/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __be16; typedef __u32 __be32; typedef __u16 __sum16; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef unsigned int uint; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct device; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned int flags : 8 ; }; struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_133 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_133 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_136 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_137 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_135 { struct __anonstruct____missing_field_name_136 __annonCompField34 ; struct __anonstruct____missing_field_name_137 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_135 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_138 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_144 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_143 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_144 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_141 { unsigned long counters ; struct __anonstruct____missing_field_name_142 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_139 { union __anonunion____missing_field_name_140 __annonCompField38 ; union __anonunion____missing_field_name_141 __annonCompField42 ; }; struct __anonstruct____missing_field_name_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_145 { struct list_head lru ; struct __anonstruct____missing_field_name_146 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_147 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct __anonstruct____missing_field_name_139 __annonCompField43 ; union __anonunion____missing_field_name_145 __annonCompField45 ; union __anonunion____missing_field_name_147 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct __anonstruct_sync_serial_settings_151 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_151 sync_serial_settings; struct __anonstruct_te1_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_152 te1_settings; struct __anonstruct_raw_hdlc_proto_153 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_153 raw_hdlc_proto; struct __anonstruct_fr_proto_154 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_154 fr_proto; struct __anonstruct_fr_proto_pvc_155 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_155 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_156 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_156 fr_proto_pvc_info; struct __anonstruct_cisco_proto_157 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_157 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_158 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_158 ifs_ifsu ; }; union __anonunion_ifr_ifrn_159 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_160 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_159 ifr_ifrn ; union __anonunion_ifr_ifru_160 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_163 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_162 { struct __anonstruct____missing_field_name_163 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_162 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_165 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_164 { struct __anonstruct____missing_field_name_165 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_164 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_166 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct semaphore { raw_spinlock_t lock ; unsigned int count ; struct list_head wait_list ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_168 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_168 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_169 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_169 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_171 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_170 { size_t written ; size_t count ; union __anonunion_arg_171 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_170 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_172 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_173 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_174 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_172 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_173 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_174 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_175 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_175 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_177 { struct list_head link ; int state ; }; union __anonunion_fl_u_176 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_177 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_176 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_178 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_178 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_180 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_181 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_184 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_185 { long _band ; int _fd ; }; struct __anonstruct__sigsys_186 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_179 { int _pad[28U] ; struct __anonstruct__kill_180 _kill ; struct __anonstruct__timer_181 _timer ; struct __anonstruct__rt_182 _rt ; struct __anonstruct__sigchld_183 _sigchld ; struct __anonstruct__sigfault_184 _sigfault ; struct __anonstruct__sigpoll_185 _sigpoll ; struct __anonstruct__sigsys_186 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_179 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_190 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_189 { struct __anonstruct____missing_field_name_190 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_189 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_191 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_192 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_194 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_193 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; union __anonunion_type_data_195 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_197 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_196 { union __anonunion_payload_197 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_191 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_192 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_193 __annonCompField60 ; union __anonunion_type_data_195 type_data ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_214 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_215 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField63 ; struct __anonstruct____missing_field_name_215 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_213 __annonCompField65 ; }; struct exception_table_entry { int insn ; int fixup ; }; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_217 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_217 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_219 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_218 { __wsum csum ; struct __anonstruct____missing_field_name_219 __annonCompField67 ; }; union __anonunion____missing_field_name_220 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_221 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_218 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_221 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28385 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28386 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28385 reg_state : 8 ; bool dismantle ; enum ldv_28386 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_246 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_246 __annonCompField76 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct mii_ioctl_data { __u16 phy_id ; __u16 reg_num ; __u16 val_in ; __u16 val_out ; }; struct mii_if_info { int phy_id ; int advertising ; int phy_id_mask ; int reg_num_mask ; unsigned int full_duplex : 1 ; unsigned int force_media : 1 ; unsigned int supports_gmii : 1 ; struct net_device *dev ; int (*mdio_read)(struct net_device * , int , int ) ; void (*mdio_write)(struct net_device * , int , int , int ) ; }; struct iphdr { __u8 ihl : 4 ; __u8 version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct ksz_desc_rx_stat { u32 frame_len : 11 ; u32 reserved1 : 4 ; u32 frame_type : 1 ; u32 err_crc : 1 ; u32 err_runt : 1 ; u32 err_too_long : 1 ; u32 err_phy : 1 ; u32 src_port : 4 ; u32 multicast : 1 ; u32 error : 1 ; u32 csum_err_udp : 1 ; u32 csum_err_tcp : 1 ; u32 csum_err_ip : 1 ; u32 last_desc : 1 ; u32 first_desc : 1 ; u32 hw_owned : 1 ; }; struct ksz_desc_tx_stat { u32 reserved1 : 31 ; u32 hw_owned : 1 ; }; struct ksz_desc_rx_buf { u32 buf_size : 11 ; u32 reserved3 : 14 ; u32 end_of_ring : 1 ; u32 reserved4 : 6 ; }; struct ksz_desc_tx_buf { u32 buf_size : 11 ; u32 reserved3 : 9 ; u32 dest_port : 4 ; u32 reserved4 : 1 ; u32 end_of_ring : 1 ; u32 csum_gen_udp : 1 ; u32 csum_gen_tcp : 1 ; u32 csum_gen_ip : 1 ; u32 last_seg : 1 ; u32 first_seg : 1 ; u32 intr : 1 ; }; union desc_stat { struct ksz_desc_rx_stat rx ; struct ksz_desc_tx_stat tx ; u32 data ; }; union desc_buf { struct ksz_desc_rx_buf rx ; struct ksz_desc_tx_buf tx ; u32 data ; }; struct ksz_hw_desc { union desc_stat ctrl ; union desc_buf buf ; u32 addr ; u32 next ; }; struct ksz_sw_desc { union desc_stat ctrl ; union desc_buf buf ; u32 buf_size ; }; struct ksz_dma_buf { struct sk_buff *skb ; dma_addr_t dma ; int len ; }; struct ksz_desc { struct ksz_hw_desc *phw ; struct ksz_sw_desc sw ; struct ksz_dma_buf dma_buf ; }; struct ksz_desc_info { struct ksz_desc *ring ; struct ksz_desc *cur ; struct ksz_hw_desc *ring_virt ; u32 ring_phys ; int size ; int alloc ; int avail ; int last ; int next ; int mask ; }; struct ksz_mac_table { u8 mac_addr[6U] ; u16 vid ; u8 fid ; u8 ports ; u8 override : 1 ; u8 use_fid : 1 ; u8 valid : 1 ; }; struct ksz_vlan_table { u16 vid ; u8 fid ; u8 member ; }; struct ksz_port_mib { u8 cnt_ptr ; u8 link_down ; u8 state ; u8 mib_start ; u64 counter[34U] ; u32 dropped[2U] ; }; struct ksz_port_cfg { u16 vid ; u8 member ; u8 port_prio ; u32 rx_rate[4U] ; u32 tx_rate[4U] ; int stp_state ; }; struct ksz_switch { struct ksz_mac_table mac_table[8U] ; struct ksz_vlan_table vlan_table[16U] ; struct ksz_port_cfg port_cfg[3U] ; u8 diffserv[64U] ; u8 p_802_1p[8U] ; u8 br_addr[6U] ; u8 other_addr[6U] ; u8 broad_per ; u8 member ; }; struct ksz_port_info { uint state ; uint tx_rate ; u8 duplex ; u8 advertised ; u8 partner ; u8 port_id ; void *pdev ; }; struct ksz_hw { void *io ; struct ksz_switch *ksz_switch ; struct ksz_port_info port_info[2U] ; struct ksz_port_mib port_mib[3U] ; int dev_count ; int dst_ports ; int id ; int mib_cnt ; int mib_port_cnt ; u32 tx_cfg ; u32 rx_cfg ; u32 intr_mask ; u32 intr_set ; uint intr_blocked ; struct ksz_desc_info rx_desc_info ; struct ksz_desc_info tx_desc_info ; int tx_int_cnt ; int tx_int_mask ; int tx_size ; u8 perm_addr[6U] ; u8 override_addr[6U] ; u8 address[16U][6U] ; u8 addr_list_size ; u8 mac_override ; u8 promiscuous ; u8 all_multi ; u8 multi_list[32U][6U] ; u8 multi_bits[8U] ; u8 multi_list_size ; u8 enabled ; u8 rx_stop ; u8 reserved2[1U] ; uint features ; uint overrides ; void *parent ; }; struct ksz_port { u8 duplex ; u8 speed ; u8 force_link ; u8 flow_ctrl ; int first_port ; int mib_port_cnt ; int port_cnt ; u64 counter[4U] ; struct ksz_hw *hw ; struct ksz_port_info *linked ; }; struct ksz_timer_info { struct timer_list timer ; int cnt ; int max ; int period ; }; struct ksz_shared_mem { dma_addr_t dma_addr ; uint alloc_size ; uint phys ; u8 *alloc_virt ; u8 *virt ; }; struct ksz_counter_info { wait_queue_head_t counter ; unsigned long time ; int read ; }; struct dev_info { struct net_device *dev ; struct pci_dev *pdev ; struct ksz_hw hw ; struct ksz_shared_mem desc_pool ; spinlock_t hwlock ; struct mutex lock ; int (*dev_rcv)(struct dev_info * ) ; struct sk_buff *last_skb ; int skb_index ; int skb_len ; struct work_struct mib_read ; struct ksz_timer_info mib_timer_info ; struct ksz_counter_info counter[3U] ; int mtu ; int opened ; struct tasklet_struct rx_tasklet ; struct tasklet_struct tx_tasklet ; int wol_enable ; int wol_support ; unsigned long pme_wait ; }; struct dev_priv { struct dev_info *adapter ; struct ksz_port port ; struct ksz_timer_info monitor_timer_info ; struct semaphore proc_sem ; int id ; struct mii_if_info mii_if ; u32 advertising ; u32 msg_enable ; int media_state ; int multicast ; int promiscuous ; }; struct hw_regs { int start ; int end ; }; struct __anonstruct_ethtool_stats_keys_251 { char string[32U] ; }; struct platform_info { struct dev_info dev_info ; struct net_device *netdev[2U] ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef struct net_device *ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; long ldv__builtin_expect(long exp , long c ) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_malloc_unknown_size(void) ; int ldv_undef_int(void) ; void ldv_check_alloc_flags(gfp_t flags ) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; extern struct module __this_module ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } extern int printk(char const * , ...) ; extern int __dynamic_dev_dbg(struct _ddebug * , struct device const * , char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; extern int hex_to_bin(char ) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern size_t strlcpy(char * , char const * , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/de2fed6/linux-alloc-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; void ldv_spin_lock_hwlock_of_dev_info(void) ; void ldv_spin_unlock_hwlock_of_dev_info(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; extern void mutex_lock_nested(struct mutex * , unsigned int ) ; extern void mutex_unlock(struct mutex * ) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irq(raw_spinlock_t * ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_94(spinlock_t *lock ) ; __inline static void spin_lock_irq(spinlock_t *lock ) { { { _raw_spin_lock_irq(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_irq_86(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_86(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_86(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_86(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_95(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_95(spinlock_t *lock ) ; __inline static void spin_unlock_irq(spinlock_t *lock ) { { { _raw_spin_unlock_irq(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_irq_87(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_87(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_87(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_87(spinlock_t *lock ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern long prepare_to_wait_event(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; extern unsigned long volatile jiffies ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern void add_timer(struct timer_list * ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_85(struct timer_list *ldv_func_arg1 ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool flush_work(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } extern struct resource iomem_resource ; extern struct resource *__request_region(struct resource * , resource_size_t , resource_size_t , char const * , int ) ; extern void __release_region(struct resource * , resource_size_t , resource_size_t ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static unsigned char readb(void const volatile *addr ) { unsigned char ret ; { __asm__ volatile ("movb %1,%0": "=q" (ret): "m" (*((unsigned char volatile *)addr)): "memory"); return (ret); } } __inline static unsigned short readw(void const volatile *addr ) { unsigned short ret ; { __asm__ volatile ("movw %1,%0": "=r" (ret): "m" (*((unsigned short volatile *)addr)): "memory"); return (ret); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writeb(unsigned char val , void volatile *addr ) { { __asm__ volatile ("movb %0,%1": : "q" (val), "m" (*((unsigned char volatile *)addr)): "memory"); return; } } __inline static void writew(unsigned short val , void volatile *addr ) { { __asm__ volatile ("movw %0,%1": : "r" (val), "m" (*((unsigned short volatile *)addr)): "memory"); return; } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void *ioremap_nocache(resource_size_t , unsigned long ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { { tmp = ioremap_nocache(offset, size); } return (tmp); } } extern void iounmap(void volatile * ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } static void *ldv_dev_get_drvdata_81(struct device const *dev ) ; static int ldv_dev_set_drvdata_82(struct device *dev , void *data ) ; extern int _dev_info(struct device const * , char const * , ...) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } extern bool capable(int ) ; __inline static void sema_init(struct semaphore *sem , int val ) { struct lock_class_key __key ; struct semaphore __constr_expr_0 ; { { __constr_expr_0.lock.raw_lock.__annonCompField4.head_tail = 0U; __constr_expr_0.lock.magic = 3735899821U; __constr_expr_0.lock.owner_cpu = 4294967295U; __constr_expr_0.lock.owner = (void *)-1; __constr_expr_0.lock.dep_map.key = 0; __constr_expr_0.lock.dep_map.class_cache[0] = 0; __constr_expr_0.lock.dep_map.class_cache[1] = 0; __constr_expr_0.lock.dep_map.name = "(*sem).lock"; __constr_expr_0.lock.dep_map.cpu = 0; __constr_expr_0.lock.dep_map.ip = 0UL; __constr_expr_0.count = (unsigned int )val; __constr_expr_0.wait_list.next = & sem->wait_list; __constr_expr_0.wait_list.prev = & sem->wait_list; *sem = __constr_expr_0; lockdep_init_map(& sem->lock.dep_map, "semaphore->lock", & __key, 0); } return; } } extern int down_interruptible(struct semaphore * ) ; extern void up(struct semaphore * ) ; extern long schedule_timeout(long ) ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void kfree(void const * ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (103), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); } return; } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/de2fed6/linux-alloc-spinlock/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } extern void consume_skb(struct sk_buff * ) ; __inline static struct sk_buff *alloc_skb(unsigned int size , gfp_t flags ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } __inline static unsigned char *skb_tail_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->tail); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } __inline static unsigned char *skb_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->network_header); } } __inline static void skb_reset_network_header(struct sk_buff *skb ) { { skb->network_header = (int )((__u16 )((long )skb->data)) - (int )((__u16 )((long )skb->head)); return; } } __inline static void skb_set_network_header(struct sk_buff *skb , int const offset ) { { { skb_reset_network_header(skb); skb->network_header = (int )skb->network_header + (int )((__u16 )offset); } return; } } static struct sk_buff *ldv___netdev_alloc_skb_57(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = ldv___netdev_alloc_skb_57(dev, length, 32U); } return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static void *skb_frag_address(skb_frag_t const *frag ) { struct page *tmp ; void *tmp___0 ; { { tmp = skb_frag_page(frag); tmp___0 = lowmem_page_address((struct page const *)tmp); } return (tmp___0 + (unsigned long )frag->page_offset); } } extern void skb_copy_and_csum_dev(struct sk_buff const * , u8 * ) ; __inline static __u32 ethtool_cmd_speed(struct ethtool_cmd const *ep ) { { return ((__u32 )(((int )ep->speed_hi << 16) | (int )ep->speed)); } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_100(struct net_device *ldv_func_arg1 ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_start_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_start_queue(tmp); } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); } return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); } return (tmp != 0); } } __inline static bool netif_queue_stopped(struct net_device const *dev ) { struct netdev_queue *tmp ; bool tmp___0 ; { { tmp = netdev_get_tx_queue(dev, 0U); tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)tmp); } return (tmp___0); } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } extern void __dev_kfree_skb_irq(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_irq(struct sk_buff *skb ) { { { __dev_kfree_skb_irq(skb, 1); } return; } } extern int netif_rx(struct sk_buff * ) ; extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; __inline static u32 netif_msg_init(int debug_value , int default_msg_enable_bits ) { { if ((unsigned int )debug_value > 31U) { return ((u32 )default_msg_enable_bits); } else { } if (debug_value == 0) { return (0U); } else { } return ((u32 )((1 << debug_value) + -1)); } } extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_102(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_99(struct net_device *ldv_func_arg1 ) ; extern int netdev_info(struct net_device const * , char const * , ...) ; extern struct pci_dev *pci_dev_get(struct pci_dev * ) ; extern void pci_dev_put(struct pci_dev * ) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; extern int pci_bus_write_config_word(struct pci_bus * , unsigned int , int , u16 ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_read_config_dword(struct pci_dev const *dev , int where , u32 *val ) { int tmp ; { { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_write_config_word(struct pci_dev const *dev , int where , u16 val ) { int tmp ; { { tmp = pci_bus_write_config_word(dev->bus, dev->devfn, where, (int )val); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern pci_power_t pci_choose_state(struct pci_dev * , pm_message_t ) ; extern int __pci_enable_wake(struct pci_dev * , pci_power_t , bool , bool ) ; __inline static int pci_enable_wake(struct pci_dev *dev , pci_power_t state , bool enable ) { int tmp ; { { tmp = __pci_enable_wake(dev, state, 0, (int )enable); } return (tmp); } } extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_103(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_104(struct pci_driver *ldv_func_arg1 ) ; __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); } return; } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } __inline static void pci_dma_sync_single_for_cpu(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { { dma_sync_single_for_cpu((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); } return; } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_81((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_82(& pdev->dev, data); } return; } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_98(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_97(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void __tasklet_schedule(struct tasklet_struct * ) ; __inline static void tasklet_schedule(struct tasklet_struct *t ) { int tmp ; { { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& t->state)); } if (tmp == 0) { { __tasklet_schedule(t); } } else { } return; } } extern void tasklet_kill(struct tasklet_struct * ) ; extern void tasklet_init(struct tasklet_struct * , void (*)(unsigned long ) , unsigned long ) ; extern int mii_link_ok(struct mii_if_info * ) ; extern int mii_nway_restart(struct mii_if_info * ) ; extern int mii_ethtool_gset(struct mii_if_info * , struct ethtool_cmd * ) ; extern int mii_ethtool_sset(struct mii_if_info * , struct ethtool_cmd * ) ; __inline static struct mii_ioctl_data *if_mii(struct ifreq *rq ) { { return ((struct mii_ioctl_data *)(& rq->ifr_ifru)); } } extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_101(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; __inline static bool ether_addr_equal(u8 const *addr1 , u8 const *addr2 ) { u32 fold ; { fold = ((unsigned int )*((u32 const *)addr1) ^ (unsigned int )*((u32 const *)addr2)) | (unsigned int )((int )((unsigned short )*((u16 const *)addr1 + 4U)) ^ (int )((unsigned short )*((u16 const *)addr2 + 4U))); return (fold == 0U); } } extern u32 bitrev32(u32 ) ; extern u32 crc32_le(u32 , unsigned char const * , size_t ) ; static char version[39U] = { 'M', 'i', 'c', 'r', 'e', 'l', ' ', 'K', 'S', 'Z', '8', '8', '4', 'x', ' ', 'P', 'C', 'I', ' ', '1', '.', '0', '.', '0', ' ', '(', 'F', 'e', 'b', ' ', '8', ',', ' ', '2', '0', '1', '0', ')', '\000'}; static u8 DEFAULT_MAC_ADDRESS[6U] = { 0U, 16U, 161U, 136U, 66U, 1U}; __inline static void hw_ack_intr(struct ksz_hw *hw , uint interrupt___0 ) { { { writel(interrupt___0, (void volatile *)hw->io + 44U); } return; } } __inline static void hw_dis_intr(struct ksz_hw *hw ) { { { hw->intr_blocked = hw->intr_mask; writel(0U, (void volatile *)hw->io + 40U); hw->intr_set = readl((void const volatile *)hw->io + 40U); } return; } } __inline static void hw_set_intr(struct ksz_hw *hw , uint interrupt___0 ) { { { hw->intr_set = interrupt___0; writel(interrupt___0, (void volatile *)hw->io + 40U); } return; } } __inline static void hw_ena_intr(struct ksz_hw *hw ) { { { hw->intr_blocked = 0U; hw_set_intr(hw, hw->intr_mask); } return; } } __inline static void hw_dis_intr_bit(struct ksz_hw *hw , uint bit ) { { hw->intr_mask = hw->intr_mask & ~ bit; return; } } __inline static void hw_turn_off_intr(struct ksz_hw *hw , uint interrupt___0 ) { u32 read_intr ; { { read_intr = readl((void const volatile *)hw->io + 40U); hw->intr_set = read_intr & ~ interrupt___0; writel(hw->intr_set, (void volatile *)hw->io + 40U); hw_dis_intr_bit(hw, interrupt___0); } return; } } static void hw_turn_on_intr(struct ksz_hw *hw , u32 bit ) { { hw->intr_mask = hw->intr_mask | bit; if (hw->intr_blocked == 0U) { { hw_set_intr(hw, hw->intr_mask); } } else { } return; } } __inline static void hw_read_intr(struct ksz_hw *hw , uint *status ) { { { *status = readl((void const volatile *)hw->io + 44U); *status = *status & hw->intr_set; } return; } } __inline static void hw_restore_intr(struct ksz_hw *hw , uint interrupt___0 ) { { if (interrupt___0 != 0U) { { hw_ena_intr(hw); } } else { } return; } } static uint hw_block_intr(struct ksz_hw *hw ) { uint interrupt___0 ; { interrupt___0 = 0U; if (hw->intr_blocked == 0U) { { hw_dis_intr(hw); interrupt___0 = hw->intr_blocked; } } else { } return (interrupt___0); } } __inline static void reset_desc(struct ksz_desc *desc , union desc_stat status ) { { status.rx.hw_owned = 0U; (desc->phw)->ctrl.data = status.data; return; } } __inline static void release_desc(struct ksz_desc *desc ) { { desc->sw.ctrl.tx.hw_owned = 1U; if (desc->sw.buf_size != desc->sw.buf.data) { desc->sw.buf_size = desc->sw.buf.data; (desc->phw)->buf.data = desc->sw.buf.data; } else { } (desc->phw)->ctrl.data = desc->sw.ctrl.data; return; } } static void get_rx_pkt(struct ksz_desc_info *info , struct ksz_desc **desc ) { { *desc = info->ring + (unsigned long )info->last; info->last = info->last + 1; info->last = info->last & info->mask; info->avail = info->avail - 1; (*desc)->sw.buf.data = (*desc)->sw.buf.data & 4294965248U; return; } } __inline static void set_rx_buf(struct ksz_desc *desc , u32 addr ) { { (desc->phw)->addr = addr; return; } } __inline static void set_rx_len(struct ksz_desc *desc , u32 len ) { { desc->sw.buf.rx.buf_size = (unsigned short )len; return; } } __inline static void get_tx_pkt(struct ksz_desc_info *info , struct ksz_desc **desc ) { { *desc = info->ring + (unsigned long )info->next; info->next = info->next + 1; info->next = info->next & info->mask; info->avail = info->avail - 1; (*desc)->sw.buf.data = (*desc)->sw.buf.data & 67106816U; return; } } __inline static void set_tx_len(struct ksz_desc *desc , u32 len ) { { desc->sw.buf.tx.buf_size = (unsigned short )len; return; } } static void sw_r_table(struct ksz_hw *hw , int table , u16 addr , u32 *data ) { u16 ctrl_addr ; uint interrupt___0 ; u16 dummy ; { { ctrl_addr = (u16 )((int )((short )(((table << 2) | 16) << 8)) | (int )((short )addr)); interrupt___0 = hw_block_intr(hw); writew((int )ctrl_addr, (void volatile *)hw->io + 1184U); dummy = readw((void const volatile *)hw->io + 1184U); *data = readl((void const volatile *)hw->io + 1192U); hw_restore_intr(hw, interrupt___0); } return; } } static void sw_w_table_64(struct ksz_hw *hw , int table , u16 addr , u32 data_hi , u32 data_lo ) { u16 ctrl_addr ; uint interrupt___0 ; u16 dummy ; { { ctrl_addr = (u16 )((int )((short )(table << 10)) | (int )((short )addr)); interrupt___0 = hw_block_intr(hw); writel(data_hi, (void volatile *)hw->io + 1188U); writel(data_lo, (void volatile *)hw->io + 1192U); writew((int )ctrl_addr, (void volatile *)hw->io + 1184U); dummy = readw((void const volatile *)hw->io + 1184U); hw_restore_intr(hw, interrupt___0); } return; } } static void sw_w_sta_mac_table(struct ksz_hw *hw , u16 addr , u8 *mac_addr , u8 ports , int override , int valid , int use_fid , u8 fid ) { u32 data_hi ; u32 data_lo ; { data_lo = ((((unsigned int )*(mac_addr + 2UL) << 24) | ((unsigned int )*(mac_addr + 3UL) << 16)) | ((unsigned int )*(mac_addr + 4UL) << 8)) | (unsigned int )*(mac_addr + 5UL); data_hi = ((unsigned int )*mac_addr << 8) | (unsigned int )*(mac_addr + 1UL); data_hi = data_hi | ((unsigned int )ports << 16); if (override != 0) { data_hi = data_hi | 1048576U; } else { } if (use_fid != 0) { data_hi = data_hi | 2097152U; data_hi = data_hi | ((unsigned int )fid << 22); } else { } if (valid != 0) { data_hi = data_hi | 524288U; } else { } { sw_w_table_64(hw, 0, (int )addr, data_hi, data_lo); } return; } } static int sw_r_vlan_table(struct ksz_hw *hw , u16 addr , u16 *vid , u8 *fid , u8 *member ) { u32 data ; { { sw_r_table(hw, 1, (int )addr, & data); } if ((data & 524288U) != 0U) { *vid = (unsigned int )((unsigned short )data) & 4095U; *fid = (unsigned char )((data & 61440U) >> 12); *member = (unsigned char )((data & 458752U) >> 16); return (0); } else { } return (-1); } } static void port_r_mib_cnt(struct ksz_hw *hw , int port , u16 addr , u64 *cnt ) { u32 data ; u16 ctrl_addr ; uint interrupt___0 ; int timeout ; u16 dummy ; { { ctrl_addr = (unsigned int )addr + (unsigned int )((u16 )port) * 32U; interrupt___0 = hw_block_intr(hw); ctrl_addr = (u16 )((unsigned int )ctrl_addr | 7168U); writew((int )ctrl_addr, (void volatile *)hw->io + 1184U); dummy = readw((void const volatile *)hw->io + 1184U); timeout = 100; } goto ldv_44552; ldv_44551: { data = readl((void const volatile *)hw->io + 1192U); } if ((data & 1073741824U) != 0U) { if ((int )data < 0) { *cnt = *cnt + 1073741824ULL; } else { } *cnt = *cnt + ((u64 )data & 1073741823ULL); goto ldv_44550; } else { } timeout = timeout - 1; ldv_44552: ; if (timeout > 0) { goto ldv_44551; } else { } ldv_44550: { hw_restore_intr(hw, interrupt___0); } return; } } static void port_r_mib_pkt(struct ksz_hw *hw , int port , u32 *last , u64 *cnt ) { u32 cur ; u32 data ; u16 ctrl_addr ; uint interrupt___0 ; int index ; u16 dummy ; { index = port + 259; ldv_44565: { interrupt___0 = hw_block_intr(hw); ctrl_addr = (unsigned short )index; ctrl_addr = (u16 )((unsigned int )ctrl_addr | 7168U); writew((int )ctrl_addr, (void volatile *)hw->io + 1184U); dummy = readw((void const volatile *)hw->io + 1184U); data = readl((void const volatile *)hw->io + 1192U); hw_restore_intr(hw, interrupt___0); data = data & 65535U; cur = *last; } if (data != cur) { *last = data; if (data < cur) { data = data + 65536U; } else { } data = data - cur; *cnt = *cnt + (u64 )data; } else { } last = last + 1; cnt = cnt + 1; index = index + -3; if (index >= port + 256) { goto ldv_44565; } else { } return; } } static int port_r_cnt(struct ksz_hw *hw , int port ) { struct ksz_port_mib *mib ; { mib = (struct ksz_port_mib *)(& hw->port_mib) + (unsigned long )port; if ((unsigned int )mib->mib_start <= 31U) { goto ldv_44573; ldv_44572: { port_r_mib_cnt(hw, port, (int )mib->cnt_ptr, (u64 *)(& mib->counter) + (unsigned long )mib->cnt_ptr); mib->cnt_ptr = (u8 )((int )mib->cnt_ptr + 1); } ldv_44573: ; if ((unsigned int )mib->cnt_ptr <= 31U) { goto ldv_44572; } else { } } else { } if (hw->mib_cnt > 32) { { port_r_mib_pkt(hw, port, (u32 *)(& mib->dropped), (u64 *)(& mib->counter) + 32UL); } } else { } mib->cnt_ptr = 0U; return (0); } } static void port_init_cnt(struct ksz_hw *hw , int port ) { struct ksz_port_mib *mib ; { mib = (struct ksz_port_mib *)(& hw->port_mib) + (unsigned long )port; mib->cnt_ptr = 0U; if ((unsigned int )mib->mib_start <= 31U) { ldv_44580: { port_r_mib_cnt(hw, port, (int )mib->cnt_ptr, (u64 *)(& mib->counter) + (unsigned long )mib->cnt_ptr); mib->cnt_ptr = (u8 )((int )mib->cnt_ptr + 1); } if ((unsigned int )mib->cnt_ptr <= 31U) { goto ldv_44580; } else { } } else { } if (hw->mib_cnt > 32) { { port_r_mib_pkt(hw, port, (u32 *)(& mib->dropped), (u64 *)(& mib->counter) + 32UL); } } else { } { memset((void *)(& mib->counter), 0, 272UL); mib->cnt_ptr = 0U; } return; } } static void port_cfg(struct ksz_hw *hw , int port , int offset , u16 bits , int set ) { u32 addr ; u16 data ; { { addr = (u32 )((port + 40) * 32); addr = addr + (u32 )offset; data = readw((void const volatile *)hw->io + (unsigned long )addr); } if (set != 0) { data = (u16 )((int )data | (int )bits); } else { data = (u16 )((int )((short )data) & ~ ((int )((short )bits))); } { writew((int )data, (void volatile *)hw->io + (unsigned long )addr); } return; } } static void port_r8(struct ksz_hw *hw , int port , int offset , u8 *data ) { u32 addr ; { { addr = (u32 )((port + 40) * 32); addr = addr + (u32 )offset; *data = readb((void const volatile *)hw->io + (unsigned long )addr); } return; } } static void port_r16(struct ksz_hw *hw , int port , int offset , u16 *data ) { u32 addr ; { { addr = (u32 )((port + 40) * 32); addr = addr + (u32 )offset; *data = readw((void const volatile *)hw->io + (unsigned long )addr); } return; } } static void port_w16(struct ksz_hw *hw , int port , int offset , u16 data ) { u32 addr ; { { addr = (u32 )((port + 40) * 32); addr = addr + (u32 )offset; writew((int )data, (void volatile *)hw->io + (unsigned long )addr); } return; } } static int sw_chk(struct ksz_hw *hw , u32 addr , u16 bits ) { u16 data ; { { data = readw((void const volatile *)hw->io + (unsigned long )addr); } return (((int )data & (int )bits) == (int )bits); } } static void sw_cfg(struct ksz_hw *hw , u32 addr , u16 bits , int set ) { u16 data ; { { data = readw((void const volatile *)hw->io + (unsigned long )addr); } if (set != 0) { data = (u16 )((int )data | (int )bits); } else { data = (u16 )((int )((short )data) & ~ ((int )((short )bits))); } { writew((int )data, (void volatile *)hw->io + (unsigned long )addr); } return; } } __inline static void port_cfg_broad_storm(struct ksz_hw *hw , int p , int set ) { { { port_cfg(hw, p, 0, 128, set); } return; } } static void sw_cfg_broad_storm(struct ksz_hw *hw , u8 percent ) { u16 data ; u32 value ; { value = ((unsigned int )percent * 9969U) / 100U; if (value > 2047U) { value = 2047U; } else { } { data = readw((void const volatile *)hw->io + 1030U); data = (unsigned int )data & 248U; data = (int )data | (((int )((u16 )value) << 8U) | (int )((u16 )((value & 65280U) >> 8))); writew((int )data, (void volatile *)hw->io + 1030U); } return; } } static void sw_get_broad_storm(struct ksz_hw *hw , u8 *percent ) { int num ; u16 data ; { { data = readw((void const volatile *)hw->io + 1030U); num = (int )data & 7; num = num << 8; num = num | ((int )data >> 8); num = (num * 100 + 4984) / 9969; *percent = (unsigned char )num; } return; } } static void sw_dis_broad_storm(struct ksz_hw *hw , int port ) { { { port_cfg_broad_storm(hw, port, 0); } return; } } static void sw_ena_broad_storm(struct ksz_hw *hw , int port ) { { { sw_cfg_broad_storm(hw, (int )(hw->ksz_switch)->broad_per); port_cfg_broad_storm(hw, port, 1); } return; } } static void sw_init_broad_storm(struct ksz_hw *hw ) { int port ; { { (hw->ksz_switch)->broad_per = 1U; sw_cfg_broad_storm(hw, (int )(hw->ksz_switch)->broad_per); port = 0; } goto ldv_44684; ldv_44683: { sw_dis_broad_storm(hw, port); port = port + 1; } ldv_44684: ; if (port <= 2) { goto ldv_44683; } else { } { sw_cfg(hw, 1028U, 64, 1); } return; } } static void hw_cfg_broad_storm(struct ksz_hw *hw , u8 percent ) { { if ((unsigned int )percent > 100U) { percent = 100U; } else { } { sw_cfg_broad_storm(hw, (int )percent); sw_get_broad_storm(hw, & percent); (hw->ksz_switch)->broad_per = percent; } return; } } static void sw_dis_prio_rate(struct ksz_hw *hw , int port ) { u32 addr ; { { addr = (u32 )((port + 40) * 32); addr = addr + 8U; writel(0U, (void volatile *)hw->io + (unsigned long )addr); } return; } } static void sw_init_prio_rate(struct ksz_hw *hw ) { int port ; int prio ; struct ksz_switch *sw ; u32 tmp ; { sw = hw->ksz_switch; port = 0; goto ldv_44705; ldv_44704: prio = 0; goto ldv_44702; ldv_44701: tmp = 0U; sw->port_cfg[port].tx_rate[prio] = tmp; sw->port_cfg[port].rx_rate[prio] = tmp; prio = prio + 1; ldv_44702: ; if (prio <= 3) { goto ldv_44701; } else { } { sw_dis_prio_rate(hw, port); port = port + 1; } ldv_44705: ; if (port <= 2) { goto ldv_44704; } else { } return; } } __inline static void port_cfg_back_pressure(struct ksz_hw *hw , int p , int set ) { { { port_cfg(hw, p, 2, 2048, set); } return; } } __inline static void port_cfg_mirror_sniffer(struct ksz_hw *hw , int p , int set ) { { { port_cfg(hw, p, 2, 128, set); } return; } } __inline static void port_cfg_mirror_rx(struct ksz_hw *hw , int p , int set ) { { { port_cfg(hw, p, 2, 64, set); } return; } } __inline static void port_cfg_mirror_tx(struct ksz_hw *hw , int p , int set ) { { { port_cfg(hw, p, 2, 32, set); } return; } } __inline static void sw_cfg_mirror_rx_tx(struct ksz_hw *hw , int set ) { { { sw_cfg(hw, 1028U, 256, set); } return; } } static void sw_init_mirror(struct ksz_hw *hw ) { int port ; { port = 0; goto ldv_44811; ldv_44810: { port_cfg_mirror_sniffer(hw, port, 0); port_cfg_mirror_rx(hw, port, 0); port_cfg_mirror_tx(hw, port, 0); port = port + 1; } ldv_44811: ; if (port <= 2) { goto ldv_44810; } else { } { sw_cfg_mirror_rx_tx(hw, 0); } return; } } __inline static void port_cfg_diffserv(struct ksz_hw *hw , int p , int set ) { { { port_cfg(hw, p, 0, 64, set); } return; } } __inline static void port_cfg_802_1p(struct ksz_hw *hw , int p , int set ) { { { port_cfg(hw, p, 0, 32, set); } return; } } __inline static void port_cfg_replace_vid(struct ksz_hw *hw , int p , int set ) { { { port_cfg(hw, p, 2, 8, set); } return; } } __inline static void port_cfg_prio(struct ksz_hw *hw , int p , int set ) { { { port_cfg(hw, p, 0, 1, set); } return; } } static void sw_dis_diffserv(struct ksz_hw *hw , int port ) { { { port_cfg_diffserv(hw, port, 0); } return; } } static void sw_dis_802_1p(struct ksz_hw *hw , int port ) { { { port_cfg_802_1p(hw, port, 0); } return; } } static void sw_cfg_replace_null_vid(struct ksz_hw *hw , int set ) { { { sw_cfg(hw, 1030U, 8, set); } return; } } static void sw_cfg_replace_vid(struct ksz_hw *hw , int port , int set ) { { { port_cfg_replace_vid(hw, port, set); } return; } } static void sw_cfg_port_based(struct ksz_hw *hw , int port , u8 prio ) { u16 data ; { if ((unsigned int )prio > 3U) { prio = 3U; } else { } { (hw->ksz_switch)->port_cfg[port].port_prio = prio; port_r16(hw, port, 0, & data); data = (unsigned int )data & 65511U; data = (u16 )((int )((short )data) | (int )((short )((int )prio << 3))); port_w16(hw, port, 0, (int )data); } return; } } static void sw_dis_multi_queue(struct ksz_hw *hw , int port ) { { { port_cfg_prio(hw, port, 0); } return; } } static void sw_init_prio(struct ksz_hw *hw ) { int port ; int tos ; struct ksz_switch *sw ; { sw = hw->ksz_switch; sw->p_802_1p[0] = 0U; sw->p_802_1p[1] = 0U; sw->p_802_1p[2] = 1U; sw->p_802_1p[3] = 1U; sw->p_802_1p[4] = 2U; sw->p_802_1p[5] = 2U; sw->p_802_1p[6] = 3U; sw->p_802_1p[7] = 3U; tos = 0; goto ldv_44899; ldv_44898: sw->diffserv[tos] = 0U; tos = tos + 1; ldv_44899: ; if (tos <= 63) { goto ldv_44898; } else { } port = 0; goto ldv_44902; ldv_44901: { sw_dis_multi_queue(hw, port); sw_dis_diffserv(hw, port); sw_dis_802_1p(hw, port); sw_cfg_replace_vid(hw, port, 0); sw->port_cfg[port].port_prio = 0U; sw_cfg_port_based(hw, port, (int )sw->port_cfg[port].port_prio); port = port + 1; } ldv_44902: ; if (port <= 2) { goto ldv_44901; } else { } { sw_cfg_replace_null_vid(hw, 0); } return; } } static void port_get_def_vid(struct ksz_hw *hw , int port , u16 *vid ) { u32 addr ; { { addr = (u32 )((port + 40) * 32); addr = addr + 4U; *vid = readw((void const volatile *)hw->io + (unsigned long )addr); } return; } } static void sw_init_vlan(struct ksz_hw *hw ) { int port ; int entry ; struct ksz_switch *sw ; { sw = hw->ksz_switch; entry = 0; goto ldv_44917; ldv_44916: { sw_r_vlan_table(hw, (int )((u16 )entry), & sw->vlan_table[entry].vid, & sw->vlan_table[entry].fid, & sw->vlan_table[entry].member); entry = entry + 1; } ldv_44917: ; if (entry <= 15) { goto ldv_44916; } else { } port = 0; goto ldv_44920; ldv_44919: { port_get_def_vid(hw, port, & sw->port_cfg[port].vid); sw->port_cfg[port].member = 7U; port = port + 1; } ldv_44920: ; if (port <= 2) { goto ldv_44919; } else { } return; } } static void sw_cfg_port_base_vlan(struct ksz_hw *hw , int port , u8 member ) { u32 addr ; u8 data ; { { addr = (u32 )((port + 40) * 32); addr = addr + 2U; data = readb((void const volatile *)hw->io + (unsigned long )addr); data = (unsigned int )data & 248U; data = (u8 )((int )((signed char )data) | ((int )((signed char )member) & 7)); writeb((int )data, (void volatile *)hw->io + (unsigned long )addr); (hw->ksz_switch)->port_cfg[port].member = member; } return; } } static void sw_set_addr(struct ksz_hw *hw , u8 *mac_addr ) { int i ; { i = 0; goto ldv_44943; ldv_44942: { writeb((int )*(mac_addr + (unsigned long )i), (void volatile *)(hw->io + ((unsigned long )i + 1137UL))); writeb((int )*(mac_addr + (unsigned long )(i + 1)), (void volatile *)(hw->io + ((unsigned long )i + 1136UL))); i = i + 2; } ldv_44943: ; if (i <= 5) { goto ldv_44942; } else { } return; } } static void sw_set_global_ctrl(struct ksz_hw *hw ) { u16 data ; { { data = readw((void const volatile *)hw->io + 1030U); data = (u16 )((unsigned int )data | 32U); writew((int )data, (void volatile *)hw->io + 1030U); data = readw((void const volatile *)hw->io + 1026U); data = (u16 )((unsigned int )data | 256U); data = (u16 )((unsigned int )data | 1024U); data = (u16 )((unsigned int )data | 1U); } if ((hw->overrides & 2U) != 0U) { data = (u16 )((unsigned int )data | 512U); } else { data = (unsigned int )data & 65023U; } { writew((int )data, (void volatile *)hw->io + 1026U); data = readw((void const volatile *)hw->io + 1028U); data = (u16 )((unsigned int )data | 8U); writew((int )data, (void volatile *)hw->io + 1028U); } return; } } static void port_set_stp_state(struct ksz_hw *hw , int port , int state ) { u16 data ; { { port_r16(hw, port, 2, & data); } { if (state == 0) { goto case_0; } else { } if (state == 1) { goto case_1; } else { } if (state == 2) { goto case_2; } else { } if (state == 3) { goto case_3; } else { } if (state == 4) { goto case_4; } else { } if (state == 5) { goto case_5; } else { } goto switch_break; case_0: /* CIL Label */ data = (unsigned int )data & 63999U; data = (u16 )((unsigned int )data | 256U); goto ldv_44963; case_1: /* CIL Label */ data = (unsigned int )data & 64511U; data = (u16 )((unsigned int )data | 512U); data = (u16 )((unsigned int )data | 256U); goto ldv_44963; case_2: /* CIL Label */ data = (unsigned int )data & 64511U; data = (u16 )((unsigned int )data | 512U); data = (unsigned int )data & 65279U; goto ldv_44963; case_3: /* CIL Label */ data = (u16 )((unsigned int )data | 1536U); data = (unsigned int )data & 65279U; goto ldv_44963; case_4: /* CIL Label */ data = (unsigned int )data & 63999U; data = (u16 )((unsigned int )data | 256U); goto ldv_44963; case_5: /* CIL Label */ data = (u16 )((unsigned int )data | 1536U); data = (u16 )((unsigned int )data | 256U); goto ldv_44963; switch_break: /* CIL Label */ ; } ldv_44963: { port_w16(hw, port, 2, (int )data); (hw->ksz_switch)->port_cfg[port].stp_state = state; } return; } } static void sw_clr_sta_mac_table(struct ksz_hw *hw ) { struct ksz_mac_table *entry ; int i ; { i = 0; goto ldv_44975; ldv_44974: { entry = (struct ksz_mac_table *)(& (hw->ksz_switch)->mac_table) + (unsigned long )i; sw_w_sta_mac_table(hw, (int )((u16 )i), (u8 *)(& entry->mac_addr), (int )entry->ports, (int )entry->override, 0, (int )entry->use_fid, (int )entry->fid); i = i + 1; } ldv_44975: ; if (i <= 7) { goto ldv_44974; } else { } return; } } static void sw_init_stp(struct ksz_hw *hw ) { struct ksz_mac_table *entry ; { { entry = (struct ksz_mac_table *)(& (hw->ksz_switch)->mac_table); entry->mac_addr[0] = 1U; entry->mac_addr[1] = 128U; entry->mac_addr[2] = 194U; entry->mac_addr[3] = 0U; entry->mac_addr[4] = 0U; entry->mac_addr[5] = 0U; entry->ports = 4U; entry->override = 1U; entry->valid = 1U; sw_w_sta_mac_table(hw, 0, (u8 *)(& entry->mac_addr), (int )entry->ports, (int )entry->override, (int )entry->valid, (int )entry->use_fid, (int )entry->fid); } return; } } static void sw_block_addr(struct ksz_hw *hw ) { struct ksz_mac_table *entry ; int i ; { i = 1; goto ldv_44987; ldv_44986: { entry = (struct ksz_mac_table *)(& (hw->ksz_switch)->mac_table) + (unsigned long )i; entry->valid = 0U; sw_w_sta_mac_table(hw, (int )((u16 )i), (u8 *)(& entry->mac_addr), (int )entry->ports, (int )entry->override, (int )entry->valid, (int )entry->use_fid, (int )entry->fid); i = i + 1; } ldv_44987: ; if (i <= 3) { goto ldv_44986; } else { } return; } } __inline static void hw_r_phy_ctrl(struct ksz_hw *hw , int phy , u16 *data ) { { { *data = readw((void const volatile *)hw->io + (unsigned long )phy); } return; } } __inline static void hw_w_phy_ctrl(struct ksz_hw *hw , int phy , u16 data ) { { { writew((int )data, (void volatile *)hw->io + (unsigned long )phy); } return; } } static void hw_r_phy(struct ksz_hw *hw , int port , u16 reg , u16 *val ) { int phy ; { { phy = (port + 77) * 16 + (int )reg; *val = readw((void const volatile *)hw->io + (unsigned long )phy); } return; } } static void hw_w_phy(struct ksz_hw *hw , int port , u16 reg , u16 val ) { int phy ; { { phy = (port + 77) * 16 + (int )reg; writew((int )val, (void volatile *)hw->io + (unsigned long )phy); } return; } } __inline static void drop_gpio(struct ksz_hw *hw , u8 gpio ) { u16 data ; { { data = readw((void const volatile *)hw->io + 530U); data = (u16 )((int )((short )data) & (int )((short )(~ ((int )((unsigned short )gpio))))); writew((int )data, (void volatile *)hw->io + 530U); } return; } } __inline static void raise_gpio(struct ksz_hw *hw , u8 gpio ) { u16 data ; { { data = readw((void const volatile *)hw->io + 530U); data = (int )data | (int )((u16 )gpio); writew((int )data, (void volatile *)hw->io + 530U); } return; } } __inline static u8 state_gpio(struct ksz_hw *hw , u8 gpio ) { u16 data ; { { data = readw((void const volatile *)hw->io + 530U); } return ((u8 )((int )((unsigned char )data) & (int )gpio)); } } static void eeprom_clk(struct ksz_hw *hw ) { { { raise_gpio(hw, 2); __const_udelay(17180UL); drop_gpio(hw, 2); __const_udelay(17180UL); } return; } } static u16 spi_r(struct ksz_hw *hw ) { int i ; u16 temp ; u8 tmp ; { temp = 0U; i = 15; goto ldv_45087; ldv_45086: { raise_gpio(hw, 2); __const_udelay(17180UL); tmp = state_gpio(hw, 8); temp = (u16 )((int )((short )temp) | ((unsigned int )tmp != 0U ? (short )(1 << i) : 0)); drop_gpio(hw, 2); __const_udelay(17180UL); i = i - 1; } ldv_45087: ; if (i >= 0) { goto ldv_45086; } else { } return (temp); } } static void spi_w(struct ksz_hw *hw , u16 data ) { int i ; { i = 15; goto ldv_45095; ldv_45094: ; if (((int )data >> i) & 1) { { raise_gpio(hw, 4); } } else { { drop_gpio(hw, 4); } } { eeprom_clk(hw); i = i - 1; } ldv_45095: ; if (i >= 0) { goto ldv_45094; } else { } return; } } static void spi_reg(struct ksz_hw *hw , u8 data , u8 reg ) { int i ; { { raise_gpio(hw, 4); eeprom_clk(hw); i = 1; } goto ldv_45104; ldv_45103: ; if (((int )data >> i) & 1) { { raise_gpio(hw, 4); } } else { { drop_gpio(hw, 4); } } { eeprom_clk(hw); i = i - 1; } ldv_45104: ; if (i >= 0) { goto ldv_45103; } else { } i = 5; goto ldv_45107; ldv_45106: ; if (((int )reg >> i) & 1) { { raise_gpio(hw, 4); } } else { { drop_gpio(hw, 4); } } { eeprom_clk(hw); i = i - 1; } ldv_45107: ; if (i >= 0) { goto ldv_45106; } else { } return; } } static u16 eeprom_read(struct ksz_hw *hw , u8 reg ) { u16 data ; { { raise_gpio(hw, 17); spi_reg(hw, 2, (int )reg); data = spi_r(hw); drop_gpio(hw, 17); } return (data); } } static void eeprom_write(struct ksz_hw *hw , u8 reg , u16 data ) { int timeout ; unsigned long __ms ; unsigned long tmp ; unsigned long __ms___0 ; unsigned long tmp___0 ; u8 tmp___1 ; unsigned long __ms___1 ; unsigned long tmp___2 ; unsigned long __ms___2 ; unsigned long tmp___3 ; u8 tmp___4 ; { { raise_gpio(hw, 17); spi_reg(hw, 0, 48); drop_gpio(hw, 1); __const_udelay(4295UL); raise_gpio(hw, 1); spi_reg(hw, 3, (int )reg); drop_gpio(hw, 1); __const_udelay(4295UL); raise_gpio(hw, 1); timeout = 8; } if (1) { { __const_udelay(8590000UL); } } else { __ms = 2UL; goto ldv_45122; ldv_45121: { __const_udelay(4295000UL); } ldv_45122: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_45121; } else { } } ldv_45128: ; if (1) { { __const_udelay(4295000UL); } } else { __ms___0 = 1UL; goto ldv_45126; ldv_45125: { __const_udelay(4295000UL); } ldv_45126: tmp___0 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___0 != 0UL) { goto ldv_45125; } else { } } { tmp___1 = state_gpio(hw, 8); } if ((unsigned int )tmp___1 == 0U) { timeout = timeout - 1; if (timeout != 0) { goto ldv_45128; } else { goto ldv_45129; } } else { } ldv_45129: { drop_gpio(hw, 1); __const_udelay(4295UL); raise_gpio(hw, 1); spi_reg(hw, 1, (int )reg); spi_w(hw, (int )data); drop_gpio(hw, 1); __const_udelay(4295UL); raise_gpio(hw, 1); timeout = 8; } if (1) { { __const_udelay(8590000UL); } } else { __ms___1 = 2UL; goto ldv_45132; ldv_45131: { __const_udelay(4295000UL); } ldv_45132: tmp___2 = __ms___1; __ms___1 = __ms___1 - 1UL; if (tmp___2 != 0UL) { goto ldv_45131; } else { } } ldv_45138: ; if (1) { { __const_udelay(4295000UL); } } else { __ms___2 = 1UL; goto ldv_45136; ldv_45135: { __const_udelay(4295000UL); } ldv_45136: tmp___3 = __ms___2; __ms___2 = __ms___2 - 1UL; if (tmp___3 != 0UL) { goto ldv_45135; } else { } } { tmp___4 = state_gpio(hw, 8); } if ((unsigned int )tmp___4 == 0U) { timeout = timeout - 1; if (timeout != 0) { goto ldv_45138; } else { goto ldv_45139; } } else { } ldv_45139: { drop_gpio(hw, 1); __const_udelay(4295UL); raise_gpio(hw, 1); spi_reg(hw, 0, 0); drop_gpio(hw, 17); } return; } } static u16 advertised_flow_ctrl(struct ksz_port *port , u16 ctrl ) { { ctrl = (unsigned int )ctrl & 65519U; { if ((int )port->flow_ctrl == 1) { goto case_1; } else { } if ((int )port->flow_ctrl == 2) { goto case_2; } else { } if ((int )port->flow_ctrl == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ ctrl = (u16 )((unsigned int )ctrl | 16U); goto ldv_45145; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; switch_default: /* CIL Label */ ; goto ldv_45145; switch_break: /* CIL Label */ ; } ldv_45145: ; return (ctrl); } } static void set_flow_ctrl(struct ksz_hw *hw , int rx , int tx ) { u32 rx_cfg ; u32 tx_cfg ; { rx_cfg = hw->rx_cfg; tx_cfg = hw->tx_cfg; if (rx != 0) { hw->rx_cfg = hw->rx_cfg | 512U; } else { hw->rx_cfg = hw->rx_cfg & 4294966783U; } if (tx != 0) { hw->tx_cfg = hw->tx_cfg | 512U; } else { hw->tx_cfg = hw->tx_cfg & 4294966783U; } if ((unsigned int )hw->enabled != 0U) { if (rx_cfg != hw->rx_cfg) { { writel(hw->rx_cfg, (void volatile *)hw->io + 4U); } } else { } if (tx_cfg != hw->tx_cfg) { { writel(hw->tx_cfg, (void volatile *)hw->io); } } else { } } else { } return; } } static void determine_flow_ctrl(struct ksz_hw *hw , struct ksz_port *port , u16 local , u16 remote ) { int rx ; int tx ; { if ((int )hw->overrides & 1) { return; } else { } tx = 0; rx = tx; if ((unsigned int )port->force_link != 0U) { tx = 1; rx = tx; } else { } if (((int )remote & 1024) != 0) { if (((int )local & 1024) != 0) { tx = 1; rx = tx; } else if (((int )remote & 2048) != 0 && ((int )local & 3072) == 2048) { tx = 1; } else { } } else if (((int )remote & 2048) != 0) { if (((int )local & 3072) == 3072) { rx = 1; } else { } } else { } if ((unsigned long )hw->ksz_switch == (unsigned long )((struct ksz_switch *)0)) { { set_flow_ctrl(hw, rx, tx); } } else { } return; } } __inline static void port_cfg_change(struct ksz_hw *hw , struct ksz_port *port , struct ksz_port_info *info , u16 link_status ) { u32 cfg ; { if (*((unsigned long *)hw + 176UL) == 4UL) { cfg = hw->tx_cfg; if ((unsigned int )info->duplex == 1U) { hw->tx_cfg = hw->tx_cfg & 4294966783U; } else { } if ((unsigned int )hw->enabled != 0U && cfg != hw->tx_cfg) { { writel(hw->tx_cfg, (void volatile *)hw->io); } } else { } } else { } return; } } static void port_get_link_speed(struct ksz_port *port ) { uint interrupt___0 ; struct ksz_port_info *info ; struct ksz_port_info *linked ; struct ksz_hw *hw ; u16 data ; u16 status ; u8 local ; u8 remote ; int i ; int p ; int change ; { { linked = (struct ksz_port_info *)0; hw = port->hw; change = 0; interrupt___0 = hw_block_intr(hw); i = 0; p = port->first_port; } goto ldv_45187; ldv_45186: { info = (struct ksz_port_info *)(& hw->port_info) + (unsigned long )p; port_r16(hw, p, 18, & data); port_r16(hw, p, 20, & status); remote = (unsigned int )((u8 )status) & 96U; local = (unsigned char )data; } if ((int )local == (int )info->advertised && (int )remote == (int )info->partner) { goto ldv_45185; } else { } info->advertised = local; info->partner = remote; if (((int )status & 32) != 0) { if ((unsigned long )linked == (unsigned long )((struct ksz_port_info *)0)) { linked = info; } else { } info->tx_rate = 100000U; if (((int )status & 1024) != 0) { info->tx_rate = 1000000U; } else { } info->duplex = 1U; if (((int )status & 512) != 0) { info->duplex = 2U; } else { } if (info->state != 0U) { { hw_r_phy(hw, p, 8, & data); hw_r_phy(hw, p, 10, & status); determine_flow_ctrl(hw, port, (int )data, (int )status); } if ((unsigned long )hw->ksz_switch != (unsigned long )((struct ksz_switch *)0)) { { port_cfg_back_pressure(hw, p, (unsigned int )info->duplex == 1U); } } else { } { change = change | (1 << i); port_cfg_change(hw, port, info, (int )status); } } else { } info->state = 0U; } else { if (info->state != 1U) { change = change | (1 << i); hw->port_mib[p].link_down = 1U; } else { } info->state = 1U; } hw->port_mib[p].state = (unsigned char )info->state; ldv_45185: i = i + 1; p = p + 1; ldv_45187: ; if (i < port->port_cnt) { goto ldv_45186; } else { } if ((unsigned long )linked != (unsigned long )((struct ksz_port_info *)0) && (port->linked)->state == 1U) { port->linked = linked; } else { } { hw_restore_intr(hw, interrupt___0); } return; } } static void port_set_link_speed(struct ksz_port *port ) { struct ksz_port_info *info ; struct ksz_hw *hw ; u16 data ; u16 cfg ; u8 status ; int i ; int p ; { hw = port->hw; i = 0; p = port->first_port; goto ldv_45200; ldv_45199: { info = (struct ksz_port_info *)(& hw->port_info) + (unsigned long )p; port_r16(hw, p, 18, & data); port_r8(hw, p, 20, & status); cfg = 0U; } if (((int )status & 32) != 0) { cfg = data; } else { } { data = (u16 )((unsigned int )data | 128U); data = advertised_flow_ctrl(port, (int )data); data = (u16 )((unsigned int )data | 15U); } if ((unsigned int )*((unsigned short *)port + 0UL) != 0U) { if ((unsigned int )port->speed == 10U) { data = (unsigned int )data & 65523U; } else if ((unsigned int )port->speed == 100U) { data = (unsigned int )data & 65532U; } else { } if ((unsigned int )port->duplex == 1U) { data = (unsigned int )data & 65525U; } else if ((unsigned int )port->duplex == 2U) { data = (unsigned int )data & 65530U; } else { } } else { } if ((int )data != (int )cfg) { { data = (u16 )((unsigned int )data | 8192U); port_w16(hw, p, 18, (int )data); } } else { } i = i + 1; p = p + 1; ldv_45200: ; if (i < port->port_cnt) { goto ldv_45199; } else { } return; } } static void port_force_link_speed(struct ksz_port *port ) { struct ksz_hw *hw ; u16 data ; int i ; int phy ; int p ; { hw = port->hw; i = 0; p = port->first_port; goto ldv_45211; ldv_45210: { phy = (p + 77) * 16; hw_r_phy_ctrl(hw, phy, & data); data = (unsigned int )data & 61439U; } if ((unsigned int )port->speed == 10U) { data = (unsigned int )data & 57343U; } else if ((unsigned int )port->speed == 100U) { data = (u16 )((unsigned int )data | 8192U); } else { } if ((unsigned int )port->duplex == 1U) { data = (unsigned int )data & 65279U; } else if ((unsigned int )port->duplex == 2U) { data = (u16 )((unsigned int )data | 256U); } else { } { hw_w_phy_ctrl(hw, phy, (int )data); i = i + 1; p = p + 1; } ldv_45211: ; if (i < port->port_cnt) { goto ldv_45210; } else { } return; } } static void port_set_power_saving(struct ksz_port *port , int enable ) { struct ksz_hw *hw ; int i ; int p ; { hw = port->hw; i = 0; p = port->first_port; goto ldv_45221; ldv_45220: { port_cfg(hw, p, 18, 2048, enable); i = i + 1; p = p + 1; } ldv_45221: ; if (i < port->port_cnt) { goto ldv_45220; } else { } return; } } static int hw_chk_wol_pme_status(struct ksz_hw *hw ) { struct dev_info *hw_priv ; struct ksz_hw const *__mptr ; struct pci_dev *pdev ; u16 data ; { __mptr = (struct ksz_hw const *)hw; hw_priv = (struct dev_info *)__mptr + 0xfffffffffffffff0UL; pdev = hw_priv->pdev; if ((unsigned int )pdev->pm_cap == 0U) { return (0); } else { } { pci_read_config_word((struct pci_dev const *)pdev, (int )pdev->pm_cap + 4, & data); } return ((int )((short )data) < 0); } } static void hw_clr_wol_pme_status(struct ksz_hw *hw ) { struct dev_info *hw_priv ; struct ksz_hw const *__mptr ; struct pci_dev *pdev ; u16 data ; { __mptr = (struct ksz_hw const *)hw; hw_priv = (struct dev_info *)__mptr + 0xfffffffffffffff0UL; pdev = hw_priv->pdev; if ((unsigned int )pdev->pm_cap == 0U) { return; } else { } { pci_read_config_word((struct pci_dev const *)pdev, (int )pdev->pm_cap + 4, & data); data = (u16 )((unsigned int )data | 32768U); pci_write_config_word((struct pci_dev const *)pdev, (int )pdev->pm_cap + 4, (int )data); } return; } } static void hw_cfg_wol_pme(struct ksz_hw *hw , int set ) { struct dev_info *hw_priv ; struct ksz_hw const *__mptr ; struct pci_dev *pdev ; u16 data ; { __mptr = (struct ksz_hw const *)hw; hw_priv = (struct dev_info *)__mptr + 0xfffffffffffffff0UL; pdev = hw_priv->pdev; if ((unsigned int )pdev->pm_cap == 0U) { return; } else { } { pci_read_config_word((struct pci_dev const *)pdev, (int )pdev->pm_cap + 4, & data); data = (unsigned int )data & 65532U; } if (set != 0) { data = (u16 )((unsigned int )data | 259U); } else { data = (unsigned int )data & 65279U; } { pci_write_config_word((struct pci_dev const *)pdev, (int )pdev->pm_cap + 4, (int )data); } return; } } static void hw_cfg_wol(struct ksz_hw *hw , u16 frame , int set ) { u16 data ; { { data = readw((void const volatile *)hw->io + 538U); } if (set != 0) { data = (u16 )((int )data | (int )frame); } else { data = (u16 )((int )((short )data) & ~ ((int )((short )frame))); } { writew((int )data, (void volatile *)hw->io + 538U); } return; } } static void hw_set_wol_frame(struct ksz_hw *hw , int i , uint mask_size , u8 const *mask , uint frame_size , u8 const *pattern ) { int bits ; int from ; int len ; int to ; u32 crc ; u8 data[64U] ; u8 val ; int tmp ; u32 tmp___0 ; { val = 0U; if (frame_size > mask_size * 8U) { frame_size = mask_size * 8U; } else { } if (frame_size > 64U) { frame_size = 64U; } else { } { i = i * 16; writel(0U, (void volatile *)(hw->io + ((unsigned long )i + 548UL))); writel(0U, (void volatile *)(hw->io + ((unsigned long )i + 552UL))); to = 0; from = to; len = from; bits = len; } ldv_45269: ; if (bits != 0) { if ((int )val & 1) { tmp = to; to = to + 1; data[tmp] = *(pattern + (unsigned long )from); } else { } val = (u8 )((int )val >> 1); from = from + 1; bits = bits - 1; } else { { val = *(mask + (unsigned long )len); writeb((int )val, (void volatile *)(hw->io + (((unsigned long )i + (unsigned long )len) + 548UL))); len = len + 1; } if ((unsigned int )val != 0U) { bits = 8; } else { from = from + 8; } } if (from < (int )frame_size) { goto ldv_45269; } else { } if ((unsigned int )val != 0U) { { bits = (int )*(mask + ((unsigned long )len + 0xffffffffffffffffUL)); val = (u8 )((int )val << from % 8); bits = bits & ~ ((int )val); writeb((int )((unsigned char )bits), (void volatile *)(hw->io + (((unsigned long )i + (unsigned long )len) + 547UL))); } } else { } { tmp___0 = crc32_le(4294967295U, (unsigned char const *)(& data), (size_t )to); crc = bitrev32(tmp___0); writel(crc, (void volatile *)(hw->io + ((unsigned long )i + 544UL))); } return; } } static void hw_add_wol_arp(struct ksz_hw *hw , u8 const *ip_addr ) { u8 mask[6U] ; u8 pattern[42U] ; { { mask[0] = 63U; mask[1] = 240U; mask[2] = 63U; mask[3] = 0U; mask[4] = 192U; mask[5] = 3U; pattern[0] = 255U; pattern[1] = 255U; pattern[2] = 255U; pattern[3] = 255U; pattern[4] = 255U; pattern[5] = 255U; pattern[6] = 0U; pattern[7] = 0U; pattern[8] = 0U; pattern[9] = 0U; pattern[10] = 0U; pattern[11] = 0U; pattern[12] = 8U; pattern[13] = 6U; pattern[14] = 0U; pattern[15] = 1U; pattern[16] = 8U; pattern[17] = 0U; pattern[18] = 6U; pattern[19] = 4U; pattern[20] = 0U; pattern[21] = 1U; pattern[22] = 0U; pattern[23] = 0U; pattern[24] = 0U; pattern[25] = 0U; pattern[26] = 0U; pattern[27] = 0U; pattern[28] = 0U; pattern[29] = 0U; pattern[30] = 0U; pattern[31] = 0U; pattern[32] = 0U; pattern[33] = 0U; pattern[34] = 0U; pattern[35] = 0U; pattern[36] = 0U; pattern[37] = 0U; pattern[38] = 0U; pattern[39] = 0U; pattern[40] = 0U; pattern[41] = 0U; memcpy((void *)(& pattern) + 38U, (void const *)ip_addr, 4UL); hw_set_wol_frame(hw, 3, 6U, (u8 const *)(& mask), 42U, (u8 const *)(& pattern)); } return; } } static void hw_add_wol_bcast(struct ksz_hw *hw ) { u8 mask[1U] ; u8 pattern[6U] ; { { mask[0] = 63U; pattern[0] = 255U; pattern[1] = 255U; pattern[2] = 255U; pattern[3] = 255U; pattern[4] = 255U; pattern[5] = 255U; hw_set_wol_frame(hw, 2, 1U, (u8 const *)(& mask), 6U, (u8 const *)(& pattern)); } return; } } static void hw_add_wol_mcast(struct ksz_hw *hw ) { u8 mask[1U] ; u8 pattern[6U] ; { { mask[0] = 63U; pattern[0] = 51U; pattern[1] = 51U; pattern[2] = 255U; pattern[3] = 0U; pattern[4] = 0U; pattern[5] = 0U; memcpy((void *)(& pattern) + 3U, (void const *)(& hw->override_addr) + 3U, 3UL); hw_set_wol_frame(hw, 1, 1U, (u8 const *)(& mask), 6U, (u8 const *)(& pattern)); } return; } } static void hw_add_wol_ucast(struct ksz_hw *hw ) { u8 mask[1U] ; { { mask[0] = 63U; hw_set_wol_frame(hw, 0, 1U, (u8 const *)(& mask), 6U, (u8 const *)(& hw->override_addr)); } return; } } static void hw_enable_wol(struct ksz_hw *hw , u32 wol_enable , u8 const *net_addr ) { { { hw_cfg_wol(hw, 128, (int )wol_enable & 32); hw_cfg_wol(hw, 1, (int )wol_enable & 2); hw_add_wol_ucast(hw); hw_cfg_wol(hw, 2, (int )wol_enable & 4); hw_add_wol_mcast(hw); hw_cfg_wol(hw, 4, (int )wol_enable & 8); hw_cfg_wol(hw, 8, (int )wol_enable & 16); hw_add_wol_arp(hw, net_addr); } return; } } static int hw_init(struct ksz_hw *hw ) { int rc ; u16 data ; u16 revision ; { { rc = 0; writew(0, (void volatile *)hw->io + 528U); data = readw((void const volatile *)hw->io + 1024U); revision = (u16 )(((int )data & 14) >> 1); data = (unsigned int )data & 65296U; } if ((unsigned int )data == 34832U) { rc = 1; } else if ((unsigned int )data == 34816U) { rc = 2; } else { return (0); } if ((unsigned int )revision <= 1U) { hw->features = hw->features | 2U; if (rc == 1) { hw->features = hw->features | 4U; } else { } } else { } return (rc); } } static void hw_reset(struct ksz_hw *hw ) { unsigned long __ms ; unsigned long tmp ; { { writew(1, (void volatile *)hw->io + 534U); __ms = 10UL; } goto ldv_45307; ldv_45306: { __const_udelay(4295000UL); } ldv_45307: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_45306; } else { } { writew(0, (void volatile *)hw->io + 534U); } return; } } static void hw_setup(struct ksz_hw *hw ) { { hw->tx_cfg = 134217735U; hw->rx_cfg = 134217809U; hw->rx_cfg = hw->rx_cfg | 2U; hw->rx_cfg = hw->rx_cfg | 196608U; if ((unsigned int )hw->all_multi != 0U) { hw->rx_cfg = hw->rx_cfg | 32U; } else { } if ((unsigned int )hw->promiscuous != 0U) { hw->rx_cfg = hw->rx_cfg | 4U; } else { } return; } } static void hw_setup_intr(struct ksz_hw *hw ) { { hw->intr_mask = 3892314112U; return; } } static void ksz_check_desc_num(struct ksz_desc_info *info ) { int alloc ; int shift ; { alloc = info->alloc; shift = 0; goto ldv_45321; ldv_45320: shift = shift + 1; alloc = alloc >> 1; ldv_45321: ; if ((alloc & 1) == 0) { goto ldv_45320; } else { } if (alloc != 1 || shift <= 1) { { printk("\tksz884x: Hardware descriptor numbers not right!\n"); } goto ldv_45324; ldv_45323: shift = shift + 1; alloc = alloc >> 1; ldv_45324: ; if (alloc != 0) { goto ldv_45323; } else { } if (shift <= 1) { shift = 2; } else { } alloc = 1 << shift; info->alloc = alloc; } else { } info->mask = info->alloc + -1; return; } } static void hw_init_desc(struct ksz_desc_info *desc_info , int transmit ) { int i ; u32 phys ; struct ksz_hw_desc *desc ; struct ksz_desc *cur ; struct ksz_desc *previous ; struct ksz_hw_desc *tmp ; struct ksz_desc *tmp___0 ; int tmp___1 ; { phys = desc_info->ring_phys; desc = desc_info->ring_virt; cur = desc_info->ring; previous = (struct ksz_desc *)0; i = 0; goto ldv_45336; ldv_45335: tmp = desc; desc = desc + 1; cur->phw = tmp; phys = phys + (u32 )desc_info->size; tmp___0 = cur; cur = cur + 1; previous = tmp___0; (previous->phw)->next = phys; i = i + 1; ldv_45336: ; if (i < desc_info->alloc) { goto ldv_45335; } else { } (previous->phw)->next = desc_info->ring_phys; previous->sw.buf.rx.end_of_ring = 1U; (previous->phw)->buf.data = previous->sw.buf.data; desc_info->avail = desc_info->alloc; tmp___1 = 0; desc_info->next = tmp___1; desc_info->last = tmp___1; desc_info->cur = desc_info->ring; return; } } static void hw_set_desc_base(struct ksz_hw *hw , u32 tx_addr , u32 rx_addr ) { { { writel(tx_addr, (void volatile *)hw->io + 16U); writel(rx_addr, (void volatile *)hw->io + 20U); } return; } } static void hw_reset_pkts(struct ksz_desc_info *info ) { int tmp ; { info->cur = info->ring; info->avail = info->alloc; tmp = 0; info->next = tmp; info->last = tmp; return; } } __inline static void hw_resume_rx(struct ksz_hw *hw ) { { { writel(1U, (void volatile *)hw->io + 12U); } return; } } static void hw_start_rx(struct ksz_hw *hw ) { { { writel(hw->rx_cfg, (void volatile *)hw->io + 4U); hw->intr_mask = hw->intr_mask | 33554432U; writel(1U, (void volatile *)hw->io + 12U); hw_ack_intr(hw, 33554432U); hw->rx_stop = (u8 )((int )hw->rx_stop + 1); } if ((unsigned int )hw->rx_stop == 0U) { hw->rx_stop = 2U; } else { } return; } } static void hw_stop_rx(struct ksz_hw *hw ) { { { hw->rx_stop = 0U; hw_turn_off_intr(hw, 33554432U); writel(hw->rx_cfg & 4294967294U, (void volatile *)hw->io + 4U); } return; } } static void hw_start_tx(struct ksz_hw *hw ) { { { writel(hw->tx_cfg, (void volatile *)hw->io); } return; } } static void hw_stop_tx(struct ksz_hw *hw ) { { { writel(hw->tx_cfg & 4294967294U, (void volatile *)hw->io); } return; } } static void hw_disable(struct ksz_hw *hw ) { { { hw_stop_rx(hw); hw_stop_tx(hw); hw->enabled = 0U; } return; } } static void hw_enable(struct ksz_hw *hw ) { { { hw_start_tx(hw); hw_start_rx(hw); hw->enabled = 1U; } return; } } static int hw_alloc_pkt(struct ksz_hw *hw , int length , int physical ) { { if (hw->tx_desc_info.avail <= 1) { return (0); } else { } { get_tx_pkt(& hw->tx_desc_info, & hw->tx_desc_info.cur); (hw->tx_desc_info.cur)->sw.buf.tx.first_seg = 1U; hw->tx_int_cnt = hw->tx_int_cnt + 1; hw->tx_size = hw->tx_size + length; } if (hw->tx_size > 51999) { hw->tx_int_cnt = hw->tx_int_mask + 1; } else { } if (physical > hw->tx_desc_info.avail) { return (1); } else { } return (hw->tx_desc_info.avail); } } static void hw_send_pkt(struct ksz_hw *hw ) { struct ksz_desc *cur ; { cur = hw->tx_desc_info.cur; cur->sw.buf.tx.last_seg = 1U; if (hw->tx_int_cnt > hw->tx_int_mask) { cur->sw.buf.tx.intr = 1U; hw->tx_int_cnt = 0; hw->tx_size = 0; } else { } { cur->sw.buf.tx.dest_port = (unsigned char )hw->dst_ports; release_desc(cur); writel(0U, (void volatile *)hw->io + 8U); } return; } } static int empty_addr(u8 *addr ) { u32 *addr1 ; u16 *addr2 ; { addr1 = (u32 *)addr; addr2 = (u16 *)addr + 4U; return (*addr1 == 0U && (unsigned int )*addr2 == 0U); } } static void hw_set_addr(struct ksz_hw *hw ) { int i ; { i = 0; goto ldv_45386; ldv_45385: { writeb((int )hw->override_addr[5 - i], (void volatile *)(hw->io + ((unsigned long )i + 512UL))); i = i + 1; } ldv_45386: ; if (i <= 5) { goto ldv_45385; } else { } { sw_set_addr(hw, (u8 *)(& hw->override_addr)); } return; } } static void hw_read_addr(struct ksz_hw *hw ) { int i ; int tmp ; { i = 0; goto ldv_45393; ldv_45392: { hw->perm_addr[5 - i] = readb((void const volatile *)(hw->io + ((unsigned long )i + 512UL))); i = i + 1; } ldv_45393: ; if (i <= 5) { goto ldv_45392; } else { } if ((unsigned int )hw->mac_override == 0U) { { memcpy((void *)(& hw->override_addr), (void const *)(& hw->perm_addr), 6UL); tmp = empty_addr((u8 *)(& hw->override_addr)); } if (tmp != 0) { { memcpy((void *)(& hw->perm_addr), (void const *)(& DEFAULT_MAC_ADDRESS), 6UL); memcpy((void *)(& hw->override_addr), (void const *)(& DEFAULT_MAC_ADDRESS), 6UL); hw->override_addr[5] = (int )hw->override_addr[5] + (int )((u8 )hw->id); hw_set_addr(hw); } } else { } } else { } return; } } static void hw_ena_add_addr(struct ksz_hw *hw , int index , u8 *mac_addr ) { int i ; u32 mac_addr_lo ; u32 mac_addr_hi ; { mac_addr_hi = 0U; i = 0; goto ldv_45404; ldv_45403: mac_addr_hi = mac_addr_hi << 8; mac_addr_hi = mac_addr_hi | (u32 )*(mac_addr + (unsigned long )i); i = i + 1; ldv_45404: ; if (i <= 1) { goto ldv_45403; } else { } mac_addr_hi = mac_addr_hi | 2147483648U; mac_addr_lo = 0U; i = 2; goto ldv_45407; ldv_45406: mac_addr_lo = mac_addr_lo << 8; mac_addr_lo = mac_addr_lo | (u32 )*(mac_addr + (unsigned long )i); i = i + 1; ldv_45407: ; if (i <= 5) { goto ldv_45406; } else { } { index = index * 8; writel(mac_addr_lo, (void volatile *)(hw->io + ((unsigned long )index + 128UL))); writel(mac_addr_hi, (void volatile *)(hw->io + ((unsigned long )index + 132UL))); } return; } } static void hw_set_add_addr(struct ksz_hw *hw ) { int i ; int tmp ; { i = 0; goto ldv_45414; ldv_45413: { tmp = empty_addr((u8 *)(& hw->address) + (unsigned long )i); } if (tmp != 0) { { writel(0U, (void volatile *)(hw->io + ((unsigned long )(i * 8) + 132UL))); } } else { { hw_ena_add_addr(hw, i, (u8 *)(& hw->address) + (unsigned long )i); } } i = i + 1; ldv_45414: ; if (i <= 15) { goto ldv_45413; } else { } return; } } static int hw_add_addr(struct ksz_hw *hw , u8 *mac_addr ) { int i ; int j ; bool tmp ; bool tmp___0 ; int tmp___1 ; { { j = 16; tmp = ether_addr_equal((u8 const *)(& hw->override_addr), (u8 const *)mac_addr); } if ((int )tmp) { return (0); } else { } i = 0; goto ldv_45423; ldv_45422: { tmp___0 = ether_addr_equal((u8 const *)(& hw->address) + (unsigned long )i, (u8 const *)mac_addr); } if ((int )tmp___0) { return (0); } else { } if (j == 16) { { tmp___1 = empty_addr((u8 *)(& hw->address) + (unsigned long )i); } if (tmp___1 != 0) { j = i; } else { } } else { } i = i + 1; ldv_45423: ; if (i < (int )hw->addr_list_size) { goto ldv_45422; } else { } if (j <= 15) { { memcpy((void *)(& hw->address) + (unsigned long )j, (void const *)mac_addr, 6UL); hw_ena_add_addr(hw, j, (u8 *)(& hw->address) + (unsigned long )j); } return (0); } else { } return (-1); } } static int hw_del_addr(struct ksz_hw *hw , u8 *mac_addr ) { int i ; bool tmp ; { i = 0; goto ldv_45431; ldv_45430: { tmp = ether_addr_equal((u8 const *)(& hw->address) + (unsigned long )i, (u8 const *)mac_addr); } if ((int )tmp) { { memset((void *)(& hw->address) + (unsigned long )i, 0, 6UL); writel(0U, (void volatile *)(hw->io + ((unsigned long )(i * 8) + 132UL))); } return (0); } else { } i = i + 1; ldv_45431: ; if (i < (int )hw->addr_list_size) { goto ldv_45430; } else { } return (-1); } } static void hw_clr_multicast(struct ksz_hw *hw ) { int i ; { i = 0; goto ldv_45438; ldv_45437: { hw->multi_bits[i] = 0U; writeb(0, (void volatile *)(hw->io + ((unsigned long )i + 32UL))); i = i + 1; } ldv_45438: ; if (i <= 7) { goto ldv_45437; } else { } return; } } static void hw_set_grp_addr(struct ksz_hw *hw ) { int i ; int index ; int position ; int value ; u32 tmp ; u32 tmp___0 ; { { memset((void *)(& hw->multi_bits), 0, 8UL); i = 0; } goto ldv_45448; ldv_45447: { tmp = crc32_le(4294967295U, (unsigned char const *)(& hw->multi_list) + (unsigned long )i, 6UL); tmp___0 = bitrev32(tmp); position = (int )(tmp___0 >> 26); index = position >> 3; value = 1 << (position & 7); hw->multi_bits[index] = (u8 )((int )hw->multi_bits[index] | (int )((unsigned char )value)); i = i + 1; } ldv_45448: ; if (i < (int )hw->multi_list_size) { goto ldv_45447; } else { } i = 0; goto ldv_45451; ldv_45450: { writeb((int )hw->multi_bits[i], (void volatile *)(hw->io + ((unsigned long )i + 32UL))); i = i + 1; } ldv_45451: ; if (i <= 7) { goto ldv_45450; } else { } return; } } static void hw_set_multicast(struct ksz_hw *hw , u8 multicast ) { { { hw_stop_rx(hw); } if ((unsigned int )multicast != 0U) { hw->rx_cfg = hw->rx_cfg | 32U; } else { hw->rx_cfg = hw->rx_cfg & 4294967263U; } if ((unsigned int )hw->enabled != 0U) { { hw_start_rx(hw); } } else { } return; } } static void hw_set_promiscuous(struct ksz_hw *hw , u8 prom ) { { { hw_stop_rx(hw); } if ((unsigned int )prom != 0U) { hw->rx_cfg = hw->rx_cfg | 4U; } else { hw->rx_cfg = hw->rx_cfg & 4294967291U; } if ((unsigned int )hw->enabled != 0U) { { hw_start_rx(hw); } } else { } return; } } static void sw_enable(struct ksz_hw *hw , int enable ) { int port ; { port = 0; goto ldv_45467; ldv_45466: ; if (hw->dev_count > 1) { { sw_cfg_port_base_vlan(hw, port, (int )((u8 )((int )((signed char )(1 << port)) | 4))); port_set_stp_state(hw, port, 0); } } else { { sw_cfg_port_base_vlan(hw, port, 7); port_set_stp_state(hw, port, 3); } } port = port + 1; ldv_45467: ; if (port <= 1) { goto ldv_45466; } else { } if (hw->dev_count > 1) { { port_set_stp_state(hw, 2, 5); } } else { { port_set_stp_state(hw, 2, 3); } } if (enable != 0) { enable = 1; } else { } { writew((int )((unsigned short )enable), (void volatile *)hw->io + 1024U); } return; } } static void sw_setup(struct ksz_hw *hw ) { int port ; int tmp ; { { sw_set_global_ctrl(hw); sw_init_broad_storm(hw); hw_cfg_broad_storm(hw, 10); port = 0; } goto ldv_45474; ldv_45473: { sw_ena_broad_storm(hw, port); port = port + 1; } ldv_45474: ; if (port <= 1) { goto ldv_45473; } else { } { sw_init_prio(hw); sw_init_mirror(hw); sw_init_prio_rate(hw); sw_init_vlan(hw); } if ((hw->features & 256U) != 0U) { { sw_init_stp(hw); } } else { } { tmp = sw_chk(hw, 1026U, 12288); } if (tmp == 0) { hw->overrides = hw->overrides | 1U; } else { } { sw_enable(hw, 1); } return; } } static void ksz_start_timer(struct ksz_timer_info *info , int time ) { { { info->cnt = 0; info->timer.expires = (unsigned long )jiffies + (unsigned long )time; add_timer(& info->timer); info->max = -1; } return; } } static void ksz_stop_timer(struct ksz_timer_info *info ) { { if (info->max != 0) { { info->max = 0; ldv_del_timer_sync_85(& info->timer); } } else { } return; } } static void ksz_init_timer(struct ksz_timer_info *info , int period , void (*function)(unsigned long ) , void *data ) { struct lock_class_key __key ; { { info->max = 0; info->period = period; init_timer_key(& info->timer, 0U, "(&info->timer)", & __key); info->timer.function = function; info->timer.data = (unsigned long )data; } return; } } static void ksz_update_timer(struct ksz_timer_info *info ) { { info->cnt = info->cnt + 1; if (info->max > 0) { if (info->cnt < info->max) { { info->timer.expires = (unsigned long )jiffies + (unsigned long )info->period; add_timer(& info->timer); } } else { info->max = 0; } } else if (info->max < 0) { { info->timer.expires = (unsigned long )jiffies + (unsigned long )info->period; add_timer(& info->timer); } } else { } return; } } static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info , int transmit ) { void *tmp ; { { tmp = kzalloc((unsigned long )desc_info->alloc * 48UL, 208U); desc_info->ring = (struct ksz_desc *)tmp; } if ((unsigned long )desc_info->ring == (unsigned long )((struct ksz_desc *)0)) { return (1); } else { } { hw_init_desc(desc_info, transmit); } return (0); } } static int ksz_alloc_desc(struct dev_info *adapter ) { struct ksz_hw *hw ; int offset ; void *tmp ; int tmp___0 ; int tmp___1 ; { { hw = & adapter->hw; adapter->desc_pool.alloc_size = (uint )((hw->rx_desc_info.size * hw->rx_desc_info.alloc + hw->tx_desc_info.size * hw->tx_desc_info.alloc) + 16); tmp = pci_alloc_consistent(adapter->pdev, (size_t )adapter->desc_pool.alloc_size, & adapter->desc_pool.dma_addr); adapter->desc_pool.alloc_virt = (u8 *)tmp; } if ((unsigned long )adapter->desc_pool.alloc_virt == (unsigned long )((u8 *)0U)) { adapter->desc_pool.alloc_size = 0U; return (1); } else { } { memset((void *)adapter->desc_pool.alloc_virt, 0, (size_t )adapter->desc_pool.alloc_size); offset = ((unsigned long )adapter->desc_pool.alloc_virt & 15UL) != 0UL ? (int )(16U - ((unsigned int )((long )adapter->desc_pool.alloc_virt) & 15U)) : 0; adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + (unsigned long )offset; adapter->desc_pool.phys = (uint )adapter->desc_pool.dma_addr + (uint )offset; hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)adapter->desc_pool.virt; hw->rx_desc_info.ring_phys = adapter->desc_pool.phys; offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size; hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)adapter->desc_pool.virt + (unsigned long )offset; hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + (uint )offset; tmp___0 = ksz_alloc_soft_desc(& hw->rx_desc_info, 0); } if (tmp___0 != 0) { return (1); } else { } { tmp___1 = ksz_alloc_soft_desc(& hw->tx_desc_info, 1); } if (tmp___1 != 0) { return (1); } else { } return (0); } } static void free_dma_buf(struct dev_info *adapter , struct ksz_dma_buf *dma_buf , int direction ) { { { pci_unmap_single(adapter->pdev, dma_buf->dma, (size_t )dma_buf->len, direction); consume_skb(dma_buf->skb); dma_buf->skb = (struct sk_buff *)0; dma_buf->dma = 0ULL; } return; } } static void ksz_init_rx_buffers(struct dev_info *adapter ) { int i ; struct ksz_desc *desc ; struct ksz_dma_buf *dma_buf ; struct ksz_hw *hw ; struct ksz_desc_info *info ; unsigned char *tmp ; { hw = & adapter->hw; info = & hw->rx_desc_info; i = 0; goto ldv_45517; ldv_45516: { get_rx_pkt(info, & desc); dma_buf = & desc->dma_buf; } if ((unsigned long )dma_buf->skb != (unsigned long )((struct sk_buff *)0) && dma_buf->len != adapter->mtu) { { free_dma_buf(adapter, dma_buf, 2); } } else { } dma_buf->len = adapter->mtu; if ((unsigned long )dma_buf->skb == (unsigned long )((struct sk_buff *)0)) { { dma_buf->skb = alloc_skb((unsigned int )dma_buf->len, 32U); } } else { } if ((unsigned long )dma_buf->skb != (unsigned long )((struct sk_buff *)0) && dma_buf->dma == 0ULL) { { tmp = skb_tail_pointer((struct sk_buff const *)dma_buf->skb); dma_buf->dma = pci_map_single(adapter->pdev, (void *)tmp, (size_t )dma_buf->len, 2); } } else { } { set_rx_buf(desc, (u32 )dma_buf->dma); set_rx_len(desc, (u32 )dma_buf->len); release_desc(desc); i = i + 1; } ldv_45517: ; if (i < hw->rx_desc_info.alloc) { goto ldv_45516; } else { } return; } } static int ksz_alloc_mem(struct dev_info *adapter ) { struct ksz_hw *hw ; int tmp ; { hw = & adapter->hw; hw->rx_desc_info.alloc = 64; hw->tx_desc_info.alloc = 64; hw->tx_int_cnt = 0; hw->tx_int_mask = 16; if (hw->tx_int_mask > 8) { hw->tx_int_mask = 8; } else { } goto ldv_45524; ldv_45523: hw->tx_int_cnt = hw->tx_int_cnt + 1; hw->tx_int_mask = hw->tx_int_mask >> 1; ldv_45524: ; if (hw->tx_int_mask != 0) { goto ldv_45523; } else { } if (hw->tx_int_cnt != 0) { hw->tx_int_mask = (1 << (hw->tx_int_cnt + -1)) + -1; hw->tx_int_cnt = 0; } else { } hw->rx_desc_info.size = 16; hw->tx_desc_info.size = 16; if (hw->rx_desc_info.size != 16) { { printk("\tksz884x: Hardware descriptor size not right!\n"); } } else { } { ksz_check_desc_num(& hw->rx_desc_info); ksz_check_desc_num(& hw->tx_desc_info); tmp = ksz_alloc_desc(adapter); } if (tmp != 0) { return (1); } else { } return (0); } } static void ksz_free_desc(struct dev_info *adapter ) { struct ksz_hw *hw ; { hw = & adapter->hw; hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)0; hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)0; hw->rx_desc_info.ring_phys = 0U; hw->tx_desc_info.ring_phys = 0U; if ((unsigned long )adapter->desc_pool.alloc_virt != (unsigned long )((u8 *)0U)) { { pci_free_consistent(adapter->pdev, (size_t )adapter->desc_pool.alloc_size, (void *)adapter->desc_pool.alloc_virt, adapter->desc_pool.dma_addr); } } else { } { adapter->desc_pool.alloc_size = 0U; adapter->desc_pool.alloc_virt = (u8 *)0U; kfree((void const *)hw->rx_desc_info.ring); hw->rx_desc_info.ring = (struct ksz_desc *)0; kfree((void const *)hw->tx_desc_info.ring); hw->tx_desc_info.ring = (struct ksz_desc *)0; } return; } } static void ksz_free_buffers(struct dev_info *adapter , struct ksz_desc_info *desc_info , int direction ) { int i ; struct ksz_dma_buf *dma_buf ; struct ksz_desc *desc ; { desc = desc_info->ring; i = 0; goto ldv_45539; ldv_45538: dma_buf = & desc->dma_buf; if ((unsigned long )dma_buf->skb != (unsigned long )((struct sk_buff *)0)) { { free_dma_buf(adapter, dma_buf, direction); } } else { } desc = desc + 1; i = i + 1; ldv_45539: ; if (i < desc_info->alloc) { goto ldv_45538; } else { } return; } } static void ksz_free_mem(struct dev_info *adapter ) { { { ksz_free_buffers(adapter, & adapter->hw.tx_desc_info, 1); ksz_free_buffers(adapter, & adapter->hw.rx_desc_info, 2); ksz_free_desc(adapter); } return; } } static void get_mib_counters(struct ksz_hw *hw , int first , int cnt , u64 *counter ) { int i ; int mib ; int port ; struct ksz_port_mib *port_mib ; { { memset((void *)counter, 0, 272UL); i = 0; port = first; } goto ldv_45558; ldv_45557: port_mib = (struct ksz_port_mib *)(& hw->port_mib) + (unsigned long )port; mib = (int )port_mib->mib_start; goto ldv_45555; ldv_45554: *(counter + (unsigned long )mib) = *(counter + (unsigned long )mib) + port_mib->counter[mib]; mib = mib + 1; ldv_45555: ; if (mib < hw->mib_cnt) { goto ldv_45554; } else { } i = i + 1; port = port + 1; ldv_45558: ; if (i < cnt) { goto ldv_45557; } else { } return; } } static void send_packet(struct sk_buff *skb , struct net_device *dev ) { struct ksz_desc *desc ; struct ksz_desc *first ; struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; struct ksz_desc_info *info ; struct ksz_dma_buf *dma_buf ; int len ; int last_frag ; unsigned char *tmp___0 ; int frag ; skb_frag_t *this_frag ; unsigned int tmp___1 ; unsigned char *tmp___2 ; unsigned int tmp___3 ; void *tmp___4 ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; hw = & hw_priv->hw; info = & hw->tx_desc_info; tmp___0 = skb_end_pointer((struct sk_buff const *)skb); last_frag = (int )((struct skb_shared_info *)tmp___0)->nr_frags; } if (hw->dev_count > 1) { hw->dst_ports = 1 << priv->port.first_port; } else { } len = (int )skb->len; first = info->cur; desc = first; dma_buf = & desc->dma_buf; if (last_frag != 0) { { tmp___1 = skb_headlen((struct sk_buff const *)skb); dma_buf->len = (int )tmp___1; dma_buf->dma = pci_map_single(hw_priv->pdev, (void *)skb->data, (size_t )dma_buf->len, 1); set_rx_buf(desc, (u32 )dma_buf->dma); set_tx_len(desc, (u32 )dma_buf->len); frag = 0; } ldv_45576: { tmp___2 = skb_end_pointer((struct sk_buff const *)skb); this_frag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp___2)->frags) + (unsigned long )frag; get_tx_pkt(info, & desc); hw->tx_int_cnt = hw->tx_int_cnt + 1; dma_buf = & desc->dma_buf; tmp___3 = skb_frag_size((skb_frag_t const *)this_frag); dma_buf->len = (int )tmp___3; tmp___4 = skb_frag_address((skb_frag_t const *)this_frag); dma_buf->dma = pci_map_single(hw_priv->pdev, tmp___4, (size_t )dma_buf->len, 1); set_rx_buf(desc, (u32 )dma_buf->dma); set_tx_len(desc, (u32 )dma_buf->len); frag = frag + 1; } if (frag == last_frag) { goto ldv_45575; } else { } { release_desc(desc); } goto ldv_45576; ldv_45575: { info->cur = desc; release_desc(first); } } else { { dma_buf->len = len; dma_buf->dma = pci_map_single(hw_priv->pdev, (void *)skb->data, (size_t )dma_buf->len, 1); set_rx_buf(desc, (u32 )dma_buf->dma); set_tx_len(desc, (u32 )dma_buf->len); } } if ((unsigned int )*((unsigned char *)skb + 124UL) == 12U) { desc->sw.buf.tx.csum_gen_tcp = 1U; desc->sw.buf.tx.csum_gen_udp = 1U; } else { } { dma_buf->skb = skb; hw_send_pkt(hw); dev->stats.tx_packets = dev->stats.tx_packets + 1UL; dev->stats.tx_bytes = dev->stats.tx_bytes + (unsigned long )len; } return; } } static void transmit_cleanup(struct dev_info *hw_priv , int normal ) { int last ; union desc_stat status ; struct ksz_hw *hw ; struct ksz_desc_info *info ; struct ksz_desc *desc ; struct ksz_dma_buf *dma_buf ; struct net_device *dev ; { { hw = & hw_priv->hw; info = & hw->tx_desc_info; dev = (struct net_device *)0; ldv_spin_lock_irq_86(& hw_priv->hwlock); last = info->last; } goto ldv_45590; ldv_45589: desc = info->ring + (unsigned long )last; status.data = (desc->phw)->ctrl.data; if ((unsigned int )*((unsigned char *)(& status) + 3UL) != 0U) { if (normal != 0) { goto ldv_45588; } else { { reset_desc(desc, status); } } } else { } { dma_buf = & desc->dma_buf; pci_unmap_single(hw_priv->pdev, dma_buf->dma, (size_t )dma_buf->len, 1); } if ((unsigned long )dma_buf->skb != (unsigned long )((struct sk_buff *)0)) { { dev = (dma_buf->skb)->dev; dev_kfree_skb_irq(dma_buf->skb); dma_buf->skb = (struct sk_buff *)0; } } else { } last = last + 1; last = last & info->mask; info->avail = info->avail + 1; ldv_45590: ; if (info->avail < info->alloc) { goto ldv_45589; } else { } ldv_45588: { info->last = last; ldv_spin_unlock_irq_87(& hw_priv->hwlock); } if ((unsigned long )dev != (unsigned long )((struct net_device *)0)) { dev->trans_start = jiffies; } else { } return; } } static void tx_done(struct dev_info *hw_priv ) { struct ksz_hw *hw ; int port ; struct net_device *dev ; bool tmp ; bool tmp___0 ; { { hw = & hw_priv->hw; transmit_cleanup(hw_priv, 1); port = 0; } goto ldv_45598; ldv_45597: { dev = (struct net_device *)hw->port_info[port].pdev; tmp = netif_running((struct net_device const *)dev); } if ((int )tmp) { { tmp___0 = netif_queue_stopped((struct net_device const *)dev); } if ((int )tmp___0) { { netif_wake_queue(dev); } } else { } } else { } port = port + 1; ldv_45598: ; if (port < hw->dev_count) { goto ldv_45597; } else { } return; } } __inline static void copy_old_skb(struct sk_buff *old , struct sk_buff *skb ) { { { skb->dev = old->dev; skb->protocol = old->protocol; skb->ip_summed = old->ip_summed; skb->__annonCompField68.csum = old->__annonCompField68.csum; skb_set_network_header(skb, 14); consume_skb(old); } return; } } static netdev_tx_t netdev_tx(struct sk_buff *skb , struct net_device *dev ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; int left ; int num ; int rc ; struct sk_buff *org_skb ; unsigned char *tmp___0 ; unsigned char *tmp___1 ; struct sk_buff *org_skb___0 ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; hw = & hw_priv->hw; num = 1; rc = 0; } if ((hw->features & 2U) != 0U) { org_skb = skb; if (skb->len <= 48U) { { tmp___0 = skb_end_pointer((struct sk_buff const *)skb); } if ((long )tmp___0 - (long )skb->data > 49L) { { memset((void *)skb->data + (unsigned long )skb->len, 0, (size_t )(50U - skb->len)); skb->len = 50U; } } else { { skb = netdev_alloc_skb(dev, 50U); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return (16); } else { } { memcpy((void *)skb->data, (void const *)org_skb->data, (size_t )org_skb->len); memset((void *)skb->data + (unsigned long )org_skb->len, 0, (size_t )(50U - org_skb->len)); skb->len = 50U; copy_old_skb(org_skb, skb); } } } else { } } else { } { ldv_spin_lock_irq_86(& hw_priv->hwlock); tmp___1 = skb_end_pointer((struct sk_buff const *)skb); num = (int )((struct skb_shared_info *)tmp___1)->nr_frags + 1; left = hw_alloc_pkt(hw, (int )skb->len, num); } if (left != 0) { if (left < num || *((unsigned int *)skb + 31UL) == 3716546572U) { { org_skb___0 = skb; skb = netdev_alloc_skb(dev, org_skb___0->len); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { rc = 16; goto unlock; } else { } { skb_copy_and_csum_dev((struct sk_buff const *)org_skb___0, skb->data); org_skb___0->ip_summed = 0U; skb->len = org_skb___0->len; copy_old_skb(org_skb___0, skb); } } else { } { send_packet(skb, dev); } if (left <= num) { { netif_stop_queue(dev); } } else { } } else { { netif_stop_queue(dev); rc = 16; } } unlock: { ldv_spin_unlock_irq_87(& hw_priv->hwlock); } return ((netdev_tx_t )rc); } } static void netdev_tx_timeout(struct net_device *dev ) { unsigned long last_reset ; struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; int port ; struct net_device *port_dev ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; hw = & hw_priv->hw; } if (hw->dev_count > 1) { if ((unsigned long )jiffies - last_reset <= (unsigned long )dev->watchdog_timeo) { hw_priv = (struct dev_info *)0; } else { } } else { } last_reset = jiffies; if ((unsigned long )hw_priv != (unsigned long )((struct dev_info *)0)) { { hw_dis_intr(hw); hw_disable(hw); transmit_cleanup(hw_priv, 0); hw_reset_pkts(& hw->rx_desc_info); hw_reset_pkts(& hw->tx_desc_info); ksz_init_rx_buffers(hw_priv); hw_reset(hw); hw_set_desc_base(hw, hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys); hw_set_addr(hw); } if ((unsigned int )hw->all_multi != 0U) { { hw_set_multicast(hw, (int )hw->all_multi); } } else if ((unsigned int )hw->multi_list_size != 0U) { { hw_set_grp_addr(hw); } } else { } if (hw->dev_count > 1) { { hw_set_add_addr(hw); port = 0; } goto ldv_45627; ldv_45626: { port_set_stp_state(hw, port, 0); port_dev = (struct net_device *)hw->port_info[port].pdev; tmp___0 = netif_running((struct net_device const *)port_dev); } if ((int )tmp___0) { { port_set_stp_state(hw, port, 5); } } else { } port = port + 1; ldv_45627: ; if (port <= 1) { goto ldv_45626; } else { } } else { } { hw_enable(hw); hw_ena_intr(hw); } } else { } { dev->trans_start = jiffies; netif_wake_queue(dev); } return; } } __inline static void csum_verified(struct sk_buff *skb ) { unsigned short protocol ; struct iphdr *iph ; unsigned char *tmp ; unsigned char *tmp___0 ; { { protocol = skb->protocol; skb_reset_network_header(skb); tmp = skb_network_header((struct sk_buff const *)skb); iph = (struct iphdr *)tmp; } if ((unsigned int )protocol == 129U) { { protocol = iph->tot_len; skb_set_network_header(skb, 4); tmp___0 = skb_network_header((struct sk_buff const *)skb); iph = (struct iphdr *)tmp___0; } } else { } if ((unsigned int )protocol == 8U) { if ((unsigned int )iph->protocol == 6U) { skb->ip_summed = 1U; } else { } } else { } return; } } __inline static int rx_proc(struct net_device *dev , struct ksz_hw *hw , struct ksz_desc *desc , union desc_stat status ) { int packet_len ; struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_dma_buf *dma_buf ; struct sk_buff *skb ; int rx_status ; unsigned char *tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; packet_len = (int )status.rx.frame_len + -4; dma_buf = & desc->dma_buf; pci_dma_sync_single_for_cpu(hw_priv->pdev, dma_buf->dma, (size_t )(packet_len + 4), 2); skb = netdev_alloc_skb(dev, (unsigned int )(packet_len + 2)); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { dev->stats.rx_dropped = dev->stats.rx_dropped + 1UL; return (-12); } else { } { skb_reserve(skb, 2); tmp___0 = skb_put(skb, (unsigned int )packet_len); memcpy((void *)tmp___0, (void const *)(dma_buf->skb)->data, (size_t )packet_len); skb->protocol = eth_type_trans(skb, dev); } if ((hw->rx_cfg & 393216U) != 0U) { { csum_verified(skb); } } else { } { dev->stats.rx_packets = dev->stats.rx_packets + 1UL; dev->stats.rx_bytes = dev->stats.rx_bytes + (unsigned long )packet_len; rx_status = netif_rx(skb); } return (0); } } static int dev_rcv_packets(struct dev_info *hw_priv ) { int next ; union desc_stat status ; struct ksz_hw *hw ; struct net_device *dev ; struct ksz_desc_info *info ; int left ; struct ksz_desc *desc ; int received ; int tmp ; int tmp___0 ; { hw = & hw_priv->hw; dev = (struct net_device *)hw->port_info[0].pdev; info = & hw->rx_desc_info; left = info->alloc; received = 0; next = info->next; goto ldv_45660; ldv_45659: desc = info->ring + (unsigned long )next; status.data = (desc->phw)->ctrl.data; if ((unsigned int )*((unsigned char *)(& status) + 3UL) != 0U) { goto ldv_45657; } else { } if ((unsigned int )*((unsigned char *)(& status) + 3UL) == 96U) { { tmp = rx_proc(dev, hw, desc, status); } if (tmp != 0) { goto release_packet; } else { } received = received + 1; } else { } release_packet: { release_desc(desc); next = next + 1; next = next & info->mask; } ldv_45660: tmp___0 = left; left = left - 1; if (tmp___0 != 0) { goto ldv_45659; } else { } ldv_45657: info->next = next; return (received); } } static int port_rcv_packets(struct dev_info *hw_priv ) { int next ; union desc_stat status ; struct ksz_hw *hw ; struct net_device *dev ; struct ksz_desc_info *info ; int left ; struct ksz_desc *desc ; int received ; int p ; bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { hw = & hw_priv->hw; dev = (struct net_device *)hw->port_info[0].pdev; info = & hw->rx_desc_info; left = info->alloc; received = 0; next = info->next; goto ldv_45676; ldv_45675: desc = info->ring + (unsigned long )next; status.data = (desc->phw)->ctrl.data; if ((unsigned int )*((unsigned char *)(& status) + 3UL) != 0U) { goto ldv_45672; } else { } if (hw->dev_count > 1) { { p = (int )status.rx.src_port + -1; dev = (struct net_device *)hw->port_info[p].pdev; tmp = netif_running((struct net_device const *)dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { goto release_packet; } else { } } else { } if ((unsigned int )*((unsigned char *)(& status) + 3UL) == 96U) { { tmp___1 = rx_proc(dev, hw, desc, status); } if (tmp___1 != 0) { goto release_packet; } else { } received = received + 1; } else { } release_packet: { release_desc(desc); next = next + 1; next = next & info->mask; } ldv_45676: tmp___2 = left; left = left - 1; if (tmp___2 != 0) { goto ldv_45675; } else { } ldv_45672: info->next = next; return (received); } } static int dev_rcv_special(struct dev_info *hw_priv ) { int next ; union desc_stat status ; struct ksz_hw *hw ; struct net_device *dev ; struct ksz_desc_info *info ; int left ; struct ksz_desc *desc ; int received ; int p ; bool tmp ; int tmp___0 ; int tmp___1 ; struct dev_priv *priv ; void *tmp___2 ; int tmp___3 ; { hw = & hw_priv->hw; dev = (struct net_device *)hw->port_info[0].pdev; info = & hw->rx_desc_info; left = info->alloc; received = 0; next = info->next; goto ldv_45693; ldv_45692: desc = info->ring + (unsigned long )next; status.data = (desc->phw)->ctrl.data; if ((unsigned int )*((unsigned char *)(& status) + 3UL) != 0U) { goto ldv_45688; } else { } if (hw->dev_count > 1) { { p = (int )status.rx.src_port + -1; dev = (struct net_device *)hw->port_info[p].pdev; tmp = netif_running((struct net_device const *)dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { goto release_packet; } else { } } else { } if ((unsigned int )*((unsigned char *)(& status) + 3UL) == 96U) { if ((unsigned int )*((unsigned char *)(& status) + 3UL) == 0U || (status.data & 983040U) == 262144U) { { tmp___1 = rx_proc(dev, hw, desc, status); } if (tmp___1 != 0) { goto release_packet; } else { } received = received + 1; } else { { tmp___2 = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp___2; priv->port.counter[3] = priv->port.counter[3] + 1ULL; } } } else { } release_packet: { release_desc(desc); next = next + 1; next = next & info->mask; } ldv_45693: tmp___3 = left; left = left - 1; if (tmp___3 != 0) { goto ldv_45692; } else { } ldv_45688: info->next = next; return (received); } } static void rx_proc_task(unsigned long data ) { struct dev_info *hw_priv ; struct ksz_hw *hw ; int tmp ; long tmp___0 ; { hw_priv = (struct dev_info *)data; hw = & hw_priv->hw; if ((unsigned int )hw->enabled == 0U) { return; } else { } { tmp = (*(hw_priv->dev_rcv))(hw_priv); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { hw_resume_rx(hw); ldv_spin_lock_irq_86(& hw_priv->hwlock); hw_turn_on_intr(hw, 671088640U); ldv_spin_unlock_irq_87(& hw_priv->hwlock); } } else { { hw_ack_intr(hw, 536870912U); tasklet_schedule(& hw_priv->rx_tasklet); } } return; } } static void tx_proc_task(unsigned long data ) { struct dev_info *hw_priv ; struct ksz_hw *hw ; { { hw_priv = (struct dev_info *)data; hw = & hw_priv->hw; hw_ack_intr(hw, 1342177280U); tx_done(hw_priv); ldv_spin_lock_irq_86(& hw_priv->hwlock); hw_turn_on_intr(hw, 1073741824U); ldv_spin_unlock_irq_87(& hw_priv->hwlock); } return; } } __inline static void handle_rx_stop(struct ksz_hw *hw ) { { if ((unsigned int )hw->rx_stop == 0U) { hw->intr_mask = hw->intr_mask & 4261412863U; } else if ((unsigned int )hw->rx_stop > 1U) { if ((unsigned int )hw->enabled != 0U && (int )hw->rx_cfg & 1) { { hw_start_rx(hw); } } else { hw->intr_mask = hw->intr_mask & 4261412863U; hw->rx_stop = 0U; } } else { hw->rx_stop = (u8 )((int )hw->rx_stop + 1); } return; } } static irqreturn_t netdev_intr(int irq , void *dev_id ) { uint int_enable ; struct net_device *dev ; struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; long tmp___0 ; long tmp___1 ; long tmp___2 ; struct ksz_port *port ; long tmp___3 ; long tmp___4 ; u32 data ; long tmp___5 ; { { int_enable = 0U; dev = (struct net_device *)dev_id; tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; hw = & hw_priv->hw; ldv_spin_lock_94(& hw_priv->hwlock); hw_read_intr(hw, & int_enable); } if (int_enable == 0U) { { ldv_spin_unlock_95(& hw_priv->hwlock); } return (0); } else { } { hw_ack_intr(hw, int_enable); int_enable = int_enable & hw->intr_mask; tmp___0 = ldv__builtin_expect((int_enable & 1342177280U) != 0U, 0L); } if (tmp___0 != 0L) { { hw_dis_intr_bit(hw, 1342177280U); tasklet_schedule(& hw_priv->tx_tasklet); } } else { } { tmp___1 = ldv__builtin_expect((int_enable & 536870912U) != 0U, 1L); } if (tmp___1 != 0L) { { hw_dis_intr_bit(hw, 536870912U); tasklet_schedule(& hw_priv->rx_tasklet); } } else { } { tmp___2 = ldv__builtin_expect((int_enable & 134217728U) != 0U, 0L); } if (tmp___2 != 0L) { { dev->stats.rx_fifo_errors = dev->stats.rx_fifo_errors + 1UL; hw_resume_rx(hw); } } else { } { tmp___3 = ldv__builtin_expect((int )int_enable < 0, 0L); } if (tmp___3 != 0L) { { port = & priv->port; hw->features = hw->features | 1U; port_get_link_speed(port); } } else { } { tmp___4 = ldv__builtin_expect((int_enable & 33554432U) != 0U, 0L); } if (tmp___4 != 0L) { { handle_rx_stop(hw); } goto ldv_45717; } else { } { tmp___5 = ldv__builtin_expect((int_enable & 67108864U) != 0U, 0L); } if (tmp___5 != 0L) { { hw->intr_mask = hw->intr_mask & 4227858431U; printk("\016ksz884x: Tx stopped\n"); data = readl((void const volatile *)hw->io); } if ((data & 1U) == 0U) { { printk("\016ksz884x: Tx disabled\n"); } } else { } goto ldv_45717; } else { } ldv_45717: { hw_ena_intr(hw); ldv_spin_unlock_95(& hw_priv->hwlock); } return (1); } } static unsigned long next_jiffies ; static void netdev_netpoll(struct net_device *dev ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; hw_dis_intr(& hw_priv->hw); netdev_intr(dev->irq, (void *)dev); } return; } } static void bridge_change(struct ksz_hw *hw ) { int port ; u8 member ; struct ksz_switch *sw ; { sw = hw->ksz_switch; if ((unsigned int )sw->member == 0U) { { port_set_stp_state(hw, 2, 5); sw_block_addr(hw); } } else { } port = 0; goto ldv_45732; ldv_45731: ; if (sw->port_cfg[port].stp_state == 3) { member = (u8 )((unsigned int )sw->member | 4U); } else { member = (u8 )((int )((signed char )(1 << port)) | 4); } if ((int )member != (int )sw->port_cfg[port].member) { { sw_cfg_port_base_vlan(hw, port, (int )member); } } else { } port = port + 1; ldv_45732: ; if (port <= 1) { goto ldv_45731; } else { } return; } } static int netdev_close(struct net_device *dev ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_port *port ; struct ksz_hw *hw ; int pi ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; port = & priv->port; hw = & hw_priv->hw; netif_stop_queue(dev); ksz_stop_timer(& priv->monitor_timer_info); } if (hw->dev_count > 1) { { port_set_stp_state(hw, port->first_port, 0); } if ((hw->features & 256U) != 0U) { pi = 1 << port->first_port; if (((int )(hw->ksz_switch)->member & pi) != 0) { { (hw->ksz_switch)->member = (u8 )((int )((signed char )(hw->ksz_switch)->member) & ~ ((int )((signed char )pi))); bridge_change(hw); } } else { } } else { } } else { } if (port->first_port > 0) { { hw_del_addr(hw, dev->dev_addr); } } else { } if (hw_priv->wol_enable == 0) { { port_set_power_saving(port, 1); } } else { } if (priv->multicast != 0) { hw->all_multi = (u8 )((int )hw->all_multi - 1); } else { } if (priv->promiscuous != 0) { hw->promiscuous = (u8 )((int )hw->promiscuous - 1); } else { } hw_priv->opened = hw_priv->opened - 1; if (hw_priv->opened == 0) { { ksz_stop_timer(& hw_priv->mib_timer_info); flush_work(& hw_priv->mib_read); hw_dis_intr(hw); hw_disable(hw); hw_clr_multicast(hw); msleep(8U); tasklet_kill(& hw_priv->rx_tasklet); tasklet_kill(& hw_priv->tx_tasklet); ldv_free_irq_97((unsigned int )dev->irq, (void *)hw_priv->dev); transmit_cleanup(hw_priv, 0); hw_reset_pkts(& hw->rx_desc_info); hw_reset_pkts(& hw->tx_desc_info); } if ((hw->features & 256U) != 0U) { { sw_clr_sta_mac_table(hw); } } else { } } else { } return (0); } } static void hw_cfg_huge_frame(struct dev_info *hw_priv , struct ksz_hw *hw ) { u32 data ; unsigned short tmp ; { if ((unsigned long )hw->ksz_switch != (unsigned long )((struct ksz_switch *)0)) { { tmp = readw((void const volatile *)hw->io + 1028U); data = (u32 )tmp; } if ((hw->features & 16U) != 0U) { data = data | 4U; } else { data = data & 4294967291U; } { writew((int )((unsigned short )data), (void volatile *)hw->io + 1028U); } } else { } if ((hw->features & 16U) != 0U) { hw->rx_cfg = hw->rx_cfg | 8U; hw_priv->dev_rcv = & dev_rcv_special; } else { hw->rx_cfg = hw->rx_cfg & 4294967287U; if (hw->dev_count > 1) { hw_priv->dev_rcv = & port_rcv_packets; } else { hw_priv->dev_rcv = & dev_rcv_packets; } } return; } } static int prepare_hardware(struct net_device *dev ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; int rc ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; hw = & hw_priv->hw; rc = 0; hw_priv->dev = dev; rc = ldv_request_irq_98((unsigned int )dev->irq, & netdev_intr, 128UL, (char const *)(& dev->name), (void *)dev); } if (rc != 0) { return (rc); } else { } { tasklet_init(& hw_priv->rx_tasklet, & rx_proc_task, (unsigned long )hw_priv); tasklet_init(& hw_priv->tx_tasklet, & tx_proc_task, (unsigned long )hw_priv); hw->promiscuous = 0U; hw->all_multi = 0U; hw->multi_list_size = 0U; hw_reset(hw); hw_set_desc_base(hw, hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys); hw_set_addr(hw); hw_cfg_huge_frame(hw_priv, hw); ksz_init_rx_buffers(hw_priv); } return (0); } } static void set_media_state(struct net_device *dev , int media_state ) { struct dev_priv *priv ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; } if (media_state == priv->media_state) { { netif_carrier_on(dev); } } else { { netif_carrier_off(dev); } } if ((priv->msg_enable & 4U) != 0U) { { netdev_info((struct net_device const *)dev, "link %s\n", media_state == priv->media_state ? (char *)"on" : (char *)"off"); } } else { } return; } } static int netdev_open(struct net_device *dev ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; struct ksz_port *port ; int i ; int p ; int rc ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; hw = & hw_priv->hw; port = & priv->port; rc = 0; priv->multicast = 0; priv->promiscuous = 0; memset((void *)(& dev->stats), 0, 184UL); memset((void *)(& port->counter), 0, 32UL); } if (hw_priv->opened == 0) { { rc = prepare_hardware(dev); } if (rc != 0) { return (rc); } else { } i = 0; goto ldv_45770; ldv_45769: ; if (next_jiffies < (unsigned long )jiffies) { next_jiffies = (unsigned long )jiffies + 500UL; } else { next_jiffies = next_jiffies + 250UL; } { hw_priv->counter[i].time = next_jiffies; hw->port_mib[i].state = 1U; port_init_cnt(hw, i); i = i + 1; } ldv_45770: ; if (i < hw->mib_port_cnt) { goto ldv_45769; } else { } if ((unsigned long )hw->ksz_switch != (unsigned long )((struct ksz_switch *)0)) { hw->port_mib[2].state = 0U; } else { { hw_add_wol_bcast(hw); hw_cfg_wol_pme(hw, 0); hw_clr_wol_pme_status(& hw_priv->hw); } } } else { } { port_set_power_saving(port, 0); i = 0; p = port->first_port; } goto ldv_45773; ldv_45772: hw->port_info[p].partner = 255U; hw->port_info[p].state = 1U; i = i + 1; p = p + 1; ldv_45773: ; if (i < port->port_cnt) { goto ldv_45772; } else { } if (hw->dev_count > 1) { { port_set_stp_state(hw, port->first_port, 5); } if (port->first_port > 0) { { hw_add_addr(hw, dev->dev_addr); } } else { } } else { } { port_get_link_speed(port); } if ((unsigned int )port->force_link != 0U) { { port_force_link_speed(port); } } else { { port_set_link_speed(port); } } if (hw_priv->opened == 0) { { hw_setup_intr(hw); hw_enable(hw); hw_ena_intr(hw); } if (hw->mib_port_cnt != 0) { { ksz_start_timer(& hw_priv->mib_timer_info, hw_priv->mib_timer_info.period); } } else { } } else { } { hw_priv->opened = hw_priv->opened + 1; ksz_start_timer(& priv->monitor_timer_info, priv->monitor_timer_info.period); priv->media_state = (int )(port->linked)->state; set_media_state(dev, 0); netif_start_queue(dev); } return (0); } } static struct net_device_stats *netdev_query_statistics(struct net_device *dev ) { struct dev_priv *priv ; void *tmp ; struct ksz_port *port ; struct ksz_hw *hw ; struct ksz_port_mib *mib ; int i ; int p ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; port = & priv->port; hw = & (priv->adapter)->hw; dev->stats.rx_errors = (unsigned long )port->counter[3]; dev->stats.tx_errors = (unsigned long )port->counter[2]; dev->stats.multicast = 0UL; dev->stats.collisions = 0UL; dev->stats.rx_length_errors = 0UL; dev->stats.rx_crc_errors = 0UL; dev->stats.rx_frame_errors = 0UL; dev->stats.tx_window_errors = 0UL; i = 0; p = port->first_port; } goto ldv_45785; ldv_45784: mib = (struct ksz_port_mib *)(& hw->port_mib) + (unsigned long )p; dev->stats.multicast = dev->stats.multicast + (unsigned long )mib->counter[12]; dev->stats.collisions = dev->stats.collisions + (unsigned long )mib->counter[28]; dev->stats.rx_length_errors = dev->stats.rx_length_errors + (unsigned long )(((mib->counter[2] + mib->counter[3]) + mib->counter[4]) + mib->counter[5]); dev->stats.rx_crc_errors = dev->stats.rx_crc_errors + (unsigned long )mib->counter[7]; dev->stats.rx_frame_errors = dev->stats.rx_frame_errors + (unsigned long )(mib->counter[8] + mib->counter[6]); dev->stats.tx_window_errors = dev->stats.tx_window_errors + (unsigned long )mib->counter[22]; i = i + 1; p = p + 1; ldv_45785: ; if (i < port->mib_port_cnt) { goto ldv_45784; } else { } return (& dev->stats); } } static int netdev_set_mac_address(struct net_device *dev , void *addr ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; struct sockaddr *mac ; uint interrupt___0 ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; hw = & hw_priv->hw; mac = (struct sockaddr *)addr; } if (priv->port.first_port > 0) { { hw_del_addr(hw, dev->dev_addr); } } else { { hw->mac_override = 1U; memcpy((void *)(& hw->override_addr), (void const *)(& mac->sa_data), 6UL); } } { memcpy((void *)dev->dev_addr, (void const *)(& mac->sa_data), 6UL); interrupt___0 = hw_block_intr(hw); } if (priv->port.first_port > 0) { { hw_add_addr(hw, dev->dev_addr); } } else { { hw_set_addr(hw); } } { hw_restore_intr(hw, interrupt___0); } return (0); } } static void dev_set_promiscuous(struct net_device *dev , struct dev_priv *priv , struct ksz_hw *hw , int promiscuous ) { u8 prev_state ; struct ksz_switch *sw ; int port ; { if (promiscuous != priv->promiscuous) { prev_state = hw->promiscuous; if (promiscuous != 0) { hw->promiscuous = (u8 )((int )hw->promiscuous + 1); } else { hw->promiscuous = (u8 )((int )hw->promiscuous - 1); } priv->promiscuous = promiscuous; if ((unsigned int )hw->promiscuous <= 1U && (unsigned int )prev_state <= 1U) { { hw_set_promiscuous(hw, (int )hw->promiscuous); } } else { } if (((hw->features & 256U) != 0U && promiscuous == 0) && (dev->priv_flags & 16384U) != 0U) { { sw = hw->ksz_switch; port = priv->port.first_port; port_set_stp_state(hw, port, 0); port = 1 << port; } if (((int )sw->member & port) != 0) { { sw->member = (u8 )((int )((signed char )sw->member) & ~ ((int )((signed char )port))); bridge_change(hw); } } else { } } else { } } else { } return; } } static void dev_set_multicast(struct dev_priv *priv , struct ksz_hw *hw , int multicast ) { u8 all_multi ; { if (multicast != priv->multicast) { all_multi = hw->all_multi; if (multicast != 0) { hw->all_multi = (u8 )((int )hw->all_multi + 1); } else { hw->all_multi = (u8 )((int )hw->all_multi - 1); } priv->multicast = multicast; if ((unsigned int )hw->all_multi <= 1U && (unsigned int )all_multi <= 1U) { { hw_set_multicast(hw, (int )hw->all_multi); } } else { } } else { } return; } } static void netdev_set_rx_mode(struct net_device *dev ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; struct netdev_hw_addr *ha ; int multicast ; int i ; struct list_head const *__mptr ; int tmp___0 ; struct list_head const *__mptr___0 ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; hw = & hw_priv->hw; multicast = (int )dev->flags & 512; dev_set_promiscuous(dev, priv, hw, (int )dev->flags & 256); } if (hw_priv->hw.dev_count > 1) { multicast = (int )((unsigned int )multicast | (dev->flags & 4096U)); } else { } { dev_set_multicast(priv, hw, multicast); } if (hw_priv->hw.dev_count > 1) { return; } else { } if ((dev->flags & 4096U) != 0U && dev->mc.count != 0) { i = 0; if (dev->mc.count > 32) { if ((unsigned int )hw->multi_list_size != 32U) { { hw->multi_list_size = 32U; hw->all_multi = (u8 )((int )hw->all_multi + 1); hw_set_multicast(hw, (int )hw->all_multi); } } else { } return; } else { } __mptr = (struct list_head const *)dev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_45826; ldv_45825: ; if (i > 31) { goto ldv_45824; } else { } { tmp___0 = i; i = i + 1; memcpy((void *)(& hw->multi_list) + (unsigned long )tmp___0, (void const *)(& ha->addr), 6UL); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; } ldv_45826: ; if ((unsigned long )(& ha->list) != (unsigned long )(& dev->mc.list)) { goto ldv_45825; } else { } ldv_45824: { hw->multi_list_size = (unsigned char )i; hw_set_grp_addr(hw); } } else { if ((unsigned int )hw->multi_list_size == 32U) { { hw->all_multi = (u8 )((int )hw->all_multi - 1); hw_set_multicast(hw, (int )hw->all_multi); } } else { } { hw->multi_list_size = 0U; hw_clr_multicast(hw); } } return; } } static int netdev_change_mtu(struct net_device *dev , int new_mtu ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; int hw_mtu ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; hw = & hw_priv->hw; tmp___0 = netif_running((struct net_device const *)dev); } if ((int )tmp___0) { return (-16); } else { } if (hw->dev_count > 1) { if ((unsigned long )dev != (unsigned long )hw_priv->dev) { return (0); } else { } } else { } if (new_mtu <= 59) { return (-22); } else { } if (dev->mtu != (unsigned int )new_mtu) { hw_mtu = new_mtu + 22; if (hw_mtu > 1916) { return (-22); } else { } if (hw_mtu > 1522) { hw->features = hw->features | 16U; hw_mtu = 1916; } else { hw->features = hw->features & 4294967279U; hw_mtu = 1522; } hw_mtu = (hw_mtu + 3) & -4; hw_priv->mtu = hw_mtu; dev->mtu = (unsigned int )new_mtu; } else { } return (0); } } static int netdev_ioctl(struct net_device *dev , struct ifreq *ifr , int cmd ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; struct ksz_port *port ; int result ; struct mii_ioctl_data *data ; struct mii_ioctl_data *tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; hw = & hw_priv->hw; port = & priv->port; result = 0; tmp___0 = if_mii(ifr); data = tmp___0; tmp___1 = down_interruptible(& priv->proc_sem); } if (tmp___1 != 0) { return (-512); } else { } { if (cmd == 35143) { goto case_35143; } else { } if (cmd == 35144) { goto case_35144; } else { } if (cmd == 35145) { goto case_35145; } else { } goto switch_default; case_35143: /* CIL Label */ data->phy_id = (__u16 )priv->id; case_35144: /* CIL Label */ ; if ((int )data->phy_id != priv->id || (unsigned int )data->reg_num > 5U) { result = -5; } else { { hw_r_phy(hw, (int )(port->linked)->port_id, (int )data->reg_num, & data->val_out); } } goto ldv_45848; case_35145: /* CIL Label */ { tmp___2 = capable(12); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { result = -1; } else if ((int )data->phy_id != priv->id || (unsigned int )data->reg_num > 5U) { result = -5; } else { { hw_w_phy(hw, (int )(port->linked)->port_id, (int )data->reg_num, (int )data->val_in); } } goto ldv_45848; switch_default: /* CIL Label */ result = -95; switch_break: /* CIL Label */ ; } ldv_45848: { up(& priv->proc_sem); } return (result); } } static int mdio_read(struct net_device *dev , int phy_id , int reg_num ) { struct dev_priv *priv ; void *tmp ; struct ksz_port *port ; struct ksz_hw *hw ; u16 val_out ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; port = & priv->port; hw = port->hw; hw_r_phy(hw, (int )(port->linked)->port_id, (int )((u16 )reg_num) << 1U, & val_out); } return ((int )val_out); } } static void mdio_write(struct net_device *dev , int phy_id , int reg_num , int val ) { struct dev_priv *priv ; void *tmp ; struct ksz_port *port ; struct ksz_hw *hw ; int i ; int pi ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; port = & priv->port; hw = port->hw; i = 0; pi = port->first_port; } goto ldv_45872; ldv_45871: { hw_w_phy(hw, pi, (int )((u16 )reg_num) << 1U, (int )((u16 )val)); i = i + 1; pi = pi + 1; } ldv_45872: ; if (i < port->port_cnt) { goto ldv_45871; } else { } return; } } static u16 eeprom_data[64U] = { 0U}; static int netdev_get_settings(struct net_device *dev , struct ethtool_cmd *cmd ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; mutex_lock_nested(& hw_priv->lock, 0U); mii_ethtool_gset(& priv->mii_if, cmd); cmd->advertising = cmd->advertising | 128U; mutex_unlock(& hw_priv->lock); priv->advertising = cmd->advertising; } return (0); } } static int netdev_set_settings(struct net_device *dev , struct ethtool_cmd *cmd ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_port *port ; u32 speed ; __u32 tmp___0 ; int rc ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; port = & priv->port; tmp___0 = ethtool_cmd_speed((struct ethtool_cmd const *)cmd); speed = tmp___0; } if ((unsigned int )cmd->autoneg != 0U && priv->advertising == cmd->advertising) { cmd->advertising = cmd->advertising | 15U; if (speed == 10U) { cmd->advertising = cmd->advertising & 4294967283U; } else if (speed == 100U) { cmd->advertising = cmd->advertising & 4294967292U; } else { } if ((unsigned int )cmd->duplex == 0U) { cmd->advertising = cmd->advertising & 4294967285U; } else if ((unsigned int )cmd->duplex == 1U) { cmd->advertising = cmd->advertising & 4294967290U; } else { } } else { } { mutex_lock_nested(& hw_priv->lock, 0U); } if ((unsigned int )cmd->autoneg != 0U && (cmd->advertising & 15U) == 15U) { port->duplex = 0U; port->speed = 0U; port->force_link = 0U; } else { port->duplex = (unsigned int )cmd->duplex + 1U; if (speed != 1000U) { port->speed = (u8 )speed; } else { } if ((unsigned int )cmd->autoneg != 0U) { port->force_link = 0U; } else { port->force_link = 1U; } } { rc = mii_ethtool_sset(& priv->mii_if, cmd); mutex_unlock(& hw_priv->lock); } return (rc); } } static int netdev_nway_reset(struct net_device *dev ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; int rc ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; mutex_lock_nested(& hw_priv->lock, 0U); rc = mii_nway_restart(& priv->mii_if); mutex_unlock(& hw_priv->lock); } return (rc); } } static u32 netdev_get_link(struct net_device *dev ) { struct dev_priv *priv ; void *tmp ; int rc ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; rc = mii_link_ok(& priv->mii_if); } return ((u32 )rc); } } static void netdev_get_drvinfo(struct net_device *dev , struct ethtool_drvinfo *info ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; char const *tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; strlcpy((char *)(& info->driver), "KSZ884X PCI", 32UL); strlcpy((char *)(& info->version), "1.0.0", 32UL); tmp___0 = pci_name((struct pci_dev const *)hw_priv->pdev); strlcpy((char *)(& info->bus_info), tmp___0, 32UL); } return; } } static struct hw_regs hw_regs_range[7U] = { {0, 44}, {128, 252}, {512, 552}, {1024, 1042}, {1136, 1170}, {1232, 1354}, {0, 0}}; static int netdev_get_regs_len(struct net_device *dev ) { struct hw_regs *range ; int regs_len ; { range = (struct hw_regs *)(& hw_regs_range); regs_len = 64; goto ldv_45917; ldv_45916: regs_len = regs_len + (((range->end - range->start) + 3) / 4) * 4; range = range + 1; ldv_45917: ; if (range->end > range->start) { goto ldv_45916; } else { } return (regs_len); } } static void netdev_get_regs(struct net_device *dev , struct ethtool_regs *regs , void *ptr ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; int *buf ; struct hw_regs *range ; int len ; unsigned int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; hw = & hw_priv->hw; buf = (int *)ptr; range = (struct hw_regs *)(& hw_regs_range); mutex_lock_nested(& hw_priv->lock, 0U); regs->version = 0U; len = 0; } goto ldv_45931; ldv_45930: { pci_read_config_dword((struct pci_dev const *)hw_priv->pdev, len, (u32 *)buf); buf = buf + 1; len = len + 4; } ldv_45931: ; if (len <= 63) { goto ldv_45930; } else { } goto ldv_45937; ldv_45936: len = range->start; goto ldv_45934; ldv_45933: { tmp___0 = readl((void const volatile *)hw->io + (unsigned long )len); *buf = (int )tmp___0; buf = buf + 1; len = len + 4; } ldv_45934: ; if (len < range->end) { goto ldv_45933; } else { } range = range + 1; ldv_45937: ; if (range->end > range->start) { goto ldv_45936; } else { } { mutex_unlock(& hw_priv->lock); } return; } } static void netdev_get_wol(struct net_device *dev , struct ethtool_wolinfo *wol ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; wol->supported = (__u32 )hw_priv->wol_support; wol->wolopts = (__u32 )hw_priv->wol_enable; memset((void *)(& wol->sopass), 0, 6UL); } return; } } static int netdev_set_wol(struct net_device *dev , struct ethtool_wolinfo *wol ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; u8 net_addr[4U] ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; net_addr[0] = 192U; net_addr[1] = 168U; net_addr[2] = 1U; net_addr[3] = 1U; } if ((wol->wolopts & (__u32 )(~ hw_priv->wol_support)) != 0U) { return (-22); } else { } hw_priv->wol_enable = (int )wol->wolopts; if (wol->wolopts != 0U) { hw_priv->wol_enable = hw_priv->wol_enable | 1; } else { } { hw_enable_wol(& hw_priv->hw, (u32 )hw_priv->wol_enable, (u8 const *)(& net_addr)); } return (0); } } static u32 netdev_get_msglevel(struct net_device *dev ) { struct dev_priv *priv ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; } return (priv->msg_enable); } } static void netdev_set_msglevel(struct net_device *dev , u32 value ) { struct dev_priv *priv ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; priv->msg_enable = value; } return; } } static int netdev_get_eeprom_len(struct net_device *dev ) { { return (128); } } static int netdev_get_eeprom(struct net_device *dev , struct ethtool_eeprom *eeprom , u8 *data ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; u8 *eeprom_byte ; int i ; int len ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; eeprom_byte = (u8 *)(& eeprom_data); len = (int )(((eeprom->offset + eeprom->len) + 1U) / 2U); i = (int )(eeprom->offset / 2U); } goto ldv_45975; ldv_45974: { eeprom_data[i] = eeprom_read(& hw_priv->hw, (int )((u8 )i)); i = i + 1; } ldv_45975: ; if (i < len) { goto ldv_45974; } else { } { eeprom->magic = 279021634U; memcpy((void *)data, (void const *)eeprom_byte + (unsigned long )eeprom->offset, (size_t )eeprom->len); } return (0); } } static int netdev_set_eeprom(struct net_device *dev , struct ethtool_eeprom *eeprom , u8 *data ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; u16 eeprom_word[64U] ; u8 *eeprom_byte ; int i ; int len ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; eeprom_byte = (u8 *)(& eeprom_word); } if (eeprom->magic != 279021634U) { return (-22); } else { } len = (int )(((eeprom->offset + eeprom->len) + 1U) / 2U); i = (int )(eeprom->offset / 2U); goto ldv_45989; ldv_45988: { eeprom_data[i] = eeprom_read(& hw_priv->hw, (int )((u8 )i)); i = i + 1; } ldv_45989: ; if (i < len) { goto ldv_45988; } else { } { memcpy((void *)(& eeprom_word), (void const *)(& eeprom_data), 128UL); memcpy((void *)eeprom_byte + (unsigned long )eeprom->offset, (void const *)data, (size_t )eeprom->len); i = 0; } goto ldv_45992; ldv_45991: ; if ((int )eeprom_word[i] != (int )eeprom_data[i]) { { eeprom_data[i] = eeprom_word[i]; eeprom_write(& hw_priv->hw, (int )((u8 )i), (int )eeprom_data[i]); } } else { } i = i + 1; ldv_45992: ; if (i <= 63) { goto ldv_45991; } else { } return (0); } } static void netdev_get_pauseparam(struct net_device *dev , struct ethtool_pauseparam *pause ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; int tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; hw = & hw_priv->hw; pause->autoneg = (int )hw->overrides & 1 ? 0U : 1U; } if ((unsigned long )hw->ksz_switch == (unsigned long )((struct ksz_switch *)0)) { pause->rx_pause = (hw->rx_cfg & 512U) != 0U; pause->tx_pause = (hw->tx_cfg & 512U) != 0U; } else { { tmp___0 = sw_chk(hw, 1026U, 4096); pause->rx_pause = tmp___0 != 0; tmp___1 = sw_chk(hw, 1026U, 8192); pause->tx_pause = tmp___1 != 0; } } return; } } static int netdev_set_pauseparam(struct net_device *dev , struct ethtool_pauseparam *pause ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; struct ksz_port *port ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; hw = & hw_priv->hw; port = & priv->port; mutex_lock_nested(& hw_priv->lock, 0U); } if (pause->autoneg != 0U) { if (pause->rx_pause == 0U && pause->tx_pause == 0U) { port->flow_ctrl = 0U; } else { port->flow_ctrl = 1U; } hw->overrides = hw->overrides & 4294967294U; port->force_link = 0U; if ((unsigned long )hw->ksz_switch != (unsigned long )((struct ksz_switch *)0)) { { sw_cfg(hw, 1026U, 4096, 1); sw_cfg(hw, 1026U, 8192, 1); } } else { } { port_set_link_speed(port); } } else { hw->overrides = hw->overrides | 1U; if ((unsigned long )hw->ksz_switch != (unsigned long )((struct ksz_switch *)0)) { { sw_cfg(hw, 1026U, 4096, (int )pause->rx_pause); sw_cfg(hw, 1026U, 8192, (int )pause->tx_pause); } } else { { set_flow_ctrl(hw, (int )pause->rx_pause, (int )pause->tx_pause); } } } { mutex_unlock(& hw_priv->lock); } return (0); } } static void netdev_get_ringparam(struct net_device *dev , struct ethtool_ringparam *ring ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; hw = & hw_priv->hw; ring->tx_max_pending = 512U; ring->tx_pending = (__u32 )hw->tx_desc_info.alloc; ring->rx_max_pending = 512U; ring->rx_pending = (__u32 )hw->rx_desc_info.alloc; } return; } } static struct __anonstruct_ethtool_stats_keys_251 ethtool_stats_keys[34U] = { {{'r', 'x', '_', 'l', 'o', '_', 'p', 'r', 'i', 'o', 'r', 'i', 't', 'y', '_', 'o', 'c', 't', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'h', 'i', '_', 'p', 'r', 'i', 'o', 'r', 'i', 't', 'y', '_', 'o', 'c', 't', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'u', 'n', 'd', 'e', 'r', 's', 'i', 'z', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'f', 'r', 'a', 'g', 'm', 'e', 'n', 't', 's', '\000'}}, {{'r', 'x', '_', 'o', 'v', 'e', 'r', 's', 'i', 'z', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'j', 'a', 'b', 'b', 'e', 'r', 's', '\000'}}, {{'r', 'x', '_', 's', 'y', 'm', 'b', 'o', 'l', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'c', 'r', 'c', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'a', 'l', 'i', 'g', 'n', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'm', 'a', 'c', '_', 'c', 't', 'r', 'l', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'p', 'a', 'u', 's', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'b', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'm', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'u', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '6', '4', '_', 'o', 'r', '_', 'l', 'e', 's', 's', '_', 'o', 'c', 't', 'e', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '6', '5', '_', 't', 'o', '_', '1', '2', '7', '_', 'o', 'c', 't', 'e', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '1', '2', '8', '_', 't', 'o', '_', '2', '5', '5', '_', 'o', 'c', 't', 'e', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '2', '5', '6', '_', 't', 'o', '_', '5', '1', '1', '_', 'o', 'c', 't', 'e', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '5', '1', '2', '_', 't', 'o', '_', '1', '0', '2', '3', '_', 'o', 'c', 't', 'e', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '1', '0', '2', '4', '_', 't', 'o', '_', '1', '5', '2', '2', '_', 'o', 'c', 't', 'e', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', 'l', 'o', '_', 'p', 'r', 'i', 'o', 'r', 'i', 't', 'y', '_', 'o', 'c', 't', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', 'h', 'i', '_', 'p', 'r', 'i', 'o', 'r', 'i', 't', 'y', '_', 'o', 'c', 't', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', 'l', 'a', 't', 'e', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}}, {{'t', 'x', '_', 'p', 'a', 'u', 's', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', 'b', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', 'm', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', 'u', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', 'd', 'e', 'f', 'e', 'r', 'r', 'e', 'd', '\000'}}, {{'t', 'x', '_', 't', 'o', 't', 'a', 'l', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}}, {{'t', 'x', '_', 'e', 'x', 'c', 'e', 's', 's', 'i', 'v', 'e', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}}, {{'t', 'x', '_', 's', 'i', 'n', 'g', 'l', 'e', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}}, {{'t', 'x', '_', 'm', 'u', 'l', 't', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}}, {{'r', 'x', '_', 'd', 'i', 's', 'c', 'a', 'r', 'd', 's', '\000'}}, {{'t', 'x', '_', 'd', 'i', 's', 'c', 'a', 'r', 'd', 's', '\000'}}}; static void netdev_get_strings(struct net_device *dev , u32 stringset , u8 *buf ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; hw = & hw_priv->hw; } if (stringset == 1U) { { memcpy((void *)buf, (void const *)(& ethtool_stats_keys), (size_t )(hw->mib_cnt * 32)); } } else { } return; } } static int netdev_get_sset_count(struct net_device *dev , int sset ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; hw = & hw_priv->hw; } { if (sset == 1) { goto case_1; } else { } goto switch_default; case_1: /* CIL Label */ ; return (hw->mib_cnt); switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } } } static void netdev_get_ethtool_stats(struct net_device *dev , struct ethtool_stats *stats , u64 *data ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; struct ksz_port *port ; int n_stats ; int i ; int n ; int p ; int rc ; u64 counter[34U] ; long __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp___0 ; bool __cond ; bool __cond___0 ; long __ret___1 ; wait_queue_t __wait___0 ; long __ret___2 ; long __int___0 ; long tmp___1 ; bool __cond___1 ; bool __cond___2 ; long __ret___3 ; wait_queue_t __wait___1 ; long __ret___4 ; long __int___1 ; long tmp___2 ; bool __cond___3 ; bool __cond___4 ; u64 *tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; hw = & hw_priv->hw; port = & priv->port; n_stats = (int )stats->n_stats; mutex_lock_nested(& hw_priv->lock, 0U); n = 2; i = 0; p = port->first_port; } goto ldv_46052; ldv_46051: ; if ((unsigned int )hw->port_mib[p].state == 0U) { hw_priv->counter[p].read = 1; if (n == 2) { n = p; } else { } } else { } i = i + 1; p = p + 1; ldv_46052: ; if (i < port->mib_port_cnt) { goto ldv_46051; } else { } { mutex_unlock(& hw_priv->lock); } if (n <= 1) { { schedule_work(& hw_priv->mib_read); } } else { } if (port->mib_port_cnt == 1 && n <= 1) { p = n; __ret = 250L; __cond___0 = hw_priv->counter[p].read == 2; if ((int )__cond___0 && __ret == 0L) { __ret = 1L; } else { } if (((int )__cond___0 || __ret == 0L) == 0) { { __ret___0 = 250L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_46064: { tmp___0 = prepare_to_wait_event(& hw_priv->counter[p].counter, & __wait, 1); __int = tmp___0; __cond = hw_priv->counter[p].read == 2; } if ((int )__cond && __ret___0 == 0L) { __ret___0 = 1L; } else { } if (((int )__cond || __ret___0 == 0L) != 0) { goto ldv_46063; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_46063; } else { } { __ret___0 = schedule_timeout(__ret___0); } goto ldv_46064; ldv_46063: { finish_wait(& hw_priv->counter[p].counter, & __wait); } __ret = __ret___0; } else { } rc = (int )__ret; } else { i = 0; p = n; goto ldv_46094; ldv_46093: ; if (i == 0) { __ret___1 = 500L; __cond___2 = hw_priv->counter[p].read == 2; if ((int )__cond___2 && __ret___1 == 0L) { __ret___1 = 1L; } else { } if (((int )__cond___2 || __ret___1 == 0L) == 0) { { __ret___2 = 500L; INIT_LIST_HEAD(& __wait___0.task_list); __wait___0.flags = 0U; } ldv_46077: { tmp___1 = prepare_to_wait_event(& hw_priv->counter[p].counter, & __wait___0, 1); __int___0 = tmp___1; __cond___1 = hw_priv->counter[p].read == 2; } if ((int )__cond___1 && __ret___2 == 0L) { __ret___2 = 1L; } else { } if (((int )__cond___1 || __ret___2 == 0L) != 0) { goto ldv_46076; } else { } if (__int___0 != 0L) { __ret___2 = __int___0; goto ldv_46076; } else { } { __ret___2 = schedule_timeout(__ret___2); } goto ldv_46077; ldv_46076: { finish_wait(& hw_priv->counter[p].counter, & __wait___0); } __ret___1 = __ret___2; } else { } rc = (int )__ret___1; } else if ((unsigned int )hw->port_mib[p].cnt_ptr != 0U) { __ret___3 = 250L; __cond___4 = hw_priv->counter[p].read == 2; if ((int )__cond___4 && __ret___3 == 0L) { __ret___3 = 1L; } else { } if (((int )__cond___4 || __ret___3 == 0L) == 0) { { __ret___4 = 250L; INIT_LIST_HEAD(& __wait___1.task_list); __wait___1.flags = 0U; } ldv_46090: { tmp___2 = prepare_to_wait_event(& hw_priv->counter[p].counter, & __wait___1, 1); __int___1 = tmp___2; __cond___3 = hw_priv->counter[p].read == 2; } if ((int )__cond___3 && __ret___4 == 0L) { __ret___4 = 1L; } else { } if (((int )__cond___3 || __ret___4 == 0L) != 0) { goto ldv_46089; } else { } if (__int___1 != 0L) { __ret___4 = __int___1; goto ldv_46089; } else { } { __ret___4 = schedule_timeout(__ret___4); } goto ldv_46090; ldv_46089: { finish_wait(& hw_priv->counter[p].counter, & __wait___1); } __ret___3 = __ret___4; } else { } rc = (int )__ret___3; } else { } i = i + 1; p = p + 1; ldv_46094: ; if (i < port->mib_port_cnt - n) { goto ldv_46093; } else { } } { get_mib_counters(hw, port->first_port, port->mib_port_cnt, (u64 *)(& counter)); n = hw->mib_cnt; } if (n > n_stats) { n = n_stats; } else { } n_stats = n_stats - n; i = 0; goto ldv_46097; ldv_46096: tmp___3 = data; data = data + 1; *tmp___3 = counter[i]; i = i + 1; ldv_46097: ; if (i < n) { goto ldv_46096; } else { } return; } } static int netdev_set_features(struct net_device *dev , netdev_features_t features ) { struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; hw = & hw_priv->hw; mutex_lock_nested(& hw_priv->lock, 0U); } if ((features & 4294967296ULL) != 0ULL) { hw->rx_cfg = hw->rx_cfg | 196608U; } else { hw->rx_cfg = hw->rx_cfg & 4294770687U; } if ((unsigned int )hw->enabled != 0U) { { writel(hw->rx_cfg, (void volatile *)hw->io + 4U); } } else { } { mutex_unlock(& hw_priv->lock); } return (0); } } static struct ethtool_ops const netdev_ethtool_ops = {& netdev_get_settings, & netdev_set_settings, & netdev_get_drvinfo, & netdev_get_regs_len, & netdev_get_regs, & netdev_get_wol, & netdev_set_wol, & netdev_get_msglevel, & netdev_set_msglevel, & netdev_nway_reset, & netdev_get_link, & netdev_get_eeprom_len, & netdev_get_eeprom, & netdev_set_eeprom, 0, 0, & netdev_get_ringparam, 0, & netdev_get_pauseparam, & netdev_set_pauseparam, 0, & netdev_get_strings, 0, & netdev_get_ethtool_stats, 0, 0, 0, 0, & netdev_get_sset_count, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static void update_link(struct net_device *dev , struct dev_priv *priv , struct ksz_port *port ) { bool tmp ; { if ((uint )priv->media_state != (port->linked)->state) { { priv->media_state = (int )(port->linked)->state; tmp = netif_running((struct net_device const *)dev); } if ((int )tmp) { { set_media_state(dev, 0); } } else { } } else { } return; } } static void mib_read_work(struct work_struct *work ) { struct dev_info *hw_priv ; struct work_struct const *__mptr ; struct ksz_hw *hw ; struct ksz_port_mib *mib ; int i ; int tmp ; { __mptr = (struct work_struct const *)work; hw_priv = (struct dev_info *)__mptr + 0xfffffffffffff938UL; hw = & hw_priv->hw; next_jiffies = jiffies; i = 0; goto ldv_46123; ldv_46122: mib = (struct ksz_port_mib *)(& hw->port_mib) + (unsigned long )i; if ((unsigned int )mib->cnt_ptr != 0U || hw_priv->counter[i].read == 1) { { tmp = port_r_cnt(hw, i); } if (tmp != 0) { goto ldv_46121; } else { } hw_priv->counter[i].read = 0; if ((unsigned int )mib->cnt_ptr == 0U) { { hw_priv->counter[i].read = 2; __wake_up(& hw_priv->counter[i].counter, 1U, 1, (void *)0); } } else { } } else if ((unsigned long )jiffies >= hw_priv->counter[i].time) { if ((unsigned int )mib->state == 0U) { hw_priv->counter[i].read = 1; } else { } next_jiffies = next_jiffies + (unsigned long )(hw->mib_port_cnt * 250); hw_priv->counter[i].time = next_jiffies; } else if ((unsigned int )mib->link_down != 0U) { mib->link_down = 0U; hw_priv->counter[i].read = 1; } else { } i = i + 1; ldv_46123: ; if (i < hw->mib_port_cnt) { goto ldv_46122; } else { } ldv_46121: ; return; } } static void mib_monitor(unsigned long ptr ) { struct dev_info *hw_priv ; int tmp ; { { hw_priv = (struct dev_info *)ptr; mib_read_work(& hw_priv->mib_read); } if (hw_priv->pme_wait != 0UL) { if (hw_priv->pme_wait <= (unsigned long )jiffies) { { hw_clr_wol_pme_status(& hw_priv->hw); hw_priv->pme_wait = 0UL; } } else { } } else { { tmp = hw_chk_wol_pme_status(& hw_priv->hw); } if (tmp != 0) { hw_priv->pme_wait = (unsigned long )jiffies + 500UL; } else { } } { ksz_update_timer(& hw_priv->mib_timer_info); } return; } } static void dev_monitor(unsigned long ptr ) { struct net_device *dev ; struct dev_priv *priv ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; struct ksz_port *port ; { { dev = (struct net_device *)ptr; tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; hw_priv = priv->adapter; hw = & hw_priv->hw; port = & priv->port; } if ((hw->features & 1U) == 0U) { { port_get_link_speed(port); } } else { } { update_link(dev, priv, port); ksz_update_timer(& priv->monitor_timer_info); } return; } } static int msg_enable ; static char *macaddr = (char *)":"; static char *mac1addr = (char *)":"; static int multi_dev ; static int fast_aging ; static int netdev_init(struct net_device *dev ) { struct dev_priv *priv ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp; ksz_init_timer(& priv->monitor_timer_info, 125, & dev_monitor, (void *)dev); dev->watchdog_timeo = 125; dev->hw_features = 4294967299ULL; dev->hw_features = dev->hw_features | 16ULL; dev->features = dev->features | dev->hw_features; sema_init(& priv->proc_sem, 1); priv->mii_if.phy_id_mask = 1; priv->mii_if.reg_num_mask = 7; priv->mii_if.dev = dev; priv->mii_if.mdio_read = & mdio_read; priv->mii_if.mdio_write = & mdio_write; priv->mii_if.phy_id = priv->port.first_port + 1; priv->msg_enable = netif_msg_init(msg_enable, 7); } return (0); } } static struct net_device_ops const netdev_ops = {& netdev_init, 0, & netdev_open, & netdev_close, & netdev_tx, 0, 0, & netdev_set_rx_mode, & netdev_set_mac_address, & eth_validate_addr, & netdev_ioctl, 0, & netdev_change_mtu, 0, & netdev_tx_timeout, 0, & netdev_query_statistics, 0, 0, & netdev_netpoll, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & netdev_set_features, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static void netdev_free(struct net_device *dev ) { { if (dev->watchdog_timeo != 0) { { ldv_unregister_netdev_99(dev); } } else { } { ldv_free_netdev_100(dev); } return; } } static int net_device_present ; static void get_mac_addr(struct dev_info *hw_priv , u8 *macaddr___0 , int port ) { int i ; int j ; int got_num ; int num ; int digit ; int tmp ; int tmp___0 ; { got_num = 0; num = got_num; j = num; i = j; goto ldv_46166; ldv_46165: ; if ((unsigned int )*(macaddr___0 + (unsigned long )i) != 0U) { { got_num = 1; digit = hex_to_bin((int )((char )*(macaddr___0 + (unsigned long )i))); } if (digit >= 0) { num = num * 16 + digit; } else if ((unsigned int )*(macaddr___0 + (unsigned long )i) == 58U) { got_num = 2; } else { goto ldv_46164; } } else if (got_num != 0) { got_num = 2; } else { goto ldv_46164; } if (got_num == 2) { if (port == 0) { tmp = j; j = j + 1; hw_priv->hw.override_addr[tmp] = (unsigned char )num; hw_priv->hw.override_addr[5] = (int )hw_priv->hw.override_addr[5] + (int )((u8 )hw_priv->hw.id); } else { tmp___0 = j; j = j + 1; (hw_priv->hw.ksz_switch)->other_addr[tmp___0] = (unsigned char )num; (hw_priv->hw.ksz_switch)->other_addr[5] = (int )(hw_priv->hw.ksz_switch)->other_addr[5] + (int )((u8 )hw_priv->hw.id); } got_num = 0; num = got_num; } else { } i = i + 1; ldv_46166: ; if (j <= 5) { goto ldv_46165; } else { } ldv_46164: ; if (j == 6) { if (port == 0) { hw_priv->hw.mac_override = 1U; } else { } } else { } return; } } static void read_other_addr(struct ksz_hw *hw ) { int i ; u16 data[3U] ; struct ksz_switch *sw ; { sw = hw->ksz_switch; i = 0; goto ldv_46174; ldv_46173: { data[i] = eeprom_read(hw, (int )((unsigned int )((u8 )i) + 9U)); i = i + 1; } ldv_46174: ; if (i <= 2) { goto ldv_46173; } else { } if ((((unsigned int )data[0] != 0U || (unsigned int )data[1] != 0U) || (unsigned int )data[2] != 0U) && (unsigned int )data[0] != 65535U) { sw->other_addr[5] = (unsigned char )data[0]; sw->other_addr[4] = (unsigned char )((int )data[0] >> 8); sw->other_addr[3] = (unsigned char )data[1]; sw->other_addr[2] = (unsigned char )((int )data[1] >> 8); sw->other_addr[1] = (unsigned char )data[2]; sw->other_addr[0] = (unsigned char )((int )data[2] >> 8); } else { } return; } } static int pcidev_init(struct pci_dev *pdev , struct pci_device_id const *id ) { struct net_device *dev ; struct dev_priv *priv ; struct dev_info *hw_priv ; struct ksz_hw *hw ; struct platform_info *info ; struct ksz_port *port ; unsigned long reg_base ; unsigned long reg_len ; int cnt ; int i ; int mib_port_count ; int pi ; int port_count ; int result ; char banner[39U] ; struct ksz_switch *sw ; int tmp ; int tmp___0 ; struct resource *tmp___1 ; void *tmp___2 ; struct _ddebug descriptor ; long tmp___3 ; void *tmp___4 ; int tmp___5 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; struct lock_class_key __key___2 ; atomic_long_t __constr_expr_0 ; void *tmp___6 ; int tmp___7 ; bool tmp___8 ; int tmp___9 ; { { sw = (struct ksz_switch *)0; result = pci_enable_device(pdev); } if (result != 0) { return (result); } else { } { result = -19; tmp = pci_set_dma_mask(pdev, 4294967295ULL); } if (tmp != 0) { return (result); } else { { tmp___0 = pci_set_consistent_dma_mask(pdev, 4294967295ULL); } if (tmp___0 != 0) { return (result); } else { } } reg_base = (unsigned long )pdev->resource[0].start; reg_len = pdev->resource[0].start != 0ULL || pdev->resource[0].end != pdev->resource[0].start ? (unsigned long )((pdev->resource[0].end - pdev->resource[0].start) + 1ULL) : 0UL; if ((pdev->resource[0].flags & 256UL) != 0UL) { return (result); } else { } { tmp___1 = __request_region(& iomem_resource, (resource_size_t )reg_base, (resource_size_t )reg_len, "KSZ884X PCI", 0); } if ((unsigned long )tmp___1 == (unsigned long )((struct resource *)0)) { return (result); } else { } { pci_set_master(pdev); result = -12; tmp___2 = kzalloc(2392UL, 208U); info = (struct platform_info *)tmp___2; } if ((unsigned long )info == (unsigned long )((struct platform_info *)0)) { goto pcidev_init_dev_err; } else { } { hw_priv = & info->dev_info; hw_priv->pdev = pdev; hw = & hw_priv->hw; hw->io = ioremap((resource_size_t )reg_base, reg_len); } if ((unsigned long )hw->io == (unsigned long )((void *)0)) { goto pcidev_init_io_err; } else { } { cnt = hw_init(hw); } if (cnt == 0) { if ((msg_enable & 2) != 0) { { printk("\tksz884x: chip not detected\n"); } } else { } result = -19; goto pcidev_init_alloc_err; } else { } { snprintf((char *)(& banner), 39UL, "%s", (char *)(& version)); banner[13] = (char )((unsigned int )((unsigned char )cnt) + 48U); _dev_info((struct device const *)(& (hw_priv->pdev)->dev), "%s\n", (char *)(& banner)); descriptor.modname = "ksz884x"; descriptor.function = "pcidev_init"; descriptor.filename = "drivers/net/ethernet/micrel/ksz884x.c"; descriptor.format = "Mem = %p; IRQ = %d\n"; descriptor.lineno = 6989U; descriptor.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___3 != 0L) { { __dynamic_dev_dbg(& descriptor, (struct device const *)(& (hw_priv->pdev)->dev), "Mem = %p; IRQ = %d\n", hw->io, pdev->irq); } } else { } hw->dev_count = 1; port_count = 1; mib_port_count = 1; hw->addr_list_size = 0U; hw->mib_cnt = 32; hw->mib_port_cnt = 1; if (cnt == 2) { if (fast_aging != 0) { hw->overrides = hw->overrides | 2U; } else { } hw->mib_cnt = 34; if (multi_dev != 0) { hw->dev_count = 2; hw->addr_list_size = 1U; } else { } if (hw->dev_count == 1) { port_count = 2; mib_port_count = 2; } else { } { hw->mib_port_cnt = 3; tmp___4 = kzalloc(368UL, 208U); hw->ksz_switch = (struct ksz_switch *)tmp___4; } if ((unsigned long )hw->ksz_switch == (unsigned long )((struct ksz_switch *)0)) { goto pcidev_init_alloc_err; } else { } sw = hw->ksz_switch; } else { } i = 0; goto ldv_46202; ldv_46201: hw->port_mib[i].mib_start = 0U; i = i + 1; ldv_46202: ; if (i < hw->mib_port_cnt) { goto ldv_46201; } else { } { hw->parent = (void *)hw_priv; hw_priv->mtu = 1524; tmp___5 = ksz_alloc_mem(hw_priv); } if (tmp___5 != 0) { goto pcidev_init_mem_err; } else { } { hw_priv->hw.id = net_device_present; spinlock_check(& hw_priv->hwlock); __raw_spin_lock_init(& hw_priv->hwlock.__annonCompField19.rlock, "&(&hw_priv->hwlock)->rlock", & __key); __mutex_init(& hw_priv->lock, "&hw_priv->lock", & __key___0); i = 0; } goto ldv_46209; ldv_46208: { __init_waitqueue_head(& hw_priv->counter[i].counter, "&hw_priv->counter[i].counter", & __key___1); i = i + 1; } ldv_46209: ; if (i <= 2) { goto ldv_46208; } else { } if ((int )((signed char )*macaddr) != 58) { { get_mac_addr(hw_priv, (u8 *)macaddr, 0); } } else { } { hw_read_addr(hw); } if (hw->dev_count > 1) { { memcpy((void *)(& sw->other_addr), (void const *)(& hw->override_addr), 6UL); read_other_addr(hw); } if ((int )((signed char )*mac1addr) != 58) { { get_mac_addr(hw_priv, (u8 *)mac1addr, 1); } } else { } } else { } { hw_setup(hw); } if ((unsigned long )hw->ksz_switch != (unsigned long )((struct ksz_switch *)0)) { { sw_setup(hw); } } else { hw_priv->wol_support = 63; hw_priv->wol_enable = 0; } { __init_work(& hw_priv->mib_read, 0); __constr_expr_0.counter = 137438953408L; hw_priv->mib_read.data = __constr_expr_0; lockdep_init_map(& hw_priv->mib_read.lockdep_map, "(&hw_priv->mib_read)", & __key___2, 0); INIT_LIST_HEAD(& hw_priv->mib_read.entry); hw_priv->mib_read.func = & mib_read_work; ksz_init_timer(& hw_priv->mib_timer_info, 125, & mib_monitor, (void *)hw_priv); i = 0; } goto ldv_46218; ldv_46217: { dev = ldv_alloc_etherdev_mqs_101(392, 1U, 1U); } if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { goto pcidev_init_reg_err; } else { } { info->netdev[i] = dev; tmp___6 = netdev_priv((struct net_device const *)dev); priv = (struct dev_priv *)tmp___6; priv->adapter = hw_priv; tmp___7 = net_device_present; net_device_present = net_device_present + 1; priv->id = tmp___7; port = & priv->port; port->port_cnt = port_count; port->mib_port_cnt = mib_port_count; port->first_port = i; port->flow_ctrl = 1U; port->hw = hw; port->linked = (struct ksz_port_info *)(& hw->port_info) + (unsigned long )port->first_port; cnt = 0; pi = i; } goto ldv_46215; ldv_46214: hw->port_info[pi].port_id = (u8 )pi; hw->port_info[pi].pdev = (void *)dev; hw->port_info[pi].state = 1U; cnt = cnt + 1; pi = pi + 1; ldv_46215: ; if (cnt < port_count) { goto ldv_46214; } else { } dev->mem_start = (unsigned long )hw->io; dev->mem_end = (dev->mem_start + reg_len) - 1UL; dev->irq = (int )pdev->irq; if (i == 0) { { memcpy((void *)dev->dev_addr, (void const *)(& hw_priv->hw.override_addr), 6UL); } } else { { memcpy((void *)dev->dev_addr, (void const *)(& sw->other_addr), 6UL); tmp___8 = ether_addr_equal((u8 const *)(& sw->other_addr), (u8 const *)(& hw->override_addr)); } if ((int )tmp___8) { *(dev->dev_addr + 5UL) = (int )*(dev->dev_addr + 5UL) + (int )((unsigned char )port->first_port); } else { } } { dev->netdev_ops = & netdev_ops; dev->ethtool_ops = & netdev_ethtool_ops; tmp___9 = ldv_register_netdev_102(dev); } if (tmp___9 != 0) { goto pcidev_init_reg_err; } else { } { port_set_power_saving(port, 1); i = i + 1; } ldv_46218: ; if (i < hw->dev_count) { goto ldv_46217; } else { } { pci_dev_get(hw_priv->pdev); pci_set_drvdata(pdev, (void *)info); } return (0); pcidev_init_reg_err: i = 0; goto ldv_46221; ldv_46220: ; if ((unsigned long )info->netdev[i] != (unsigned long )((struct net_device *)0)) { { netdev_free(info->netdev[i]); info->netdev[i] = (struct net_device *)0; } } else { } i = i + 1; ldv_46221: ; if (i < hw->dev_count) { goto ldv_46220; } else { } pcidev_init_mem_err: { ksz_free_mem(hw_priv); kfree((void const *)hw->ksz_switch); } pcidev_init_alloc_err: { iounmap((void volatile *)hw->io); } pcidev_init_io_err: { kfree((void const *)info); } pcidev_init_dev_err: { __release_region(& iomem_resource, (resource_size_t )reg_base, (resource_size_t )reg_len); } return (result); } } static void pcidev_exit(struct pci_dev *pdev ) { int i ; struct platform_info *info ; void *tmp ; struct dev_info *hw_priv ; { { tmp = pci_get_drvdata(pdev); info = (struct platform_info *)tmp; hw_priv = & info->dev_info; __release_region(& iomem_resource, pdev->resource[0].start, pdev->resource[0].start != 0ULL || pdev->resource[0].end != pdev->resource[0].start ? (pdev->resource[0].end - pdev->resource[0].start) + 1ULL : 0ULL); i = 0; } goto ldv_46230; ldv_46229: ; if ((unsigned long )info->netdev[i] != (unsigned long )((struct net_device *)0)) { { netdev_free(info->netdev[i]); } } else { } i = i + 1; ldv_46230: ; if (i < hw_priv->hw.dev_count) { goto ldv_46229; } else { } if ((unsigned long )hw_priv->hw.io != (unsigned long )((void *)0)) { { iounmap((void volatile *)hw_priv->hw.io); } } else { } { ksz_free_mem(hw_priv); kfree((void const *)hw_priv->hw.ksz_switch); pci_dev_put(hw_priv->pdev); kfree((void const *)info); } return; } } static int pcidev_resume(struct pci_dev *pdev ) { int i ; struct platform_info *info ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; struct net_device *dev ; bool tmp___0 ; { { tmp = pci_get_drvdata(pdev); info = (struct platform_info *)tmp; hw_priv = & info->dev_info; hw = & hw_priv->hw; pci_set_power_state(pdev, 0); pci_restore_state(pdev); pci_enable_wake(pdev, 0, 0); } if (hw_priv->wol_enable != 0) { { hw_cfg_wol_pme(hw, 0); } } else { } i = 0; goto ldv_46241; ldv_46240: ; if ((unsigned long )info->netdev[i] != (unsigned long )((struct net_device *)0)) { { dev = info->netdev[i]; tmp___0 = netif_running((struct net_device const *)dev); } if ((int )tmp___0) { { netdev_open(dev); netif_device_attach(dev); } } else { } } else { } i = i + 1; ldv_46241: ; if (i < hw->dev_count) { goto ldv_46240; } else { } return (0); } } static int pcidev_suspend(struct pci_dev *pdev , pm_message_t state ) { int i ; struct platform_info *info ; void *tmp ; struct dev_info *hw_priv ; struct ksz_hw *hw ; u8 net_addr[4U] ; struct net_device *dev ; bool tmp___0 ; pci_power_t tmp___1 ; pci_power_t tmp___2 ; { { tmp = pci_get_drvdata(pdev); info = (struct platform_info *)tmp; hw_priv = & info->dev_info; hw = & hw_priv->hw; net_addr[0] = 192U; net_addr[1] = 168U; net_addr[2] = 1U; net_addr[3] = 1U; i = 0; } goto ldv_46254; ldv_46253: ; if ((unsigned long )info->netdev[i] != (unsigned long )((struct net_device *)0)) { { dev = info->netdev[i]; tmp___0 = netif_running((struct net_device const *)dev); } if ((int )tmp___0) { { netif_device_detach(dev); netdev_close(dev); } } else { } } else { } i = i + 1; ldv_46254: ; if (i < hw->dev_count) { goto ldv_46253; } else { } if (hw_priv->wol_enable != 0) { { hw_enable_wol(hw, (u32 )hw_priv->wol_enable, (u8 const *)(& net_addr)); hw_cfg_wol_pme(hw, 1); } } else { } { pci_save_state(pdev); tmp___1 = pci_choose_state(pdev, state); pci_enable_wake(pdev, tmp___1, 1); tmp___2 = pci_choose_state(pdev, state); pci_set_power_state(pdev, tmp___2); } return (0); } } static char pcidev_name[9U] = { 'k', 's', 'z', '8', '8', '4', 'x', 'p', '\000'}; static struct pci_device_id const pcidev_table[3U] = { {5830U, 34881U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5830U, 34882U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; static struct pci_driver pci_device_driver = {{0, 0}, (char const *)(& pcidev_name), (struct pci_device_id const *)(& pcidev_table), & pcidev_init, & pcidev_exit, & pcidev_suspend, 0, 0, & pcidev_resume, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int pci_device_driver_init(void) { int tmp ; { { tmp = ldv___pci_register_driver_103(& pci_device_driver, & __this_module, "ksz884x"); } return (tmp); } } static void pci_device_driver_exit(void) { { { ldv_pci_unregister_driver_104(& pci_device_driver); } return; } } void ldv_EMGentry_exit_pci_device_driver_exit_14_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_pci_device_driver_init_14_9(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_allocate_external_0(void) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_deregister_11_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_12_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_factory_14_14_4(void) ; void ldv_dispatch_instance_deregister_6_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_4_3(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_7_1(int arg0 ) ; void ldv_dispatch_irq_register_10_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_13_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_9_4(struct net_device *arg0 ) ; void ldv_dispatch_register_dummy_factory_14_14_5(void) ; void ldv_dummy_resourceless_instance_callback_1_10(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_11(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_14(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_15(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_16(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_17(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_18(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_19(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_20(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_21(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_24(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_27(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_28(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_31(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_34(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_35(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_36(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_37(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_40(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_41(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_42(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_43(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_44(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_45(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_46(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_49(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_52(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_53(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_54(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_7(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) ; void ldv_entry_EMGentry_14(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_initialize_external_data(void) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_net_dummy_resourceless_instance_1(void *arg0 ) ; int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_2(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_9_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; void ldv_switch_automaton_state_0_1(void) ; void ldv_switch_automaton_state_0_6(void) ; void ldv_switch_automaton_state_1_1(void) ; void ldv_switch_automaton_state_1_5(void) ; void ldv_switch_automaton_state_2_11(void) ; void ldv_switch_automaton_state_2_20(void) ; void ldv_switch_automaton_state_3_1(void) ; void ldv_switch_automaton_state_3_3(void) ; void ldv_switch_automaton_state_4_1(void) ; void ldv_switch_automaton_state_4_4(void) ; void ldv_timer_dummy_factory_4(void *arg0 ) ; void ldv_timer_instance_callback_3_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_3(void *arg0 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_11_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; void (*ldv_14_exit_pci_device_driver_exit_default)(void) ; int (*ldv_14_init_pci_device_driver_init_default)(void) ; int ldv_14_ret_default ; void (*ldv_1_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*ldv_1_callback_get_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) ; int (*ldv_1_callback_get_eeprom_len)(struct net_device * ) ; void (*ldv_1_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_1_callback_get_link)(struct net_device * ) ; unsigned int (*ldv_1_callback_get_msglevel)(struct net_device * ) ; void (*ldv_1_callback_get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*ldv_1_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; int (*ldv_1_callback_get_regs_len)(struct net_device * ) ; void (*ldv_1_callback_get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_1_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_1_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_1_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; void (*ldv_1_callback_get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) ; int (*ldv_1_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; struct net_device_stats *(*ldv_1_callback_ndo_get_stats)(struct net_device * ) ; int (*ldv_1_callback_ndo_init)(struct net_device * ) ; void (*ldv_1_callback_ndo_poll_controller)(struct net_device * ) ; int (*ldv_1_callback_ndo_set_features)(struct net_device * , unsigned long long ) ; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_1_callback_ndo_tx_timeout)(struct net_device * ) ; int (*ldv_1_callback_ndo_validate_addr)(struct net_device * ) ; int (*ldv_1_callback_nway_reset)(struct net_device * ) ; int (*ldv_1_callback_set_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) ; void (*ldv_1_callback_set_msglevel)(struct net_device * , unsigned int ) ; int (*ldv_1_callback_set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*ldv_1_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_1_callback_set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; struct net_device *ldv_1_container_net_device ; struct ethtool_cmd *ldv_1_container_struct_ethtool_cmd_ptr ; struct ethtool_drvinfo *ldv_1_container_struct_ethtool_drvinfo_ptr ; struct ethtool_eeprom *ldv_1_container_struct_ethtool_eeprom_ptr ; struct ethtool_pauseparam *ldv_1_container_struct_ethtool_pauseparam_ptr ; struct ethtool_regs *ldv_1_container_struct_ethtool_regs_ptr ; struct ethtool_ringparam *ldv_1_container_struct_ethtool_ringparam_ptr ; struct ethtool_stats *ldv_1_container_struct_ethtool_stats_ptr ; struct ethtool_wolinfo *ldv_1_container_struct_ethtool_wolinfo_ptr ; struct ifreq *ldv_1_container_struct_ifreq_ptr ; struct sk_buff *ldv_1_container_struct_sk_buff_ptr ; unsigned long long *ldv_1_ldv_param_11_2_default ; int ldv_1_ldv_param_21_1_default ; unsigned int ldv_1_ldv_param_24_1_default ; unsigned char *ldv_1_ldv_param_24_2_default ; int ldv_1_ldv_param_28_1_default ; int ldv_1_ldv_param_31_2_default ; unsigned long long ldv_1_ldv_param_37_1_default ; unsigned char *ldv_1_ldv_param_46_2_default ; unsigned int ldv_1_ldv_param_49_1_default ; unsigned char *ldv_1_ldv_param_7_2_default ; struct pci_driver *ldv_2_container_pci_driver ; struct pci_dev *ldv_2_resource_dev ; struct pm_message ldv_2_resource_pm_message ; struct pci_device_id *ldv_2_resource_struct_pci_device_id_ptr ; int ldv_2_ret_default ; struct timer_list *ldv_3_container_timer_list ; struct timer_list *ldv_4_container_timer_list ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_14 ; int ldv_statevar_2 ; int ldv_statevar_3 ; int ldv_statevar_4 ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) = & netdev_intr; void (*ldv_14_exit_pci_device_driver_exit_default)(void) = & pci_device_driver_exit; int (*ldv_14_init_pci_device_driver_init_default)(void) = & pci_device_driver_init; void (*ldv_1_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) = & netdev_get_drvinfo; int (*ldv_1_callback_get_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) = & netdev_get_eeprom; int (*ldv_1_callback_get_eeprom_len)(struct net_device * ) = & netdev_get_eeprom_len; void (*ldv_1_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) = & netdev_get_ethtool_stats; unsigned int (*ldv_1_callback_get_link)(struct net_device * ) = & netdev_get_link; unsigned int (*ldv_1_callback_get_msglevel)(struct net_device * ) = & netdev_get_msglevel; void (*ldv_1_callback_get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) = & netdev_get_pauseparam; void (*ldv_1_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) = & netdev_get_regs; int (*ldv_1_callback_get_regs_len)(struct net_device * ) = & netdev_get_regs_len; void (*ldv_1_callback_get_ringparam)(struct net_device * , struct ethtool_ringparam * ) = & netdev_get_ringparam; int (*ldv_1_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) = & netdev_get_settings; int (*ldv_1_callback_get_sset_count)(struct net_device * , int ) = & netdev_get_sset_count; void (*ldv_1_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) = & netdev_get_strings; void (*ldv_1_callback_get_wol)(struct net_device * , struct ethtool_wolinfo * ) = & netdev_get_wol; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) = & netdev_change_mtu; int (*ldv_1_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) = & netdev_ioctl; struct net_device_stats *(*ldv_1_callback_ndo_get_stats)(struct net_device * ) = & netdev_query_statistics; int (*ldv_1_callback_ndo_init)(struct net_device * ) = & netdev_init; void (*ldv_1_callback_ndo_poll_controller)(struct net_device * ) = & netdev_netpoll; int (*ldv_1_callback_ndo_set_features)(struct net_device * , unsigned long long ) = & netdev_set_features; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) = & netdev_set_mac_address; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) = & netdev_set_rx_mode; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) = & netdev_tx; void (*ldv_1_callback_ndo_tx_timeout)(struct net_device * ) = & netdev_tx_timeout; int (*ldv_1_callback_ndo_validate_addr)(struct net_device * ) = & eth_validate_addr; int (*ldv_1_callback_nway_reset)(struct net_device * ) = & netdev_nway_reset; int (*ldv_1_callback_set_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) = & netdev_set_eeprom; void (*ldv_1_callback_set_msglevel)(struct net_device * , unsigned int ) = & netdev_set_msglevel; int (*ldv_1_callback_set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) = & netdev_set_pauseparam; int (*ldv_1_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) = & netdev_set_settings; int (*ldv_1_callback_set_wol)(struct net_device * , struct ethtool_wolinfo * ) = & netdev_set_wol; void ldv_EMGentry_exit_pci_device_driver_exit_14_2(void (*arg0)(void) ) { { { pci_device_driver_exit(); } return; } } int ldv_EMGentry_init_pci_device_driver_init_14_9(int (*arg0)(void) ) { int tmp ; { { tmp = pci_device_driver_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_13_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_13_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 20); ldv_dispatch_register_13_2(ldv_13_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_5_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3200UL); ldv_5_netdev_net_device = (struct net_device *)tmp; } return (ldv_5_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } void ldv_allocate_external_0(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; void *tmp___13 ; void *tmp___14 ; void *tmp___15 ; void *tmp___16 ; void *tmp___17 ; { { ldv_0_data_data = external_allocated_data(); tmp = external_allocated_data(); ldv_0_thread_thread = (enum irqreturn (*)(int , void * ))tmp; tmp___0 = external_allocated_data(); ldv_1_container_net_device = (struct net_device *)tmp___0; tmp___1 = external_allocated_data(); ldv_1_container_struct_ethtool_cmd_ptr = (struct ethtool_cmd *)tmp___1; tmp___2 = external_allocated_data(); ldv_1_container_struct_ethtool_drvinfo_ptr = (struct ethtool_drvinfo *)tmp___2; tmp___3 = external_allocated_data(); ldv_1_container_struct_ethtool_eeprom_ptr = (struct ethtool_eeprom *)tmp___3; tmp___4 = external_allocated_data(); ldv_1_container_struct_ethtool_pauseparam_ptr = (struct ethtool_pauseparam *)tmp___4; tmp___5 = external_allocated_data(); ldv_1_container_struct_ethtool_regs_ptr = (struct ethtool_regs *)tmp___5; tmp___6 = external_allocated_data(); ldv_1_container_struct_ethtool_ringparam_ptr = (struct ethtool_ringparam *)tmp___6; tmp___7 = external_allocated_data(); ldv_1_container_struct_ethtool_stats_ptr = (struct ethtool_stats *)tmp___7; tmp___8 = external_allocated_data(); ldv_1_container_struct_ethtool_wolinfo_ptr = (struct ethtool_wolinfo *)tmp___8; tmp___9 = external_allocated_data(); ldv_1_container_struct_ifreq_ptr = (struct ifreq *)tmp___9; tmp___10 = external_allocated_data(); ldv_1_container_struct_sk_buff_ptr = (struct sk_buff *)tmp___10; tmp___11 = external_allocated_data(); ldv_1_ldv_param_11_2_default = (unsigned long long *)tmp___11; tmp___12 = external_allocated_data(); ldv_1_ldv_param_24_2_default = (unsigned char *)tmp___12; tmp___13 = external_allocated_data(); ldv_1_ldv_param_46_2_default = (unsigned char *)tmp___13; tmp___14 = external_allocated_data(); ldv_1_ldv_param_7_2_default = (unsigned char *)tmp___14; tmp___15 = external_allocated_data(); ldv_2_resource_dev = (struct pci_dev *)tmp___15; tmp___16 = external_allocated_data(); ldv_3_container_timer_list = (struct timer_list *)tmp___16; tmp___17 = external_allocated_data(); ldv_4_container_timer_list = (struct timer_list *)tmp___17; } return; } } int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_6_timer_list_timer_list ; { { ldv_6_timer_list_timer_list = arg1; ldv_assume(ldv_statevar_3 == 2); ldv_dispatch_instance_deregister_6_1(ldv_6_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_deregister_11_1(struct net_device *arg0 ) { { { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_1(); } return; } } void ldv_dispatch_deregister_12_1(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_11(); } return; } } void ldv_dispatch_deregister_dummy_factory_14_14_4(void) { { { ldv_switch_automaton_state_4_1(); } return; } } void ldv_dispatch_instance_deregister_6_1(struct timer_list *arg0 ) { { { ldv_3_container_timer_list = arg0; ldv_switch_automaton_state_3_1(); } return; } } void ldv_dispatch_instance_register_4_3(struct timer_list *arg0 ) { { { ldv_3_container_timer_list = arg0; ldv_switch_automaton_state_3_3(); } return; } } void ldv_dispatch_irq_deregister_7_1(int arg0 ) { { { ldv_0_line_line = arg0; ldv_switch_automaton_state_0_1(); } return; } } void ldv_dispatch_irq_register_10_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { { { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } return; } } void ldv_dispatch_register_13_2(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_20(); } return; } } void ldv_dispatch_register_9_4(struct net_device *arg0 ) { { { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_5(); } return; } } void ldv_dispatch_register_dummy_factory_14_14_5(void) { { { ldv_switch_automaton_state_4_4(); } return; } } void ldv_dummy_resourceless_instance_callback_1_10(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { netdev_get_eeprom_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_11(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { netdev_get_ethtool_stats(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_14(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { netdev_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_15(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { netdev_get_msglevel(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_16(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { netdev_get_pauseparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_17(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) { { { netdev_get_regs(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_18(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { netdev_get_regs_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_19(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { netdev_get_ringparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_20(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { netdev_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_21(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { netdev_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_24(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { netdev_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_27(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { netdev_get_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_28(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { netdev_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { netdev_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_31(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) { { { netdev_ioctl(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_34(struct net_device_stats *(*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { netdev_query_statistics(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_35(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { netdev_init(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_36(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { netdev_netpoll(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_37(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { netdev_set_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_40(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { netdev_set_mac_address(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_41(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { netdev_set_rx_mode(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_42(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { netdev_tx(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_43(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { netdev_tx_timeout(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_44(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_45(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { netdev_nway_reset(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_46(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) { { { netdev_set_eeprom(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_49(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) { { { netdev_set_msglevel(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_52(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { netdev_set_pauseparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_53(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { netdev_set_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_54(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { netdev_set_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_7(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) { { { netdev_get_eeprom(arg1, arg2, arg3); } return; } } void ldv_entry_EMGentry_14(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_14 == 2) { goto case_2; } else { } if (ldv_statevar_14 == 3) { goto case_3; } else { } if (ldv_statevar_14 == 4) { goto case_4; } else { } if (ldv_statevar_14 == 5) { goto case_5; } else { } if (ldv_statevar_14 == 6) { goto case_6; } else { } if (ldv_statevar_14 == 8) { goto case_8; } else { } if (ldv_statevar_14 == 9) { goto case_9; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 12); ldv_EMGentry_exit_pci_device_driver_exit_14_2(ldv_14_exit_pci_device_driver_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_14 = 9; } goto ldv_47214; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 12); ldv_EMGentry_exit_pci_device_driver_exit_14_2(ldv_14_exit_pci_device_driver_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_14 = 9; } goto ldv_47214; case_4: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 2); ldv_dispatch_deregister_dummy_factory_14_14_4(); ldv_statevar_14 = 2; } goto ldv_47214; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 4); ldv_dispatch_register_dummy_factory_14_14_5(); ldv_statevar_14 = 4; } goto ldv_47214; case_6: /* CIL Label */ { ldv_assume(ldv_14_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_14 = 3; } else { ldv_statevar_14 = 5; } goto ldv_47214; case_8: /* CIL Label */ { ldv_assume(ldv_14_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_14 = 9; } goto ldv_47214; case_9: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 20); ldv_14_ret_default = ldv_EMGentry_init_pci_device_driver_init_14_9(ldv_14_init_pci_device_driver_init_default); ldv_14_ret_default = ldv_post_init(ldv_14_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_14 = 6; } else { ldv_statevar_14 = 8; } goto ldv_47214; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_47214: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_14 = 9; ldv_statevar_0 = 6; ldv_statevar_1 = 5; ldv_2_ret_default = 1; ldv_statevar_2 = 20; ldv_statevar_3 = 3; ldv_statevar_4 = 4; } ldv_47232: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_14((void *)0); } goto ldv_47225; case_1: /* CIL Label */ { ldv_interrupt_interrupt_instance_0((void *)0); } goto ldv_47225; case_2: /* CIL Label */ { ldv_net_dummy_resourceless_instance_1((void *)0); } goto ldv_47225; case_3: /* CIL Label */ { ldv_pci_pci_instance_2((void *)0); } goto ldv_47225; case_4: /* CIL Label */ { ldv_timer_timer_instance_3((void *)0); } goto ldv_47225; case_5: /* CIL Label */ { ldv_timer_dummy_factory_4((void *)0); } goto ldv_47225; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_47225: ; goto ldv_47232; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_7_line_line ; { { ldv_7_line_line = arg1; ldv_assume(ldv_statevar_0 == 2); ldv_dispatch_irq_deregister_7_1(ldv_7_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_8_netdev_net_device ; { { ldv_8_netdev_net_device = arg1; ldv_free((void *)ldv_8_netdev_net_device); } return; return; } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = netdev_intr(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { int tmp ; { { if (ldv_statevar_0 == 2) { goto case_2; } else { } if (ldv_statevar_0 == 4) { goto case_4; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); ldv_statevar_0 = 6; } goto ldv_47264; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } ldv_statevar_0 = 6; goto ldv_47264; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 2; } else { ldv_statevar_0 = 4; } goto ldv_47264; case_6: /* CIL Label */ ; goto ldv_47264; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_47264: ; return; } } void ldv_net_dummy_resourceless_instance_1(void *arg0 ) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; { { if (ldv_statevar_1 == 1) { goto case_1; } else { } if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 3) { goto case_3; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 8) { goto case_8; } else { } if (ldv_statevar_1 == 10) { goto case_10; } else { } if (ldv_statevar_1 == 12) { goto case_12; } else { } if (ldv_statevar_1 == 14) { goto case_14; } else { } if (ldv_statevar_1 == 15) { goto case_15; } else { } if (ldv_statevar_1 == 16) { goto case_16; } else { } if (ldv_statevar_1 == 17) { goto case_17; } else { } if (ldv_statevar_1 == 18) { goto case_18; } else { } if (ldv_statevar_1 == 19) { goto case_19; } else { } if (ldv_statevar_1 == 20) { goto case_20; } else { } if (ldv_statevar_1 == 22) { goto case_22; } else { } if (ldv_statevar_1 == 25) { goto case_25; } else { } if (ldv_statevar_1 == 27) { goto case_27; } else { } if (ldv_statevar_1 == 29) { goto case_29; } else { } if (ldv_statevar_1 == 32) { goto case_32; } else { } if (ldv_statevar_1 == 34) { goto case_34; } else { } if (ldv_statevar_1 == 35) { goto case_35; } else { } if (ldv_statevar_1 == 36) { goto case_36; } else { } if (ldv_statevar_1 == 38) { goto case_38; } else { } if (ldv_statevar_1 == 40) { goto case_40; } else { } if (ldv_statevar_1 == 41) { goto case_41; } else { } if (ldv_statevar_1 == 42) { goto case_42; } else { } if (ldv_statevar_1 == 43) { goto case_43; } else { } if (ldv_statevar_1 == 44) { goto case_44; } else { } if (ldv_statevar_1 == 45) { goto case_45; } else { } if (ldv_statevar_1 == 47) { goto case_47; } else { } if (ldv_statevar_1 == 50) { goto case_50; } else { } if (ldv_statevar_1 == 52) { goto case_52; } else { } if (ldv_statevar_1 == 53) { goto case_53; } else { } if (ldv_statevar_1 == 54) { goto case_54; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_47273; case_2: /* CIL Label */ { ldv_statevar_1 = ldv_switch_0(); } goto ldv_47273; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_3(ldv_1_callback_get_drvinfo, ldv_1_container_net_device, ldv_1_container_struct_ethtool_drvinfo_ptr); ldv_statevar_1 = 2; } goto ldv_47273; case_4: /* CIL Label */ { ldv_statevar_1 = ldv_switch_0(); } goto ldv_47273; case_5: /* CIL Label */ ; goto ldv_47273; case_8: /* CIL Label */ { tmp = ldv_xmalloc(1UL); ldv_1_ldv_param_7_2_default = (unsigned char *)tmp; ldv_dummy_resourceless_instance_callback_1_7(ldv_1_callback_get_eeprom, ldv_1_container_net_device, ldv_1_container_struct_ethtool_eeprom_ptr, ldv_1_ldv_param_7_2_default); ldv_free((void *)ldv_1_ldv_param_7_2_default); ldv_statevar_1 = 2; } goto ldv_47273; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_10(ldv_1_callback_get_eeprom_len, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_47273; case_12: /* CIL Label */ { tmp___0 = ldv_xmalloc(8UL); ldv_1_ldv_param_11_2_default = (unsigned long long *)tmp___0; ldv_dummy_resourceless_instance_callback_1_11(ldv_1_callback_get_ethtool_stats, ldv_1_container_net_device, ldv_1_container_struct_ethtool_stats_ptr, ldv_1_ldv_param_11_2_default); ldv_free((void *)ldv_1_ldv_param_11_2_default); ldv_statevar_1 = 2; } goto ldv_47273; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_14(ldv_1_callback_get_link, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_47273; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_15(ldv_1_callback_get_msglevel, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_47273; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_16(ldv_1_callback_get_pauseparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_pauseparam_ptr); ldv_statevar_1 = 2; } goto ldv_47273; case_17: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_17(ldv_1_callback_get_regs, ldv_1_container_net_device, ldv_1_container_struct_ethtool_regs_ptr, (void *)ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_47273; case_18: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_18(ldv_1_callback_get_regs_len, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_47273; case_19: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_19(ldv_1_callback_get_ringparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_ringparam_ptr); ldv_statevar_1 = 2; } goto ldv_47273; case_20: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_20(ldv_1_callback_get_settings, ldv_1_container_net_device, ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_47273; case_22: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_21(ldv_1_callback_get_sset_count, ldv_1_container_net_device, ldv_1_ldv_param_21_1_default); ldv_statevar_1 = 2; } goto ldv_47273; case_25: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_1_ldv_param_24_2_default = (unsigned char *)tmp___1; ldv_dummy_resourceless_instance_callback_1_24(ldv_1_callback_get_strings, ldv_1_container_net_device, ldv_1_ldv_param_24_1_default, ldv_1_ldv_param_24_2_default); ldv_free((void *)ldv_1_ldv_param_24_2_default); ldv_statevar_1 = 2; } goto ldv_47273; case_27: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_27(ldv_1_callback_get_wol, ldv_1_container_net_device, ldv_1_container_struct_ethtool_wolinfo_ptr); ldv_statevar_1 = 2; } goto ldv_47273; case_29: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_28(ldv_1_callback_ndo_change_mtu, ldv_1_container_net_device, ldv_1_ldv_param_28_1_default); ldv_statevar_1 = 2; } goto ldv_47273; case_32: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_31(ldv_1_callback_ndo_do_ioctl, ldv_1_container_net_device, ldv_1_container_struct_ifreq_ptr, ldv_1_ldv_param_31_2_default); ldv_statevar_1 = 2; } goto ldv_47273; case_34: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_34(ldv_1_callback_ndo_get_stats, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_47273; case_35: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_35(ldv_1_callback_ndo_init, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_47273; case_36: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_36(ldv_1_callback_ndo_poll_controller, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_47273; case_38: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_37(ldv_1_callback_ndo_set_features, ldv_1_container_net_device, ldv_1_ldv_param_37_1_default); ldv_statevar_1 = 2; } goto ldv_47273; case_40: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_40(ldv_1_callback_ndo_set_mac_address, ldv_1_container_net_device, (void *)ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_47273; case_41: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_41(ldv_1_callback_ndo_set_rx_mode, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_47273; case_42: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_42(ldv_1_callback_ndo_start_xmit, ldv_1_container_struct_sk_buff_ptr, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_47273; case_43: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_43(ldv_1_callback_ndo_tx_timeout, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_47273; case_44: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_44(ldv_1_callback_ndo_validate_addr, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_47273; case_45: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_45(ldv_1_callback_nway_reset, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_47273; case_47: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_1_ldv_param_46_2_default = (unsigned char *)tmp___2; ldv_dummy_resourceless_instance_callback_1_46(ldv_1_callback_set_eeprom, ldv_1_container_net_device, ldv_1_container_struct_ethtool_eeprom_ptr, ldv_1_ldv_param_46_2_default); ldv_free((void *)ldv_1_ldv_param_46_2_default); ldv_statevar_1 = 2; } goto ldv_47273; case_50: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_49(ldv_1_callback_set_msglevel, ldv_1_container_net_device, ldv_1_ldv_param_49_1_default); ldv_statevar_1 = 2; } goto ldv_47273; case_52: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_52(ldv_1_callback_set_pauseparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_pauseparam_ptr); ldv_statevar_1 = 2; } goto ldv_47273; case_53: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_53(ldv_1_callback_set_settings, ldv_1_container_net_device, ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_47273; case_54: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_54(ldv_1_callback_set_wol, ldv_1_container_net_device, ldv_1_container_struct_ethtool_wolinfo_ptr); ldv_statevar_1 = 2; } goto ldv_47273; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_47273: ; return; } } int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = pcidev_init(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { pcidev_exit(arg1); } return; } } void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { pcidev_resume(arg1); } return; } } void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = pcidev_suspend(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_2(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_2 == 1) { goto case_1; } else { } if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 3) { goto case_3; } else { } if (ldv_statevar_2 == 4) { goto case_4; } else { } if (ldv_statevar_2 == 5) { goto case_5; } else { } if (ldv_statevar_2 == 6) { goto case_6; } else { } if (ldv_statevar_2 == 7) { goto case_7; } else { } if (ldv_statevar_2 == 8) { goto case_8; } else { } if (ldv_statevar_2 == 9) { goto case_9; } else { } if (ldv_statevar_2 == 10) { goto case_10; } else { } if (ldv_statevar_2 == 12) { goto case_12; } else { } if (ldv_statevar_2 == 14) { goto case_14; } else { } if (ldv_statevar_2 == 16) { goto case_16; } else { } if (ldv_statevar_2 == 17) { goto case_17; } else { } if (ldv_statevar_2 == 19) { goto case_19; } else { } if (ldv_statevar_2 == 20) { goto case_20; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_47354; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 1); ldv_pci_instance_release_2_2(ldv_2_container_pci_driver->remove, ldv_2_resource_dev); ldv_statevar_2 = 1; } goto ldv_47354; case_3: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_2_3(ldv_2_container_pci_driver->shutdown, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 2; goto ldv_47354; case_4: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_47354; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 6); ldv_pci_instance_resume_2_5(ldv_2_container_pci_driver->resume, ldv_2_resource_dev); ldv_statevar_2 = 4; } goto ldv_47354; case_6: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_2_6(ldv_2_container_pci_driver->resume_early, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 5; goto ldv_47354; case_7: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_late_2_7(ldv_2_container_pci_driver->suspend_late, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 6; } goto ldv_47354; case_8: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_3 == 2); ldv_2_ret_default = ldv_pci_instance_suspend_2_8(ldv_2_container_pci_driver->suspend, ldv_2_resource_dev, ldv_2_resource_pm_message); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 7; } goto ldv_47354; case_9: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_47354; case_10: /* CIL Label */ ldv_statevar_2 = 9; goto ldv_47354; case_12: /* CIL Label */ { ldv_free((void *)ldv_2_resource_dev); ldv_free((void *)ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = 1; ldv_statevar_2 = 20; } goto ldv_47354; case_14: /* CIL Label */ { ldv_assume(ldv_2_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_47354; case_16: /* CIL Label */ { ldv_assume(ldv_2_ret_default == 0); ldv_statevar_2 = ldv_switch_1(); } goto ldv_47354; case_17: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 5 || ldv_statevar_1 == 1); ldv_pre_probe(); ldv_2_ret_default = ldv_pci_instance_probe_2_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_2_container_pci_driver->probe, ldv_2_resource_dev, ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = ldv_post_probe(ldv_2_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_2 = 14; } else { ldv_statevar_2 = 16; } goto ldv_47354; case_19: /* CIL Label */ { tmp___2 = ldv_xmalloc(2936UL); ldv_2_resource_dev = (struct pci_dev *)tmp___2; tmp___3 = ldv_xmalloc(32UL); ldv_2_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___3; tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_47354; case_20: /* CIL Label */ ; goto ldv_47354; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_47354: ; return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_12_pci_driver_pci_driver ; { { ldv_12_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 12); ldv_dispatch_deregister_12_1(ldv_12_pci_driver_pci_driver); } return; return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_9_netdev_net_device ; int ldv_9_ret_default ; int tmp ; int tmp___0 ; { { ldv_9_ret_default = 1; ldv_9_ret_default = ldv_pre_register_netdev(); ldv_9_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_9_ret_default == 0); ldv_assume(ldv_statevar_0 == 6); ldv_9_ret_default = ldv_register_netdev_open_9_6((ldv_9_netdev_net_device->netdev_ops)->ndo_open, ldv_9_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_9_ret_default == 0); ldv_assume(ldv_statevar_1 == 5); ldv_dispatch_register_9_4(ldv_9_netdev_net_device); } } else { { ldv_assume(ldv_9_ret_default != 0); } } } else { { ldv_assume(ldv_9_ret_default != 0); } } return (ldv_9_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_9_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = netdev_open(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_10_callback_handler)(int , void * ) ; void *ldv_10_data_data ; int ldv_10_line_line ; enum irqreturn (*ldv_10_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_10_line_line = (int )arg1; ldv_10_callback_handler = arg2; ldv_10_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_10_data_data = arg5; ldv_assume(ldv_statevar_0 == 6); ldv_dispatch_irq_register_10_2(ldv_10_line_line, ldv_10_callback_handler, ldv_10_thread_thread, ldv_10_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } if (tmp == 22) { goto case_22; } else { } if (tmp == 23) { goto case_23; } else { } if (tmp == 24) { goto case_24; } else { } if (tmp == 25) { goto case_25; } else { } if (tmp == 26) { goto case_26; } else { } if (tmp == 27) { goto case_27; } else { } if (tmp == 28) { goto case_28; } else { } if (tmp == 29) { goto case_29; } else { } if (tmp == 30) { goto case_30; } else { } if (tmp == 31) { goto case_31; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (3); case_2: /* CIL Label */ ; return (8); case_3: /* CIL Label */ ; return (10); case_4: /* CIL Label */ ; return (12); case_5: /* CIL Label */ ; return (14); case_6: /* CIL Label */ ; return (15); case_7: /* CIL Label */ ; return (16); case_8: /* CIL Label */ ; return (17); case_9: /* CIL Label */ ; return (18); case_10: /* CIL Label */ ; return (19); case_11: /* CIL Label */ ; return (20); case_12: /* CIL Label */ ; return (22); case_13: /* CIL Label */ ; return (25); case_14: /* CIL Label */ ; return (27); case_15: /* CIL Label */ ; return (29); case_16: /* CIL Label */ ; return (32); case_17: /* CIL Label */ ; return (34); case_18: /* CIL Label */ ; return (35); case_19: /* CIL Label */ ; return (36); case_20: /* CIL Label */ ; return (38); case_21: /* CIL Label */ ; return (40); case_22: /* CIL Label */ ; return (41); case_23: /* CIL Label */ ; return (42); case_24: /* CIL Label */ ; return (43); case_25: /* CIL Label */ ; return (44); case_26: /* CIL Label */ ; return (45); case_27: /* CIL Label */ ; return (47); case_28: /* CIL Label */ ; return (50); case_29: /* CIL Label */ ; return (52); case_30: /* CIL Label */ ; return (53); case_31: /* CIL Label */ ; return (54); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (8); case_2: /* CIL Label */ ; return (10); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_0_1(void) { { ldv_statevar_0 = 6; return; } } void ldv_switch_automaton_state_0_6(void) { { ldv_statevar_0 = 5; return; } } void ldv_switch_automaton_state_1_1(void) { { ldv_statevar_1 = 5; return; } } void ldv_switch_automaton_state_1_5(void) { { ldv_statevar_1 = 4; return; } } void ldv_switch_automaton_state_2_11(void) { { ldv_2_ret_default = 1; ldv_statevar_2 = 20; return; } } void ldv_switch_automaton_state_2_20(void) { { ldv_statevar_2 = 19; return; } } void ldv_switch_automaton_state_3_1(void) { { ldv_statevar_3 = 3; return; } } void ldv_switch_automaton_state_3_3(void) { { ldv_statevar_3 = 2; return; } } void ldv_switch_automaton_state_4_1(void) { { ldv_statevar_4 = 4; return; } } void ldv_switch_automaton_state_4_4(void) { { ldv_statevar_4 = 3; return; } } void ldv_timer_dummy_factory_4(void *arg0 ) { { { if (ldv_statevar_4 == 2) { goto case_2; } else { } if (ldv_statevar_4 == 3) { goto case_3; } else { } if (ldv_statevar_4 == 4) { goto case_4; } else { } goto switch_default; case_2: /* CIL Label */ ldv_statevar_4 = 4; goto ldv_47470; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 3); ldv_dispatch_instance_register_4_3(ldv_4_container_timer_list); ldv_statevar_4 = 2; } goto ldv_47470; case_4: /* CIL Label */ ; goto ldv_47470; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_47470: ; return; } } void ldv_timer_instance_callback_3_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_3(void *arg0 ) { { { if (ldv_statevar_3 == 2) { goto case_2; } else { } if (ldv_statevar_3 == 3) { goto case_3; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_3_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_3_2(ldv_3_container_timer_list->function, ldv_3_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); ldv_statevar_3 = 3; } goto ldv_47483; case_3: /* CIL Label */ ; goto ldv_47483; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_47483: ; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_11_netdev_net_device ; { { ldv_11_netdev_net_device = arg1; ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_3 == 2); ldv_unregister_netdev_stop_11_2((ldv_11_netdev_net_device->netdev_ops)->ndo_stop, ldv_11_netdev_net_device); ldv_assume(ldv_statevar_1 == 1); ldv_dispatch_deregister_11_1(ldv_11_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_11_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { netdev_close(arg1); } return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } __inline static struct sk_buff *alloc_skb(unsigned int size , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct sk_buff *)tmp); } } static struct sk_buff *ldv___netdev_alloc_skb_57(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct sk_buff *)tmp); } } static void *ldv_dev_get_drvdata_81(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_82(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } static int ldv_del_timer_sync_85(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } __inline static void ldv_spin_lock_irq_86(spinlock_t *lock ) { { { ldv_spin_lock_hwlock_of_dev_info(); spin_lock_irq(lock); } return; } } __inline static void ldv_spin_unlock_irq_87(spinlock_t *lock ) { { { ldv_spin_unlock_hwlock_of_dev_info(); spin_unlock_irq(lock); } return; } } __inline static void ldv_spin_lock_94(spinlock_t *lock ) { { { ldv_spin_lock_hwlock_of_dev_info(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_95(spinlock_t *lock ) { { { ldv_spin_unlock_hwlock_of_dev_info(); spin_unlock(lock); } return; } } static void ldv_free_irq_97(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static int ldv_request_irq_98(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_unregister_netdev_99(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_100(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static struct net_device *ldv_alloc_etherdev_mqs_101(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_102(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv___pci_register_driver_103(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_104(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_hwlock_of_dev_info = 1; void ldv_spin_lock_hwlock_of_dev_info(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_hwlock_of_dev_info == 1); ldv_assume(ldv_spin_hwlock_of_dev_info == 1); ldv_spin_hwlock_of_dev_info = 2; } return; } } void ldv_spin_unlock_hwlock_of_dev_info(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_hwlock_of_dev_info == 2); ldv_assume(ldv_spin_hwlock_of_dev_info == 2); ldv_spin_hwlock_of_dev_info = 1; } return; } } int ldv_spin_trylock_hwlock_of_dev_info(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_hwlock_of_dev_info == 1); ldv_assume(ldv_spin_hwlock_of_dev_info == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_hwlock_of_dev_info = 2; return (1); } } } void ldv_spin_unlock_wait_hwlock_of_dev_info(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_hwlock_of_dev_info == 1); ldv_assume(ldv_spin_hwlock_of_dev_info == 1); } return; } } int ldv_spin_is_locked_hwlock_of_dev_info(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_hwlock_of_dev_info == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_hwlock_of_dev_info(void) { int tmp ; { { tmp = ldv_spin_is_locked_hwlock_of_dev_info(); } return (tmp == 0); } } int ldv_spin_is_contended_hwlock_of_dev_info(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_hwlock_of_dev_info(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_hwlock_of_dev_info == 1); ldv_assume(ldv_spin_hwlock_of_dev_info == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_hwlock_of_dev_info = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_hwlock_of_dev_info == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_i_lock_of_inode == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_ptl == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_siglock_of_sighand_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_hwlock_of_dev_info == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }