L2_MBUS_FMT_SBGGR10_1X10 = 12295, V4L2_MBUS_FMT_SGBRG10_1X10 = 12302, V4L2_MBUS_FMT_SGRBG10_1X10 = 12298, V4L2_MBUS_FMT_SRGGB10_1X10 = 12303, V4L2_MBUS_FMT_SBGGR12_1X12 = 12296, V4L2_MBUS_FMT_SGBRG12_1X12 = 12304, V4L2_MBUS_FMT_SGRBG12_1X12 = 12305, V4L2_MBUS_FMT_SRGGB12_1X12 = 12306, V4L2_MBUS_FMT_JPEG_1X8 = 16385, V4L2_MBUS_FMT_S5C_UYVY_JPEG_1X8 = 20481, V4L2_MBUS_FMT_AHSV8888_1X32 = 24577 } ; struct v4l2_mbus_framefmt { __u32 width ; __u32 height ; __u32 code ; __u32 field ; __u32 colorspace ; __u32 reserved[7U] ; }; struct v4l2_subdev_format { __u32 which ; __u32 pad ; struct v4l2_mbus_framefmt format ; __u32 reserved[8U] ; }; struct v4l2_subdev_crop { __u32 which ; __u32 pad ; struct v4l2_rect rect ; __u32 reserved[8U] ; }; struct v4l2_subdev_mbus_code_enum { __u32 pad ; __u32 index ; __u32 code ; __u32 reserved[9U] ; }; struct v4l2_subdev_frame_size_enum { __u32 index ; __u32 pad ; __u32 code ; __u32 min_width ; __u32 max_width ; __u32 min_height ; __u32 max_height ; __u32 reserved[9U] ; }; struct v4l2_subdev_frame_interval { __u32 pad ; struct v4l2_fract interval ; __u32 reserved[9U] ; }; struct v4l2_subdev_frame_interval_enum { __u32 index ; __u32 pad ; __u32 code ; __u32 width ; __u32 height ; struct v4l2_fract interval ; __u32 reserved[9U] ; }; struct v4l2_subdev_selection { __u32 which ; __u32 pad ; __u32 target ; __u32 flags ; struct v4l2_rect r ; __u32 reserved[8U] ; }; struct v4l2_subdev_edid { __u32 pad ; __u32 start_block ; __u32 blocks ; __u32 reserved[5U] ; __u8 *edid ; }; struct v4l2_async_notifier; enum v4l2_async_match_type { V4L2_ASYNC_MATCH_CUSTOM = 0, V4L2_ASYNC_MATCH_DEVNAME = 1, V4L2_ASYNC_MATCH_I2C = 2, V4L2_ASYNC_MATCH_OF = 3 } ; struct __anonstruct_of_235 { struct device_node const *node ; }; struct __anonstruct_device_name_236 { char const *name ; }; struct __anonstruct_i2c_237 { int adapter_id ; unsigned short address ; }; struct __anonstruct_custom_238 { bool (*match)(struct device * , struct v4l2_async_subdev * ) ; void *priv ; }; union __anonunion_match_234 { struct __anonstruct_of_235 of ; struct __anonstruct_device_name_236 device_name ; struct __anonstruct_i2c_237 i2c ; struct __anonstruct_custom_238 custom ; }; struct v4l2_async_subdev { enum v4l2_async_match_type match_type ; union __anonunion_match_234 match ; struct list_head list ; }; struct v4l2_async_notifier { unsigned int num_subdevs ; struct v4l2_async_subdev **subdevs ; struct v4l2_device *v4l2_dev ; struct list_head waiting ; struct list_head done ; struct list_head list ; int (*bound)(struct v4l2_async_notifier * , struct v4l2_subdev * , struct v4l2_async_subdev * ) ; int (*complete)(struct v4l2_async_notifier * ) ; void (*unbind)(struct v4l2_async_notifier * , struct v4l2_subdev * , struct v4l2_async_subdev * ) ; }; struct v4l2_m2m_ctx; struct v4l2_fh { struct list_head list ; struct video_device *vdev ; struct v4l2_ctrl_handler *ctrl_handler ; enum v4l2_priority prio ; wait_queue_head_t wait ; struct list_head subscribed ; struct list_head available ; unsigned int navailable ; u32 sequence ; struct v4l2_m2m_ctx *m2m_ctx ; }; enum v4l2_mbus_type { V4L2_MBUS_PARALLEL = 0, V4L2_MBUS_BT656 = 1, V4L2_MBUS_CSI2 = 2 } ; struct v4l2_mbus_config { enum v4l2_mbus_type type ; unsigned int flags ; }; struct v4l2_subdev_fh; struct tuner_setup; struct v4l2_mbus_frame_desc; struct v4l2_decode_vbi_line { u32 is_second_field ; u8 *p ; u32 line ; u32 type ; }; struct v4l2_subdev_io_pin_config { u32 flags ; u8 pin ; u8 function ; u8 value ; u8 strength ; }; struct v4l2_subdev_core_ops { int (*log_status)(struct v4l2_subdev * ) ; int (*s_io_pin_config)(struct v4l2_subdev * , size_t , struct v4l2_subdev_io_pin_config * ) ; int (*init)(struct v4l2_subdev * , u32 ) ; int (*load_fw)(struct v4l2_subdev * ) ; int (*reset)(struct v4l2_subdev * , u32 ) ; int (*s_gpio)(struct v4l2_subdev * , u32 ) ; int (*queryctrl)(struct v4l2_subdev * , struct v4l2_queryctrl * ) ; int (*g_ctrl)(struct v4l2_subdev * , struct v4l2_control * ) ; int (*s_ctrl)(struct v4l2_subdev * , struct v4l2_control * ) ; int (*g_ext_ctrls)(struct v4l2_subdev * , struct v4l2_ext_controls * ) ; int (*s_ext_ctrls)(struct v4l2_subdev * , struct v4l2_ext_controls * ) ; int (*try_ext_ctrls)(struct v4l2_subdev * , struct v4l2_ext_controls * ) ; int (*querymenu)(struct v4l2_subdev * , struct v4l2_querymenu * ) ; int (*g_std)(struct v4l2_subdev * , v4l2_std_id * ) ; int (*s_std)(struct v4l2_subdev * , v4l2_std_id ) ; long (*ioctl)(struct v4l2_subdev * , unsigned int , void * ) ; int (*g_register)(struct v4l2_subdev * , struct v4l2_dbg_register * ) ; int (*s_register)(struct v4l2_subdev * , struct v4l2_dbg_register const * ) ; int (*s_power)(struct v4l2_subdev * , int ) ; int (*interrupt_service_routine)(struct v4l2_subdev * , u32 , bool * ) ; int (*subscribe_event)(struct v4l2_subdev * , struct v4l2_fh * , struct v4l2_event_subscription * ) ; int (*unsubscribe_event)(struct v4l2_subdev * , struct v4l2_fh * , struct v4l2_event_subscription * ) ; }; struct v4l2_subdev_tuner_ops { int (*s_radio)(struct v4l2_subdev * ) ; int (*s_frequency)(struct v4l2_subdev * , struct v4l2_frequency const * ) ; int (*g_frequency)(struct v4l2_subdev * , struct v4l2_frequency * ) ; int (*g_tuner)(struct v4l2_subdev * , struct v4l2_tuner * ) ; int (*s_tuner)(struct v4l2_subdev * , struct v4l2_tuner const * ) ; int (*g_modulator)(struct v4l2_subdev * , struct v4l2_modulator * ) ; int (*s_modulator)(struct v4l2_subdev * , struct v4l2_modulator const * ) ; int (*s_type_addr)(struct v4l2_subdev * , struct tuner_setup * ) ; int (*s_config)(struct v4l2_subdev * , struct v4l2_priv_tun_config const * ) ; }; struct v4l2_subdev_audio_ops { int (*s_clock_freq)(struct v4l2_subdev * , u32 ) ; int (*s_i2s_clock_freq)(struct v4l2_subdev * , u32 ) ; int (*s_routing)(struct v4l2_subdev * , u32 , u32 , u32 ) ; int (*s_stream)(struct v4l2_subdev * , int ) ; }; struct v4l2_mbus_frame_desc_entry { u16 flags ; u32 pixelcode ; u32 length ; }; struct v4l2_mbus_frame_desc { struct v4l2_mbus_frame_desc_entry entry[4U] ; unsigned short num_entries ; }; struct v4l2_subdev_video_ops { int (*s_routing)(struct v4l2_subdev * , u32 , u32 , u32 ) ; int (*s_crystal_freq)(struct v4l2_subdev * , u32 , u32 ) ; int (*s_std_output)(struct v4l2_subdev * , v4l2_std_id ) ; int (*g_std_output)(struct v4l2_subdev * , v4l2_std_id * ) ; int (*querystd)(struct v4l2_subdev * , v4l2_std_id * ) ; int (*g_tvnorms_output)(struct v4l2_subdev * , v4l2_std_id * ) ; int (*g_input_status)(struct v4l2_subdev * , u32 * ) ; int (*s_stream)(struct v4l2_subdev * , int ) ; int (*cropcap)(struct v4l2_subdev * , struct v4l2_cropcap * ) ; int (*g_crop)(struct v4l2_subdev * , struct v4l2_crop * ) ; int (*s_crop)(struct v4l2_subdev * , struct v4l2_crop const * ) ; int (*g_parm)(struct v4l2_subdev * , struct v4l2_streamparm * ) ; int (*s_parm)(struct v4l2_subdev * , struct v4l2_streamparm * ) ; int (*g_frame_interval)(struct v4l2_subdev * , struct v4l2_subdev_frame_interval * ) ; int (*s_frame_interval)(struct v4l2_subdev * , struct v4l2_subdev_frame_interval * ) ; int (*enum_framesizes)(struct v4l2_subdev * , struct v4l2_frmsizeenum * ) ; int (*enum_frameintervals)(struct v4l2_subdev * , struct v4l2_frmivalenum * ) ; int (*s_dv_timings)(struct v4l2_subdev * , struct v4l2_dv_timings * ) ; int (*g_dv_timings)(struct v4l2_subdev * , struct v4l2_dv_timings * ) ; int (*enum_dv_timings)(struct v4l2_subdev * , struct v4l2_enum_dv_timings * ) ; int (*query_dv_timings)(struct v4l2_subdev * , struct v4l2_dv_timings * ) ; int (*dv_timings_cap)(struct v4l2_subdev * , struct v4l2_dv_timings_cap * ) ; int (*enum_mbus_fmt)(struct v4l2_subdev * , unsigned int , enum v4l2_mbus_pixelcode * ) ; int (*enum_mbus_fsizes)(struct v4l2_subdev * , struct v4l2_frmsizeenum * ) ; int (*g_mbus_fmt)(struct v4l2_subdev * , struct v4l2_mbus_framefmt * ) ; int (*try_mbus_fmt)(struct v4l2_subdev * , struct v4l2_mbus_framefmt * ) ; int (*s_mbus_fmt)(struct v4l2_subdev * , struct v4l2_mbus_framefmt * ) ; int (*g_mbus_config)(struct v4l2_subdev * , struct v4l2_mbus_config * ) ; int (*s_mbus_config)(struct v4l2_subdev * , struct v4l2_mbus_config const * ) ; int (*s_rx_buffer)(struct v4l2_subdev * , void * , unsigned int * ) ; }; struct v4l2_subdev_vbi_ops { int (*decode_vbi_line)(struct v4l2_subdev * , struct v4l2_decode_vbi_line * ) ; int (*s_vbi_data)(struct v4l2_subdev * , struct v4l2_sliced_vbi_data const * ) ; int (*g_vbi_data)(struct v4l2_subdev * , struct v4l2_sliced_vbi_data * ) ; int (*g_sliced_vbi_cap)(struct v4l2_subdev * , struct v4l2_sliced_vbi_cap * ) ; int (*s_raw_fmt)(struct v4l2_subdev * , struct v4l2_vbi_format * ) ; int (*g_sliced_fmt)(struct v4l2_subdev * , struct v4l2_sliced_vbi_format * ) ; int (*s_sliced_fmt)(struct v4l2_subdev * , struct v4l2_sliced_vbi_format * ) ; }; struct v4l2_subdev_sensor_ops { int (*g_skip_top_lines)(struct v4l2_subdev * , u32 * ) ; int (*g_skip_frames)(struct v4l2_subdev * , u32 * ) ; }; enum v4l2_subdev_ir_mode { V4L2_SUBDEV_IR_MODE_PULSE_WIDTH = 0 } ; struct v4l2_subdev_ir_parameters { unsigned int bytes_per_data_element ; enum v4l2_subdev_ir_mode mode ; bool enable ; bool interrupt_enable ; bool shutdown ; bool modulation ; u32 max_pulse_width ; unsigned int carrier_freq ; unsigned int duty_cycle ; bool invert_level ; bool invert_carrier_sense ; u32 noise_filter_min_width ; unsigned int carrier_range_lower ; unsigned int carrier_range_upper ; u32 resolution ; }; struct v4l2_subdev_ir_ops { int (*rx_read)(struct v4l2_subdev * , u8 * , size_t , ssize_t * ) ; int (*rx_g_parameters)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) ; int (*rx_s_parameters)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) ; int (*tx_write)(struct v4l2_subdev * , u8 * , size_t , ssize_t * ) ; int (*tx_g_parameters)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) ; int (*tx_s_parameters)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) ; }; struct v4l2_subdev_pad_ops { int (*enum_mbus_code)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_mbus_code_enum * ) ; int (*enum_frame_size)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_frame_size_enum * ) ; int (*enum_frame_interval)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_frame_interval_enum * ) ; int (*get_fmt)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_format * ) ; int (*set_fmt)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_format * ) ; int (*set_crop)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_crop * ) ; int (*get_crop)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_crop * ) ; int (*get_selection)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_selection * ) ; int (*set_selection)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_selection * ) ; int (*get_edid)(struct v4l2_subdev * , struct v4l2_subdev_edid * ) ; int (*set_edid)(struct v4l2_subdev * , struct v4l2_subdev_edid * ) ; int (*link_validate)(struct v4l2_subdev * , struct media_link * , struct v4l2_subdev_format * , struct v4l2_subdev_format * ) ; int (*get_frame_desc)(struct v4l2_subdev * , unsigned int , struct v4l2_mbus_frame_desc * ) ; int (*set_frame_desc)(struct v4l2_subdev * , unsigned int , struct v4l2_mbus_frame_desc * ) ; }; struct v4l2_subdev_ops { struct v4l2_subdev_core_ops const *core ; struct v4l2_subdev_tuner_ops const *tuner ; struct v4l2_subdev_audio_ops const *audio ; struct v4l2_subdev_video_ops const *video ; struct v4l2_subdev_vbi_ops const *vbi ; struct v4l2_subdev_ir_ops const *ir ; struct v4l2_subdev_sensor_ops const *sensor ; struct v4l2_subdev_pad_ops const *pad ; }; struct v4l2_subdev_internal_ops { int (*registered)(struct v4l2_subdev * ) ; void (*unregistered)(struct v4l2_subdev * ) ; int (*open)(struct v4l2_subdev * , struct v4l2_subdev_fh * ) ; int (*close)(struct v4l2_subdev * , struct v4l2_subdev_fh * ) ; }; struct regulator_bulk_data; struct v4l2_subdev_platform_data { struct regulator_bulk_data *regulators ; int num_regulators ; void *host_priv ; }; struct v4l2_subdev { struct media_entity entity ; struct list_head list ; struct module *owner ; u32 flags ; struct v4l2_device *v4l2_dev ; struct v4l2_subdev_ops const *ops ; struct v4l2_subdev_internal_ops const *internal_ops ; struct v4l2_ctrl_handler *ctrl_handler ; char name[32U] ; u32 grp_id ; void *dev_priv ; void *host_priv ; struct video_device *devnode ; struct device *dev ; struct list_head async_list ; struct v4l2_async_subdev *asd ; struct v4l2_async_notifier *notifier ; struct v4l2_subdev_platform_data *pdata ; }; struct __anonstruct_pad_239 { struct v4l2_mbus_framefmt try_fmt ; struct v4l2_rect try_crop ; struct v4l2_rect try_compose ; }; struct v4l2_subdev_fh { struct v4l2_fh vfh ; struct __anonstruct_pad_239 *pad ; }; struct v4l2_device { struct device *dev ; struct media_device *mdev ; struct list_head subdevs ; spinlock_t lock ; char name[36U] ; void (*notify)(struct v4l2_subdev * , unsigned int , void * ) ; struct v4l2_ctrl_handler *ctrl_handler ; struct v4l2_prio_state prio ; struct mutex ioctl_lock ; struct kref ref ; void (*release)(struct v4l2_device * ) ; }; struct framerates { u8 const *rates ; int nrates ; }; struct cam { struct v4l2_pix_format const *cam_mode ; struct framerates const *mode_framerates ; u32 bulk_size ; u32 input_flags ; u8 nmodes ; u8 no_urb_create ; u8 bulk_nurbs ; u8 bulk ; u8 npkt ; u8 needs_full_bandwidth ; }; struct gspca_dev; struct gspca_frame; struct sd_desc { char const *name ; int (*config)(struct gspca_dev * , struct usb_device_id const * ) ; int (*init)(struct gspca_dev * ) ; int (*init_controls)(struct gspca_dev * ) ; int (*start)(struct gspca_dev * ) ; void (*pkt_scan)(struct gspca_dev * , u8 * , int ) ; int (*isoc_init)(struct gspca_dev * ) ; int (*isoc_nego)(struct gspca_dev * ) ; void (*stopN)(struct gspca_dev * ) ; void (*stop0)(struct gspca_dev * ) ; void (*dq_callback)(struct gspca_dev * ) ; int (*get_jcomp)(struct gspca_dev * , struct v4l2_jpegcompression * ) ; int (*set_jcomp)(struct gspca_dev * , struct v4l2_jpegcompression const * ) ; void (*get_streamparm)(struct gspca_dev * , struct v4l2_streamparm * ) ; void (*set_streamparm)(struct gspca_dev * , struct v4l2_streamparm * ) ; void (*try_fmt)(struct gspca_dev * , struct v4l2_format * ) ; int (*enum_framesizes)(struct gspca_dev * , struct v4l2_frmsizeenum * ) ; int (*set_register)(struct gspca_dev * , struct v4l2_dbg_register const * ) ; int (*get_register)(struct gspca_dev * , struct v4l2_dbg_register * ) ; int (*get_chip_info)(struct gspca_dev * , struct v4l2_dbg_chip_info * ) ; int (*int_pkt_scan)(struct gspca_dev * , u8 * , int ) ; u8 other_input ; }; enum gspca_packet_type { DISCARD_PACKET = 0, FIRST_PACKET = 1, INTER_PACKET = 2, LAST_PACKET = 3 } ; struct gspca_frame { __u8 *data ; int vma_use_count ; struct v4l2_buffer v4l2_buf ; }; struct __anonstruct____missing_field_name_240 { struct v4l2_ctrl *autogain ; struct v4l2_ctrl *exposure ; struct v4l2_ctrl *gain ; int exp_too_low_cnt ; int exp_too_high_cnt ; }; struct gspca_dev { struct video_device vdev ; struct module *module ; struct v4l2_device v4l2_dev ; struct usb_device *dev ; struct file *capt_file ; struct input_dev *input_dev ; char phys[64U] ; struct cam cam ; struct sd_desc const *sd_desc ; struct v4l2_ctrl_handler ctrl_handler ; struct __anonstruct____missing_field_name_240 __annonCompField83 ; __u8 *usb_buf ; struct urb *urb[4U] ; struct urb *int_urb ; __u8 *frbuf ; struct gspca_frame frame[16U] ; u8 *image ; __u32 frsz ; u32 image_len ; atomic_t fr_q ; atomic_t fr_i ; signed char fr_queue[16U] ; char nframes ; u8 fr_o ; __u8 last_packet_type ; __s8 empty_packet ; __u8 streaming ; __u8 curr_mode ; struct v4l2_pix_format pixfmt ; __u32 sequence ; wait_queue_head_t wq ; struct mutex usb_lock ; struct mutex queue_lock ; int usb_err ; u16 pkt_size ; char frozen ; char present ; char nbufread ; char memory ; __u8 iface ; __u8 alt ; u8 audio ; }; struct stv06xx_sensor; struct sd { struct gspca_dev gspca_dev ; struct stv06xx_sensor const *sensor ; void *sensor_priv ; int to_skip ; u8 bridge ; }; struct stv06xx_sensor { char name[32U] ; u8 i2c_addr ; u8 i2c_flush ; u8 i2c_len ; int min_packet_size[4U] ; int max_packet_size[4U] ; int (*probe)(struct sd * ) ; int (*init)(struct sd * ) ; int (*init_controls)(struct sd * ) ; int (*read_sensor)(struct sd * , u8 const , u8 * , u8 const ) ; int (*write_sensor)(struct sd * , u8 const , u8 * , u8 const ) ; int (*start)(struct sd * ) ; int (*stop)(struct sd * ) ; int (*dump)(struct sd * ) ; }; typedef int ldv_func_ret_type; enum hrtimer_restart; struct stv_init { u16 addr ; u8 data ; }; enum hrtimer_restart; enum hdcs_power_state { HDCS_STATE_SLEEP = 0, HDCS_STATE_IDLE = 1, HDCS_STATE_RUN = 2 } ; struct __anonstruct_array_240 { int left ; int top ; int width ; int height ; int border ; }; struct __anonstruct_exp_241 { u8 cto ; u8 cpo ; u16 rs ; u16 er ; }; struct hdcs { enum hdcs_power_state state ; int w ; int h ; struct __anonstruct_array_240 array ; struct __anonstruct_exp_241 exp ; int psmp ; }; enum hrtimer_restart; struct v4l2_ctrl_config { struct v4l2_ctrl_ops const *ops ; u32 id ; char const *name ; enum v4l2_ctrl_type type ; s32 min ; s32 max ; u32 step ; s32 def ; u32 flags ; u32 menu_skip_mask ; char const * const *qmenu ; s64 const *qmenu_int ; unsigned int is_private : 1 ; }; struct __anonstruct____missing_field_name_240___0 { struct v4l2_ctrl *autogain ; struct v4l2_ctrl *gain ; struct v4l2_ctrl *exposure ; struct v4l2_ctrl *red ; struct v4l2_ctrl *blue ; struct v4l2_ctrl *natural ; }; struct pb0100_ctrls { struct __anonstruct____missing_field_name_240___0 __annonCompField84 ; struct v4l2_ctrl *target ; }; enum hrtimer_restart; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; extern int ldv_pre_usb_register_driver(void) ; void ldv_check_final_state(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_malloc_unknown_size(void) ; int ldv_undef_int(void) ; void ldv_check_alloc_flags(gfp_t flags ) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } void *ldv_dev_get_drvdata(struct device const *dev ) ; extern struct module __this_module ; extern int printk(char const * , ...) ; extern void *memset(void * , int , size_t ) ; extern void msleep(unsigned int ) ; static void *ldv_dev_get_drvdata_39(struct device const *dev ) ; __inline static void *usb_get_intfdata(struct usb_interface *intf ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_39((struct device const *)(& intf->dev)); } return (tmp); } } extern struct usb_interface *usb_ifnum_to_if(struct usb_device const * , unsigned int ) ; extern struct usb_host_interface *usb_altnum_to_altsetting(struct usb_interface const * , unsigned int ) ; extern int usb_register_driver(struct usb_driver * , struct module * , char const * ) ; static int ldv_usb_register_driver_58(struct usb_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void usb_deregister(struct usb_driver * ) ; static void ldv_usb_deregister_59(struct usb_driver *ldv_func_arg1 ) ; extern int usb_control_msg(struct usb_device * , unsigned int , __u8 , __u8 , __u16 , __u16 , void * , __u16 , int ) ; extern int usb_set_interface(struct usb_device * , int , int ) ; __inline static unsigned int __create_pipe(struct usb_device *dev , unsigned int endpoint ) { { return ((unsigned int )(dev->devnum << 8) | (endpoint << 15)); } } extern void input_event(struct input_dev * , unsigned int , unsigned int , int ) ; __inline static void input_report_key(struct input_dev *dev , unsigned int code , int value ) { { { input_event(dev, 1U, code, value != 0); } return; } } __inline static void input_sync(struct input_dev *dev ) { { { input_event(dev, 0U, 0U, 0); } return; } } extern void kfree(void const * ) ; extern int gspca_debug ; extern int gspca_dev_probe(struct usb_interface * , struct usb_device_id const * , struct sd_desc const * , int , struct module * ) ; extern void gspca_disconnect(struct usb_interface * ) ; extern void gspca_frame_add(struct gspca_dev * , enum gspca_packet_type , u8 const * , int ) ; extern int gspca_suspend(struct usb_interface * , pm_message_t ) ; extern int gspca_resume(struct usb_interface * ) ; int stv06xx_write_bridge(struct sd *sd , u16 address , u16 i2c_data ) ; int stv06xx_read_bridge(struct sd *sd , u16 address , u8 *i2c_data ) ; int stv06xx_write_sensor_bytes(struct sd *sd , u8 const *data , u8 len ) ; int stv06xx_write_sensor_words(struct sd *sd , u16 const *data , u8 len ) ; int stv06xx_read_sensor(struct sd *sd , u8 const address , u16 *value ) ; int stv06xx_write_sensor(struct sd *sd , u8 address , u16 value ) ; struct stv06xx_sensor const stv06xx_sensor_vv6410 ; struct stv06xx_sensor const stv06xx_sensor_hdcs1x00 ; struct stv06xx_sensor const stv06xx_sensor_hdcs1020 ; struct stv06xx_sensor const stv06xx_sensor_pb0100 ; struct stv06xx_sensor const stv06xx_sensor_st6422 ; static bool dump_bridge ; static bool dump_sensor ; int stv06xx_write_bridge(struct sd *sd , u16 address , u16 i2c_data ) { int err ; struct gspca_dev *gspca_dev ; struct usb_device *udev ; __u8 *buf ; u8 len ; unsigned int tmp ; { { gspca_dev = (struct gspca_dev *)sd; udev = sd->gspca_dev.dev; buf = sd->gspca_dev.usb_buf; len = (unsigned int )i2c_data > 255U ? 2U : 1U; *buf = (__u8 )i2c_data; *(buf + 1UL) = (__u8 )((int )i2c_data >> 8); tmp = __create_pipe(udev, 0U); err = usb_control_msg(udev, tmp | 2147483648U, 4, 64, (int )address, 0, (void *)buf, (int )len, 5000); } if (gspca_debug > 1) { { printk("\017%s: Written 0x%x to address 0x%x, status: %d", (char *)(& gspca_dev->v4l2_dev.name), (int )i2c_data, (int )address, err); } } else { } return (0 < err ? 0 : err); } } int stv06xx_read_bridge(struct sd *sd , u16 address , u8 *i2c_data ) { int err ; struct gspca_dev *gspca_dev ; struct usb_device *udev ; __u8 *buf ; unsigned int tmp ; { { gspca_dev = (struct gspca_dev *)sd; udev = sd->gspca_dev.dev; buf = sd->gspca_dev.usb_buf; tmp = __create_pipe(udev, 0U); err = usb_control_msg(udev, tmp | 2147483776U, 4, 192, (int )address, 0, (void *)buf, 1, 5000); *i2c_data = *buf; } if (gspca_debug > 1) { { printk("\017%s: Reading 0x%x from address 0x%x, status %d", (char *)(& gspca_dev->v4l2_dev.name), (int )*i2c_data, (int )address, err); } } else { } return (0 < err ? 0 : err); } } int stv06xx_write_sensor(struct sd *sd , u8 address , u16 value ) { u16 data[2U] ; int tmp ; u8 data___0[2U] ; int tmp___0 ; { if ((unsigned int )((unsigned char )(sd->sensor)->i2c_len) == 2U) { { data[0] = (unsigned short )address; data[1] = value; tmp = stv06xx_write_sensor_words(sd, (u16 const *)(& data), 1); } return (tmp); } else { { data___0[0] = address; data___0[1] = (unsigned char )value; tmp___0 = stv06xx_write_sensor_bytes(sd, (u8 const *)(& data___0), 1); } return (tmp___0); } } } static int stv06xx_write_sensor_finish(struct sd *sd ) { int err ; struct usb_device *udev ; __u8 *buf ; unsigned int tmp ; { err = 0; if ((unsigned int )sd->bridge == 2U) { { udev = sd->gspca_dev.dev; buf = sd->gspca_dev.usb_buf; *buf = 0U; tmp = __create_pipe(udev, 0U); err = usb_control_msg(udev, tmp | 2147483648U, 4, 64, 5892, 0, (void *)buf, 1, 5000); } } else { } return (0 < err ? 0 : err); } } int stv06xx_write_sensor_bytes(struct sd *sd , u8 const *data , u8 len ) { int err ; int i ; int j ; struct gspca_dev *gspca_dev ; struct usb_device *udev ; __u8 *buf ; unsigned int tmp ; int tmp___0 ; { gspca_dev = (struct gspca_dev *)sd; udev = sd->gspca_dev.dev; buf = sd->gspca_dev.usb_buf; if (gspca_debug > 1) { { printk("\017%s: I2C: Command buffer contains %d entries", (char *)(& gspca_dev->v4l2_dev.name), (int )len); } } else { } i = 0; goto ldv_30437; ldv_30436: { memset((void *)buf, 0, 35UL); j = 0; } goto ldv_30434; ldv_30433: *(buf + (unsigned long )j) = *(data + (unsigned long )(i * 2)); *(buf + (unsigned long )(j + 16)) = *(data + ((unsigned long )(i * 2) + 1UL)); if (gspca_debug > 1) { { printk("\017%s: I2C: Writing 0x%02x to reg 0x%02x", (char *)(& gspca_dev->v4l2_dev.name), (int )*(data + ((unsigned long )(i * 2) + 1UL)), (int )*(data + (unsigned long )(i * 2))); } } else { } j = j + 1; i = i + 1; ldv_30434: ; if (j <= 15 && i < (int )len) { goto ldv_30433; } else { } { *(buf + 32UL) = (sd->sensor)->i2c_addr; *(buf + 33UL) = (unsigned int )((__u8 )j) + 255U; *(buf + 34UL) = 1U; tmp = __create_pipe(udev, 0U); err = usb_control_msg(udev, tmp | 2147483648U, 4, 64, 1024, 0, (void *)buf, 35, 5000); } if (err < 0) { return (err); } else { } ldv_30437: ; if (i < (int )len) { goto ldv_30436; } else { } { tmp___0 = stv06xx_write_sensor_finish(sd); } return (tmp___0); } } int stv06xx_write_sensor_words(struct sd *sd , u16 const *data , u8 len ) { int err ; int i ; int j ; struct gspca_dev *gspca_dev ; struct usb_device *udev ; __u8 *buf ; unsigned int tmp ; int tmp___0 ; { gspca_dev = (struct gspca_dev *)sd; udev = sd->gspca_dev.dev; buf = sd->gspca_dev.usb_buf; if (gspca_debug > 1) { { printk("\017%s: I2C: Command buffer contains %d entries", (char *)(& gspca_dev->v4l2_dev.name), (int )len); } } else { } i = 0; goto ldv_30454; ldv_30453: { memset((void *)buf, 0, 35UL); j = 0; } goto ldv_30451; ldv_30450: *(buf + (unsigned long )j) = (__u8 )*(data + (unsigned long )(i * 2)); *(buf + (unsigned long )((j + 8) * 2)) = (__u8 )*(data + ((unsigned long )(i * 2) + 1UL)); *(buf + ((unsigned long )((j + 8) * 2) + 1UL)) = (__u8 )((int )((unsigned short )*(data + ((unsigned long )(i * 2) + 1UL))) >> 8); if (gspca_debug > 1) { { printk("\017%s: I2C: Writing 0x%04x to reg 0x%02x", (char *)(& gspca_dev->v4l2_dev.name), (int )*(data + ((unsigned long )(i * 2) + 1UL)), (int )*(data + (unsigned long )(i * 2))); } } else { } j = j + 1; i = i + 1; ldv_30451: ; if (j <= 7 && i < (int )len) { goto ldv_30450; } else { } { *(buf + 32UL) = (sd->sensor)->i2c_addr; *(buf + 33UL) = (unsigned int )((__u8 )j) + 255U; *(buf + 34UL) = 1U; tmp = __create_pipe(udev, 0U); err = usb_control_msg(udev, tmp | 2147483648U, 4, 64, 1024, 0, (void *)buf, 35, 5000); } if (err < 0) { return (err); } else { } ldv_30454: ; if (i < (int )len) { goto ldv_30453; } else { } { tmp___0 = stv06xx_write_sensor_finish(sd); } return (tmp___0); } } int stv06xx_read_sensor(struct sd *sd , u8 const address , u16 *value ) { int err ; struct gspca_dev *gspca_dev ; struct usb_device *udev ; __u8 *buf ; unsigned int tmp ; unsigned int tmp___0 ; { { gspca_dev = (struct gspca_dev *)sd; udev = sd->gspca_dev.dev; buf = sd->gspca_dev.usb_buf; err = stv06xx_write_bridge(sd, 5155, (int )(sd->sensor)->i2c_flush); } if (err < 0) { return (err); } else { } { memset((void *)buf, 0, 35UL); *buf = address; *(buf + 32UL) = (sd->sensor)->i2c_addr; *(buf + 33UL) = 0U; *(buf + 34UL) = 3U; tmp = __create_pipe(udev, 0U); err = usb_control_msg(udev, tmp | 2147483648U, 4, 64, 5120, 0, (void *)buf, 35, 5000); } if (err < 0) { { printk("\vgspca_stv06xx: I2C: Read error writing address: %d\n", err); } return (err); } else { } { tmp___0 = __create_pipe(udev, 0U); err = usb_control_msg(udev, tmp___0 | 2147483776U, 4, 192, 5136, 0, (void *)buf, (int )(sd->sensor)->i2c_len, 5000); } if ((unsigned int )((unsigned char )(sd->sensor)->i2c_len) == 2U) { *value = (u16 )((int )((short )*buf) | (int )((short )((int )*(buf + 1UL) << 8))); } else { *value = (u16 )*buf; } if (gspca_debug > 1) { { printk("\017%s: I2C: Read 0x%x from address 0x%x, status: %d", (char *)(& gspca_dev->v4l2_dev.name), (int )*value, (int )address, err); } } else { } return (0 < err ? 0 : err); } } static void stv06xx_dump_bridge(struct sd *sd ) { int i ; u8 data ; u8 buf ; { { printk("\016gspca_stv06xx: Dumping all stv06xx bridge registers\n"); i = 5120; } goto ldv_30472; ldv_30471: { stv06xx_read_bridge(sd, (int )((u16 )i), & data); printk("\016gspca_stv06xx: Read 0x%x from address 0x%x\n", (int )data, i); i = i + 1; } ldv_30472: ; if (i <= 5646) { goto ldv_30471; } else { } { printk("\016gspca_stv06xx: Testing stv06xx bridge registers for writability\n"); i = 5120; } goto ldv_30475; ldv_30474: { stv06xx_read_bridge(sd, (int )((u16 )i), & data); buf = data; stv06xx_write_bridge(sd, (int )((u16 )i), 255); stv06xx_read_bridge(sd, (int )((u16 )i), & data); } if ((unsigned int )data == 255U) { { printk("\016gspca_stv06xx: Register 0x%x is read/write\n", i); } } else if ((int )data != (int )buf) { { printk("\016gspca_stv06xx: Register 0x%x is read/write, but only partially\n", i); } } else { { printk("\016gspca_stv06xx: Register 0x%x is read-only\n", i); } } { stv06xx_write_bridge(sd, (int )((u16 )i), (int )buf); i = i + 1; } ldv_30475: ; if (i <= 5646) { goto ldv_30474; } else { } return; } } static int stv06xx_init(struct gspca_dev *gspca_dev ) { struct sd *sd ; int err ; { sd = (struct sd *)gspca_dev; if (gspca_debug > 0) { { printk("\017%s: Initializing camera", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } { msleep(250U); err = (*((sd->sensor)->init))(sd); } if ((int )dump_sensor && (unsigned long )(sd->sensor)->dump != (unsigned long )((int (*/* const */)(struct sd * ))0)) { { (*((sd->sensor)->dump))(sd); } } else { } return (0 < err ? 0 : err); } } static int stv06xx_init_controls(struct gspca_dev *gspca_dev ) { struct sd *sd ; int tmp ; { sd = (struct sd *)gspca_dev; if (gspca_debug > 0) { { printk("\017%s: Initializing controls", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } { gspca_dev->vdev.ctrl_handler = & gspca_dev->ctrl_handler; tmp = (*((sd->sensor)->init_controls))(sd); } return (tmp); } } static int stv06xx_start(struct gspca_dev *gspca_dev ) { struct sd *sd ; struct usb_host_interface *alt ; struct usb_interface *intf ; int err ; int packet_size ; { { sd = (struct sd *)gspca_dev; intf = usb_ifnum_to_if((struct usb_device const *)sd->gspca_dev.dev, (unsigned int )sd->gspca_dev.iface); alt = usb_altnum_to_altsetting((struct usb_interface const *)intf, (unsigned int )sd->gspca_dev.alt); } if ((unsigned long )alt == (unsigned long )((struct usb_host_interface *)0)) { { printk("\v%s: Couldn\'t get altsetting", (char *)(& gspca_dev->v4l2_dev.name)); } return (-5); } else { } { packet_size = (int )(alt->endpoint)->desc.wMaxPacketSize; err = stv06xx_write_bridge(sd, 5569, (int )((u16 )packet_size)); } if (err < 0) { return (err); } else { } { err = (*((sd->sensor)->start))(sd); } if (err < 0) { goto out; } else { } { err = stv06xx_write_bridge(sd, 5184, 1); } out: ; if (err < 0) { if (gspca_debug > 2) { { printk("\017%s: Starting stream failed", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } } else if (gspca_debug > 2) { { printk("\017%s: Started streaming", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } return (0 < err ? 0 : err); } } static int stv06xx_isoc_init(struct gspca_dev *gspca_dev ) { struct usb_host_interface *alt ; struct sd *sd ; { sd = (struct sd *)gspca_dev; alt = (struct usb_host_interface *)(& (((gspca_dev->dev)->actconfig)->intf_cache[0])->altsetting) + 1UL; (alt->endpoint)->desc.wMaxPacketSize = (unsigned short )(sd->sensor)->max_packet_size[(int )gspca_dev->curr_mode]; return (0); } } static int stv06xx_isoc_nego(struct gspca_dev *gspca_dev ) { int ret ; int packet_size ; int min_packet_size ; struct usb_host_interface *alt ; struct sd *sd ; { sd = (struct sd *)gspca_dev; alt = (struct usb_host_interface *)(& (((gspca_dev->dev)->actconfig)->intf_cache[0])->altsetting) + 1UL; packet_size = (int )(alt->endpoint)->desc.wMaxPacketSize; min_packet_size = (sd->sensor)->min_packet_size[(int )gspca_dev->curr_mode]; if (packet_size <= min_packet_size) { return (-5); } else { } packet_size = packet_size + -100; if (packet_size < min_packet_size) { packet_size = min_packet_size; } else { } { (alt->endpoint)->desc.wMaxPacketSize = (unsigned short )packet_size; ret = usb_set_interface(gspca_dev->dev, (int )gspca_dev->iface, 1); } if (ret < 0) { { printk("\v%s: set alt 1 err %d", (char *)(& gspca_dev->v4l2_dev.name), ret); } } else { } return (ret); } } static void stv06xx_stopN(struct gspca_dev *gspca_dev ) { int err ; struct sd *sd ; { { sd = (struct sd *)gspca_dev; err = stv06xx_write_bridge(sd, 5184, 0); } if (err < 0) { goto out; } else { } { err = (*((sd->sensor)->stop))(sd); } out: ; if (err < 0) { if (gspca_debug > 2) { { printk("\017%s: Failed to stop stream", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } } else if (gspca_debug > 2) { { printk("\017%s: Stopped streaming", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } return; } } static void stv06xx_pkt_scan(struct gspca_dev *gspca_dev , u8 *data , int len ) { struct sd *sd ; int id ; int chunk_len ; int skip ; { sd = (struct sd *)gspca_dev; if (gspca_debug > 4) { { printk("\017%s: Packet of length %d arrived", (char *)(& gspca_dev->v4l2_dev.name), len); } } else { } goto ldv_30539; ldv_30538: ; if (len <= 3) { if (gspca_debug > 4) { { printk("\017%s: Packet is smaller than 4 bytes", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } return; } else { } id = ((int )*data << 8) | (int )*(data + 1UL); chunk_len = ((int )*(data + 2UL) << 8) | (int )*(data + 3UL); if (gspca_debug > 4) { { printk("\017%s: Chunk id: %x, length: %d", (char *)(& gspca_dev->v4l2_dev.name), id, chunk_len); } } else { } data = data + 4UL; len = len + -4; if (len < chunk_len) { { printk("\v%s: URB packet length is smaller than the specified chunk length", (char *)(& gspca_dev->v4l2_dev.name)); gspca_dev->last_packet_type = 0U; } return; } else { } if ((unsigned int )sd->bridge == 3U && (id & 65280) == 512) { goto frame_data; } else { } { if (id == 512) { goto case_512; } else { } if (id == 16896) { goto case_16896; } else { } if (id == 32769) { goto case_32769; } else { } if (id == 32773) { goto case_32773; } else { } if (id == 49153) { goto case_49153; } else { } if (id == 49157) { goto case_49157; } else { } if (id == 32770) { goto case_32770; } else { } if (id == 32774) { goto case_32774; } else { } if (id == 49154) { goto case_49154; } else { } if (id == 5) { goto case_5; } else { } if (id == 256) { goto case_256; } else { } if (id == 17151) { goto case_17151; } else { } goto switch_default; case_512: /* CIL Label */ ; case_16896: /* CIL Label */ ; frame_data: ; if (gspca_debug > 4) { { printk("\017%s: Frame data packet detected", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } if (sd->to_skip != 0) { skip = sd->to_skip < chunk_len ? sd->to_skip : chunk_len; data = data + (unsigned long )skip; len = len - skip; chunk_len = chunk_len - skip; sd->to_skip = sd->to_skip - skip; } else { } { gspca_frame_add(gspca_dev, 2, (u8 const *)data, chunk_len); } goto ldv_30526; case_32769: /* CIL Label */ ; case_32773: /* CIL Label */ ; case_49153: /* CIL Label */ ; case_49157: /* CIL Label */ ; if (gspca_debug > 4) { { printk("\017%s: Starting new frame", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } { gspca_frame_add(gspca_dev, 1, (u8 const *)0U, 0); } if ((unsigned int )sd->bridge == 3U) { sd->to_skip = (int )(gspca_dev->pixfmt.width * 4U); } else { } if (chunk_len != 0) { { printk("\v%s: Chunk length is non-zero on a SOF", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } goto ldv_30526; case_32770: /* CIL Label */ ; case_32774: /* CIL Label */ ; case_49154: /* CIL Label */ ; if (gspca_debug > 4) { { printk("\017%s: End of frame detected", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } { gspca_frame_add(gspca_dev, 3, (u8 const *)0U, 0); } if (chunk_len != 0) { { printk("\v%s: Chunk length is non-zero on a EOF", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } goto ldv_30526; case_5: /* CIL Label */ ; if (gspca_debug > 4) { { printk("\017%s: Chunk 0x005 detected", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } goto ldv_30526; case_256: /* CIL Label */ ; if (gspca_debug > 4) { { printk("\017%s: Chunk 0x0100 detected", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } goto ldv_30526; case_17151: /* CIL Label */ ; if (gspca_debug > 4) { { printk("\017%s: Chunk 0x42ff detected", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } goto ldv_30526; switch_default: /* CIL Label */ ; if (gspca_debug > 4) { { printk("\017%s: Unknown chunk 0x%04x detected", (char *)(& gspca_dev->v4l2_dev.name), id); } } else { } switch_break: /* CIL Label */ ; } ldv_30526: data = data + (unsigned long )chunk_len; len = len - chunk_len; ldv_30539: ; if (len != 0) { goto ldv_30538; } else { } return; } } static int sd_int_pkt_scan(struct gspca_dev *gspca_dev , u8 *data , int len ) { int ret ; { ret = -22; if (len == 1 && (unsigned int )*data == 128U) { { input_report_key(gspca_dev->input_dev, 212U, 1); input_sync(gspca_dev->input_dev); ret = 0; } } else { } if (len == 1 && (unsigned int )*data == 136U) { { input_report_key(gspca_dev->input_dev, 212U, 0); input_sync(gspca_dev->input_dev); ret = 0; } } else { } return (ret); } } static int stv06xx_config(struct gspca_dev *gspca_dev , struct usb_device_id const *id ) ; static struct sd_desc const sd_desc = {"STV06xx", & stv06xx_config, & stv06xx_init, & stv06xx_init_controls, & stv06xx_start, & stv06xx_pkt_scan, & stv06xx_isoc_init, & stv06xx_isoc_nego, & stv06xx_stopN, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & sd_int_pkt_scan, (unsigned char)0}; static int stv06xx_config(struct gspca_dev *gspca_dev , struct usb_device_id const *id ) { struct sd *sd ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { sd = (struct sd *)gspca_dev; if (gspca_debug > 0) { { printk("\017%s: Configuring camera", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } sd->bridge = (u8 )id->driver_info; gspca_dev->sd_desc = & sd_desc; if ((int )dump_bridge) { { stv06xx_dump_bridge(sd); } } else { } { sd->sensor = & stv06xx_sensor_st6422; tmp = (*((sd->sensor)->probe))(sd); } if (tmp == 0) { return (0); } else { } { sd->sensor = & stv06xx_sensor_vv6410; tmp___0 = (*((sd->sensor)->probe))(sd); } if (tmp___0 == 0) { return (0); } else { } { sd->sensor = & stv06xx_sensor_hdcs1x00; tmp___1 = (*((sd->sensor)->probe))(sd); } if (tmp___1 == 0) { return (0); } else { } { sd->sensor = & stv06xx_sensor_hdcs1020; tmp___2 = (*((sd->sensor)->probe))(sd); } if (tmp___2 == 0) { return (0); } else { } { sd->sensor = & stv06xx_sensor_pb0100; tmp___3 = (*((sd->sensor)->probe))(sd); } if (tmp___3 == 0) { return (0); } else { } sd->sensor = (struct stv06xx_sensor const *)0; return (-19); } } static struct usb_device_id const device_table[7U] = { {3U, 1133U, 2112U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 0UL}, {3U, 1133U, 2128U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 2UL}, {3U, 1133U, 2160U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 1UL}, {3U, 1133U, 2288U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 3UL}, {3U, 1133U, 2293U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 3UL}, {3U, 1133U, 2294U, (unsigned short)0, (unsigned short)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0, 3UL}}; struct usb_device_id const __mod_usb_device_table ; static int sd_probe(struct usb_interface *intf , struct usb_device_id const *id ) { int tmp ; { { tmp = gspca_dev_probe(intf, id, & sd_desc, 4856, & __this_module); } return (tmp); } } static void sd_disconnect(struct usb_interface *intf ) { struct gspca_dev *gspca_dev ; void *tmp ; struct sd *sd ; void *priv ; { { tmp = usb_get_intfdata(intf); gspca_dev = (struct gspca_dev *)tmp; sd = (struct sd *)gspca_dev; priv = sd->sensor_priv; } if (gspca_debug > 0) { { printk("\017%s: Disconnecting the stv06xx device", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } { sd->sensor = (struct stv06xx_sensor const *)0; gspca_disconnect(intf); kfree((void const *)priv); } return; } } static struct usb_driver sd_driver = {"STV06xx", & sd_probe, & sd_disconnect, 0, & gspca_suspend, & gspca_resume, & gspca_resume, 0, 0, (struct usb_device_id const *)(& device_table), {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}, {{0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, 0}, 0U, 0U, 0U, 0U}; static int sd_driver_init(void) { int tmp ; { { tmp = ldv_usb_register_driver_58(& sd_driver, & __this_module, "gspca_stv06xx"); } return (tmp); } } static void sd_driver_exit(void) { { { ldv_usb_deregister_59(& sd_driver); } return; } } void ldv_EMGentry_exit_sd_driver_exit_14_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_sd_driver_init_14_13(int (*arg0)(void) ) ; void ldv_allocate_external_0(void) ; void ldv_dispatch_deregister_12_1(struct usb_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_resourceless_instance_3_14_4(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_5_14_5(void) ; void ldv_dispatch_deregister_io_instance_4_14_6(void) ; void ldv_dispatch_instance_deregister_11_2(struct usb_driver *arg0 ) ; void ldv_dispatch_instance_register_11_3(struct usb_driver *arg0 ) ; void ldv_dispatch_register_13_2(struct usb_driver *arg0 ) ; void ldv_dispatch_register_dummy_resourceless_instance_3_14_7(void) ; void ldv_dispatch_register_dummy_resourceless_instance_5_14_8(void) ; void ldv_dispatch_register_io_instance_4_14_9(void) ; void ldv_dummy_resourceless_instance_callback_0_12(int (*arg0)(struct gspca_dev * ) , struct gspca_dev *arg1 ) ; void ldv_dummy_resourceless_instance_callback_0_13(int (*arg0)(struct gspca_dev * ) , struct gspca_dev *arg1 ) ; void ldv_dummy_resourceless_instance_callback_0_14(void (*arg0)(struct gspca_dev * , unsigned char * , int ) , struct gspca_dev *arg1 , unsigned char *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_0_17(int (*arg0)(struct gspca_dev * ) , struct gspca_dev *arg1 ) ; void ldv_dummy_resourceless_instance_callback_0_18(void (*arg0)(struct gspca_dev * ) , struct gspca_dev *arg1 ) ; void ldv_dummy_resourceless_instance_callback_0_3(int (*arg0)(struct gspca_dev * , struct usb_device_id * ) , struct gspca_dev *arg1 , struct usb_device_id *arg2 ) ; void ldv_dummy_resourceless_instance_callback_0_7(int (*arg0)(struct gspca_dev * ) , struct gspca_dev *arg1 ) ; void ldv_dummy_resourceless_instance_callback_0_8(int (*arg0)(struct gspca_dev * ) , struct gspca_dev *arg1 ) ; void ldv_dummy_resourceless_instance_callback_0_9(int (*arg0)(struct gspca_dev * , unsigned char * , int ) , struct gspca_dev *arg1 , unsigned char *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_3(int (*arg0)(struct v4l2_ctrl * ) , struct v4l2_ctrl *arg1 ) ; void ldv_dummy_resourceless_instance_callback_7_3(int (*arg0)(struct v4l2_ctrl * ) , struct v4l2_ctrl *arg1 ) ; void ldv_dummy_resourceless_instance_callback_8_3(int (*arg0)(struct v4l2_ctrl * ) , struct v4l2_ctrl *arg1 ) ; void ldv_dummy_resourceless_instance_callback_9_3(int (*arg0)(struct v4l2_ctrl * ) , struct v4l2_ctrl *arg1 ) ; void ldv_entry_EMGentry_14(void *arg0 ) ; int main(void) ; void ldv_initialize_external_data(void) ; void ldv_io_instance_callback_4_4(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_struct_sd_desc_dummy_resourceless_instance_0(void *arg0 ) ; void ldv_struct_stv06xx_sensor_io_instance_1(void *arg0 ) ; void ldv_struct_stv06xx_sensor_io_instance_2(void *arg0 ) ; void ldv_struct_stv06xx_sensor_io_instance_3(void *arg0 ) ; void ldv_struct_stv06xx_sensor_io_instance_4(void *arg0 ) ; void ldv_struct_stv06xx_sensor_io_instance_5(void *arg0 ) ; void ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_6(void *arg0 ) ; void ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_7(void *arg0 ) ; void ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_8(void *arg0 ) ; void ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_9(void *arg0 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; int ldv_switch_2(void) ; void ldv_switch_automaton_state_0_1(void) ; void ldv_switch_automaton_state_0_5(void) ; void ldv_switch_automaton_state_10_1(void) ; void ldv_switch_automaton_state_10_15(void) ; void ldv_switch_automaton_state_11_1(void) ; void ldv_switch_automaton_state_11_4(void) ; void ldv_switch_automaton_state_1_14(void) ; void ldv_switch_automaton_state_1_5(void) ; void ldv_switch_automaton_state_2_14(void) ; void ldv_switch_automaton_state_2_5(void) ; void ldv_switch_automaton_state_3_14(void) ; void ldv_switch_automaton_state_3_5(void) ; void ldv_switch_automaton_state_4_14(void) ; void ldv_switch_automaton_state_4_5(void) ; void ldv_switch_automaton_state_5_14(void) ; void ldv_switch_automaton_state_5_5(void) ; void ldv_switch_automaton_state_6_1(void) ; void ldv_switch_automaton_state_6_5(void) ; void ldv_switch_automaton_state_7_1(void) ; void ldv_switch_automaton_state_7_5(void) ; void ldv_switch_automaton_state_8_1(void) ; void ldv_switch_automaton_state_8_5(void) ; void ldv_switch_automaton_state_9_1(void) ; void ldv_switch_automaton_state_9_5(void) ; void ldv_usb_deregister(void *arg0 , struct usb_driver *arg1 ) ; void ldv_usb_dummy_factory_11(void *arg0 ) ; void ldv_usb_instance_callback_10_6(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; void ldv_usb_instance_post_10_9(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; void ldv_usb_instance_pre_10_10(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; int ldv_usb_instance_probe_10_13(int (*arg0)(struct usb_interface * , struct usb_device_id * ) , struct usb_interface *arg1 , struct usb_device_id *arg2 ) ; void ldv_usb_instance_release_10_4(void (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; void ldv_usb_instance_resume_10_7(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) ; void ldv_usb_instance_suspend_10_8(int (*arg0)(struct usb_interface * , struct pm_message ) , struct usb_interface *arg1 , struct pm_message *arg2 ) ; int ldv_usb_register_driver(int arg0 , struct usb_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_usb_usb_instance_10(void *arg0 ) ; int (*ldv_0_callback_config)(struct gspca_dev * , struct usb_device_id * ) ; int (*ldv_0_callback_init)(struct gspca_dev * ) ; int (*ldv_0_callback_init_controls)(struct gspca_dev * ) ; int (*ldv_0_callback_int_pkt_scan)(struct gspca_dev * , unsigned char * , int ) ; int (*ldv_0_callback_isoc_init)(struct gspca_dev * ) ; int (*ldv_0_callback_isoc_nego)(struct gspca_dev * ) ; void (*ldv_0_callback_pkt_scan)(struct gspca_dev * , unsigned char * , int ) ; int (*ldv_0_callback_start)(struct gspca_dev * ) ; void (*ldv_0_callback_stopN)(struct gspca_dev * ) ; struct gspca_dev *ldv_0_container_struct_gspca_dev_ptr ; struct usb_device_id *ldv_0_container_struct_usb_device_id_ptr ; unsigned char *ldv_0_ldv_param_14_1_default ; int ldv_0_ldv_param_14_2_default ; unsigned char *ldv_0_ldv_param_9_1_default ; int ldv_0_ldv_param_9_2_default ; int (*ldv_10_callback_reset_resume)(struct usb_interface * ) ; struct usb_driver *ldv_10_container_usb_driver ; struct usb_device_id *ldv_10_ldv_param_13_1_default ; struct pm_message *ldv_10_ldv_param_8_1_default ; int ldv_10_probe_retval_default ; _Bool ldv_10_reset_flag_default ; struct usb_interface *ldv_10_resource_usb_interface ; struct usb_device *ldv_10_usb_device_usb_device ; struct usb_driver *ldv_11_container_usb_driver ; void (*ldv_14_exit_sd_driver_exit_default)(void) ; int (*ldv_14_init_sd_driver_init_default)(void) ; int ldv_14_ret_default ; struct sd *ldv_1_resource_struct_sd_ptr ; int ldv_1_ret_default ; struct sd *ldv_2_resource_struct_sd_ptr ; int ldv_2_ret_default ; struct sd *ldv_3_resource_struct_sd_ptr ; int ldv_3_ret_default ; int (*ldv_4_callback_dump)(struct sd * ) ; struct sd *ldv_4_resource_struct_sd_ptr ; int ldv_4_ret_default ; struct sd *ldv_5_resource_struct_sd_ptr ; int ldv_5_ret_default ; int (*ldv_6_callback_s_ctrl)(struct v4l2_ctrl * ) ; struct v4l2_ctrl *ldv_6_container_struct_v4l2_ctrl_ptr ; int (*ldv_7_callback_s_ctrl)(struct v4l2_ctrl * ) ; struct v4l2_ctrl *ldv_7_container_struct_v4l2_ctrl_ptr ; int (*ldv_8_callback_s_ctrl)(struct v4l2_ctrl * ) ; struct v4l2_ctrl *ldv_8_container_struct_v4l2_ctrl_ptr ; int (*ldv_9_callback_s_ctrl)(struct v4l2_ctrl * ) ; struct v4l2_ctrl *ldv_9_container_struct_v4l2_ctrl_ptr ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_10 ; int ldv_statevar_11 ; int ldv_statevar_14 ; int ldv_statevar_2 ; int ldv_statevar_3 ; int ldv_statevar_4 ; int ldv_statevar_5 ; int ldv_statevar_6 ; int ldv_statevar_7 ; int ldv_statevar_8 ; int ldv_statevar_9 ; int (*ldv_0_callback_config)(struct gspca_dev * , struct usb_device_id * ) = (int (*)(struct gspca_dev * , struct usb_device_id * ))(& stv06xx_config); int (*ldv_0_callback_init)(struct gspca_dev * ) = & stv06xx_init; int (*ldv_0_callback_init_controls)(struct gspca_dev * ) = & stv06xx_init_controls; int (*ldv_0_callback_int_pkt_scan)(struct gspca_dev * , unsigned char * , int ) = & sd_int_pkt_scan; int (*ldv_0_callback_isoc_init)(struct gspca_dev * ) = & stv06xx_isoc_init; int (*ldv_0_callback_isoc_nego)(struct gspca_dev * ) = & stv06xx_isoc_nego; void (*ldv_0_callback_pkt_scan)(struct gspca_dev * , unsigned char * , int ) = & stv06xx_pkt_scan; int (*ldv_0_callback_start)(struct gspca_dev * ) = & stv06xx_start; void (*ldv_0_callback_stopN)(struct gspca_dev * ) = & stv06xx_stopN; int (*ldv_10_callback_reset_resume)(struct usb_interface * ) = & gspca_resume; void (*ldv_14_exit_sd_driver_exit_default)(void) = & sd_driver_exit; int (*ldv_14_init_sd_driver_init_default)(void) = & sd_driver_init; void ldv_EMGentry_exit_sd_driver_exit_14_2(void (*arg0)(void) ) { { { sd_driver_exit(); } return; } } int ldv_EMGentry_init_sd_driver_init_14_13(int (*arg0)(void) ) { int tmp ; { { tmp = sd_driver_init(); } return (tmp); } } void ldv_allocate_external_0(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; void *tmp___13 ; void *tmp___14 ; void *tmp___15 ; void *tmp___16 ; { { tmp = external_allocated_data(); ldv_0_container_struct_gspca_dev_ptr = (struct gspca_dev *)tmp; tmp___0 = external_allocated_data(); ldv_0_container_struct_usb_device_id_ptr = (struct usb_device_id *)tmp___0; tmp___1 = external_allocated_data(); ldv_0_ldv_param_14_1_default = (unsigned char *)tmp___1; tmp___2 = external_allocated_data(); ldv_0_ldv_param_9_1_default = (unsigned char *)tmp___2; tmp___3 = external_allocated_data(); ldv_1_resource_struct_sd_ptr = (struct sd *)tmp___3; tmp___4 = external_allocated_data(); ldv_2_resource_struct_sd_ptr = (struct sd *)tmp___4; tmp___5 = external_allocated_data(); ldv_3_resource_struct_sd_ptr = (struct sd *)tmp___5; tmp___6 = external_allocated_data(); ldv_4_callback_dump = (int (*)(struct sd * ))tmp___6; tmp___7 = external_allocated_data(); ldv_4_resource_struct_sd_ptr = (struct sd *)tmp___7; tmp___8 = external_allocated_data(); ldv_5_resource_struct_sd_ptr = (struct sd *)tmp___8; tmp___9 = external_allocated_data(); ldv_6_container_struct_v4l2_ctrl_ptr = (struct v4l2_ctrl *)tmp___9; tmp___10 = external_allocated_data(); ldv_7_container_struct_v4l2_ctrl_ptr = (struct v4l2_ctrl *)tmp___10; tmp___11 = external_allocated_data(); ldv_8_container_struct_v4l2_ctrl_ptr = (struct v4l2_ctrl *)tmp___11; tmp___12 = external_allocated_data(); ldv_9_container_struct_v4l2_ctrl_ptr = (struct v4l2_ctrl *)tmp___12; tmp___13 = external_allocated_data(); ldv_10_ldv_param_13_1_default = (struct usb_device_id *)tmp___13; tmp___14 = external_allocated_data(); ldv_10_ldv_param_8_1_default = (struct pm_message *)tmp___14; tmp___15 = external_allocated_data(); ldv_10_resource_usb_interface = (struct usb_interface *)tmp___15; tmp___16 = external_allocated_data(); ldv_10_usb_device_usb_device = (struct usb_device *)tmp___16; } return; } } void ldv_dispatch_deregister_12_1(struct usb_driver *arg0 ) { { { ldv_11_container_usb_driver = arg0; ldv_switch_automaton_state_11_1(); } return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_3_14_4(void) { { { ldv_switch_automaton_state_0_1(); } return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_5_14_5(void) { { { ldv_switch_automaton_state_8_1(); ldv_switch_automaton_state_9_1(); ldv_switch_automaton_state_6_1(); ldv_switch_automaton_state_7_1(); } return; } } void ldv_dispatch_deregister_io_instance_4_14_6(void) { { { ldv_switch_automaton_state_1_5(); ldv_switch_automaton_state_2_5(); ldv_switch_automaton_state_3_5(); ldv_switch_automaton_state_4_5(); ldv_switch_automaton_state_5_5(); } return; } } void ldv_dispatch_instance_deregister_11_2(struct usb_driver *arg0 ) { { { ldv_10_container_usb_driver = arg0; ldv_switch_automaton_state_10_1(); } return; } } void ldv_dispatch_instance_register_11_3(struct usb_driver *arg0 ) { { { ldv_10_container_usb_driver = arg0; ldv_switch_automaton_state_10_15(); } return; } } void ldv_dispatch_register_13_2(struct usb_driver *arg0 ) { { { ldv_11_container_usb_driver = arg0; ldv_switch_automaton_state_11_4(); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_3_14_7(void) { { { ldv_switch_automaton_state_0_5(); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_5_14_8(void) { { { ldv_switch_automaton_state_8_5(); ldv_switch_automaton_state_9_5(); ldv_switch_automaton_state_6_5(); ldv_switch_automaton_state_7_5(); } return; } } void ldv_dispatch_register_io_instance_4_14_9(void) { { { ldv_switch_automaton_state_1_14(); ldv_switch_automaton_state_2_14(); ldv_switch_automaton_state_3_14(); ldv_switch_automaton_state_4_14(); ldv_switch_automaton_state_5_14(); } return; } } void ldv_dummy_resourceless_instance_callback_0_12(int (*arg0)(struct gspca_dev * ) , struct gspca_dev *arg1 ) { { { stv06xx_isoc_init(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_0_13(int (*arg0)(struct gspca_dev * ) , struct gspca_dev *arg1 ) { { { stv06xx_isoc_nego(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_0_14(void (*arg0)(struct gspca_dev * , unsigned char * , int ) , struct gspca_dev *arg1 , unsigned char *arg2 , int arg3 ) { { { stv06xx_pkt_scan(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_0_17(int (*arg0)(struct gspca_dev * ) , struct gspca_dev *arg1 ) { { { stv06xx_start(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_0_18(void (*arg0)(struct gspca_dev * ) , struct gspca_dev *arg1 ) { { { stv06xx_stopN(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_0_3(int (*arg0)(struct gspca_dev * , struct usb_device_id * ) , struct gspca_dev *arg1 , struct usb_device_id *arg2 ) { { { stv06xx_config(arg1, (struct usb_device_id const *)arg2); } return; } } void ldv_dummy_resourceless_instance_callback_0_7(int (*arg0)(struct gspca_dev * ) , struct gspca_dev *arg1 ) { { { stv06xx_init(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_0_8(int (*arg0)(struct gspca_dev * ) , struct gspca_dev *arg1 ) { { { stv06xx_init_controls(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_0_9(int (*arg0)(struct gspca_dev * , unsigned char * , int ) , struct gspca_dev *arg1 , unsigned char *arg2 , int arg3 ) { { { sd_int_pkt_scan(arg1, arg2, arg3); } return; } } void ldv_entry_EMGentry_14(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_14 == 2) { goto case_2; } else { } if (ldv_statevar_14 == 3) { goto case_3; } else { } if (ldv_statevar_14 == 4) { goto case_4; } else { } if (ldv_statevar_14 == 5) { goto case_5; } else { } if (ldv_statevar_14 == 6) { goto case_6; } else { } if (ldv_statevar_14 == 7) { goto case_7; } else { } if (ldv_statevar_14 == 8) { goto case_8; } else { } if (ldv_statevar_14 == 9) { goto case_9; } else { } if (ldv_statevar_14 == 10) { goto case_10; } else { } if (ldv_statevar_14 == 12) { goto case_12; } else { } if (ldv_statevar_14 == 13) { goto case_13; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_11 == 2); ldv_EMGentry_exit_sd_driver_exit_14_2(ldv_14_exit_sd_driver_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_14 = 13; } goto ldv_31083; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_11 == 2); ldv_EMGentry_exit_sd_driver_exit_14_2(ldv_14_exit_sd_driver_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_14 = 13; } goto ldv_31083; case_4: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 1); ldv_dispatch_deregister_dummy_resourceless_instance_3_14_4(); ldv_statevar_14 = 2; } goto ldv_31083; case_5: /* CIL Label */ { ldv_assume(((ldv_statevar_6 == 1 || ldv_statevar_7 == 1) || ldv_statevar_8 == 1) || ldv_statevar_9 == 1); ldv_dispatch_deregister_dummy_resourceless_instance_5_14_5(); ldv_statevar_14 = 4; } goto ldv_31083; case_6: /* CIL Label */ { ldv_assume((((ldv_statevar_1 == 6 || ldv_statevar_2 == 6) || ldv_statevar_3 == 6) || ldv_statevar_4 == 6) || ldv_statevar_5 == 6); ldv_dispatch_deregister_io_instance_4_14_6(); ldv_statevar_14 = 5; } goto ldv_31083; case_7: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 5); ldv_dispatch_register_dummy_resourceless_instance_3_14_7(); ldv_statevar_14 = 6; } goto ldv_31083; case_8: /* CIL Label */ { ldv_assume(((ldv_statevar_6 == 5 || ldv_statevar_7 == 5) || ldv_statevar_8 == 5) || ldv_statevar_9 == 5); ldv_dispatch_register_dummy_resourceless_instance_5_14_8(); ldv_statevar_14 = 7; } goto ldv_31083; case_9: /* CIL Label */ { ldv_assume((((ldv_statevar_1 == 14 || ldv_statevar_2 == 14) || ldv_statevar_3 == 14) || ldv_statevar_4 == 14) || ldv_statevar_5 == 14); ldv_dispatch_register_io_instance_4_14_9(); ldv_statevar_14 = 8; } goto ldv_31083; case_10: /* CIL Label */ { ldv_assume(ldv_14_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_14 = 3; } else { ldv_statevar_14 = 9; } goto ldv_31083; case_12: /* CIL Label */ { ldv_assume(ldv_14_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_14 = 13; } goto ldv_31083; case_13: /* CIL Label */ { ldv_assume(ldv_statevar_11 == 4); ldv_14_ret_default = ldv_EMGentry_init_sd_driver_init_14_13(ldv_14_init_sd_driver_init_default); ldv_14_ret_default = ldv_post_init(ldv_14_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_14 = 10; } else { ldv_statevar_14 = 12; } goto ldv_31083; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_31083: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_14 = 13; ldv_statevar_0 = 5; ldv_1_ret_default = 1; ldv_statevar_1 = 14; ldv_2_ret_default = 1; ldv_statevar_2 = 14; ldv_3_ret_default = 1; ldv_statevar_3 = 14; ldv_4_ret_default = 1; ldv_statevar_4 = 14; ldv_5_ret_default = 1; ldv_statevar_5 = 14; ldv_statevar_6 = 5; ldv_statevar_7 = 5; ldv_statevar_8 = 5; ldv_statevar_9 = 5; ldv_10_reset_flag_default = 0; ldv_statevar_10 = 15; ldv_statevar_11 = 4; } ldv_31112: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_14((void *)0); } goto ldv_31098; case_1: /* CIL Label */ { ldv_struct_sd_desc_dummy_resourceless_instance_0((void *)0); } goto ldv_31098; case_2: /* CIL Label */ { ldv_struct_stv06xx_sensor_io_instance_1((void *)0); } goto ldv_31098; case_3: /* CIL Label */ { ldv_struct_stv06xx_sensor_io_instance_2((void *)0); } goto ldv_31098; case_4: /* CIL Label */ { ldv_struct_stv06xx_sensor_io_instance_3((void *)0); } goto ldv_31098; case_5: /* CIL Label */ { ldv_struct_stv06xx_sensor_io_instance_4((void *)0); } goto ldv_31098; case_6: /* CIL Label */ { ldv_struct_stv06xx_sensor_io_instance_5((void *)0); } goto ldv_31098; case_7: /* CIL Label */ { ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_6((void *)0); } goto ldv_31098; case_8: /* CIL Label */ { ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_7((void *)0); } goto ldv_31098; case_9: /* CIL Label */ { ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_8((void *)0); } goto ldv_31098; case_10: /* CIL Label */ { ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_9((void *)0); } goto ldv_31098; case_11: /* CIL Label */ { ldv_usb_usb_instance_10((void *)0); } goto ldv_31098; case_12: /* CIL Label */ { ldv_usb_dummy_factory_11((void *)0); } goto ldv_31098; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_31098: ; goto ldv_31112; } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } void ldv_io_instance_callback_4_4(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_struct_sd_desc_dummy_resourceless_instance_0(void *arg0 ) { void *tmp ; void *tmp___0 ; { { if (ldv_statevar_0 == 1) { goto case_1; } else { } if (ldv_statevar_0 == 2) { goto case_2; } else { } if (ldv_statevar_0 == 3) { goto case_3; } else { } if (ldv_statevar_0 == 4) { goto case_4; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 7) { goto case_7; } else { } if (ldv_statevar_0 == 8) { goto case_8; } else { } if (ldv_statevar_0 == 10) { goto case_10; } else { } if (ldv_statevar_0 == 12) { goto case_12; } else { } if (ldv_statevar_0 == 13) { goto case_13; } else { } if (ldv_statevar_0 == 15) { goto case_15; } else { } if (ldv_statevar_0 == 17) { goto case_17; } else { } if (ldv_statevar_0 == 18) { goto case_18; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_31124; case_2: /* CIL Label */ { ldv_statevar_0 = ldv_switch_0(); } goto ldv_31124; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_0_3(ldv_0_callback_config, ldv_0_container_struct_gspca_dev_ptr, ldv_0_container_struct_usb_device_id_ptr); ldv_statevar_0 = 2; } goto ldv_31124; case_4: /* CIL Label */ { ldv_statevar_0 = ldv_switch_0(); } goto ldv_31124; case_5: /* CIL Label */ ; goto ldv_31124; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_0_7(ldv_0_callback_init, ldv_0_container_struct_gspca_dev_ptr); ldv_statevar_0 = 2; } goto ldv_31124; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_0_8(ldv_0_callback_init_controls, ldv_0_container_struct_gspca_dev_ptr); ldv_statevar_0 = 2; } goto ldv_31124; case_10: /* CIL Label */ { tmp = ldv_xmalloc(1UL); ldv_0_ldv_param_9_1_default = (unsigned char *)tmp; ldv_dummy_resourceless_instance_callback_0_9(ldv_0_callback_int_pkt_scan, ldv_0_container_struct_gspca_dev_ptr, ldv_0_ldv_param_9_1_default, ldv_0_ldv_param_9_2_default); ldv_free((void *)ldv_0_ldv_param_9_1_default); ldv_statevar_0 = 2; } goto ldv_31124; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_0_12(ldv_0_callback_isoc_init, ldv_0_container_struct_gspca_dev_ptr); ldv_statevar_0 = 2; } goto ldv_31124; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_0_13(ldv_0_callback_isoc_nego, ldv_0_container_struct_gspca_dev_ptr); ldv_statevar_0 = 2; } goto ldv_31124; case_15: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_0_ldv_param_14_1_default = (unsigned char *)tmp___0; ldv_dummy_resourceless_instance_callback_0_14(ldv_0_callback_pkt_scan, ldv_0_container_struct_gspca_dev_ptr, ldv_0_ldv_param_14_1_default, ldv_0_ldv_param_14_2_default); ldv_free((void *)ldv_0_ldv_param_14_1_default); ldv_statevar_0 = 2; } goto ldv_31124; case_17: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_0_17(ldv_0_callback_start, ldv_0_container_struct_gspca_dev_ptr); ldv_statevar_0 = 2; } goto ldv_31124; case_18: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_0_18(ldv_0_callback_stopN, ldv_0_container_struct_gspca_dev_ptr); ldv_statevar_0 = 2; } goto ldv_31124; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_31124: ; return; } } void ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_6(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_6 == 1) { goto case_1; } else { } if (ldv_statevar_6 == 2) { goto case_2; } else { } if (ldv_statevar_6 == 3) { goto case_3; } else { } if (ldv_statevar_6 == 4) { goto case_4; } else { } if (ldv_statevar_6 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_31142; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_6 = 1; } else { ldv_statevar_6 = 3; } goto ldv_31142; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_6_3(ldv_6_callback_s_ctrl, ldv_6_container_struct_v4l2_ctrl_ptr); ldv_statevar_6 = 2; } goto ldv_31142; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_6 = 1; } else { ldv_statevar_6 = 3; } goto ldv_31142; case_5: /* CIL Label */ ; goto ldv_31142; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_31142: ; return; } } void ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_7(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_7 == 1) { goto case_1; } else { } if (ldv_statevar_7 == 2) { goto case_2; } else { } if (ldv_statevar_7 == 3) { goto case_3; } else { } if (ldv_statevar_7 == 4) { goto case_4; } else { } if (ldv_statevar_7 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_31152; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_7 = 1; } else { ldv_statevar_7 = 3; } goto ldv_31152; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_3(ldv_7_callback_s_ctrl, ldv_7_container_struct_v4l2_ctrl_ptr); ldv_statevar_7 = 2; } goto ldv_31152; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_7 = 1; } else { ldv_statevar_7 = 3; } goto ldv_31152; case_5: /* CIL Label */ ; goto ldv_31152; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_31152: ; return; } } void ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_8(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_8 == 1) { goto case_1; } else { } if (ldv_statevar_8 == 2) { goto case_2; } else { } if (ldv_statevar_8 == 3) { goto case_3; } else { } if (ldv_statevar_8 == 4) { goto case_4; } else { } if (ldv_statevar_8 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_31162; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_8 = 1; } else { ldv_statevar_8 = 3; } goto ldv_31162; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_8_3(ldv_8_callback_s_ctrl, ldv_8_container_struct_v4l2_ctrl_ptr); ldv_statevar_8 = 2; } goto ldv_31162; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_8 = 1; } else { ldv_statevar_8 = 3; } goto ldv_31162; case_5: /* CIL Label */ ; goto ldv_31162; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_31162: ; return; } } void ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_9(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_9 == 1) { goto case_1; } else { } if (ldv_statevar_9 == 2) { goto case_2; } else { } if (ldv_statevar_9 == 3) { goto case_3; } else { } if (ldv_statevar_9 == 4) { goto case_4; } else { } if (ldv_statevar_9 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_31172; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_9 = 1; } else { ldv_statevar_9 = 3; } goto ldv_31172; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_9_3(ldv_9_callback_s_ctrl, ldv_9_container_struct_v4l2_ctrl_ptr); ldv_statevar_9 = 2; } goto ldv_31172; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_9 = 1; } else { ldv_statevar_9 = 3; } goto ldv_31172; case_5: /* CIL Label */ ; goto ldv_31172; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_31172: ; return; } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (3); case_2: /* CIL Label */ ; return (7); case_3: /* CIL Label */ ; return (8); case_4: /* CIL Label */ ; return (10); case_5: /* CIL Label */ ; return (12); case_6: /* CIL Label */ ; return (13); case_7: /* CIL Label */ ; return (15); case_8: /* CIL Label */ ; return (17); case_9: /* CIL Label */ ; return (18); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ ; return (2); case_1: /* CIL Label */ ; return (4); case_2: /* CIL Label */ ; return (17); case_3: /* CIL Label */ ; return (18); case_4: /* CIL Label */ ; return (19); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_2(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ ; return (5); case_1: /* CIL Label */ ; return (6); case_2: /* CIL Label */ ; return (11); case_3: /* CIL Label */ ; return (16); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_0_1(void) { { ldv_statevar_0 = 5; return; } } void ldv_switch_automaton_state_0_5(void) { { ldv_statevar_0 = 4; return; } } void ldv_switch_automaton_state_10_1(void) { { ldv_10_reset_flag_default = 0; ldv_statevar_10 = 15; return; } } void ldv_switch_automaton_state_10_15(void) { { ldv_statevar_10 = 14; return; } } void ldv_switch_automaton_state_11_1(void) { { ldv_statevar_11 = 4; return; } } void ldv_switch_automaton_state_11_4(void) { { ldv_statevar_11 = 3; return; } } void ldv_switch_automaton_state_6_1(void) { { ldv_statevar_6 = 5; return; } } void ldv_switch_automaton_state_6_5(void) { { ldv_statevar_6 = 4; return; } } void ldv_switch_automaton_state_7_1(void) { { ldv_statevar_7 = 5; return; } } void ldv_switch_automaton_state_7_5(void) { { ldv_statevar_7 = 4; return; } } void ldv_switch_automaton_state_8_1(void) { { ldv_statevar_8 = 5; return; } } void ldv_switch_automaton_state_8_5(void) { { ldv_statevar_8 = 4; return; } } void ldv_switch_automaton_state_9_1(void) { { ldv_statevar_9 = 5; return; } } void ldv_switch_automaton_state_9_5(void) { { ldv_statevar_9 = 4; return; } } void ldv_usb_deregister(void *arg0 , struct usb_driver *arg1 ) { struct usb_driver *ldv_12_usb_driver_usb_driver ; { { ldv_12_usb_driver_usb_driver = arg1; ldv_assume(ldv_statevar_11 == 2); ldv_dispatch_deregister_12_1(ldv_12_usb_driver_usb_driver); } return; return; } } void ldv_usb_dummy_factory_11(void *arg0 ) { { { if (ldv_statevar_11 == 2) { goto case_2; } else { } if (ldv_statevar_11 == 3) { goto case_3; } else { } if (ldv_statevar_11 == 4) { goto case_4; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_10 == 3); ldv_dispatch_instance_deregister_11_2(ldv_11_container_usb_driver); ldv_statevar_11 = 4; } goto ldv_31243; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_10 == 15); ldv_dispatch_instance_register_11_3(ldv_11_container_usb_driver); ldv_statevar_11 = 2; } goto ldv_31243; case_4: /* CIL Label */ ; goto ldv_31243; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_31243: ; return; } } void ldv_usb_instance_callback_10_6(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { gspca_resume(arg1); } return; } } void ldv_usb_instance_post_10_9(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_usb_instance_pre_10_10(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_usb_instance_probe_10_13(int (*arg0)(struct usb_interface * , struct usb_device_id * ) , struct usb_interface *arg1 , struct usb_device_id *arg2 ) { int tmp ; { { tmp = sd_probe(arg1, (struct usb_device_id const *)arg2); } return (tmp); } } void ldv_usb_instance_release_10_4(void (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { sd_disconnect(arg1); } return; } } void ldv_usb_instance_resume_10_7(int (*arg0)(struct usb_interface * ) , struct usb_interface *arg1 ) { { { gspca_resume(arg1); } return; } } void ldv_usb_instance_suspend_10_8(int (*arg0)(struct usb_interface * , struct pm_message ) , struct usb_interface *arg1 , struct pm_message *arg2 ) { { { gspca_suspend(arg1, *arg2); } return; } } int ldv_usb_register_driver(int arg0 , struct usb_driver *arg1 , struct module *arg2 , char *arg3 ) { struct usb_driver *ldv_13_usb_driver_usb_driver ; int tmp ; { { arg0 = ldv_pre_usb_register_driver(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_13_usb_driver_usb_driver = arg1; ldv_assume(ldv_statevar_11 == 4); ldv_dispatch_register_13_2(ldv_13_usb_driver_usb_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_usb_usb_instance_10(void *arg0 ) { void *tmp ; void *tmp___0 ; void *tmp___1 ; int tmp___2 ; void *tmp___3 ; { { if (ldv_statevar_10 == 3) { goto case_3; } else { } if (ldv_statevar_10 == 4) { goto case_4; } else { } if (ldv_statevar_10 == 5) { goto case_5; } else { } if (ldv_statevar_10 == 6) { goto case_6; } else { } if (ldv_statevar_10 == 7) { goto case_7; } else { } if (ldv_statevar_10 == 9) { goto case_9; } else { } if (ldv_statevar_10 == 10) { goto case_10; } else { } if (ldv_statevar_10 == 11) { goto case_11; } else { } if (ldv_statevar_10 == 12) { goto case_12; } else { } if (ldv_statevar_10 == 14) { goto case_14; } else { } if (ldv_statevar_10 == 15) { goto case_15; } else { } if (ldv_statevar_10 == 16) { goto case_16; } else { } goto switch_default; case_3: /* CIL Label */ { ldv_assume(ldv_10_probe_retval_default != 0); ldv_free((void *)ldv_10_resource_usb_interface); ldv_free((void *)ldv_10_usb_device_usb_device); ldv_10_reset_flag_default = 0; ldv_statevar_10 = 15; } goto ldv_31297; case_4: /* CIL Label */ { ldv_usb_instance_release_10_4(ldv_10_container_usb_driver->disconnect, ldv_10_resource_usb_interface); ldv_free((void *)ldv_10_resource_usb_interface); ldv_free((void *)ldv_10_usb_device_usb_device); ldv_10_reset_flag_default = 0; ldv_statevar_10 = 15; } goto ldv_31297; case_5: /* CIL Label */ { ldv_usb_instance_release_10_4(ldv_10_container_usb_driver->disconnect, ldv_10_resource_usb_interface); ldv_free((void *)ldv_10_resource_usb_interface); ldv_free((void *)ldv_10_usb_device_usb_device); ldv_10_reset_flag_default = 0; ldv_statevar_10 = 15; } goto ldv_31297; case_6: /* CIL Label */ { ldv_usb_instance_callback_10_6(ldv_10_callback_reset_resume, ldv_10_resource_usb_interface); ldv_statevar_10 = 4; } goto ldv_31297; case_7: /* CIL Label */ { ldv_usb_instance_resume_10_7(ldv_10_container_usb_driver->resume, ldv_10_resource_usb_interface); ldv_statevar_10 = 4; } goto ldv_31297; case_9: /* CIL Label */ ; if ((unsigned long )ldv_10_container_usb_driver->post_reset != (unsigned long )((int (*)(struct usb_interface * ))0)) { { ldv_usb_instance_post_10_9(ldv_10_container_usb_driver->post_reset, ldv_10_resource_usb_interface); } } else { } ldv_statevar_10 = 4; goto ldv_31297; case_10: /* CIL Label */ ; if ((unsigned long )ldv_10_container_usb_driver->pre_reset != (unsigned long )((int (*)(struct usb_interface * ))0)) { { ldv_usb_instance_pre_10_10(ldv_10_container_usb_driver->pre_reset, ldv_10_resource_usb_interface); } } else { } ldv_statevar_10 = 9; goto ldv_31297; case_11: /* CIL Label */ ; goto ldv_31297; case_12: /* CIL Label */ { ldv_assume(ldv_10_probe_retval_default == 0); ldv_statevar_10 = ldv_switch_2(); } goto ldv_31297; case_14: /* CIL Label */ { tmp = ldv_xmalloc(1528UL); ldv_10_resource_usb_interface = (struct usb_interface *)tmp; tmp___0 = ldv_xmalloc(1992UL); ldv_10_usb_device_usb_device = (struct usb_device *)tmp___0; ldv_10_resource_usb_interface->dev.parent = & ldv_10_usb_device_usb_device->dev; tmp___1 = ldv_xmalloc(32UL); ldv_10_ldv_param_13_1_default = (struct usb_device_id *)tmp___1; ldv_pre_probe(); ldv_10_probe_retval_default = ldv_usb_instance_probe_10_13((int (*)(struct usb_interface * , struct usb_device_id * ))ldv_10_container_usb_driver->probe, ldv_10_resource_usb_interface, ldv_10_ldv_param_13_1_default); ldv_10_probe_retval_default = ldv_post_probe(ldv_10_probe_retval_default); ldv_free((void *)ldv_10_ldv_param_13_1_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { ldv_statevar_10 = 3; } else { ldv_statevar_10 = 12; } goto ldv_31297; case_15: /* CIL Label */ ; goto ldv_31297; case_16: /* CIL Label */ { tmp___3 = ldv_xmalloc(4UL); ldv_10_ldv_param_8_1_default = (struct pm_message *)tmp___3; ldv_usb_instance_suspend_10_8(ldv_10_container_usb_driver->suspend, ldv_10_resource_usb_interface, ldv_10_ldv_param_8_1_default); ldv_free((void *)ldv_10_ldv_param_8_1_default); ldv_statevar_10 = 7; } goto ldv_31297; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_31297: ; return; } } static void *ldv_dev_get_drvdata_39(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_usb_register_driver_58(struct usb_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = usb_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_usb_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_usb_deregister_59(struct usb_driver *ldv_func_arg1 ) { { { usb_deregister(ldv_func_arg1); ldv_usb_deregister((void *)0, ldv_func_arg1); } return; } } int ldv_filter_err_code(int ret_val ) ; extern int v4l2_ctrl_handler_init_class(struct v4l2_ctrl_handler * , unsigned int , struct lock_class_key * , char const * ) ; extern struct v4l2_ctrl *v4l2_ctrl_new_std(struct v4l2_ctrl_handler * , struct v4l2_ctrl_ops const * , u32 , s32 , s32 , u32 , s32 ) ; static int vv6410_probe(struct sd *sd ) ; static int vv6410_start(struct sd *sd ) ; static int vv6410_init(struct sd *sd ) ; static int vv6410_init_controls(struct sd *sd ) ; static int vv6410_stop(struct sd *sd ) ; static int vv6410_dump(struct sd *sd ) ; static int vv6410_set_hflip(struct gspca_dev *gspca_dev , __s32 val ) ; static int vv6410_set_vflip(struct gspca_dev *gspca_dev , __s32 val ) ; static int vv6410_set_analog_gain(struct gspca_dev *gspca_dev , __s32 val ) ; static int vv6410_set_exposure(struct gspca_dev *gspca_dev , __s32 val ) ; struct stv06xx_sensor const stv06xx_sensor_vv6410 = {{'S', 'T', ' ', 'V', 'V', '6', '4', '1', '0', '\000'}, 32U, 5U, 1U, {1023}, {1023}, & vv6410_probe, & vv6410_init, & vv6410_init_controls, 0, 0, & vv6410_start, & vv6410_stop, & vv6410_dump}; static struct stv_init const stv_bridge_init[15U] = { {5664U, 128U}, {5664U, 0U}, {5187U, 0U}, {5155U, 4U}, {5376U, 11U}, {5377U, 167U}, {5378U, 183U}, {5379U, 0U}, {5380U, 0U}, {5430U, 2U}, {5431U, 0U}, {5432U, 96U}, {5433U, 1U}, {5434U, 32U}, {5435U, 1U}}; static u8 const vv6410_sensor_init[10U][2U] = { { 16U, 4U}, { 16U, 1U}, { 17U, 64U}, { 20U, 85U}, { 21U, 0U}, { 22U, 129U}, { 37U, 2U}, { 119U, 94U}, { 120U, 0U}, { 121U, 17U}}; static struct v4l2_pix_format vv6410_mode[1U] = { {356U, 292U, 1195528775U, 1U, 356U, 103952U, 8U, 0U}}; static int vv6410_s_ctrl(struct v4l2_ctrl *ctrl ) { struct gspca_dev *gspca_dev ; struct v4l2_ctrl_handler const *__mptr ; int err ; { __mptr = (struct v4l2_ctrl_handler const *)ctrl->handler; gspca_dev = (struct gspca_dev *)__mptr + 0xfffffffffffff700UL; err = -22; { if (ctrl->id == 9963796U) { goto case_9963796; } else { } if (ctrl->id == 9963797U) { goto case_9963797; } else { } if (ctrl->id == 9963795U) { goto case_9963795; } else { } if (ctrl->id == 9963793U) { goto case_9963793; } else { } goto switch_break; case_9963796: /* CIL Label */ ; if ((unsigned int )gspca_dev->streaming == 0U) { return (0); } else { } { err = vv6410_set_hflip(gspca_dev, ctrl->__annonCompField82.val); } goto ldv_29993; case_9963797: /* CIL Label */ ; if ((unsigned int )gspca_dev->streaming == 0U) { return (0); } else { } { err = vv6410_set_vflip(gspca_dev, ctrl->__annonCompField82.val); } goto ldv_29993; case_9963795: /* CIL Label */ { err = vv6410_set_analog_gain(gspca_dev, ctrl->__annonCompField82.val); } goto ldv_29993; case_9963793: /* CIL Label */ { err = vv6410_set_exposure(gspca_dev, ctrl->__annonCompField82.val); } goto ldv_29993; switch_break: /* CIL Label */ ; } ldv_29993: ; return (err); } } static struct v4l2_ctrl_ops const vv6410_ctrl_ops = {0, 0, & vv6410_s_ctrl}; static int vv6410_probe(struct sd *sd ) { u16 data ; int err ; { { err = stv06xx_read_sensor(sd, 0, & data); } if (err < 0) { return (-19); } else { } if ((unsigned int )data != 25U) { return (-19); } else { } { printk("\016gspca_stv06xx: vv6410 sensor detected\n"); sd->gspca_dev.cam.cam_mode = (struct v4l2_pix_format const *)(& vv6410_mode); sd->gspca_dev.cam.nmodes = 1U; } return (0); } } static int vv6410_init_controls(struct sd *sd ) { struct v4l2_ctrl_handler *hdl ; struct lock_class_key _key ; { { hdl = & sd->gspca_dev.ctrl_handler; v4l2_ctrl_handler_init_class(hdl, 2U, & _key, "stv06xx_vv6410:101:(hdl)->_lock"); v4l2_ctrl_new_std(hdl, & vv6410_ctrl_ops, 9963793U, 0, 32768, 1U, 20000); v4l2_ctrl_new_std(hdl, & vv6410_ctrl_ops, 9963795U, 0, 15, 1U, 10); } return (hdl->error); } } static int vv6410_init(struct sd *sd ) { int err ; int i ; { err = 0; i = 0; goto ldv_30019; ldv_30018: { stv06xx_write_bridge(sd, (int )stv_bridge_init[i].addr, (int )stv_bridge_init[i].data); i = i + 1; } ldv_30019: ; if ((unsigned int )i <= 14U) { goto ldv_30018; } else { } if (err < 0) { return (err); } else { } { err = stv06xx_write_sensor_bytes(sd, (u8 const *)(& vv6410_sensor_init), 10); } return (0 < err ? 0 : err); } } static int vv6410_start(struct sd *sd ) { int err ; struct gspca_dev *gspca_dev ; struct cam *cam ; u32 priv ; { gspca_dev = (struct gspca_dev *)sd; cam = & sd->gspca_dev.cam; priv = (cam->cam_mode + (unsigned long )sd->gspca_dev.curr_mode)->priv; if ((int )priv & 1) { if (gspca_debug > 1) { { printk("\017%s: Enabling subsampling", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } { stv06xx_write_bridge(sd, 5571, 2); stv06xx_write_bridge(sd, 5760, 6); stv06xx_write_bridge(sd, 5187, 16); } } else { { stv06xx_write_bridge(sd, 5571, 1); stv06xx_write_bridge(sd, 5760, 10); stv06xx_write_bridge(sd, 5187, 0); } } { err = stv06xx_write_bridge(sd, 5189, 1); } if (err < 0) { return (err); } else { } { err = stv06xx_write_sensor(sd, 16, 0); } if (err < 0) { return (err); } else { } if (gspca_debug > 2) { { printk("\017%s: Starting stream", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } return (0); } } static int vv6410_stop(struct sd *sd ) { struct gspca_dev *gspca_dev ; int err ; { { gspca_dev = (struct gspca_dev *)sd; err = stv06xx_write_bridge(sd, 5189, 0); } if (err < 0) { return (err); } else { } { err = stv06xx_write_sensor(sd, 16, 1); } if (err < 0) { return (err); } else { } if (gspca_debug > 2) { { printk("\017%s: Halting stream", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } return (0 < err ? 0 : err); } } static int vv6410_dump(struct sd *sd ) { u8 i ; int err ; u16 data ; { { err = 0; printk("\016gspca_stv06xx: Dumping all vv6410 sensor registers\n"); i = 0U; } goto ldv_30042; ldv_30041: { err = stv06xx_read_sensor(sd, (int )i, & data); printk("\016gspca_stv06xx: Register 0x%x contained 0x%x\n", (int )i, (int )data); i = (u8 )((int )i + 1); } ldv_30042: ; if ((unsigned int )i != 255U && err == 0) { goto ldv_30041; } else { } return (0 < err ? 0 : err); } } static int vv6410_set_hflip(struct gspca_dev *gspca_dev , __s32 val ) { int err ; u16 i2c_data ; struct sd *sd ; { { sd = (struct sd *)gspca_dev; err = stv06xx_read_sensor(sd, 22, & i2c_data); } if (err < 0) { return (err); } else { } if (val != 0) { i2c_data = (u16 )((unsigned int )i2c_data | 8U); } else { i2c_data = (unsigned int )i2c_data & 65527U; } if (gspca_debug > 1) { { printk("\017%s: Set horizontal flip to %d", (char *)(& gspca_dev->v4l2_dev.name), val); } } else { } { err = stv06xx_write_sensor(sd, 22, (int )i2c_data); } return (0 < err ? 0 : err); } } static int vv6410_set_vflip(struct gspca_dev *gspca_dev , __s32 val ) { int err ; u16 i2c_data ; struct sd *sd ; { { sd = (struct sd *)gspca_dev; err = stv06xx_read_sensor(sd, 22, & i2c_data); } if (err < 0) { return (err); } else { } if (val != 0) { i2c_data = (u16 )((unsigned int )i2c_data | 16U); } else { i2c_data = (unsigned int )i2c_data & 65519U; } if (gspca_debug > 1) { { printk("\017%s: Set vertical flip to %d", (char *)(& gspca_dev->v4l2_dev.name), val); } } else { } { err = stv06xx_write_sensor(sd, 22, (int )i2c_data); } return (0 < err ? 0 : err); } } static int vv6410_set_analog_gain(struct gspca_dev *gspca_dev , __s32 val ) { int err ; struct sd *sd ; { sd = (struct sd *)gspca_dev; if (gspca_debug > 1) { { printk("\017%s: Set analog gain to %d", (char *)(& gspca_dev->v4l2_dev.name), val); } } else { } { err = stv06xx_write_sensor(sd, 36, (int )((u16 )(((int )((short )val) & 255) | 240))); } return (0 < err ? 0 : err); } } static int vv6410_set_exposure(struct gspca_dev *gspca_dev , __s32 val ) { int err ; struct sd *sd ; unsigned int fine ; unsigned int coarse ; int _min1 ; int _min2 ; { sd = (struct sd *)gspca_dev; val = (val * val >> 14) + val / 4; fine = (unsigned int )(val % 415); _min1 = 512; _min2 = val / 415; coarse = (unsigned int )(_min1 < _min2 ? _min1 : _min2); if (gspca_debug > 1) { { printk("\017%s: Set coarse exposure to %d, fine expsure to %d", (char *)(& gspca_dev->v4l2_dev.name), coarse, fine); } } else { } { err = stv06xx_write_sensor(sd, 32, (int )((u16 )(fine >> 8))); } if (err < 0) { goto out; } else { } { err = stv06xx_write_sensor(sd, 33, (int )((u16 )fine) & 255); } if (err < 0) { goto out; } else { } { err = stv06xx_write_sensor(sd, 34, (int )((u16 )(coarse >> 8))); } if (err < 0) { goto out; } else { } { err = stv06xx_write_sensor(sd, 35, (int )((u16 )coarse) & 255); } out: ; return (err); } } void ldv_io_instance_callback_5_17(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_io_instance_callback_5_18(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_io_instance_callback_5_19(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_io_instance_callback_5_4(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; int ldv_io_instance_probe_5_11(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_io_instance_release_5_2(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; int (*ldv_5_callback_dump)(struct sd * ) ; int (*ldv_5_callback_init)(struct sd * ) ; int (*ldv_5_callback_init_controls)(struct sd * ) ; int (*ldv_5_callback_start)(struct sd * ) ; struct stv06xx_sensor *ldv_5_container_struct_stv06xx_sensor ; int ldv_statevar_5 ; int (*ldv_5_callback_dump)(struct sd * ) = & vv6410_dump; int (*ldv_5_callback_init)(struct sd * ) = & vv6410_init; int (*ldv_5_callback_init_controls)(struct sd * ) = & vv6410_init_controls; int (*ldv_5_callback_start)(struct sd * ) = & vv6410_start; int (*ldv_9_callback_s_ctrl)(struct v4l2_ctrl * ) = & vv6410_s_ctrl; void ldv_dummy_resourceless_instance_callback_9_3(int (*arg0)(struct v4l2_ctrl * ) , struct v4l2_ctrl *arg1 ) { { { vv6410_s_ctrl(arg1); } return; } } void ldv_io_instance_callback_5_17(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { vv6410_init(arg1); } return; } } void ldv_io_instance_callback_5_18(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { vv6410_init_controls(arg1); } return; } } void ldv_io_instance_callback_5_19(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { vv6410_start(arg1); } return; } } void ldv_io_instance_callback_5_4(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { vv6410_dump(arg1); } return; } } int ldv_io_instance_probe_5_11(int (*arg0)(struct sd * ) , struct sd *arg1 ) { int tmp ; { { tmp = vv6410_probe(arg1); } return (tmp); } } void ldv_io_instance_release_5_2(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { vv6410_stop(arg1); } return; } } void ldv_struct_stv06xx_sensor_io_instance_5(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; int tmp___3 ; { { if (ldv_statevar_5 == 1) { goto case_1; } else { } if (ldv_statevar_5 == 2) { goto case_2; } else { } if (ldv_statevar_5 == 3) { goto case_3; } else { } if (ldv_statevar_5 == 4) { goto case_4; } else { } if (ldv_statevar_5 == 6) { goto case_6; } else { } if (ldv_statevar_5 == 8) { goto case_8; } else { } if (ldv_statevar_5 == 10) { goto case_10; } else { } if (ldv_statevar_5 == 11) { goto case_11; } else { } if (ldv_statevar_5 == 13) { goto case_13; } else { } if (ldv_statevar_5 == 14) { goto case_14; } else { } if (ldv_statevar_5 == 17) { goto case_17; } else { } if (ldv_statevar_5 == 18) { goto case_18; } else { } if (ldv_statevar_5 == 19) { goto case_19; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_5 = 6; } else { ldv_statevar_5 = 11; } goto ldv_30187; case_2: /* CIL Label */ { ldv_io_instance_release_5_2(ldv_5_container_struct_stv06xx_sensor->stop, ldv_5_resource_struct_sd_ptr); ldv_statevar_5 = 1; } goto ldv_30187; case_3: /* CIL Label */ { ldv_statevar_5 = ldv_switch_1(); } goto ldv_30187; case_4: /* CIL Label */ { ldv_io_instance_callback_5_4(ldv_5_callback_dump, ldv_5_resource_struct_sd_ptr); ldv_statevar_5 = 3; } goto ldv_30187; case_6: /* CIL Label */ { ldv_free((void *)ldv_5_resource_struct_sd_ptr); ldv_5_ret_default = 1; ldv_statevar_5 = 14; } goto ldv_30187; case_8: /* CIL Label */ { ldv_assume(ldv_5_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_5 = 6; } else { ldv_statevar_5 = 11; } goto ldv_30187; case_10: /* CIL Label */ { ldv_assume(ldv_5_ret_default == 0); ldv_statevar_5 = ldv_switch_1(); } goto ldv_30187; case_11: /* CIL Label */ { ldv_5_ret_default = ldv_io_instance_probe_5_11(ldv_5_container_struct_stv06xx_sensor->probe, ldv_5_resource_struct_sd_ptr); ldv_5_ret_default = ldv_filter_err_code(ldv_5_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_5 = 8; } else { ldv_statevar_5 = 10; } goto ldv_30187; case_13: /* CIL Label */ { tmp___2 = ldv_xmalloc(4856UL); ldv_5_resource_struct_sd_ptr = (struct sd *)tmp___2; tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { ldv_statevar_5 = 6; } else { ldv_statevar_5 = 11; } goto ldv_30187; case_14: /* CIL Label */ ; goto ldv_30187; case_17: /* CIL Label */ { ldv_io_instance_callback_5_17(ldv_5_callback_init, ldv_5_resource_struct_sd_ptr); ldv_statevar_5 = 3; } goto ldv_30187; case_18: /* CIL Label */ { ldv_io_instance_callback_5_18(ldv_5_callback_init_controls, ldv_5_resource_struct_sd_ptr); ldv_statevar_5 = 3; } goto ldv_30187; case_19: /* CIL Label */ { ldv_io_instance_callback_5_19(ldv_5_callback_start, ldv_5_resource_struct_sd_ptr); ldv_statevar_5 = 3; } goto ldv_30187; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_30187: ; return; } } void ldv_switch_automaton_state_5_14(void) { { ldv_statevar_5 = 13; return; } } void ldv_switch_automaton_state_5_5(void) { { ldv_5_ret_default = 1; ldv_statevar_5 = 14; return; } } long ldv__builtin_expect(long exp , long c ) ; extern void ldv_after_alloc(void * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; static int hdcs_probe_1x00(struct sd *sd ) ; static int hdcs_probe_1020(struct sd *sd ) ; static int hdcs_start(struct sd *sd ) ; static int hdcs_init(struct sd *sd ) ; static int hdcs_init_controls(struct sd *sd ) ; static int hdcs_stop(struct sd *sd ) ; static int hdcs_dump(struct sd *sd ) ; static int hdcs_set_exposure(struct gspca_dev *gspca_dev , __s32 val ) ; static int hdcs_set_gain(struct gspca_dev *gspca_dev , __s32 val ) ; struct stv06xx_sensor const stv06xx_sensor_hdcs1x00 = {{'H', 'P', ' ', 'H', 'D', 'C', 'S', '-', '1', '0', '0', '0', '/', '1', '1', '0', '0', '\000'}, 170U, 0U, 1U, {847}, {847}, & hdcs_probe_1x00, & hdcs_init, & hdcs_init_controls, 0, 0, & hdcs_start, & hdcs_stop, & hdcs_dump}; struct stv06xx_sensor const stv06xx_sensor_hdcs1020 = {{'H', 'D', 'C', 'S', '-', '1', '0', '2', '0', '\000'}, 170U, 0U, 1U, {847}, {847}, & hdcs_probe_1020, & hdcs_init, & hdcs_init_controls, 0, 0, & hdcs_start, & hdcs_stop, & hdcs_dump}; static u16 const stv_bridge_init___0[10U][2U] = { { 5184U, 0U}, { 1059U, 0U}, { 5376U, 29U}, { 5377U, 181U}, { 5378U, 168U}, { 5379U, 149U}, { 5380U, 7U}, { 5187U, 32U}, { 5571U, 1U}, { 5760U, 10U}}; static u8 const stv_sensor_init[7U][2U] = { { 2U, 126U}, { 4U, 0U}, { 6U, 99U}, { 8U, 0U}, { 10U, 32U}, { 12U, 18U}, { 18U, 10U}}; static struct v4l2_pix_format hdcs1x00_mode[1U] = { {360U, 296U, 1195528775U, 1U, 360U, 106560U, 8U, 1U}}; static struct v4l2_pix_format hdcs1020_mode[1U] = { {352U, 292U, 1195528775U, 1U, 352U, 102784U, 8U, 1U}}; static int hdcs_reg_write_seq(struct sd *sd , u8 reg , u8 *vals , u8 len ) { u8 regs[32U] ; int i ; long tmp ; long tmp___0 ; int tmp___1 ; { { tmp = ldv__builtin_expect((unsigned int )len - 1U > 14U, 0L); } if (tmp != 0L) { return (-22); } else { { tmp___0 = ldv__builtin_expect((int )reg + (int )len > 255, 0L); } if (tmp___0 != 0L) { return (-22); } else { } } i = 0; goto ldv_30011; ldv_30010: regs[i * 2] = reg; regs[i * 2 + 1] = *(vals + (unsigned long )i); reg = (unsigned int )reg + 2U; i = i + 1; ldv_30011: ; if (i < (int )len) { goto ldv_30010; } else { } { tmp___1 = stv06xx_write_sensor_bytes(sd, (u8 const *)(& regs), (int )len); } return (tmp___1); } } static int hdcs_set_state(struct sd *sd , enum hdcs_power_state state ) { struct hdcs *hdcs ; u8 val ; int ret ; { hdcs = (struct hdcs *)sd->sensor_priv; if ((unsigned int )hdcs->state == (unsigned int )state) { return (0); } else { } if ((unsigned int )hdcs->state != 1U) { { ret = stv06xx_write_sensor(sd, (unsigned long )sd->sensor == (unsigned long )(& stv06xx_sensor_hdcs1020) ? 56 : 48, 0); } if (ret != 0) { return (ret); } else { } } else { } hdcs->state = 1; if ((unsigned int )state == 1U) { return (0); } else { } { if ((unsigned int )state == 0U) { goto case_0; } else { } if ((unsigned int )state == 2U) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ val = 2U; goto ldv_30021; case_2: /* CIL Label */ val = 4U; goto ldv_30021; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_30021: { ret = stv06xx_write_sensor(sd, (unsigned long )sd->sensor == (unsigned long )(& stv06xx_sensor_hdcs1020) ? 56 : 48, (int )val); } if (ret == 0) { hdcs->state = state; } else { } return (ret); } } static int hdcs_reset(struct sd *sd ) { struct hdcs *hdcs ; int err ; { { hdcs = (struct hdcs *)sd->sensor_priv; err = stv06xx_write_sensor(sd, (unsigned long )sd->sensor == (unsigned long )(& stv06xx_sensor_hdcs1020) ? 56 : 48, 1); } if (err < 0) { return (err); } else { } { err = stv06xx_write_sensor(sd, (unsigned long )sd->sensor == (unsigned long )(& stv06xx_sensor_hdcs1020) ? 56 : 48, 0); } if (err < 0) { hdcs->state = 1; } else { } return (err); } } static int hdcs_set_exposure(struct gspca_dev *gspca_dev , __s32 val ) { struct sd *sd ; struct hdcs *hdcs ; int rowexp ; int srowexp ; int max_srowexp ; int ct ; int cp ; int rp ; int mnct ; int cycles ; int err ; u8 exp[14U] ; { sd = (struct sd *)gspca_dev; hdcs = (struct hdcs *)sd->sensor_priv; cycles = val * 6425; ct = ((int )hdcs->exp.cto + hdcs->psmp) + 5; cp = (int )hdcs->exp.cto + (hdcs->w * ct) / 2; rp = (int )hdcs->exp.rs + cp; rowexp = cycles / rp; cycles = cycles - rowexp * rp; if ((unsigned long )sd->sensor == (unsigned long )(& stv06xx_sensor_hdcs1020)) { srowexp = hdcs->w - ((cycles + (int )hdcs->exp.er) + 13) / ct; mnct = ((((int )hdcs->exp.er + 12) + ct) + -1) / ct; max_srowexp = hdcs->w - mnct; } else { srowexp = ((cp - (int )hdcs->exp.er) + -6) - cycles; mnct = ((((int )hdcs->exp.er + 5) + ct) + -1) / ct; max_srowexp = (cp - mnct * ct) + -1; } if (srowexp < 0) { srowexp = 0; } else if (srowexp > max_srowexp) { srowexp = max_srowexp; } else { } if ((unsigned long )sd->sensor == (unsigned long )(& stv06xx_sensor_hdcs1020)) { { exp[0] = 56U; exp[1] = 0U; exp[2] = 38U; exp[3] = (u8 )rowexp; exp[4] = 40U; exp[5] = (u8 )(rowexp >> 8); exp[6] = 42U; exp[7] = (u8 )(srowexp >> 2); exp[8] = 44U; exp[9] = 16U; exp[10] = 56U; exp[11] = 4U; err = stv06xx_write_sensor_bytes(sd, (u8 const *)(& exp), 6); } } else { { exp[0] = 48U; exp[1] = 0U; exp[2] = 38U; exp[3] = (u8 )rowexp; exp[4] = 40U; exp[5] = (u8 )(rowexp >> 8); exp[6] = 42U; exp[7] = (u8 )srowexp; exp[8] = 44U; exp[9] = (u8 )(srowexp >> 8); exp[10] = 2U; exp[11] = 16U; exp[12] = 48U; exp[13] = 4U; err = stv06xx_write_sensor_bytes(sd, (u8 const *)(& exp), 7); } if (err < 0) { return (err); } else { } } if (gspca_debug > 1) { { printk("\017%s: Writing exposure %d, rowexp %d, srowexp %d", (char *)(& gspca_dev->v4l2_dev.name), val, rowexp, srowexp); } } else { } return (err); } } static int hdcs_set_gains(struct sd *sd , u8 g ) { int err ; u8 gains[4U] ; { if ((int )((signed char )g) < 0) { g = (u8 )((unsigned int )g / 2U | 128U); } else { } { gains[0] = g; gains[1] = g; gains[2] = g; gains[3] = g; err = hdcs_reg_write_seq(sd, 30, (u8 *)(& gains), 4); } return (err); } } static int hdcs_set_gain(struct gspca_dev *gspca_dev , __s32 val ) { int tmp ; { if (gspca_debug > 1) { { printk("\017%s: Writing gain %d", (char *)(& gspca_dev->v4l2_dev.name), val); } } else { } { tmp = hdcs_set_gains((struct sd *)gspca_dev, (int )((u8 )val)); } return (tmp); } } static int hdcs_set_size(struct sd *sd , unsigned int width , unsigned int height ) { struct hdcs *hdcs ; u8 win[4U] ; unsigned int x ; unsigned int y ; int err ; { hdcs = (struct hdcs *)sd->sensor_priv; width = (width + 3U) & 4294967292U; height = (height + 3U) & 4294967292U; if (width > (unsigned int )hdcs->array.width) { width = (unsigned int )hdcs->array.width; } else { } if ((unsigned long )sd->sensor == (unsigned long )(& stv06xx_sensor_hdcs1020)) { if ((height + (unsigned int )(hdcs->array.border * 2)) + 4U > (unsigned int )hdcs->array.height) { height = (unsigned int )((hdcs->array.height + hdcs->array.border * -2) + -4); } else { } y = (((unsigned int )hdcs->array.height - height) + 4294967292U) / 2U + (unsigned int )hdcs->array.top; } else { if (height > (unsigned int )hdcs->array.height) { height = (unsigned int )hdcs->array.height; } else { } y = (unsigned int )hdcs->array.top + ((unsigned int )hdcs->array.height - height) / 2U; } { x = (unsigned int )hdcs->array.left + ((unsigned int )hdcs->array.width - width) / 2U; win[0] = (u8 )(y / 4U); win[1] = (u8 )(x / 4U); win[2] = (unsigned int )((u8 )((y + height) / 4U)) - 1U; win[3] = (unsigned int )((u8 )((x + width) / 4U)) - 1U; err = hdcs_reg_write_seq(sd, 20, (u8 *)(& win), 4); } if (err < 0) { return (err); } else { } hdcs->w = (int )width; hdcs->h = (int )height; return (err); } } static int hdcs_s_ctrl(struct v4l2_ctrl *ctrl ) { struct gspca_dev *gspca_dev ; struct v4l2_ctrl_handler const *__mptr ; int err ; { __mptr = (struct v4l2_ctrl_handler const *)ctrl->handler; gspca_dev = (struct gspca_dev *)__mptr + 0xfffffffffffff700UL; err = -22; { if (ctrl->id == 9963795U) { goto case_9963795; } else { } if (ctrl->id == 9963793U) { goto case_9963793; } else { } goto switch_break; case_9963795: /* CIL Label */ { err = hdcs_set_gain(gspca_dev, ctrl->__annonCompField82.val); } goto ldv_30073; case_9963793: /* CIL Label */ { err = hdcs_set_exposure(gspca_dev, ctrl->__annonCompField82.val); } goto ldv_30073; switch_break: /* CIL Label */ ; } ldv_30073: ; return (err); } } static struct v4l2_ctrl_ops const hdcs_ctrl_ops = {0, 0, & hdcs_s_ctrl}; static int hdcs_init_controls(struct sd *sd ) { struct v4l2_ctrl_handler *hdl ; struct lock_class_key _key ; { { hdl = & sd->gspca_dev.ctrl_handler; v4l2_ctrl_handler_init_class(hdl, 2U, & _key, "stv06xx_hdcs:361:(hdl)->_lock"); v4l2_ctrl_new_std(hdl, & hdcs_ctrl_ops, 9963793U, 0, 255, 1U, 48); v4l2_ctrl_new_std(hdl, & hdcs_ctrl_ops, 9963795U, 0, 255, 1U, 50); } return (hdl->error); } } static int hdcs_probe_1x00(struct sd *sd ) { struct hdcs *hdcs ; u16 sensor ; int ret ; void *tmp ; { { ret = stv06xx_read_sensor(sd, 0, & sensor); } if (ret < 0 || (unsigned int )sensor != 8U) { return (-19); } else { } { printk("\016gspca_stv06xx: HDCS-1000/1100 sensor detected\n"); sd->gspca_dev.cam.cam_mode = (struct v4l2_pix_format const *)(& hdcs1x00_mode); sd->gspca_dev.cam.nmodes = 1U; tmp = kmalloc(44UL, 208U); hdcs = (struct hdcs *)tmp; } if ((unsigned long )hdcs == (unsigned long )((struct hdcs *)0)) { return (-12); } else { } hdcs->array.left = 8; hdcs->array.top = 8; hdcs->array.width = 360; hdcs->array.height = 296; hdcs->array.border = 4; hdcs->exp.cto = 4U; hdcs->exp.cpo = 2U; hdcs->exp.rs = 186U; hdcs->exp.er = 100U; hdcs->psmp = (unsigned int )sd->bridge == 1U ? 20 : 5; sd->sensor_priv = (void *)hdcs; return (0); } } static int hdcs_probe_1020(struct sd *sd ) { struct hdcs *hdcs ; u16 sensor ; int ret ; void *tmp ; { { ret = stv06xx_read_sensor(sd, 0, & sensor); } if (ret < 0 || (unsigned int )sensor != 16U) { return (-19); } else { } { printk("\016gspca_stv06xx: HDCS-1020 sensor detected\n"); sd->gspca_dev.cam.cam_mode = (struct v4l2_pix_format const *)(& hdcs1020_mode); sd->gspca_dev.cam.nmodes = 1U; tmp = kmalloc(44UL, 208U); hdcs = (struct hdcs *)tmp; } if ((unsigned long )hdcs == (unsigned long )((struct hdcs *)0)) { return (-12); } else { } hdcs->array.left = 24; hdcs->array.top = 4; hdcs->array.width = 352; hdcs->array.height = 304; hdcs->array.border = 4; hdcs->psmp = 6; hdcs->exp.cto = 3U; hdcs->exp.cpo = 3U; hdcs->exp.rs = 155U; hdcs->exp.er = 96U; sd->sensor_priv = (void *)hdcs; return (0); } } static int hdcs_start(struct sd *sd ) { struct gspca_dev *gspca_dev ; int tmp ; { gspca_dev = (struct gspca_dev *)sd; if (gspca_debug > 2) { { printk("\017%s: Starting stream", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } { tmp = hdcs_set_state(sd, 2); } return (tmp); } } static int hdcs_stop(struct sd *sd ) { struct gspca_dev *gspca_dev ; int tmp ; { gspca_dev = (struct gspca_dev *)sd; if (gspca_debug > 2) { { printk("\017%s: Halting stream", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } { tmp = hdcs_set_state(sd, 0); } return (tmp); } } static int hdcs_init(struct sd *sd ) { struct hdcs *hdcs ; int i ; int err ; int tmp ; { hdcs = (struct hdcs *)sd->sensor_priv; err = 0; if ((unsigned int )sd->bridge == 1U) { { stv06xx_write_bridge(sd, 5190, 1); } } else { } i = 0; goto ldv_30115; ldv_30114: { err = stv06xx_write_bridge(sd, (int )stv_bridge_init___0[i][0], (int )stv_bridge_init___0[i][1]); i = i + 1; } ldv_30115: ; if ((unsigned int )i <= 9U && err == 0) { goto ldv_30114; } else { } if (err < 0) { return (err); } else { } { hdcs_reset(sd); i = 0; } goto ldv_30120; ldv_30119: { err = stv06xx_write_sensor(sd, (int )stv_sensor_init[i][0], (int )stv_sensor_init[i][1]); i = i + 1; } ldv_30120: ; if ((unsigned int )i <= 6U && err == 0) { goto ldv_30119; } else { } if (err < 0) { return (err); } else { } { err = stv06xx_write_sensor(sd, (unsigned long )sd->sensor == (unsigned long )(& stv06xx_sensor_hdcs1020) ? 54 : 46, 8); } if (err < 0) { return (err); } else { } if ((unsigned long )sd->sensor == (unsigned long )(& stv06xx_sensor_hdcs1020)) { { err = stv06xx_write_sensor(sd, 28, (int )((u16 )((int )((short )hdcs->psmp) | 192))); } } else { { err = stv06xx_write_sensor(sd, 28, (int )((u16 )((int )((short )hdcs->psmp) | 96))); } } if (err < 0) { return (err); } else { } { tmp = hdcs_set_size(sd, (unsigned int )hdcs->array.width, (unsigned int )hdcs->array.height); } return (tmp); } } static int hdcs_dump(struct sd *sd ) { u16 reg ; u16 val ; { { printk("\016gspca_stv06xx: Dumping sensor registers:\n"); reg = 0U; } goto ldv_30128; ldv_30127: { stv06xx_read_sensor(sd, (int )((u8 const )reg), & val); printk("\016gspca_stv06xx: reg 0x%02x = 0x%02x\n", (int )reg, (int )val); reg = (u16 )((int )reg + 1); } ldv_30128: ; if ((unsigned int )reg <= 40U) { goto ldv_30127; } else { } return (0); } } void ldv_io_instance_callback_1_17(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_io_instance_callback_1_18(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_io_instance_callback_1_19(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_io_instance_callback_1_4(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_io_instance_callback_2_17(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_io_instance_callback_2_18(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_io_instance_callback_2_19(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_io_instance_callback_2_4(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; int ldv_io_instance_probe_1_11(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; int ldv_io_instance_probe_2_11(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_io_instance_release_1_2(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_io_instance_release_2_2(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; int (*ldv_1_callback_dump)(struct sd * ) ; int (*ldv_1_callback_init)(struct sd * ) ; int (*ldv_1_callback_init_controls)(struct sd * ) ; int (*ldv_1_callback_start)(struct sd * ) ; struct stv06xx_sensor *ldv_1_container_struct_stv06xx_sensor ; int (*ldv_2_callback_dump)(struct sd * ) ; int (*ldv_2_callback_init)(struct sd * ) ; int (*ldv_2_callback_init_controls)(struct sd * ) ; int (*ldv_2_callback_start)(struct sd * ) ; struct stv06xx_sensor *ldv_2_container_struct_stv06xx_sensor ; int ldv_statevar_1 ; int ldv_statevar_2 ; int (*ldv_1_callback_dump)(struct sd * ) = & hdcs_dump; int (*ldv_1_callback_init)(struct sd * ) = & hdcs_init; int (*ldv_1_callback_init_controls)(struct sd * ) = & hdcs_init_controls; int (*ldv_1_callback_start)(struct sd * ) = & hdcs_start; int (*ldv_2_callback_dump)(struct sd * ) = & hdcs_dump; int (*ldv_2_callback_init)(struct sd * ) = & hdcs_init; int (*ldv_2_callback_init_controls)(struct sd * ) = & hdcs_init_controls; int (*ldv_2_callback_start)(struct sd * ) = & hdcs_start; int (*ldv_6_callback_s_ctrl)(struct v4l2_ctrl * ) = & hdcs_s_ctrl; void ldv_dummy_resourceless_instance_callback_6_3(int (*arg0)(struct v4l2_ctrl * ) , struct v4l2_ctrl *arg1 ) { { { hdcs_s_ctrl(arg1); } return; } } void ldv_io_instance_callback_1_17(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { hdcs_init(arg1); } return; } } void ldv_io_instance_callback_1_18(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { hdcs_init_controls(arg1); } return; } } void ldv_io_instance_callback_1_19(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { hdcs_start(arg1); } return; } } void ldv_io_instance_callback_1_4(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { hdcs_dump(arg1); } return; } } void ldv_io_instance_callback_2_17(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { hdcs_init(arg1); } return; } } void ldv_io_instance_callback_2_18(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { hdcs_init_controls(arg1); } return; } } void ldv_io_instance_callback_2_19(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { hdcs_start(arg1); } return; } } void ldv_io_instance_callback_2_4(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { hdcs_dump(arg1); } return; } } int ldv_io_instance_probe_1_11(int (*arg0)(struct sd * ) , struct sd *arg1 ) { int tmp ; { { tmp = hdcs_probe_1020(arg1); } return (tmp); } } int ldv_io_instance_probe_2_11(int (*arg0)(struct sd * ) , struct sd *arg1 ) { int tmp ; { { tmp = hdcs_probe_1x00(arg1); } return (tmp); } } void ldv_io_instance_release_1_2(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { hdcs_stop(arg1); } return; } } void ldv_io_instance_release_2_2(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { hdcs_stop(arg1); } return; } } void ldv_struct_stv06xx_sensor_io_instance_1(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; int tmp___3 ; { { if (ldv_statevar_1 == 1) { goto case_1; } else { } if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 3) { goto case_3; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 6) { goto case_6; } else { } if (ldv_statevar_1 == 8) { goto case_8; } else { } if (ldv_statevar_1 == 10) { goto case_10; } else { } if (ldv_statevar_1 == 11) { goto case_11; } else { } if (ldv_statevar_1 == 13) { goto case_13; } else { } if (ldv_statevar_1 == 14) { goto case_14; } else { } if (ldv_statevar_1 == 17) { goto case_17; } else { } if (ldv_statevar_1 == 18) { goto case_18; } else { } if (ldv_statevar_1 == 19) { goto case_19; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_1 = 6; } else { ldv_statevar_1 = 11; } goto ldv_30320; case_2: /* CIL Label */ { ldv_io_instance_release_1_2(ldv_1_container_struct_stv06xx_sensor->stop, ldv_1_resource_struct_sd_ptr); ldv_statevar_1 = 1; } goto ldv_30320; case_3: /* CIL Label */ { ldv_statevar_1 = ldv_switch_1(); } goto ldv_30320; case_4: /* CIL Label */ { ldv_io_instance_callback_1_4(ldv_1_callback_dump, ldv_1_resource_struct_sd_ptr); ldv_statevar_1 = 3; } goto ldv_30320; case_6: /* CIL Label */ { ldv_free((void *)ldv_1_resource_struct_sd_ptr); ldv_1_ret_default = 1; ldv_statevar_1 = 14; } goto ldv_30320; case_8: /* CIL Label */ { ldv_assume(ldv_1_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_1 = 6; } else { ldv_statevar_1 = 11; } goto ldv_30320; case_10: /* CIL Label */ { ldv_assume(ldv_1_ret_default == 0); ldv_statevar_1 = ldv_switch_1(); } goto ldv_30320; case_11: /* CIL Label */ { ldv_1_ret_default = ldv_io_instance_probe_1_11(ldv_1_container_struct_stv06xx_sensor->probe, ldv_1_resource_struct_sd_ptr); ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_1 = 8; } else { ldv_statevar_1 = 10; } goto ldv_30320; case_13: /* CIL Label */ { tmp___2 = ldv_xmalloc(4856UL); ldv_1_resource_struct_sd_ptr = (struct sd *)tmp___2; tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { ldv_statevar_1 = 6; } else { ldv_statevar_1 = 11; } goto ldv_30320; case_14: /* CIL Label */ ; goto ldv_30320; case_17: /* CIL Label */ { ldv_io_instance_callback_1_17(ldv_1_callback_init, ldv_1_resource_struct_sd_ptr); ldv_statevar_1 = 3; } goto ldv_30320; case_18: /* CIL Label */ { ldv_io_instance_callback_1_18(ldv_1_callback_init_controls, ldv_1_resource_struct_sd_ptr); ldv_statevar_1 = 3; } goto ldv_30320; case_19: /* CIL Label */ { ldv_io_instance_callback_1_19(ldv_1_callback_start, ldv_1_resource_struct_sd_ptr); ldv_statevar_1 = 3; } goto ldv_30320; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_30320: ; return; } } void ldv_struct_stv06xx_sensor_io_instance_2(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; int tmp___3 ; { { if (ldv_statevar_2 == 1) { goto case_1; } else { } if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 3) { goto case_3; } else { } if (ldv_statevar_2 == 4) { goto case_4; } else { } if (ldv_statevar_2 == 6) { goto case_6; } else { } if (ldv_statevar_2 == 8) { goto case_8; } else { } if (ldv_statevar_2 == 10) { goto case_10; } else { } if (ldv_statevar_2 == 11) { goto case_11; } else { } if (ldv_statevar_2 == 13) { goto case_13; } else { } if (ldv_statevar_2 == 14) { goto case_14; } else { } if (ldv_statevar_2 == 17) { goto case_17; } else { } if (ldv_statevar_2 == 18) { goto case_18; } else { } if (ldv_statevar_2 == 19) { goto case_19; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_2 = 6; } else { ldv_statevar_2 = 11; } goto ldv_30338; case_2: /* CIL Label */ { ldv_io_instance_release_2_2(ldv_2_container_struct_stv06xx_sensor->stop, ldv_2_resource_struct_sd_ptr); ldv_statevar_2 = 1; } goto ldv_30338; case_3: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_30338; case_4: /* CIL Label */ { ldv_io_instance_callback_2_4(ldv_2_callback_dump, ldv_2_resource_struct_sd_ptr); ldv_statevar_2 = 3; } goto ldv_30338; case_6: /* CIL Label */ { ldv_free((void *)ldv_2_resource_struct_sd_ptr); ldv_2_ret_default = 1; ldv_statevar_2 = 14; } goto ldv_30338; case_8: /* CIL Label */ { ldv_assume(ldv_2_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_2 = 6; } else { ldv_statevar_2 = 11; } goto ldv_30338; case_10: /* CIL Label */ { ldv_assume(ldv_2_ret_default == 0); ldv_statevar_2 = ldv_switch_1(); } goto ldv_30338; case_11: /* CIL Label */ { ldv_2_ret_default = ldv_io_instance_probe_2_11(ldv_2_container_struct_stv06xx_sensor->probe, ldv_2_resource_struct_sd_ptr); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_2 = 8; } else { ldv_statevar_2 = 10; } goto ldv_30338; case_13: /* CIL Label */ { tmp___2 = ldv_xmalloc(4856UL); ldv_2_resource_struct_sd_ptr = (struct sd *)tmp___2; tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { ldv_statevar_2 = 6; } else { ldv_statevar_2 = 11; } goto ldv_30338; case_14: /* CIL Label */ ; goto ldv_30338; case_17: /* CIL Label */ { ldv_io_instance_callback_2_17(ldv_2_callback_init, ldv_2_resource_struct_sd_ptr); ldv_statevar_2 = 3; } goto ldv_30338; case_18: /* CIL Label */ { ldv_io_instance_callback_2_18(ldv_2_callback_init_controls, ldv_2_resource_struct_sd_ptr); ldv_statevar_2 = 3; } goto ldv_30338; case_19: /* CIL Label */ { ldv_io_instance_callback_2_19(ldv_2_callback_start, ldv_2_resource_struct_sd_ptr); ldv_statevar_2 = 3; } goto ldv_30338; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_30338: ; return; } } void ldv_switch_automaton_state_1_14(void) { { ldv_statevar_1 = 13; return; } } void ldv_switch_automaton_state_1_5(void) { { ldv_1_ret_default = 1; ldv_statevar_1 = 14; return; } } void ldv_switch_automaton_state_2_14(void) { { ldv_statevar_2 = 13; return; } } void ldv_switch_automaton_state_2_5(void) { { ldv_2_ret_default = 1; ldv_statevar_2 = 14; return; } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } void *ldv_kzalloc(size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern struct v4l2_ctrl *v4l2_ctrl_new_custom(struct v4l2_ctrl_handler * , struct v4l2_ctrl_config const * , void * ) ; extern void v4l2_ctrl_auto_cluster(unsigned int , struct v4l2_ctrl ** , u8 , bool ) ; static int pb0100_probe(struct sd *sd ) ; static int pb0100_start(struct sd *sd ) ; static int pb0100_init(struct sd *sd ) ; static int pb0100_init_controls(struct sd *sd ) ; static int pb0100_stop(struct sd *sd ) ; static int pb0100_dump(struct sd *sd ) ; static int pb0100_set_gain(struct gspca_dev *gspca_dev , __s32 val ) ; static int pb0100_set_red_balance(struct gspca_dev *gspca_dev , __s32 val ) ; static int pb0100_set_blue_balance(struct gspca_dev *gspca_dev , __s32 val ) ; static int pb0100_set_exposure(struct gspca_dev *gspca_dev , __s32 val ) ; static int pb0100_set_autogain(struct gspca_dev *gspca_dev , __s32 val ) ; static int pb0100_set_autogain_target(struct gspca_dev *gspca_dev , __s32 val ) ; struct stv06xx_sensor const stv06xx_sensor_pb0100 = {{'P', 'B', '-', '0', '1', '0', '0', '\000'}, 186U, 1U, 2U, {635, 847}, {847, 923}, & pb0100_probe, & pb0100_init, & pb0100_init_controls, 0, 0, & pb0100_start, & pb0100_stop, & pb0100_dump}; static struct v4l2_pix_format pb0100_mode[2U] = { {320U, 240U, 1195528775U, 1U, 320U, 76800U, 8U, 1U}, {352U, 288U, 1195528775U, 1U, 352U, 101376U, 8U, 0U}}; static int pb0100_s_ctrl(struct v4l2_ctrl *ctrl ) { struct gspca_dev *gspca_dev ; struct v4l2_ctrl_handler const *__mptr ; struct sd *sd ; struct pb0100_ctrls *ctrls ; int err ; { __mptr = (struct v4l2_ctrl_handler const *)ctrl->handler; gspca_dev = (struct gspca_dev *)__mptr + 0xfffffffffffff700UL; sd = (struct sd *)gspca_dev; ctrls = (struct pb0100_ctrls *)sd->sensor_priv; err = -22; { if (ctrl->id == 9963794U) { goto case_9963794; } else { } if (ctrl->id == 9965569U) { goto case_9965569; } else { } goto switch_break; case_9963794: /* CIL Label */ { err = pb0100_set_autogain(gspca_dev, ctrl->__annonCompField82.val); } if (err != 0) { goto ldv_30006; } else { } if (ctrl->__annonCompField82.val != 0) { goto ldv_30006; } else { } { err = pb0100_set_gain(gspca_dev, (ctrls->__annonCompField84.gain)->__annonCompField82.val); } if (err != 0) { goto ldv_30006; } else { } { err = pb0100_set_exposure(gspca_dev, (ctrls->__annonCompField84.exposure)->__annonCompField82.val); } goto ldv_30006; case_9965569: /* CIL Label */ { err = pb0100_set_autogain_target(gspca_dev, ctrl->__annonCompField82.val); } goto ldv_30006; switch_break: /* CIL Label */ ; } ldv_30006: ; return (err); } } static struct v4l2_ctrl_ops const pb0100_ctrl_ops = {0, 0, & pb0100_s_ctrl}; static int pb0100_init_controls(struct sd *sd ) { struct v4l2_ctrl_handler *hdl ; struct pb0100_ctrls *ctrls ; struct v4l2_ctrl_config autogain_target ; struct v4l2_ctrl_config natural_light ; void *tmp ; struct lock_class_key _key ; { { hdl = & sd->gspca_dev.ctrl_handler; autogain_target.ops = & pb0100_ctrl_ops; autogain_target.id = 9965568U; autogain_target.name = "Automatic Gain Target"; autogain_target.type = 1; autogain_target.min = 0; autogain_target.max = 255; autogain_target.step = 1U; autogain_target.def = 128; autogain_target.flags = 0U; autogain_target.menu_skip_mask = 0U; autogain_target.qmenu = 0; autogain_target.qmenu_int = 0; autogain_target.is_private = 0U; natural_light.ops = & pb0100_ctrl_ops; natural_light.id = 9965569U; natural_light.name = "Natural Light Source"; natural_light.type = 2; natural_light.min = 0; natural_light.max = 1; natural_light.step = 1U; natural_light.def = 1; natural_light.flags = 0U; natural_light.menu_skip_mask = 0U; natural_light.qmenu = 0; natural_light.qmenu_int = 0; natural_light.is_private = 0U; tmp = kzalloc(56UL, 208U); ctrls = (struct pb0100_ctrls *)tmp; } if ((unsigned long )ctrls == (unsigned long )((struct pb0100_ctrls *)0)) { return (-12); } else { } { v4l2_ctrl_handler_init_class(hdl, 6U, & _key, "stv06xx_pb0100:146:(hdl)->_lock"); ctrls->__annonCompField84.autogain = v4l2_ctrl_new_std(hdl, & pb0100_ctrl_ops, 9963794U, 0, 1, 1U, 1); ctrls->__annonCompField84.exposure = v4l2_ctrl_new_std(hdl, & pb0100_ctrl_ops, 9963793U, 0, 511, 1U, 12); ctrls->__annonCompField84.gain = v4l2_ctrl_new_std(hdl, & pb0100_ctrl_ops, 9963795U, 0, 255, 1U, 128); ctrls->__annonCompField84.red = v4l2_ctrl_new_std(hdl, & pb0100_ctrl_ops, 9963790U, -255, 255, 1U, 0); ctrls->__annonCompField84.blue = v4l2_ctrl_new_std(hdl, & pb0100_ctrl_ops, 9963791U, -255, 255, 1U, 0); ctrls->__annonCompField84.natural = v4l2_ctrl_new_custom(hdl, & natural_light, (void *)0); ctrls->target = v4l2_ctrl_new_custom(hdl, & autogain_target, (void *)0); } if (hdl->error != 0) { { kfree((void const *)ctrls); } return (hdl->error); } else { } { sd->sensor_priv = (void *)ctrls; v4l2_ctrl_auto_cluster(5U, & ctrls->__annonCompField84.autogain, 0, 0); } return (0); } } static int pb0100_probe(struct sd *sd ) { u16 sensor ; int err ; { { err = stv06xx_read_sensor(sd, 0, & sensor); } if (err < 0) { return (-19); } else { } if ((unsigned int )((int )sensor >> 8) != 100U) { return (-19); } else { } { printk("\016gspca_stv06xx: Photobit pb0100 sensor detected\n"); sd->gspca_dev.cam.cam_mode = (struct v4l2_pix_format const *)(& pb0100_mode); sd->gspca_dev.cam.nmodes = 2U; } return (0); } } static int pb0100_start(struct sd *sd ) { int err ; int packet_size ; int max_packet_size ; struct usb_host_interface *alt ; struct usb_interface *intf ; struct gspca_dev *gspca_dev ; struct cam *cam ; u32 mode ; { { gspca_dev = (struct gspca_dev *)sd; cam = & sd->gspca_dev.cam; mode = (cam->cam_mode + (unsigned long )sd->gspca_dev.curr_mode)->priv; intf = usb_ifnum_to_if((struct usb_device const *)sd->gspca_dev.dev, (unsigned int )sd->gspca_dev.iface); alt = usb_altnum_to_altsetting((struct usb_interface const *)intf, (unsigned int )sd->gspca_dev.alt); } if ((unsigned long )alt == (unsigned long )((struct usb_host_interface *)0)) { return (-19); } else { } packet_size = (int )(alt->endpoint)->desc.wMaxPacketSize; max_packet_size = (sd->sensor)->max_packet_size[(int )sd->gspca_dev.curr_mode]; if (packet_size < max_packet_size) { { stv06xx_write_sensor(sd, 10, 26); } } else { { stv06xx_write_sensor(sd, 10, 42); } } if ((int )mode & 1) { { stv06xx_write_sensor(sd, 1, 30); stv06xx_write_sensor(sd, 2, 20); stv06xx_write_sensor(sd, 3, 239); stv06xx_write_sensor(sd, 4, 319); } } else { { stv06xx_write_sensor(sd, 1, 8); stv06xx_write_sensor(sd, 2, 4); stv06xx_write_sensor(sd, 3, 287); stv06xx_write_sensor(sd, 4, 351); } } if ((mode & 2U) != 0U) { { stv06xx_write_bridge(sd, 5571, 2); stv06xx_write_bridge(sd, 5760, 6); stv06xx_write_bridge(sd, 5187, 16); } } else { { stv06xx_write_bridge(sd, 5571, 1); stv06xx_write_bridge(sd, 5760, 10); stv06xx_write_bridge(sd, 5187, 32); } } { err = stv06xx_write_sensor(sd, 7, 42); } if (gspca_debug > 2) { { printk("\017%s: Started stream, status: %d", (char *)(& gspca_dev->v4l2_dev.name), err); } } else { } return (0 < err ? 0 : err); } } static int pb0100_stop(struct sd *sd ) { struct gspca_dev *gspca_dev ; int err ; { { gspca_dev = (struct gspca_dev *)sd; err = stv06xx_write_sensor(sd, 11, 1); } if (err < 0) { goto out; } else { } { err = stv06xx_write_sensor(sd, 7, 40); } if (gspca_debug > 2) { { printk("\017%s: Halting stream", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } out: ; return (0 < err ? 0 : err); } } static int pb0100_init(struct sd *sd ) { { { stv06xx_write_bridge(sd, 5376, 1); stv06xx_write_bridge(sd, 5187, 0); stv06xx_write_sensor(sd, 13, 1); stv06xx_write_sensor(sd, 13, 0); stv06xx_write_sensor(sd, 7, 40); stv06xx_write_sensor(sd, 32, 5184); stv06xx_write_sensor(sd, 53, 12); stv06xx_write_sensor(sd, 28, 12); stv06xx_write_sensor(sd, 51, 180); stv06xx_write_sensor(sd, 52, 12); stv06xx_write_sensor(sd, 54, 3); stv06xx_write_sensor(sd, 55, 0); stv06xx_write_sensor(sd, 23, 1); stv06xx_write_sensor(sd, 15, 800); stv06xx_write_sensor(sd, 17, 10); stv06xx_write_sensor(sd, 14, 0); stv06xx_write_sensor(sd, 57, 0); stv06xx_write_sensor(sd, 59, 11); stv06xx_write_sensor(sd, 60, 0); stv06xx_write_bridge(sd, 5376, 17); stv06xx_write_bridge(sd, 5379, 69); stv06xx_write_bridge(sd, 5380, 7); stv06xx_write_sensor(sd, 10, 26); stv06xx_write_sensor(sd, 5, 14); stv06xx_write_sensor(sd, 6, 0); stv06xx_write_sensor(sd, 8, 0); stv06xx_write_sensor(sd, 9, 123); stv06xx_write_bridge(sd, 5377, 194); stv06xx_write_bridge(sd, 5378, 176); } return (0); } } static int pb0100_dump(struct sd *sd ) { { return (0); } } static int pb0100_set_gain(struct gspca_dev *gspca_dev , __s32 val ) { int err ; struct sd *sd ; struct pb0100_ctrls *ctrls ; { { sd = (struct sd *)gspca_dev; ctrls = (struct pb0100_ctrls *)sd->sensor_priv; err = stv06xx_write_sensor(sd, 43, (int )((u16 )val)); } if (err == 0) { { err = stv06xx_write_sensor(sd, 46, (int )((u16 )val)); } } else { } if (gspca_debug > 1) { { printk("\017%s: Set green gain to %d, status: %d", (char *)(& gspca_dev->v4l2_dev.name), val, err); } } else { } if (err == 0) { { err = pb0100_set_red_balance(gspca_dev, (ctrls->__annonCompField84.red)->__annonCompField82.val); } } else { } if (err == 0) { { err = pb0100_set_blue_balance(gspca_dev, (ctrls->__annonCompField84.blue)->__annonCompField82.val); } } else { } return (err); } } static int pb0100_set_red_balance(struct gspca_dev *gspca_dev , __s32 val ) { int err ; struct sd *sd ; struct pb0100_ctrls *ctrls ; { sd = (struct sd *)gspca_dev; ctrls = (struct pb0100_ctrls *)sd->sensor_priv; val = val + (ctrls->__annonCompField84.gain)->__annonCompField82.val; if (val < 0) { val = 0; } else if (val > 255) { val = 255; } else { } { err = stv06xx_write_sensor(sd, 45, (int )((u16 )val)); } if (gspca_debug > 1) { { printk("\017%s: Set red gain to %d, status: %d", (char *)(& gspca_dev->v4l2_dev.name), val, err); } } else { } return (err); } } static int pb0100_set_blue_balance(struct gspca_dev *gspca_dev , __s32 val ) { int err ; struct sd *sd ; struct pb0100_ctrls *ctrls ; { sd = (struct sd *)gspca_dev; ctrls = (struct pb0100_ctrls *)sd->sensor_priv; val = val + (ctrls->__annonCompField84.gain)->__annonCompField82.val; if (val < 0) { val = 0; } else if (val > 255) { val = 255; } else { } { err = stv06xx_write_sensor(sd, 44, (int )((u16 )val)); } if (gspca_debug > 1) { { printk("\017%s: Set blue gain to %d, status: %d", (char *)(& gspca_dev->v4l2_dev.name), val, err); } } else { } return (err); } } static int pb0100_set_exposure(struct gspca_dev *gspca_dev , __s32 val ) { struct sd *sd ; int err ; { { sd = (struct sd *)gspca_dev; err = stv06xx_write_sensor(sd, 9, (int )((u16 )val)); } if (gspca_debug > 1) { { printk("\017%s: Set exposure to %d, status: %d", (char *)(& gspca_dev->v4l2_dev.name), val, err); } } else { } return (err); } } static int pb0100_set_autogain(struct gspca_dev *gspca_dev , __s32 val ) { int err ; struct sd *sd ; struct pb0100_ctrls *ctrls ; { sd = (struct sd *)gspca_dev; ctrls = (struct pb0100_ctrls *)sd->sensor_priv; if (val != 0) { if ((ctrls->__annonCompField84.natural)->__annonCompField82.val != 0) { val = 81; } else { val = 17; } } else { val = 0; } { err = stv06xx_write_sensor(sd, 14, (int )((u16 )val)); } if (gspca_debug > 1) { { printk("\017%s: Set autogain to %d (natural: %d), status: %d", (char *)(& gspca_dev->v4l2_dev.name), val, (ctrls->__annonCompField84.natural)->__annonCompField82.val, err); } } else { } return (err); } } static int pb0100_set_autogain_target(struct gspca_dev *gspca_dev , __s32 val ) { int err ; int totalpixels ; int brightpixels ; int darkpixels ; struct sd *sd ; { { sd = (struct sd *)gspca_dev; totalpixels = (int )(gspca_dev->pixfmt.width * gspca_dev->pixfmt.height); totalpixels = totalpixels / 64 + totalpixels / 4096; brightpixels = totalpixels * val >> 8; darkpixels = totalpixels - brightpixels; err = stv06xx_write_sensor(sd, 21, (int )((u16 )brightpixels)); } if (err == 0) { { err = stv06xx_write_sensor(sd, 22, (int )((u16 )darkpixels)); } } else { } if (gspca_debug > 1) { { printk("\017%s: Set autogain target to %d, status: %d", (char *)(& gspca_dev->v4l2_dev.name), val, err); } } else { } return (err); } } void ldv_io_instance_callback_3_17(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_io_instance_callback_3_18(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_io_instance_callback_3_19(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_io_instance_callback_3_4(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; int ldv_io_instance_probe_3_11(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_io_instance_release_3_2(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; int (*ldv_3_callback_dump)(struct sd * ) ; int (*ldv_3_callback_init)(struct sd * ) ; int (*ldv_3_callback_init_controls)(struct sd * ) ; int (*ldv_3_callback_start)(struct sd * ) ; struct stv06xx_sensor *ldv_3_container_struct_stv06xx_sensor ; int ldv_statevar_3 ; int (*ldv_3_callback_dump)(struct sd * ) = & pb0100_dump; int (*ldv_3_callback_init)(struct sd * ) = & pb0100_init; int (*ldv_3_callback_init_controls)(struct sd * ) = & pb0100_init_controls; int (*ldv_3_callback_start)(struct sd * ) = & pb0100_start; int (*ldv_7_callback_s_ctrl)(struct v4l2_ctrl * ) = & pb0100_s_ctrl; void ldv_dummy_resourceless_instance_callback_7_3(int (*arg0)(struct v4l2_ctrl * ) , struct v4l2_ctrl *arg1 ) { { { pb0100_s_ctrl(arg1); } return; } } void ldv_io_instance_callback_3_17(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { pb0100_init(arg1); } return; } } void ldv_io_instance_callback_3_18(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { pb0100_init_controls(arg1); } return; } } void ldv_io_instance_callback_3_19(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { pb0100_start(arg1); } return; } } void ldv_io_instance_callback_3_4(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { pb0100_dump(arg1); } return; } } int ldv_io_instance_probe_3_11(int (*arg0)(struct sd * ) , struct sd *arg1 ) { int tmp ; { { tmp = pb0100_probe(arg1); } return (tmp); } } void ldv_io_instance_release_3_2(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { pb0100_stop(arg1); } return; } } void ldv_struct_stv06xx_sensor_io_instance_3(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; int tmp___3 ; { { if (ldv_statevar_3 == 1) { goto case_1; } else { } if (ldv_statevar_3 == 2) { goto case_2; } else { } if (ldv_statevar_3 == 3) { goto case_3; } else { } if (ldv_statevar_3 == 4) { goto case_4; } else { } if (ldv_statevar_3 == 6) { goto case_6; } else { } if (ldv_statevar_3 == 8) { goto case_8; } else { } if (ldv_statevar_3 == 10) { goto case_10; } else { } if (ldv_statevar_3 == 11) { goto case_11; } else { } if (ldv_statevar_3 == 13) { goto case_13; } else { } if (ldv_statevar_3 == 14) { goto case_14; } else { } if (ldv_statevar_3 == 17) { goto case_17; } else { } if (ldv_statevar_3 == 18) { goto case_18; } else { } if (ldv_statevar_3 == 19) { goto case_19; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_3 = 6; } else { ldv_statevar_3 = 11; } goto ldv_30202; case_2: /* CIL Label */ { ldv_io_instance_release_3_2(ldv_3_container_struct_stv06xx_sensor->stop, ldv_3_resource_struct_sd_ptr); ldv_statevar_3 = 1; } goto ldv_30202; case_3: /* CIL Label */ { ldv_statevar_3 = ldv_switch_1(); } goto ldv_30202; case_4: /* CIL Label */ { ldv_io_instance_callback_3_4(ldv_3_callback_dump, ldv_3_resource_struct_sd_ptr); ldv_statevar_3 = 3; } goto ldv_30202; case_6: /* CIL Label */ { ldv_free((void *)ldv_3_resource_struct_sd_ptr); ldv_3_ret_default = 1; ldv_statevar_3 = 14; } goto ldv_30202; case_8: /* CIL Label */ { ldv_assume(ldv_3_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_3 = 6; } else { ldv_statevar_3 = 11; } goto ldv_30202; case_10: /* CIL Label */ { ldv_assume(ldv_3_ret_default == 0); ldv_statevar_3 = ldv_switch_1(); } goto ldv_30202; case_11: /* CIL Label */ { ldv_3_ret_default = ldv_io_instance_probe_3_11(ldv_3_container_struct_stv06xx_sensor->probe, ldv_3_resource_struct_sd_ptr); ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_3 = 8; } else { ldv_statevar_3 = 10; } goto ldv_30202; case_13: /* CIL Label */ { tmp___2 = ldv_xmalloc(4856UL); ldv_3_resource_struct_sd_ptr = (struct sd *)tmp___2; tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { ldv_statevar_3 = 6; } else { ldv_statevar_3 = 11; } goto ldv_30202; case_14: /* CIL Label */ ; goto ldv_30202; case_17: /* CIL Label */ { ldv_io_instance_callback_3_17(ldv_3_callback_init, ldv_3_resource_struct_sd_ptr); ldv_statevar_3 = 3; } goto ldv_30202; case_18: /* CIL Label */ { ldv_io_instance_callback_3_18(ldv_3_callback_init_controls, ldv_3_resource_struct_sd_ptr); ldv_statevar_3 = 3; } goto ldv_30202; case_19: /* CIL Label */ { ldv_io_instance_callback_3_19(ldv_3_callback_start, ldv_3_resource_struct_sd_ptr); ldv_statevar_3 = 3; } goto ldv_30202; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_30202: ; return; } } void ldv_switch_automaton_state_3_14(void) { { ldv_statevar_3 = 13; return; } } void ldv_switch_automaton_state_3_5(void) { { ldv_3_ret_default = 1; ldv_statevar_3 = 14; return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static int st6422_probe(struct sd *sd ) ; static int st6422_start(struct sd *sd ) ; static int st6422_init(struct sd *sd ) ; static int st6422_init_controls(struct sd *sd ) ; static int st6422_stop(struct sd *sd ) ; struct stv06xx_sensor const stv06xx_sensor_st6422 = {{'S', 'T', '6', '4', '2', '2', '\000'}, (unsigned char)0, (unsigned char)0, (unsigned char)0, {300, 847}, {300, 847}, & st6422_probe, & st6422_init, & st6422_init_controls, 0, 0, & st6422_start, & st6422_stop, 0}; static struct v4l2_pix_format st6422_mode[2U] = { {162U, 120U, 1195528775U, 1U, 162U, 19440U, 8U, 1U}, {324U, 240U, 1195528775U, 1U, 324U, 79056U, 8U, 0U}}; static int setbrightness(struct sd *sd , s32 val ) ; static int setcontrast(struct sd *sd , s32 val ) ; static int setgain(struct sd *sd , u8 gain ) ; static int setexposure(struct sd *sd , s16 expo ) ; static int st6422_s_ctrl(struct v4l2_ctrl *ctrl ) { struct gspca_dev *gspca_dev ; struct v4l2_ctrl_handler const *__mptr ; struct sd *sd ; int err ; { __mptr = (struct v4l2_ctrl_handler const *)ctrl->handler; gspca_dev = (struct gspca_dev *)__mptr + 0xfffffffffffff700UL; sd = (struct sd *)gspca_dev; err = -22; { if (ctrl->id == 9963776U) { goto case_9963776; } else { } if (ctrl->id == 9963777U) { goto case_9963777; } else { } if (ctrl->id == 9963795U) { goto case_9963795; } else { } if (ctrl->id == 9963793U) { goto case_9963793; } else { } goto switch_break; case_9963776: /* CIL Label */ { err = setbrightness(sd, ctrl->__annonCompField82.val); } goto ldv_29987; case_9963777: /* CIL Label */ { err = setcontrast(sd, ctrl->__annonCompField82.val); } goto ldv_29987; case_9963795: /* CIL Label */ { err = setgain(sd, (int )((u8 )ctrl->__annonCompField82.val)); } goto ldv_29987; case_9963793: /* CIL Label */ { err = setexposure(sd, (int )((s16 )ctrl->__annonCompField82.val)); } goto ldv_29987; switch_break: /* CIL Label */ ; } ldv_29987: ; if (err >= 0) { { err = stv06xx_write_bridge(sd, 5183, 1); } } else { } sd->gspca_dev.usb_err = err; return (err); } } static struct v4l2_ctrl_ops const st6422_ctrl_ops = {0, 0, & st6422_s_ctrl}; static int st6422_init_controls(struct sd *sd ) { struct v4l2_ctrl_handler *hdl ; struct lock_class_key _key ; { { hdl = & sd->gspca_dev.ctrl_handler; v4l2_ctrl_handler_init_class(hdl, 4U, & _key, "stv06xx_st6422:105:(hdl)->_lock"); v4l2_ctrl_new_std(hdl, & st6422_ctrl_ops, 9963776U, 0, 31, 1U, 3); v4l2_ctrl_new_std(hdl, & st6422_ctrl_ops, 9963777U, 0, 15, 1U, 11); v4l2_ctrl_new_std(hdl, & st6422_ctrl_ops, 9963793U, 0, 1023, 1U, 256); v4l2_ctrl_new_std(hdl, & st6422_ctrl_ops, 9963795U, 0, 255, 1U, 64); } return (hdl->error); } } static int st6422_probe(struct sd *sd ) { { if ((unsigned int )sd->bridge != 3U) { return (-19); } else { } { printk("\016gspca_stv06xx: st6422 sensor detected\n"); sd->gspca_dev.cam.cam_mode = (struct v4l2_pix_format const *)(& st6422_mode); sd->gspca_dev.cam.nmodes = 2U; } return (0); } } static int st6422_init(struct sd *sd ) { int err ; int i ; u16 st6422_bridge_init[30U][2U] ; { err = 0; st6422_bridge_init[0][0] = 5184U; st6422_bridge_init[0][1] = 0U; st6422_bridge_init[1][0] = 5174U; st6422_bridge_init[1][1] = 0U; st6422_bridge_init[2][0] = 5170U; st6422_bridge_init[2][1] = 3U; st6422_bridge_init[3][0] = 5178U; st6422_bridge_init[3][1] = 249U; st6422_bridge_init[4][0] = 1289U; st6422_bridge_init[4][1] = 56U; st6422_bridge_init[5][0] = 1290U; st6422_bridge_init[5][1] = 56U; st6422_bridge_init[6][0] = 1291U; st6422_bridge_init[6][1] = 56U; st6422_bridge_init[7][0] = 1292U; st6422_bridge_init[7][1] = 42U; st6422_bridge_init[8][0] = 1293U; st6422_bridge_init[8][1] = 1U; st6422_bridge_init[9][0] = 5169U; st6422_bridge_init[9][1] = 0U; st6422_bridge_init[10][0] = 5171U; st6422_bridge_init[10][1] = 52U; st6422_bridge_init[11][0] = 5176U; st6422_bridge_init[11][1] = 24U; st6422_bridge_init[12][0] = 5177U; st6422_bridge_init[12][1] = 0U; st6422_bridge_init[13][0] = 5179U; st6422_bridge_init[13][1] = 5U; st6422_bridge_init[14][0] = 5180U; st6422_bridge_init[14][1] = 0U; st6422_bridge_init[15][0] = 5182U; st6422_bridge_init[15][1] = 1U; st6422_bridge_init[16][0] = 5181U; st6422_bridge_init[16][1] = 0U; st6422_bridge_init[17][0] = 5186U; st6422_bridge_init[17][1] = 226U; st6422_bridge_init[18][0] = 5376U; st6422_bridge_init[18][1] = 208U; st6422_bridge_init[19][0] = 5376U; st6422_bridge_init[19][1] = 208U; st6422_bridge_init[20][0] = 5376U; st6422_bridge_init[20][1] = 80U; st6422_bridge_init[21][0] = 5377U; st6422_bridge_init[21][1] = 175U; st6422_bridge_init[22][0] = 5378U; st6422_bridge_init[22][1] = 194U; st6422_bridge_init[23][0] = 5379U; st6422_bridge_init[23][1] = 69U; st6422_bridge_init[24][0] = 5381U; st6422_bridge_init[24][1] = 2U; st6422_bridge_init[25][0] = 5390U; st6422_bridge_init[25][1] = 142U; st6422_bridge_init[26][0] = 5391U; st6422_bridge_init[26][1] = 55U; st6422_bridge_init[27][0] = 5568U; st6422_bridge_init[27][1] = 0U; st6422_bridge_init[28][0] = 5571U; st6422_bridge_init[28][1] = 8U; st6422_bridge_init[29][0] = 5183U; st6422_bridge_init[29][1] = 1U; i = 0; goto ldv_30012; ldv_30011: { err = stv06xx_write_bridge(sd, (int )st6422_bridge_init[i][0], (int )st6422_bridge_init[i][1]); i = i + 1; } ldv_30012: ; if ((unsigned int )i <= 29U && err == 0) { goto ldv_30011; } else { } return (err); } } static int setbrightness(struct sd *sd , s32 val ) { int tmp ; { { tmp = stv06xx_write_bridge(sd, 5170, (int )((u16 )val)); } return (tmp); } } static int setcontrast(struct sd *sd , s32 val ) { int tmp ; { { tmp = stv06xx_write_bridge(sd, 5178, (int )((u16 )((int )((short )val) | 240))); } return (tmp); } } static int setgain(struct sd *sd , u8 gain ) { int err ; int tmp ; { { err = stv06xx_write_bridge(sd, 1289, (int )gain); } if (err < 0) { return (err); } else { } { err = stv06xx_write_bridge(sd, 1290, (int )gain); } if (err < 0) { return (err); } else { } { err = stv06xx_write_bridge(sd, 1291, (int )gain); } if (err < 0) { return (err); } else { } { err = stv06xx_write_bridge(sd, 1292, 42); } if (err < 0) { return (err); } else { } { tmp = stv06xx_write_bridge(sd, 1293, 1); } return (tmp); } } static int setexposure(struct sd *sd , s16 expo ) { int err ; int tmp ; { { err = stv06xx_write_bridge(sd, 5181, (int )((u16 )expo) & 255); } if (err < 0) { return (err); } else { } { tmp = stv06xx_write_bridge(sd, 5182, (int )((u16 )((int )expo >> 8))); } return (tmp); } } static int st6422_start(struct sd *sd ) { int err ; struct cam *cam ; { cam = & sd->gspca_dev.cam; if ((unsigned int )(cam->cam_mode + (unsigned long )sd->gspca_dev.curr_mode)->priv != 0U) { { err = stv06xx_write_bridge(sd, 5381, 15); } } else { { err = stv06xx_write_bridge(sd, 5381, 2); } } if (err < 0) { return (err); } else { } { err = stv06xx_write_bridge(sd, 5183, 1); } return (0 < err ? 0 : err); } } static int st6422_stop(struct sd *sd ) { struct gspca_dev *gspca_dev ; { gspca_dev = (struct gspca_dev *)sd; if (gspca_debug > 2) { { printk("\017%s: Halting stream", (char *)(& gspca_dev->v4l2_dev.name)); } } else { } return (0); } } void ldv_io_instance_callback_4_17(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_io_instance_callback_4_18(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_io_instance_callback_4_19(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; int ldv_io_instance_probe_4_11(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; void ldv_io_instance_release_4_2(int (*arg0)(struct sd * ) , struct sd *arg1 ) ; int (*ldv_4_callback_init)(struct sd * ) ; int (*ldv_4_callback_init_controls)(struct sd * ) ; int (*ldv_4_callback_start)(struct sd * ) ; struct stv06xx_sensor *ldv_4_container_struct_stv06xx_sensor ; int ldv_statevar_4 ; int (*ldv_4_callback_init)(struct sd * ) = & st6422_init; int (*ldv_4_callback_init_controls)(struct sd * ) = & st6422_init_controls; int (*ldv_4_callback_start)(struct sd * ) = & st6422_start; int (*ldv_8_callback_s_ctrl)(struct v4l2_ctrl * ) = & st6422_s_ctrl; void ldv_dummy_resourceless_instance_callback_8_3(int (*arg0)(struct v4l2_ctrl * ) , struct v4l2_ctrl *arg1 ) { { { st6422_s_ctrl(arg1); } return; } } void ldv_io_instance_callback_4_17(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { st6422_init(arg1); } return; } } void ldv_io_instance_callback_4_18(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { st6422_init_controls(arg1); } return; } } void ldv_io_instance_callback_4_19(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { st6422_start(arg1); } return; } } int ldv_io_instance_probe_4_11(int (*arg0)(struct sd * ) , struct sd *arg1 ) { int tmp ; { { tmp = st6422_probe(arg1); } return (tmp); } } void ldv_io_instance_release_4_2(int (*arg0)(struct sd * ) , struct sd *arg1 ) { { { st6422_stop(arg1); } return; } } void ldv_struct_stv06xx_sensor_io_instance_4(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; int tmp___3 ; { { if (ldv_statevar_4 == 1) { goto case_1; } else { } if (ldv_statevar_4 == 2) { goto case_2; } else { } if (ldv_statevar_4 == 3) { goto case_3; } else { } if (ldv_statevar_4 == 4) { goto case_4; } else { } if (ldv_statevar_4 == 6) { goto case_6; } else { } if (ldv_statevar_4 == 8) { goto case_8; } else { } if (ldv_statevar_4 == 10) { goto case_10; } else { } if (ldv_statevar_4 == 11) { goto case_11; } else { } if (ldv_statevar_4 == 13) { goto case_13; } else { } if (ldv_statevar_4 == 14) { goto case_14; } else { } if (ldv_statevar_4 == 17) { goto case_17; } else { } if (ldv_statevar_4 == 18) { goto case_18; } else { } if (ldv_statevar_4 == 19) { goto case_19; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_4 = 6; } else { ldv_statevar_4 = 11; } goto ldv_30145; case_2: /* CIL Label */ { ldv_io_instance_release_4_2(ldv_4_container_struct_stv06xx_sensor->stop, ldv_4_resource_struct_sd_ptr); ldv_statevar_4 = 1; } goto ldv_30145; case_3: /* CIL Label */ { ldv_statevar_4 = ldv_switch_1(); } goto ldv_30145; case_4: /* CIL Label */ ; if ((unsigned long )ldv_4_callback_dump != (unsigned long )((int (*)(struct sd * ))0)) { { ldv_io_instance_callback_4_4(ldv_4_callback_dump, ldv_4_resource_struct_sd_ptr); } } else { } ldv_statevar_4 = 3; goto ldv_30145; case_6: /* CIL Label */ { ldv_free((void *)ldv_4_resource_struct_sd_ptr); ldv_4_ret_default = 1; ldv_statevar_4 = 14; } goto ldv_30145; case_8: /* CIL Label */ { ldv_assume(ldv_4_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_4 = 6; } else { ldv_statevar_4 = 11; } goto ldv_30145; case_10: /* CIL Label */ { ldv_assume(ldv_4_ret_default == 0); ldv_statevar_4 = ldv_switch_1(); } goto ldv_30145; case_11: /* CIL Label */ { ldv_4_ret_default = ldv_io_instance_probe_4_11(ldv_4_container_struct_stv06xx_sensor->probe, ldv_4_resource_struct_sd_ptr); ldv_4_ret_default = ldv_filter_err_code(ldv_4_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_4 = 8; } else { ldv_statevar_4 = 10; } goto ldv_30145; case_13: /* CIL Label */ { tmp___2 = ldv_xmalloc(4856UL); ldv_4_resource_struct_sd_ptr = (struct sd *)tmp___2; tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { ldv_statevar_4 = 6; } else { ldv_statevar_4 = 11; } goto ldv_30145; case_14: /* CIL Label */ ; goto ldv_30145; case_17: /* CIL Label */ { ldv_io_instance_callback_4_17(ldv_4_callback_init, ldv_4_resource_struct_sd_ptr); ldv_statevar_4 = 3; } goto ldv_30145; case_18: /* CIL Label */ { ldv_io_instance_callback_4_18(ldv_4_callback_init_controls, ldv_4_resource_struct_sd_ptr); ldv_statevar_4 = 3; } goto ldv_30145; case_19: /* CIL Label */ { ldv_io_instance_callback_4_19(ldv_4_callback_start, ldv_4_resource_struct_sd_ptr); ldv_statevar_4 = 3; } goto ldv_30145; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_30145: ; return; } } void ldv_switch_automaton_state_4_14(void) { { ldv_statevar_4 = 13; return; } } void ldv_switch_automaton_state_4_5(void) { { ldv_4_ret_default = 1; ldv_statevar_4 = 14; return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_i_lock_of_inode == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } return (0); } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }