/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u16 __sum16; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct device; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_133 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_133 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_136 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_137 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_135 { struct __anonstruct____missing_field_name_136 __annonCompField34 ; struct __anonstruct____missing_field_name_137 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_135 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_138 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_144 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_143 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_144 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_141 { unsigned long counters ; struct __anonstruct____missing_field_name_142 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_139 { union __anonunion____missing_field_name_140 __annonCompField38 ; union __anonunion____missing_field_name_141 __annonCompField42 ; }; struct __anonstruct____missing_field_name_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_145 { struct list_head lru ; struct __anonstruct____missing_field_name_146 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_147 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct __anonstruct____missing_field_name_139 __annonCompField43 ; union __anonunion____missing_field_name_145 __annonCompField45 ; union __anonunion____missing_field_name_147 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_151 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_151 sync_serial_settings; struct __anonstruct_te1_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_152 te1_settings; struct __anonstruct_raw_hdlc_proto_153 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_153 raw_hdlc_proto; struct __anonstruct_fr_proto_154 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_154 fr_proto; struct __anonstruct_fr_proto_pvc_155 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_155 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_156 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_156 fr_proto_pvc_info; struct __anonstruct_cisco_proto_157 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_157 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_158 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_158 ifs_ifsu ; }; union __anonunion_ifr_ifrn_159 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_160 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_159 ifr_ifrn ; union __anonunion_ifr_ifru_160 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_163 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_162 { struct __anonstruct____missing_field_name_163 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_162 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_165 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_164 { struct __anonstruct____missing_field_name_165 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_164 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_166 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_168 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_168 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_169 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_169 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_171 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_170 { size_t written ; size_t count ; union __anonunion_arg_171 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_170 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_172 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_173 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_174 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_172 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_173 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_174 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_175 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_175 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_177 { struct list_head link ; int state ; }; union __anonunion_fl_u_176 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_177 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_176 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_178 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_178 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_180 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_181 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_184 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_185 { long _band ; int _fd ; }; struct __anonstruct__sigsys_186 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_179 { int _pad[28U] ; struct __anonstruct__kill_180 _kill ; struct __anonstruct__timer_181 _timer ; struct __anonstruct__rt_182 _rt ; struct __anonstruct__sigchld_183 _sigchld ; struct __anonstruct__sigfault_184 _sigfault ; struct __anonstruct__sigpoll_185 _sigpoll ; struct __anonstruct__sigsys_186 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_179 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_190 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_189 { struct __anonstruct____missing_field_name_190 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_189 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_191 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_192 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_194 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_193 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; union __anonunion_type_data_195 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_197 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_196 { union __anonunion_payload_197 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_191 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_192 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_193 __annonCompField60 ; union __anonunion_type_data_195 type_data ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_22085 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_22085 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_214 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_215 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField63 ; struct __anonstruct____missing_field_name_215 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_213 __annonCompField65 ; }; struct exception_table_entry { int insn ; int fixup ; }; struct in6_addr; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_217 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_217 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_219 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_218 { __wsum csum ; struct __anonstruct____missing_field_name_219 __annonCompField67 ; }; union __anonunion____missing_field_name_220 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_221 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_218 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_221 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; enum pkt_hash_types { PKT_HASH_TYPE_NONE = 0, PKT_HASH_TYPE_L2 = 1, PKT_HASH_TYPE_L3 = 2, PKT_HASH_TYPE_L4 = 3 } ; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6_mib_device { atomic_long_t mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6msg_mib_device { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; union __anonunion_in6_u_224 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_224 in6_u ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum gro_result { GRO_MERGED = 0, GRO_MERGED_FREE = 1, GRO_HELD = 2, GRO_NORMAL = 3, GRO_DROP = 4 } ; typedef enum gro_result gro_result_t; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28531 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28532 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28531 reg_state : 8 ; bool dismantle ; enum ldv_28532 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct msix_entry { u32 vector ; u16 entry ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_246 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_246 __annonCompField76 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct iphdr { __u8 ihl : 4 ; __u8 version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct ipv6hdr { __u8 priority : 4 ; __u8 version : 4 ; __u8 flow_lbl[3U] ; __be16 payload_len ; __u8 nexthdr ; __u8 hop_limit ; struct in6_addr saddr ; struct in6_addr daddr ; }; struct ipv6_devconf { __s32 forwarding ; __s32 hop_limit ; __s32 mtu6 ; __s32 accept_ra ; __s32 accept_redirects ; __s32 autoconf ; __s32 dad_transmits ; __s32 rtr_solicits ; __s32 rtr_solicit_interval ; __s32 rtr_solicit_delay ; __s32 force_mld_version ; __s32 mldv1_unsolicited_report_interval ; __s32 mldv2_unsolicited_report_interval ; __s32 use_tempaddr ; __s32 temp_valid_lft ; __s32 temp_prefered_lft ; __s32 regen_max_retry ; __s32 max_desync_factor ; __s32 max_addresses ; __s32 accept_ra_defrtr ; __s32 accept_ra_pinfo ; __s32 accept_ra_rtr_pref ; __s32 rtr_probe_interval ; __s32 accept_ra_rt_info_max_plen ; __s32 proxy_ndp ; __s32 accept_source_route ; __s32 optimistic_dad ; __s32 mc_forwarding ; __s32 disable_ipv6 ; __s32 accept_dad ; __s32 force_tllao ; __s32 ndisc_notify ; __s32 suppress_frag_ndisc ; void *sysctl ; }; struct res_counter { unsigned long long usage ; unsigned long long max_usage ; unsigned long long limit ; unsigned long long soft_limit ; unsigned long long failcnt ; spinlock_t lock ; struct res_counter *parent ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * ); union __anonunion_ki_obj_252 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void *private ; union __anonunion_ki_obj_252 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; size_t ki_nbytes ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; union __anonunion____missing_field_name_253 { struct sock_filter insns[0U] ; struct work_struct work ; }; struct sk_filter { atomic_t refcnt ; unsigned int len ; struct callback_head rcu ; unsigned int (*bpf_func)(struct sk_buff const * , struct sock_filter const * ) ; union __anonunion____missing_field_name_253 __annonCompField77 ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct neigh_parms *next ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { struct neigh_table *next ; int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_255 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_255 __annonCompField78 ; }; struct __anonstruct_socket_lock_t_256 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_256 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_258 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_257 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_258 __annonCompField79 ; }; union __anonunion____missing_field_name_259 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_261 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_260 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_261 __annonCompField82 ; }; union __anonunion____missing_field_name_262 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_263 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_257 __annonCompField80 ; union __anonunion____missing_field_name_259 __annonCompField81 ; union __anonunion____missing_field_name_260 __annonCompField83 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 4 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_262 __annonCompField84 ; struct proto *skc_prot ; struct net *skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_263 __annonCompField85 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_264 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_264 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned int sk_shutdown : 2 ; unsigned int sk_no_check : 2 ; unsigned int sk_userlocks : 4 ; unsigned int sk_protocol : 8 ; unsigned int sk_type : 16 ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * , int ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_265 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*mtu_reduced)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_265 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct res_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct sock_common __req_common ; struct request_sock *dl_next ; u16 mss ; u8 num_retrans ; u8 cookie_ts : 1 ; u8 num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; struct tcphdr { __be16 source ; __be16 dest ; __be32 seq ; __be32 ack_seq ; __u16 res1 : 4 ; __u16 doff : 4 ; __u16 fin : 1 ; __u16 syn : 1 ; __u16 rst : 1 ; __u16 psh : 1 ; __u16 ack : 1 ; __u16 urg : 1 ; __u16 ece : 1 ; __u16 cwr : 1 ; __be16 window ; __sum16 check ; __be16 urg_ptr ; }; struct ip6_sf_list { struct ip6_sf_list *sf_next ; struct in6_addr sf_addr ; unsigned long sf_count[2U] ; unsigned char sf_gsresp ; unsigned char sf_oldin ; unsigned char sf_crcount ; }; struct ifmcaddr6 { struct in6_addr mca_addr ; struct inet6_dev *idev ; struct ifmcaddr6 *next ; struct ip6_sf_list *mca_sources ; struct ip6_sf_list *mca_tomb ; unsigned int mca_sfmode ; unsigned char mca_crcount ; unsigned long mca_sfcount[2U] ; struct timer_list mca_timer ; unsigned int mca_flags ; int mca_users ; atomic_t mca_refcnt ; spinlock_t mca_lock ; unsigned long mca_cstamp ; unsigned long mca_tstamp ; }; struct ifacaddr6 { struct in6_addr aca_addr ; struct inet6_dev *aca_idev ; struct rt6_info *aca_rt ; struct ifacaddr6 *aca_next ; int aca_users ; atomic_t aca_refcnt ; spinlock_t aca_lock ; unsigned long aca_cstamp ; unsigned long aca_tstamp ; }; struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry ; struct ipstats_mib *ipv6[1U] ; struct icmpv6_mib_device *icmpv6dev ; struct icmpv6msg_mib_device *icmpv6msgdev ; }; struct inet6_dev { struct net_device *dev ; struct list_head addr_list ; struct ifmcaddr6 *mc_list ; struct ifmcaddr6 *mc_tomb ; spinlock_t mc_lock ; unsigned char mc_qrv ; unsigned char mc_gq_running ; unsigned char mc_ifc_count ; unsigned char mc_dad_count ; unsigned long mc_v1_seen ; unsigned long mc_qi ; unsigned long mc_qri ; unsigned long mc_maxdelay ; struct timer_list mc_gq_timer ; struct timer_list mc_ifc_timer ; struct timer_list mc_dad_timer ; struct ifacaddr6 *ac_list ; rwlock_t lock ; atomic_t refcnt ; __u32 if_flags ; int dead ; u8 rndid[8U] ; struct timer_list regen_timer ; struct list_head tempaddr_list ; struct in6_addr token ; struct neigh_parms *nd_parms ; struct ipv6_devconf cnf ; struct ipv6_devstat stats ; struct timer_list rs_timer ; __u8 rs_probes ; unsigned long tstamp ; struct callback_head rcu ; }; union __anonunion____missing_field_name_276 { __be32 a4 ; __be32 a6[4U] ; }; struct inetpeer_addr_base { union __anonunion____missing_field_name_276 __annonCompField86 ; }; struct inetpeer_addr { struct inetpeer_addr_base addr ; __u16 family ; }; union __anonunion____missing_field_name_277 { struct list_head gc_list ; struct callback_head gc_rcu ; }; struct __anonstruct____missing_field_name_279 { atomic_t rid ; atomic_t ip_id_count ; }; union __anonunion____missing_field_name_278 { struct __anonstruct____missing_field_name_279 __annonCompField88 ; struct callback_head rcu ; struct inet_peer *gc_next ; }; struct inet_peer { struct inet_peer *avl_left ; struct inet_peer *avl_right ; struct inetpeer_addr daddr ; __u32 avl_height ; u32 metrics[15U] ; u32 rate_tokens ; unsigned long rate_last ; union __anonunion____missing_field_name_277 __annonCompField87 ; union __anonunion____missing_field_name_278 __annonCompField89 ; __u32 dtime ; atomic_t refcnt ; }; struct inet_peer_base { struct inet_peer *root ; seqlock_t lock ; u32 flush_seq ; int total ; }; struct rtable { struct dst_entry dst ; int rt_genid ; unsigned int rt_flags ; __u16 rt_type ; __u8 rt_is_input ; __u8 rt_uses_gateway ; int rt_iif ; __be32 rt_gateway ; u32 rt_pmtu ; struct list_head rt_uncached ; }; struct cq_desc { __le16 completed_index ; __le16 q_number ; u8 type_specfic[11U] ; u8 type_color ; }; struct cq_enet_rq_desc { __le16 completed_index_flags ; __le16 q_number_rss_type_flags ; __le32 rss_hash ; __le16 bytes_written_flags ; __le16 vlan ; __le16 checksum_fcoe ; u8 flags ; u8 type_color ; }; enum vnic_dev_intr_mode { VNIC_DEV_INTR_MODE_UNKNOWN = 0, VNIC_DEV_INTR_MODE_INTX = 1, VNIC_DEV_INTR_MODE_MSI = 2, VNIC_DEV_INTR_MODE_MSIX = 3 } ; struct vnic_dev_bar { void *vaddr ; dma_addr_t bus_addr ; unsigned long len ; }; struct vnic_dev_ring { void *descs ; size_t size ; dma_addr_t base_addr ; size_t base_align ; void *descs_unaligned ; size_t size_unaligned ; dma_addr_t base_addr_unaligned ; unsigned int desc_size ; unsigned int desc_count ; unsigned int desc_avail ; }; struct vnic_dev; struct vnic_stats; struct vnic_intr_ctrl { u32 coalescing_timer ; u32 pad0 ; u32 coalescing_value ; u32 pad1 ; u32 coalescing_type ; u32 pad2 ; u32 mask_on_assertion ; u32 pad3 ; u32 mask ; u32 pad4 ; u32 int_credits ; u32 pad5 ; u32 int_credit_return ; u32 pad6 ; }; struct vnic_intr { unsigned int index ; struct vnic_dev *vdev ; struct vnic_intr_ctrl *ctrl ; }; struct vnic_tx_stats { u64 tx_frames_ok ; u64 tx_unicast_frames_ok ; u64 tx_multicast_frames_ok ; u64 tx_broadcast_frames_ok ; u64 tx_bytes_ok ; u64 tx_unicast_bytes_ok ; u64 tx_multicast_bytes_ok ; u64 tx_broadcast_bytes_ok ; u64 tx_drops ; u64 tx_errors ; u64 tx_tso ; u64 rsvd[16U] ; }; struct vnic_rx_stats { u64 rx_frames_ok ; u64 rx_frames_total ; u64 rx_unicast_frames_ok ; u64 rx_multicast_frames_ok ; u64 rx_broadcast_frames_ok ; u64 rx_bytes_ok ; u64 rx_unicast_bytes_ok ; u64 rx_multicast_bytes_ok ; u64 rx_broadcast_bytes_ok ; u64 rx_drop ; u64 rx_no_bufs ; u64 rx_errors ; u64 rx_rss ; u64 rx_crc_errors ; u64 rx_frames_64 ; u64 rx_frames_127 ; u64 rx_frames_255 ; u64 rx_frames_511 ; u64 rx_frames_1023 ; u64 rx_frames_1518 ; u64 rx_frames_to_max ; u64 rsvd[16U] ; }; struct vnic_stats { struct vnic_tx_stats tx ; struct vnic_rx_stats rx ; }; struct wq_enet_desc { __le64 address ; __le16 length ; __le16 mss_loopback ; __le16 header_length_flags ; __le16 vlan_tag ; }; struct rq_enet_desc { __le64 address ; __le16 length_type ; u8 reserved[6U] ; }; struct vnic_cq_ctrl { u64 ring_base ; u32 ring_size ; u32 pad0 ; u32 flow_control_enable ; u32 pad1 ; u32 color_enable ; u32 pad2 ; u32 cq_head ; u32 pad3 ; u32 cq_tail ; u32 pad4 ; u32 cq_tail_color ; u32 pad5 ; u32 interrupt_enable ; u32 pad6 ; u32 cq_entry_enable ; u32 pad7 ; u32 cq_message_enable ; u32 pad8 ; u32 interrupt_offset ; u32 pad9 ; u64 cq_message_addr ; u32 pad10 ; }; struct vnic_cq { unsigned int index ; struct vnic_dev *vdev ; struct vnic_cq_ctrl *ctrl ; struct vnic_dev_ring ring ; unsigned int to_clean ; unsigned int last_color ; unsigned int interrupt_offset ; }; struct vnic_wq_ctrl { u64 ring_base ; u32 ring_size ; u32 pad0 ; u32 posted_index ; u32 pad1 ; u32 cq_index ; u32 pad2 ; u32 enable ; u32 pad3 ; u32 running ; u32 pad4 ; u32 fetch_index ; u32 pad5 ; u32 dca_value ; u32 pad6 ; u32 error_interrupt_enable ; u32 pad7 ; u32 error_interrupt_offset ; u32 pad8 ; u32 error_status ; u32 pad9 ; }; struct vnic_wq_buf { struct vnic_wq_buf *next ; dma_addr_t dma_addr ; void *os_buf ; unsigned int len ; unsigned int index ; int sop ; void *desc ; uint64_t wr_id ; uint8_t cq_entry ; uint8_t desc_skip_cnt ; uint8_t compressed_send ; }; struct vnic_wq { unsigned int index ; struct vnic_dev *vdev ; struct vnic_wq_ctrl *ctrl ; struct vnic_dev_ring ring ; struct vnic_wq_buf *bufs[64U] ; struct vnic_wq_buf *to_use ; struct vnic_wq_buf *to_clean ; unsigned int pkts_outstanding ; }; struct vnic_rq_ctrl { u64 ring_base ; u32 ring_size ; u32 pad0 ; u32 posted_index ; u32 pad1 ; u32 cq_index ; u32 pad2 ; u32 enable ; u32 pad3 ; u32 running ; u32 pad4 ; u32 fetch_index ; u32 pad5 ; u32 error_interrupt_enable ; u32 pad6 ; u32 error_interrupt_offset ; u32 pad7 ; u32 error_status ; u32 pad8 ; u32 dropped_packet_count ; u32 pad9 ; u32 dropped_packet_count_rc ; u32 pad10 ; }; struct vnic_rq_buf { struct vnic_rq_buf *next ; dma_addr_t dma_addr ; void *os_buf ; unsigned int os_buf_index ; unsigned int len ; unsigned int index ; void *desc ; uint64_t wr_id ; }; struct vnic_rq { unsigned int index ; struct vnic_dev *vdev ; struct vnic_rq_ctrl *ctrl ; struct vnic_dev_ring ring ; struct vnic_rq_buf *bufs[64U] ; struct vnic_rq_buf *to_use ; struct vnic_rq_buf *to_clean ; void *os_buf_head ; unsigned int pkts_outstanding ; }; struct enic; struct vnic_enet_config { u32 flags ; u32 wq_desc_count ; u32 rq_desc_count ; u16 mtu ; u16 intr_timer_deprecated ; u8 intr_timer_type ; u8 intr_mode ; char devname[16U] ; u32 intr_timer_usec ; u16 loop_tag ; }; struct __anonstruct_key_283 { u8 b[10U] ; u8 b_pad[6U] ; }; union vnic_rss_key { struct __anonstruct_key_283 key[4U] ; u64 raw[8U] ; }; struct __anonstruct_cpu_284 { u8 b[4U] ; u8 b_pad[4U] ; }; union vnic_rss_cpu { struct __anonstruct_cpu_284 cpu[32U] ; u64 raw[32U] ; }; struct enic_msix_entry { int requested ; char devname[16U] ; irqreturn_t (*isr)(int , void * ) ; void *devid ; }; struct enic_port_profile { u32 set ; u8 request ; char name[40U] ; u8 instance_uuid[16U] ; u8 host_uuid[16U] ; u8 vf_mac[6U] ; u8 mac_addr[6U] ; }; struct enic { struct net_device *netdev ; struct pci_dev *pdev ; struct vnic_enet_config config ; struct vnic_dev_bar bar[6U] ; struct vnic_dev *vdev ; struct timer_list notify_timer ; struct work_struct reset ; struct work_struct change_mtu_work ; struct msix_entry msix_entry[18U] ; struct enic_msix_entry msix[18U] ; u32 msg_enable ; spinlock_t devcmd_lock ; u8 mac_addr[6U] ; u8 mc_addr[32U][6U] ; u8 uc_addr[32U][6U] ; unsigned int flags ; unsigned int priv_flags ; unsigned int mc_count ; unsigned int uc_count ; u32 port_mtu ; u32 rx_coalesce_usecs ; u32 tx_coalesce_usecs ; u16 num_vfs ; spinlock_t enic_api_lock ; struct enic_port_profile *pp ; struct vnic_wq wq[8U] ; spinlock_t wq_lock[8U] ; unsigned int wq_count ; u16 loop_enable ; u16 loop_tag ; struct vnic_rq rq[8U] ; unsigned int rq_count ; u64 rq_truncated_pkts ; u64 rq_bad_fcs ; struct napi_struct napi[8U] ; struct vnic_intr intr[18U] ; unsigned int intr_count ; u32 *legacy_pba ; struct vnic_cq cq[16U] ; unsigned int cq_count ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; typedef int ldv_func_ret_type___6; typedef struct net_device *ldv_func_ret_type___7; typedef int ldv_func_ret_type___8; typedef int ldv_func_ret_type___9; enum vnic_res_type { RES_TYPE_EOL = 0, RES_TYPE_WQ = 1, RES_TYPE_RQ = 2, RES_TYPE_CQ = 3, RES_TYPE_RSVD1 = 4, RES_TYPE_NIC_CFG = 5, RES_TYPE_RSVD2 = 6, RES_TYPE_RSVD3 = 7, RES_TYPE_RSVD4 = 8, RES_TYPE_RSVD5 = 9, RES_TYPE_INTR_CTRL = 10, RES_TYPE_INTR_TABLE = 11, RES_TYPE_INTR_PBA = 12, RES_TYPE_INTR_PBA_LEGACY = 13, RES_TYPE_RSVD6 = 14, RES_TYPE_RSVD7 = 15, RES_TYPE_DEVCMD = 16, RES_TYPE_PASS_THRU_PAGE = 17, RES_TYPE_MAX = 18 } ; enum hrtimer_restart; enum vnic_devcmd_cmd { CMD_NONE = 0, CMD_MCPU_FW_INFO_OLD = 1073856513, CMD_MCPU_FW_INFO = 3221340161U, CMD_DEV_SPEC = 3221340162U, CMD_STATS_CLEAR = 16891907, CMD_STATS_DUMP = 1073856516, CMD_PACKET_FILTER = 1090535431, CMD_PACKET_FILTER_ALL = 1090633735, CMD_HANG_NOTIFY = 114696, CMD_GET_MAC_ADDR = 2147532809U, CMD_ADDR_ADD = 1090568204, CMD_ADDR_DEL = 1090568205, CMD_VLAN_ADD = 1090535438, CMD_VLAN_DEL = 1090535439, CMD_NIC_CFG = 1090633744, CMD_RSS_KEY = 1073758225, CMD_RSS_CPU = 1073758226, CMD_SOFT_RESET = 16891923, CMD_SOFT_RESET_STATUS = 2147598356U, CMD_NOTIFY = 3221340181U, CMD_UNDI = 1073758230, CMD_OPEN = 1090633751, CMD_OPEN_STATUS = 2147598360U, CMD_CLOSE = 114713, CMD_INIT_v1 = 2164375578U, CMD_INIT_PROV_INFO = 1073758235, CMD_ENABLE = 1090633756, CMD_ENABLE_WAIT = 1073856540, CMD_DISABLE = 114717, CMD_STATS_DUMP_ALL = 1073856542, CMD_INIT_STATUS = 2147598367U, CMD_INT13 = 1073774624, CMD_LOGICAL_UPLINK = 1090535457, CMD_DEINIT = 16891938, CMD_INIT = 1090633763, CMD_CAPABILITY = 3221340196U, CMD_PERBI = 3221258277U, CMD_IAR = 1090633766, CMD_HANG_RESET = 114727, CMD_HANG_RESET_STATUS = 2147598376U, CMD_IG_VLAN_REWRITE_MODE = 3221241897U, CMD_PROXY_BY_BDF = 3221340202U, CMD_PROXY_BY_INDEX = 3221340203U, CMD_CONFIG_INFO_GET = 3221340204U, CMD_INT13_ALL = 1073856557, CMD_SET_DEFAULT_VLAN = 3221340206U, CMD_INIT_PROV_INFO2 = 1073758255, CMD_ENABLE2 = 1073758256, CMD_STATUS = 3221340209U, CMD_INTR_COAL_CONVERT = 2147598386U, CMD_SET_MAC_ADDR = 1073758263, CMD_PROV_INFO_UPDATE = 1073758264, CMD_ADD_FILTER = 3221241914U, CMD_DEL_FILTER = 1073758267, CMD_QP_ENABLE = 1073758268, CMD_QP_DISABLE = 1073758269, CMD_QP_STATS_DUMP = 1073758270, CMD_QP_STATS_CLEAR = 1073758271 } ; enum hrtimer_restart; struct vnic_devcmd_fw_info { char fw_version[32U] ; char fw_build[32U] ; char hw_version[32U] ; char hw_serial_number[32U] ; u16 asic_type ; u16 asic_rev ; }; struct vic_provinfo_tlv { u16 type ; u16 length ; u8 value[0U] ; }; struct vic_provinfo { u8 oui[3U] ; u8 type ; u32 length ; u32 num_tlvs ; struct vic_provinfo_tlv tlv[0U] ; }; enum hrtimer_restart; enum hrtimer_restart; struct vnic_resource_header { u32 magic ; u32 version ; }; struct mgmt_barmap_hdr { u32 magic ; u32 version ; u16 lif ; u16 pci_slot ; char serial[16U] ; }; struct vnic_resource { u8 type ; u8 bar ; u8 pad[2U] ; u32 bar_offset ; u32 count ; }; struct vnic_devcmd_notify { u32 csum ; u32 link_state ; u32 port_speed ; u32 mtu ; u32 msglvl ; u32 uif ; u32 status ; u32 error ; u32 link_down_cnt ; u32 perbi_rebuild_cnt ; }; struct vnic_devcmd { u32 status ; u32 cmd ; u64 args[15U] ; }; enum vnic_proxy_type { PROXY_NONE = 0, PROXY_BY_BDF = 1, PROXY_BY_INDEX = 2 } ; struct vnic_res { void *vaddr ; dma_addr_t bus_addr ; unsigned int count ; }; struct vnic_intr_coal_timer_info { u32 mul ; u32 div ; u32 max_usec ; }; struct vnic_dev { void *priv ; struct pci_dev *pdev ; struct vnic_res res[18U] ; enum vnic_dev_intr_mode intr_mode ; struct vnic_devcmd *devcmd ; struct vnic_devcmd_notify *notify ; struct vnic_devcmd_notify notify_copy ; dma_addr_t notify_pa ; u32 notify_sz ; dma_addr_t linkstatus_pa ; struct vnic_stats *stats ; dma_addr_t stats_pa ; struct vnic_devcmd_fw_info *fw_info ; dma_addr_t fw_info_pa ; enum vnic_proxy_type proxy ; u32 proxy_index ; u64 args[15U] ; struct vnic_intr_coal_timer_info intr_coal_timer_info ; }; enum hrtimer_restart; struct enic_stat { char name[32U] ; unsigned int index ; }; enum hrtimer_restart; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; void __builtin_prefetch(void const * , ...) ; long ldv__builtin_expect(long exp , long c ) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_malloc_unknown_size(void) ; int ldv_undef_int(void) ; void ldv_check_alloc_flags(gfp_t flags ) ; extern void ldv_after_alloc(void * ) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; extern struct module __this_module ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } extern int printk(char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; extern int snprintf(char * , size_t , char const * , ...) ; extern void __bad_percpu_size(void) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/de2fed6/linux-alloc-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __ldv_spin_lock(spinlock_t * ) ; static void ldv___ldv_spin_lock_103(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock_NOT_ARG_SIGN(void) ; void ldv_spin_unlock_NOT_ARG_SIGN(void) ; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_lock_devcmd_lock_of_enic(void) ; void ldv_spin_unlock_devcmd_lock_of_enic(void) ; void ldv_spin_lock_enic_api_lock_of_enic(void) ; void ldv_spin_unlock_enic_api_lock_of_enic(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_6585; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6585; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6585; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6585; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6585: ; return (pfo_ret__ & 2147483647); } } extern void __local_bh_disable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_disable(void) { { { __local_bh_disable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __local_bh_enable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_enable(void) { { { __local_bh_enable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_69(spinlock_t *lock ) ; __inline static void ldv_spin_lock_101(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_128(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_72(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_102(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_129(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_104(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_104(spinlock_t *lock , unsigned long flags ) ; extern unsigned long volatile jiffies ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern int mod_timer(struct timer_list * , unsigned long ) ; static int ldv_mod_timer_110(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_119(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_120(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_121(struct timer_list *ldv_func_arg1 ) ; extern unsigned long round_jiffies(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool cancel_work_sync(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } extern void iounmap(void volatile * ) ; extern unsigned int ioread32(void * ) ; extern void iowrite32(u32 , void * ) ; extern void *pci_iomap(struct pci_dev * , int , unsigned long ) ; extern int cpu_number ; extern void __bad_size_call_parameter(void) ; static void *ldv_dev_get_drvdata_81(struct device const *dev ) ; static int ldv_dev_set_drvdata_82(struct device *dev , void *data ) ; extern int dev_err(struct device const * , char const * , ...) ; extern int dev_warn(struct device const * , char const * , ...) ; extern int _dev_info(struct device const * , char const * , ...) ; extern void msleep(unsigned int ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } extern long schedule_timeout_uninterruptible(long ) ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void get_random_bytes(void * , int ) ; extern void kfree(void const * ) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) ; __inline static __sum16 csum_fold(__wsum sum ) { { __asm__ (" addl %1,%0\n adcl $0xffff,%0": "=r" (sum): "r" (sum << 16), "0" (sum & 4294901760U)); return ((__sum16 )(~ sum >> 16)); } } __inline static __wsum csum_tcpudp_nofold(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { { __asm__ (" addl %1, %0\n adcl %2, %0\n adcl %3, %0\n adcl $0, %0\n": "=r" (sum): "g" (daddr), "g" (saddr), "g" (((int )len + (int )proto) << 8), "0" (sum)); return (sum); } } __inline static __sum16 csum_tcpudp_magic(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { __wsum tmp ; __sum16 tmp___0 ; { { tmp = csum_tcpudp_nofold(saddr, daddr, (int )len, (int )proto, sum); tmp___0 = csum_fold(tmp); } return (tmp___0); } } extern __sum16 csum_ipv6_magic(struct in6_addr const * , struct in6_addr const * , __u32 , unsigned short , __wsum ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (79), "i" (12UL)); __builtin_unreachable(); } } else { } { addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); } return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (91), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 0); } return; } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/de2fed6/linux-alloc-spinlock/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } extern void consume_skb(struct sk_buff * ) ; __inline static void skb_set_hash(struct sk_buff *skb , __u32 hash , enum pkt_hash_types type ) { { skb->l4_rxhash = (unsigned int )type == 3U; skb->rxhash = hash; return; } } __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static bool skb_is_nonlinear(struct sk_buff const *skb ) { { return ((unsigned int )skb->data_len != 0U); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern unsigned char *__pskb_pull_tail(struct sk_buff * , int ) ; __inline static unsigned int skb_headroom(struct sk_buff const *skb ) { { return ((unsigned int )((long )skb->data) - (unsigned int )((long )skb->head)); } } __inline static unsigned char *skb_transport_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->transport_header); } } __inline static unsigned char *skb_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->network_header); } } __inline static int skb_checksum_start_offset(struct sk_buff const *skb ) { unsigned int tmp ; { { tmp = skb_headroom(skb); } return ((int )((unsigned int )skb->__annonCompField68.__annonCompField67.csum_start - tmp)); } } __inline static int skb_transport_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } static struct sk_buff *ldv___netdev_alloc_skb_59(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev , unsigned int length , gfp_t gfp ) { struct sk_buff *skb ; struct sk_buff *tmp ; { { tmp = ldv___netdev_alloc_skb_59(dev, length, gfp); skb = tmp; } return (skb); } } __inline static struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb_ip_align(dev, length, 32U); } return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); } return (tmp___0); } } __inline static int __skb_linearize(struct sk_buff *skb ) { unsigned char *tmp ; { { tmp = __pskb_pull_tail(skb, (int )skb->data_len); } return ((unsigned long )tmp != (unsigned long )((unsigned char *)0U) ? 0 : -12); } } __inline static int skb_linearize(struct sk_buff *skb ) { int tmp___0 ; int tmp___1 ; bool tmp___2 ; { { tmp___2 = skb_is_nonlinear((struct sk_buff const *)skb); } if ((int )tmp___2) { { tmp___0 = __skb_linearize(skb); tmp___1 = tmp___0; } } else { tmp___1 = 0; } return (tmp___1); } } __inline static u16 skb_get_queue_mapping(struct sk_buff const *skb ) { { return ((u16 )skb->queue_mapping); } } __inline static void skb_record_rx_queue(struct sk_buff *skb , u16 rx_queue ) { { skb->queue_mapping = (unsigned int )rx_queue + 1U; return; } } extern void synchronize_irq(unsigned int ) ; extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); } return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = napi_disable_pending(n); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } __inline static void napi_schedule(struct napi_struct *n ) { bool tmp ; { { tmp = napi_schedule_prep(n); } if ((int )tmp) { { __napi_schedule(n); } } else { } return; } } extern void napi_complete(struct napi_struct * ) ; __inline static void napi_disable(struct napi_struct *n ) { int tmp ; { { __might_sleep("include/linux/netdevice.h", 486, 0); set_bit(1L, (unsigned long volatile *)(& n->state)); } goto ldv_38578; ldv_38577: { msleep(1U); } ldv_38578: { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp != 0) { goto ldv_38577; } else { } { clear_bit(1L, (unsigned long volatile *)(& n->state)); } return; } } __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (502), "i" (12UL)); __builtin_unreachable(); } } else { } { __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void netif_napi_del(struct napi_struct * ) ; extern int call_netdevice_notifiers(unsigned long , struct net_device * ) ; extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_132(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_134(struct net_device *ldv_func_arg1 ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_tx_wake_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_39487; ldv_39486: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_wake_queue(txq); i = i + 1U; } ldv_39487: ; if (i < dev->num_tx_queues) { goto ldv_39486; } else { } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); } return (tmp != 0); } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } __inline static void netif_wake_subqueue(struct net_device *dev , u16 queue_index ) { struct netdev_queue *txq ; struct netdev_queue *tmp ; int tmp___0 ; int tmp___1 ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, (unsigned int )queue_index); txq = tmp; tmp___0 = netpoll_trap(); } if (tmp___0 != 0) { return; } else { } { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& txq->state)); } if (tmp___1 != 0) { { __netif_schedule(txq->qdisc); } } else { } return; } } extern int netif_set_real_num_tx_queues(struct net_device * , unsigned int ) ; extern int netif_set_real_num_rx_queues(struct net_device * , unsigned int ) ; extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { { __dev_kfree_skb_any(skb, 1); } return; } } extern int netif_receive_skb(struct sk_buff * ) ; extern gro_result_t napi_gro_receive(struct napi_struct * , struct sk_buff * ) ; __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& dev->state)); } return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; __inline static void __netif_tx_lock(struct netdev_queue *txq , int cpu ) { { { ldv_spin_lock_69(& txq->_xmit_lock); txq->xmit_lock_owner = cpu; } return; } } __inline static void __netif_tx_unlock(struct netdev_queue *txq ) { { { txq->xmit_lock_owner = -1; ldv_spin_unlock_72(& txq->_xmit_lock); } return; } } __inline static void netif_tx_disable(struct net_device *dev ) { unsigned int i ; int cpu ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { { local_bh_disable(); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_40032; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40032; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40032; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40032; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_40032: pscr_ret__ = pfo_ret__; goto ldv_40038; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40042; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40042; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40042; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40042; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_40042: pscr_ret__ = pfo_ret_____0; goto ldv_40038; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40051; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40051; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40051; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40051; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_40051: pscr_ret__ = pfo_ret_____1; goto ldv_40038; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40060; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40060; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40060; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40060; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_40060: pscr_ret__ = pfo_ret_____2; goto ldv_40038; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_40038; switch_break: /* CIL Label */ ; } ldv_40038: cpu = pscr_ret__; i = 0U; goto ldv_40070; ldv_40069: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; __netif_tx_lock(txq, cpu); netif_tx_stop_queue(txq); __netif_tx_unlock(txq); i = i + 1U; } ldv_40070: ; if (i < dev->num_tx_queues) { goto ldv_40069; } else { } { local_bh_enable(); } return; } } extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_131(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_133(struct net_device *ldv_func_arg1 ) ; extern int netdev_err(struct net_device const * , char const * , ...) ; extern int netdev_warn(struct net_device const * , char const * , ...) ; extern int netdev_info(struct net_device const * , char const * , ...) ; extern int pci_find_ext_capability(struct pci_dev * , int ) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); } return (tmp); } } extern int pci_enable_device_mem(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_135(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_136(struct pci_driver *ldv_func_arg1 ) ; extern int pci_enable_msi_block(struct pci_dev * , int ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern int pci_enable_msix(struct pci_dev * , struct msix_entry * , int ) ; extern void pci_disable_msix(struct pci_dev * ) ; __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); } return; } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } __inline static void pci_unmap_page(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) { { { dma_unmap_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_address, size, (enum dma_data_direction )direction); } return; } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_81((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_82(& pdev->dev, data); } return; } } extern int pci_enable_sriov(struct pci_dev * , int ) ; extern void pci_disable_sriov(struct pci_dev * ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_114(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_115(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_116(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_111(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_112(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_113(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_130(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static void eth_random_addr(u8 *addr ) { { { get_random_bytes((void *)addr, 6); *addr = (unsigned int )*addr & 254U; *addr = (u8 )((unsigned int )*addr | 2U); } return; } } __inline static void eth_hw_addr_random(struct net_device *dev ) { { { dev->addr_assign_type = 1U; eth_random_addr(dev->dev_addr); } return; } } __inline static bool ether_addr_equal(u8 const *addr1 , u8 const *addr2 ) { u32 fold ; { fold = ((unsigned int )*((u32 const *)addr1) ^ (unsigned int )*((u32 const *)addr2)) | (unsigned int )((int )((unsigned short )*((u16 const *)addr1 + 4U)) ^ (int )((unsigned short )*((u16 const *)addr2 + 4U))); return (fold == 0U); } } extern void rtnl_lock(void) ; extern void rtnl_unlock(void) ; __inline static struct sk_buff *__vlan_hwaccel_put_tag(struct sk_buff *skb , __be16 vlan_proto , u16 vlan_tci ) { { skb->vlan_proto = vlan_proto; skb->vlan_tci = (__u16 )((unsigned int )vlan_tci | 4096U); return (skb); } } __inline static struct iphdr *ip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct iphdr *)tmp); } } extern int nla_put(struct sk_buff * , int , int , void const * ) ; __inline static void *nla_data(struct nlattr const *nla ) { { return ((void *)nla + 4U); } } __inline static int nla_put_u16(struct sk_buff *skb , int attrtype , u16 value ) { int tmp ; { { tmp = nla_put(skb, attrtype, 2, (void const *)(& value)); } return (tmp); } } __inline static u8 nla_get_u8(struct nlattr const *nla ) { void *tmp ; { { tmp = nla_data(nla); } return (*((u8 *)tmp)); } } __inline static struct tcphdr *tcp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((struct tcphdr *)tmp); } } __inline static unsigned int tcp_hdrlen(struct sk_buff const *skb ) { struct tcphdr *tmp ; { { tmp = tcp_hdr(skb); } return ((unsigned int )((int )tmp->doff * 4)); } } __inline static struct ipv6hdr *ipv6_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct ipv6hdr *)tmp); } } __inline static void cq_desc_dec(struct cq_desc const *desc_arg , u8 *type , u8 *color , u16 *q_number , u16 *completed_index ) { struct cq_desc const *desc ; u8 type_color ; { desc = desc_arg; type_color = desc->type_color; *color = (u8 )((int )type_color >> 7); __asm__ volatile ("lfence": : : "memory"); *type = (unsigned int )type_color & 15U; *q_number = (unsigned int )((u16 )desc->q_number) & 1023U; *completed_index = (unsigned int )((u16 )desc->completed_index) & 4095U; return; } } __inline static void cq_enet_rq_desc_dec(struct cq_enet_rq_desc *desc , u8 *type , u8 *color , u16 *q_number , u16 *completed_index , u8 *ingress_port , u8 *fcoe , u8 *eop , u8 *sop , u8 *rss_type , u8 *csum_not_calc , u32 *rss_hash , u16 *bytes_written , u8 *packet_error , u8 *vlan_stripped , u16 *vlan_tci , u16 *checksum , u8 *fcoe_sof , u8 *fcoe_fc_crc_ok , u8 *fcoe_enc_error , u8 *fcoe_eof , u8 *tcp_udp_csum_ok , u8 *udp , u8 *tcp , u8 *ipv4_csum_ok , u8 *ipv6 , u8 *ipv4 , u8 *ipv4_fragment , u8 *fcs_ok ) { u16 completed_index_flags ; u16 q_number_rss_type_flags ; u16 bytes_written_flags ; { { cq_desc_dec((struct cq_desc const *)desc, type, color, q_number, completed_index); completed_index_flags = desc->completed_index_flags; q_number_rss_type_flags = desc->q_number_rss_type_flags; bytes_written_flags = desc->bytes_written_flags; *ingress_port = ((int )completed_index_flags & 4096) != 0; *fcoe = ((int )completed_index_flags & 8192) != 0; *eop = ((int )completed_index_flags & 16384) != 0; *sop = (int )((short )completed_index_flags) < 0; *rss_type = (unsigned int )((unsigned char )((int )q_number_rss_type_flags >> 10)) & 15U; *csum_not_calc = ((int )q_number_rss_type_flags & 16384) != 0; *rss_hash = desc->rss_hash; *bytes_written = (unsigned int )bytes_written_flags & 16383U; *packet_error = ((int )bytes_written_flags & 16384) != 0; *vlan_stripped = (int )((short )bytes_written_flags) < 0; *vlan_tci = desc->vlan; } if ((unsigned int )*fcoe != 0U) { *fcoe_sof = (unsigned char )desc->checksum_fcoe; *fcoe_fc_crc_ok = (unsigned int )desc->flags & 1U; *fcoe_enc_error = ((int )desc->flags & 2) != 0; *fcoe_eof = (unsigned char )((int )desc->checksum_fcoe >> 8); *checksum = 0U; } else { *fcoe_sof = 0U; *fcoe_fc_crc_ok = 0U; *fcoe_enc_error = 0U; *fcoe_eof = 0U; *checksum = desc->checksum_fcoe; } *tcp_udp_csum_ok = (unsigned int )desc->flags & 1U; *udp = ((int )desc->flags & 2) != 0; *tcp = ((int )desc->flags & 4) != 0; *ipv4_csum_ok = ((int )desc->flags & 8) != 0; *ipv6 = ((int )desc->flags & 16) != 0; *ipv4 = ((int )desc->flags & 32) != 0; *ipv4_fragment = ((int )desc->flags & 64) != 0; *fcs_ok = (int )((signed char )desc->flags) < 0; return; } } void *vnic_dev_priv(struct vnic_dev *vdev ) ; void vnic_dev_cmd_proxy_by_index_start(struct vnic_dev *vdev , u16 index ) ; void vnic_dev_cmd_proxy_end(struct vnic_dev *vdev ) ; int vnic_dev_get_mac_addr(struct vnic_dev *vdev , u8 *mac_addr ) ; int vnic_dev_notify_set(struct vnic_dev *vdev , u16 intr ) ; int vnic_dev_link_status(struct vnic_dev *vdev ) ; u32 vnic_dev_msg_lvl(struct vnic_dev *vdev ) ; u32 vnic_dev_mtu(struct vnic_dev *vdev ) ; int vnic_dev_close(struct vnic_dev *vdev ) ; int vnic_dev_open(struct vnic_dev *vdev , int arg ) ; int vnic_dev_open_done(struct vnic_dev *vdev , int *done ) ; int vnic_dev_init(struct vnic_dev *vdev , int arg ) ; void vnic_dev_intr_coal_timer_info_default(struct vnic_dev *vdev ) ; int vnic_dev_hang_reset(struct vnic_dev *vdev , int arg ) ; int vnic_dev_hang_reset_done(struct vnic_dev *vdev , int *done ) ; void vnic_dev_set_intr_mode(struct vnic_dev *vdev , enum vnic_dev_intr_mode intr_mode ) ; enum vnic_dev_intr_mode vnic_dev_get_intr_mode(struct vnic_dev *vdev ) ; void vnic_dev_unregister(struct vnic_dev *vdev ) ; struct vnic_dev *vnic_dev_register(struct vnic_dev *vdev , void *priv , struct pci_dev *pdev , struct vnic_dev_bar *bar , unsigned int num_bars ) ; int vnic_dev_set_mac_addr(struct vnic_dev *vdev , u8 *mac_addr ) ; __inline static void vnic_intr_unmask(struct vnic_intr *intr ) { { { iowrite32(0U, (void *)(& (intr->ctrl)->mask)); } return; } } __inline static void vnic_intr_mask(struct vnic_intr *intr ) { { { iowrite32(1U, (void *)(& (intr->ctrl)->mask)); } return; } } __inline static int vnic_intr_masked(struct vnic_intr *intr ) { unsigned int tmp ; { { tmp = ioread32((void *)(& (intr->ctrl)->mask)); } return ((int )tmp); } } __inline static void vnic_intr_return_credits(struct vnic_intr *intr , unsigned int credits , int unmask , int reset_timer ) { u32 int_credit_return ; { { int_credit_return = ((credits & 65535U) | (unmask != 0 ? 65536U : 0U)) | (reset_timer != 0 ? 131072U : 0U); iowrite32(int_credit_return, (void *)(& (intr->ctrl)->int_credit_return)); } return; } } __inline static unsigned int vnic_intr_credits(struct vnic_intr *intr ) { unsigned int tmp ; { { tmp = ioread32((void *)(& (intr->ctrl)->int_credits)); } return (tmp); } } __inline static void vnic_intr_return_all_credits(struct vnic_intr *intr ) { unsigned int credits ; unsigned int tmp ; int unmask ; int reset_timer ; { { tmp = vnic_intr_credits(intr); credits = tmp; unmask = 1; reset_timer = 1; vnic_intr_return_credits(intr, credits, unmask, reset_timer); } return; } } __inline static u32 vnic_intr_legacy_pba(u32 *legacy_pba ) { unsigned int tmp ; { { tmp = ioread32((void *)legacy_pba); } return (tmp); } } void vnic_intr_clean(struct vnic_intr *intr ) ; __inline static void wq_enet_desc_enc(struct wq_enet_desc *desc , u64 address , u16 length , u16 mss , u16 header_length , u8 offload_mode , u8 eop , u8 cq_entry , u8 fcoe_encap , u8 vlan_tag_insert , u16 vlan_tag , u8 loopback ) { { desc->address = address; desc->length = (unsigned int )length & 16383U; desc->mss_loopback = (unsigned short )((int )((short )((int )mss << 2)) | (int )((short )(((int )loopback & 1) << 1))); desc->header_length_flags = (unsigned short )(((((((int )((short )header_length) & 1023) | (int )((short )(((int )offload_mode & 3) << 10))) | (int )((short )(((int )eop & 1) << 12))) | (int )((short )(((int )cq_entry & 1) << 13))) | (int )((short )(((int )fcoe_encap & 1) << 14))) | (int )((short )((int )vlan_tag_insert << 15))); desc->vlan_tag = vlan_tag; return; } } __inline static void rq_enet_desc_enc(struct rq_enet_desc *desc , u64 address , u8 type , u16 length ) { { desc->address = address; desc->length_type = (unsigned short )(((int )((short )length) & 16383) | (int )((short )((int )type << 14))); return; } } __inline static unsigned int vnic_cq_service(struct vnic_cq *cq , unsigned int work_to_do , int (*q_service)(struct vnic_dev * , struct cq_desc * , u8 , u16 , u16 , void * ) , void *opaque ) { struct cq_desc *cq_desc ; unsigned int work_done ; u16 q_number ; u16 completed_index ; u8 type ; u8 color ; int tmp ; { { work_done = 0U; cq_desc = (struct cq_desc *)cq->ring.descs + (unsigned long )(cq->ring.desc_size * cq->to_clean); cq_desc_dec((struct cq_desc const *)cq_desc, & type, & color, & q_number, & completed_index); } goto ldv_50805; ldv_50804: { tmp = (*q_service)(cq->vdev, cq_desc, (int )type, (int )q_number, (int )completed_index, opaque); } if (tmp != 0) { goto ldv_50803; } else { } cq->to_clean = cq->to_clean + 1U; if (cq->to_clean == cq->ring.desc_count) { cq->to_clean = 0U; cq->last_color = cq->last_color == 0U; } else { } { cq_desc = (struct cq_desc *)cq->ring.descs + (unsigned long )(cq->ring.desc_size * cq->to_clean); cq_desc_dec((struct cq_desc const *)cq_desc, & type, & color, & q_number, & completed_index); work_done = work_done + 1U; } if (work_done >= work_to_do) { goto ldv_50803; } else { } ldv_50805: ; if ((unsigned int )color != cq->last_color) { goto ldv_50804; } else { } ldv_50803: ; return (work_done); } } void vnic_cq_clean(struct vnic_cq *cq ) ; __inline static unsigned int vnic_wq_desc_avail(struct vnic_wq *wq ) { { return (wq->ring.desc_avail); } } __inline static void *vnic_wq_next_desc(struct vnic_wq *wq ) { { return ((wq->to_use)->desc); } } __inline static void vnic_wq_post(struct vnic_wq *wq , void *os_buf , dma_addr_t dma_addr , unsigned int len , int sop , int eop , uint8_t desc_skip_cnt , uint8_t cq_entry , uint8_t compressed_send , uint64_t wrid ) { struct vnic_wq_buf *buf ; { buf = wq->to_use; buf->sop = sop; buf->cq_entry = cq_entry; buf->compressed_send = compressed_send; buf->desc_skip_cnt = desc_skip_cnt; buf->os_buf = eop != 0 ? os_buf : (void *)0; buf->dma_addr = dma_addr; buf->len = len; buf->wr_id = wrid; buf = buf->next; if (eop != 0) { { __asm__ volatile ("sfence": : : "memory"); iowrite32(buf->index, (void *)(& (wq->ctrl)->posted_index)); } } else { } wq->to_use = buf; wq->ring.desc_avail = wq->ring.desc_avail - (unsigned int )desc_skip_cnt; return; } } __inline static void vnic_wq_service(struct vnic_wq *wq , struct cq_desc *cq_desc , u16 completed_index , void (*buf_service)(struct vnic_wq * , struct cq_desc * , struct vnic_wq_buf * , void * ) , void *opaque ) { struct vnic_wq_buf *buf ; { buf = wq->to_clean; ldv_50906: { (*buf_service)(wq, cq_desc, buf, opaque); wq->ring.desc_avail = wq->ring.desc_avail + 1U; wq->to_clean = buf->next; } if (buf->index == (unsigned int )completed_index) { goto ldv_50905; } else { } buf = wq->to_clean; goto ldv_50906; ldv_50905: ; return; } } unsigned int vnic_wq_error_status(struct vnic_wq *wq ) ; void vnic_wq_enable(struct vnic_wq *wq ) ; int vnic_wq_disable(struct vnic_wq *wq ) ; void vnic_wq_clean(struct vnic_wq *wq , void (*buf_clean)(struct vnic_wq * , struct vnic_wq_buf * ) ) ; __inline static unsigned int vnic_rq_desc_avail(struct vnic_rq *rq ) { { return (rq->ring.desc_avail); } } __inline static unsigned int vnic_rq_desc_used(struct vnic_rq *rq ) { { return ((rq->ring.desc_count - rq->ring.desc_avail) - 1U); } } __inline static void *vnic_rq_next_desc(struct vnic_rq *rq ) { { return ((rq->to_use)->desc); } } __inline static void vnic_rq_post(struct vnic_rq *rq , void *os_buf , unsigned int os_buf_index , dma_addr_t dma_addr , unsigned int len , uint64_t wrid ) { struct vnic_rq_buf *buf ; { buf = rq->to_use; buf->os_buf = os_buf; buf->os_buf_index = os_buf_index; buf->dma_addr = dma_addr; buf->len = len; buf->wr_id = wrid; buf = buf->next; rq->to_use = buf; rq->ring.desc_avail = rq->ring.desc_avail - 1U; if ((buf->index & 15U) == 0U) { { __asm__ volatile ("sfence": : : "memory"); iowrite32(buf->index, (void *)(& (rq->ctrl)->posted_index)); } } else { } return; } } __inline static void vnic_rq_service(struct vnic_rq *rq , struct cq_desc *cq_desc , u16 completed_index , int desc_return , void (*buf_service)(struct vnic_rq * , struct cq_desc * , struct vnic_rq_buf * , int , void * ) , void *opaque ) { struct vnic_rq_buf *buf ; int skipped ; { buf = rq->to_clean; ldv_51018: { skipped = buf->index != (unsigned int )completed_index; (*buf_service)(rq, cq_desc, buf, skipped, opaque); } if (desc_return == 0) { rq->ring.desc_avail = rq->ring.desc_avail + 1U; } else { } rq->to_clean = buf->next; if (skipped == 0) { goto ldv_51017; } else { } buf = rq->to_clean; goto ldv_51018; ldv_51017: ; return; } } __inline static int vnic_rq_fill(struct vnic_rq *rq , int (*buf_fill)(struct vnic_rq * ) ) { int err ; unsigned int tmp ; { goto ldv_51026; ldv_51025: { err = (*buf_fill)(rq); } if (err != 0) { return (err); } else { } ldv_51026: { tmp = vnic_rq_desc_avail(rq); } if (tmp != 0U) { goto ldv_51025; } else { } return (0); } } unsigned int vnic_rq_error_status(struct vnic_rq *rq ) ; void vnic_rq_enable(struct vnic_rq *rq ) ; int vnic_rq_disable(struct vnic_rq *rq ) ; void vnic_rq_clean(struct vnic_rq *rq , void (*buf_clean)(struct vnic_rq * , struct vnic_rq_buf * ) ) ; __inline static void enic_queue_wq_desc_ex(struct vnic_wq *wq , void *os_buf , dma_addr_t dma_addr , unsigned int len , unsigned int mss_or_csum_offset , unsigned int hdr_len , int vlan_tag_insert , unsigned int vlan_tag , int offload_mode , int cq_entry , int sop , int eop , int loopback ) { struct wq_enet_desc *desc ; void *tmp ; u8 desc_skip_cnt ; u8 compressed_send ; u64 wrid ; { { tmp = vnic_wq_next_desc(wq); desc = (struct wq_enet_desc *)tmp; desc_skip_cnt = 1U; compressed_send = 0U; wrid = 0ULL; wq_enet_desc_enc(desc, dma_addr, (int )((unsigned short )len), (int )((unsigned short )mss_or_csum_offset), (int )((unsigned short )hdr_len), (int )((unsigned char )offload_mode), (int )((unsigned char )eop), (int )((unsigned char )cq_entry), 0, (int )((unsigned char )vlan_tag_insert), (int )((unsigned short )vlan_tag), (int )((unsigned char )loopback)); vnic_wq_post(wq, os_buf, dma_addr, len, sop, eop, (int )desc_skip_cnt, (int )((unsigned char )cq_entry), (int )compressed_send, wrid); } return; } } __inline static void enic_queue_wq_desc_cont(struct vnic_wq *wq , void *os_buf , dma_addr_t dma_addr , unsigned int len , int eop , int loopback ) { { { enic_queue_wq_desc_ex(wq, os_buf, dma_addr, len, 0U, 0U, 0, 0U, 0, eop, 0, eop, loopback); } return; } } __inline static void enic_queue_wq_desc(struct vnic_wq *wq , void *os_buf , dma_addr_t dma_addr , unsigned int len , int vlan_tag_insert , unsigned int vlan_tag , int eop , int loopback ) { { { enic_queue_wq_desc_ex(wq, os_buf, dma_addr, len, 0U, 0U, vlan_tag_insert, vlan_tag, 0, eop, 1, eop, loopback); } return; } } __inline static void enic_queue_wq_desc_csum_l4(struct vnic_wq *wq , void *os_buf , dma_addr_t dma_addr , unsigned int len , unsigned int csum_offset , unsigned int hdr_len , int vlan_tag_insert , unsigned int vlan_tag , int eop , int loopback ) { { { enic_queue_wq_desc_ex(wq, os_buf, dma_addr, len, csum_offset, hdr_len, vlan_tag_insert, vlan_tag, 2, eop, 1, eop, loopback); } return; } } __inline static void enic_queue_wq_desc_tso(struct vnic_wq *wq , void *os_buf , dma_addr_t dma_addr , unsigned int len , unsigned int mss , unsigned int hdr_len , int vlan_tag_insert , unsigned int vlan_tag , int eop , int loopback ) { { { enic_queue_wq_desc_ex(wq, os_buf, dma_addr, len, mss, hdr_len, vlan_tag_insert, vlan_tag, 3, eop, 1, eop, loopback); } return; } } __inline static void enic_queue_rq_desc(struct vnic_rq *rq , void *os_buf , unsigned int os_buf_index , dma_addr_t dma_addr , unsigned int len ) { struct rq_enet_desc *desc ; void *tmp ; u64 wrid ; u8 type ; { { tmp = vnic_rq_next_desc(rq); desc = (struct rq_enet_desc *)tmp; wrid = 0ULL; type = os_buf_index != 0U; rq_enet_desc_enc(desc, dma_addr, (int )type, (int )((unsigned short )len)); vnic_rq_post(rq, os_buf, os_buf_index, dma_addr, len, wrid); } return; } } int enic_get_vnic_config(struct enic *enic ) ; int enic_set_nic_cfg(struct enic *enic , u8 rss_default_cpu , u8 rss_hash_type , u8 rss_hash_bits , u8 rss_base_cpu , u8 rss_enable , u8 tso_ipid_split_en , u8 ig_vlan_strip_en ) ; int enic_set_rss_key(struct enic *enic , dma_addr_t key_pa , u64 len ) ; int enic_set_rss_cpu(struct enic *enic , dma_addr_t cpu_pa , u64 len ) ; void enic_get_res_counts(struct enic *enic ) ; void enic_init_vnic_resources(struct enic *enic ) ; int enic_alloc_vnic_resources(struct enic *enic ) ; void enic_free_vnic_resources(struct enic *enic ) ; __inline static struct device *enic_get_dev(struct enic *enic ) { { return (& (enic->pdev)->dev); } } __inline static unsigned int enic_cq_rq(struct enic *enic , unsigned int rq ) { { return (rq); } } __inline static unsigned int enic_cq_wq(struct enic *enic , unsigned int wq ) { { return (enic->rq_count + wq); } } __inline static unsigned int enic_legacy_io_intr(void) { { return (0U); } } __inline static unsigned int enic_legacy_err_intr(void) { { return (1U); } } __inline static unsigned int enic_legacy_notify_intr(void) { { return (2U); } } __inline static unsigned int enic_msix_rq_intr(struct enic *enic , unsigned int rq ) { unsigned int tmp ; { { tmp = enic_cq_rq(enic, rq); } return (enic->cq[tmp].interrupt_offset); } } __inline static unsigned int enic_msix_wq_intr(struct enic *enic , unsigned int wq ) { unsigned int tmp ; { { tmp = enic_cq_wq(enic, wq); } return (enic->cq[tmp].interrupt_offset); } } __inline static unsigned int enic_msix_err_intr(struct enic *enic ) { { return (enic->rq_count + enic->wq_count); } } __inline static unsigned int enic_msix_notify_intr(struct enic *enic ) { { return ((enic->rq_count + enic->wq_count) + 1U); } } void enic_reset_addr_lists(struct enic *enic ) ; int enic_sriov_enabled(struct enic *enic ) ; int enic_is_valid_vf(struct enic *enic , int vf ) ; int enic_is_dynamic(struct enic *enic ) ; void enic_set_ethtool_ops(struct net_device *netdev ) ; int enic_dev_stats_dump(struct enic *enic , struct vnic_stats **vstats ) ; int enic_dev_add_station_addr(struct enic *enic ) ; int enic_dev_del_station_addr(struct enic *enic ) ; int enic_dev_packet_filter(struct enic *enic , int directed , int multicast , int broadcast , int promisc , int allmulti ) ; int enic_dev_add_addr(struct enic *enic , u8 *addr ) ; int enic_dev_del_addr(struct enic *enic , u8 *addr ) ; int enic_vlan_rx_add_vid(struct net_device *netdev , __be16 proto , u16 vid ) ; int enic_vlan_rx_kill_vid(struct net_device *netdev , __be16 proto , u16 vid ) ; int enic_dev_notify_unset(struct enic *enic ) ; int enic_dev_hang_notify(struct enic *enic ) ; int enic_dev_set_ig_vlan_rewrite_mode(struct enic *enic ) ; int enic_dev_enable(struct enic *enic ) ; int enic_dev_disable(struct enic *enic ) ; int enic_dev_intr_coal_timer_info(struct enic *enic ) ; int enic_dev_status_to_errno(int devcmd_status ) ; int enic_process_set_pp_request(struct enic *enic , int vf , struct enic_port_profile *prev_pp , int *restore_pp ) ; int enic_process_get_pp_request(struct enic *enic , int vf , int request , u16 *response ) ; int enic_is_valid_pp_vf(struct enic *enic , int vf , int *err ) ; static struct pci_device_id const enic_id_table[4U] = { {4407U, 67U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4407U, 68U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4407U, 113U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; int enic_is_dynamic(struct enic *enic ) { { return ((unsigned int )(enic->pdev)->device == 68U); } } int enic_sriov_enabled(struct enic *enic ) { { return ((int )enic->priv_flags & 1); } } static int enic_is_sriov_vf(struct enic *enic ) { { return ((unsigned int )(enic->pdev)->device == 113U); } } int enic_is_valid_vf(struct enic *enic , int vf ) { { return (vf >= 0 && vf < (int )enic->num_vfs); } } static void enic_free_wq_buf(struct vnic_wq *wq , struct vnic_wq_buf *buf ) { struct enic *enic ; void *tmp ; { { tmp = vnic_dev_priv(wq->vdev); enic = (struct enic *)tmp; } if (buf->sop != 0) { { pci_unmap_single(enic->pdev, buf->dma_addr, (size_t )buf->len, 1); } } else { { pci_unmap_page(enic->pdev, buf->dma_addr, (size_t )buf->len, 1); } } if ((unsigned long )buf->os_buf != (unsigned long )((void *)0)) { { dev_kfree_skb_any((struct sk_buff *)buf->os_buf); } } else { } return; } } static void enic_wq_free_buf(struct vnic_wq *wq , struct cq_desc *cq_desc , struct vnic_wq_buf *buf , void *opaque ) { { { enic_free_wq_buf(wq, buf); } return; } } static int enic_wq_service(struct vnic_dev *vdev , struct cq_desc *cq_desc , u8 type , u16 q_number , u16 completed_index , void *opaque ) { struct enic *enic ; void *tmp ; struct netdev_queue *tmp___0 ; bool tmp___1 ; unsigned int tmp___2 ; { { tmp = vnic_dev_priv(vdev); enic = (struct enic *)tmp; ldv_spin_lock_101((spinlock_t *)(& enic->wq_lock) + (unsigned long )q_number); vnic_wq_service((struct vnic_wq *)(& enic->wq) + (unsigned long )q_number, cq_desc, (int )completed_index, & enic_wq_free_buf, opaque); tmp___0 = netdev_get_tx_queue((struct net_device const *)enic->netdev, (unsigned int )q_number); tmp___1 = netif_tx_queue_stopped((struct netdev_queue const *)tmp___0); } if ((int )tmp___1) { { tmp___2 = vnic_wq_desc_avail((struct vnic_wq *)(& enic->wq) + (unsigned long )q_number); } if (tmp___2 > 21U) { { netif_wake_subqueue(enic->netdev, (int )q_number); } } else { } } else { } { ldv_spin_unlock_102((spinlock_t *)(& enic->wq_lock) + (unsigned long )q_number); } return (0); } } static void enic_log_q_error(struct enic *enic ) { unsigned int i ; u32 error_status ; { i = 0U; goto ldv_51420; ldv_51419: { error_status = vnic_wq_error_status((struct vnic_wq *)(& enic->wq) + (unsigned long )i); } if (error_status != 0U) { { netdev_err((struct net_device const *)enic->netdev, "WQ[%d] error_status %d\n", i, error_status); } } else { } i = i + 1U; ldv_51420: ; if (i < enic->wq_count) { goto ldv_51419; } else { } i = 0U; goto ldv_51423; ldv_51422: { error_status = vnic_rq_error_status((struct vnic_rq *)(& enic->rq) + (unsigned long )i); } if (error_status != 0U) { { netdev_err((struct net_device const *)enic->netdev, "RQ[%d] error_status %d\n", i, error_status); } } else { } i = i + 1U; ldv_51423: ; if (i < enic->rq_count) { goto ldv_51422; } else { } return; } } static void enic_msglvl_check(struct enic *enic ) { u32 msg_enable ; u32 tmp ; { { tmp = vnic_dev_msg_lvl(enic->vdev); msg_enable = tmp; } if (msg_enable != enic->msg_enable) { { netdev_info((struct net_device const *)enic->netdev, "msg lvl changed from 0x%x to 0x%x\n", enic->msg_enable, msg_enable); enic->msg_enable = msg_enable; } } else { } return; } } static void enic_mtu_check(struct enic *enic ) { u32 mtu ; u32 tmp ; struct net_device *netdev ; int __max1 ; int __max2 ; int __min1 ; int __min2 ; int tmp___0 ; int tmp___1 ; { { tmp = vnic_dev_mtu(enic->vdev); mtu = tmp; netdev = enic->netdev; } if (mtu != 0U && mtu != enic->port_mtu) { { enic->port_mtu = mtu; tmp___0 = enic_is_dynamic(enic); } if (tmp___0 != 0) { goto _L; } else { { tmp___1 = enic_is_sriov_vf(enic); } if (tmp___1 != 0) { _L: /* CIL Label */ __max1 = 68; __min1 = 9000; __min2 = (int )mtu; __max2 = __min1 < __min2 ? __min1 : __min2; mtu = (u32 )(__max1 > __max2 ? __max1 : __max2); if (mtu != netdev->mtu) { { schedule_work(& enic->change_mtu_work); } } else { } } else if (mtu < netdev->mtu) { { netdev_warn((struct net_device const *)netdev, "interface MTU (%d) set higher than switch port MTU (%d)\n", netdev->mtu, mtu); } } else { } } } else { } return; } } static void enic_link_check(struct enic *enic ) { int link_status ; int tmp ; int carrier_ok ; bool tmp___0 ; { { tmp = vnic_dev_link_status(enic->vdev); link_status = tmp; tmp___0 = netif_carrier_ok((struct net_device const *)enic->netdev); carrier_ok = (int )tmp___0; } if (link_status != 0 && carrier_ok == 0) { { netdev_info((struct net_device const *)enic->netdev, "Link UP\n"); netif_carrier_on(enic->netdev); } } else if (link_status == 0 && carrier_ok != 0) { { netdev_info((struct net_device const *)enic->netdev, "Link DOWN\n"); netif_carrier_off(enic->netdev); } } else { } return; } } static void enic_notify_check(struct enic *enic ) { { { enic_msglvl_check(enic); enic_mtu_check(enic); enic_link_check(enic); } return; } } static irqreturn_t enic_isr_legacy(int irq , void *data ) { struct net_device *netdev ; struct enic *enic ; void *tmp ; unsigned int io_intr ; unsigned int tmp___0 ; unsigned int err_intr ; unsigned int tmp___1 ; unsigned int notify_intr ; unsigned int tmp___2 ; u32 pba ; bool tmp___3 ; { { netdev = (struct net_device *)data; tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; tmp___0 = enic_legacy_io_intr(); io_intr = tmp___0; tmp___1 = enic_legacy_err_intr(); err_intr = tmp___1; tmp___2 = enic_legacy_notify_intr(); notify_intr = tmp___2; vnic_intr_mask((struct vnic_intr *)(& enic->intr) + (unsigned long )io_intr); pba = vnic_intr_legacy_pba(enic->legacy_pba); } if (pba == 0U) { { vnic_intr_unmask((struct vnic_intr *)(& enic->intr) + (unsigned long )io_intr); } return (0); } else { } if ((pba & (u32 )(1 << (int )notify_intr)) != 0U) { { vnic_intr_return_all_credits((struct vnic_intr *)(& enic->intr) + (unsigned long )notify_intr); enic_notify_check(enic); } } else { } if ((pba & (u32 )(1 << (int )err_intr)) != 0U) { { vnic_intr_return_all_credits((struct vnic_intr *)(& enic->intr) + (unsigned long )err_intr); enic_log_q_error(enic); schedule_work(& enic->reset); } return (1); } else { } if ((pba & (u32 )(1 << (int )io_intr)) != 0U) { { tmp___3 = napi_schedule_prep((struct napi_struct *)(& enic->napi)); } if ((int )tmp___3) { { __napi_schedule((struct napi_struct *)(& enic->napi)); } } else { } } else { { vnic_intr_unmask((struct vnic_intr *)(& enic->intr) + (unsigned long )io_intr); } } return (1); } } static irqreturn_t enic_isr_msi(int irq , void *data ) { struct enic *enic ; { { enic = (struct enic *)data; napi_schedule((struct napi_struct *)(& enic->napi)); } return (1); } } static irqreturn_t enic_isr_msix_rq(int irq , void *data ) { struct napi_struct *napi ; { { napi = (struct napi_struct *)data; napi_schedule(napi); } return (1); } } static irqreturn_t enic_isr_msix_wq(int irq , void *data ) { struct enic *enic ; unsigned int cq ; unsigned int intr ; unsigned int wq_work_to_do ; unsigned int wq_work_done ; unsigned int wq_irq ; unsigned int tmp ; { { enic = (struct enic *)data; wq_work_to_do = 4294967295U; tmp = enic_msix_wq_intr(enic, 0U); wq_irq = (unsigned int )irq - enic->msix_entry[tmp].vector; cq = enic_cq_wq(enic, wq_irq); intr = enic_msix_wq_intr(enic, wq_irq); wq_work_done = vnic_cq_service((struct vnic_cq *)(& enic->cq) + (unsigned long )cq, wq_work_to_do, & enic_wq_service, (void *)0); vnic_intr_return_credits((struct vnic_intr *)(& enic->intr) + (unsigned long )intr, wq_work_done, 1, 1); } return (1); } } static irqreturn_t enic_isr_msix_err(int irq , void *data ) { struct enic *enic ; unsigned int intr ; unsigned int tmp ; { { enic = (struct enic *)data; tmp = enic_msix_err_intr(enic); intr = tmp; vnic_intr_return_all_credits((struct vnic_intr *)(& enic->intr) + (unsigned long )intr); enic_log_q_error(enic); schedule_work(& enic->reset); } return (1); } } static irqreturn_t enic_isr_msix_notify(int irq , void *data ) { struct enic *enic ; unsigned int intr ; unsigned int tmp ; { { enic = (struct enic *)data; tmp = enic_msix_notify_intr(enic); intr = tmp; vnic_intr_return_all_credits((struct vnic_intr *)(& enic->intr) + (unsigned long )intr); enic_notify_check(enic); } return (1); } } __inline static void enic_queue_wq_skb_cont(struct enic *enic , struct vnic_wq *wq , struct sk_buff *skb , unsigned int len_left , int loopback ) { skb_frag_t const *frag ; unsigned char *tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; dma_addr_t tmp___3 ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t const *)(& ((struct skb_shared_info *)tmp)->frags); } goto ldv_51499; ldv_51498: { tmp___0 = skb_frag_size(frag); len_left = len_left - tmp___0; tmp___1 = skb_frag_size(frag); tmp___2 = skb_frag_size(frag); tmp___3 = skb_frag_dma_map(& (enic->pdev)->dev, frag, 0UL, (size_t )tmp___2, 1); enic_queue_wq_desc_cont(wq, (void *)skb, tmp___3, tmp___1, len_left == 0U, loopback); frag = frag + 1; } ldv_51499: ; if (len_left != 0U) { goto ldv_51498; } else { } return; } } __inline static void enic_queue_wq_skb_vlan(struct enic *enic , struct vnic_wq *wq , struct sk_buff *skb , int vlan_tag_insert , unsigned int vlan_tag , int loopback ) { unsigned int head_len ; unsigned int tmp ; unsigned int len_left ; int eop ; dma_addr_t tmp___0 ; { { tmp = skb_headlen((struct sk_buff const *)skb); head_len = tmp; len_left = skb->len - head_len; eop = len_left == 0U; tmp___0 = pci_map_single(enic->pdev, (void *)skb->data, (size_t )head_len, 1); enic_queue_wq_desc(wq, (void *)skb, tmp___0, head_len, vlan_tag_insert, vlan_tag, eop, loopback); } if (eop == 0) { { enic_queue_wq_skb_cont(enic, wq, skb, len_left, loopback); } } else { } return; } } __inline static void enic_queue_wq_skb_csum_l4(struct enic *enic , struct vnic_wq *wq , struct sk_buff *skb , int vlan_tag_insert , unsigned int vlan_tag , int loopback ) { unsigned int head_len ; unsigned int tmp ; unsigned int len_left ; unsigned int hdr_len ; int tmp___0 ; unsigned int csum_offset ; int eop ; dma_addr_t tmp___1 ; { { tmp = skb_headlen((struct sk_buff const *)skb); head_len = tmp; len_left = skb->len - head_len; tmp___0 = skb_checksum_start_offset((struct sk_buff const *)skb); hdr_len = (unsigned int )tmp___0; csum_offset = hdr_len + (unsigned int )skb->__annonCompField68.__annonCompField67.csum_offset; eop = len_left == 0U; tmp___1 = pci_map_single(enic->pdev, (void *)skb->data, (size_t )head_len, 1); enic_queue_wq_desc_csum_l4(wq, (void *)skb, tmp___1, head_len, csum_offset, hdr_len, vlan_tag_insert, vlan_tag, eop, loopback); } if (eop == 0) { { enic_queue_wq_skb_cont(enic, wq, skb, len_left, loopback); } } else { } return; } } __inline static void enic_queue_wq_skb_tso(struct enic *enic , struct vnic_wq *wq , struct sk_buff *skb , unsigned int mss , int vlan_tag_insert , unsigned int vlan_tag , int loopback ) { unsigned int frag_len_left ; unsigned int tmp ; unsigned int len_left ; unsigned int hdr_len ; int tmp___0 ; unsigned int tmp___1 ; int eop ; unsigned int len ; dma_addr_t dma_addr ; unsigned int offset ; skb_frag_t *frag ; struct iphdr *tmp___2 ; struct tcphdr *tmp___3 ; struct iphdr *tmp___4 ; struct iphdr *tmp___5 ; __sum16 tmp___6 ; struct tcphdr *tmp___7 ; struct ipv6hdr *tmp___8 ; struct ipv6hdr *tmp___9 ; __sum16 tmp___10 ; unsigned int _min1 ; unsigned int _min2 ; unsigned char *tmp___11 ; unsigned int tmp___12 ; unsigned int _min1___0 ; unsigned int _min2___0 ; { { tmp = skb_headlen((struct sk_buff const *)skb); frag_len_left = tmp; len_left = skb->len - frag_len_left; tmp___0 = skb_transport_offset((struct sk_buff const *)skb); tmp___1 = tcp_hdrlen((struct sk_buff const *)skb); hdr_len = (unsigned int )tmp___0 + tmp___1; eop = len_left == 0U; offset = 0U; } if ((unsigned int )skb->protocol == 8U) { { tmp___2 = ip_hdr((struct sk_buff const *)skb); tmp___2->check = 0U; tmp___3 = tcp_hdr((struct sk_buff const *)skb); tmp___4 = ip_hdr((struct sk_buff const *)skb); tmp___5 = ip_hdr((struct sk_buff const *)skb); tmp___6 = csum_tcpudp_magic(tmp___5->saddr, tmp___4->daddr, 0, 6, 0U); tmp___3->check = ~ ((int )tmp___6); } } else if ((unsigned int )skb->protocol == 56710U) { { tmp___7 = tcp_hdr((struct sk_buff const *)skb); tmp___8 = ipv6_hdr((struct sk_buff const *)skb); tmp___9 = ipv6_hdr((struct sk_buff const *)skb); tmp___10 = csum_ipv6_magic((struct in6_addr const *)(& tmp___9->saddr), (struct in6_addr const *)(& tmp___8->daddr), 0U, 6, 0U); tmp___7->check = ~ ((int )tmp___10); } } else { } goto ldv_51546; ldv_51545: { _min1 = frag_len_left; _min2 = 16384U; len = _min1 < _min2 ? _min1 : _min2; dma_addr = pci_map_single(enic->pdev, (void *)skb->data + (unsigned long )offset, (size_t )len, 1); enic_queue_wq_desc_tso(wq, (void *)skb, dma_addr, len, mss, hdr_len, vlan_tag_insert, vlan_tag, eop != 0 && len == frag_len_left, loopback); frag_len_left = frag_len_left - len; offset = offset + len; } ldv_51546: ; if (frag_len_left != 0U) { goto ldv_51545; } else { } if (eop != 0) { return; } else { } { tmp___11 = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp___11)->frags); } goto ldv_51555; ldv_51554: { tmp___12 = skb_frag_size((skb_frag_t const *)frag); len_left = len_left - tmp___12; frag_len_left = skb_frag_size((skb_frag_t const *)frag); offset = 0U; } goto ldv_51552; ldv_51551: { _min1___0 = frag_len_left; _min2___0 = 16384U; len = _min1___0 < _min2___0 ? _min1___0 : _min2___0; dma_addr = skb_frag_dma_map(& (enic->pdev)->dev, (skb_frag_t const *)frag, (size_t )offset, (size_t )len, 1); enic_queue_wq_desc_cont(wq, (void *)skb, dma_addr, len, len_left == 0U && len == frag_len_left, loopback); frag_len_left = frag_len_left - len; offset = offset + len; } ldv_51552: ; if (frag_len_left != 0U) { goto ldv_51551; } else { } frag = frag + 1; ldv_51555: ; if (len_left != 0U) { goto ldv_51554; } else { } return; } } __inline static void enic_queue_wq_skb(struct enic *enic , struct vnic_wq *wq , struct sk_buff *skb ) { unsigned int mss ; unsigned char *tmp ; unsigned int vlan_tag ; int vlan_tag_insert ; int loopback ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); mss = (unsigned int )((struct skb_shared_info *)tmp)->gso_size; vlan_tag = 0U; vlan_tag_insert = 0; loopback = 0; } if (((int )skb->vlan_tci & 4096) != 0) { vlan_tag_insert = 1; vlan_tag = (unsigned int )skb->vlan_tci & 4294963199U; } else if ((unsigned int )enic->loop_enable != 0U) { vlan_tag = (unsigned int )enic->loop_tag; loopback = 1; } else { } if (mss != 0U) { { enic_queue_wq_skb_tso(enic, wq, skb, mss, vlan_tag_insert, vlan_tag, loopback); } } else if ((unsigned int )*((unsigned char *)skb + 124UL) == 12U) { { enic_queue_wq_skb_csum_l4(enic, wq, skb, vlan_tag_insert, vlan_tag, loopback); } } else { { enic_queue_wq_skb_vlan(enic, wq, skb, vlan_tag_insert, vlan_tag, loopback); } } return; } } static netdev_tx_t enic_hard_start_xmit(struct sk_buff *skb , struct net_device *netdev ) { struct enic *enic ; void *tmp ; struct vnic_wq *wq ; unsigned long flags ; unsigned int txq_map ; u16 tmp___0 ; unsigned char *tmp___1 ; unsigned char *tmp___2 ; int tmp___3 ; struct netdev_queue *tmp___4 ; unsigned int tmp___5 ; unsigned char *tmp___6 ; struct netdev_queue *tmp___7 ; unsigned int tmp___8 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; } if (skb->len == 0U) { { consume_skb(skb); } return (0); } else { } { tmp___0 = skb_get_queue_mapping((struct sk_buff const *)skb); txq_map = (unsigned int )tmp___0 % enic->wq_count; wq = (struct vnic_wq *)(& enic->wq) + (unsigned long )txq_map; tmp___1 = skb_end_pointer((struct sk_buff const *)skb); } if ((unsigned int )((struct skb_shared_info *)tmp___1)->gso_size == 0U) { { tmp___2 = skb_end_pointer((struct sk_buff const *)skb); } if ((int )((struct skb_shared_info *)tmp___2)->nr_frags + 1 > 16) { { tmp___3 = skb_linearize(skb); } if (tmp___3 != 0) { { consume_skb(skb); } return (0); } else { } } else { } } else { } { ldv___ldv_spin_lock_103((spinlock_t *)(& enic->wq_lock) + (unsigned long )txq_map); tmp___5 = vnic_wq_desc_avail(wq); tmp___6 = skb_end_pointer((struct sk_buff const *)skb); } if (tmp___5 < (unsigned int )((int )((struct skb_shared_info *)tmp___6)->nr_frags + 5)) { { tmp___4 = netdev_get_tx_queue((struct net_device const *)netdev, txq_map); netif_tx_stop_queue(tmp___4); netdev_err((struct net_device const *)netdev, "BUG! Tx ring full when queue awake!\n"); ldv_spin_unlock_irqrestore_104((spinlock_t *)(& enic->wq_lock) + (unsigned long )txq_map, flags); } return (16); } else { } { enic_queue_wq_skb(enic, wq, skb); tmp___8 = vnic_wq_desc_avail(wq); } if (tmp___8 <= 21U) { { tmp___7 = netdev_get_tx_queue((struct net_device const *)netdev, txq_map); netif_tx_stop_queue(tmp___7); } } else { } { ldv_spin_unlock_irqrestore_104((spinlock_t *)(& enic->wq_lock) + (unsigned long )txq_map, flags); } return (0); } } static struct rtnl_link_stats64 *enic_get_stats(struct net_device *netdev , struct rtnl_link_stats64 *net_stats ) { struct enic *enic ; void *tmp ; struct vnic_stats *stats ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; enic_dev_stats_dump(enic, & stats); net_stats->tx_packets = stats->tx.tx_frames_ok; net_stats->tx_bytes = stats->tx.tx_bytes_ok; net_stats->tx_errors = stats->tx.tx_errors; net_stats->tx_dropped = stats->tx.tx_drops; net_stats->rx_packets = stats->rx.rx_frames_ok; net_stats->rx_bytes = stats->rx.rx_bytes_ok; net_stats->rx_errors = stats->rx.rx_errors; net_stats->multicast = stats->rx.rx_multicast_frames_ok; net_stats->rx_over_errors = enic->rq_truncated_pkts; net_stats->rx_crc_errors = enic->rq_bad_fcs; net_stats->rx_dropped = stats->rx.rx_no_bufs + stats->rx.rx_drop; } return (net_stats); } } void enic_reset_addr_lists(struct enic *enic ) { { enic->mc_count = 0U; enic->uc_count = 0U; enic->flags = 0U; return; } } static int enic_set_mac_addr(struct net_device *netdev , char *addr ) { struct enic *enic ; void *tmp ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; bool tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; tmp___6 = enic_is_dynamic(enic); } if (tmp___6 != 0) { goto _L; } else { { tmp___7 = enic_is_sriov_vf(enic); } if (tmp___7 != 0) { _L: /* CIL Label */ { tmp___0 = is_valid_ether_addr((u8 const *)addr); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { tmp___2 = is_zero_ether_addr((u8 const *)addr); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { return (-99); } else { } } else { } } else { { tmp___4 = is_valid_ether_addr((u8 const *)addr); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { return (-99); } else { } } } { memcpy((void *)netdev->dev_addr, (void const *)addr, (size_t )netdev->addr_len); } return (0); } } static int enic_set_mac_address_dynamic(struct net_device *netdev , void *p ) { struct enic *enic ; void *tmp ; struct sockaddr *saddr ; char *addr ; int err ; bool tmp___0 ; bool tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; saddr = (struct sockaddr *)p; addr = (char *)(& saddr->sa_data); tmp___0 = netif_running((struct net_device const *)enic->netdev); } if ((int )tmp___0) { { err = enic_dev_del_station_addr(enic); } if (err != 0) { return (err); } else { } } else { } { err = enic_set_mac_addr(netdev, addr); } if (err != 0) { return (err); } else { } { tmp___1 = netif_running((struct net_device const *)enic->netdev); } if ((int )tmp___1) { { err = enic_dev_add_station_addr(enic); } if (err != 0) { return (err); } else { } } else { } return (err); } } static int enic_set_mac_address(struct net_device *netdev , void *p ) { struct sockaddr *saddr ; char *addr ; struct enic *enic ; void *tmp ; int err ; int tmp___0 ; { { saddr = (struct sockaddr *)p; addr = (char *)(& saddr->sa_data); tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; err = enic_dev_del_station_addr(enic); } if (err != 0) { return (err); } else { } { err = enic_set_mac_addr(netdev, addr); } if (err != 0) { return (err); } else { } { tmp___0 = enic_dev_add_station_addr(enic); } return (tmp___0); } } static void enic_update_multicast_addr_list(struct enic *enic ) { struct net_device *netdev ; struct netdev_hw_addr *ha ; unsigned int mc_count ; u8 mc_addr[32U][6U] ; unsigned int i ; unsigned int j ; struct list_head const *__mptr ; unsigned int tmp ; struct list_head const *__mptr___0 ; bool tmp___0 ; bool tmp___1 ; { netdev = enic->netdev; mc_count = (unsigned int )netdev->mc.count; if (mc_count > 32U) { { netdev_warn((struct net_device const *)netdev, "Registering only %d out of %d multicast addresses\n", 32, mc_count); mc_count = 32U; } } else { } i = 0U; __mptr = (struct list_head const *)netdev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_51619; ldv_51618: ; if (i == mc_count) { goto ldv_51617; } else { } { tmp = i; i = i + 1U; memcpy((void *)(& mc_addr) + (unsigned long )tmp, (void const *)(& ha->addr), 6UL); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; } ldv_51619: ; if ((unsigned long )(& ha->list) != (unsigned long )(& netdev->mc.list)) { goto ldv_51618; } else { } ldv_51617: i = 0U; goto ldv_51624; ldv_51623: j = 0U; goto ldv_51622; ldv_51621: { tmp___0 = ether_addr_equal((u8 const *)(& enic->mc_addr) + (unsigned long )i, (u8 const *)(& mc_addr) + (unsigned long )j); } if ((int )tmp___0) { goto ldv_51620; } else { } j = j + 1U; ldv_51622: ; if (j < mc_count) { goto ldv_51621; } else { } ldv_51620: ; if (j == mc_count) { { enic_dev_del_addr(enic, (u8 *)(& enic->mc_addr) + (unsigned long )i); } } else { } i = i + 1U; ldv_51624: ; if (i < enic->mc_count) { goto ldv_51623; } else { } i = 0U; goto ldv_51630; ldv_51629: j = 0U; goto ldv_51628; ldv_51627: { tmp___1 = ether_addr_equal((u8 const *)(& mc_addr) + (unsigned long )i, (u8 const *)(& enic->mc_addr) + (unsigned long )j); } if ((int )tmp___1) { goto ldv_51626; } else { } j = j + 1U; ldv_51628: ; if (j < enic->mc_count) { goto ldv_51627; } else { } ldv_51626: ; if (j == enic->mc_count) { { enic_dev_add_addr(enic, (u8 *)(& mc_addr) + (unsigned long )i); } } else { } i = i + 1U; ldv_51630: ; if (i < mc_count) { goto ldv_51629; } else { } i = 0U; goto ldv_51633; ldv_51632: { memcpy((void *)(& enic->mc_addr) + (unsigned long )i, (void const *)(& mc_addr) + (unsigned long )i, 6UL); i = i + 1U; } ldv_51633: ; if (i < mc_count) { goto ldv_51632; } else { } enic->mc_count = mc_count; return; } } static void enic_update_unicast_addr_list(struct enic *enic ) { struct net_device *netdev ; struct netdev_hw_addr *ha ; unsigned int uc_count ; u8 uc_addr[32U][6U] ; unsigned int i ; unsigned int j ; struct list_head const *__mptr ; unsigned int tmp ; struct list_head const *__mptr___0 ; bool tmp___0 ; bool tmp___1 ; { netdev = enic->netdev; uc_count = (unsigned int )netdev->uc.count; if (uc_count > 32U) { { netdev_warn((struct net_device const *)netdev, "Registering only %d out of %d unicast addresses\n", 32, uc_count); uc_count = 32U; } } else { } i = 0U; __mptr = (struct list_head const *)netdev->uc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_51650; ldv_51649: ; if (i == uc_count) { goto ldv_51648; } else { } { tmp = i; i = i + 1U; memcpy((void *)(& uc_addr) + (unsigned long )tmp, (void const *)(& ha->addr), 6UL); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; } ldv_51650: ; if ((unsigned long )(& ha->list) != (unsigned long )(& netdev->uc.list)) { goto ldv_51649; } else { } ldv_51648: i = 0U; goto ldv_51655; ldv_51654: j = 0U; goto ldv_51653; ldv_51652: { tmp___0 = ether_addr_equal((u8 const *)(& enic->uc_addr) + (unsigned long )i, (u8 const *)(& uc_addr) + (unsigned long )j); } if ((int )tmp___0) { goto ldv_51651; } else { } j = j + 1U; ldv_51653: ; if (j < uc_count) { goto ldv_51652; } else { } ldv_51651: ; if (j == uc_count) { { enic_dev_del_addr(enic, (u8 *)(& enic->uc_addr) + (unsigned long )i); } } else { } i = i + 1U; ldv_51655: ; if (i < enic->uc_count) { goto ldv_51654; } else { } i = 0U; goto ldv_51661; ldv_51660: j = 0U; goto ldv_51659; ldv_51658: { tmp___1 = ether_addr_equal((u8 const *)(& uc_addr) + (unsigned long )i, (u8 const *)(& enic->uc_addr) + (unsigned long )j); } if ((int )tmp___1) { goto ldv_51657; } else { } j = j + 1U; ldv_51659: ; if (j < enic->uc_count) { goto ldv_51658; } else { } ldv_51657: ; if (j == enic->uc_count) { { enic_dev_add_addr(enic, (u8 *)(& uc_addr) + (unsigned long )i); } } else { } i = i + 1U; ldv_51661: ; if (i < uc_count) { goto ldv_51660; } else { } i = 0U; goto ldv_51664; ldv_51663: { memcpy((void *)(& enic->uc_addr) + (unsigned long )i, (void const *)(& uc_addr) + (unsigned long )i, 6UL); i = i + 1U; } ldv_51664: ; if (i < uc_count) { goto ldv_51663; } else { } enic->uc_count = uc_count; return; } } static void enic_set_rx_mode(struct net_device *netdev ) { struct enic *enic ; void *tmp ; int directed ; int multicast ; int broadcast ; int promisc ; int allmulti ; unsigned int flags ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; directed = 1; multicast = (netdev->flags & 4096U) != 0U; broadcast = (netdev->flags & 2U) != 0U; promisc = (netdev->flags & 256U) != 0U || netdev->uc.count > 32; allmulti = (netdev->flags & 512U) != 0U || netdev->mc.count > 32; flags = (netdev->flags | (allmulti != 0 ? 512U : 0U)) | (promisc != 0 ? 256U : 0U); } if (enic->flags != flags) { { enic->flags = flags; enic_dev_packet_filter(enic, directed, multicast, broadcast, promisc, allmulti); } } else { } if (promisc == 0) { { enic_update_unicast_addr_list(enic); } if (allmulti == 0) { { enic_update_multicast_addr_list(enic); } } else { } } else { } return; } } static void enic_tx_timeout(struct net_device *netdev ) { struct enic *enic ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; schedule_work(& enic->reset); } return; } } static int enic_set_vf_mac(struct net_device *netdev , int vf , u8 *mac ) { struct enic *enic ; void *tmp ; struct enic_port_profile *pp ; int err ; int tmp___0 ; int tmp___1 ; int tmp___2 ; bool tmp___3 ; bool tmp___4 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; tmp___0 = enic_is_valid_pp_vf(enic, vf, & err); } if (tmp___0 != 0) { pp = vf == -1 ? enic->pp : enic->pp + (unsigned long )vf; } else { pp = (struct enic_port_profile *)0; } if (err != 0) { return (err); } else { } { tmp___3 = is_valid_ether_addr((u8 const *)mac); } if ((int )tmp___3) { goto _L; } else { { tmp___4 = is_zero_ether_addr((u8 const *)mac); } if ((int )tmp___4) { _L: /* CIL Label */ if (vf == -1) { { memcpy((void *)(& pp->vf_mac), (void const *)mac, 6UL); } return (0); } else { { ldv_spin_lock_106(& enic->devcmd_lock); tmp___1 = enic_is_valid_vf(enic, vf); } if (tmp___1 != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_set_mac_addr(enic->vdev, mac); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_set_mac_addr(enic->vdev, mac); } } { ldv_spin_unlock_107(& enic->devcmd_lock); tmp___2 = enic_dev_status_to_errno(err); } return (tmp___2); } } else { return (-22); } } } } static int enic_set_vf_port(struct net_device *netdev , int vf , struct nlattr **port ) { struct enic *enic ; void *tmp ; struct enic_port_profile prev_pp ; struct enic_port_profile *pp ; int err ; int restore_pp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; bool tmp___4 ; int tmp___5 ; bool tmp___6 ; int tmp___7 ; int tmp___8 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; err = 0; restore_pp = 1; tmp___0 = enic_is_valid_pp_vf(enic, vf, & err); } if (tmp___0 != 0) { pp = vf == -1 ? enic->pp : enic->pp + (unsigned long )vf; } else { pp = (struct enic_port_profile *)0; } if (err != 0) { return (err); } else { } if ((unsigned long )*(port + 6UL) == (unsigned long )((struct nlattr *)0)) { return (-95); } else { } { memcpy((void *)(& prev_pp), (void const *)pp, 92UL); memset((void *)pp, 0, 92UL); pp->set = pp->set | 2U; pp->request = nla_get_u8((struct nlattr const *)*(port + 6UL)); } if ((unsigned long )*(port + 2UL) != (unsigned long )((struct nlattr *)0)) { { pp->set = pp->set | 4U; tmp___1 = nla_data((struct nlattr const *)*(port + 2UL)); memcpy((void *)(& pp->name), (void const *)tmp___1, 40UL); } } else { } if ((unsigned long )*(port + 4UL) != (unsigned long )((struct nlattr *)0)) { { pp->set = pp->set | 8U; tmp___2 = nla_data((struct nlattr const *)*(port + 4UL)); memcpy((void *)(& pp->instance_uuid), (void const *)tmp___2, 16UL); } } else { } if ((unsigned long )*(port + 5UL) != (unsigned long )((struct nlattr *)0)) { { pp->set = pp->set | 16U; tmp___3 = nla_data((struct nlattr const *)*(port + 5UL)); memcpy((void *)(& pp->host_uuid), (void const *)tmp___3, 16UL); } } else { } if (vf == -1) { { tmp___4 = is_zero_ether_addr((u8 const *)(& prev_pp.vf_mac)); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { { memcpy((void *)(& pp->mac_addr), (void const *)(& prev_pp.vf_mac), 6UL); } } else { } { tmp___6 = is_zero_ether_addr((u8 const *)netdev->dev_addr); } if ((int )tmp___6) { { eth_hw_addr_random(netdev); } } else { } } else { { ldv_spin_lock_106(& enic->devcmd_lock); tmp___7 = enic_is_valid_vf(enic, vf); } if (tmp___7 != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_get_mac_addr(enic->vdev, (u8 *)(& pp->mac_addr)); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_get_mac_addr(enic->vdev, (u8 *)(& pp->mac_addr)); } } { ldv_spin_unlock_107(& enic->devcmd_lock); } if (err != 0) { { netdev_err((struct net_device const *)netdev, "Error getting mac for vf %d\n", vf); memcpy((void *)pp, (void const *)(& prev_pp), 92UL); tmp___8 = enic_dev_status_to_errno(err); } return (tmp___8); } else { } } { err = enic_process_set_pp_request(enic, vf, & prev_pp, & restore_pp); } if (err != 0) { if (restore_pp != 0) { { memcpy((void *)pp, (void const *)(& prev_pp), 92UL); } } else { { memset((void *)pp, 0, 92UL); } if (vf == -1) { { memset((void *)netdev->dev_addr, 0, 6UL); } } else { } } } else { pp->set = pp->set | 1U; if ((unsigned int )pp->request == 3U) { { memset((void *)(& pp->mac_addr), 0, 6UL); } if (vf == -1) { { memset((void *)netdev->dev_addr, 0, 6UL); } } else { } } else { } } if (vf == -1) { { memset((void *)(& pp->vf_mac), 0, 6UL); } } else { } return (err); } } static int enic_get_vf_port(struct net_device *netdev , int vf , struct sk_buff *skb ) { struct enic *enic ; void *tmp ; u16 response ; struct enic_port_profile *pp ; int err ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; response = 256U; tmp___0 = enic_is_valid_pp_vf(enic, vf, & err); } if (tmp___0 != 0) { pp = vf == -1 ? enic->pp : enic->pp + (unsigned long )vf; } else { pp = (struct enic_port_profile *)0; } if (err != 0) { return (err); } else { } if ((pp->set & 1U) == 0U) { return (-61); } else { } { err = enic_process_get_pp_request(enic, vf, (int )pp->request, & response); } if (err != 0) { return (err); } else { } { tmp___1 = nla_put_u16(skb, 6, (int )pp->request); } if (tmp___1 != 0) { goto nla_put_failure; } else { { tmp___2 = nla_put_u16(skb, 7, (int )response); } if (tmp___2 != 0) { goto nla_put_failure; } else if ((pp->set & 4U) != 0U) { { tmp___3 = nla_put(skb, 2, 40, (void const *)(& pp->name)); } if (tmp___3 != 0) { goto nla_put_failure; } else { goto _L___0; } } else _L___0: /* CIL Label */ if ((pp->set & 8U) != 0U) { { tmp___4 = nla_put(skb, 4, 16, (void const *)(& pp->instance_uuid)); } if (tmp___4 != 0) { goto nla_put_failure; } else { goto _L; } } else _L: /* CIL Label */ if ((pp->set & 16U) != 0U) { { tmp___5 = nla_put(skb, 5, 16, (void const *)(& pp->host_uuid)); } if (tmp___5 != 0) { goto nla_put_failure; } else { } } else { } } return (0); nla_put_failure: ; return (-90); } } static void enic_free_rq_buf(struct vnic_rq *rq , struct vnic_rq_buf *buf ) { struct enic *enic ; void *tmp ; { { tmp = vnic_dev_priv(rq->vdev); enic = (struct enic *)tmp; } if ((unsigned long )buf->os_buf == (unsigned long )((void *)0)) { return; } else { } { pci_unmap_single(enic->pdev, buf->dma_addr, (size_t )buf->len, 2); dev_kfree_skb_any((struct sk_buff *)buf->os_buf); } return; } } static int enic_rq_alloc_buf(struct vnic_rq *rq ) { struct enic *enic ; void *tmp ; struct net_device *netdev ; struct sk_buff *skb ; unsigned int len ; unsigned int os_buf_index ; dma_addr_t dma_addr ; { { tmp = vnic_dev_priv(rq->vdev); enic = (struct enic *)tmp; netdev = enic->netdev; len = netdev->mtu + 18U; os_buf_index = 0U; skb = netdev_alloc_skb_ip_align(netdev, len); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return (-12); } else { } { dma_addr = pci_map_single(enic->pdev, (void *)skb->data, (size_t )len, 2); enic_queue_rq_desc(rq, (void *)skb, os_buf_index, dma_addr, len); } return (0); } } static void enic_rq_indicate_buf(struct vnic_rq *rq , struct cq_desc *cq_desc , struct vnic_rq_buf *buf , int skipped , void *opaque ) { struct enic *enic ; void *tmp ; struct net_device *netdev ; struct sk_buff *skb ; u8 type ; u8 color ; u8 eop ; u8 sop ; u8 ingress_port ; u8 vlan_stripped ; u8 fcoe ; u8 fcoe_sof ; u8 fcoe_fc_crc_ok ; u8 fcoe_enc_error ; u8 fcoe_eof ; u8 tcp_udp_csum_ok ; u8 udp ; u8 tcp ; u8 ipv4_csum_ok ; u8 ipv6 ; u8 ipv4 ; u8 ipv4_fragment ; u8 fcs_ok ; u8 rss_type ; u8 csum_not_calc ; u8 packet_error ; u16 q_number ; u16 completed_index ; u16 bytes_written ; u16 vlan_tci ; u16 checksum ; u32 rss_hash ; __u16 tmp___0 ; { { tmp = vnic_dev_priv(rq->vdev); enic = (struct enic *)tmp; netdev = enic->netdev; } if (skipped != 0) { return; } else { } { skb = (struct sk_buff *)buf->os_buf; __builtin_prefetch((void const *)skb->data); pci_unmap_single(enic->pdev, buf->dma_addr, (size_t )buf->len, 2); cq_enet_rq_desc_dec((struct cq_enet_rq_desc *)cq_desc, & type, & color, & q_number, & completed_index, & ingress_port, & fcoe, & eop, & sop, & rss_type, & csum_not_calc, & rss_hash, & bytes_written, & packet_error, & vlan_stripped, & vlan_tci, & checksum, & fcoe_sof, & fcoe_fc_crc_ok, & fcoe_enc_error, & fcoe_eof, & tcp_udp_csum_ok, & udp, & tcp, & ipv4_csum_ok, & ipv6, & ipv4, & ipv4_fragment, & fcs_ok); } if ((unsigned int )packet_error != 0U) { if ((unsigned int )fcs_ok == 0U) { if ((unsigned int )bytes_written != 0U) { enic->rq_bad_fcs = enic->rq_bad_fcs + 1ULL; } else if ((unsigned int )bytes_written == 0U) { enic->rq_truncated_pkts = enic->rq_truncated_pkts + 1ULL; } else { } } else { } { dev_kfree_skb_any(skb); } return; } else { } if ((unsigned int )eop != 0U && (unsigned int )bytes_written != 0U) { { skb_put(skb, (unsigned int )bytes_written); skb->protocol = eth_type_trans(skb, netdev); skb_record_rx_queue(skb, (int )q_number); } if ((netdev->features & 2147483648ULL) != 0ULL) { { skb_set_hash(skb, rss_hash, ((int )rss_type & 84) != 0 ? 3 : 2); } } else { } if ((netdev->features & 4294967296ULL) != 0ULL && (unsigned int )csum_not_calc == 0U) { { tmp___0 = __fswab16((int )checksum); skb->__annonCompField68.csum = (__wsum )tmp___0; skb->ip_summed = 2U; } } else { } if ((unsigned int )vlan_stripped != 0U) { { __vlan_hwaccel_put_tag(skb, 129, (int )vlan_tci); } } else { } if ((netdev->features & 16384ULL) != 0ULL) { { napi_gro_receive((struct napi_struct *)(& enic->napi) + (unsigned long )q_number, skb); } } else { { netif_receive_skb(skb); } } } else { { dev_kfree_skb_any(skb); } } return; } } static int enic_rq_service(struct vnic_dev *vdev , struct cq_desc *cq_desc , u8 type , u16 q_number , u16 completed_index , void *opaque ) { struct enic *enic ; void *tmp ; { { tmp = vnic_dev_priv(vdev); enic = (struct enic *)tmp; vnic_rq_service((struct vnic_rq *)(& enic->rq) + (unsigned long )q_number, cq_desc, (int )completed_index, 0, & enic_rq_indicate_buf, opaque); } return (0); } } static int enic_poll(struct napi_struct *napi , int budget ) { struct net_device *netdev ; struct enic *enic ; void *tmp ; unsigned int cq_rq ; unsigned int tmp___0 ; unsigned int cq_wq ; unsigned int tmp___1 ; unsigned int intr ; unsigned int tmp___2 ; unsigned int rq_work_to_do ; unsigned int wq_work_to_do ; unsigned int work_done ; unsigned int rq_work_done ; unsigned int wq_work_done ; int err ; { { netdev = napi->dev; tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; tmp___0 = enic_cq_rq(enic, 0U); cq_rq = tmp___0; tmp___1 = enic_cq_wq(enic, 0U); cq_wq = tmp___1; tmp___2 = enic_legacy_io_intr(); intr = tmp___2; rq_work_to_do = (unsigned int )budget; wq_work_to_do = 4294967295U; rq_work_done = vnic_cq_service((struct vnic_cq *)(& enic->cq) + (unsigned long )cq_rq, rq_work_to_do, & enic_rq_service, (void *)0); wq_work_done = vnic_cq_service((struct vnic_cq *)(& enic->cq) + (unsigned long )cq_wq, wq_work_to_do, & enic_wq_service, (void *)0); work_done = rq_work_done + wq_work_done; } if (work_done != 0U) { { vnic_intr_return_credits((struct vnic_intr *)(& enic->intr) + (unsigned long )intr, work_done, 0, 0); } } else { } { err = vnic_rq_fill((struct vnic_rq *)(& enic->rq), & enic_rq_alloc_buf); } if (err != 0) { rq_work_done = rq_work_to_do; } else { } if (rq_work_done < rq_work_to_do) { { napi_complete(napi); vnic_intr_unmask((struct vnic_intr *)(& enic->intr) + (unsigned long )intr); } } else { } return ((int )rq_work_done); } } static int enic_poll_msix(struct napi_struct *napi , int budget ) { struct net_device *netdev ; struct enic *enic ; void *tmp ; unsigned int rq ; unsigned int cq ; unsigned int tmp___0 ; unsigned int intr ; unsigned int tmp___1 ; unsigned int work_to_do ; unsigned int work_done ; int err ; { { netdev = napi->dev; tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; rq = (unsigned int )(((long )napi - (long )(& enic->napi)) / 184L); tmp___0 = enic_cq_rq(enic, rq); cq = tmp___0; tmp___1 = enic_msix_rq_intr(enic, rq); intr = tmp___1; work_to_do = (unsigned int )budget; work_done = vnic_cq_service((struct vnic_cq *)(& enic->cq) + (unsigned long )cq, work_to_do, & enic_rq_service, (void *)0); } if (work_done != 0U) { { vnic_intr_return_credits((struct vnic_intr *)(& enic->intr) + (unsigned long )intr, work_done, 0, 0); } } else { } { err = vnic_rq_fill((struct vnic_rq *)(& enic->rq) + (unsigned long )rq, & enic_rq_alloc_buf); } if (err != 0) { work_done = work_to_do; } else { } if (work_done < work_to_do) { { napi_complete(napi); vnic_intr_unmask((struct vnic_intr *)(& enic->intr) + (unsigned long )intr); } } else { } return ((int )work_done); } } static void enic_notify_timer(unsigned long data ) { struct enic *enic ; unsigned long tmp ; { { enic = (struct enic *)data; enic_notify_check(enic); tmp = round_jiffies((unsigned long )jiffies + 500UL); ldv_mod_timer_110(& enic->notify_timer, tmp); } return; } } static void enic_free_intr(struct enic *enic ) { struct net_device *netdev ; unsigned int i ; enum vnic_dev_intr_mode tmp ; { { netdev = enic->netdev; tmp = vnic_dev_get_intr_mode(enic->vdev); } { if ((unsigned int )tmp == 1U) { goto case_1; } else { } if ((unsigned int )tmp == 2U) { goto case_2; } else { } if ((unsigned int )tmp == 3U) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_free_irq_111((enic->pdev)->irq, (void *)netdev); } goto ldv_51806; case_2: /* CIL Label */ { ldv_free_irq_112((enic->pdev)->irq, (void *)enic); } goto ldv_51806; case_3: /* CIL Label */ i = 0U; goto ldv_51812; ldv_51811: ; if (enic->msix[i].requested != 0) { { ldv_free_irq_113(enic->msix_entry[i].vector, enic->msix[i].devid); } } else { } i = i + 1U; ldv_51812: ; if (i <= 17U) { goto ldv_51811; } else { } goto ldv_51806; switch_default: /* CIL Label */ ; goto ldv_51806; switch_break: /* CIL Label */ ; } ldv_51806: ; return; } } static int enic_request_intr(struct enic *enic ) { struct net_device *netdev ; unsigned int i ; unsigned int intr ; int err ; enum vnic_dev_intr_mode tmp ; { { netdev = enic->netdev; err = 0; tmp = vnic_dev_get_intr_mode(enic->vdev); } { if ((unsigned int )tmp == 1U) { goto case_1; } else { } if ((unsigned int )tmp == 2U) { goto case_2; } else { } if ((unsigned int )tmp == 3U) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { err = ldv_request_irq_114((enic->pdev)->irq, & enic_isr_legacy, 128UL, (char const *)(& netdev->name), (void *)netdev); } goto ldv_51823; case_2: /* CIL Label */ { err = ldv_request_irq_115((enic->pdev)->irq, & enic_isr_msi, 0UL, (char const *)(& netdev->name), (void *)enic); } goto ldv_51823; case_3: /* CIL Label */ i = 0U; goto ldv_51827; ldv_51826: { intr = enic_msix_rq_intr(enic, i); snprintf((char *)(& enic->msix[intr].devname), 16UL, "%.11s-rx-%d", (char *)(& netdev->name), i); enic->msix[intr].isr = & enic_isr_msix_rq; enic->msix[intr].devid = (void *)(& enic->napi) + (unsigned long )i; i = i + 1U; } ldv_51827: ; if (i < enic->rq_count) { goto ldv_51826; } else { } i = 0U; goto ldv_51830; ldv_51829: { intr = enic_msix_wq_intr(enic, i); snprintf((char *)(& enic->msix[intr].devname), 16UL, "%.11s-tx-%d", (char *)(& netdev->name), i); enic->msix[intr].isr = & enic_isr_msix_wq; enic->msix[intr].devid = (void *)enic; i = i + 1U; } ldv_51830: ; if (i < enic->wq_count) { goto ldv_51829; } else { } { intr = enic_msix_err_intr(enic); snprintf((char *)(& enic->msix[intr].devname), 16UL, "%.11s-err", (char *)(& netdev->name)); enic->msix[intr].isr = & enic_isr_msix_err; enic->msix[intr].devid = (void *)enic; intr = enic_msix_notify_intr(enic); snprintf((char *)(& enic->msix[intr].devname), 16UL, "%.11s-notify", (char *)(& netdev->name)); enic->msix[intr].isr = & enic_isr_msix_notify; enic->msix[intr].devid = (void *)enic; i = 0U; } goto ldv_51835; ldv_51834: enic->msix[i].requested = 0; i = i + 1U; ldv_51835: ; if (i <= 17U) { goto ldv_51834; } else { } i = 0U; goto ldv_51839; ldv_51838: { err = ldv_request_irq_116(enic->msix_entry[i].vector, enic->msix[i].isr, 0UL, (char const *)(& enic->msix[i].devname), enic->msix[i].devid); } if (err != 0) { { enic_free_intr(enic); } goto ldv_51837; } else { } enic->msix[i].requested = 1; i = i + 1U; ldv_51839: ; if (i < enic->intr_count) { goto ldv_51838; } else { } ldv_51837: ; goto ldv_51823; switch_default: /* CIL Label */ ; goto ldv_51823; switch_break: /* CIL Label */ ; } ldv_51823: ; return (err); } } static void enic_synchronize_irqs(struct enic *enic ) { unsigned int i ; enum vnic_dev_intr_mode tmp ; { { tmp = vnic_dev_get_intr_mode(enic->vdev); } { if ((unsigned int )tmp == 1U) { goto case_1; } else { } if ((unsigned int )tmp == 2U) { goto case_2; } else { } if ((unsigned int )tmp == 3U) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ { synchronize_irq((enic->pdev)->irq); } goto ldv_51847; case_3: /* CIL Label */ i = 0U; goto ldv_51850; ldv_51849: { synchronize_irq(enic->msix_entry[i].vector); i = i + 1U; } ldv_51850: ; if (i < enic->intr_count) { goto ldv_51849; } else { } goto ldv_51847; switch_default: /* CIL Label */ ; goto ldv_51847; switch_break: /* CIL Label */ ; } ldv_51847: ; return; } } static int enic_dev_notify_set(struct enic *enic ) { int err ; enum vnic_dev_intr_mode tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; { { ldv_spin_lock_106(& enic->devcmd_lock); tmp = vnic_dev_get_intr_mode(enic->vdev); } { if ((unsigned int )tmp == 1U) { goto case_1; } else { } if ((unsigned int )tmp == 3U) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___0 = enic_legacy_notify_intr(); err = vnic_dev_notify_set(enic->vdev, (int )((u16 )tmp___0)); } goto ldv_51858; case_3: /* CIL Label */ { tmp___1 = enic_msix_notify_intr(enic); err = vnic_dev_notify_set(enic->vdev, (int )((u16 )tmp___1)); } goto ldv_51858; switch_default: /* CIL Label */ { err = vnic_dev_notify_set(enic->vdev, 65535); } goto ldv_51858; switch_break: /* CIL Label */ ; } ldv_51858: { ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } static void enic_notify_timer_start(struct enic *enic ) { enum vnic_dev_intr_mode tmp ; { { tmp = vnic_dev_get_intr_mode(enic->vdev); } { if ((unsigned int )tmp == 2U) { goto case_2; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_mod_timer_119(& enic->notify_timer, jiffies); } goto ldv_51865; switch_default: /* CIL Label */ ; goto ldv_51865; switch_break: /* CIL Label */ ; } ldv_51865: ; return; } } static int enic_open(struct net_device *netdev ) { struct enic *enic ; void *tmp ; unsigned int i ; int err ; unsigned int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; err = enic_request_intr(enic); } if (err != 0) { { netdev_err((struct net_device const *)netdev, "Unable to request irq.\n"); } return (err); } else { } { err = enic_dev_notify_set(enic); } if (err != 0) { { netdev_err((struct net_device const *)netdev, "Failed to alloc notify buffer, aborting.\n"); } goto err_out_free_intr; } else { } i = 0U; goto ldv_51876; ldv_51875: { vnic_rq_fill((struct vnic_rq *)(& enic->rq) + (unsigned long )i, & enic_rq_alloc_buf); tmp___0 = vnic_rq_desc_used((struct vnic_rq *)(& enic->rq) + (unsigned long )i); } if (tmp___0 == 0U) { { netdev_err((struct net_device const *)netdev, "Unable to alloc receive buffers\n"); err = -12; } goto err_out_notify_unset; } else { } i = i + 1U; ldv_51876: ; if (i < enic->rq_count) { goto ldv_51875; } else { } i = 0U; goto ldv_51879; ldv_51878: { vnic_wq_enable((struct vnic_wq *)(& enic->wq) + (unsigned long )i); i = i + 1U; } ldv_51879: ; if (i < enic->wq_count) { goto ldv_51878; } else { } i = 0U; goto ldv_51882; ldv_51881: { vnic_rq_enable((struct vnic_rq *)(& enic->rq) + (unsigned long )i); i = i + 1U; } ldv_51882: ; if (i < enic->rq_count) { goto ldv_51881; } else { } { tmp___1 = enic_is_dynamic(enic); } if (tmp___1 == 0) { { tmp___2 = enic_is_sriov_vf(enic); } if (tmp___2 == 0) { { enic_dev_add_station_addr(enic); } } else { } } else { } { enic_set_rx_mode(netdev); netif_tx_wake_all_queues(netdev); i = 0U; } goto ldv_51885; ldv_51884: { napi_enable((struct napi_struct *)(& enic->napi) + (unsigned long )i); i = i + 1U; } ldv_51885: ; if (i < enic->rq_count) { goto ldv_51884; } else { } { enic_dev_enable(enic); i = 0U; } goto ldv_51888; ldv_51887: { vnic_intr_unmask((struct vnic_intr *)(& enic->intr) + (unsigned long )i); i = i + 1U; } ldv_51888: ; if (i < enic->intr_count) { goto ldv_51887; } else { } { enic_notify_timer_start(enic); } return (0); err_out_notify_unset: { enic_dev_notify_unset(enic); } err_out_free_intr: { enic_free_intr(enic); } return (err); } } static int enic_stop(struct net_device *netdev ) { struct enic *enic ; void *tmp ; unsigned int i ; int err ; int tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; i = 0U; } goto ldv_51897; ldv_51896: { vnic_intr_mask((struct vnic_intr *)(& enic->intr) + (unsigned long )i); vnic_intr_masked((struct vnic_intr *)(& enic->intr) + (unsigned long )i); i = i + 1U; } ldv_51897: ; if (i < enic->intr_count) { goto ldv_51896; } else { } { enic_synchronize_irqs(enic); ldv_del_timer_sync_120(& enic->notify_timer); enic_dev_disable(enic); i = 0U; } goto ldv_51900; ldv_51899: { napi_disable((struct napi_struct *)(& enic->napi) + (unsigned long )i); i = i + 1U; } ldv_51900: ; if (i < enic->rq_count) { goto ldv_51899; } else { } { netif_carrier_off(netdev); netif_tx_disable(netdev); tmp___0 = enic_is_dynamic(enic); } if (tmp___0 == 0) { { tmp___1 = enic_is_sriov_vf(enic); } if (tmp___1 == 0) { { enic_dev_del_station_addr(enic); } } else { } } else { } i = 0U; goto ldv_51903; ldv_51902: { err = vnic_wq_disable((struct vnic_wq *)(& enic->wq) + (unsigned long )i); } if (err != 0) { return (err); } else { } i = i + 1U; ldv_51903: ; if (i < enic->wq_count) { goto ldv_51902; } else { } i = 0U; goto ldv_51906; ldv_51905: { err = vnic_rq_disable((struct vnic_rq *)(& enic->rq) + (unsigned long )i); } if (err != 0) { return (err); } else { } i = i + 1U; ldv_51906: ; if (i < enic->rq_count) { goto ldv_51905; } else { } { enic_dev_notify_unset(enic); enic_free_intr(enic); i = 0U; } goto ldv_51909; ldv_51908: { vnic_wq_clean((struct vnic_wq *)(& enic->wq) + (unsigned long )i, & enic_free_wq_buf); i = i + 1U; } ldv_51909: ; if (i < enic->wq_count) { goto ldv_51908; } else { } i = 0U; goto ldv_51912; ldv_51911: { vnic_rq_clean((struct vnic_rq *)(& enic->rq) + (unsigned long )i, & enic_free_rq_buf); i = i + 1U; } ldv_51912: ; if (i < enic->rq_count) { goto ldv_51911; } else { } i = 0U; goto ldv_51915; ldv_51914: { vnic_cq_clean((struct vnic_cq *)(& enic->cq) + (unsigned long )i); i = i + 1U; } ldv_51915: ; if (i < enic->cq_count) { goto ldv_51914; } else { } i = 0U; goto ldv_51918; ldv_51917: { vnic_intr_clean((struct vnic_intr *)(& enic->intr) + (unsigned long )i); i = i + 1U; } ldv_51918: ; if (i < enic->intr_count) { goto ldv_51917; } else { } return (0); } } static int enic_change_mtu(struct net_device *netdev , int new_mtu ) { struct enic *enic ; void *tmp ; int running ; bool tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; tmp___0 = netif_running((struct net_device const *)netdev); running = (int )tmp___0; } if ((unsigned int )new_mtu - 68U > 8932U) { return (-22); } else { } { tmp___1 = enic_is_dynamic(enic); } if (tmp___1 != 0) { return (-95); } else { { tmp___2 = enic_is_sriov_vf(enic); } if (tmp___2 != 0) { return (-95); } else { } } if (running != 0) { { enic_stop(netdev); } } else { } netdev->mtu = (unsigned int )new_mtu; if (netdev->mtu > enic->port_mtu) { { netdev_warn((struct net_device const *)netdev, "interface MTU (%d) set higher than port MTU (%d)\n", netdev->mtu, enic->port_mtu); } } else { } if (running != 0) { { enic_open(netdev); } } else { } return (0); } } static void enic_change_mtu_work(struct work_struct *work ) { struct enic *enic ; struct work_struct const *__mptr ; struct net_device *netdev ; int new_mtu ; u32 tmp ; int err ; unsigned int i ; int __max1 ; int __max2 ; int __min1 ; int __min2 ; unsigned int tmp___0 ; { { __mptr = (struct work_struct const *)work; enic = (struct enic *)__mptr + 0xfffffffffffffe58UL; netdev = enic->netdev; tmp = vnic_dev_mtu(enic->vdev); new_mtu = (int )tmp; __max1 = 68; __min1 = 9000; __min2 = new_mtu; __max2 = __min1 < __min2 ? __min1 : __min2; new_mtu = __max1 > __max2 ? __max1 : __max2; rtnl_lock(); ldv_del_timer_sync_121(& enic->notify_timer); i = 0U; } goto ldv_51943; ldv_51942: { napi_disable((struct napi_struct *)(& enic->napi) + (unsigned long )i); i = i + 1U; } ldv_51943: ; if (i < enic->rq_count) { goto ldv_51942; } else { } { vnic_intr_mask((struct vnic_intr *)(& enic->intr)); enic_synchronize_irqs(enic); err = vnic_rq_disable((struct vnic_rq *)(& enic->rq)); } if (err != 0) { { rtnl_unlock(); netdev_err((struct net_device const *)netdev, "Unable to disable RQ.\n"); } return; } else { } { vnic_rq_clean((struct vnic_rq *)(& enic->rq), & enic_free_rq_buf); vnic_cq_clean((struct vnic_cq *)(& enic->cq)); vnic_intr_clean((struct vnic_intr *)(& enic->intr)); netdev->mtu = (unsigned int )new_mtu; vnic_rq_fill((struct vnic_rq *)(& enic->rq), & enic_rq_alloc_buf); tmp___0 = vnic_rq_desc_used((struct vnic_rq *)(& enic->rq)); } if (tmp___0 == 0U) { { rtnl_unlock(); netdev_err((struct net_device const *)netdev, "Unable to alloc receive buffers.\n"); } return; } else { } { vnic_rq_enable((struct vnic_rq *)(& enic->rq)); napi_enable((struct napi_struct *)(& enic->napi)); vnic_intr_unmask((struct vnic_intr *)(& enic->intr)); enic_notify_timer_start(enic); rtnl_unlock(); netdev_info((struct net_device const *)netdev, "interface MTU set as %d\n", netdev->mtu); } return; } } static void enic_poll_controller(struct net_device *netdev ) { struct enic *enic ; void *tmp ; struct vnic_dev *vdev ; unsigned int i ; unsigned int intr ; enum vnic_dev_intr_mode tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; vdev = enic->vdev; tmp___0 = vnic_dev_get_intr_mode(vdev); } { if ((unsigned int )tmp___0 == 3U) { goto case_3; } else { } if ((unsigned int )tmp___0 == 2U) { goto case_2; } else { } if ((unsigned int )tmp___0 == 1U) { goto case_1; } else { } goto switch_default; case_3: /* CIL Label */ i = 0U; goto ldv_51954; ldv_51953: { intr = enic_msix_rq_intr(enic, i); enic_isr_msix_rq((int )enic->msix_entry[intr].vector, (void *)(& enic->napi) + (unsigned long )i); i = i + 1U; } ldv_51954: ; if (i < enic->rq_count) { goto ldv_51953; } else { } i = 0U; goto ldv_51957; ldv_51956: { intr = enic_msix_wq_intr(enic, i); enic_isr_msix_wq((int )enic->msix_entry[intr].vector, (void *)enic); i = i + 1U; } ldv_51957: ; if (i < enic->wq_count) { goto ldv_51956; } else { } goto ldv_51959; case_2: /* CIL Label */ { enic_isr_msi((int )(enic->pdev)->irq, (void *)enic); } goto ldv_51959; case_1: /* CIL Label */ { enic_isr_legacy((int )(enic->pdev)->irq, (void *)netdev); } goto ldv_51959; switch_default: /* CIL Label */ ; goto ldv_51959; switch_break: /* CIL Label */ ; } ldv_51959: ; return; } } static int enic_dev_wait(struct vnic_dev *vdev , int (*start)(struct vnic_dev * , int ) , int (*finished)(struct vnic_dev * , int * ) , int arg ) { unsigned long time ; int done ; int err ; int tmp ; long tmp___0 ; { { tmp = preempt_count(); tmp___0 = ldv__builtin_expect(((unsigned long )tmp & 2096896UL) != 0UL, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/cisco/enic/enic_main.c"), "i" (1585), "i" (12UL)); __builtin_unreachable(); } } else { } { err = (*start)(vdev, arg); } if (err != 0) { return (err); } else { } time = (unsigned long )jiffies + 500UL; ldv_51982: { err = (*finished)(vdev, & done); } if (err != 0) { return (err); } else { } if (done != 0) { return (0); } else { } { schedule_timeout_uninterruptible(25L); } if ((long )((unsigned long )jiffies - time) < 0L) { goto ldv_51982; } else { } return (-110); } } static int enic_dev_open(struct enic *enic ) { int err ; struct device *tmp ; { { err = enic_dev_wait(enic->vdev, & vnic_dev_open, & vnic_dev_open_done, 0); } if (err != 0) { { tmp = enic_get_dev(enic); dev_err((struct device const *)tmp, "vNIC device open failed, err %d\n", err); } } else { } return (err); } } static int enic_dev_hang_reset(struct enic *enic ) { int err ; { { err = enic_dev_wait(enic->vdev, & vnic_dev_hang_reset, & vnic_dev_hang_reset_done, 0); } if (err != 0) { { netdev_err((struct net_device const *)enic->netdev, "vNIC hang reset failed, err %d\n", err); } } else { } return (err); } } static int enic_set_rsskey(struct enic *enic ) { dma_addr_t rss_key_buf_pa ; union vnic_rss_key *rss_key_buf_va ; union vnic_rss_key rss_key ; int err ; void *tmp ; { { rss_key_buf_va = (union vnic_rss_key *)0; rss_key.key[0].b[0] = 85U; rss_key.key[0].b[1] = 67U; rss_key.key[0].b[2] = 83U; rss_key.key[0].b[3] = 97U; rss_key.key[0].b[4] = 119U; rss_key.key[0].b[5] = 101U; rss_key.key[0].b[6] = 115U; rss_key.key[0].b[7] = 111U; rss_key.key[0].b[8] = 109U; rss_key.key[0].b[9] = 101U; rss_key.key[0].b_pad[0] = (unsigned char)0; rss_key.key[0].b_pad[1] = (unsigned char)0; rss_key.key[0].b_pad[2] = (unsigned char)0; rss_key.key[0].b_pad[3] = (unsigned char)0; rss_key.key[0].b_pad[4] = (unsigned char)0; rss_key.key[0].b_pad[5] = (unsigned char)0; rss_key.key[1].b[0] = 80U; rss_key.key[1].b[1] = 65U; rss_key.key[1].b[2] = 76U; rss_key.key[1].b[3] = 79U; rss_key.key[1].b[4] = 117U; rss_key.key[1].b[5] = 110U; rss_key.key[1].b[6] = 105U; rss_key.key[1].b[7] = 113U; rss_key.key[1].b[8] = 117U; rss_key.key[1].b[9] = 101U; rss_key.key[1].b_pad[0] = (unsigned char)0; rss_key.key[1].b_pad[1] = (unsigned char)0; rss_key.key[1].b_pad[2] = (unsigned char)0; rss_key.key[1].b_pad[3] = (unsigned char)0; rss_key.key[1].b_pad[4] = (unsigned char)0; rss_key.key[1].b_pad[5] = (unsigned char)0; rss_key.key[2].b[0] = 76U; rss_key.key[2].b[1] = 73U; rss_key.key[2].b[2] = 78U; rss_key.key[2].b[3] = 85U; rss_key.key[2].b[4] = 88U; rss_key.key[2].b[5] = 114U; rss_key.key[2].b[6] = 111U; rss_key.key[2].b[7] = 99U; rss_key.key[2].b[8] = 107U; rss_key.key[2].b[9] = 115U; rss_key.key[2].b_pad[0] = (unsigned char)0; rss_key.key[2].b_pad[1] = (unsigned char)0; rss_key.key[2].b_pad[2] = (unsigned char)0; rss_key.key[2].b_pad[3] = (unsigned char)0; rss_key.key[2].b_pad[4] = (unsigned char)0; rss_key.key[2].b_pad[5] = (unsigned char)0; rss_key.key[3].b[0] = 69U; rss_key.key[3].b[1] = 78U; rss_key.key[3].b[2] = 73U; rss_key.key[3].b[3] = 67U; rss_key.key[3].b[4] = 105U; rss_key.key[3].b[5] = 115U; rss_key.key[3].b[6] = 99U; rss_key.key[3].b[7] = 111U; rss_key.key[3].b[8] = 111U; rss_key.key[3].b[9] = 108U; rss_key.key[3].b_pad[0] = (unsigned char)0; rss_key.key[3].b_pad[1] = (unsigned char)0; rss_key.key[3].b_pad[2] = (unsigned char)0; rss_key.key[3].b_pad[3] = (unsigned char)0; rss_key.key[3].b_pad[4] = (unsigned char)0; rss_key.key[3].b_pad[5] = (unsigned char)0; tmp = pci_alloc_consistent(enic->pdev, 64UL, & rss_key_buf_pa); rss_key_buf_va = (union vnic_rss_key *)tmp; } if ((unsigned long )rss_key_buf_va == (unsigned long )((union vnic_rss_key *)0)) { return (-12); } else { } { memcpy((void *)rss_key_buf_va, (void const *)(& rss_key), 64UL); ldv_spin_lock_106(& enic->devcmd_lock); err = enic_set_rss_key(enic, rss_key_buf_pa, 64ULL); ldv_spin_unlock_107(& enic->devcmd_lock); pci_free_consistent(enic->pdev, 64UL, (void *)rss_key_buf_va, rss_key_buf_pa); } return (err); } } static int enic_set_rsscpu(struct enic *enic , u8 rss_hash_bits ) { dma_addr_t rss_cpu_buf_pa ; union vnic_rss_cpu *rss_cpu_buf_va ; unsigned int i ; int err ; void *tmp ; { { rss_cpu_buf_va = (union vnic_rss_cpu *)0; tmp = pci_alloc_consistent(enic->pdev, 256UL, & rss_cpu_buf_pa); rss_cpu_buf_va = (union vnic_rss_cpu *)tmp; } if ((unsigned long )rss_cpu_buf_va == (unsigned long )((union vnic_rss_cpu *)0)) { return (-12); } else { } i = 0U; goto ldv_52008; ldv_52007: rss_cpu_buf_va->cpu[i / 4U].b[i & 3U] = (u8 )(i % enic->rq_count); i = i + 1U; ldv_52008: ; if (i >> (int )rss_hash_bits == 0U) { goto ldv_52007; } else { } { ldv_spin_lock_106(& enic->devcmd_lock); err = enic_set_rss_cpu(enic, rss_cpu_buf_pa, 256ULL); ldv_spin_unlock_107(& enic->devcmd_lock); pci_free_consistent(enic->pdev, 256UL, (void *)rss_cpu_buf_va, rss_cpu_buf_pa); } return (err); } } static int enic_set_niccfg(struct enic *enic , u8 rss_default_cpu , u8 rss_hash_type , u8 rss_hash_bits , u8 rss_base_cpu , u8 rss_enable ) { u8 tso_ipid_split_en ; u8 ig_vlan_strip_en ; int err ; { { tso_ipid_split_en = 0U; ig_vlan_strip_en = 1U; ldv_spin_lock_106(& enic->devcmd_lock); err = enic_set_nic_cfg(enic, (int )rss_default_cpu, (int )rss_hash_type, (int )rss_hash_bits, (int )rss_base_cpu, (int )rss_enable, (int )tso_ipid_split_en, (int )ig_vlan_strip_en); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } static int enic_set_rss_nic_cfg(struct enic *enic ) { struct device *dev ; struct device *tmp ; u8 rss_default_cpu ; u8 rss_hash_type ; u8 rss_hash_bits ; u8 rss_base_cpu ; u8 rss_enable ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = enic_get_dev(enic); dev = tmp; rss_default_cpu = 0U; rss_hash_type = 30U; rss_hash_bits = 7U; rss_base_cpu = 0U; rss_enable = (u8 )((enic->config.flags & 16U) != 0U && enic->rq_count > 1U); } if ((unsigned int )rss_enable != 0U) { { tmp___1 = enic_set_rsskey(enic); } if (tmp___1 == 0) { { tmp___0 = enic_set_rsscpu(enic, (int )rss_hash_bits); } if (tmp___0 != 0) { { rss_enable = 0U; dev_warn((struct device const *)dev, "RSS disabled, Failed to set RSS cpu indirection table."); } } else { } } else { { rss_enable = 0U; dev_warn((struct device const *)dev, "RSS disabled, Failed to set RSS key.\n"); } } } else { } { tmp___2 = enic_set_niccfg(enic, (int )rss_default_cpu, (int )rss_hash_type, (int )rss_hash_bits, (int )rss_base_cpu, (int )rss_enable); } return (tmp___2); } } static void enic_reset(struct work_struct *work ) { struct enic *enic ; struct work_struct const *__mptr ; bool tmp ; int tmp___0 ; { { __mptr = (struct work_struct const *)work; enic = (struct enic *)__mptr + 0xfffffffffffffea8UL; tmp = netif_running((struct net_device const *)enic->netdev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } { rtnl_lock(); ldv_spin_lock_128(& enic->enic_api_lock); enic_dev_hang_notify(enic); enic_stop(enic->netdev); enic_dev_hang_reset(enic); enic_reset_addr_lists(enic); enic_init_vnic_resources(enic); enic_set_rss_nic_cfg(enic); enic_dev_set_ig_vlan_rewrite_mode(enic); enic_open(enic->netdev); ldv_spin_unlock_129(& enic->enic_api_lock); call_netdevice_notifiers(3UL, enic->netdev); rtnl_unlock(); } return; } } static int enic_set_intr_mode(struct enic *enic ) { unsigned int n ; unsigned int __min1 ; unsigned int __min2 ; unsigned int m ; unsigned int __min1___0 ; unsigned int __min2___0 ; unsigned int i ; long tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { __min1 = enic->rq_count; __min2 = 8U; n = __min1 < __min2 ? __min1 : __min2; __min1___0 = enic->wq_count; __min2___0 = 8U; m = __min1___0 < __min2___0 ? __min1___0 : __min2___0; tmp = ldv__builtin_expect((n + m) + 2U > 18U, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/cisco/enic/enic_main.c"), "i" (1785), "i" (12UL)); __builtin_unreachable(); } } else { } i = 0U; goto ldv_52051; ldv_52050: enic->msix_entry[i].entry = (u16 )i; i = i + 1U; ldv_52051: ; if (i < (n + m) + 2U) { goto ldv_52050; } else { } if ((((((enic->config.flags & 16U) != 0U && (unsigned int )enic->config.intr_mode == 0U) && enic->rq_count >= n) && enic->wq_count >= m) && enic->cq_count >= n + m) && enic->intr_count >= (n + m) + 2U) { { tmp___0 = pci_enable_msix(enic->pdev, (struct msix_entry *)(& enic->msix_entry), (int )((n + m) + 2U)); } if (tmp___0 == 0) { { enic->rq_count = n; enic->wq_count = m; enic->cq_count = n + m; enic->intr_count = (n + m) + 2U; vnic_dev_set_intr_mode(enic->vdev, 3); } return (0); } else { } } else { } if (((((unsigned int )enic->config.intr_mode == 0U && enic->rq_count != 0U) && enic->wq_count >= m) && enic->cq_count >= m + 1U) && enic->intr_count >= m + 3U) { { tmp___1 = pci_enable_msix(enic->pdev, (struct msix_entry *)(& enic->msix_entry), (int )(m + 3U)); } if (tmp___1 == 0) { { enic->rq_count = 1U; enic->wq_count = m; enic->cq_count = m + 1U; enic->intr_count = m + 3U; vnic_dev_set_intr_mode(enic->vdev, 3); } return (0); } else { } } else { } if (((((unsigned int )enic->config.intr_mode <= 1U && enic->rq_count != 0U) && enic->wq_count != 0U) && enic->cq_count > 1U) && enic->intr_count != 0U) { { tmp___2 = pci_enable_msi_block(enic->pdev, 1); } if (tmp___2 == 0) { { enic->rq_count = 1U; enic->wq_count = 1U; enic->cq_count = 2U; enic->intr_count = 1U; vnic_dev_set_intr_mode(enic->vdev, 2); } return (0); } else { } } else { } if (((((unsigned int )enic->config.intr_mode <= 2U && enic->rq_count != 0U) && enic->wq_count != 0U) && enic->cq_count > 1U) && enic->intr_count > 2U) { { enic->rq_count = 1U; enic->wq_count = 1U; enic->cq_count = 2U; enic->intr_count = 3U; vnic_dev_set_intr_mode(enic->vdev, 1); } return (0); } else { } { vnic_dev_set_intr_mode(enic->vdev, 0); } return (-22); } } static void enic_clear_intr_mode(struct enic *enic ) { enum vnic_dev_intr_mode tmp ; { { tmp = vnic_dev_get_intr_mode(enic->vdev); } { if ((unsigned int )tmp == 3U) { goto case_3; } else { } if ((unsigned int )tmp == 2U) { goto case_2; } else { } goto switch_default; case_3: /* CIL Label */ { pci_disable_msix(enic->pdev); } goto ldv_52057; case_2: /* CIL Label */ { pci_disable_msi(enic->pdev); } goto ldv_52057; switch_default: /* CIL Label */ ; goto ldv_52057; switch_break: /* CIL Label */ ; } ldv_52057: { vnic_dev_set_intr_mode(enic->vdev, 0); } return; } } static struct net_device_ops const enic_netdev_dynamic_ops = {0, 0, & enic_open, & enic_stop, & enic_hard_start_xmit, 0, 0, & enic_set_rx_mode, & enic_set_mac_address_dynamic, & eth_validate_addr, 0, 0, & enic_change_mtu, 0, & enic_tx_timeout, & enic_get_stats, 0, & enic_vlan_rx_add_vid, & enic_vlan_rx_kill_vid, & enic_poll_controller, 0, 0, 0, & enic_set_vf_mac, 0, 0, 0, 0, 0, & enic_set_vf_port, & enic_get_vf_port, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct net_device_ops const enic_netdev_ops = {0, 0, & enic_open, & enic_stop, & enic_hard_start_xmit, 0, 0, & enic_set_rx_mode, & enic_set_mac_address, & eth_validate_addr, 0, 0, & enic_change_mtu, 0, & enic_tx_timeout, & enic_get_stats, 0, & enic_vlan_rx_add_vid, & enic_vlan_rx_kill_vid, & enic_poll_controller, 0, 0, 0, & enic_set_vf_mac, 0, 0, 0, 0, 0, & enic_set_vf_port, & enic_get_vf_port, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static void enic_dev_deinit(struct enic *enic ) { unsigned int i ; { i = 0U; goto ldv_52067; ldv_52066: { netif_napi_del((struct napi_struct *)(& enic->napi) + (unsigned long )i); i = i + 1U; } ldv_52067: ; if (i < enic->rq_count) { goto ldv_52066; } else { } { enic_free_vnic_resources(enic); enic_clear_intr_mode(enic); } return; } } static int enic_dev_init(struct enic *enic ) { struct device *dev ; struct device *tmp ; struct net_device *netdev ; unsigned int i ; int err ; enum vnic_dev_intr_mode tmp___0 ; { { tmp = enic_get_dev(enic); dev = tmp; netdev = enic->netdev; err = enic_dev_intr_coal_timer_info(enic); } if (err != 0) { { dev_warn((struct device const *)dev, "Using default conversion factor for interrupt coalesce timer\n"); vnic_dev_intr_coal_timer_info_default(enic->vdev); } } else { } { err = enic_get_vnic_config(enic); } if (err != 0) { { dev_err((struct device const *)dev, "Get vNIC configuration failed, aborting\n"); } return (err); } else { } { enic_get_res_counts(enic); err = enic_set_intr_mode(enic); } if (err != 0) { { dev_err((struct device const *)dev, "Failed to set intr mode based on resource counts and system capabilities, aborting\n"); } return (err); } else { } { err = enic_alloc_vnic_resources(enic); } if (err != 0) { { dev_err((struct device const *)dev, "Failed to alloc vNIC resources, aborting\n"); } goto err_out_free_vnic_resources; } else { } { enic_init_vnic_resources(enic); err = enic_set_rss_nic_cfg(enic); } if (err != 0) { { dev_err((struct device const *)dev, "Failed to config nic, aborting\n"); } goto err_out_free_vnic_resources; } else { } { tmp___0 = vnic_dev_get_intr_mode(enic->vdev); } { if ((unsigned int )tmp___0 == 3U) { goto case_3; } else { } goto switch_default; switch_default: /* CIL Label */ { netif_napi_add(netdev, (struct napi_struct *)(& enic->napi), & enic_poll, 64); } goto ldv_52078; case_3: /* CIL Label */ i = 0U; goto ldv_52081; ldv_52080: { netif_napi_add(netdev, (struct napi_struct *)(& enic->napi) + (unsigned long )i, & enic_poll_msix, 64); i = i + 1U; } ldv_52081: ; if (i < enic->rq_count) { goto ldv_52080; } else { } goto ldv_52078; switch_break: /* CIL Label */ ; } ldv_52078: ; return (0); err_out_free_vnic_resources: { enic_clear_intr_mode(enic); enic_free_vnic_resources(enic); } return (err); } } static void enic_iounmap(struct enic *enic ) { unsigned int i ; { i = 0U; goto ldv_52090; ldv_52089: ; if ((unsigned long )enic->bar[i].vaddr != (unsigned long )((void *)0)) { { iounmap((void volatile *)enic->bar[i].vaddr); } } else { } i = i + 1U; ldv_52090: ; if (i <= 5U) { goto ldv_52089; } else { } return; } } static int enic_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) { struct device *dev ; struct net_device *netdev ; struct enic *enic ; int using_dac ; unsigned int i ; int err ; int pos ; int num_pps ; void *tmp ; void *tmp___0 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; int tmp___1 ; struct lock_class_key __key___1 ; struct lock_class_key __key___2 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___3 ; atomic_long_t __constr_expr_1 ; struct lock_class_key __key___4 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { { dev = & pdev->dev; using_dac = 0; pos = 0; num_pps = 1; netdev = ldv_alloc_etherdev_mqs_130(16640, 8U, 8U); } if ((unsigned long )netdev == (unsigned long )((struct net_device *)0)) { return (-12); } else { } { pci_set_drvdata(pdev, (void *)netdev); netdev->dev.parent = & pdev->dev; tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; enic->netdev = netdev; enic->pdev = pdev; err = pci_enable_device_mem(pdev); } if (err != 0) { { dev_err((struct device const *)dev, "Cannot enable PCI device, aborting\n"); } goto err_out_free_netdev; } else { } { err = pci_request_regions(pdev, "enic"); } if (err != 0) { { dev_err((struct device const *)dev, "Cannot request PCI regions, aborting\n"); } goto err_out_disable_device; } else { } { pci_set_master(pdev); err = pci_set_dma_mask(pdev, 0xffffffffffffffffULL); } if (err != 0) { { err = pci_set_dma_mask(pdev, 4294967295ULL); } if (err != 0) { { dev_err((struct device const *)dev, "No usable DMA configuration, aborting\n"); } goto err_out_release_regions; } else { } { err = pci_set_consistent_dma_mask(pdev, 4294967295ULL); } if (err != 0) { { dev_err((struct device const *)dev, "Unable to obtain %u-bit DMA for consistent allocations, aborting\n", 32); } goto err_out_release_regions; } else { } } else { { err = pci_set_consistent_dma_mask(pdev, 0xffffffffffffffffULL); } if (err != 0) { { dev_err((struct device const *)dev, "Unable to obtain %u-bit DMA for consistent allocations, aborting\n", 64); } goto err_out_release_regions; } else { } using_dac = 1; } i = 0U; goto ldv_52112; ldv_52111: ; if ((pdev->resource[i].flags & 512UL) == 0UL) { goto ldv_52109; } else { } { enic->bar[i].len = pdev->resource[i].start != 0ULL || pdev->resource[i].end != pdev->resource[i].start ? (unsigned long )((pdev->resource[i].end - pdev->resource[i].start) + 1ULL) : 0UL; enic->bar[i].vaddr = pci_iomap(pdev, (int )i, enic->bar[i].len); } if ((unsigned long )enic->bar[i].vaddr == (unsigned long )((void *)0)) { { dev_err((struct device const *)dev, "Cannot memory-map BAR %d, aborting\n", i); err = -19; } goto err_out_iounmap; } else { } enic->bar[i].bus_addr = pdev->resource[i].start; ldv_52109: i = i + 1U; ldv_52112: ; if (i <= 5U) { goto ldv_52111; } else { } { enic->vdev = vnic_dev_register((struct vnic_dev *)0, (void *)enic, pdev, (struct vnic_dev_bar *)(& enic->bar), 6U); } if ((unsigned long )enic->vdev == (unsigned long )((struct vnic_dev *)0)) { { dev_err((struct device const *)dev, "vNIC registration failed, aborting\n"); err = -19; } goto err_out_iounmap; } else { } { pos = pci_find_ext_capability(pdev, 16); } if (pos != 0) { { pci_read_config_word((struct pci_dev const *)pdev, pos + 14, & enic->num_vfs); } if ((unsigned int )enic->num_vfs != 0U) { { err = pci_enable_sriov(pdev, (int )enic->num_vfs); } if (err != 0) { { dev_err((struct device const *)dev, "SRIOV enable failed, aborting. pci_enable_sriov() returned %d\n", err); } goto err_out_vnic_unregister; } else { } enic->priv_flags = enic->priv_flags | 1U; num_pps = (int )enic->num_vfs; } else { } } else { } { tmp___0 = kcalloc((size_t )num_pps, 92UL, 208U); enic->pp = (struct enic_port_profile *)tmp___0; } if ((unsigned long )enic->pp == (unsigned long )((struct enic_port_profile *)0)) { err = -12; goto err_out_disable_sriov_pp; } else { } { err = enic_dev_open(enic); } if (err != 0) { { dev_err((struct device const *)dev, "vNIC dev open failed, aborting\n"); } goto err_out_disable_sriov; } else { } { spinlock_check(& enic->devcmd_lock); __raw_spin_lock_init(& enic->devcmd_lock.__annonCompField19.rlock, "&(&enic->devcmd_lock)->rlock", & __key); spinlock_check(& enic->enic_api_lock); __raw_spin_lock_init(& enic->enic_api_lock.__annonCompField19.rlock, "&(&enic->enic_api_lock)->rlock", & __key___0); err = enic_dev_set_ig_vlan_rewrite_mode(enic); } if (err != 0) { { dev_err((struct device const *)dev, "Failed to set ingress vlan rewrite mode, aborting.\n"); } goto err_out_dev_close; } else { } { netif_carrier_off(netdev); tmp___1 = enic_is_dynamic(enic); } if (tmp___1 == 0) { { err = vnic_dev_init(enic->vdev, 0); } if (err != 0) { { dev_err((struct device const *)dev, "vNIC dev init failed, aborting\n"); } goto err_out_dev_close; } else { } } else { } { err = enic_dev_init(enic); } if (err != 0) { { dev_err((struct device const *)dev, "Device initialization failed, aborting\n"); } goto err_out_dev_close; } else { } { netif_set_real_num_tx_queues(netdev, enic->wq_count); netif_set_real_num_rx_queues(netdev, enic->rq_count); init_timer_key(& enic->notify_timer, 0U, "(&enic->notify_timer)", & __key___1); enic->notify_timer.function = & enic_notify_timer; enic->notify_timer.data = (unsigned long )enic; __init_work(& enic->reset, 0); __constr_expr_0.counter = 137438953408L; enic->reset.data = __constr_expr_0; lockdep_init_map(& enic->reset.lockdep_map, "(&enic->reset)", & __key___2, 0); INIT_LIST_HEAD(& enic->reset.entry); enic->reset.func = & enic_reset; __init_work(& enic->change_mtu_work, 0); __constr_expr_1.counter = 137438953408L; enic->change_mtu_work.data = __constr_expr_1; lockdep_init_map(& enic->change_mtu_work.lockdep_map, "(&enic->change_mtu_work)", & __key___3, 0); INIT_LIST_HEAD(& enic->change_mtu_work.entry); enic->change_mtu_work.func = & enic_change_mtu_work; i = 0U; } goto ldv_52129; ldv_52128: { spinlock_check((spinlock_t *)(& enic->wq_lock) + (unsigned long )i); __raw_spin_lock_init(& ((spinlock_t *)(& enic->wq_lock) + (unsigned long )i)->__annonCompField19.rlock, "&(&enic->wq_lock[i])->rlock", & __key___4); i = i + 1U; } ldv_52129: ; if (i < enic->wq_count) { goto ldv_52128; } else { } { enic->port_mtu = (u32 )enic->config.mtu; enic_change_mtu(netdev, (int )enic->port_mtu); err = enic_set_mac_addr(netdev, (char *)(& enic->mac_addr)); } if (err != 0) { { dev_err((struct device const *)dev, "Invalid MAC address, aborting\n"); } goto err_out_dev_deinit; } else { } { enic->tx_coalesce_usecs = enic->config.intr_timer_usec; enic->rx_coalesce_usecs = enic->tx_coalesce_usecs; tmp___2 = enic_is_dynamic(enic); } if (tmp___2 != 0) { netdev->netdev_ops = & enic_netdev_dynamic_ops; } else { { tmp___3 = enic_is_sriov_vf(enic); } if (tmp___3 != 0) { netdev->netdev_ops = & enic_netdev_dynamic_ops; } else { netdev->netdev_ops = & enic_netdev_ops; } } { netdev->watchdog_timeo = 500; enic_set_ethtool_ops(netdev); netdev->features = netdev->features | 384ULL; } if ((enic->config.flags & 2048U) != 0U) { { netdev->features = netdev->features & 0xffffffffffffff7fULL; enic->loop_enable = 1U; enic->loop_tag = enic->config.loop_tag; _dev_info((struct device const *)dev, "loopback tag=0x%04x\n", (int )enic->loop_tag); } } else { } if ((enic->config.flags & 8U) != 0U) { netdev->hw_features = netdev->hw_features | 9ULL; } else { } if ((int )enic->config.flags & 1) { netdev->hw_features = netdev->hw_features | 1638400ULL; } else { } if ((enic->config.flags & 16U) != 0U) { netdev->hw_features = netdev->hw_features | 2147483648ULL; } else { } if ((enic->config.flags & 4U) != 0U) { netdev->hw_features = netdev->hw_features | 4294967296ULL; } else { } netdev->features = netdev->features | netdev->hw_features; if (using_dac != 0) { netdev->features = netdev->features | 32ULL; } else { } { netdev->priv_flags = netdev->priv_flags | 131072U; err = ldv_register_netdev_131(netdev); } if (err != 0) { { dev_err((struct device const *)dev, "Cannot register net device, aborting\n"); } goto err_out_dev_deinit; } else { } return (0); err_out_dev_deinit: { enic_dev_deinit(enic); } err_out_dev_close: { vnic_dev_close(enic->vdev); } err_out_disable_sriov: { kfree((void const *)enic->pp); } err_out_disable_sriov_pp: { tmp___4 = enic_sriov_enabled(enic); } if (tmp___4 != 0) { { pci_disable_sriov(pdev); enic->priv_flags = enic->priv_flags & 4294967294U; } } else { } err_out_vnic_unregister: { vnic_dev_unregister(enic->vdev); } err_out_iounmap: { enic_iounmap(enic); } err_out_release_regions: { pci_release_regions(pdev); } err_out_disable_device: { pci_disable_device(pdev); } err_out_free_netdev: { ldv_free_netdev_132(netdev); } return (err); } } static void enic_remove(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct enic *enic ; void *tmp___0 ; int tmp___1 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; } if ((unsigned long )netdev != (unsigned long )((struct net_device *)0)) { { tmp___0 = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp___0; cancel_work_sync(& enic->reset); cancel_work_sync(& enic->change_mtu_work); ldv_unregister_netdev_133(netdev); enic_dev_deinit(enic); vnic_dev_close(enic->vdev); tmp___1 = enic_sriov_enabled(enic); } if (tmp___1 != 0) { { pci_disable_sriov(pdev); enic->priv_flags = enic->priv_flags & 4294967294U; } } else { } { kfree((void const *)enic->pp); vnic_dev_unregister(enic->vdev); enic_iounmap(enic); pci_release_regions(pdev); pci_disable_device(pdev); ldv_free_netdev_134(netdev); } } else { } return; } } static struct pci_driver enic_driver = {{0, 0}, "enic", (struct pci_device_id const *)(& enic_id_table), & enic_probe, & enic_remove, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int enic_init_module(void) { int tmp ; { { printk("\016enic: %s, ver %s\n", (char *)"Cisco VIC Ethernet NIC Driver", (char *)"2.1.1.50"); tmp = ldv___pci_register_driver_135(& enic_driver, & __this_module, "enic"); } return (tmp); } } static void enic_cleanup_module(void) { { { ldv_pci_unregister_driver_136(& enic_driver); } return; } } void ldv_EMGentry_exit_enic_cleanup_module_16_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_enic_init_module_16_7(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_allocate_external_0(void) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_deregister_13_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_14_1(struct pci_driver *arg0 ) ; void ldv_dispatch_instance_deregister_6_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_9_2(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_7_1(int arg0 ) ; void ldv_dispatch_irq_register_11_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_12_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_10_4(struct net_device *arg0 ) ; void ldv_dispatch_register_15_2(struct pci_driver *arg0 ) ; void ldv_dummy_resourceless_instance_callback_2_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_12(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_13(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_14(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_17(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_20(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_23(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_24(int (*arg0)(struct net_device * , int , struct sk_buff * ) , struct net_device *arg1 , int arg2 , struct sk_buff *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_27(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_28(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_29(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_3(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_30(int (*arg0)(struct net_device * , int , unsigned char * ) , struct net_device *arg1 , int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_33(int (*arg0)(struct net_device * , int , struct nlattr ** ) , struct net_device *arg1 , int arg2 , struct nlattr **arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_36(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_37(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_38(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_39(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_42(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_45(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_46(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_7(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_8(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_entry_EMGentry_16(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_initialize_external_data(void) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_interrupt_interrupt_instance_1(void *arg0 ) ; int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) ; void ldv_net_dummy_resourceless_instance_2(void *arg0 ) ; int ldv_pci_instance_probe_3_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_3_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_3_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_3_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_3_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_3_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_3_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_3(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_10_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; void ldv_switch_automaton_state_0_1(void) ; void ldv_switch_automaton_state_0_6(void) ; void ldv_switch_automaton_state_1_1(void) ; void ldv_switch_automaton_state_1_6(void) ; void ldv_switch_automaton_state_2_1(void) ; void ldv_switch_automaton_state_2_5(void) ; void ldv_switch_automaton_state_3_11(void) ; void ldv_switch_automaton_state_3_20(void) ; void ldv_switch_automaton_state_4_1(void) ; void ldv_switch_automaton_state_4_3(void) ; void ldv_timer_instance_callback_4_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_4(void *arg0 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_13_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; void (*ldv_16_exit_enic_cleanup_module_default)(void) ; int (*ldv_16_init_enic_init_module_default)(void) ; int ldv_16_ret_default ; enum irqreturn (*ldv_1_callback_handler)(int , void * ) ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; int (*ldv_2_callback_get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*ldv_2_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; void (*ldv_2_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_2_callback_get_link)(struct net_device * ) ; unsigned int (*ldv_2_callback_get_msglevel)(struct net_device * ) ; int (*ldv_2_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_2_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_2_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; int (*ldv_2_callback_ndo_change_mtu)(struct net_device * , int ) ; struct rtnl_link_stats64 *(*ldv_2_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; int (*ldv_2_callback_ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; void (*ldv_2_callback_ndo_poll_controller)(struct net_device * ) ; int (*ldv_2_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_2_callback_ndo_set_rx_mode)(struct net_device * ) ; int (*ldv_2_callback_ndo_set_vf_mac)(struct net_device * , int , unsigned char * ) ; int (*ldv_2_callback_ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; enum netdev_tx (*ldv_2_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_2_callback_ndo_tx_timeout)(struct net_device * ) ; int (*ldv_2_callback_ndo_validate_addr)(struct net_device * ) ; int (*ldv_2_callback_ndo_vlan_rx_add_vid)(struct net_device * , unsigned short , unsigned short ) ; int (*ldv_2_callback_ndo_vlan_rx_kill_vid)(struct net_device * , unsigned short , unsigned short ) ; int (*ldv_2_callback_set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*ldv_2_callback_set_msglevel)(struct net_device * , unsigned int ) ; struct net_device *ldv_2_container_net_device ; struct ethtool_cmd *ldv_2_container_struct_ethtool_cmd_ptr ; struct ethtool_coalesce *ldv_2_container_struct_ethtool_coalesce_ptr ; struct ethtool_drvinfo *ldv_2_container_struct_ethtool_drvinfo_ptr ; struct ethtool_stats *ldv_2_container_struct_ethtool_stats_ptr ; struct nlattr **ldv_2_container_struct_nlattr_ptr_ptr ; struct rtnl_link_stats64 *ldv_2_container_struct_rtnl_link_stats64_ptr ; struct sk_buff *ldv_2_container_struct_sk_buff_ptr ; int ldv_2_ldv_param_14_1_default ; unsigned int ldv_2_ldv_param_17_1_default ; unsigned char *ldv_2_ldv_param_17_2_default ; int ldv_2_ldv_param_20_1_default ; int ldv_2_ldv_param_24_1_default ; int ldv_2_ldv_param_30_1_default ; unsigned char *ldv_2_ldv_param_30_2_default ; int ldv_2_ldv_param_33_1_default ; unsigned short ldv_2_ldv_param_39_1_default ; unsigned short ldv_2_ldv_param_39_2_default ; unsigned short ldv_2_ldv_param_42_1_default ; unsigned short ldv_2_ldv_param_42_2_default ; unsigned int ldv_2_ldv_param_46_1_default ; unsigned long long *ldv_2_ldv_param_8_2_default ; struct pci_driver *ldv_3_container_pci_driver ; struct pci_dev *ldv_3_resource_dev ; struct pm_message ldv_3_resource_pm_message ; struct pci_device_id *ldv_3_resource_struct_pci_device_id_ptr ; int ldv_3_ret_default ; struct timer_list *ldv_4_container_timer_list ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_16 ; int ldv_statevar_2 ; int ldv_statevar_3 ; int ldv_statevar_4 ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) = & enic_isr_legacy; void (*ldv_16_exit_enic_cleanup_module_default)(void) = & enic_cleanup_module; int (*ldv_16_init_enic_init_module_default)(void) = & enic_init_module; enum irqreturn (*ldv_1_callback_handler)(int , void * ) = & enic_isr_msi; int (*ldv_2_callback_ndo_change_mtu)(struct net_device * , int ) = & enic_change_mtu; struct rtnl_link_stats64 *(*ldv_2_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) = & enic_get_stats; int (*ldv_2_callback_ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) = & enic_get_vf_port; void (*ldv_2_callback_ndo_poll_controller)(struct net_device * ) = & enic_poll_controller; int (*ldv_2_callback_ndo_set_mac_address)(struct net_device * , void * ) = & enic_set_mac_address_dynamic; void (*ldv_2_callback_ndo_set_rx_mode)(struct net_device * ) = & enic_set_rx_mode; int (*ldv_2_callback_ndo_set_vf_mac)(struct net_device * , int , unsigned char * ) = & enic_set_vf_mac; int (*ldv_2_callback_ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) = & enic_set_vf_port; enum netdev_tx (*ldv_2_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) = & enic_hard_start_xmit; void (*ldv_2_callback_ndo_tx_timeout)(struct net_device * ) = & enic_tx_timeout; int (*ldv_2_callback_ndo_validate_addr)(struct net_device * ) = & eth_validate_addr; int (*ldv_2_callback_ndo_vlan_rx_add_vid)(struct net_device * , unsigned short , unsigned short ) = & enic_vlan_rx_add_vid; int (*ldv_2_callback_ndo_vlan_rx_kill_vid)(struct net_device * , unsigned short , unsigned short ) = & enic_vlan_rx_kill_vid; void ldv_EMGentry_exit_enic_cleanup_module_16_2(void (*arg0)(void) ) { { { enic_cleanup_module(); } return; } } int ldv_EMGentry_init_enic_init_module_16_7(int (*arg0)(void) ) { int tmp ; { { tmp = enic_init_module(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_15_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_15_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_3 == 20); ldv_dispatch_register_15_2(ldv_15_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_5_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3200UL); ldv_5_netdev_net_device = (struct net_device *)tmp; } return (ldv_5_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } void ldv_allocate_external_0(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; void *tmp___13 ; { { ldv_0_data_data = external_allocated_data(); tmp = external_allocated_data(); ldv_0_thread_thread = (enum irqreturn (*)(int , void * ))tmp; ldv_1_data_data = external_allocated_data(); tmp___0 = external_allocated_data(); ldv_1_thread_thread = (enum irqreturn (*)(int , void * ))tmp___0; tmp___1 = external_allocated_data(); ldv_2_container_net_device = (struct net_device *)tmp___1; tmp___2 = external_allocated_data(); ldv_2_container_struct_ethtool_cmd_ptr = (struct ethtool_cmd *)tmp___2; tmp___3 = external_allocated_data(); ldv_2_container_struct_ethtool_coalesce_ptr = (struct ethtool_coalesce *)tmp___3; tmp___4 = external_allocated_data(); ldv_2_container_struct_ethtool_drvinfo_ptr = (struct ethtool_drvinfo *)tmp___4; tmp___5 = external_allocated_data(); ldv_2_container_struct_ethtool_stats_ptr = (struct ethtool_stats *)tmp___5; tmp___6 = external_allocated_data(); ldv_2_container_struct_nlattr_ptr_ptr = (struct nlattr **)tmp___6; tmp___7 = external_allocated_data(); ldv_2_container_struct_rtnl_link_stats64_ptr = (struct rtnl_link_stats64 *)tmp___7; tmp___8 = external_allocated_data(); ldv_2_container_struct_sk_buff_ptr = (struct sk_buff *)tmp___8; tmp___9 = external_allocated_data(); ldv_2_ldv_param_17_2_default = (unsigned char *)tmp___9; tmp___10 = external_allocated_data(); ldv_2_ldv_param_30_2_default = (unsigned char *)tmp___10; tmp___11 = external_allocated_data(); ldv_2_ldv_param_8_2_default = (unsigned long long *)tmp___11; tmp___12 = external_allocated_data(); ldv_3_resource_dev = (struct pci_dev *)tmp___12; tmp___13 = external_allocated_data(); ldv_4_container_timer_list = (struct timer_list *)tmp___13; } return; } } int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_6_timer_list_timer_list ; { { ldv_6_timer_list_timer_list = arg1; ldv_assume(ldv_statevar_4 == 2); ldv_dispatch_instance_deregister_6_1(ldv_6_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_deregister_13_1(struct net_device *arg0 ) { { { ldv_2_container_net_device = arg0; ldv_switch_automaton_state_2_1(); } return; } } void ldv_dispatch_deregister_14_1(struct pci_driver *arg0 ) { { { ldv_3_container_pci_driver = arg0; ldv_switch_automaton_state_3_11(); } return; } } void ldv_dispatch_instance_deregister_6_1(struct timer_list *arg0 ) { { { ldv_4_container_timer_list = arg0; ldv_switch_automaton_state_4_1(); } return; } } void ldv_dispatch_instance_register_9_2(struct timer_list *arg0 ) { { { ldv_4_container_timer_list = arg0; ldv_switch_automaton_state_4_3(); } return; } } void ldv_dispatch_irq_deregister_7_1(int arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_0_line_line = arg0; ldv_switch_automaton_state_0_1(); } } else { { ldv_1_line_line = arg0; ldv_switch_automaton_state_1_1(); } } return; } } void ldv_dispatch_irq_register_11_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } } else { { ldv_1_line_line = arg0; ldv_1_callback_handler = arg1; ldv_1_thread_thread = arg2; ldv_1_data_data = arg3; ldv_switch_automaton_state_1_6(); } } return; } } void ldv_dispatch_irq_register_12_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } } else { { ldv_1_line_line = arg0; ldv_1_callback_handler = arg1; ldv_1_thread_thread = arg2; ldv_1_data_data = arg3; ldv_switch_automaton_state_1_6(); } } return; } } void ldv_dispatch_register_10_4(struct net_device *arg0 ) { { { ldv_2_container_net_device = arg0; ldv_switch_automaton_state_2_5(); } return; } } void ldv_dispatch_register_15_2(struct pci_driver *arg0 ) { { { ldv_3_container_pci_driver = arg0; ldv_switch_automaton_state_3_20(); } return; } } void ldv_dummy_resourceless_instance_callback_2_20(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { enic_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_23(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) { { { enic_get_stats(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_24(int (*arg0)(struct net_device * , int , struct sk_buff * ) , struct net_device *arg1 , int arg2 , struct sk_buff *arg3 ) { { { enic_get_vf_port(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_27(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { enic_poll_controller(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_28(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { enic_set_mac_address_dynamic(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_29(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { enic_set_rx_mode(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_30(int (*arg0)(struct net_device * , int , unsigned char * ) , struct net_device *arg1 , int arg2 , unsigned char *arg3 ) { { { enic_set_vf_mac(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_33(int (*arg0)(struct net_device * , int , struct nlattr ** ) , struct net_device *arg1 , int arg2 , struct nlattr **arg3 ) { { { enic_set_vf_port(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_36(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { enic_hard_start_xmit(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_37(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { enic_tx_timeout(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_38(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_39(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) { { { enic_vlan_rx_add_vid(arg1, (int )arg2, (int )arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_42(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) { { { enic_vlan_rx_kill_vid(arg1, (int )arg2, (int )arg3); } return; } } void ldv_entry_EMGentry_16(void *arg0 ) { int tmp ; { { if (ldv_statevar_16 == 4) { goto case_4; } else { } if (ldv_statevar_16 == 6) { goto case_6; } else { } if (ldv_statevar_16 == 7) { goto case_7; } else { } goto switch_default; case_4: /* CIL Label */ { ldv_assume(ldv_16_ret_default == 0); ldv_assume(ldv_statevar_3 == 12); ldv_EMGentry_exit_enic_cleanup_module_16_2(ldv_16_exit_enic_cleanup_module_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_16 = 7; } goto ldv_52839; case_6: /* CIL Label */ { ldv_assume(ldv_16_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_16 = 7; } goto ldv_52839; case_7: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 20); ldv_16_ret_default = ldv_EMGentry_init_enic_init_module_16_7(ldv_16_init_enic_init_module_default); ldv_16_ret_default = ldv_post_init(ldv_16_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_16 = 4; } else { ldv_statevar_16 = 6; } goto ldv_52839; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52839: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_16 = 7; ldv_statevar_0 = 6; ldv_statevar_1 = 6; ldv_statevar_2 = 5; ldv_3_ret_default = 1; ldv_statevar_3 = 20; ldv_statevar_4 = 3; } ldv_52853: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_16((void *)0); } goto ldv_52846; case_1: /* CIL Label */ { ldv_interrupt_interrupt_instance_0((void *)0); } goto ldv_52846; case_2: /* CIL Label */ { ldv_interrupt_interrupt_instance_1((void *)0); } goto ldv_52846; case_3: /* CIL Label */ { ldv_net_dummy_resourceless_instance_2((void *)0); } goto ldv_52846; case_4: /* CIL Label */ { ldv_pci_pci_instance_3((void *)0); } goto ldv_52846; case_5: /* CIL Label */ { ldv_timer_timer_instance_4((void *)0); } goto ldv_52846; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_52846: ; goto ldv_52853; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_7_line_line ; { { ldv_7_line_line = arg1; ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_1 == 2); ldv_dispatch_irq_deregister_7_1(ldv_7_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_8_netdev_net_device ; { { ldv_8_netdev_net_device = arg1; ldv_free((void *)ldv_8_netdev_net_device); } return; return; } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = enic_isr_legacy(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = enic_isr_msi(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { int tmp ; { { if (ldv_statevar_0 == 2) { goto case_2; } else { } if (ldv_statevar_0 == 4) { goto case_4; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); ldv_statevar_0 = 6; } goto ldv_52899; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } ldv_statevar_0 = 6; goto ldv_52899; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 2; } else { ldv_statevar_0 = 4; } goto ldv_52899; case_6: /* CIL Label */ ; goto ldv_52899; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52899: ; return; } } void ldv_interrupt_interrupt_instance_1(void *arg0 ) { int tmp ; { { if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_1_ret_val_default != 2U); ldv_statevar_1 = 6; } goto ldv_52908; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_1_ret_val_default == 2U); } if ((unsigned long )ldv_1_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_1_3(ldv_1_thread_thread, ldv_1_line_line, ldv_1_data_data); } } else { } ldv_statevar_1 = 6; goto ldv_52908; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_1_ret_val_default = ldv_interrupt_instance_handler_1_5(ldv_1_callback_handler, ldv_1_line_line, ldv_1_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_1 = 2; } else { ldv_statevar_1 = 4; } goto ldv_52908; case_6: /* CIL Label */ ; goto ldv_52908; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52908: ; return; } } int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) { struct timer_list *ldv_9_timer_list_timer_list ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_9_timer_list_timer_list = arg1; ldv_assume(ldv_statevar_4 == 3); ldv_dispatch_instance_register_9_2(ldv_9_timer_list_timer_list); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_net_dummy_resourceless_instance_2(void *arg0 ) { void *tmp ; void *tmp___0 ; void *tmp___1 ; { { if (ldv_statevar_2 == 1) { goto case_1; } else { } if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 3) { goto case_3; } else { } if (ldv_statevar_2 == 4) { goto case_4; } else { } if (ldv_statevar_2 == 5) { goto case_5; } else { } if (ldv_statevar_2 == 7) { goto case_7; } else { } if (ldv_statevar_2 == 9) { goto case_9; } else { } if (ldv_statevar_2 == 11) { goto case_11; } else { } if (ldv_statevar_2 == 12) { goto case_12; } else { } if (ldv_statevar_2 == 13) { goto case_13; } else { } if (ldv_statevar_2 == 15) { goto case_15; } else { } if (ldv_statevar_2 == 18) { goto case_18; } else { } if (ldv_statevar_2 == 21) { goto case_21; } else { } if (ldv_statevar_2 == 23) { goto case_23; } else { } if (ldv_statevar_2 == 25) { goto case_25; } else { } if (ldv_statevar_2 == 27) { goto case_27; } else { } if (ldv_statevar_2 == 28) { goto case_28; } else { } if (ldv_statevar_2 == 29) { goto case_29; } else { } if (ldv_statevar_2 == 31) { goto case_31; } else { } if (ldv_statevar_2 == 34) { goto case_34; } else { } if (ldv_statevar_2 == 36) { goto case_36; } else { } if (ldv_statevar_2 == 37) { goto case_37; } else { } if (ldv_statevar_2 == 38) { goto case_38; } else { } if (ldv_statevar_2 == 40) { goto case_40; } else { } if (ldv_statevar_2 == 43) { goto case_43; } else { } if (ldv_statevar_2 == 45) { goto case_45; } else { } if (ldv_statevar_2 == 47) { goto case_47; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_52923; case_2: /* CIL Label */ { ldv_statevar_2 = ldv_switch_0(); } goto ldv_52923; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_3(ldv_2_callback_get_coalesce, ldv_2_container_net_device, ldv_2_container_struct_ethtool_coalesce_ptr); ldv_statevar_2 = 2; } goto ldv_52923; case_4: /* CIL Label */ { ldv_statevar_2 = ldv_switch_0(); } goto ldv_52923; case_5: /* CIL Label */ ; goto ldv_52923; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_7(ldv_2_callback_get_drvinfo, ldv_2_container_net_device, ldv_2_container_struct_ethtool_drvinfo_ptr); ldv_statevar_2 = 2; } goto ldv_52923; case_9: /* CIL Label */ { tmp = ldv_xmalloc(8UL); ldv_2_ldv_param_8_2_default = (unsigned long long *)tmp; ldv_dummy_resourceless_instance_callback_2_8(ldv_2_callback_get_ethtool_stats, ldv_2_container_net_device, ldv_2_container_struct_ethtool_stats_ptr, ldv_2_ldv_param_8_2_default); ldv_free((void *)ldv_2_ldv_param_8_2_default); ldv_statevar_2 = 2; } goto ldv_52923; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_11(ldv_2_callback_get_link, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52923; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_12(ldv_2_callback_get_msglevel, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52923; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_13(ldv_2_callback_get_settings, ldv_2_container_net_device, ldv_2_container_struct_ethtool_cmd_ptr); ldv_statevar_2 = 2; } goto ldv_52923; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_14(ldv_2_callback_get_sset_count, ldv_2_container_net_device, ldv_2_ldv_param_14_1_default); ldv_statevar_2 = 2; } goto ldv_52923; case_18: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_2_ldv_param_17_2_default = (unsigned char *)tmp___0; ldv_dummy_resourceless_instance_callback_2_17(ldv_2_callback_get_strings, ldv_2_container_net_device, ldv_2_ldv_param_17_1_default, ldv_2_ldv_param_17_2_default); ldv_free((void *)ldv_2_ldv_param_17_2_default); ldv_statevar_2 = 2; } goto ldv_52923; case_21: /* CIL Label */ { ldv_assume(((((ldv_statevar_0 == 6 || ldv_statevar_0 == 2) || ldv_statevar_1 == 2) || ldv_statevar_1 == 6) || ldv_statevar_4 == 3) || ldv_statevar_4 == 2); ldv_dummy_resourceless_instance_callback_2_20(ldv_2_callback_ndo_change_mtu, ldv_2_container_net_device, ldv_2_ldv_param_20_1_default); ldv_statevar_2 = 2; } goto ldv_52923; case_23: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_23(ldv_2_callback_ndo_get_stats64, ldv_2_container_net_device, ldv_2_container_struct_rtnl_link_stats64_ptr); ldv_statevar_2 = 2; } goto ldv_52923; case_25: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_24(ldv_2_callback_ndo_get_vf_port, ldv_2_container_net_device, ldv_2_ldv_param_24_1_default, ldv_2_container_struct_sk_buff_ptr); ldv_statevar_2 = 2; } goto ldv_52923; case_27: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_27(ldv_2_callback_ndo_poll_controller, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52923; case_28: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_28(ldv_2_callback_ndo_set_mac_address, ldv_2_container_net_device, (void *)ldv_2_container_struct_ethtool_cmd_ptr); ldv_statevar_2 = 2; } goto ldv_52923; case_29: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_29(ldv_2_callback_ndo_set_rx_mode, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52923; case_31: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_2_ldv_param_30_2_default = (unsigned char *)tmp___1; ldv_dummy_resourceless_instance_callback_2_30(ldv_2_callback_ndo_set_vf_mac, ldv_2_container_net_device, ldv_2_ldv_param_30_1_default, ldv_2_ldv_param_30_2_default); ldv_free((void *)ldv_2_ldv_param_30_2_default); ldv_statevar_2 = 2; } goto ldv_52923; case_34: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_33(ldv_2_callback_ndo_set_vf_port, ldv_2_container_net_device, ldv_2_ldv_param_33_1_default, ldv_2_container_struct_nlattr_ptr_ptr); ldv_statevar_2 = 2; } goto ldv_52923; case_36: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_36(ldv_2_callback_ndo_start_xmit, ldv_2_container_struct_sk_buff_ptr, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52923; case_37: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_37(ldv_2_callback_ndo_tx_timeout, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52923; case_38: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_38(ldv_2_callback_ndo_validate_addr, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52923; case_40: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_39(ldv_2_callback_ndo_vlan_rx_add_vid, ldv_2_container_net_device, (int )ldv_2_ldv_param_39_1_default, (int )ldv_2_ldv_param_39_2_default); ldv_statevar_2 = 2; } goto ldv_52923; case_43: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_42(ldv_2_callback_ndo_vlan_rx_kill_vid, ldv_2_container_net_device, (int )ldv_2_ldv_param_42_1_default, (int )ldv_2_ldv_param_42_2_default); ldv_statevar_2 = 2; } goto ldv_52923; case_45: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_45(ldv_2_callback_set_coalesce, ldv_2_container_net_device, ldv_2_container_struct_ethtool_coalesce_ptr); ldv_statevar_2 = 2; } goto ldv_52923; case_47: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_46(ldv_2_callback_set_msglevel, ldv_2_container_net_device, ldv_2_ldv_param_46_1_default); ldv_statevar_2 = 2; } goto ldv_52923; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52923: ; return; } } int ldv_pci_instance_probe_3_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = enic_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_3_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { enic_remove(arg1); } return; } } void ldv_pci_instance_resume_3_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_3_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_3_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_3_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_3_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_3(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_3 == 1) { goto case_1; } else { } if (ldv_statevar_3 == 2) { goto case_2; } else { } if (ldv_statevar_3 == 3) { goto case_3; } else { } if (ldv_statevar_3 == 4) { goto case_4; } else { } if (ldv_statevar_3 == 5) { goto case_5; } else { } if (ldv_statevar_3 == 6) { goto case_6; } else { } if (ldv_statevar_3 == 7) { goto case_7; } else { } if (ldv_statevar_3 == 8) { goto case_8; } else { } if (ldv_statevar_3 == 9) { goto case_9; } else { } if (ldv_statevar_3 == 10) { goto case_10; } else { } if (ldv_statevar_3 == 12) { goto case_12; } else { } if (ldv_statevar_3 == 14) { goto case_14; } else { } if (ldv_statevar_3 == 16) { goto case_16; } else { } if (ldv_statevar_3 == 17) { goto case_17; } else { } if (ldv_statevar_3 == 19) { goto case_19; } else { } if (ldv_statevar_3 == 20) { goto case_20; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_3 = 12; } else { ldv_statevar_3 = 17; } goto ldv_52996; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 1); ldv_pci_instance_release_3_2(ldv_3_container_pci_driver->remove, ldv_3_resource_dev); ldv_statevar_3 = 1; } goto ldv_52996; case_3: /* CIL Label */ ; if ((unsigned long )ldv_3_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_3_3(ldv_3_container_pci_driver->shutdown, ldv_3_resource_dev); } } else { } ldv_statevar_3 = 2; goto ldv_52996; case_4: /* CIL Label */ { ldv_statevar_3 = ldv_switch_1(); } goto ldv_52996; case_5: /* CIL Label */ ; if ((unsigned long )ldv_3_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_3_5(ldv_3_container_pci_driver->resume, ldv_3_resource_dev); } } else { } ldv_statevar_3 = 4; goto ldv_52996; case_6: /* CIL Label */ ; if ((unsigned long )ldv_3_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_3_6(ldv_3_container_pci_driver->resume_early, ldv_3_resource_dev); } } else { } ldv_statevar_3 = 5; goto ldv_52996; case_7: /* CIL Label */ ; if ((unsigned long )ldv_3_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_3_ret_default = ldv_pci_instance_suspend_late_3_7(ldv_3_container_pci_driver->suspend_late, ldv_3_resource_dev, ldv_3_resource_pm_message); } } else { } { ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); ldv_statevar_3 = 6; } goto ldv_52996; case_8: /* CIL Label */ ; if ((unsigned long )ldv_3_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_3_ret_default = ldv_pci_instance_suspend_3_8(ldv_3_container_pci_driver->suspend, ldv_3_resource_dev, ldv_3_resource_pm_message); } } else { } { ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); ldv_statevar_3 = 7; } goto ldv_52996; case_9: /* CIL Label */ { ldv_statevar_3 = ldv_switch_1(); } goto ldv_52996; case_10: /* CIL Label */ ldv_statevar_3 = 9; goto ldv_52996; case_12: /* CIL Label */ { ldv_free((void *)ldv_3_resource_dev); ldv_free((void *)ldv_3_resource_struct_pci_device_id_ptr); ldv_3_ret_default = 1; ldv_statevar_3 = 20; } goto ldv_52996; case_14: /* CIL Label */ { ldv_assume(ldv_3_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_3 = 12; } else { ldv_statevar_3 = 17; } goto ldv_52996; case_16: /* CIL Label */ { ldv_assume(ldv_3_ret_default == 0); ldv_statevar_3 = ldv_switch_1(); } goto ldv_52996; case_17: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 5 || ldv_statevar_4 == 2); ldv_pre_probe(); ldv_3_ret_default = ldv_pci_instance_probe_3_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_3_container_pci_driver->probe, ldv_3_resource_dev, ldv_3_resource_struct_pci_device_id_ptr); ldv_3_ret_default = ldv_post_probe(ldv_3_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_3 = 14; } else { ldv_statevar_3 = 16; } goto ldv_52996; case_19: /* CIL Label */ { tmp___2 = ldv_xmalloc(2936UL); ldv_3_resource_dev = (struct pci_dev *)tmp___2; tmp___3 = ldv_xmalloc(32UL); ldv_3_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___3; tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_3 = 12; } else { ldv_statevar_3 = 17; } goto ldv_52996; case_20: /* CIL Label */ ; goto ldv_52996; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52996: ; return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_14_pci_driver_pci_driver ; { { ldv_14_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_3 == 12); ldv_dispatch_deregister_14_1(ldv_14_pci_driver_pci_driver); } return; return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_10_netdev_net_device ; int ldv_10_ret_default ; int tmp ; int tmp___0 ; { { ldv_10_ret_default = 1; ldv_10_ret_default = ldv_pre_register_netdev(); ldv_10_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_10_ret_default == 0); ldv_assume((((ldv_statevar_0 == 6 || ldv_statevar_0 == 2) || ldv_statevar_1 == 2) || ldv_statevar_1 == 6) || ldv_statevar_4 == 3); ldv_10_ret_default = ldv_register_netdev_open_10_6((ldv_10_netdev_net_device->netdev_ops)->ndo_open, ldv_10_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_10_ret_default == 0); ldv_assume(ldv_statevar_2 == 5); ldv_dispatch_register_10_4(ldv_10_netdev_net_device); } } else { { ldv_assume(ldv_10_ret_default != 0); } } } else { { ldv_assume(ldv_10_ret_default != 0); } } return (ldv_10_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_10_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = enic_open(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_12_callback_handler)(int , void * ) ; void *ldv_12_data_data ; int ldv_12_line_line ; enum irqreturn (*ldv_12_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_12_line_line = (int )arg1; ldv_12_callback_handler = arg2; ldv_12_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_12_data_data = arg5; ldv_assume(ldv_statevar_0 == 6 || ldv_statevar_1 == 6); ldv_dispatch_irq_register_12_2(ldv_12_line_line, ldv_12_callback_handler, ldv_12_thread_thread, ldv_12_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } if (tmp == 22) { goto case_22; } else { } if (tmp == 23) { goto case_23; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (3); case_2: /* CIL Label */ ; return (7); case_3: /* CIL Label */ ; return (9); case_4: /* CIL Label */ ; return (11); case_5: /* CIL Label */ ; return (12); case_6: /* CIL Label */ ; return (13); case_7: /* CIL Label */ ; return (15); case_8: /* CIL Label */ ; return (18); case_9: /* CIL Label */ ; return (21); case_10: /* CIL Label */ ; return (23); case_11: /* CIL Label */ ; return (25); case_12: /* CIL Label */ ; return (27); case_13: /* CIL Label */ ; return (28); case_14: /* CIL Label */ ; return (29); case_15: /* CIL Label */ ; return (31); case_16: /* CIL Label */ ; return (34); case_17: /* CIL Label */ ; return (36); case_18: /* CIL Label */ ; return (37); case_19: /* CIL Label */ ; return (38); case_20: /* CIL Label */ ; return (40); case_21: /* CIL Label */ ; return (43); case_22: /* CIL Label */ ; return (45); case_23: /* CIL Label */ ; return (47); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (8); case_2: /* CIL Label */ ; return (10); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_0_1(void) { { ldv_statevar_0 = 6; return; } } void ldv_switch_automaton_state_0_6(void) { { ldv_statevar_0 = 5; return; } } void ldv_switch_automaton_state_1_1(void) { { ldv_statevar_1 = 6; return; } } void ldv_switch_automaton_state_1_6(void) { { ldv_statevar_1 = 5; return; } } void ldv_switch_automaton_state_2_1(void) { { ldv_statevar_2 = 5; return; } } void ldv_switch_automaton_state_2_5(void) { { ldv_statevar_2 = 4; return; } } void ldv_switch_automaton_state_3_11(void) { { ldv_3_ret_default = 1; ldv_statevar_3 = 20; return; } } void ldv_switch_automaton_state_3_20(void) { { ldv_statevar_3 = 19; return; } } void ldv_switch_automaton_state_4_1(void) { { ldv_statevar_4 = 3; return; } } void ldv_switch_automaton_state_4_3(void) { { ldv_statevar_4 = 2; return; } } void ldv_timer_instance_callback_4_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_4(void *arg0 ) { { { if (ldv_statevar_4 == 2) { goto case_2; } else { } if (ldv_statevar_4 == 3) { goto case_3; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_4_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_4_2(ldv_4_container_timer_list->function, ldv_4_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); ldv_statevar_4 = 3; } goto ldv_53109; case_3: /* CIL Label */ ; goto ldv_53109; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53109: ; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_13_netdev_net_device ; { { ldv_13_netdev_net_device = arg1; ldv_assume((ldv_statevar_0 == 2 || ldv_statevar_1 == 2) || ldv_statevar_4 == 2); ldv_unregister_netdev_stop_13_2((ldv_13_netdev_net_device->netdev_ops)->ndo_stop, ldv_13_netdev_net_device); ldv_assume(ldv_statevar_2 == 1); ldv_dispatch_deregister_13_1(ldv_13_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_13_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { enic_stop(arg1); } return; } } __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } static struct sk_buff *ldv___netdev_alloc_skb_59(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct sk_buff *)tmp); } } __inline static void ldv_spin_lock_69(spinlock_t *lock ) { { { ldv_spin_lock__xmit_lock_of_netdev_queue(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_72(spinlock_t *lock ) { { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); spin_unlock(lock); } return; } } static void *ldv_dev_get_drvdata_81(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_82(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } __inline static void ldv_spin_lock_101(spinlock_t *lock ) { { { ldv_spin_lock_NOT_ARG_SIGN(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_102(spinlock_t *lock ) { { { ldv_spin_unlock_NOT_ARG_SIGN(); spin_unlock(lock); } return; } } static void ldv___ldv_spin_lock_103(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_104(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_NOT_ARG_SIGN(); spin_unlock_irqrestore(lock, flags); } return; } } __inline static void ldv_spin_lock_106(spinlock_t *lock ) { { { ldv_spin_lock_devcmd_lock_of_enic(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_107(spinlock_t *lock ) { { { ldv_spin_unlock_devcmd_lock_of_enic(); spin_unlock(lock); } return; } } static int ldv_mod_timer_110(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_111(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_112(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_113(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static int ldv_request_irq_114(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_115(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_116(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_119(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_sync_120(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_sync_121(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } __inline static void ldv_spin_lock_128(spinlock_t *lock ) { { { ldv_spin_lock_enic_api_lock_of_enic(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_129(spinlock_t *lock ) { { { ldv_spin_unlock_enic_api_lock_of_enic(); spin_unlock(lock); } return; } } static struct net_device *ldv_alloc_etherdev_mqs_130(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___7 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_131(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___8 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_132(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_133(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_134(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv___pci_register_driver_135(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___9 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_136(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } __inline static void writeq(unsigned long val , void volatile *addr ) { { __asm__ volatile ("movq %0,%1": : "r" (val), "m" (*((unsigned long volatile *)addr)): "memory"); return; } } void *vnic_dev_get_res(struct vnic_dev *vdev , enum vnic_res_type type , unsigned int index ) ; void vnic_dev_clear_desc_ring(struct vnic_dev_ring *ring ) ; int vnic_dev_alloc_desc_ring(struct vnic_dev *vdev , struct vnic_dev_ring *ring , unsigned int desc_count , unsigned int desc_size ) ; void vnic_dev_free_desc_ring(struct vnic_dev *vdev , struct vnic_dev_ring *ring ) ; void vnic_cq_free(struct vnic_cq *cq ) ; int vnic_cq_alloc(struct vnic_dev *vdev , struct vnic_cq *cq , unsigned int index , unsigned int desc_count , unsigned int desc_size ) ; void vnic_cq_init(struct vnic_cq *cq , unsigned int flow_control_enable , unsigned int color_enable , unsigned int cq_head , unsigned int cq_tail , unsigned int cq_tail_color , unsigned int interrupt_enable , unsigned int cq_entry_enable , unsigned int cq_message_enable , unsigned int interrupt_offset , u64 cq_message_addr ) ; void vnic_cq_free(struct vnic_cq *cq ) { { { vnic_dev_free_desc_ring(cq->vdev, & cq->ring); cq->ctrl = (struct vnic_cq_ctrl *)0; } return; } } int vnic_cq_alloc(struct vnic_dev *vdev , struct vnic_cq *cq , unsigned int index , unsigned int desc_count , unsigned int desc_size ) { int err ; void *tmp ; { { cq->index = index; cq->vdev = vdev; tmp = vnic_dev_get_res(vdev, 3, index); cq->ctrl = (struct vnic_cq_ctrl *)tmp; } if ((unsigned long )cq->ctrl == (unsigned long )((struct vnic_cq_ctrl *)0)) { { printk("\venic: Failed to hook CQ[%d] resource\n", index); } return (-22); } else { } { err = vnic_dev_alloc_desc_ring(vdev, & cq->ring, desc_count, desc_size); } if (err != 0) { return (err); } else { } return (0); } } void vnic_cq_init(struct vnic_cq *cq , unsigned int flow_control_enable , unsigned int color_enable , unsigned int cq_head , unsigned int cq_tail , unsigned int cq_tail_color , unsigned int interrupt_enable , unsigned int cq_entry_enable , unsigned int cq_message_enable , unsigned int interrupt_offset , u64 cq_message_addr ) { u64 paddr ; { { paddr = cq->ring.base_addr; writeq((unsigned long )paddr, (void volatile *)(& (cq->ctrl)->ring_base)); iowrite32(cq->ring.desc_count, (void *)(& (cq->ctrl)->ring_size)); iowrite32(flow_control_enable, (void *)(& (cq->ctrl)->flow_control_enable)); iowrite32(color_enable, (void *)(& (cq->ctrl)->color_enable)); iowrite32(cq_head, (void *)(& (cq->ctrl)->cq_head)); iowrite32(cq_tail, (void *)(& (cq->ctrl)->cq_tail)); iowrite32(cq_tail_color, (void *)(& (cq->ctrl)->cq_tail_color)); iowrite32(interrupt_enable, (void *)(& (cq->ctrl)->interrupt_enable)); iowrite32(cq_entry_enable, (void *)(& (cq->ctrl)->cq_entry_enable)); iowrite32(cq_message_enable, (void *)(& (cq->ctrl)->cq_message_enable)); iowrite32(interrupt_offset, (void *)(& (cq->ctrl)->interrupt_offset)); writeq((unsigned long )cq_message_addr, (void volatile *)(& (cq->ctrl)->cq_message_addr)); cq->interrupt_offset = interrupt_offset; } return; } } void vnic_cq_clean(struct vnic_cq *cq ) { { { cq->to_clean = 0U; cq->last_color = 0U; iowrite32(0U, (void *)(& (cq->ctrl)->cq_head)); iowrite32(0U, (void *)(& (cq->ctrl)->cq_tail)); iowrite32(1U, (void *)(& (cq->ctrl)->cq_tail_color)); vnic_dev_clear_desc_ring(& cq->ring); } return; } } u32 vnic_dev_intr_coal_timer_usec_to_hw(struct vnic_dev *vdev , u32 usec ) ; void vnic_intr_free(struct vnic_intr *intr ) ; int vnic_intr_alloc(struct vnic_dev *vdev , struct vnic_intr *intr , unsigned int index ) ; void vnic_intr_init(struct vnic_intr *intr , u32 coalescing_timer , unsigned int coalescing_type , unsigned int mask_on_assertion ) ; void vnic_intr_coalescing_timer_set(struct vnic_intr *intr , u32 coalescing_timer ) ; void vnic_intr_free(struct vnic_intr *intr ) { { intr->ctrl = (struct vnic_intr_ctrl *)0; return; } } int vnic_intr_alloc(struct vnic_dev *vdev , struct vnic_intr *intr , unsigned int index ) { void *tmp ; { { intr->index = index; intr->vdev = vdev; tmp = vnic_dev_get_res(vdev, 10, index); intr->ctrl = (struct vnic_intr_ctrl *)tmp; } if ((unsigned long )intr->ctrl == (unsigned long )((struct vnic_intr_ctrl *)0)) { { printk("\venic: Failed to hook INTR[%d].ctrl resource\n", index); } return (-22); } else { } return (0); } } void vnic_intr_init(struct vnic_intr *intr , u32 coalescing_timer , unsigned int coalescing_type , unsigned int mask_on_assertion ) { { { vnic_intr_coalescing_timer_set(intr, coalescing_timer); iowrite32(coalescing_type, (void *)(& (intr->ctrl)->coalescing_type)); iowrite32(mask_on_assertion, (void *)(& (intr->ctrl)->mask_on_assertion)); iowrite32(0U, (void *)(& (intr->ctrl)->int_credits)); } return; } } void vnic_intr_coalescing_timer_set(struct vnic_intr *intr , u32 coalescing_timer ) { u32 tmp ; { { tmp = vnic_dev_intr_coal_timer_usec_to_hw(intr->vdev, coalescing_timer); iowrite32(tmp, (void *)(& (intr->ctrl)->coalescing_timer)); } return; } } void vnic_intr_clean(struct vnic_intr *intr ) { { { iowrite32(0U, (void *)(& (intr->ctrl)->int_credits)); } return; } } void *ldv_kzalloc(size_t size , gfp_t flags ) ; extern void __const_udelay(unsigned long ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static unsigned int vnic_wq_desc_used(struct vnic_wq *wq ) { { return ((wq->ring.desc_count - wq->ring.desc_avail) - 1U); } } void vnic_wq_free(struct vnic_wq *wq ) ; int vnic_wq_alloc(struct vnic_dev *vdev , struct vnic_wq *wq , unsigned int index , unsigned int desc_count , unsigned int desc_size ) ; void vnic_wq_init(struct vnic_wq *wq , unsigned int cq_index , unsigned int error_interrupt_enable , unsigned int error_interrupt_offset ) ; static int vnic_wq_alloc_bufs(struct vnic_wq *wq ) { struct vnic_wq_buf *buf ; unsigned int i ; unsigned int j ; unsigned int count ; unsigned int blks ; void *tmp ; struct vnic_wq_buf *tmp___0 ; { count = wq->ring.desc_count; blks = ((count + (count <= 63U ? 32U : 64U)) - 1U) / (count <= 63U ? 32U : 64U); i = 0U; goto ldv_42508; ldv_42507: { tmp = kzalloc(count <= 63U ? 2048UL : 4096UL, 32U); wq->bufs[i] = (struct vnic_wq_buf *)tmp; } if ((unsigned long )wq->bufs[i] == (unsigned long )((struct vnic_wq_buf *)0)) { return (-12); } else { } i = i + 1U; ldv_42508: ; if (i < blks) { goto ldv_42507; } else { } i = 0U; goto ldv_42514; ldv_42513: buf = wq->bufs[i]; j = 0U; goto ldv_42512; ldv_42511: buf->index = i * (count <= 63U ? 32U : 64U) + j; buf->desc = wq->ring.descs + (unsigned long )(wq->ring.desc_size * buf->index); if (buf->index + 1U == count) { buf->next = wq->bufs[0]; goto ldv_42510; } else if (j + 1U == (count <= 63U ? 32U : 64U)) { buf->next = wq->bufs[i + 1U]; } else { buf->next = buf + 1UL; buf = buf + 1; } j = j + 1U; ldv_42512: ; if (j < (count <= 63U ? 32U : 64U)) { goto ldv_42511; } else { } ldv_42510: i = i + 1U; ldv_42514: ; if (i < blks) { goto ldv_42513; } else { } tmp___0 = wq->bufs[0]; wq->to_clean = tmp___0; wq->to_use = tmp___0; return (0); } } void vnic_wq_free(struct vnic_wq *wq ) { struct vnic_dev *vdev ; unsigned int i ; { { vdev = wq->vdev; vnic_dev_free_desc_ring(vdev, & wq->ring); i = 0U; } goto ldv_42522; ldv_42521: ; if ((unsigned long )wq->bufs[i] != (unsigned long )((struct vnic_wq_buf *)0)) { { kfree((void const *)wq->bufs[i]); wq->bufs[i] = (struct vnic_wq_buf *)0; } } else { } i = i + 1U; ldv_42522: ; if (i <= 63U) { goto ldv_42521; } else { } wq->ctrl = (struct vnic_wq_ctrl *)0; return; } } int vnic_wq_alloc(struct vnic_dev *vdev , struct vnic_wq *wq , unsigned int index , unsigned int desc_count , unsigned int desc_size ) { int err ; void *tmp ; { { wq->index = index; wq->vdev = vdev; tmp = vnic_dev_get_res(vdev, 1, index); wq->ctrl = (struct vnic_wq_ctrl *)tmp; } if ((unsigned long )wq->ctrl == (unsigned long )((struct vnic_wq_ctrl *)0)) { { printk("\venic: Failed to hook WQ[%d] resource\n", index); } return (-22); } else { } { vnic_wq_disable(wq); err = vnic_dev_alloc_desc_ring(vdev, & wq->ring, desc_count, desc_size); } if (err != 0) { return (err); } else { } { err = vnic_wq_alloc_bufs(wq); } if (err != 0) { { vnic_wq_free(wq); } return (err); } else { } return (0); } } static void vnic_wq_init_start(struct vnic_wq *wq , unsigned int cq_index , unsigned int fetch_index , unsigned int posted_index , unsigned int error_interrupt_enable , unsigned int error_interrupt_offset ) { u64 paddr ; unsigned int count ; struct vnic_wq_buf *tmp ; { { count = wq->ring.desc_count; paddr = wq->ring.base_addr; writeq((unsigned long )paddr, (void volatile *)(& (wq->ctrl)->ring_base)); iowrite32(count, (void *)(& (wq->ctrl)->ring_size)); iowrite32(fetch_index, (void *)(& (wq->ctrl)->fetch_index)); iowrite32(posted_index, (void *)(& (wq->ctrl)->posted_index)); iowrite32(cq_index, (void *)(& (wq->ctrl)->cq_index)); iowrite32(error_interrupt_enable, (void *)(& (wq->ctrl)->error_interrupt_enable)); iowrite32(error_interrupt_offset, (void *)(& (wq->ctrl)->error_interrupt_offset)); iowrite32(0U, (void *)(& (wq->ctrl)->error_status)); tmp = wq->bufs[fetch_index / (count <= 63U ? 32U : 64U)] + (unsigned long )(fetch_index % (count <= 63U ? 32U : 64U)); wq->to_clean = tmp; wq->to_use = tmp; } return; } } void vnic_wq_init(struct vnic_wq *wq , unsigned int cq_index , unsigned int error_interrupt_enable , unsigned int error_interrupt_offset ) { { { vnic_wq_init_start(wq, cq_index, 0U, 0U, error_interrupt_enable, error_interrupt_offset); } return; } } unsigned int vnic_wq_error_status(struct vnic_wq *wq ) { unsigned int tmp ; { { tmp = ioread32((void *)(& (wq->ctrl)->error_status)); } return (tmp); } } void vnic_wq_enable(struct vnic_wq *wq ) { { { iowrite32(1U, (void *)(& (wq->ctrl)->enable)); } return; } } int vnic_wq_disable(struct vnic_wq *wq ) { unsigned int wait ; unsigned int tmp ; { { iowrite32(0U, (void *)(& (wq->ctrl)->enable)); wait = 0U; } goto ldv_42559; ldv_42558: { tmp = ioread32((void *)(& (wq->ctrl)->running)); } if (tmp == 0U) { return (0); } else { } { __const_udelay(42950UL); wait = wait + 1U; } ldv_42559: ; if (wait <= 999U) { goto ldv_42558; } else { } { printk("\venic: Failed to disable WQ[%d]\n", wq->index); } return (-110); } } void vnic_wq_clean(struct vnic_wq *wq , void (*buf_clean)(struct vnic_wq * , struct vnic_wq_buf * ) ) { struct vnic_wq_buf *buf ; struct vnic_wq_buf *tmp ; unsigned int tmp___0 ; struct vnic_wq_buf *tmp___1 ; { buf = wq->to_clean; goto ldv_42569; ldv_42568: { (*buf_clean)(wq, buf); tmp = buf->next; wq->to_clean = tmp; buf = tmp; wq->ring.desc_avail = wq->ring.desc_avail + 1U; } ldv_42569: { tmp___0 = vnic_wq_desc_used(wq); } if (tmp___0 != 0U) { goto ldv_42568; } else { } { tmp___1 = wq->bufs[0]; wq->to_clean = tmp___1; wq->to_use = tmp___1; iowrite32(0U, (void *)(& (wq->ctrl)->fetch_index)); iowrite32(0U, (void *)(& (wq->ctrl)->posted_index)); iowrite32(0U, (void *)(& (wq->ctrl)->error_status)); vnic_dev_clear_desc_ring(& wq->ring); } return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } unsigned int vnic_dev_get_res_count(struct vnic_dev *vdev , enum vnic_res_type type ) ; int vnic_dev_cmd(struct vnic_dev *vdev , enum vnic_devcmd_cmd cmd , u64 *a0 , u64 *a1 , int wait ) ; int vnic_dev_spec(struct vnic_dev *vdev , unsigned int offset , unsigned int size , void *value ) ; u32 vnic_dev_get_intr_coal_timer_max(struct vnic_dev *vdev ) ; void vnic_rq_free(struct vnic_rq *rq ) ; int vnic_rq_alloc(struct vnic_dev *vdev , struct vnic_rq *rq , unsigned int index , unsigned int desc_count , unsigned int desc_size ) ; void vnic_rq_init(struct vnic_rq *rq , unsigned int cq_index , unsigned int error_interrupt_enable , unsigned int error_interrupt_offset ) ; __inline static void vnic_set_nic_cfg(u32 *nic_cfg , u8 rss_default_cpu , u8 rss_hash_type , u8 rss_hash_bits , u8 rss_base_cpu , u8 rss_enable , u8 tso_ipid_split_en , u8 ig_vlan_strip_en ) { { *nic_cfg = ((((((u32 )rss_default_cpu | ((u32 )rss_hash_type << 8U)) | (((u32 )rss_hash_bits & 7U) << 16U)) | (((u32 )rss_base_cpu & 7U) << 19U)) | (((u32 )rss_enable & 1U) << 22U)) | (((u32 )tso_ipid_split_en & 1U) << 23U)) | (((u32 )ig_vlan_strip_en & 1U) << 24U); return; } } int enic_add_vlan(struct enic *enic , u16 vlanid ) ; int enic_del_vlan(struct enic *enic , u16 vlanid ) ; int enic_get_vnic_config(struct enic *enic ) { struct vnic_enet_config *c ; int err ; struct device *tmp ; struct device *tmp___0 ; struct device *tmp___1 ; struct device *tmp___2 ; struct device *tmp___3 ; struct device *tmp___4 ; struct device *tmp___5 ; struct device *tmp___6 ; struct device *tmp___7 ; u32 __min1 ; u32 __min2 ; u32 __max1 ; u32 __max2 ; u32 __min1___0 ; u32 __min2___0 ; u32 __max1___0 ; u32 __max2___0 ; u16 __min1___1 ; u16 __min2___1 ; u16 __max1___1 ; u16 __max2___1 ; u32 __min1___2 ; u32 __min2___2 ; u32 tmp___8 ; struct device *tmp___9 ; struct device *tmp___10 ; { { c = & enic->config; err = vnic_dev_get_mac_addr(enic->vdev, (u8 *)(& enic->mac_addr)); } if (err != 0) { { tmp = enic_get_dev(enic); dev_err((struct device const *)tmp, "Error getting MAC addr, %d\n", err); } return (err); } else { } { err = vnic_dev_spec(enic->vdev, 0U, 4U, (void *)(& c->flags)); } if (err != 0) { { tmp___0 = enic_get_dev(enic); dev_err((struct device const *)tmp___0, "Error getting %s, %d\n", (char *)"flags", err); } return (err); } else { } { err = vnic_dev_spec(enic->vdev, 4U, 4U, (void *)(& c->wq_desc_count)); } if (err != 0) { { tmp___1 = enic_get_dev(enic); dev_err((struct device const *)tmp___1, "Error getting %s, %d\n", (char *)"wq_desc_count", err); } return (err); } else { } { err = vnic_dev_spec(enic->vdev, 8U, 4U, (void *)(& c->rq_desc_count)); } if (err != 0) { { tmp___2 = enic_get_dev(enic); dev_err((struct device const *)tmp___2, "Error getting %s, %d\n", (char *)"rq_desc_count", err); } return (err); } else { } { err = vnic_dev_spec(enic->vdev, 12U, 2U, (void *)(& c->mtu)); } if (err != 0) { { tmp___3 = enic_get_dev(enic); dev_err((struct device const *)tmp___3, "Error getting %s, %d\n", (char *)"mtu", err); } return (err); } else { } { err = vnic_dev_spec(enic->vdev, 16U, 1U, (void *)(& c->intr_timer_type)); } if (err != 0) { { tmp___4 = enic_get_dev(enic); dev_err((struct device const *)tmp___4, "Error getting %s, %d\n", (char *)"intr_timer_type", err); } return (err); } else { } { err = vnic_dev_spec(enic->vdev, 17U, 1U, (void *)(& c->intr_mode)); } if (err != 0) { { tmp___5 = enic_get_dev(enic); dev_err((struct device const *)tmp___5, "Error getting %s, %d\n", (char *)"intr_mode", err); } return (err); } else { } { err = vnic_dev_spec(enic->vdev, 36U, 4U, (void *)(& c->intr_timer_usec)); } if (err != 0) { { tmp___6 = enic_get_dev(enic); dev_err((struct device const *)tmp___6, "Error getting %s, %d\n", (char *)"intr_timer_usec", err); } return (err); } else { } { err = vnic_dev_spec(enic->vdev, 40U, 2U, (void *)(& c->loop_tag)); } if (err != 0) { { tmp___7 = enic_get_dev(enic); dev_err((struct device const *)tmp___7, "Error getting %s, %d\n", (char *)"loop_tag", err); } return (err); } else { } __min1 = 4096U; __max1 = 64U; __max2 = c->wq_desc_count; __min2 = __max1 > __max2 ? __max1 : __max2; c->wq_desc_count = __min1 < __min2 ? __min1 : __min2; c->wq_desc_count = c->wq_desc_count & 4294967264U; __min1___0 = 4096U; __max1___0 = 64U; __max2___0 = c->rq_desc_count; __min2___0 = __max1___0 > __max2___0 ? __max1___0 : __max2___0; c->rq_desc_count = __min1___0 < __min2___0 ? __min1___0 : __min2___0; c->rq_desc_count = c->rq_desc_count & 4294967264U; if ((unsigned int )c->mtu == 0U) { c->mtu = 1500U; } else { } { __min1___1 = 9000U; __max1___1 = 68U; __max2___1 = c->mtu; __min2___1 = (u16 )((int )__max1___1 > (int )__max2___1 ? __max1___1 : __max2___1); c->mtu = (u16 )((int )__min1___1 < (int )__min2___1 ? __min1___1 : __min2___1); __min1___2 = c->intr_timer_usec; tmp___8 = vnic_dev_get_intr_coal_timer_max(enic->vdev); __min2___2 = tmp___8; c->intr_timer_usec = __min1___2 < __min2___2 ? __min1___2 : __min2___2; tmp___9 = enic_get_dev(enic); _dev_info((struct device const *)tmp___9, "vNIC MAC addr %pM wq/rq %d/%d mtu %d\n", (u8 *)(& enic->mac_addr), c->wq_desc_count, c->rq_desc_count, (int )c->mtu); tmp___10 = enic_get_dev(enic); _dev_info((struct device const *)tmp___10, "vNIC csum tx/rx %s/%s tso/lro %s/%s rss %s intr mode %s type %s timer %d usec loopback tag 0x%04x\n", (enic->config.flags & 8U) != 0U ? (char *)"yes" : (char *)"no", (enic->config.flags & 4U) != 0U ? (char *)"yes" : (char *)"no", (int )enic->config.flags & 1 ? (char *)"yes" : (char *)"no", (enic->config.flags & 2U) != 0U ? (char *)"yes" : (char *)"no", (enic->config.flags & 16U) != 0U ? (char *)"yes" : (char *)"no", (unsigned int )c->intr_mode != 2U ? ((unsigned int )c->intr_mode != 1U ? ((unsigned int )c->intr_mode == 0U ? (char *)"any" : (char *)"unknown") : (char *)"MSI") : (char *)"INTx", (unsigned int )c->intr_timer_type != 0U ? ((unsigned int )c->intr_timer_type == 1U ? (char *)"idle" : (char *)"unknown") : (char *)"min", c->intr_timer_usec, (int )c->loop_tag); } return (0); } } int enic_add_vlan(struct enic *enic , u16 vlanid ) { u64 a0 ; u64 a1 ; int wait ; int err ; struct device *tmp ; { { a0 = (u64 )vlanid; a1 = 0ULL; wait = 1000; err = vnic_dev_cmd(enic->vdev, 1090535438, & a0, & a1, wait); } if (err != 0) { { tmp = enic_get_dev(enic); dev_err((struct device const *)tmp, "Can\'t add vlan id, %d\n", err); } } else { } return (err); } } int enic_del_vlan(struct enic *enic , u16 vlanid ) { u64 a0 ; u64 a1 ; int wait ; int err ; struct device *tmp ; { { a0 = (u64 )vlanid; a1 = 0ULL; wait = 1000; err = vnic_dev_cmd(enic->vdev, 1090535439, & a0, & a1, wait); } if (err != 0) { { tmp = enic_get_dev(enic); dev_err((struct device const *)tmp, "Can\'t delete vlan id, %d\n", err); } } else { } return (err); } } int enic_set_nic_cfg(struct enic *enic , u8 rss_default_cpu , u8 rss_hash_type , u8 rss_hash_bits , u8 rss_base_cpu , u8 rss_enable , u8 tso_ipid_split_en , u8 ig_vlan_strip_en ) { u64 a0 ; u64 a1 ; u32 nic_cfg ; int wait ; int tmp ; { { wait = 1000; vnic_set_nic_cfg(& nic_cfg, (int )rss_default_cpu, (int )rss_hash_type, (int )rss_hash_bits, (int )rss_base_cpu, (int )rss_enable, (int )tso_ipid_split_en, (int )ig_vlan_strip_en); a0 = (u64 )nic_cfg; a1 = 0ULL; tmp = vnic_dev_cmd(enic->vdev, 1090633744, & a0, & a1, wait); } return (tmp); } } int enic_set_rss_key(struct enic *enic , dma_addr_t key_pa , u64 len ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; { { a0 = key_pa; a1 = len; wait = 1000; tmp = vnic_dev_cmd(enic->vdev, 1073758225, & a0, & a1, wait); } return (tmp); } } int enic_set_rss_cpu(struct enic *enic , dma_addr_t cpu_pa , u64 len ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; { { a0 = cpu_pa; a1 = len; wait = 1000; tmp = vnic_dev_cmd(enic->vdev, 1073758226, & a0, & a1, wait); } return (tmp); } } void enic_free_vnic_resources(struct enic *enic ) { unsigned int i ; { i = 0U; goto ldv_43158; ldv_43157: { vnic_wq_free((struct vnic_wq *)(& enic->wq) + (unsigned long )i); i = i + 1U; } ldv_43158: ; if (i < enic->wq_count) { goto ldv_43157; } else { } i = 0U; goto ldv_43161; ldv_43160: { vnic_rq_free((struct vnic_rq *)(& enic->rq) + (unsigned long )i); i = i + 1U; } ldv_43161: ; if (i < enic->rq_count) { goto ldv_43160; } else { } i = 0U; goto ldv_43164; ldv_43163: { vnic_cq_free((struct vnic_cq *)(& enic->cq) + (unsigned long )i); i = i + 1U; } ldv_43164: ; if (i < enic->cq_count) { goto ldv_43163; } else { } i = 0U; goto ldv_43167; ldv_43166: { vnic_intr_free((struct vnic_intr *)(& enic->intr) + (unsigned long )i); i = i + 1U; } ldv_43167: ; if (i < enic->intr_count) { goto ldv_43166; } else { } return; } } void enic_get_res_counts(struct enic *enic ) { struct device *tmp ; { { enic->wq_count = vnic_dev_get_res_count(enic->vdev, 1); enic->rq_count = vnic_dev_get_res_count(enic->vdev, 2); enic->cq_count = vnic_dev_get_res_count(enic->vdev, 3); enic->intr_count = vnic_dev_get_res_count(enic->vdev, 10); tmp = enic_get_dev(enic); _dev_info((struct device const *)tmp, "vNIC resources avail: wq %d rq %d cq %d intr %d\n", enic->wq_count, enic->rq_count, enic->cq_count, enic->intr_count); } return; } } void enic_init_vnic_resources(struct enic *enic ) { enum vnic_dev_intr_mode intr_mode ; unsigned int mask_on_assertion ; unsigned int interrupt_offset ; unsigned int error_interrupt_enable ; unsigned int error_interrupt_offset ; unsigned int cq_index ; unsigned int i ; { { intr_mode = vnic_dev_get_intr_mode(enic->vdev); } { if ((unsigned int )intr_mode == 1U) { goto case_1; } else { } if ((unsigned int )intr_mode == 3U) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; case_3: /* CIL Label */ error_interrupt_enable = 1U; error_interrupt_offset = enic->intr_count - 2U; goto ldv_43184; switch_default: /* CIL Label */ error_interrupt_enable = 0U; error_interrupt_offset = 0U; goto ldv_43184; switch_break: /* CIL Label */ ; } ldv_43184: i = 0U; goto ldv_43187; ldv_43186: { cq_index = i; vnic_rq_init((struct vnic_rq *)(& enic->rq) + (unsigned long )i, cq_index, error_interrupt_enable, error_interrupt_offset); i = i + 1U; } ldv_43187: ; if (i < enic->rq_count) { goto ldv_43186; } else { } i = 0U; goto ldv_43190; ldv_43189: { cq_index = enic->rq_count + i; vnic_wq_init((struct vnic_wq *)(& enic->wq) + (unsigned long )i, cq_index, error_interrupt_enable, error_interrupt_offset); i = i + 1U; } ldv_43190: ; if (i < enic->wq_count) { goto ldv_43189; } else { } i = 0U; goto ldv_43196; ldv_43195: ; { if ((unsigned int )intr_mode == 3U) { goto case_3___0; } else { } goto switch_default___0; case_3___0: /* CIL Label */ interrupt_offset = i; goto ldv_43193; switch_default___0: /* CIL Label */ interrupt_offset = 0U; goto ldv_43193; switch_break___0: /* CIL Label */ ; } ldv_43193: { vnic_cq_init((struct vnic_cq *)(& enic->cq) + (unsigned long )i, 0U, 1U, 0U, 0U, 1U, 1U, 1U, 0U, interrupt_offset, 0ULL); i = i + 1U; } ldv_43196: ; if (i < enic->cq_count) { goto ldv_43195; } else { } { if ((unsigned int )intr_mode == 2U) { goto case_2; } else { } if ((unsigned int )intr_mode == 3U) { goto case_3___1; } else { } goto switch_default___1; case_2: /* CIL Label */ ; case_3___1: /* CIL Label */ mask_on_assertion = 1U; goto ldv_43200; switch_default___1: /* CIL Label */ mask_on_assertion = 0U; goto ldv_43200; switch_break___1: /* CIL Label */ ; } ldv_43200: i = 0U; goto ldv_43203; ldv_43202: { vnic_intr_init((struct vnic_intr *)(& enic->intr) + (unsigned long )i, enic->config.intr_timer_usec, (unsigned int )enic->config.intr_timer_type, mask_on_assertion); i = i + 1U; } ldv_43203: ; if (i < enic->intr_count) { goto ldv_43202; } else { } return; } } int enic_alloc_vnic_resources(struct enic *enic ) { enum vnic_dev_intr_mode intr_mode ; unsigned int i ; int err ; struct device *tmp ; void *tmp___0 ; struct device *tmp___1 ; { { intr_mode = vnic_dev_get_intr_mode(enic->vdev); tmp = enic_get_dev(enic); _dev_info((struct device const *)tmp, "vNIC resources used: wq %d rq %d cq %d intr %d intr mode %s\n", enic->wq_count, enic->rq_count, enic->cq_count, enic->intr_count, (unsigned int )intr_mode != 1U ? ((unsigned int )intr_mode != 2U ? ((unsigned int )intr_mode == 3U ? (char *)"MSI-X" : (char *)"unknown") : (char *)"MSI") : (char *)"legacy PCI INTx"); i = 0U; } goto ldv_43213; ldv_43212: { err = vnic_wq_alloc(enic->vdev, (struct vnic_wq *)(& enic->wq) + (unsigned long )i, i, enic->config.wq_desc_count, 16U); } if (err != 0) { goto err_out_cleanup; } else { } i = i + 1U; ldv_43213: ; if (i < enic->wq_count) { goto ldv_43212; } else { } i = 0U; goto ldv_43216; ldv_43215: { err = vnic_rq_alloc(enic->vdev, (struct vnic_rq *)(& enic->rq) + (unsigned long )i, i, enic->config.rq_desc_count, 16U); } if (err != 0) { goto err_out_cleanup; } else { } i = i + 1U; ldv_43216: ; if (i < enic->rq_count) { goto ldv_43215; } else { } i = 0U; goto ldv_43219; ldv_43218: ; if (i < enic->rq_count) { { err = vnic_cq_alloc(enic->vdev, (struct vnic_cq *)(& enic->cq) + (unsigned long )i, i, enic->config.rq_desc_count, 16U); } } else { { err = vnic_cq_alloc(enic->vdev, (struct vnic_cq *)(& enic->cq) + (unsigned long )i, i, enic->config.wq_desc_count, 16U); } } if (err != 0) { goto err_out_cleanup; } else { } i = i + 1U; ldv_43219: ; if (i < enic->cq_count) { goto ldv_43218; } else { } i = 0U; goto ldv_43222; ldv_43221: { err = vnic_intr_alloc(enic->vdev, (struct vnic_intr *)(& enic->intr) + (unsigned long )i, i); } if (err != 0) { goto err_out_cleanup; } else { } i = i + 1U; ldv_43222: ; if (i < enic->intr_count) { goto ldv_43221; } else { } { tmp___0 = vnic_dev_get_res(enic->vdev, 13, 0U); enic->legacy_pba = (u32 *)tmp___0; } if ((unsigned long )enic->legacy_pba == (unsigned long )((u32 *)0U) && (unsigned int )intr_mode == 1U) { { tmp___1 = enic_get_dev(enic); dev_err((struct device const *)tmp___1, "Failed to hook legacy pba resource\n"); err = -19; } goto err_out_cleanup; } else { } return (0); err_out_cleanup: { enic_free_vnic_resources(enic); } return (err); } } __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; int vnic_dev_fw_info(struct vnic_dev *vdev , struct vnic_devcmd_fw_info **fw_info ) ; int vnic_dev_stats_dump(struct vnic_dev *vdev , struct vnic_stats **stats ) ; int vnic_dev_hang_notify(struct vnic_dev *vdev ) ; int vnic_dev_packet_filter(struct vnic_dev *vdev , int directed , int multicast , int broadcast , int promisc , int allmulti ) ; int vnic_dev_add_addr(struct vnic_dev *vdev , u8 *addr ) ; int vnic_dev_del_addr(struct vnic_dev *vdev , u8 *addr ) ; int vnic_dev_notify_unset(struct vnic_dev *vdev ) ; int vnic_dev_enable_wait(struct vnic_dev *vdev ) ; int vnic_dev_disable(struct vnic_dev *vdev ) ; int vnic_dev_deinit(struct vnic_dev *vdev ) ; int vnic_dev_intr_coal_timer_info(struct vnic_dev *vdev ) ; int vnic_dev_set_ig_vlan_rewrite_mode(struct vnic_dev *vdev , u8 ig_vlan_rewrite_mode ) ; int vnic_dev_init_prov2(struct vnic_dev *vdev , u8 *buf , u32 len ) ; int vnic_dev_enable2(struct vnic_dev *vdev , int active ) ; int vnic_dev_enable2_done(struct vnic_dev *vdev , int *status ) ; int vnic_dev_deinit_done(struct vnic_dev *vdev , int *status ) ; size_t vic_provinfo_size(struct vic_provinfo *vp ) ; int enic_dev_fw_info(struct enic *enic , struct vnic_devcmd_fw_info **fw_info ) ; int enic_vnic_dev_deinit(struct enic *enic ) ; int enic_dev_init_prov2(struct enic *enic , struct vic_provinfo *vp ) ; int enic_dev_deinit_done(struct enic *enic , int *status ) ; int enic_dev_enable2(struct enic *enic , int active ) ; int enic_dev_enable2_done(struct enic *enic , int *status ) ; int enic_dev_fw_info(struct enic *enic , struct vnic_devcmd_fw_info **fw_info ) { int err ; { { ldv_spin_lock_106(& enic->devcmd_lock); err = vnic_dev_fw_info(enic->vdev, fw_info); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } int enic_dev_stats_dump(struct enic *enic , struct vnic_stats **vstats ) { int err ; { { ldv_spin_lock_106(& enic->devcmd_lock); err = vnic_dev_stats_dump(enic->vdev, vstats); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } int enic_dev_add_station_addr(struct enic *enic ) { int err ; bool tmp ; int tmp___0 ; { { tmp = is_valid_ether_addr((u8 const *)(enic->netdev)->dev_addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-99); } else { } { ldv_spin_lock_106(& enic->devcmd_lock); err = vnic_dev_add_addr(enic->vdev, (enic->netdev)->dev_addr); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } int enic_dev_del_station_addr(struct enic *enic ) { int err ; bool tmp ; int tmp___0 ; { { tmp = is_valid_ether_addr((u8 const *)(enic->netdev)->dev_addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-99); } else { } { ldv_spin_lock_106(& enic->devcmd_lock); err = vnic_dev_del_addr(enic->vdev, (enic->netdev)->dev_addr); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } int enic_dev_packet_filter(struct enic *enic , int directed , int multicast , int broadcast , int promisc , int allmulti ) { int err ; { { ldv_spin_lock_106(& enic->devcmd_lock); err = vnic_dev_packet_filter(enic->vdev, directed, multicast, broadcast, promisc, allmulti); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } int enic_dev_add_addr(struct enic *enic , u8 *addr ) { int err ; { { ldv_spin_lock_106(& enic->devcmd_lock); err = vnic_dev_add_addr(enic->vdev, addr); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } int enic_dev_del_addr(struct enic *enic , u8 *addr ) { int err ; { { ldv_spin_lock_106(& enic->devcmd_lock); err = vnic_dev_del_addr(enic->vdev, addr); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } int enic_dev_notify_unset(struct enic *enic ) { int err ; { { ldv_spin_lock_106(& enic->devcmd_lock); err = vnic_dev_notify_unset(enic->vdev); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } int enic_dev_hang_notify(struct enic *enic ) { int err ; { { ldv_spin_lock_106(& enic->devcmd_lock); err = vnic_dev_hang_notify(enic->vdev); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } int enic_dev_set_ig_vlan_rewrite_mode(struct enic *enic ) { int err ; { { ldv_spin_lock_106(& enic->devcmd_lock); err = vnic_dev_set_ig_vlan_rewrite_mode(enic->vdev, 2); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } int enic_dev_enable(struct enic *enic ) { int err ; { { ldv_spin_lock_106(& enic->devcmd_lock); err = vnic_dev_enable_wait(enic->vdev); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } int enic_dev_disable(struct enic *enic ) { int err ; { { ldv_spin_lock_106(& enic->devcmd_lock); err = vnic_dev_disable(enic->vdev); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } int enic_dev_intr_coal_timer_info(struct enic *enic ) { int err ; { { ldv_spin_lock_106(& enic->devcmd_lock); err = vnic_dev_intr_coal_timer_info(enic->vdev); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } int enic_vnic_dev_deinit(struct enic *enic ) { int err ; { { ldv_spin_lock_106(& enic->devcmd_lock); err = vnic_dev_deinit(enic->vdev); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } int enic_dev_init_prov2(struct enic *enic , struct vic_provinfo *vp ) { int err ; size_t tmp ; { { ldv_spin_lock_106(& enic->devcmd_lock); tmp = vic_provinfo_size(vp); err = vnic_dev_init_prov2(enic->vdev, (u8 *)vp, (u32 )tmp); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } int enic_dev_deinit_done(struct enic *enic , int *status ) { int err ; { { ldv_spin_lock_106(& enic->devcmd_lock); err = vnic_dev_deinit_done(enic->vdev, status); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } int enic_vlan_rx_add_vid(struct net_device *netdev , __be16 proto , u16 vid ) { struct enic *enic ; void *tmp ; int err ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; ldv_spin_lock_106(& enic->devcmd_lock); err = enic_add_vlan(enic, (int )vid); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } int enic_vlan_rx_kill_vid(struct net_device *netdev , __be16 proto , u16 vid ) { struct enic *enic ; void *tmp ; int err ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; ldv_spin_lock_106(& enic->devcmd_lock); err = enic_del_vlan(enic, (int )vid); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } int enic_dev_enable2(struct enic *enic , int active ) { int err ; { { ldv_spin_lock_106(& enic->devcmd_lock); err = vnic_dev_enable2(enic->vdev, active); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } int enic_dev_enable2_done(struct enic *enic , int *status ) { int err ; { { ldv_spin_lock_106(& enic->devcmd_lock); err = vnic_dev_enable2_done(enic->vdev, status); ldv_spin_unlock_107(& enic->devcmd_lock); } return (err); } } int enic_dev_status_to_errno(int devcmd_status ) { { { if (devcmd_status == 0) { goto case_0; } else { } if (devcmd_status == 1) { goto case_1; } else { } if (devcmd_status == 2) { goto case_2; } else { } if (devcmd_status == 3) { goto case_3; } else { } if (devcmd_status == 4) { goto case_4; } else { } if (devcmd_status == 5) { goto case_5; } else { } if (devcmd_status == 11) { goto case_11; } else { } if (devcmd_status == 6) { goto case_6; } else { } if (devcmd_status == 7) { goto case_7; } else { } if (devcmd_status == 8) { goto case_8; } else { } if (devcmd_status == 9) { goto case_9; } else { } if (devcmd_status == 12) { goto case_12; } else { } if (devcmd_status == 10) { goto case_10; } else { } goto switch_default; case_0: /* CIL Label */ ; return (0); case_1: /* CIL Label */ ; return (-22); case_2: /* CIL Label */ ; return (-14); case_3: /* CIL Label */ ; return (-1); case_4: /* CIL Label */ ; return (-16); case_5: /* CIL Label */ ; case_11: /* CIL Label */ ; return (-95); case_6: /* CIL Label */ ; return (-22); case_7: /* CIL Label */ ; return (-12); case_8: /* CIL Label */ ; return (-110); case_9: /* CIL Label */ ; return (-100); case_12: /* CIL Label */ ; return (-115); case_10: /* CIL Label */ ; switch_default: /* CIL Label */ ; return (-1 < devcmd_status ? -1 : devcmd_status); switch_break: /* CIL Label */ ; } } } extern int sprintf(char * , char const * , ...) ; extern int memcmp(void const * , void const * , size_t ) ; extern size_t strlen(char const * ) ; extern int strcmp(char const * , char const * ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; struct vic_provinfo *vic_provinfo_alloc(gfp_t flags , u8 const *oui , u8 const type ) ; void vic_provinfo_free(struct vic_provinfo *vp ) ; int vic_provinfo_add_tlv(struct vic_provinfo *vp , u16 type , u16 length , void const *value ) ; int enic_is_valid_pp_vf(struct enic *enic , int vf , int *err ) { int tmp ; int tmp___0 ; { if (vf != -1) { { tmp = enic_sriov_enabled(enic); } if (tmp != 0) { if (vf < 0 || vf >= (int )enic->num_vfs) { *err = -22; goto err_out; } else { } } else { *err = -95; goto err_out; } } else { } if (vf == -1) { { tmp___0 = enic_is_dynamic(enic); } if (tmp___0 == 0) { *err = -95; goto err_out; } else { } } else { } *err = 0; return (1); err_out: ; return (0); } } static int enic_set_port_profile(struct enic *enic , int vf ) { struct net_device *netdev ; struct enic_port_profile *pp ; struct vic_provinfo *vp ; u8 oui[3U] ; __be16 os_type ; char uuid_str[38U] ; char client_mac_str[18U] ; u8 *client_mac ; int err ; int tmp ; size_t tmp___0 ; size_t tmp___1 ; bool tmp___2 ; int tmp___3 ; size_t tmp___4 ; size_t tmp___5 ; int tmp___6 ; { { netdev = enic->netdev; oui[0] = 0U; oui[1] = 0U; oui[2] = 12U; os_type = 512U; tmp = enic_is_valid_pp_vf(enic, vf, & err); } if (tmp != 0) { pp = vf == -1 ? enic->pp : enic->pp + (unsigned long )vf; } else { pp = (struct enic_port_profile *)0; } if (err != 0) { return (err); } else { } if ((pp->set & 4U) == 0U) { return (-22); } else { { tmp___0 = strlen((char const *)(& pp->name)); } if (tmp___0 == 0UL) { return (-22); } else { } } { vp = vic_provinfo_alloc(208U, (u8 const *)(& oui), 4); } if ((unsigned long )vp == (unsigned long )((struct vic_provinfo *)0)) { return (-12); } else { } { tmp___1 = strlen((char const *)(& pp->name)); err = vic_provinfo_add_tlv(vp, 0, (int )((unsigned int )((u16 )tmp___1) + 1U), (void const *)(& pp->name)); } if (err != 0) { goto add_tlv_failure; } else { } { tmp___2 = is_zero_ether_addr((u8 const *)(& pp->mac_addr)); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { client_mac = (u8 *)(& pp->mac_addr); } else if (vf == -1) { client_mac = netdev->dev_addr; } else { { netdev_err((struct net_device const *)netdev, "Cannot find pp mac address for VF %d\n", vf); err = -22; } goto add_tlv_failure; } { err = vic_provinfo_add_tlv(vp, 1, 6, (void const *)client_mac); } if (err != 0) { goto add_tlv_failure; } else { } { snprintf((char *)(& client_mac_str), 18UL, "%pM", client_mac); err = vic_provinfo_add_tlv(vp, 4, 18, (void const *)(& client_mac_str)); } if (err != 0) { goto add_tlv_failure; } else { } if ((pp->set & 8U) != 0U) { { sprintf((char *)(& uuid_str), "%pUB", (u8 *)(& pp->instance_uuid)); err = vic_provinfo_add_tlv(vp, 9, 38, (void const *)(& uuid_str)); } if (err != 0) { goto add_tlv_failure; } else { } } else { } if ((pp->set & 16U) != 0U) { { sprintf((char *)(& uuid_str), "%pUB", (u8 *)(& pp->host_uuid)); err = vic_provinfo_add_tlv(vp, 8, 38, (void const *)(& uuid_str)); } if (err != 0) { goto add_tlv_failure; } else { } } else { } { err = vic_provinfo_add_tlv(vp, 11, 2, (void const *)(& os_type)); } if (err != 0) { goto add_tlv_failure; } else { } { ldv_spin_lock_106(& enic->devcmd_lock); tmp___6 = enic_is_valid_vf(enic, vf); } if (tmp___6 != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); tmp___4 = vic_provinfo_size(vp); err = vnic_dev_init_prov2(enic->vdev, (u8 *)vp, (u32 )tmp___4); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { tmp___5 = vic_provinfo_size(vp); err = vnic_dev_init_prov2(enic->vdev, (u8 *)vp, (u32 )tmp___5); } } { ldv_spin_unlock_107(& enic->devcmd_lock); err = enic_dev_status_to_errno(err); } add_tlv_failure: { vic_provinfo_free(vp); } return (err); } } static int enic_unset_port_profile(struct enic *enic , int vf ) { int err ; int tmp ; int tmp___0 ; { { ldv_spin_lock_106(& enic->devcmd_lock); tmp = enic_is_valid_vf(enic, vf); } if (tmp != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_deinit(enic->vdev); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_deinit(enic->vdev); } } { ldv_spin_unlock_107(& enic->devcmd_lock); } if (err != 0) { { tmp___0 = enic_dev_status_to_errno(err); } return (tmp___0); } else { } if (vf == -1) { { enic_reset_addr_lists(enic); } } else { } return (0); } } static int enic_are_pp_different(struct enic_port_profile *pp1 , struct enic_port_profile *pp2 ) { int tmp ; int tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; { { tmp = strcmp((char const *)(& pp1->name), (char const *)(& pp2->name)); tmp___0 = memcmp((void const *)(& pp1->instance_uuid), (void const *)(& pp2->instance_uuid), 16UL); tmp___1 = memcmp((void const *)(& pp1->host_uuid), (void const *)(& pp2->host_uuid), 16UL); tmp___2 = ether_addr_equal((u8 const *)(& pp1->mac_addr), (u8 const *)(& pp2->mac_addr)); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } return (((tmp | (tmp___0 != 0)) | (tmp___1 != 0)) | tmp___3); } } static int enic_pp_preassociate(struct enic *enic , int vf , struct enic_port_profile *prev_pp , int *restore_pp ) ; static int enic_pp_disassociate(struct enic *enic , int vf , struct enic_port_profile *prev_pp , int *restore_pp ) ; static int enic_pp_preassociate_rr(struct enic *enic , int vf , struct enic_port_profile *prev_pp , int *restore_pp ) ; static int enic_pp_associate(struct enic *enic , int vf , struct enic_port_profile *prev_pp , int *restore_pp ) ; static int (*enic_pp_handlers[4U])(struct enic * , int , struct enic_port_profile * , int * ) = { & enic_pp_preassociate, & enic_pp_preassociate_rr, & enic_pp_associate, & enic_pp_disassociate}; static int enic_pp_preassociate(struct enic *enic , int vf , struct enic_port_profile *prev_pp , int *restore_pp ) { { return (-95); } } static int enic_pp_disassociate(struct enic *enic , int vf , struct enic_port_profile *prev_pp , int *restore_pp ) { struct net_device *netdev ; struct enic_port_profile *pp ; int err ; int tmp ; int tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; bool tmp___4 ; int tmp___5 ; int tmp___6 ; { { netdev = enic->netdev; tmp = enic_is_valid_pp_vf(enic, vf, & err); } if (tmp != 0) { pp = vf == -1 ? enic->pp : enic->pp + (unsigned long )vf; } else { pp = (struct enic_port_profile *)0; } if (err != 0) { return (err); } else { } { tmp___4 = is_zero_ether_addr((u8 const *)(& pp->mac_addr)); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { { ldv_spin_lock_106(& enic->devcmd_lock); tmp___0 = enic_is_valid_vf(enic, vf); } if (tmp___0 != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_del_addr(enic->vdev, (u8 *)(& pp->mac_addr)); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_del_addr(enic->vdev, (u8 *)(& pp->mac_addr)); } } { ldv_spin_unlock_107(& enic->devcmd_lock); } } else if (vf == -1) { { tmp___2 = is_zero_ether_addr((u8 const *)netdev->dev_addr); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { { ldv_spin_lock_106(& enic->devcmd_lock); tmp___1 = enic_is_valid_vf(enic, vf); } if (tmp___1 != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_del_addr(enic->vdev, netdev->dev_addr); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_del_addr(enic->vdev, netdev->dev_addr); } } { ldv_spin_unlock_107(& enic->devcmd_lock); } } else { } } else { } { tmp___6 = enic_unset_port_profile(enic, vf); } return (tmp___6); } } static int enic_pp_preassociate_rr(struct enic *enic , int vf , struct enic_port_profile *prev_pp , int *restore_pp ) { struct enic_port_profile *pp ; int err ; int active ; int tmp ; int tmp___0 ; { { active = 0; tmp = enic_is_valid_pp_vf(enic, vf, & err); } if (tmp != 0) { pp = vf == -1 ? enic->pp : enic->pp + (unsigned long )vf; } else { pp = (struct enic_port_profile *)0; } if (err != 0) { return (err); } else { } if ((unsigned int )pp->request != 2U) { { err = (*(enic_pp_handlers[3]))(enic, vf, prev_pp, restore_pp); } if (err != 0) { return (err); } else { } *restore_pp = 0; } else { } { *restore_pp = 0; err = enic_set_port_profile(enic, vf); } if (err != 0) { return (err); } else { } if ((unsigned int )pp->request != 2U) { { ldv_spin_lock_106(& enic->devcmd_lock); tmp___0 = enic_is_valid_vf(enic, vf); } if (tmp___0 != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_enable2(enic->vdev, active); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_enable2(enic->vdev, active); } } { ldv_spin_unlock_107(& enic->devcmd_lock); err = enic_dev_status_to_errno(err); } } else { } return (err); } } static int enic_pp_associate(struct enic *enic , int vf , struct enic_port_profile *prev_pp , int *restore_pp ) { struct net_device *netdev ; struct enic_port_profile *pp ; int err ; int active ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; bool tmp___4 ; int tmp___5 ; bool tmp___6 ; int tmp___7 ; { { netdev = enic->netdev; active = 1; tmp = enic_is_valid_pp_vf(enic, vf, & err); } if (tmp != 0) { pp = vf == -1 ? enic->pp : enic->pp + (unsigned long )vf; } else { pp = (struct enic_port_profile *)0; } if (err != 0) { return (err); } else { } if ((unsigned int )prev_pp->request != 1U) { goto _L; } else if ((unsigned int )prev_pp->request == 1U) { { tmp___0 = enic_are_pp_different(prev_pp, pp); } if (tmp___0 != 0) { _L: /* CIL Label */ { err = (*(enic_pp_handlers[3]))(enic, vf, prev_pp, restore_pp); } if (err != 0) { return (err); } else { } *restore_pp = 0; } else { } } else { } { err = (*(enic_pp_handlers[1]))(enic, vf, prev_pp, restore_pp); } if (err != 0) { return (err); } else { } { *restore_pp = 0; ldv_spin_lock_106(& enic->devcmd_lock); tmp___1 = enic_is_valid_vf(enic, vf); } if (tmp___1 != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_enable2(enic->vdev, active); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_enable2(enic->vdev, active); } } { ldv_spin_unlock_107(& enic->devcmd_lock); err = enic_dev_status_to_errno(err); } if (err != 0) { return (err); } else { } { tmp___6 = is_zero_ether_addr((u8 const *)(& pp->mac_addr)); } if (tmp___6) { tmp___7 = 0; } else { tmp___7 = 1; } if (tmp___7) { { ldv_spin_lock_106(& enic->devcmd_lock); tmp___2 = enic_is_valid_vf(enic, vf); } if (tmp___2 != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_add_addr(enic->vdev, (u8 *)(& pp->mac_addr)); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_add_addr(enic->vdev, (u8 *)(& pp->mac_addr)); } } { ldv_spin_unlock_107(& enic->devcmd_lock); } } else if (vf == -1) { { tmp___4 = is_zero_ether_addr((u8 const *)netdev->dev_addr); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { { ldv_spin_lock_106(& enic->devcmd_lock); tmp___3 = enic_is_valid_vf(enic, vf); } if (tmp___3 != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_add_addr(enic->vdev, netdev->dev_addr); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_add_addr(enic->vdev, netdev->dev_addr); } } { ldv_spin_unlock_107(& enic->devcmd_lock); } } else { } } else { } return (0); } } int enic_process_set_pp_request(struct enic *enic , int vf , struct enic_port_profile *prev_pp , int *restore_pp ) { struct enic_port_profile *pp ; int err ; int tmp ; int tmp___0 ; { { tmp = enic_is_valid_pp_vf(enic, vf, & err); } if (tmp != 0) { pp = vf == -1 ? enic->pp : enic->pp + (unsigned long )vf; } else { pp = (struct enic_port_profile *)0; } if (err != 0) { return (err); } else { } if ((int )pp->request > 3 || (unsigned long )enic_pp_handlers[(int )pp->request] == (unsigned long )((int (*)(struct enic * , int , struct enic_port_profile * , int * ))0)) { return (-95); } else { } { tmp___0 = (*(enic_pp_handlers[(int )pp->request]))(enic, vf, prev_pp, restore_pp); } return (tmp___0); } } int enic_process_get_pp_request(struct enic *enic , int vf , int request , u16 *response ) { int err ; int status ; int tmp ; int tmp___0 ; { status = 0; { if (request == 1) { goto case_1; } else { } if (request == 2) { goto case_2; } else { } if (request == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ { ldv_spin_lock_106(& enic->devcmd_lock); tmp = enic_is_valid_vf(enic, vf); } if (tmp != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_enable2_done(enic->vdev, & status); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_enable2_done(enic->vdev, & status); } } { ldv_spin_unlock_107(& enic->devcmd_lock); } goto ldv_49964; case_3: /* CIL Label */ { ldv_spin_lock_106(& enic->devcmd_lock); tmp___0 = enic_is_valid_vf(enic, vf); } if (tmp___0 != 0) { { vnic_dev_cmd_proxy_by_index_start(enic->vdev, (int )((u16 )vf)); err = vnic_dev_deinit_done(enic->vdev, & status); vnic_dev_cmd_proxy_end(enic->vdev); } } else { { err = vnic_dev_deinit_done(enic->vdev, & status); } } { ldv_spin_unlock_107(& enic->devcmd_lock); } goto ldv_49964; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_49964: ; if (err != 0) { status = err; } else { } { if (status == 0) { goto case_0; } else { } if (status == 1) { goto case_1___0; } else { } if (status == 6) { goto case_6; } else { } if (status == 7) { goto case_7; } else { } if (status == 12) { goto case_12; } else { } goto switch_default___0; case_0: /* CIL Label */ *response = 256U; goto ldv_49968; case_1___0: /* CIL Label */ *response = 258U; goto ldv_49968; case_6: /* CIL Label */ *response = 259U; goto ldv_49968; case_7: /* CIL Label */ *response = 260U; goto ldv_49968; case_12: /* CIL Label */ *response = 257U; goto ldv_49968; switch_default___0: /* CIL Label */ *response = 261U; goto ldv_49968; switch_break___0: /* CIL Label */ ; } ldv_49968: ; return (0); } } __inline static unsigned long readq(void const volatile *addr ) { unsigned long ret ; { __asm__ volatile ("movq %1,%0": "=r" (ret): "m" (*((unsigned long volatile *)addr)): "memory"); return (ret); } } extern unsigned int ioread8(void * ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; u32 vnic_dev_port_speed(struct vnic_dev *vdev ) ; u32 vnic_dev_intr_coal_timer_hw_to_usec(struct vnic_dev *vdev , u32 hw_cycles ) ; struct pci_dev *vnic_dev_get_pdev(struct vnic_dev *vdev ) ; void *vnic_dev_priv(struct vnic_dev *vdev ) { { return (vdev->priv); } } static int vnic_dev_discover_res(struct vnic_dev *vdev , struct vnic_dev_bar *bar , unsigned int num_bars ) { struct vnic_resource_header *rh ; struct mgmt_barmap_hdr *mrh ; struct vnic_resource *r ; u8 type ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; u8 bar_num ; unsigned int tmp___6 ; u32 bar_offset ; unsigned int tmp___7 ; u32 count ; unsigned int tmp___8 ; u32 len ; unsigned int tmp___9 ; { if (num_bars == 0U) { return (-22); } else { } if (bar->len <= 223UL) { { printk("\venic: vNIC BAR0 res hdr length error\n"); } return (-22); } else { } rh = (struct vnic_resource_header *)bar->vaddr; mrh = (struct mgmt_barmap_hdr *)bar->vaddr; if ((unsigned long )rh == (unsigned long )((struct vnic_resource_header *)0)) { { printk("\venic: vNIC BAR0 res hdr not mem-mapped\n"); } return (-22); } else { } { tmp___3 = ioread32((void *)(& rh->magic)); } if (tmp___3 != 1986947427U) { goto _L; } else { { tmp___4 = ioread32((void *)(& rh->version)); } if (tmp___4 != 0U) { _L: /* CIL Label */ { tmp___1 = ioread32((void *)(& mrh->magic)); } if (tmp___1 != 1414350669U) { { tmp = ioread32((void *)(& rh->version)); tmp___0 = ioread32((void *)(& rh->magic)); printk("\venic: vNIC BAR0 res magic/version error exp (%lx/%lx) or (%lx/%lx), curr (%x/%x)\n", 1986947427L, 0L, 1414350669L, 0L, tmp___0, tmp); } return (-22); } else { { tmp___2 = ioread32((void *)(& mrh->version)); } if (tmp___2 != 0U) { { tmp = ioread32((void *)(& rh->version)); tmp___0 = ioread32((void *)(& rh->magic)); printk("\venic: vNIC BAR0 res magic/version error exp (%lx/%lx) or (%lx/%lx), curr (%x/%x)\n", 1986947427L, 0L, 1414350669L, 0L, tmp___0, tmp); } return (-22); } else { } } } else { } } { tmp___5 = ioread32((void *)(& mrh->magic)); } if (tmp___5 == 1414350669U) { r = (struct vnic_resource *)mrh + 1U; } else { r = (struct vnic_resource *)rh + 1U; } goto ldv_42385; ldv_42394: { tmp___6 = ioread8((void *)(& r->bar)); bar_num = (u8 )tmp___6; tmp___7 = ioread32((void *)(& r->bar_offset)); bar_offset = tmp___7; tmp___8 = ioread32((void *)(& r->count)); count = tmp___8; r = r + 1; } if ((unsigned int )bar_num >= num_bars) { goto ldv_42385; } else { } if ((bar + (unsigned long )bar_num)->len == 0UL || (unsigned long )(bar + (unsigned long )bar_num)->vaddr == (unsigned long )((void *)0)) { goto ldv_42385; } else { } { if ((int )type == 1) { goto case_1; } else { } if ((int )type == 2) { goto case_2; } else { } if ((int )type == 3) { goto case_3; } else { } if ((int )type == 10) { goto case_10; } else { } if ((int )type == 13) { goto case_13; } else { } if ((int )type == 16) { goto case_16; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_10: /* CIL Label */ len = count * 128U; if ((unsigned long )(len + bar_offset) > (bar + (unsigned long )bar_num)->len) { { printk("\venic: vNIC BAR0 resource %d out-of-bounds, offset 0x%x + size 0x%x > bar len 0x%lx\n", (int )type, bar_offset, len, (bar + (unsigned long )bar_num)->len); } return (-22); } else { } goto ldv_42390; case_13: /* CIL Label */ ; case_16: /* CIL Label */ len = count; goto ldv_42390; switch_default: /* CIL Label */ ; goto ldv_42385; switch_break: /* CIL Label */ ; } ldv_42390: vdev->res[(int )type].count = count; vdev->res[(int )type].vaddr = (bar + (unsigned long )bar_num)->vaddr + (unsigned long )bar_offset; vdev->res[(int )type].bus_addr = (bar + (unsigned long )bar_num)->bus_addr + (dma_addr_t )bar_offset; ldv_42385: { tmp___9 = ioread8((void *)(& r->type)); type = (u8 )tmp___9; } if ((unsigned int )type != 0U) { goto ldv_42394; } else { } return (0); } } unsigned int vnic_dev_get_res_count(struct vnic_dev *vdev , enum vnic_res_type type ) { { return (vdev->res[(unsigned int )type].count); } } static char const __kstrtab_vnic_dev_get_res_count[23U] = { 'v', 'n', 'i', 'c', '_', 'd', 'e', 'v', '_', 'g', 'e', 't', '_', 'r', 'e', 's', '_', 'c', 'o', 'u', 'n', 't', '\000'}; struct kernel_symbol const __ksymtab_vnic_dev_get_res_count ; struct kernel_symbol const __ksymtab_vnic_dev_get_res_count = {(unsigned long )(& vnic_dev_get_res_count), (char const *)(& __kstrtab_vnic_dev_get_res_count)}; void *vnic_dev_get_res(struct vnic_dev *vdev , enum vnic_res_type type , unsigned int index ) { { if ((unsigned long )vdev->res[(unsigned int )type].vaddr == (unsigned long )((void *)0)) { return ((void *)0); } else { } { if ((unsigned int )type == 1U) { goto case_1; } else { } if ((unsigned int )type == 2U) { goto case_2; } else { } if ((unsigned int )type == 3U) { goto case_3; } else { } if ((unsigned int )type == 10U) { goto case_10; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_10: /* CIL Label */ ; return (vdev->res[(unsigned int )type].vaddr + (unsigned long )(index * 128U)); switch_default: /* CIL Label */ ; return (vdev->res[(unsigned int )type].vaddr); switch_break: /* CIL Label */ ; } } } static char const __kstrtab_vnic_dev_get_res[17U] = { 'v', 'n', 'i', 'c', '_', 'd', 'e', 'v', '_', 'g', 'e', 't', '_', 'r', 'e', 's', '\000'}; struct kernel_symbol const __ksymtab_vnic_dev_get_res ; struct kernel_symbol const __ksymtab_vnic_dev_get_res = {(unsigned long )(& vnic_dev_get_res), (char const *)(& __kstrtab_vnic_dev_get_res)}; static unsigned int vnic_dev_desc_ring_size(struct vnic_dev_ring *ring , unsigned int desc_count , unsigned int desc_size ) { unsigned int count_align ; unsigned int desc_align ; { count_align = 32U; desc_align = 16U; ring->base_align = 512UL; if (desc_count == 0U) { desc_count = 4096U; } else { } ring->desc_count = ((desc_count + count_align) - 1U) & - count_align; ring->desc_size = ((desc_size + desc_align) - 1U) & - desc_align; ring->size = (size_t )(ring->desc_count * ring->desc_size); ring->size_unaligned = ring->size + ring->base_align; return ((unsigned int )ring->size_unaligned); } } void vnic_dev_clear_desc_ring(struct vnic_dev_ring *ring ) { { { memset(ring->descs, 0, ring->size); } return; } } int vnic_dev_alloc_desc_ring(struct vnic_dev *vdev , struct vnic_dev_ring *ring , unsigned int desc_count , unsigned int desc_size ) { { { vnic_dev_desc_ring_size(ring, desc_count, desc_size); ring->descs_unaligned = pci_alloc_consistent(vdev->pdev, ring->size_unaligned, & ring->base_addr_unaligned); } if ((unsigned long )ring->descs_unaligned == (unsigned long )((void *)0)) { { printk("\venic: Failed to allocate ring (size=%d), aborting\n", (int )ring->size); } return (-12); } else { } { ring->base_addr = ((ring->base_addr_unaligned + (unsigned long long )ring->base_align) - 1ULL) & - ((unsigned long long )ring->base_align); ring->descs = ring->descs_unaligned + (unsigned long )(ring->base_addr - ring->base_addr_unaligned); vnic_dev_clear_desc_ring(ring); ring->desc_avail = ring->desc_count - 1U; } return (0); } } void vnic_dev_free_desc_ring(struct vnic_dev *vdev , struct vnic_dev_ring *ring ) { { if ((unsigned long )ring->descs != (unsigned long )((void *)0)) { { pci_free_consistent(vdev->pdev, ring->size_unaligned, ring->descs_unaligned, ring->base_addr_unaligned); ring->descs = (void *)0; } } else { } return; } } static int _vnic_dev_cmd(struct vnic_dev *vdev , enum vnic_devcmd_cmd cmd , int wait ) { struct vnic_devcmd *devcmd ; unsigned int i ; int delay ; u32 status ; int err ; unsigned long tmp ; unsigned long tmp___0 ; { { devcmd = vdev->devcmd; status = ioread32((void *)(& devcmd->status)); } if (status == 4294967295U) { return (-19); } else { } if ((int )status & 1) { { printk("\venic: Busy devcmd %d\n", (unsigned int )cmd & 16383U); } return (-16); } else { } if (((unsigned int )cmd & 1073741824U) != 0U) { i = 0U; goto ldv_42458; ldv_42457: { writeq((unsigned long )vdev->args[i], (void volatile *)(& devcmd->args) + (unsigned long )i); i = i + 1U; } ldv_42458: ; if (i <= 14U) { goto ldv_42457; } else { } __asm__ volatile ("sfence": : : "memory"); } else { } { iowrite32((u32 )cmd, (void *)(& devcmd->cmd)); } if (((unsigned int )cmd & 16777216U) != 0U) { return (0); } else { } delay = 0; goto ldv_42464; ldv_42463: { __const_udelay(429500UL); status = ioread32((void *)(& devcmd->status)); } if (status == 4294967295U) { return (-19); } else { } if ((status & 1U) == 0U) { if ((status & 2U) != 0U) { { tmp = readq((void const volatile *)(& devcmd->args)); err = (int )tmp; } if (err == 1 && (unsigned int )cmd == 3221340196U) { return (err); } else { } if (err != 5 || (unsigned int )cmd != 3221340196U) { { printk("\venic: Error %d devcmd %d\n", err, (unsigned int )cmd & 16383U); } } else { } return (err); } else { } if ((int )cmd < 0) { __asm__ volatile ("lfence": : : "memory"); i = 0U; goto ldv_42461; ldv_42460: { tmp___0 = readq((void const volatile *)(& devcmd->args) + (unsigned long )i); vdev->args[i] = (u64 )tmp___0; i = i + 1U; } ldv_42461: ; if (i <= 14U) { goto ldv_42460; } else { } } else { } return (0); } else { } delay = delay + 1; ldv_42464: ; if (delay < wait) { goto ldv_42463; } else { } { printk("\venic: Timedout devcmd %d\n", (unsigned int )cmd & 16383U); } return (-110); } } static int vnic_dev_cmd_proxy(struct vnic_dev *vdev , enum vnic_devcmd_cmd proxy_cmd , enum vnic_devcmd_cmd cmd , u64 *a0 , u64 *a1 , int wait ) { u32 status ; int err ; { { memset((void *)(& vdev->args), 0, 120UL); vdev->args[0] = (u64 )vdev->proxy_index; vdev->args[1] = (u64 )cmd; vdev->args[2] = *a0; vdev->args[3] = *a1; err = _vnic_dev_cmd(vdev, proxy_cmd, wait); } if (err != 0) { return (err); } else { } status = (unsigned int )vdev->args[0]; if ((status & 2U) != 0U) { err = (int )vdev->args[1]; if (err != 5 || (unsigned int )cmd != 3221340196U) { { printk("\venic: Error %d proxy devcmd %d\n", err, (unsigned int )cmd & 16383U); } } else { } return (err); } else { } *a0 = vdev->args[1]; *a1 = vdev->args[2]; return (0); } } static int vnic_dev_cmd_no_proxy(struct vnic_dev *vdev , enum vnic_devcmd_cmd cmd , u64 *a0 , u64 *a1 , int wait ) { int err ; { { vdev->args[0] = *a0; vdev->args[1] = *a1; err = _vnic_dev_cmd(vdev, cmd, wait); *a0 = vdev->args[0]; *a1 = vdev->args[1]; } return (err); } } void vnic_dev_cmd_proxy_by_index_start(struct vnic_dev *vdev , u16 index ) { { vdev->proxy = 2; vdev->proxy_index = (u32 )index; return; } } void vnic_dev_cmd_proxy_end(struct vnic_dev *vdev ) { { vdev->proxy = 0; vdev->proxy_index = 0U; return; } } int vnic_dev_cmd(struct vnic_dev *vdev , enum vnic_devcmd_cmd cmd , u64 *a0 , u64 *a1 , int wait ) { int tmp ; int tmp___0 ; int tmp___1 ; { { memset((void *)(& vdev->args), 0, 120UL); } { if ((unsigned int )vdev->proxy == 2U) { goto case_2; } else { } if ((unsigned int )vdev->proxy == 1U) { goto case_1; } else { } if ((unsigned int )vdev->proxy == 0U) { goto case_0; } else { } goto switch_default; case_2: /* CIL Label */ { tmp = vnic_dev_cmd_proxy(vdev, 3221340203U, cmd, a0, a1, wait); } return (tmp); case_1: /* CIL Label */ { tmp___0 = vnic_dev_cmd_proxy(vdev, 3221340202U, cmd, a0, a1, wait); } return (tmp___0); case_0: /* CIL Label */ ; switch_default: /* CIL Label */ { tmp___1 = vnic_dev_cmd_no_proxy(vdev, cmd, a0, a1, wait); } return (tmp___1); switch_break: /* CIL Label */ ; } } } static int vnic_dev_capable(struct vnic_dev *vdev , enum vnic_devcmd_cmd cmd ) { u64 a0 ; u64 a1 ; int wait ; int err ; { { a0 = (u64 )cmd; a1 = 0ULL; wait = 1000; err = vnic_dev_cmd(vdev, 3221340196U, & a0, & a1, wait); } return (err == 0 && a0 == 0ULL); } } int vnic_dev_fw_info(struct vnic_dev *vdev , struct vnic_devcmd_fw_info **fw_info ) { u64 a0 ; u64 a1 ; int wait ; int err ; void *tmp ; int tmp___0 ; { a1 = 0ULL; wait = 1000; err = 0; if ((unsigned long )vdev->fw_info == (unsigned long )((struct vnic_devcmd_fw_info *)0)) { { tmp = pci_alloc_consistent(vdev->pdev, 132UL, & vdev->fw_info_pa); vdev->fw_info = (struct vnic_devcmd_fw_info *)tmp; } if ((unsigned long )vdev->fw_info == (unsigned long )((struct vnic_devcmd_fw_info *)0)) { return (-12); } else { } { memset((void *)vdev->fw_info, 0, 132UL); a0 = vdev->fw_info_pa; a1 = 132ULL; tmp___0 = vnic_dev_capable(vdev, 3221340161U); } if (tmp___0 != 0) { { err = vnic_dev_cmd(vdev, 3221340161U, & a0, & a1, wait); } } else { { err = vnic_dev_cmd(vdev, 1073856513, & a0, & a1, wait); } } } else { } *fw_info = vdev->fw_info; return (err); } } int vnic_dev_spec(struct vnic_dev *vdev , unsigned int offset , unsigned int size , void *value ) { u64 a0 ; u64 a1 ; int wait ; int err ; { { wait = 1000; a0 = (u64 )offset; a1 = (u64 )size; err = vnic_dev_cmd(vdev, 3221340162U, & a0, & a1, wait); } { if (size == 1U) { goto case_1; } else { } if (size == 2U) { goto case_2; } else { } if (size == 4U) { goto case_4; } else { } if (size == 8U) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ *((u8 *)value) = (unsigned char )a0; goto ldv_42529; case_2: /* CIL Label */ *((u16 *)value) = (unsigned short )a0; goto ldv_42529; case_4: /* CIL Label */ *((u32 *)value) = (unsigned int )a0; goto ldv_42529; case_8: /* CIL Label */ *((u64 *)value) = a0; goto ldv_42529; switch_default: /* CIL Label */ { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/cisco/enic/vnic_dev.c"), "i" (477), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_42529: ; return (err); } } int vnic_dev_stats_dump(struct vnic_dev *vdev , struct vnic_stats **stats ) { u64 a0 ; u64 a1 ; int wait ; void *tmp ; int tmp___0 ; { wait = 1000; if ((unsigned long )vdev->stats == (unsigned long )((struct vnic_stats *)0)) { { tmp = pci_alloc_consistent(vdev->pdev, 512UL, & vdev->stats_pa); vdev->stats = (struct vnic_stats *)tmp; } if ((unsigned long )vdev->stats == (unsigned long )((struct vnic_stats *)0)) { return (-12); } else { } } else { } { *stats = vdev->stats; a0 = vdev->stats_pa; a1 = 512ULL; tmp___0 = vnic_dev_cmd(vdev, 1073856516, & a0, & a1, wait); } return (tmp___0); } } int vnic_dev_close(struct vnic_dev *vdev ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; { { a0 = 0ULL; a1 = 0ULL; wait = 1000; tmp = vnic_dev_cmd(vdev, 114713, & a0, & a1, wait); } return (tmp); } } int vnic_dev_enable_wait(struct vnic_dev *vdev ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; int tmp___0 ; int tmp___1 ; { { a0 = 0ULL; a1 = 0ULL; wait = 1000; tmp___1 = vnic_dev_capable(vdev, 1073856540); } if (tmp___1 != 0) { { tmp = vnic_dev_cmd(vdev, 1073856540, & a0, & a1, wait); } return (tmp); } else { { tmp___0 = vnic_dev_cmd(vdev, 1090633756, & a0, & a1, wait); } return (tmp___0); } } } int vnic_dev_disable(struct vnic_dev *vdev ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; { { a0 = 0ULL; a1 = 0ULL; wait = 1000; tmp = vnic_dev_cmd(vdev, 114717, & a0, & a1, wait); } return (tmp); } } int vnic_dev_open(struct vnic_dev *vdev , int arg ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; { { a0 = (u64 )((unsigned int )arg); a1 = 0ULL; wait = 1000; tmp = vnic_dev_cmd(vdev, 1090633751, & a0, & a1, wait); } return (tmp); } } int vnic_dev_open_done(struct vnic_dev *vdev , int *done ) { u64 a0 ; u64 a1 ; int wait ; int err ; { { a0 = 0ULL; a1 = 0ULL; wait = 1000; *done = 0; err = vnic_dev_cmd(vdev, 2147598360U, & a0, & a1, wait); } if (err != 0) { return (err); } else { } *done = a0 == 0ULL; return (0); } } static int vnic_dev_soft_reset(struct vnic_dev *vdev , int arg ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; { { a0 = (u64 )((unsigned int )arg); a1 = 0ULL; wait = 1000; tmp = vnic_dev_cmd(vdev, 16891923, & a0, & a1, wait); } return (tmp); } } static int vnic_dev_soft_reset_done(struct vnic_dev *vdev , int *done ) { u64 a0 ; u64 a1 ; int wait ; int err ; { { a0 = 0ULL; a1 = 0ULL; wait = 1000; *done = 0; err = vnic_dev_cmd(vdev, 2147598356U, & a0, & a1, wait); } if (err != 0) { return (err); } else { } *done = a0 == 0ULL; return (0); } } int vnic_dev_hang_reset(struct vnic_dev *vdev , int arg ) { u64 a0 ; u64 a1 ; int wait ; int err ; int tmp ; int tmp___0 ; int tmp___1 ; { { a0 = (u64 )((unsigned int )arg); a1 = 0ULL; wait = 1000; tmp___1 = vnic_dev_capable(vdev, 114727); } if (tmp___1 != 0) { { tmp = vnic_dev_cmd(vdev, 114727, & a0, & a1, wait); } return (tmp); } else { { err = vnic_dev_soft_reset(vdev, arg); } if (err != 0) { return (err); } else { } { tmp___0 = vnic_dev_init(vdev, 0); } return (tmp___0); } } } int vnic_dev_hang_reset_done(struct vnic_dev *vdev , int *done ) { u64 a0 ; u64 a1 ; int wait ; int err ; int tmp ; int tmp___0 ; { { a0 = 0ULL; a1 = 0ULL; wait = 1000; *done = 0; tmp___0 = vnic_dev_capable(vdev, 2147598376U); } if (tmp___0 != 0) { { err = vnic_dev_cmd(vdev, 2147598376U, & a0, & a1, wait); } if (err != 0) { return (err); } else { } } else { { tmp = vnic_dev_soft_reset_done(vdev, done); } return (tmp); } *done = a0 == 0ULL; return (0); } } int vnic_dev_hang_notify(struct vnic_dev *vdev ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; { { wait = 1000; tmp = vnic_dev_cmd(vdev, 114696, & a0, & a1, wait); } return (tmp); } } int vnic_dev_get_mac_addr(struct vnic_dev *vdev , u8 *mac_addr ) { u64 a0 ; u64 a1 ; int wait ; int err ; int i ; { wait = 1000; i = 0; goto ldv_42621; ldv_42620: *(mac_addr + (unsigned long )i) = 0U; i = i + 1; ldv_42621: ; if (i <= 5) { goto ldv_42620; } else { } { err = vnic_dev_cmd(vdev, 2147532809U, & a0, & a1, wait); } if (err != 0) { return (err); } else { } i = 0; goto ldv_42624; ldv_42623: *(mac_addr + (unsigned long )i) = *((u8 *)(& a0) + (unsigned long )i); i = i + 1; ldv_42624: ; if (i <= 5) { goto ldv_42623; } else { } return (0); } } int vnic_dev_packet_filter(struct vnic_dev *vdev , int directed , int multicast , int broadcast , int promisc , int allmulti ) { u64 a0 ; u64 a1 ; int wait ; int err ; { { a1 = 0ULL; wait = 1000; a0 = (u64 )(((((directed != 0) | (multicast != 0 ? 2 : 0)) | (broadcast != 0 ? 4 : 0)) | (promisc != 0 ? 8 : 0)) | (allmulti != 0 ? 16 : 0)); err = vnic_dev_cmd(vdev, 1090535431, & a0, & a1, wait); } if (err != 0) { { printk("\venic: Can\'t set packet filter\n"); } } else { } return (err); } } int vnic_dev_add_addr(struct vnic_dev *vdev , u8 *addr ) { u64 a0 ; u64 a1 ; int wait ; int err ; int i ; { a0 = 0ULL; a1 = 0ULL; wait = 1000; i = 0; goto ldv_42648; ldv_42647: *((u8 *)(& a0) + (unsigned long )i) = *(addr + (unsigned long )i); i = i + 1; ldv_42648: ; if (i <= 5) { goto ldv_42647; } else { } { err = vnic_dev_cmd(vdev, 1090568204, & a0, & a1, wait); } if (err != 0) { { printk("\venic: Can\'t add addr [%pM], %d\n", addr, err); } } else { } return (err); } } int vnic_dev_del_addr(struct vnic_dev *vdev , u8 *addr ) { u64 a0 ; u64 a1 ; int wait ; int err ; int i ; { a0 = 0ULL; a1 = 0ULL; wait = 1000; i = 0; goto ldv_42660; ldv_42659: *((u8 *)(& a0) + (unsigned long )i) = *(addr + (unsigned long )i); i = i + 1; ldv_42660: ; if (i <= 5) { goto ldv_42659; } else { } { err = vnic_dev_cmd(vdev, 1090568205, & a0, & a1, wait); } if (err != 0) { { printk("\venic: Can\'t del addr [%pM], %d\n", addr, err); } } else { } return (err); } } int vnic_dev_set_ig_vlan_rewrite_mode(struct vnic_dev *vdev , u8 ig_vlan_rewrite_mode ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; int tmp___0 ; { { a0 = (u64 )ig_vlan_rewrite_mode; a1 = 0ULL; wait = 1000; tmp___0 = vnic_dev_capable(vdev, 3221241897U); } if (tmp___0 != 0) { { tmp = vnic_dev_cmd(vdev, 3221241897U, & a0, & a1, wait); } return (tmp); } else { return (0); } } } static int vnic_dev_notify_setcmd(struct vnic_dev *vdev , void *notify_addr , dma_addr_t notify_pa , u16 intr ) { u64 a0 ; u64 a1 ; int wait ; int r ; { { wait = 1000; memset(notify_addr, 0, 40UL); vdev->notify = (struct vnic_devcmd_notify *)notify_addr; vdev->notify_pa = notify_pa; a0 = notify_pa; a1 = ((unsigned long long )intr << 32) & 281470681743360ULL; a1 = a1 + 40ULL; r = vnic_dev_cmd(vdev, 3221340181U, & a0, & a1, wait); vdev->notify_sz = r == 0 ? (unsigned int )a1 : 0U; } return (r); } } int vnic_dev_notify_set(struct vnic_dev *vdev , u16 intr ) { void *notify_addr ; dma_addr_t notify_pa ; int tmp ; { if ((unsigned long )vdev->notify != (unsigned long )((struct vnic_devcmd_notify *)0) || vdev->notify_pa != 0ULL) { { printk("\venic: notify block %p still allocated", vdev->notify); } return (-22); } else { } { notify_addr = pci_alloc_consistent(vdev->pdev, 40UL, & notify_pa); } if ((unsigned long )notify_addr == (unsigned long )((void *)0)) { return (-12); } else { } { tmp = vnic_dev_notify_setcmd(vdev, notify_addr, notify_pa, (int )intr); } return (tmp); } } static int vnic_dev_notify_unsetcmd(struct vnic_dev *vdev ) { u64 a0 ; u64 a1 ; int wait ; int err ; { { wait = 1000; a0 = 0ULL; a1 = 281470681743360ULL; a1 = a1 + 40ULL; err = vnic_dev_cmd(vdev, 3221340181U, & a0, & a1, wait); vdev->notify = (struct vnic_devcmd_notify *)0; vdev->notify_pa = 0ULL; vdev->notify_sz = 0U; } return (err); } } int vnic_dev_notify_unset(struct vnic_dev *vdev ) { int tmp ; { if ((unsigned long )vdev->notify != (unsigned long )((struct vnic_devcmd_notify *)0)) { { pci_free_consistent(vdev->pdev, 40UL, (void *)vdev->notify, vdev->notify_pa); } } else { } { tmp = vnic_dev_notify_unsetcmd(vdev); } return (tmp); } } static int vnic_dev_notify_ready(struct vnic_dev *vdev ) { u32 *words ; unsigned int nwords ; unsigned int i ; u32 csum ; { nwords = vdev->notify_sz / 4U; if ((unsigned long )vdev->notify == (unsigned long )((struct vnic_devcmd_notify *)0) || vdev->notify_sz == 0U) { return (0); } else { } ldv_42705: { csum = 0U; memcpy((void *)(& vdev->notify_copy), (void const *)vdev->notify, (size_t )vdev->notify_sz); words = (u32 *)(& vdev->notify_copy); i = 1U; } goto ldv_42703; ldv_42702: csum = csum + *(words + (unsigned long )i); i = i + 1U; ldv_42703: ; if (i < nwords) { goto ldv_42702; } else { } if (csum != *words) { goto ldv_42705; } else { } return (1); } } int vnic_dev_init(struct vnic_dev *vdev , int arg ) { u64 a0 ; u64 a1 ; int wait ; int r ; int tmp ; { { a0 = (u64 )((unsigned int )arg); a1 = 0ULL; wait = 1000; r = 0; tmp = vnic_dev_capable(vdev, 1090633763); } if (tmp != 0) { { r = vnic_dev_cmd(vdev, 1090633763, & a0, & a1, wait); } } else { { vnic_dev_cmd(vdev, 2164375578U, & a0, & a1, wait); } if ((int )a0 & 1) { { vnic_dev_cmd(vdev, 2147532809U, & a0, & a1, wait); vnic_dev_cmd(vdev, 1090568204, & a0, & a1, wait); } } else { } } return (r); } } int vnic_dev_deinit(struct vnic_dev *vdev ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; { { a0 = 0ULL; a1 = 0ULL; wait = 1000; tmp = vnic_dev_cmd(vdev, 16891938, & a0, & a1, wait); } return (tmp); } } void vnic_dev_intr_coal_timer_info_default(struct vnic_dev *vdev ) { { { vdev->intr_coal_timer_info.mul = 2U; vdev->intr_coal_timer_info.div = 3U; vdev->intr_coal_timer_info.max_usec = vnic_dev_intr_coal_timer_hw_to_usec(vdev, 65535U); } return; } } int vnic_dev_intr_coal_timer_info(struct vnic_dev *vdev ) { int wait ; int err ; int tmp ; { { wait = 1000; memset((void *)(& vdev->args), 0, 120UL); tmp = vnic_dev_capable(vdev, 2147598386U); } if (tmp != 0) { { err = _vnic_dev_cmd(vdev, 2147598386U, wait); } } else { err = 5; } if (err == 5 || (err == 0 && ((vdev->args[0] == 0ULL || vdev->args[1] == 0ULL) || vdev->args[2] == 0ULL))) { { printk("\fenic: Using default conversion factor for interrupt coalesce timer\n"); vnic_dev_intr_coal_timer_info_default(vdev); } return (0); } else { } if (err == 0) { vdev->intr_coal_timer_info.mul = (unsigned int )vdev->args[0]; vdev->intr_coal_timer_info.div = (unsigned int )vdev->args[1]; vdev->intr_coal_timer_info.max_usec = (unsigned int )vdev->args[2]; } else { } return (err); } } int vnic_dev_link_status(struct vnic_dev *vdev ) { int tmp ; { { tmp = vnic_dev_notify_ready(vdev); } if (tmp == 0) { return (0); } else { } return ((int )vdev->notify_copy.link_state); } } u32 vnic_dev_port_speed(struct vnic_dev *vdev ) { int tmp ; { { tmp = vnic_dev_notify_ready(vdev); } if (tmp == 0) { return (0U); } else { } return (vdev->notify_copy.port_speed); } } u32 vnic_dev_msg_lvl(struct vnic_dev *vdev ) { int tmp ; { { tmp = vnic_dev_notify_ready(vdev); } if (tmp == 0) { return (0U); } else { } return (vdev->notify_copy.msglvl); } } u32 vnic_dev_mtu(struct vnic_dev *vdev ) { int tmp ; { { tmp = vnic_dev_notify_ready(vdev); } if (tmp == 0) { return (0U); } else { } return (vdev->notify_copy.mtu); } } void vnic_dev_set_intr_mode(struct vnic_dev *vdev , enum vnic_dev_intr_mode intr_mode ) { { vdev->intr_mode = intr_mode; return; } } enum vnic_dev_intr_mode vnic_dev_get_intr_mode(struct vnic_dev *vdev ) { { return (vdev->intr_mode); } } u32 vnic_dev_intr_coal_timer_usec_to_hw(struct vnic_dev *vdev , u32 usec ) { { return ((usec * vdev->intr_coal_timer_info.mul) / vdev->intr_coal_timer_info.div); } } u32 vnic_dev_intr_coal_timer_hw_to_usec(struct vnic_dev *vdev , u32 hw_cycles ) { { return ((hw_cycles * vdev->intr_coal_timer_info.div) / vdev->intr_coal_timer_info.mul); } } u32 vnic_dev_get_intr_coal_timer_max(struct vnic_dev *vdev ) { { return (vdev->intr_coal_timer_info.max_usec); } } void vnic_dev_unregister(struct vnic_dev *vdev ) { { if ((unsigned long )vdev != (unsigned long )((struct vnic_dev *)0)) { if ((unsigned long )vdev->notify != (unsigned long )((struct vnic_devcmd_notify *)0)) { { pci_free_consistent(vdev->pdev, 40UL, (void *)vdev->notify, vdev->notify_pa); } } else { } if ((unsigned long )vdev->stats != (unsigned long )((struct vnic_stats *)0)) { { pci_free_consistent(vdev->pdev, 512UL, (void *)vdev->stats, vdev->stats_pa); } } else { } if ((unsigned long )vdev->fw_info != (unsigned long )((struct vnic_devcmd_fw_info *)0)) { { pci_free_consistent(vdev->pdev, 132UL, (void *)vdev->fw_info, vdev->fw_info_pa); } } else { } { kfree((void const *)vdev); } } else { } return; } } static char const __kstrtab_vnic_dev_unregister[20U] = { 'v', 'n', 'i', 'c', '_', 'd', 'e', 'v', '_', 'u', 'n', 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '\000'}; struct kernel_symbol const __ksymtab_vnic_dev_unregister ; struct kernel_symbol const __ksymtab_vnic_dev_unregister = {(unsigned long )(& vnic_dev_unregister), (char const *)(& __kstrtab_vnic_dev_unregister)}; struct vnic_dev *vnic_dev_register(struct vnic_dev *vdev , void *priv , struct pci_dev *pdev , struct vnic_dev_bar *bar , unsigned int num_bars ) { void *tmp ; int tmp___0 ; void *tmp___1 ; { if ((unsigned long )vdev == (unsigned long )((struct vnic_dev *)0)) { { tmp = kzalloc(712UL, 32U); vdev = (struct vnic_dev *)tmp; } if ((unsigned long )vdev == (unsigned long )((struct vnic_dev *)0)) { return ((struct vnic_dev *)0); } else { } } else { } { vdev->priv = priv; vdev->pdev = pdev; tmp___0 = vnic_dev_discover_res(vdev, bar, num_bars); } if (tmp___0 != 0) { goto err_out; } else { } { tmp___1 = vnic_dev_get_res(vdev, 16, 0U); vdev->devcmd = (struct vnic_devcmd *)tmp___1; } if ((unsigned long )vdev->devcmd == (unsigned long )((struct vnic_devcmd *)0)) { goto err_out; } else { } return (vdev); err_out: { vnic_dev_unregister(vdev); } return ((struct vnic_dev *)0); } } static char const __kstrtab_vnic_dev_register[18U] = { 'v', 'n', 'i', 'c', '_', 'd', 'e', 'v', '_', 'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '\000'}; struct kernel_symbol const __ksymtab_vnic_dev_register ; struct kernel_symbol const __ksymtab_vnic_dev_register = {(unsigned long )(& vnic_dev_register), (char const *)(& __kstrtab_vnic_dev_register)}; struct pci_dev *vnic_dev_get_pdev(struct vnic_dev *vdev ) { { return (vdev->pdev); } } static char const __kstrtab_vnic_dev_get_pdev[18U] = { 'v', 'n', 'i', 'c', '_', 'd', 'e', 'v', '_', 'g', 'e', 't', '_', 'p', 'd', 'e', 'v', '\000'}; struct kernel_symbol const __ksymtab_vnic_dev_get_pdev ; struct kernel_symbol const __ksymtab_vnic_dev_get_pdev = {(unsigned long )(& vnic_dev_get_pdev), (char const *)(& __kstrtab_vnic_dev_get_pdev)}; int vnic_dev_init_prov2(struct vnic_dev *vdev , u8 *buf , u32 len ) { u64 a0 ; u64 a1 ; int wait ; dma_addr_t prov_pa ; void *prov_buf ; int ret ; { { a1 = (u64 )len; wait = 1000; prov_buf = pci_alloc_consistent(vdev->pdev, (size_t )len, & prov_pa); } if ((unsigned long )prov_buf == (unsigned long )((void *)0)) { return (-12); } else { } { memcpy(prov_buf, (void const *)buf, (size_t )len); a0 = prov_pa; ret = vnic_dev_cmd(vdev, 1073758255, & a0, & a1, wait); pci_free_consistent(vdev->pdev, (size_t )len, prov_buf, prov_pa); } return (ret); } } int vnic_dev_enable2(struct vnic_dev *vdev , int active ) { u64 a0 ; u64 a1 ; int wait ; int tmp ; { { a1 = 0ULL; wait = 1000; a0 = active != 0; tmp = vnic_dev_cmd(vdev, 1073758256, & a0, & a1, wait); } return (tmp); } } static int vnic_dev_cmd_status(struct vnic_dev *vdev , enum vnic_devcmd_cmd cmd , int *status ) { u64 a0 ; u64 a1 ; int wait ; int ret ; { { a0 = (u64 )cmd; a1 = 0ULL; wait = 1000; ret = vnic_dev_cmd(vdev, 3221340209U, & a0, & a1, wait); } if (ret == 0) { *status = (int )a0; } else { } return (ret); } } int vnic_dev_enable2_done(struct vnic_dev *vdev , int *status ) { int tmp ; { { tmp = vnic_dev_cmd_status(vdev, 1073758256, status); } return (tmp); } } int vnic_dev_deinit_done(struct vnic_dev *vdev , int *status ) { int tmp ; { { tmp = vnic_dev_cmd_status(vdev, 16891938, status); } return (tmp); } } int vnic_dev_set_mac_addr(struct vnic_dev *vdev , u8 *mac_addr ) { u64 a0 ; u64 a1 ; int wait ; int i ; int tmp ; { wait = 1000; i = 0; goto ldv_42842; ldv_42841: *((u8 *)(& a0) + (unsigned long )i) = *(mac_addr + (unsigned long )i); i = i + 1; ldv_42842: ; if (i <= 5) { goto ldv_42841; } else { } { tmp = vnic_dev_cmd(vdev, 1073758263, & a0, & a1, wait); } return (tmp); } } __inline static void *kzalloc(size_t size , gfp_t flags ) ; static int vnic_rq_alloc_bufs(struct vnic_rq *rq ) { struct vnic_rq_buf *buf ; unsigned int i ; unsigned int j ; unsigned int count ; unsigned int blks ; void *tmp ; struct vnic_rq_buf *tmp___0 ; { count = rq->ring.desc_count; blks = ((count + (count <= 63U ? 32U : 64U)) - 1U) / (count <= 63U ? 32U : 64U); i = 0U; goto ldv_42526; ldv_42525: { tmp = kzalloc(count <= 63U ? 1792UL : 3584UL, 32U); rq->bufs[i] = (struct vnic_rq_buf *)tmp; } if ((unsigned long )rq->bufs[i] == (unsigned long )((struct vnic_rq_buf *)0)) { return (-12); } else { } i = i + 1U; ldv_42526: ; if (i < blks) { goto ldv_42525; } else { } i = 0U; goto ldv_42532; ldv_42531: buf = rq->bufs[i]; j = 0U; goto ldv_42530; ldv_42529: buf->index = i * (count <= 63U ? 32U : 64U) + j; buf->desc = rq->ring.descs + (unsigned long )(rq->ring.desc_size * buf->index); if (buf->index + 1U == count) { buf->next = rq->bufs[0]; goto ldv_42528; } else if (j + 1U == (count <= 63U ? 32U : 64U)) { buf->next = rq->bufs[i + 1U]; } else { buf->next = buf + 1UL; buf = buf + 1; } j = j + 1U; ldv_42530: ; if (j < (count <= 63U ? 32U : 64U)) { goto ldv_42529; } else { } ldv_42528: i = i + 1U; ldv_42532: ; if (i < blks) { goto ldv_42531; } else { } tmp___0 = rq->bufs[0]; rq->to_clean = tmp___0; rq->to_use = tmp___0; return (0); } } void vnic_rq_free(struct vnic_rq *rq ) { struct vnic_dev *vdev ; unsigned int i ; { { vdev = rq->vdev; vnic_dev_free_desc_ring(vdev, & rq->ring); i = 0U; } goto ldv_42540; ldv_42539: ; if ((unsigned long )rq->bufs[i] != (unsigned long )((struct vnic_rq_buf *)0)) { { kfree((void const *)rq->bufs[i]); rq->bufs[i] = (struct vnic_rq_buf *)0; } } else { } i = i + 1U; ldv_42540: ; if (i <= 63U) { goto ldv_42539; } else { } rq->ctrl = (struct vnic_rq_ctrl *)0; return; } } int vnic_rq_alloc(struct vnic_dev *vdev , struct vnic_rq *rq , unsigned int index , unsigned int desc_count , unsigned int desc_size ) { int err ; void *tmp ; { { rq->index = index; rq->vdev = vdev; tmp = vnic_dev_get_res(vdev, 2, index); rq->ctrl = (struct vnic_rq_ctrl *)tmp; } if ((unsigned long )rq->ctrl == (unsigned long )((struct vnic_rq_ctrl *)0)) { { printk("\venic: Failed to hook RQ[%d] resource\n", index); } return (-22); } else { } { vnic_rq_disable(rq); err = vnic_dev_alloc_desc_ring(vdev, & rq->ring, desc_count, desc_size); } if (err != 0) { return (err); } else { } { err = vnic_rq_alloc_bufs(rq); } if (err != 0) { { vnic_rq_free(rq); } return (err); } else { } return (0); } } static void vnic_rq_init_start(struct vnic_rq *rq , unsigned int cq_index , unsigned int fetch_index , unsigned int posted_index , unsigned int error_interrupt_enable , unsigned int error_interrupt_offset ) { u64 paddr ; unsigned int count ; struct vnic_rq_buf *tmp ; { { count = rq->ring.desc_count; paddr = rq->ring.base_addr; writeq((unsigned long )paddr, (void volatile *)(& (rq->ctrl)->ring_base)); iowrite32(count, (void *)(& (rq->ctrl)->ring_size)); iowrite32(cq_index, (void *)(& (rq->ctrl)->cq_index)); iowrite32(error_interrupt_enable, (void *)(& (rq->ctrl)->error_interrupt_enable)); iowrite32(error_interrupt_offset, (void *)(& (rq->ctrl)->error_interrupt_offset)); iowrite32(0U, (void *)(& (rq->ctrl)->dropped_packet_count)); iowrite32(0U, (void *)(& (rq->ctrl)->error_status)); iowrite32(fetch_index, (void *)(& (rq->ctrl)->fetch_index)); iowrite32(posted_index, (void *)(& (rq->ctrl)->posted_index)); tmp = rq->bufs[fetch_index / (count <= 63U ? 32U : 64U)] + (unsigned long )(fetch_index % (count <= 63U ? 32U : 64U)); rq->to_clean = tmp; rq->to_use = tmp; } return; } } void vnic_rq_init(struct vnic_rq *rq , unsigned int cq_index , unsigned int error_interrupt_enable , unsigned int error_interrupt_offset ) { u32 fetch_index ; { { fetch_index = 0U; fetch_index = ioread32((void *)(& (rq->ctrl)->fetch_index)); } if (fetch_index == 4294967295U) { fetch_index = 0U; } else { } { vnic_rq_init_start(rq, cq_index, fetch_index, fetch_index, error_interrupt_enable, error_interrupt_offset); } return; } } unsigned int vnic_rq_error_status(struct vnic_rq *rq ) { unsigned int tmp ; { { tmp = ioread32((void *)(& (rq->ctrl)->error_status)); } return (tmp); } } void vnic_rq_enable(struct vnic_rq *rq ) { { { iowrite32(1U, (void *)(& (rq->ctrl)->enable)); } return; } } int vnic_rq_disable(struct vnic_rq *rq ) { unsigned int wait ; unsigned int tmp ; { { iowrite32(0U, (void *)(& (rq->ctrl)->enable)); wait = 0U; } goto ldv_42578; ldv_42577: { tmp = ioread32((void *)(& (rq->ctrl)->running)); } if (tmp == 0U) { return (0); } else { } { __const_udelay(42950UL); wait = wait + 1U; } ldv_42578: ; if (wait <= 999U) { goto ldv_42577; } else { } { printk("\venic: Failed to disable RQ[%d]\n", rq->index); } return (-110); } } void vnic_rq_clean(struct vnic_rq *rq , void (*buf_clean)(struct vnic_rq * , struct vnic_rq_buf * ) ) { struct vnic_rq_buf *buf ; u32 fetch_index ; unsigned int count ; struct vnic_rq_buf *tmp ; unsigned int tmp___0 ; struct vnic_rq_buf *tmp___1 ; { count = rq->ring.desc_count; buf = rq->to_clean; goto ldv_42590; ldv_42589: { (*buf_clean)(rq, buf); tmp = buf->next; rq->to_clean = tmp; buf = tmp; rq->ring.desc_avail = rq->ring.desc_avail + 1U; } ldv_42590: { tmp___0 = vnic_rq_desc_used(rq); } if (tmp___0 != 0U) { goto ldv_42589; } else { } { fetch_index = ioread32((void *)(& (rq->ctrl)->fetch_index)); } if (fetch_index == 4294967295U) { fetch_index = 0U; } else { } { tmp___1 = rq->bufs[fetch_index / (count <= 63U ? 32U : 64U)] + (unsigned long )(fetch_index % (count <= 63U ? 32U : 64U)); rq->to_clean = tmp___1; rq->to_use = tmp___1; iowrite32(fetch_index, (void *)(& (rq->ctrl)->posted_index)); vnic_dev_clear_desc_ring(& rq->ring); } return; } } __inline static __u32 __fswab32(__u32 val ) { int tmp ; { { tmp = __builtin_bswap32(val); } return ((__u32 )tmp); } } __inline static void *kzalloc(size_t size , gfp_t flags ) ; struct vic_provinfo *vic_provinfo_alloc(gfp_t flags , u8 const *oui , u8 const type ) { struct vic_provinfo *vp ; void *tmp ; { if ((unsigned long )oui == (unsigned long )((u8 const *)0U)) { return ((struct vic_provinfo *)0); } else { } { tmp = kzalloc(1385UL, flags); vp = (struct vic_provinfo *)tmp; } if ((unsigned long )vp == (unsigned long )((struct vic_provinfo *)0)) { return ((struct vic_provinfo *)0); } else { } { memcpy((void *)(& vp->oui), (void const *)oui, 3UL); vp->type = type; vp->length = 67108864U; } return (vp); } } void vic_provinfo_free(struct vic_provinfo *vp ) { { { kfree((void const *)vp); } return; } } int vic_provinfo_add_tlv(struct vic_provinfo *vp , u16 type , u16 length , void const *value ) { struct vic_provinfo_tlv *tlv ; __u32 tmp ; __u32 tmp___0 ; __u16 tmp___1 ; __u16 tmp___2 ; __u32 tmp___8 ; __u32 tmp___9 ; __u32 tmp___15 ; __u32 tmp___16 ; { if ((unsigned long )vp == (unsigned long )((struct vic_provinfo *)0) || (unsigned long )value == (unsigned long )((void const *)0)) { return (-22); } else { } { tmp = __fswab32(vp->length); } if (((unsigned long )tmp + 4UL) + (unsigned long )length > 1373UL) { return (-12); } else { } { tmp___0 = __fswab32(vp->length); tlv = (struct vic_provinfo_tlv *)(& vp->tlv) + ((unsigned long )tmp___0 + 0xfffffffffffffffcUL); tmp___1 = __fswab16((int )type); tlv->type = tmp___1; tmp___2 = __fswab16((int )length); tlv->length = tmp___2; memcpy((void *)(& tlv->value), value, (size_t )length); tmp___8 = __fswab32(vp->num_tlvs); tmp___9 = __fswab32(tmp___8 + 1U); vp->num_tlvs = tmp___9; tmp___15 = __fswab32(vp->length); tmp___16 = __fswab32((tmp___15 + 4U) + (__u32 )length); vp->length = tmp___16; } return (0); } } size_t vic_provinfo_size(struct vic_provinfo *vp ) { __u32 tmp ; size_t tmp___0 ; { if ((unsigned long )vp != (unsigned long )((struct vic_provinfo *)0)) { { tmp = __fswab32(vp->length); tmp___0 = (unsigned long )tmp + 8UL; } } else { tmp___0 = 0UL; } return (tmp___0); } } extern size_t strlcpy(char * , char const * , size_t ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } extern u32 ethtool_op_get_link(struct net_device * ) ; __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } static struct enic_stat const enic_tx_stats[11U] = { {{'t', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', 'o', 'k', '\000'}, 0U}, {{'t', 'x', '_', 'u', 'n', 'i', 'c', 'a', 's', 't', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', 'o', 'k', '\000'}, 1U}, {{'t', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', 'o', 'k', '\000'}, 2U}, {{'t', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', 'o', 'k', '\000'}, 3U}, {{'t', 'x', '_', 'b', 'y', 't', 'e', 's', '_', 'o', 'k', '\000'}, 4U}, {{'t', 'x', '_', 'u', 'n', 'i', 'c', 'a', 's', 't', '_', 'b', 'y', 't', 'e', 's', '_', 'o', 'k', '\000'}, 5U}, {{'t', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '_', 'b', 'y', 't', 'e', 's', '_', 'o', 'k', '\000'}, 6U}, {{'t', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '_', 'b', 'y', 't', 'e', 's', '_', 'o', 'k', '\000'}, 7U}, {{'t', 'x', '_', 'd', 'r', 'o', 'p', 's', '\000'}, 8U}, {{'t', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 9U}, {{'t', 'x', '_', 't', 's', 'o', '\000'}, 10U}}; static struct enic_stat const enic_rx_stats[21U] = { {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', 'o', 'k', '\000'}, 0U}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', 't', 'o', 't', 'a', 'l', '\000'}, 1U}, {{'r', 'x', '_', 'u', 'n', 'i', 'c', 'a', 's', 't', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', 'o', 'k', '\000'}, 2U}, {{'r', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', 'o', 'k', '\000'}, 3U}, {{'r', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', 'o', 'k', '\000'}, 4U}, {{'r', 'x', '_', 'b', 'y', 't', 'e', 's', '_', 'o', 'k', '\000'}, 5U}, {{'r', 'x', '_', 'u', 'n', 'i', 'c', 'a', 's', 't', '_', 'b', 'y', 't', 'e', 's', '_', 'o', 'k', '\000'}, 6U}, {{'r', 'x', '_', 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '_', 'b', 'y', 't', 'e', 's', '_', 'o', 'k', '\000'}, 7U}, {{'r', 'x', '_', 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '_', 'b', 'y', 't', 'e', 's', '_', 'o', 'k', '\000'}, 8U}, {{'r', 'x', '_', 'd', 'r', 'o', 'p', '\000'}, 9U}, {{'r', 'x', '_', 'n', 'o', '_', 'b', 'u', 'f', 's', '\000'}, 10U}, {{'r', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 11U}, {{'r', 'x', '_', 'r', 's', 's', '\000'}, 12U}, {{'r', 'x', '_', 'c', 'r', 'c', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, 13U}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', '6', '4', '\000'}, 14U}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', '1', '2', '7', '\000'}, 15U}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', '2', '5', '5', '\000'}, 16U}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', '5', '1', '1', '\000'}, 17U}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', '1', '0', '2', '3', '\000'}, 18U}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', '1', '5', '1', '8', '\000'}, 19U}, {{'r', 'x', '_', 'f', 'r', 'a', 'm', 'e', 's', '_', 't', 'o', '_', 'm', 'a', 'x', '\000'}, 20U}}; static int enic_get_settings(struct net_device *netdev , struct ethtool_cmd *ecmd ) { struct enic *enic ; void *tmp ; u32 tmp___0 ; bool tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; ecmd->supported = 5120U; ecmd->advertising = 5120U; ecmd->port = 3U; ecmd->transceiver = 1U; tmp___1 = netif_carrier_ok((struct net_device const *)netdev); } if ((int )tmp___1) { { tmp___0 = vnic_dev_port_speed(enic->vdev); ethtool_cmd_speed_set(ecmd, tmp___0); ecmd->duplex = 1U; } } else { { ethtool_cmd_speed_set(ecmd, 4294967295U); ecmd->duplex = 255U; } } ecmd->autoneg = 0U; return (0); } } static void enic_get_drvinfo(struct net_device *netdev , struct ethtool_drvinfo *drvinfo ) { struct enic *enic ; void *tmp ; struct vnic_devcmd_fw_info *fw_info ; char const *tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; enic_dev_fw_info(enic, & fw_info); strlcpy((char *)(& drvinfo->driver), "enic", 32UL); strlcpy((char *)(& drvinfo->version), "2.1.1.50", 32UL); strlcpy((char *)(& drvinfo->fw_version), (char const *)(& fw_info->fw_version), 32UL); tmp___0 = pci_name((struct pci_dev const *)enic->pdev); strlcpy((char *)(& drvinfo->bus_info), tmp___0, 32UL); } return; } } static void enic_get_strings(struct net_device *netdev , u32 stringset , u8 *data ) { unsigned int i ; { { if (stringset == 1U) { goto case_1; } else { } goto switch_break; case_1: /* CIL Label */ i = 0U; goto ldv_43158; ldv_43157: { memcpy((void *)data, (void const *)(& enic_tx_stats[i].name), 32UL); data = data + 32UL; i = i + 1U; } ldv_43158: ; if (i <= 10U) { goto ldv_43157; } else { } i = 0U; goto ldv_43161; ldv_43160: { memcpy((void *)data, (void const *)(& enic_rx_stats[i].name), 32UL); data = data + 32UL; i = i + 1U; } ldv_43161: ; if (i <= 20U) { goto ldv_43160; } else { } goto ldv_43163; switch_break: /* CIL Label */ ; } ldv_43163: ; return; } } static int enic_get_sset_count(struct net_device *netdev , int sset ) { { { if (sset == 1) { goto case_1; } else { } goto switch_default; case_1: /* CIL Label */ ; return (32); switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } } } static void enic_get_ethtool_stats(struct net_device *netdev , struct ethtool_stats *stats , u64 *data ) { struct enic *enic ; void *tmp ; struct vnic_stats *vstats ; unsigned int i ; u64 *tmp___0 ; u64 *tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; enic_dev_stats_dump(enic, & vstats); i = 0U; } goto ldv_43179; ldv_43178: tmp___0 = data; data = data + 1; *tmp___0 = *((u64 *)(& vstats->tx) + (unsigned long )enic_tx_stats[i].index); i = i + 1U; ldv_43179: ; if (i <= 10U) { goto ldv_43178; } else { } i = 0U; goto ldv_43182; ldv_43181: tmp___1 = data; data = data + 1; *tmp___1 = *((u64 *)(& vstats->rx) + (unsigned long )enic_rx_stats[i].index); i = i + 1U; ldv_43182: ; if (i <= 20U) { goto ldv_43181; } else { } return; } } static u32 enic_get_msglevel(struct net_device *netdev ) { struct enic *enic ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; } return (enic->msg_enable); } } static void enic_set_msglevel(struct net_device *netdev , u32 value ) { struct enic *enic ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; enic->msg_enable = value; } return; } } static int enic_get_coalesce(struct net_device *netdev , struct ethtool_coalesce *ecmd ) { struct enic *enic ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; ecmd->tx_coalesce_usecs = enic->tx_coalesce_usecs; ecmd->rx_coalesce_usecs = enic->rx_coalesce_usecs; } return (0); } } static int enic_set_coalesce(struct net_device *netdev , struct ethtool_coalesce *ecmd ) { struct enic *enic ; void *tmp ; u32 tx_coalesce_usecs ; u32 rx_coalesce_usecs ; unsigned int i ; unsigned int intr ; u32 __min1 ; u32 __min2 ; u32 tmp___0 ; u32 __min1___0 ; u32 __min2___0 ; u32 tmp___1 ; enum vnic_dev_intr_mode tmp___2 ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; __min1 = ecmd->tx_coalesce_usecs; tmp___0 = vnic_dev_get_intr_coal_timer_max(enic->vdev); __min2 = tmp___0; tx_coalesce_usecs = __min1 < __min2 ? __min1 : __min2; __min1___0 = ecmd->rx_coalesce_usecs; tmp___1 = vnic_dev_get_intr_coal_timer_max(enic->vdev); __min2___0 = tmp___1; rx_coalesce_usecs = __min1___0 < __min2___0 ? __min1___0 : __min2___0; tmp___2 = vnic_dev_get_intr_mode(enic->vdev); } { if ((unsigned int )tmp___2 == 1U) { goto case_1; } else { } if ((unsigned int )tmp___2 == 2U) { goto case_2; } else { } if ((unsigned int )tmp___2 == 3U) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ; if (tx_coalesce_usecs != rx_coalesce_usecs) { return (-22); } else { } { intr = enic_legacy_io_intr(); vnic_intr_coalescing_timer_set((struct vnic_intr *)(& enic->intr) + (unsigned long )intr, tx_coalesce_usecs); } goto ldv_43214; case_2: /* CIL Label */ ; if (tx_coalesce_usecs != rx_coalesce_usecs) { return (-22); } else { } { vnic_intr_coalescing_timer_set((struct vnic_intr *)(& enic->intr), tx_coalesce_usecs); } goto ldv_43214; case_3: /* CIL Label */ i = 0U; goto ldv_43218; ldv_43217: { intr = enic_msix_wq_intr(enic, i); vnic_intr_coalescing_timer_set((struct vnic_intr *)(& enic->intr) + (unsigned long )intr, tx_coalesce_usecs); i = i + 1U; } ldv_43218: ; if (i < enic->wq_count) { goto ldv_43217; } else { } i = 0U; goto ldv_43221; ldv_43220: { intr = enic_msix_rq_intr(enic, i); vnic_intr_coalescing_timer_set((struct vnic_intr *)(& enic->intr) + (unsigned long )intr, rx_coalesce_usecs); i = i + 1U; } ldv_43221: ; if (i < enic->rq_count) { goto ldv_43220; } else { } goto ldv_43214; switch_default: /* CIL Label */ ; goto ldv_43214; switch_break: /* CIL Label */ ; } ldv_43214: enic->tx_coalesce_usecs = tx_coalesce_usecs; enic->rx_coalesce_usecs = rx_coalesce_usecs; return (0); } } static struct ethtool_ops const enic_ethtool_ops = {& enic_get_settings, 0, & enic_get_drvinfo, 0, 0, 0, 0, & enic_get_msglevel, & enic_set_msglevel, 0, & ethtool_op_get_link, 0, 0, 0, & enic_get_coalesce, & enic_set_coalesce, 0, 0, 0, 0, 0, & enic_get_strings, 0, & enic_get_ethtool_stats, 0, 0, 0, 0, & enic_get_sset_count, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; void enic_set_ethtool_ops(struct net_device *netdev ) { { netdev->ethtool_ops = & enic_ethtool_ops; return; } } int (*ldv_2_callback_get_coalesce)(struct net_device * , struct ethtool_coalesce * ) = & enic_get_coalesce; void (*ldv_2_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) = & enic_get_drvinfo; void (*ldv_2_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) = & enic_get_ethtool_stats; unsigned int (*ldv_2_callback_get_link)(struct net_device * ) = & ethtool_op_get_link; unsigned int (*ldv_2_callback_get_msglevel)(struct net_device * ) = & enic_get_msglevel; int (*ldv_2_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) = & enic_get_settings; int (*ldv_2_callback_get_sset_count)(struct net_device * , int ) = & enic_get_sset_count; void (*ldv_2_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) = & enic_get_strings; int (*ldv_2_callback_set_coalesce)(struct net_device * , struct ethtool_coalesce * ) = & enic_set_coalesce; void (*ldv_2_callback_set_msglevel)(struct net_device * , unsigned int ) = & enic_set_msglevel; void ldv_dummy_resourceless_instance_callback_2_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ethtool_op_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_12(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { enic_get_msglevel(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_13(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { enic_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_14(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { enic_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_17(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { enic_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_3(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { enic_get_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_45(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { enic_set_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_46(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) { { { enic_set_msglevel(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_7(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { enic_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_8(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { enic_get_ethtool_stats(arg1, arg2, arg3); } return; } } __inline static void ldv_spin_lock_128(spinlock_t *lock ) ; __inline static void ldv_spin_lock_106(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_129(spinlock_t *lock ) ; int enic_api_devcmd_proxy_by_index(struct net_device *netdev , int vf , enum vnic_devcmd_cmd cmd , u64 *a0 , u64 *a1 , int wait ) ; int enic_api_devcmd_proxy_by_index(struct net_device *netdev , int vf , enum vnic_devcmd_cmd cmd , u64 *a0 , u64 *a1 , int wait ) { int err ; struct enic *enic ; void *tmp ; struct vnic_dev *vdev ; { { tmp = netdev_priv((struct net_device const *)netdev); enic = (struct enic *)tmp; vdev = enic->vdev; ldv_spin_lock_128(& enic->enic_api_lock); ldv_spin_lock_106(& enic->devcmd_lock); vnic_dev_cmd_proxy_by_index_start(vdev, (int )((u16 )vf)); err = vnic_dev_cmd(vdev, cmd, a0, a1, wait); vnic_dev_cmd_proxy_end(vdev); ldv_spin_unlock_107(& enic->devcmd_lock); ldv_spin_unlock_129(& enic->enic_api_lock); } return (err); } } static char const __kstrtab_enic_api_devcmd_proxy_by_index[31U] = { 'e', 'n', 'i', 'c', '_', 'a', 'p', 'i', '_', 'd', 'e', 'v', 'c', 'm', 'd', '_', 'p', 'r', 'o', 'x', 'y', '_', 'b', 'y', '_', 'i', 'n', 'd', 'e', 'x', '\000'}; struct kernel_symbol const __ksymtab_enic_api_devcmd_proxy_by_index ; struct kernel_symbol const __ksymtab_enic_api_devcmd_proxy_by_index = {(unsigned long )(& enic_api_devcmd_proxy_by_index), (char const *)(& __kstrtab_enic_api_devcmd_proxy_by_index)}; void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } static int ldv_spin_NOT_ARG_SIGN = 1; void ldv_spin_lock_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_NOT_ARG_SIGN == 1); ldv_spin_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_NOT_ARG_SIGN == 2); ldv_spin_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_devcmd_lock_of_enic = 1; void ldv_spin_lock_devcmd_lock_of_enic(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_devcmd_lock_of_enic == 1); ldv_assume(ldv_spin_devcmd_lock_of_enic == 1); ldv_spin_devcmd_lock_of_enic = 2; } return; } } void ldv_spin_unlock_devcmd_lock_of_enic(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_devcmd_lock_of_enic == 2); ldv_assume(ldv_spin_devcmd_lock_of_enic == 2); ldv_spin_devcmd_lock_of_enic = 1; } return; } } int ldv_spin_trylock_devcmd_lock_of_enic(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_devcmd_lock_of_enic == 1); ldv_assume(ldv_spin_devcmd_lock_of_enic == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_devcmd_lock_of_enic = 2; return (1); } } } void ldv_spin_unlock_wait_devcmd_lock_of_enic(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_devcmd_lock_of_enic == 1); ldv_assume(ldv_spin_devcmd_lock_of_enic == 1); } return; } } int ldv_spin_is_locked_devcmd_lock_of_enic(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_devcmd_lock_of_enic == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_devcmd_lock_of_enic(void) { int tmp ; { { tmp = ldv_spin_is_locked_devcmd_lock_of_enic(); } return (tmp == 0); } } int ldv_spin_is_contended_devcmd_lock_of_enic(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_devcmd_lock_of_enic(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_devcmd_lock_of_enic == 1); ldv_assume(ldv_spin_devcmd_lock_of_enic == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_devcmd_lock_of_enic = 2; return (1); } else { } return (0); } } static int ldv_spin_enic_api_lock_of_enic = 1; void ldv_spin_lock_enic_api_lock_of_enic(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_enic_api_lock_of_enic == 1); ldv_assume(ldv_spin_enic_api_lock_of_enic == 1); ldv_spin_enic_api_lock_of_enic = 2; } return; } } void ldv_spin_unlock_enic_api_lock_of_enic(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_enic_api_lock_of_enic == 2); ldv_assume(ldv_spin_enic_api_lock_of_enic == 2); ldv_spin_enic_api_lock_of_enic = 1; } return; } } int ldv_spin_trylock_enic_api_lock_of_enic(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_enic_api_lock_of_enic == 1); ldv_assume(ldv_spin_enic_api_lock_of_enic == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_enic_api_lock_of_enic = 2; return (1); } } } void ldv_spin_unlock_wait_enic_api_lock_of_enic(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_enic_api_lock_of_enic == 1); ldv_assume(ldv_spin_enic_api_lock_of_enic == 1); } return; } } int ldv_spin_is_locked_enic_api_lock_of_enic(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_enic_api_lock_of_enic == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_enic_api_lock_of_enic(void) { int tmp ; { { tmp = ldv_spin_is_locked_enic_api_lock_of_enic(); } return (tmp == 0); } } int ldv_spin_is_contended_enic_api_lock_of_enic(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_enic_api_lock_of_enic(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_enic_api_lock_of_enic == 1); ldv_assume(ldv_spin_enic_api_lock_of_enic == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_enic_api_lock_of_enic = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_res_counter = 1; void ldv_spin_lock_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); ldv_spin_lock_of_res_counter = 2; } return; } } void ldv_spin_unlock_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_res_counter == 2); ldv_assume(ldv_spin_lock_of_res_counter == 2); ldv_spin_lock_of_res_counter = 1; } return; } } int ldv_spin_trylock_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_res_counter = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); } return; } } int ldv_spin_is_locked_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_res_counter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_res_counter(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_res_counter(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_res_counter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_res_counter(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_res_counter = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_sk_dst_lock_of_sock = 1; void ldv_spin_lock_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); ldv_spin_sk_dst_lock_of_sock = 2; } return; } } void ldv_spin_unlock_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_sk_dst_lock_of_sock == 2); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 2); ldv_spin_sk_dst_lock_of_sock = 1; } return; } } int ldv_spin_trylock_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } } } void ldv_spin_unlock_wait_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); } return; } } int ldv_spin_is_locked_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_sk_dst_lock_of_sock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_sk_dst_lock_of_sock(void) { int tmp ; { { tmp = ldv_spin_is_locked_sk_dst_lock_of_sock(); } return (tmp == 0); } } int ldv_spin_is_contended_sk_dst_lock_of_sock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_sk_dst_lock_of_sock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } else { } return (0); } } static int ldv_spin_slock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_spin_slock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_spin_slock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_slock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_slock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_slock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_slock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_devcmd_lock_of_enic == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_enic_api_lock_of_enic == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_i_lock_of_inode == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_res_counter == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_ptl == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_siglock_of_sighand_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_devcmd_lock_of_enic == 2) { return (1); } else { } if (ldv_spin_enic_api_lock_of_enic == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lock_of_res_counter == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_sk_dst_lock_of_sock == 2) { return (1); } else { } if (ldv_spin_slock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }