/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef unsigned long ulong; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u16 uint16_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct device; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; typedef void (*ctor_fn_t)(void); struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_133 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_133 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_136 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_137 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_135 { struct __anonstruct____missing_field_name_136 __annonCompField34 ; struct __anonstruct____missing_field_name_137 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_135 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_138 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_144 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_143 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_144 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_141 { unsigned long counters ; struct __anonstruct____missing_field_name_142 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_139 { union __anonunion____missing_field_name_140 __annonCompField38 ; union __anonunion____missing_field_name_141 __annonCompField42 ; }; struct __anonstruct____missing_field_name_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_145 { struct list_head lru ; struct __anonstruct____missing_field_name_146 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_147 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct __anonstruct____missing_field_name_139 __annonCompField43 ; union __anonunion____missing_field_name_145 __annonCompField45 ; union __anonunion____missing_field_name_147 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_151 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_151 sync_serial_settings; struct __anonstruct_te1_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_152 te1_settings; struct __anonstruct_raw_hdlc_proto_153 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_153 raw_hdlc_proto; struct __anonstruct_fr_proto_154 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_154 fr_proto; struct __anonstruct_fr_proto_pvc_155 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_155 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_156 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_156 fr_proto_pvc_info; struct __anonstruct_cisco_proto_157 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_157 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_158 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_158 ifs_ifsu ; }; union __anonunion_ifr_ifrn_159 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_160 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_159 ifr_ifrn ; union __anonunion_ifr_ifru_160 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_163 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_162 { struct __anonstruct____missing_field_name_163 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_162 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_165 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_164 { struct __anonstruct____missing_field_name_165 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_164 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_166 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_168 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_168 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_169 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_169 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_171 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_170 { size_t written ; size_t count ; union __anonunion_arg_171 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_170 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_172 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_173 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_174 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_172 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_173 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_174 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_175 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_175 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_177 { struct list_head link ; int state ; }; union __anonunion_fl_u_176 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_177 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_176 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_178 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_178 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_180 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_181 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_184 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_185 { long _band ; int _fd ; }; struct __anonstruct__sigsys_186 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_179 { int _pad[28U] ; struct __anonstruct__kill_180 _kill ; struct __anonstruct__timer_181 _timer ; struct __anonstruct__rt_182 _rt ; struct __anonstruct__sigchld_183 _sigchld ; struct __anonstruct__sigfault_184 _sigfault ; struct __anonstruct__sigpoll_185 _sigpoll ; struct __anonstruct__sigsys_186 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_179 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_190 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_189 { struct __anonstruct____missing_field_name_190 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_189 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_191 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_192 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_194 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_193 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; union __anonunion_type_data_195 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_197 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_196 { union __anonunion_payload_197 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_191 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_192 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_193 __annonCompField60 ; union __anonunion_type_data_195 type_data ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_22059 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_22059 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_214 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_215 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField63 ; struct __anonstruct____missing_field_name_215 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_213 __annonCompField65 ; }; struct exception_table_entry { int insn ; int fixup ; }; struct in6_addr; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_219 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_218 { __wsum csum ; struct __anonstruct____missing_field_name_219 __annonCompField67 ; }; union __anonunion____missing_field_name_220 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_221 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_218 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_221 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6_mib_device { atomic_long_t mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6msg_mib_device { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; union __anonunion_in6_u_224 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_224 in6_u ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28505 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28506 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28505 reg_state : 8 ; bool dismantle ; enum ldv_28506 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct msix_entry { u32 vector ; u16 entry ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_246 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_246 __annonCompField76 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct res_counter { unsigned long long usage ; unsigned long long max_usage ; unsigned long long limit ; unsigned long long soft_limit ; unsigned long long failcnt ; spinlock_t lock ; struct res_counter *parent ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * ); union __anonunion_ki_obj_247 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void *private ; union __anonunion_ki_obj_247 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; size_t ki_nbytes ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; union __anonunion____missing_field_name_248 { struct sock_filter insns[0U] ; struct work_struct work ; }; struct sk_filter { atomic_t refcnt ; unsigned int len ; struct callback_head rcu ; unsigned int (*bpf_func)(struct sk_buff const * , struct sock_filter const * ) ; union __anonunion____missing_field_name_248 __annonCompField77 ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct neigh_parms *next ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { struct neigh_table *next ; int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_253 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_253 __annonCompField78 ; }; struct __anonstruct_socket_lock_t_254 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_254 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_256 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_255 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_256 __annonCompField79 ; }; union __anonunion____missing_field_name_257 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_259 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_258 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_259 __annonCompField82 ; }; union __anonunion____missing_field_name_260 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_261 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_255 __annonCompField80 ; union __anonunion____missing_field_name_257 __annonCompField81 ; union __anonunion____missing_field_name_258 __annonCompField83 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 4 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_260 __annonCompField84 ; struct proto *skc_prot ; struct net *skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_261 __annonCompField85 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_262 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_262 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned int sk_shutdown : 2 ; unsigned int sk_no_check : 2 ; unsigned int sk_userlocks : 4 ; unsigned int sk_protocol : 8 ; unsigned int sk_type : 16 ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * , int ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_263 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*mtu_reduced)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_263 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct res_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct sock_common __req_common ; struct request_sock *dl_next ; u16 mss ; u8 num_retrans ; u8 cookie_ts : 1 ; u8 num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; struct netxen_adapter; struct __anonstruct_crb_128M_2M_sub_block_map_t_270 { unsigned int valid ; unsigned int start_128M ; unsigned int end_128M ; unsigned int start_2M ; }; typedef struct __anonstruct_crb_128M_2M_sub_block_map_t_270 crb_128M_2M_sub_block_map_t; struct __anonstruct_crb_128M_2M_block_map_t_271 { crb_128M_2M_sub_block_map_t sub_block[16U] ; }; typedef struct __anonstruct_crb_128M_2M_block_map_t_271 crb_128M_2M_block_map_t; struct netxen_rcv_ring { __le64 addr ; __le32 size ; __le32 rsrvd ; }; struct netxen_sts_ring { __le64 addr ; __le32 size ; __le16 msi_index ; __le16 rsvd ; }; struct netxen_ring_ctx { __le64 cmd_consumer_offset ; __le64 cmd_ring_addr ; __le32 cmd_ring_size ; __le32 rsrvd ; struct netxen_rcv_ring rcv_rings[3U] ; __le64 sts_ring_addr ; __le32 sts_ring_size ; __le32 ctx_id ; __le64 rsrvd_2[3U] ; __le32 sts_ring_count ; __le32 rsrvd_3 ; struct netxen_sts_ring sts_rings[4U] ; }; struct cmd_desc_type0 { u8 tcp_hdr_offset ; u8 ip_hdr_offset ; __le16 flags_opcode ; __le32 nfrags__length ; __le64 addr_buffer2 ; __le16 reference_handle ; __le16 mss ; u8 port_ctxid ; u8 total_hdr_length ; __le16 conn_id ; __le64 addr_buffer3 ; __le64 addr_buffer1 ; __le16 buffer_length[4U] ; __le64 addr_buffer4 ; __le32 reserved2 ; __le16 reserved ; __le16 vlan_TCI ; }; struct rcv_desc { __le16 reference_handle ; __le16 reserved ; __le32 buffer_length ; __le64 addr_buffer ; }; struct status_desc { __le64 status_desc_data[2U] ; }; struct netxen_skb_frag { u64 dma ; u64 length ; }; struct netxen_cmd_buffer { struct sk_buff *skb ; struct netxen_skb_frag frag_array[18U] ; u32 frag_count ; }; struct netxen_rx_buffer { struct list_head list ; struct sk_buff *skb ; u64 dma ; u16 ref_handle ; u16 state ; }; struct netxen_hardware_context { void *pci_base0 ; void *pci_base1 ; void *pci_base2 ; void *db_base ; void *ocm_win_crb ; unsigned long db_len ; unsigned long pci_len0 ; u32 ocm_win ; u32 crb_win ; rwlock_t crb_lock ; spinlock_t mem_lock ; u8 cut_through ; u8 revision_id ; u8 pci_func ; u8 linkup ; u16 port_type ; u16 board_type ; }; struct netxen_adapter_stats { u64 xmitcalled ; u64 xmitfinished ; u64 rxdropped ; u64 txdropped ; u64 csummed ; u64 rx_pkts ; u64 lro_pkts ; u64 rxbytes ; u64 txbytes ; }; struct nx_host_rds_ring { u32 producer ; u32 num_desc ; u32 dma_size ; u32 skb_size ; u32 flags ; void *crb_rcv_producer ; struct rcv_desc *desc_head ; struct netxen_rx_buffer *rx_buf_arr ; struct list_head free_list ; spinlock_t lock ; dma_addr_t phys_addr ; }; struct nx_host_sds_ring { u32 consumer ; u32 num_desc ; void *crb_sts_consumer ; void *crb_intr_mask ; struct status_desc *desc_head ; struct netxen_adapter *adapter ; struct napi_struct napi ; struct list_head free_list[3U] ; int irq ; dma_addr_t phys_addr ; char name[20U] ; }; struct nx_host_tx_ring { u32 producer ; __le32 *hw_consumer ; u32 sw_consumer ; void *crb_cmd_producer ; void *crb_cmd_consumer ; u32 num_desc ; struct netdev_queue *txq ; struct netxen_cmd_buffer *cmd_buf_arr ; struct cmd_desc_type0 *desc_head ; dma_addr_t phys_addr ; }; struct netxen_recv_context { u32 state ; u16 context_id ; u16 virt_port ; struct nx_host_rds_ring *rds_rings ; struct nx_host_sds_ring *sds_rings ; struct netxen_ring_ctx *hwctx ; dma_addr_t phys_addr ; }; struct nx_mac_list_s { struct list_head list ; uint8_t mac_addr[8U] ; }; typedef struct nx_mac_list_s nx_mac_list_t; struct __anonstruct_data_283 { uint16_t rx_packets ; uint16_t rx_time_us ; uint16_t tx_packets ; uint16_t tx_time_us ; }; union __anonunion_nx_nic_intr_coalesce_data_t_282 { struct __anonstruct_data_283 data ; uint64_t word ; }; typedef union __anonunion_nx_nic_intr_coalesce_data_t_282 nx_nic_intr_coalesce_data_t; struct __anonstruct_nx_nic_intr_coalesce_t_284 { uint16_t stats_time_us ; uint16_t rate_sample_time ; uint16_t flags ; uint16_t rsvd_1 ; uint32_t low_threshold ; uint32_t high_threshold ; nx_nic_intr_coalesce_data_t normal ; nx_nic_intr_coalesce_data_t low ; nx_nic_intr_coalesce_data_t high ; nx_nic_intr_coalesce_data_t irq ; }; typedef struct __anonstruct_nx_nic_intr_coalesce_t_284 nx_nic_intr_coalesce_t; struct __anonstruct_nx_nic_req_t_288 { __le64 qhdr ; __le64 req_hdr ; __le64 words[6U] ; }; typedef struct __anonstruct_nx_nic_req_t_288 nx_nic_req_t; struct __anonstruct_nx_mac_req_t_289 { u8 op ; u8 tag ; u8 mac_addr[6U] ; }; typedef struct __anonstruct_nx_mac_req_t_289 nx_mac_req_t; struct netxen_minidump { u32 pos ; u8 fw_supports_md ; u8 has_valid_dump ; u8 md_capture_mask ; u8 md_enabled ; u32 md_dump_size ; u32 md_capture_size ; u32 md_template_size ; u32 md_template_ver ; u64 md_timestamp ; void *md_template ; void *md_capture_buff ; }; struct netxen_minidump_template_hdr { u32 entry_type ; u32 first_entry_offset ; u32 size_of_template ; u32 capture_mask ; u32 num_of_entries ; u32 version ; u32 driver_timestamp ; u32 checksum ; u32 driver_capture_mask ; u32 driver_info_word2 ; u32 driver_info_word3 ; u32 driver_info_word4 ; u32 saved_state_array[16U] ; u32 capture_size_array[8U] ; u32 rsvd[0U] ; }; struct __anonstruct____missing_field_name_291 { u8 entry_capture_mask ; u8 entry_code ; u8 driver_code ; u8 driver_flags ; }; union __anonunion____missing_field_name_290 { struct __anonstruct____missing_field_name_291 __annonCompField88 ; u32 entry_ctrl_word ; }; struct netxen_common_entry_hdr { u32 entry_type ; u32 entry_size ; u32 entry_capture_size ; union __anonunion____missing_field_name_290 __annonCompField89 ; }; struct netxen_minidump_entry { struct netxen_common_entry_hdr hdr ; u32 entry_data00 ; u32 entry_data01 ; u32 entry_data02 ; u32 entry_data03 ; u32 entry_data04 ; u32 entry_data05 ; u32 entry_data06 ; u32 entry_data07 ; }; struct __anonstruct____missing_field_name_293 { u32 select_addr_reg ; }; union __anonunion____missing_field_name_292 { struct __anonstruct____missing_field_name_293 __annonCompField90 ; u32 rsvd_0 ; }; struct __anonstruct____missing_field_name_295 { u8 addr_stride ; u8 addr_cnt ; u16 data_size ; }; union __anonunion____missing_field_name_294 { struct __anonstruct____missing_field_name_295 __annonCompField92 ; u32 rsvd_1 ; }; struct __anonstruct____missing_field_name_297 { u32 op_count ; }; union __anonunion____missing_field_name_296 { struct __anonstruct____missing_field_name_297 __annonCompField94 ; u32 rsvd_2 ; }; struct __anonstruct____missing_field_name_299 { u32 read_addr_reg ; }; union __anonunion____missing_field_name_298 { struct __anonstruct____missing_field_name_299 __annonCompField96 ; u32 rsvd_3 ; }; struct __anonstruct____missing_field_name_301 { u32 write_mask ; }; union __anonunion____missing_field_name_300 { struct __anonstruct____missing_field_name_301 __annonCompField98 ; u32 rsvd_4 ; }; struct __anonstruct____missing_field_name_303 { u32 read_mask ; }; union __anonunion____missing_field_name_302 { struct __anonstruct____missing_field_name_303 __annonCompField100 ; u32 rsvd_5 ; }; struct netxen_minidump_entry_rdrom { struct netxen_common_entry_hdr h ; union __anonunion____missing_field_name_292 __annonCompField91 ; union __anonunion____missing_field_name_294 __annonCompField93 ; union __anonunion____missing_field_name_296 __annonCompField95 ; union __anonunion____missing_field_name_298 __annonCompField97 ; union __anonunion____missing_field_name_300 __annonCompField99 ; union __anonunion____missing_field_name_302 __annonCompField101 ; u32 read_addr ; u32 read_data_size ; }; struct __anonstruct____missing_field_name_305 { u8 addr_stride ; u8 state_index_a ; u16 poll_timeout ; }; union __anonunion____missing_field_name_304 { struct __anonstruct____missing_field_name_305 __annonCompField102 ; u32 addr_cntrl ; }; struct __anonstruct____missing_field_name_307 { u8 opcode ; u8 state_index_v ; u8 shl ; u8 shr ; }; union __anonunion____missing_field_name_306 { struct __anonstruct____missing_field_name_307 __annonCompField104 ; u32 control_value ; }; struct netxen_minidump_entry_crb { struct netxen_common_entry_hdr h ; u32 addr ; union __anonunion____missing_field_name_304 __annonCompField103 ; u32 data_size ; u32 op_count ; union __anonunion____missing_field_name_306 __annonCompField105 ; u32 value_1 ; u32 value_2 ; u32 value_3 ; }; struct __anonstruct____missing_field_name_309 { u32 select_addr_reg ; }; union __anonunion____missing_field_name_308 { struct __anonstruct____missing_field_name_309 __annonCompField106 ; u32 rsvd_0 ; }; struct __anonstruct____missing_field_name_311 { u8 addr_stride ; u8 addr_cnt ; u16 data_size ; }; union __anonunion____missing_field_name_310 { struct __anonstruct____missing_field_name_311 __annonCompField108 ; u32 rsvd_1 ; }; struct __anonstruct____missing_field_name_313 { u32 op_count ; }; union __anonunion____missing_field_name_312 { struct __anonstruct____missing_field_name_313 __annonCompField110 ; u32 rsvd_2 ; }; struct __anonstruct____missing_field_name_315 { u32 read_addr_reg ; }; union __anonunion____missing_field_name_314 { struct __anonstruct____missing_field_name_315 __annonCompField112 ; u32 rsvd_3 ; }; struct __anonstruct____missing_field_name_317 { u32 cntrl_addr_reg ; }; union __anonunion____missing_field_name_316 { struct __anonstruct____missing_field_name_317 __annonCompField114 ; u32 rsvd_4 ; }; struct __anonstruct____missing_field_name_319 { u8 wr_byte0 ; u8 wr_byte1 ; u8 poll_mask ; u8 poll_cnt ; }; union __anonunion____missing_field_name_318 { struct __anonstruct____missing_field_name_319 __annonCompField116 ; u32 rsvd_5 ; }; struct netxen_minidump_entry_rdmem { struct netxen_common_entry_hdr h ; union __anonunion____missing_field_name_308 __annonCompField107 ; union __anonunion____missing_field_name_310 __annonCompField109 ; union __anonunion____missing_field_name_312 __annonCompField111 ; union __anonunion____missing_field_name_314 __annonCompField113 ; union __anonunion____missing_field_name_316 __annonCompField115 ; union __anonunion____missing_field_name_318 __annonCompField117 ; u32 read_addr ; u32 read_data_size ; }; struct __anonstruct____missing_field_name_321 { u16 tag_value_stride ; u16 init_tag_value ; }; union __anonunion____missing_field_name_320 { struct __anonstruct____missing_field_name_321 __annonCompField118 ; u32 select_addr_cntrl ; }; struct __anonstruct____missing_field_name_323 { u16 write_value ; u8 poll_mask ; u8 poll_wait ; }; union __anonunion____missing_field_name_322 { struct __anonstruct____missing_field_name_323 __annonCompField120 ; u32 control_value ; }; struct __anonstruct____missing_field_name_325 { u8 read_addr_stride ; u8 read_addr_cnt ; u16 rsvd_1 ; }; union __anonunion____missing_field_name_324 { struct __anonstruct____missing_field_name_325 __annonCompField122 ; u32 read_addr_cntrl ; }; struct netxen_minidump_entry_cache { struct netxen_common_entry_hdr h ; u32 tag_reg_addr ; union __anonunion____missing_field_name_320 __annonCompField119 ; u32 data_size ; u32 op_count ; u32 control_addr ; union __anonunion____missing_field_name_322 __annonCompField121 ; u32 read_addr ; union __anonunion____missing_field_name_324 __annonCompField123 ; }; struct __anonstruct____missing_field_name_327 { u32 rsvd_1 ; }; union __anonunion____missing_field_name_326 { struct __anonstruct____missing_field_name_327 __annonCompField124 ; u32 select_addr_cntrl ; }; struct __anonstruct____missing_field_name_329 { u32 read_addr_stride ; }; union __anonunion____missing_field_name_328 { struct __anonstruct____missing_field_name_329 __annonCompField126 ; u32 read_addr_cntrl ; }; struct netxen_minidump_entry_rdocm { struct netxen_common_entry_hdr h ; u32 rsvd_0 ; union __anonunion____missing_field_name_326 __annonCompField125 ; u32 data_size ; u32 op_count ; u32 rsvd_2 ; u32 rsvd_3 ; u32 read_addr ; union __anonunion____missing_field_name_328 __annonCompField127 ; }; struct __anonstruct____missing_field_name_331 { u32 rsvd_0 ; }; union __anonunion____missing_field_name_330 { struct __anonstruct____missing_field_name_331 __annonCompField128 ; u32 select_addr_cntrl ; }; struct netxen_minidump_entry_mux { struct netxen_common_entry_hdr h ; u32 select_addr ; union __anonunion____missing_field_name_330 __annonCompField129 ; u32 data_size ; u32 op_count ; u32 select_value ; u32 select_value_stride ; u32 read_addr ; u32 rsvd_1 ; }; struct __anonstruct____missing_field_name_333 { u16 queue_id_stride ; u16 rsvd_0 ; }; union __anonunion____missing_field_name_332 { struct __anonstruct____missing_field_name_333 __annonCompField130 ; u32 select_addr_cntrl ; }; struct __anonstruct____missing_field_name_335 { u8 read_addr_stride ; u8 read_addr_cnt ; u16 rsvd_3 ; }; union __anonunion____missing_field_name_334 { struct __anonstruct____missing_field_name_335 __annonCompField132 ; u32 read_addr_cntrl ; }; struct netxen_minidump_entry_queue { struct netxen_common_entry_hdr h ; u32 select_addr ; union __anonunion____missing_field_name_332 __annonCompField131 ; u32 data_size ; u32 op_count ; u32 rsvd_1 ; u32 rsvd_2 ; u32 read_addr ; union __anonunion____missing_field_name_334 __annonCompField133 ; }; struct netxen_dummy_dma { void *addr ; dma_addr_t phys_addr ; }; struct netxen_adapter { struct netxen_hardware_context ahw ; struct net_device *netdev ; struct pci_dev *pdev ; struct list_head mac_list ; struct list_head ip_list ; spinlock_t tx_clean_lock ; u16 num_txd ; u16 num_rxd ; u16 num_jumbo_rxd ; u16 num_lro_rxd ; u8 max_rds_rings ; u8 max_sds_rings ; u8 driver_mismatch ; u8 msix_supported ; u8 __pad ; u8 pci_using_dac ; u8 portnum ; u8 physical_port ; u8 mc_enabled ; u8 max_mc_count ; u8 rss_supported ; u8 link_changed ; u8 fw_wait_cnt ; u8 fw_fail_cnt ; u8 tx_timeo_cnt ; u8 need_fw_reset ; u8 has_link_events ; u8 fw_type ; u16 tx_context_id ; u16 mtu ; u16 is_up ; u16 link_speed ; u16 link_duplex ; u16 link_autoneg ; u16 module_type ; u32 capabilities ; u32 flags ; u32 irq ; u32 temp ; u32 int_vec_bit ; u32 heartbit ; u8 mac_addr[6U] ; struct netxen_adapter_stats stats ; struct netxen_recv_context recv_ctx ; struct nx_host_tx_ring *tx_ring ; int (*macaddr_set)(struct netxen_adapter * , u8 * ) ; int (*set_mtu)(struct netxen_adapter * , int ) ; int (*set_promisc)(struct netxen_adapter * , u32 ) ; void (*set_multi)(struct net_device * ) ; int (*phy_read)(struct netxen_adapter * , u32 , u32 * ) ; int (*phy_write)(struct netxen_adapter * , u32 , u32 ) ; int (*init_port)(struct netxen_adapter * , int ) ; int (*stop_port)(struct netxen_adapter * ) ; u32 (*crb_read)(struct netxen_adapter * , ulong ) ; int (*crb_write)(struct netxen_adapter * , ulong , u32 ) ; int (*pci_mem_read)(struct netxen_adapter * , u64 , u64 * ) ; int (*pci_mem_write)(struct netxen_adapter * , u64 , u64 ) ; int (*pci_set_window)(struct netxen_adapter * , u64 , u32 * ) ; u32 (*io_read)(struct netxen_adapter * , void * ) ; void (*io_write)(struct netxen_adapter * , void * , u32 ) ; void *tgt_mask_reg ; void *pci_int_reg ; void *tgt_status_reg ; void *crb_int_state_reg ; void *isr_int_vec ; struct msix_entry msix_entries[4U] ; struct netxen_dummy_dma dummy_dma ; struct delayed_work fw_work ; struct work_struct tx_timeout_task ; nx_nic_intr_coalesce_t coal ; unsigned long state ; __le32 file_prd_off ; u32 fw_version ; struct firmware const *fw ; struct netxen_minidump mdump ; int fw_mdump_rdy ; }; struct ipv6_devconf { __s32 forwarding ; __s32 hop_limit ; __s32 mtu6 ; __s32 accept_ra ; __s32 accept_redirects ; __s32 autoconf ; __s32 dad_transmits ; __s32 rtr_solicits ; __s32 rtr_solicit_interval ; __s32 rtr_solicit_delay ; __s32 force_mld_version ; __s32 mldv1_unsolicited_report_interval ; __s32 mldv2_unsolicited_report_interval ; __s32 use_tempaddr ; __s32 temp_valid_lft ; __s32 temp_prefered_lft ; __s32 regen_max_retry ; __s32 max_desync_factor ; __s32 max_addresses ; __s32 accept_ra_defrtr ; __s32 accept_ra_pinfo ; __s32 accept_ra_rtr_pref ; __s32 rtr_probe_interval ; __s32 accept_ra_rt_info_max_plen ; __s32 proxy_ndp ; __s32 accept_source_route ; __s32 optimistic_dad ; __s32 mc_forwarding ; __s32 disable_ipv6 ; __s32 accept_dad ; __s32 force_tllao ; __s32 ndisc_notify ; __s32 suppress_frag_ndisc ; void *sysctl ; }; struct ip6_sf_list { struct ip6_sf_list *sf_next ; struct in6_addr sf_addr ; unsigned long sf_count[2U] ; unsigned char sf_gsresp ; unsigned char sf_oldin ; unsigned char sf_crcount ; }; struct ifmcaddr6 { struct in6_addr mca_addr ; struct inet6_dev *idev ; struct ifmcaddr6 *next ; struct ip6_sf_list *mca_sources ; struct ip6_sf_list *mca_tomb ; unsigned int mca_sfmode ; unsigned char mca_crcount ; unsigned long mca_sfcount[2U] ; struct timer_list mca_timer ; unsigned int mca_flags ; int mca_users ; atomic_t mca_refcnt ; spinlock_t mca_lock ; unsigned long mca_cstamp ; unsigned long mca_tstamp ; }; struct ifacaddr6 { struct in6_addr aca_addr ; struct inet6_dev *aca_idev ; struct rt6_info *aca_rt ; struct ifacaddr6 *aca_next ; int aca_users ; atomic_t aca_refcnt ; spinlock_t aca_lock ; unsigned long aca_cstamp ; unsigned long aca_tstamp ; }; struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry ; struct ipstats_mib *ipv6[1U] ; struct icmpv6_mib_device *icmpv6dev ; struct icmpv6msg_mib_device *icmpv6msgdev ; }; struct inet6_dev { struct net_device *dev ; struct list_head addr_list ; struct ifmcaddr6 *mc_list ; struct ifmcaddr6 *mc_tomb ; spinlock_t mc_lock ; unsigned char mc_qrv ; unsigned char mc_gq_running ; unsigned char mc_ifc_count ; unsigned char mc_dad_count ; unsigned long mc_v1_seen ; unsigned long mc_qi ; unsigned long mc_qri ; unsigned long mc_maxdelay ; struct timer_list mc_gq_timer ; struct timer_list mc_ifc_timer ; struct timer_list mc_dad_timer ; struct ifacaddr6 *ac_list ; rwlock_t lock ; atomic_t refcnt ; __u32 if_flags ; int dead ; u8 rndid[8U] ; struct timer_list regen_timer ; struct list_head tempaddr_list ; struct in6_addr token ; struct neigh_parms *nd_parms ; struct ipv6_devconf cnf ; struct ipv6_devstat stats ; struct timer_list rs_timer ; __u8 rs_probes ; unsigned long tstamp ; struct callback_head rcu ; }; union __anonunion____missing_field_name_342 { __be32 a4 ; __be32 a6[4U] ; }; struct inetpeer_addr_base { union __anonunion____missing_field_name_342 __annonCompField134 ; }; struct inetpeer_addr { struct inetpeer_addr_base addr ; __u16 family ; }; union __anonunion____missing_field_name_343 { struct list_head gc_list ; struct callback_head gc_rcu ; }; struct __anonstruct____missing_field_name_345 { atomic_t rid ; atomic_t ip_id_count ; }; union __anonunion____missing_field_name_344 { struct __anonstruct____missing_field_name_345 __annonCompField136 ; struct callback_head rcu ; struct inet_peer *gc_next ; }; struct inet_peer { struct inet_peer *avl_left ; struct inet_peer *avl_right ; struct inetpeer_addr daddr ; __u32 avl_height ; u32 metrics[15U] ; u32 rate_tokens ; unsigned long rate_last ; union __anonunion____missing_field_name_343 __annonCompField135 ; union __anonunion____missing_field_name_344 __annonCompField137 ; __u32 dtime ; atomic_t refcnt ; }; struct inet_peer_base { struct inet_peer *root ; seqlock_t lock ; u32 flush_seq ; int total ; }; struct rtable { struct dst_entry dst ; int rt_genid ; unsigned int rt_flags ; __u16 rt_type ; __u8 rt_is_input ; __u8 rt_uses_gateway ; int rt_iif ; __be32 rt_gateway ; u32 rt_pmtu ; struct list_head rt_uncached ; }; typedef __u16 __sum16; typedef int pao_T__; typedef int pao_T_____0; enum hrtimer_restart; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_217 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_217 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct netdev_notifier_info { struct net_device *dev ; }; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; struct iphdr { __u8 ihl : 4 ; __u8 version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct tcphdr { __be16 source ; __be16 dest ; __be32 seq ; __be32 ack_seq ; __u16 res1 : 4 ; __u16 doff : 4 ; __u16 fin : 1 ; __u16 syn : 1 ; __u16 rst : 1 ; __u16 psh : 1 ; __u16 ack : 1 ; __u16 urg : 1 ; __u16 ece : 1 ; __u16 cwr : 1 ; __be16 window ; __sum16 check ; __be16 urg_ptr ; }; struct netxen_legacy_intr_set { uint32_t int_vec_bit ; uint32_t tgt_status_reg ; uint32_t tgt_mask_reg ; uint32_t pci_int_reg ; }; struct nx_ip_list { struct list_head list ; __be32 ip_addr ; bool master ; }; struct netxen_brdinfo { int brdtype ; long ports ; char short_name[32U] ; }; struct netxen_dimm_cfg { u8 presence ; u8 mem_type ; u8 dimm_type ; u32 size ; }; struct vlan_ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_vlan_proto ; __be16 h_vlan_TCI ; __be16 h_vlan_encapsulated_proto ; }; struct ipv6hdr { __u8 priority : 4 ; __u8 version : 4 ; __u8 flow_lbl[3U] ; __be16 payload_len ; __u8 nexthdr ; __u8 hop_limit ; struct in6_addr saddr ; struct in6_addr daddr ; }; struct in_ifaddr; struct ipv4_devconf { void *sysctl ; int data[28U] ; unsigned long state[1U] ; }; struct ip_mc_list; struct in_device { struct net_device *dev ; atomic_t refcnt ; int dead ; struct in_ifaddr *ifa_list ; struct ip_mc_list *mc_list ; struct ip_mc_list **mc_hash ; int mc_count ; spinlock_t mc_tomb_lock ; struct ip_mc_list *mc_tomb ; unsigned long mr_v1_seen ; unsigned long mr_v2_seen ; unsigned long mr_maxdelay ; unsigned char mr_qrv ; unsigned char mr_gq_running ; unsigned char mr_ifc_count ; struct timer_list mr_gq_timer ; struct timer_list mr_ifc_timer ; struct neigh_parms *arp_parms ; struct ipv4_devconf cnf ; struct callback_head callback_head ; }; struct in_ifaddr { struct hlist_node hash ; struct in_ifaddr *ifa_next ; struct in_device *ifa_dev ; struct callback_head callback_head ; __be32 ifa_local ; __be32 ifa_address ; __be32 ifa_mask ; __be32 ifa_broadcast ; unsigned char ifa_scope ; unsigned char ifa_prefixlen ; __u32 ifa_flags ; char ifa_label[16U] ; __u32 ifa_valid_lft ; __u32 ifa_preferred_lft ; unsigned long ifa_cstamp ; unsigned long ifa_tstamp ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef struct net_device *ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; typedef int ldv_func_ret_type___6; typedef int ldv_func_ret_type___7; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; enum hrtimer_restart; enum gro_result { GRO_MERGED = 0, GRO_MERGED_FREE = 1, GRO_HELD = 2, GRO_NORMAL = 3, GRO_DROP = 4 } ; typedef enum gro_result gro_result_t; typedef u32 netxen_ctx_msg; struct uni_table_desc { uint32_t findex ; uint32_t num_entries ; uint32_t entry_size ; uint32_t reserved[5U] ; }; struct uni_data_desc { uint32_t findex ; uint32_t size ; uint32_t reserved[5U] ; }; struct __anonstruct____missing_field_name_288 { u64 hdr ; u64 body[7U] ; }; union __anonunion____missing_field_name_287 { struct __anonstruct____missing_field_name_288 __annonCompField86 ; u64 words[8U] ; }; struct __anonstruct_nx_fw_msg_t_286 { union __anonunion____missing_field_name_287 __annonCompField87 ; }; typedef struct __anonstruct_nx_fw_msg_t_286 nx_fw_msg_t; struct crb_addr_pair { u32 addr ; u32 data ; }; enum hrtimer_restart; struct netxen_nic_stats { char stat_string[32U] ; int sizeof_stat ; int stat_offset ; }; enum hrtimer_restart; struct netxen_recv_crb { u32 crb_rcv_producer[3U] ; u32 crb_sts_consumer[4U] ; u32 sw_int_mask[4U] ; }; struct _cdrp_cmd { u32 cmd ; u32 arg1 ; u32 arg2 ; u32 arg3 ; }; struct netxen_cmd_args { struct _cdrp_cmd req ; struct _cdrp_cmd rsp ; }; struct __anonstruct_nx_hostrq_sds_ring_t_272 { __le64 host_phys_addr ; __le32 ring_size ; __le16 msi_index ; __le16 rsvd ; }; typedef struct __anonstruct_nx_hostrq_sds_ring_t_272 nx_hostrq_sds_ring_t; struct __anonstruct_nx_hostrq_rds_ring_t_273 { __le64 host_phys_addr ; __le64 buff_size ; __le32 ring_size ; __le32 ring_kind ; }; typedef struct __anonstruct_nx_hostrq_rds_ring_t_273 nx_hostrq_rds_ring_t; struct __anonstruct_nx_hostrq_rx_ctx_t_274 { __le64 host_rsp_dma_addr ; __le32 capabilities[4U] ; __le32 host_int_crb_mode ; __le32 host_rds_crb_mode ; __le32 rds_ring_offset ; __le32 sds_ring_offset ; __le16 num_rds_rings ; __le16 num_sds_rings ; __le16 rsvd1 ; __le16 rsvd2 ; u8 reserved[128U] ; char data[0U] ; }; typedef struct __anonstruct_nx_hostrq_rx_ctx_t_274 nx_hostrq_rx_ctx_t; struct __anonstruct_nx_cardrsp_rds_ring_t_275 { __le32 host_producer_crb ; __le32 rsvd1 ; }; typedef struct __anonstruct_nx_cardrsp_rds_ring_t_275 nx_cardrsp_rds_ring_t; struct __anonstruct_nx_cardrsp_sds_ring_t_276 { __le32 host_consumer_crb ; __le32 interrupt_crb ; }; typedef struct __anonstruct_nx_cardrsp_sds_ring_t_276 nx_cardrsp_sds_ring_t; struct __anonstruct_nx_cardrsp_rx_ctx_t_277 { __le32 rds_ring_offset ; __le32 sds_ring_offset ; __le32 host_ctx_state ; __le32 num_fn_per_port ; __le16 num_rds_rings ; __le16 num_sds_rings ; __le16 context_id ; u8 phys_port ; u8 virt_port ; u8 reserved[128U] ; char data[0U] ; }; typedef struct __anonstruct_nx_cardrsp_rx_ctx_t_277 nx_cardrsp_rx_ctx_t; struct __anonstruct_nx_hostrq_cds_ring_t_278 { __le64 host_phys_addr ; __le32 ring_size ; __le32 rsvd ; }; typedef struct __anonstruct_nx_hostrq_cds_ring_t_278 nx_hostrq_cds_ring_t; struct __anonstruct_nx_hostrq_tx_ctx_t_279 { __le64 host_rsp_dma_addr ; __le64 cmd_cons_dma_addr ; __le64 dummy_dma_addr ; __le32 capabilities[4U] ; __le32 host_int_crb_mode ; __le32 rsvd1 ; __le16 rsvd2 ; __le16 interrupt_ctl ; __le16 msi_index ; __le16 rsvd3 ; nx_hostrq_cds_ring_t cds_ring ; u8 reserved[128U] ; }; typedef struct __anonstruct_nx_hostrq_tx_ctx_t_279 nx_hostrq_tx_ctx_t; struct __anonstruct_nx_cardrsp_cds_ring_t_280 { __le32 host_producer_crb ; __le32 interrupt_crb ; }; typedef struct __anonstruct_nx_cardrsp_cds_ring_t_280 nx_cardrsp_cds_ring_t; struct __anonstruct_nx_cardrsp_tx_ctx_t_281 { __le32 host_ctx_state ; __le16 context_id ; u8 phys_port ; u8 virt_port ; nx_cardrsp_cds_ring_t cds_ring ; u8 reserved[128U] ; }; typedef struct __anonstruct_nx_cardrsp_tx_ctx_t_281 nx_cardrsp_tx_ctx_t; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; long ldv__builtin_expect(long exp , long c ) ; void *ldv_malloc_unknown_size(void) ; void ldv_check_alloc_flags(gfp_t flags ) ; void ldv_check_alloc_nonatomic(void) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } void *ldv_kzalloc(size_t size , gfp_t flags ) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add_tail(struct list_head *new , struct list_head *head ) { { { __list_add(new, head->prev, head); } return; } } extern void __list_del_entry(struct list_head * ) ; extern void list_del(struct list_head * ) ; __inline static void list_move_tail(struct list_head *list , struct list_head *head ) { { { __list_del_entry(list); list_add_tail(list, head); } return; } } __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } __inline static void __list_splice(struct list_head const *list , struct list_head *prev , struct list_head *next ) { struct list_head *first ; struct list_head *last ; { first = list->next; last = list->prev; first->prev = prev; prev->next = first; last->next = next; next->prev = last; return; } } __inline static void list_splice_tail_init(struct list_head *list , struct list_head *head ) { int tmp ; { { tmp = list_empty((struct list_head const *)list); } if (tmp == 0) { { __list_splice((struct list_head const *)list, head->prev, head); INIT_LIST_HEAD(list); } } else { } return; } } __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } extern int printk(char const * , ...) ; extern int __printk_ratelimit(char const * ) ; extern void dump_stack(void) ; extern void __bad_percpu_size(void) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_lock_mem_lock_of_netxen_hardware_context(void) ; void ldv_spin_unlock_mem_lock_of_netxen_hardware_context(void) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_bh(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_bh(raw_spinlock_t * ) ; extern void _raw_read_lock(rwlock_t * ) ; extern unsigned long _raw_write_lock_irqsave(rwlock_t * ) ; extern void _raw_read_unlock(rwlock_t * ) ; extern void _raw_write_unlock_irqrestore(rwlock_t * , unsigned long ) ; __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_101(spinlock_t *lock ) ; __inline static void ldv_spin_lock_101(spinlock_t *lock ) ; __inline static void ldv_spin_lock_101(spinlock_t *lock ) ; __inline static void ldv_spin_lock_101(spinlock_t *lock ) ; __inline static void ldv_spin_lock_101(spinlock_t *lock ) ; __inline static void ldv_spin_lock_101(spinlock_t *lock ) ; __inline static void ldv_spin_lock_101(spinlock_t *lock ) ; __inline static void spin_lock_bh(spinlock_t *lock ) { { { _raw_spin_lock_bh(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_bh_70(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_102(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_102(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_102(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_102(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_102(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_102(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_102(spinlock_t *lock ) ; __inline static void spin_unlock_bh(spinlock_t *lock ) { { { _raw_spin_unlock_bh(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_bh_73(spinlock_t *lock ) ; extern unsigned long volatile jiffies ; extern unsigned long msecs_to_jiffies(unsigned int const ) ; extern void jiffies_to_timespec(unsigned long const , struct timespec * ) ; __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } __inline static unsigned long readq(void const volatile *addr ) { unsigned long ret ; { __asm__ volatile ("movq %1,%0": "=r" (ret): "m" (*((unsigned long volatile *)addr)): "memory"); return (ret); } } __inline static void writeq(unsigned long val , void volatile *addr ) { { __asm__ volatile ("movq %0,%1": : "r" (val), "m" (*((unsigned long volatile *)addr)): "memory"); return; } } extern void *ioremap_nocache(resource_size_t , unsigned long ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { { tmp = ioremap_nocache(offset, size); } return (tmp); } } extern void iounmap(void volatile * ) ; static void *ldv_vzalloc_115(unsigned long ldv_func_arg1 ) ; extern void vfree(void const * ) ; extern int cpu_number ; extern void __bad_size_call_parameter(void) ; extern int dev_err(struct device const * , char const * , ...) ; extern int dev_warn(struct device const * , char const * , ...) ; extern int _dev_info(struct device const * , char const * , ...) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; extern void kfree(void const * ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& dev->state)); } return (tmp == 0); } } __inline static void __netif_tx_lock_bh(struct netdev_queue *txq ) { int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; { { ldv_spin_lock_bh_70(& txq->_xmit_lock); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_39814; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39814; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39814; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39814; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_39814: pscr_ret__ = pfo_ret__; goto ldv_39820; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39824; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39824; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39824; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39824; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_39824: pscr_ret__ = pfo_ret_____0; goto ldv_39820; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39833; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39833; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39833; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39833; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_39833: pscr_ret__ = pfo_ret_____1; goto ldv_39820; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39842; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39842; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39842; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39842; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_39842: pscr_ret__ = pfo_ret_____2; goto ldv_39820; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_39820; switch_break: /* CIL Label */ ; } ldv_39820: txq->xmit_lock_owner = pscr_ret__; return; } } __inline static void __netif_tx_unlock_bh(struct netdev_queue *txq ) { { { txq->xmit_lock_owner = -1; ldv_spin_unlock_bh_73(& txq->_xmit_lock); } return; } } __inline static bool ether_addr_equal(u8 const *addr1 , u8 const *addr2 ) { u32 fold ; { fold = ((unsigned int )*((u32 const *)addr1) ^ (unsigned int )*((u32 const *)addr2)) | (unsigned int )((int )((unsigned short )*((u16 const *)addr1 + 4U)) ^ (int )((unsigned short )*((u16 const *)addr2 + 4U))); return (fold == 0U); } } void netxen_nic_set_link_parameters(struct netxen_adapter *adapter ) ; int nx_fw_cmd_query_phy(struct netxen_adapter *adapter , u32 reg , u32 *val ) ; int nx_fw_cmd_set_phy(struct netxen_adapter *adapter , u32 reg , u32 val ) ; int netxen_pcie_sem_lock(struct netxen_adapter *adapter , int sem , u32 id_reg ) ; void netxen_pcie_sem_unlock(struct netxen_adapter *adapter , int sem ) ; int netxen_nic_get_board_info(struct netxen_adapter *adapter ) ; int netxen_nic_wol_supported(struct netxen_adapter *adapter ) ; int netxen_rom_fast_read(struct netxen_adapter *adapter , int addr , int *valp ) ; void netxen_setup_hwops(struct netxen_adapter *adapter ) ; void *netxen_get_ioaddr(struct netxen_adapter *adapter , u32 offset ) ; void netxen_p3_free_mac_list(struct netxen_adapter *adapter ) ; int netxen_config_intr_coalesce(struct netxen_adapter *adapter ) ; int netxen_config_rss(struct netxen_adapter *adapter , int enable ) ; int netxen_config_ipaddr(struct netxen_adapter *adapter , __be32 ip , int cmd ) ; int netxen_linkevent_request(struct netxen_adapter *adapter , int enable ) ; void netxen_pci_camqm_read_2M(struct netxen_adapter *adapter , u64 off , u64 *data ) ; void netxen_pci_camqm_write_2M(struct netxen_adapter *adapter , u64 off , u64 data ) ; int nx_fw_cmd_set_mtu(struct netxen_adapter *adapter , int mtu ) ; int netxen_nic_change_mtu(struct net_device *netdev , int mtu ) ; int netxen_config_hw_lro(struct netxen_adapter *adapter , int enable ) ; int netxen_config_bridged_mode(struct netxen_adapter *adapter , int enable ) ; int netxen_send_lro_cleanup(struct netxen_adapter *adapter ) ; void netxen_dump_fw(struct netxen_adapter *adapter ) ; void netxen_nic_update_cmd_producer(struct netxen_adapter *adapter , struct nx_host_tx_ring *tx_ring ) ; __inline static u32 netxen_tx_avail(struct nx_host_tx_ring *tx_ring ) { { __asm__ volatile ("mfence": : : "memory"); return (tx_ring->producer < tx_ring->sw_consumer ? tx_ring->sw_consumer - tx_ring->producer : (tx_ring->sw_consumer + tx_ring->num_desc) - tx_ring->producer); } } int netxen_get_flash_mac_addr(struct netxen_adapter *adapter , u64 *mac ) ; int netxen_p3_get_mac_addr(struct netxen_adapter *adapter , u64 *mac ) ; static void netxen_nic_io_write_128M(struct netxen_adapter *adapter , void *addr , u32 data ) ; static u32 netxen_nic_io_read_128M(struct netxen_adapter *adapter , void *addr ) ; static void *pci_base_offset(struct netxen_adapter *adapter , unsigned long off ) { { if (off <= 1048575UL) { return (adapter->ahw.pci_base0 + off); } else { } if (off - 100663296UL <= 9158655UL) { return (adapter->ahw.pci_base1 + (off + 0xfffffffffa000000UL)); } else { } if (off - 118374400UL <= 15843327UL) { return (adapter->ahw.pci_base2 + (off + 0xfffffffff8f1c000UL)); } else { } return ((void *)0); } } static crb_128M_2M_block_map_t crb_128M_2M_map[64U] = { {{{0U, 0U, 0U, 0U}}}, {{{1U, 1048576U, 1056768U, 1179648U}, {1U, 1114112U, 1179648U, 1245184U}, {1U, 1179648U, 1187840U, 1196032U}, {1U, 1245184U, 1253376U, 1204224U}, {1U, 1310720U, 1318912U, 1212416U}, {1U, 1376256U, 1384448U, 1220608U}, {1U, 1441792U, 1507328U, 1114112U}, {1U, 1507328U, 1515520U, 1236992U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {1U, 1966080U, 1968128U, 1187840U}, {0U, 0U, 0U, 0U}}}, {{{1U, 2097152U, 2162688U, 1572864U}}}, {{{0U, 0U, 0U, 0U}}}, {{{1U, 4194304U, 4198400U, 1478656U}}}, {{{1U, 5242880U, 5308416U, 1310720U}}}, {{{1U, 6291456U, 6356992U, 1835008U}}}, {{{1U, 7340032U, 7356416U, 1802240U}}}, {{{1U, 8388608U, 8396800U, 1507328U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {1U, 9371648U, 9379840U, 1515520U}}}, {{{1U, 9437184U, 9445376U, 1523712U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {1U, 10420224U, 10428416U, 1531904U}}}, {{{0U, 10485760U, 10493952U, 1540096U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {1U, 11468800U, 11476992U, 1548288U}}}, {{{0U, 11534336U, 11542528U, 1556480U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {1U, 12517376U, 12525568U, 1564672U}}}, {{{1U, 12582912U, 12599296U, 1916928U}}}, {{{1U, 13631488U, 13647872U, 1720320U}}}, {{{1U, 14680064U, 14696448U, 1703936U}}}, {{{1U, 15728640U, 15732736U, 1458176U}}}, {{{0U, 16777216U, 16793600U, 1736704U}}}, {{{1U, 17825792U, 17829888U, 1441792U}}}, {{{1U, 18874368U, 18878464U, 1445888U}}}, {{{1U, 19922944U, 19927040U, 1449984U}}}, {{{1U, 20971520U, 20975616U, 1454080U}}}, {{{1U, 22020096U, 22024192U, 1462272U}}}, {{{1U, 23068672U, 23072768U, 1466368U}}}, {{{0U, 0U, 0U, 0U}}}, {{{0U, 0U, 0U, 0U}}}, {{{0U, 0U, 0U, 0U}}}, {{{0U, 0U, 0U, 0U}}}, {{{0U, 0U, 0U, 0U}}}, {{{0U, 0U, 0U, 0U}}}, {{{1U, 30408704U, 30474240U, 1638400U}}}, {{{1U, 31457280U, 31461376U, 1482752U}}}, {{{1U, 32505856U, 32571392U, 1376256U}}}, {{{0U, 0U, 0U, 0U}}}, {{{1U, 34603008U, 34611200U, 1179648U}, {1U, 34668544U, 34734080U, 1245184U}, {1U, 34734080U, 34742272U, 1196032U}, {1U, 34799616U, 34807808U, 1204224U}, {1U, 34865152U, 34873344U, 1212416U}, {1U, 34930688U, 34938880U, 1220608U}, {1U, 34996224U, 35061760U, 1114112U}, {1U, 35061760U, 35069952U, 1236992U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}, {0U, 0U, 0U, 0U}}}, {{{1U, 35651584U, 35667968U, 1769472U}}}, {{{0U, 0U, 0U, 0U}}}, {{{0U, 0U, 0U, 0U}}}, {{{0U, 0U, 0U, 0U}}}, {{{0U, 0U, 0U, 0U}}}, {{{0U, 0U, 0U, 0U}}}, {{{1U, 41943040U, 41959424U, 1720320U}}}, {{{1U, 42991616U, 42995712U, 1486848U}}}, {{{1U, 44040192U, 44041216U, 1754112U}}}, {{{1U, 45088768U, 45089792U, 1755136U}}}, {{{1U, 46137344U, 46138368U, 1756160U}}}, {{{1U, 47185920U, 47186944U, 1757184U}}}, {{{1U, 48234496U, 48235520U, 1758208U}}}, {{{1U, 49283072U, 49284096U, 1759232U}}}, {{{1U, 50331648U, 50332672U, 1760256U}}}, {{{0U, 51380224U, 51396608U, 1736704U}}}, {{{1U, 52428800U, 52445184U, 1916928U}}}, {{{1U, 53477376U, 53493760U, 1703936U}}}, {{{0U, 0U, 0U, 0U}}}, {{{1U, 55574528U, 55575552U, 1753088U}}}, {{{1U, 56623104U, 56624128U, 1761280U}}}, {{{1U, 57671680U, 57672704U, 1762304U}}}, {{{1U, 58720256U, 58736640U, 1900544U}}}, {{{1U, 59768832U, 59785216U, 1785856U}}}, {{{1U, 60817408U, 60833792U, 1933312U}}}, {{{0U, 0U, 0U, 0U}}}, {{{0U, 0U, 0U, 0U}}}, {{{1U, 63963136U, 63979520U, 1933312U}}}, {{{1U, 65011712U, 65015808U, 1470464U}}}, {{{1U, 66060288U, 66064384U, 1474560U}}}}; static unsigned int crb_hub_agt[64U] = { 0U, 1907U, 661U, 677U, 0U, 208U, 433U, 230U, 224U, 225U, 226U, 227U, 1056U, 1047U, 1057U, 843U, 1029U, 832U, 833U, 834U, 835U, 837U, 836U, 960U, 961U, 962U, 963U, 0U, 964U, 1040U, 0U, 209U, 0U, 1907U, 1046U, 0U, 0U, 0U, 0U, 0U, 1047U, 0U, 137U, 1802U, 1803U, 1804U, 141U, 142U, 1807U, 1029U, 1056U, 1057U, 0U, 136U, 145U, 1810U, 1030U, 0U, 1816U, 409U, 425U, 0U, 838U, 0U}; static int netxen_nic_set_mtu_xgb(struct netxen_adapter *adapter , int new_mtu ) ; int netxen_pcie_sem_lock(struct netxen_adapter *adapter , int sem , u32 id_reg ) { int done ; int timeout ; u32 tmp ; { done = 0; timeout = 0; goto ldv_50597; ldv_50596: { tmp = (*(adapter->crb_read))(adapter, (unsigned long )((sem + 14336) * 8) + 101711872UL); done = (int )tmp; } if (done == 1) { goto ldv_50595; } else { } timeout = timeout + 1; if (timeout > 9999) { return (-5); } else { } { msleep(1U); } ldv_50597: ; if (done == 0) { goto ldv_50596; } else { } ldv_50595: ; if (id_reg != 0U) { { (*(adapter->crb_write))(adapter, (ulong )id_reg, (u32 )adapter->portnum); } } else { } return (0); } } void netxen_pcie_sem_unlock(struct netxen_adapter *adapter , int sem ) { { { (*(adapter->crb_read))(adapter, (unsigned long )(sem * 8 + 114692) + 101711872UL); } return; } } static int netxen_niu_xg_init_port(struct netxen_adapter *adapter , int port ) { { if ((unsigned int )adapter->ahw.revision_id <= 37U) { { (*(adapter->crb_write))(adapter, (unsigned long )(port * 65536) + 107413508UL, 5191U); (*(adapter->crb_write))(adapter, (unsigned long )(port * 65536) + 107413504UL, 5U); } } else { } return (0); } } static int netxen_niu_disable_xg_port(struct netxen_adapter *adapter ) { __u32 mac_cfg ; u32 port ; int tmp ; { port = (u32 )adapter->physical_port; if ((unsigned int )adapter->ahw.revision_id > 47U) { return (0); } else { } if (port > 1U) { return (-22); } else { } { mac_cfg = 0U; tmp = (*(adapter->crb_write))(adapter, (unsigned long )(port * 65536U) + 107413504UL, mac_cfg); } if (tmp != 0) { return (-5); } else { } return (0); } } static int netxen_p2_nic_set_promisc(struct netxen_adapter *adapter , u32 mode ) { u32 mac_cfg ; u32 cnt ; __u32 reg ; u32 port ; u16 board_type ; unsigned long __ms ; unsigned long tmp ; unsigned long __ms___0 ; unsigned long tmp___0 ; u32 tmp___1 ; { cnt = 0U; reg = 512U; port = (u32 )adapter->physical_port; board_type = adapter->ahw.board_type; if (port > 1U) { return (-22); } else { } { mac_cfg = (*(adapter->crb_read))(adapter, (unsigned long )(port * 65536U) + 107413504UL); mac_cfg = mac_cfg & 4294967291U; (*(adapter->crb_write))(adapter, (unsigned long )(port * 65536U) + 107413504UL, mac_cfg); } if ((unsigned int )board_type - 13U <= 1U) { reg = (__u32 )(32 << (int )port); } else { } { (*(adapter->crb_write))(adapter, 106954924UL, reg); __ms = 10UL; } goto ldv_50622; ldv_50621: { __const_udelay(4295000UL); } ldv_50622: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_50621; } else { } goto ldv_50629; ldv_50628: __ms___0 = 10UL; goto ldv_50626; ldv_50625: { __const_udelay(4295000UL); } ldv_50626: tmp___0 = __ms___0; __ms___0 = __ms___0 - 1UL; if (tmp___0 != 0UL) { goto ldv_50625; } else { } ldv_50629: { tmp___1 = (*(adapter->crb_read))(adapter, 106954928UL); } if (tmp___1 != 0U) { cnt = cnt + 1U; if (cnt <= 19U) { goto ldv_50628; } else { goto ldv_50630; } } else { } ldv_50630: ; if (cnt <= 19U) { { reg = (*(adapter->crb_read))(adapter, (unsigned long )(port * 65536U) + 107413508UL); } if (mode == 1U) { reg = reg | 8192U; } else { reg = reg & 4294959103U; } if (mode == 2U) { reg = reg | 4096U; } else { reg = reg & 4294963199U; } { (*(adapter->crb_write))(adapter, (unsigned long )(port * 65536U) + 107413508UL, reg); } } else { } { mac_cfg = mac_cfg | 4U; (*(adapter->crb_write))(adapter, (unsigned long )(port * 65536U) + 107413504UL, mac_cfg); } return (0); } } static int netxen_p2_nic_set_mac_addr(struct netxen_adapter *adapter , u8 *addr ) { u32 mac_hi ; u32 mac_lo ; u32 reg_hi ; u32 reg_lo ; u8 phy ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { phy = adapter->physical_port; if ((unsigned int )phy > 1U) { return (-22); } else { } { mac_lo = ((unsigned int )*addr << 16) | ((unsigned int )*(addr + 1UL) << 24); mac_hi = (((unsigned int )*(addr + 2UL) | ((unsigned int )*(addr + 3UL) << 8)) | ((unsigned int )*(addr + 4UL) << 16)) | ((unsigned int )*(addr + 5UL) << 24); reg_lo = (u32 )((int )phy * 65536) + 107413520U; reg_hi = (u32 )((int )phy * 65536) + 107413516U; tmp = (*(adapter->crb_write))(adapter, (ulong )reg_lo, mac_lo); } if (tmp != 0) { return (-5); } else { { tmp___0 = (*(adapter->crb_write))(adapter, (ulong )reg_hi, mac_hi); } if (tmp___0 != 0) { return (-5); } else { } } { tmp___1 = (*(adapter->crb_write))(adapter, (ulong )reg_lo, mac_lo); } if (tmp___1 != 0) { return (-5); } else { { tmp___2 = (*(adapter->crb_write))(adapter, (ulong )reg_hi, mac_hi); } if (tmp___2 != 0) { return (-5); } else { } } return (0); } } static int netxen_nic_enable_mcast_filter(struct netxen_adapter *adapter ) { u32 val ; u16 port ; u8 *addr ; { val = 0U; port = (u16 )adapter->physical_port; addr = (u8 *)(& adapter->mac_addr); if ((unsigned int )adapter->mc_enabled != 0U) { return (0); } else { } { val = (*(adapter->crb_read))(adapter, 106958848UL); val = val | (u32 )(1UL << ((int )port + 28)); (*(adapter->crb_write))(adapter, 106958848UL, val); val = 16777215U; (*(adapter->crb_write))(adapter, (unsigned long )((int )port * 32) + 106958976UL, val); (*(adapter->crb_write))(adapter, (unsigned long )((int )port * 32) + 106958980UL, val); val = (u32 )((((int )*(addr + 2UL) << 16) | ((int )*(addr + 1UL) << 8)) | (int )*addr); (*(adapter->crb_write))(adapter, (unsigned long )((int )port * 32) + 106958984UL, val); val = (u32 )((((int )*(addr + 5UL) << 16) | ((int )*(addr + 4UL) << 8)) | (int )*(addr + 3UL)); (*(adapter->crb_write))(adapter, (unsigned long )((int )port * 32) + 106958988UL, val); adapter->mc_enabled = 1U; } return (0); } } static int netxen_nic_disable_mcast_filter(struct netxen_adapter *adapter ) { u32 val ; u16 port ; u8 *addr ; { val = 0U; port = (u16 )adapter->physical_port; addr = (u8 *)(& adapter->mac_addr); if ((unsigned int )adapter->mc_enabled == 0U) { return (0); } else { } { val = (*(adapter->crb_read))(adapter, 106958848UL); val = val & ~ ((u32 )(1UL << ((int )port + 28))); (*(adapter->crb_write))(adapter, 106958848UL, val); val = (u32 )((((int )*(addr + 2UL) << 16) | ((int )*(addr + 1UL) << 8)) | (int )*addr); (*(adapter->crb_write))(adapter, (unsigned long )((int )port * 32) + 106958976UL, val); val = (u32 )((((int )*(addr + 5UL) << 16) | ((int )*(addr + 4UL) << 8)) | (int )*(addr + 3UL)); (*(adapter->crb_write))(adapter, (unsigned long )((int )port * 32) + 106958980UL, val); (*(adapter->crb_write))(adapter, (unsigned long )((int )port * 32) + 106958984UL, 0U); (*(adapter->crb_write))(adapter, (unsigned long )((int )port * 32) + 106958988UL, 0U); adapter->mc_enabled = 0U; } return (0); } } static int netxen_nic_set_mcast_addr(struct netxen_adapter *adapter , int index , u8 *addr ) { u32 hi ; u32 lo ; u16 port ; { { hi = 0U; lo = 0U; port = (u16 )adapter->physical_port; lo = (u32 )((((int )*(addr + 5UL) << 16) | ((int )*(addr + 4UL) << 8)) | (int )*(addr + 3UL)); hi = (u32 )((((int )*(addr + 2UL) << 16) | ((int )*(addr + 1UL) << 8)) | (int )*addr); (*(adapter->crb_write))(adapter, ((unsigned long )((int )port * 128) + (unsigned long )(index * 8)) + 106959104UL, hi); (*(adapter->crb_write))(adapter, ((unsigned long )((int )port * 128) + (unsigned long )(index * 8)) + 106959108UL, lo); } return (0); } } static void netxen_p2_nic_set_multi(struct net_device *netdev ) { struct netxen_adapter *adapter ; void *tmp ; struct netdev_hw_addr *ha ; u8 null_addr[6U] ; int i ; struct list_head const *__mptr ; int tmp___0 ; struct list_head const *__mptr___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct netxen_adapter *)tmp; memset((void *)(& null_addr), 0, 6UL); } if ((netdev->flags & 256U) != 0U) { { (*(adapter->set_promisc))(adapter, 1U); netxen_nic_disable_mcast_filter(adapter); } return; } else { } if (netdev->mc.count == 0) { { (*(adapter->set_promisc))(adapter, 0U); netxen_nic_disable_mcast_filter(adapter); } return; } else { } { (*(adapter->set_promisc))(adapter, 2U); } if ((netdev->flags & 512U) != 0U || netdev->mc.count > (int )adapter->max_mc_count) { { netxen_nic_disable_mcast_filter(adapter); } return; } else { } { netxen_nic_enable_mcast_filter(adapter); i = 0; __mptr = (struct list_head const *)netdev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; } goto ldv_50672; ldv_50671: { tmp___0 = i; i = i + 1; netxen_nic_set_mcast_addr(adapter, tmp___0, (u8 *)(& ha->addr)); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; } ldv_50672: ; if ((unsigned long )(& ha->list) != (unsigned long )(& netdev->mc.list)) { goto ldv_50671; } else { } goto ldv_50675; ldv_50674: { tmp___1 = i; i = i + 1; netxen_nic_set_mcast_addr(adapter, tmp___1, (u8 *)(& null_addr)); } ldv_50675: ; if (i < (int )adapter->max_mc_count) { goto ldv_50674; } else { } return; } } static int netxen_send_cmd_descs(struct netxen_adapter *adapter , struct cmd_desc_type0 *cmd_desc_arr , int nr_desc ) { u32 i ; u32 producer ; u32 consumer ; struct netxen_cmd_buffer *pbuf ; struct cmd_desc_type0 *cmd_desc ; struct nx_host_tx_ring *tx_ring ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; { i = 0U; if ((unsigned int )adapter->is_up != 777U) { return (-5); } else { } { tx_ring = adapter->tx_ring; __netif_tx_lock_bh(tx_ring->txq); producer = tx_ring->producer; consumer = tx_ring->sw_consumer; tmp___1 = netxen_tx_avail(tx_ring); } if ((u32 )nr_desc >= tmp___1) { { netif_tx_stop_queue(tx_ring->txq); __asm__ volatile ("mfence": : : "memory"); tmp___0 = netxen_tx_avail(tx_ring); } if (tmp___0 > (u32 )nr_desc) { { tmp = netxen_tx_avail(tx_ring); } if (tmp > 10U) { { netif_tx_wake_queue(tx_ring->txq); } } else { } } else { { __netif_tx_unlock_bh(tx_ring->txq); } return (-16); } } else { } ldv_50688: { cmd_desc = cmd_desc_arr + (unsigned long )i; pbuf = tx_ring->cmd_buf_arr + (unsigned long )producer; pbuf->skb = (struct sk_buff *)0; pbuf->frag_count = 0U; memcpy((void *)tx_ring->desc_head + (unsigned long )producer, (void const *)cmd_desc_arr + (unsigned long )i, 64UL); producer = (producer + 1U) & (tx_ring->num_desc - 1U); i = i + 1U; } if (i != (u32 )nr_desc) { goto ldv_50688; } else { } { tx_ring->producer = producer; netxen_nic_update_cmd_producer(adapter, tx_ring); __netif_tx_unlock_bh(tx_ring->txq); } return (0); } } static int nx_p3_sre_macaddr_change(struct netxen_adapter *adapter , u8 *addr , unsigned int op ) { nx_nic_req_t req ; nx_mac_req_t *mac_req ; u64 word ; int tmp ; { { memset((void *)(& req), 0, 64UL); req.qhdr = 167772160ULL; word = ((unsigned long long )adapter->portnum << 16) | 1ULL; req.req_hdr = word; mac_req = (nx_mac_req_t *)(& req.words); mac_req->op = (u8 )op; memcpy((void *)(& mac_req->mac_addr), (void const *)addr, 6UL); tmp = netxen_send_cmd_descs(adapter, (struct cmd_desc_type0 *)(& req), 1); } return (tmp); } } static int nx_p3_nic_add_mac(struct netxen_adapter *adapter , u8 const *addr , struct list_head *del_list ) { struct list_head *head ; nx_mac_list_t *cur ; struct list_head const *__mptr ; bool tmp ; void *tmp___0 ; int tmp___1 ; { head = del_list->next; goto ldv_50708; ldv_50707: { __mptr = (struct list_head const *)head; cur = (nx_mac_list_t *)__mptr; tmp = ether_addr_equal(addr, (u8 const *)(& cur->mac_addr)); } if ((int )tmp) { { list_move_tail(head, & adapter->mac_list); } return (0); } else { } head = head->next; ldv_50708: ; if ((unsigned long )head != (unsigned long )del_list) { goto ldv_50707; } else { } { tmp___0 = kzalloc(24UL, 32U); cur = (nx_mac_list_t *)tmp___0; } if ((unsigned long )cur == (unsigned long )((nx_mac_list_t *)0)) { return (-12); } else { } { memcpy((void *)(& cur->mac_addr), (void const *)addr, 6UL); list_add_tail(& cur->list, & adapter->mac_list); tmp___1 = nx_p3_sre_macaddr_change(adapter, (u8 *)(& cur->mac_addr), 1U); } return (tmp___1); } } static void netxen_p3_nic_set_multi(struct net_device *netdev ) { struct netxen_adapter *adapter ; void *tmp ; struct netdev_hw_addr *ha ; u8 bcast_addr[6U] ; u32 mode ; struct list_head del_list ; struct list_head *head ; nx_mac_list_t *cur ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct netxen_adapter *)tmp; bcast_addr[0] = 255U; bcast_addr[1] = 255U; bcast_addr[2] = 255U; bcast_addr[3] = 255U; bcast_addr[4] = 255U; bcast_addr[5] = 255U; mode = 0U; del_list.next = & del_list; del_list.prev = & del_list; } if ((unsigned int )adapter->is_up != 777U) { return; } else { } { list_splice_tail_init(& adapter->mac_list, & del_list); nx_p3_nic_add_mac(adapter, (u8 const *)(& adapter->mac_addr), & del_list); nx_p3_nic_add_mac(adapter, (u8 const *)(& bcast_addr), & del_list); } if ((netdev->flags & 256U) != 0U) { mode = 1U; goto send_fw_cmd; } else { } if ((netdev->flags & 512U) != 0U || netdev->mc.count > (int )adapter->max_mc_count) { mode = 2U; goto send_fw_cmd; } else { } if (netdev->mc.count != 0) { __mptr = (struct list_head const *)netdev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_50726; ldv_50725: { nx_p3_nic_add_mac(adapter, (u8 const *)(& ha->addr), & del_list); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; } ldv_50726: ; if ((unsigned long )(& ha->list) != (unsigned long )(& netdev->mc.list)) { goto ldv_50725; } else { } } else { } send_fw_cmd: { (*(adapter->set_promisc))(adapter, mode); head = & del_list; } goto ldv_50731; ldv_50730: { __mptr___1 = (struct list_head const *)head->next; cur = (nx_mac_list_t *)__mptr___1; nx_p3_sre_macaddr_change(adapter, (u8 *)(& cur->mac_addr), 2U); list_del(& cur->list); kfree((void const *)cur); } ldv_50731: { tmp___0 = list_empty((struct list_head const *)head); } if (tmp___0 == 0) { goto ldv_50730; } else { } return; } } static int netxen_p3_nic_set_promisc(struct netxen_adapter *adapter , u32 mode ) { nx_nic_req_t req ; u64 word ; int tmp ; { { memset((void *)(& req), 0, 64UL); req.qhdr = 159383552ULL; word = ((unsigned long long )adapter->portnum << 16) | 12ULL; req.req_hdr = word; req.words[0] = (unsigned long long )mode; tmp = netxen_send_cmd_descs(adapter, (struct cmd_desc_type0 *)(& req), 1); } return (tmp); } } void netxen_p3_free_mac_list(struct netxen_adapter *adapter ) { nx_mac_list_t *cur ; struct list_head *head ; struct list_head const *__mptr ; int tmp ; { head = & adapter->mac_list; goto ldv_50747; ldv_50746: { __mptr = (struct list_head const *)head->next; cur = (nx_mac_list_t *)__mptr; nx_p3_sre_macaddr_change(adapter, (u8 *)(& cur->mac_addr), 2U); list_del(& cur->list); kfree((void const *)cur); } ldv_50747: { tmp = list_empty((struct list_head const *)head); } if (tmp == 0) { goto ldv_50746; } else { } return; } } static int netxen_p3_nic_set_mac_addr(struct netxen_adapter *adapter , u8 *addr ) { { { netxen_p3_nic_set_multi(adapter->netdev); } return (0); } } int netxen_config_intr_coalesce(struct netxen_adapter *adapter ) { nx_nic_req_t req ; u64 word[6U] ; int rv ; int i ; { { memset((void *)(& req), 0, 64UL); memset((void *)(& word), 0, 48UL); req.qhdr = 159383552ULL; word[0] = ((unsigned long long )adapter->portnum << 16) | 3ULL; req.req_hdr = word[0]; memcpy((void *)(& word), (void const *)(& adapter->coal), 48UL); i = 0; } goto ldv_50761; ldv_50760: req.words[i] = word[i]; i = i + 1; ldv_50761: ; if (i <= 5) { goto ldv_50760; } else { } { rv = netxen_send_cmd_descs(adapter, (struct cmd_desc_type0 *)(& req), 1); } if (rv != 0) { { printk("\vERROR. Could not send interrupt coalescing parameters\n"); } } else { } return (rv); } } int netxen_config_hw_lro(struct netxen_adapter *adapter , int enable ) { nx_nic_req_t req ; u64 word ; int rv ; int tmp ; { { rv = 0; tmp = constant_test_bit(0L, (unsigned long const volatile *)(& adapter->state)); } if (tmp == 0) { return (0); } else { } { memset((void *)(& req), 0, 64UL); req.qhdr = 159383552ULL; word = ((unsigned long long )adapter->portnum << 16) | 24ULL; req.req_hdr = word; req.words[0] = (unsigned long long )enable; rv = netxen_send_cmd_descs(adapter, (struct cmd_desc_type0 *)(& req), 1); } if (rv != 0) { { printk("\vERROR. Could not send configure hw lro request\n"); } } else { } return (rv); } } int netxen_config_bridged_mode(struct netxen_adapter *adapter , int enable ) { nx_nic_req_t req ; u64 word ; int rv ; { rv = 0; if (((adapter->flags & 16U) != 0U) == enable) { return (rv); } else { } { memset((void *)(& req), 0, 64UL); req.qhdr = 159383552ULL; word = ((unsigned long long )adapter->portnum << 16) | 23ULL; req.req_hdr = word; req.words[0] = (unsigned long long )enable; rv = netxen_send_cmd_descs(adapter, (struct cmd_desc_type0 *)(& req), 1); } if (rv != 0) { { printk("\vERROR. Could not send configure bridge mode request\n"); } } else { } adapter->flags = adapter->flags ^ 16U; return (rv); } } int netxen_config_rss(struct netxen_adapter *adapter , int enable ) { nx_nic_req_t req ; u64 word ; int i ; int rv ; u64 key[5U] ; { { key[0] = 0xbeac01fa6a42b73bULL; key[1] = 0x8030f20c77cb2da3ULL; key[2] = 0xae7b30b4d0ca2bcbULL; key[3] = 4873897208919303485ULL; key[4] = 2691761430505084634ULL; memset((void *)(& req), 0, 64UL); req.qhdr = 159383552ULL; word = ((unsigned long long )adapter->portnum << 16) | 1ULL; req.req_hdr = word; word = (((unsigned long long )enable & 1ULL) << 8) | 1970324836974832ULL; req.words[0] = word; i = 0; } goto ldv_50789; ldv_50788: req.words[i + 1] = key[i]; i = i + 1; ldv_50789: ; if ((unsigned int )i <= 4U) { goto ldv_50788; } else { } { rv = netxen_send_cmd_descs(adapter, (struct cmd_desc_type0 *)(& req), 1); } if (rv != 0) { { printk("\v%s: could not configure RSS\n", (char *)(& (adapter->netdev)->name)); } } else { } return (rv); } } int netxen_config_ipaddr(struct netxen_adapter *adapter , __be32 ip , int cmd ) { nx_nic_req_t req ; u64 word ; int rv ; { { memset((void *)(& req), 0, 64UL); req.qhdr = 159383552ULL; word = ((unsigned long long )adapter->portnum << 16) | 18ULL; req.req_hdr = word; req.words[0] = (unsigned long long )cmd; memcpy((void *)(& req.words) + 1U, (void const *)(& ip), 4UL); rv = netxen_send_cmd_descs(adapter, (struct cmd_desc_type0 *)(& req), 1); } if (rv != 0) { { printk("\v%s: could not notify %s IP 0x%x reuqest\n", (char *)(& (adapter->netdev)->name), cmd == 2 ? (char *)"Add" : (char *)"Remove", ip); } } else { } return (rv); } } int netxen_linkevent_request(struct netxen_adapter *adapter , int enable ) { nx_nic_req_t req ; u64 word ; int rv ; { { memset((void *)(& req), 0, 64UL); req.qhdr = 159383552ULL; word = ((unsigned long long )adapter->portnum << 16) | 21ULL; req.req_hdr = word; req.words[0] = (unsigned long long )(enable | (enable << 8)); rv = netxen_send_cmd_descs(adapter, (struct cmd_desc_type0 *)(& req), 1); } if (rv != 0) { { printk("\v%s: could not configure link notification\n", (char *)(& (adapter->netdev)->name)); } } else { } return (rv); } } int netxen_send_lro_cleanup(struct netxen_adapter *adapter ) { nx_nic_req_t req ; u64 word ; int rv ; int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& adapter->state)); } if (tmp == 0) { return (0); } else { } { memset((void *)(& req), 0, 64UL); req.qhdr = 159383552ULL; word = ((unsigned long long )adapter->portnum << 16) | 288230376151711751ULL; req.req_hdr = word; rv = netxen_send_cmd_descs(adapter, (struct cmd_desc_type0 *)(& req), 1); } if (rv != 0) { { printk("\v%s: could not cleanup lro flows\n", (char *)(& (adapter->netdev)->name)); } } else { } return (rv); } } int netxen_nic_change_mtu(struct net_device *netdev , int mtu ) { struct netxen_adapter *adapter ; void *tmp ; int max_mtu ; int rc ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct netxen_adapter *)tmp; rc = 0; } if ((unsigned int )adapter->ahw.revision_id > 47U) { max_mtu = 9600; } else { max_mtu = 8000; } if (mtu > max_mtu) { { printk("\v%s: mtu > %d bytes unsupported\n", (char *)(& netdev->name), max_mtu); } return (-22); } else { } if ((unsigned long )adapter->set_mtu != (unsigned long )((int (*)(struct netxen_adapter * , int ))0)) { { rc = (*(adapter->set_mtu))(adapter, mtu); } } else { } if (rc == 0) { netdev->mtu = (unsigned int )mtu; } else { } return (rc); } } static int netxen_get_flash_block(struct netxen_adapter *adapter , int base , int size , __le32 *buf ) { int i ; int v ; int addr ; __le32 *ptr32 ; int tmp ; __le32 local ; int tmp___0 ; { addr = base; ptr32 = buf; i = 0; goto ldv_50830; ldv_50829: { tmp = netxen_rom_fast_read(adapter, addr, & v); } if (tmp == -1) { return (-1); } else { } *ptr32 = (unsigned int )v; ptr32 = ptr32 + 1; addr = (int )((unsigned int )addr + 4U); i = i + 1; ldv_50830: ; if ((unsigned long )i < (unsigned long )size / 4UL) { goto ldv_50829; } else { } if ((unsigned long )((char *)buf + (unsigned long )size) > (unsigned long )((char *)ptr32)) { { tmp___0 = netxen_rom_fast_read(adapter, addr, & v); } if (tmp___0 == -1) { return (-1); } else { } { local = (unsigned int )v; memcpy((void *)ptr32, (void const *)(& local), (size_t )((long )((char *)buf + (unsigned long )size) - (long )ptr32)); } } else { } return (0); } } int netxen_get_flash_mac_addr(struct netxen_adapter *adapter , u64 *mac ) { __le32 *pmac ; u32 offset ; int tmp ; int tmp___0 ; { { pmac = (__le32 *)mac; offset = (u32 )((unsigned long )adapter->portnum + 512131UL) * 8U; tmp = netxen_get_flash_block(adapter, (int )offset, 8, pmac); } if (tmp == -1) { return (-1); } else { } if (*mac == 0xffffffffffffffffULL) { { offset = (u32 )((unsigned long )adapter->portnum + 512000UL) * 8U; tmp___0 = netxen_get_flash_block(adapter, (int )offset, 8, pmac); } if (tmp___0 == -1) { return (-1); } else { } if (*mac == 0xffffffffffffffffULL) { return (-1); } else { } } else { } return (0); } } int netxen_p3_get_mac_addr(struct netxen_adapter *adapter , u64 *mac ) { uint32_t crbaddr ; uint32_t mac_hi ; uint32_t mac_lo ; int pci_func ; { { pci_func = (int )adapter->ahw.pci_func; crbaddr = (((uint32_t )((pci_func / 2) * 3) + ((uint32_t )pci_func & 1U)) + 34080880U) * 4U; mac_lo = (*(adapter->crb_read))(adapter, (ulong )crbaddr); mac_hi = (*(adapter->crb_read))(adapter, (ulong )(crbaddr + 4U)); } if (pci_func & 1) { *mac = (unsigned long long )(mac_lo >> 16) | ((unsigned long long )mac_hi << 16); } else { *mac = (unsigned long long )mac_lo | ((unsigned long long )mac_hi << 32); } return (0); } } static void netxen_nic_pci_set_crbwindow_128M(struct netxen_adapter *adapter , u32 window ) { void *offset ; int count ; u8 func ; unsigned int tmp ; int tmp___0 ; { count = 10; func = adapter->ahw.pci_func; if (adapter->ahw.crb_win == window) { return; } else { } { offset = adapter->ahw.pci_base1 + ((unsigned long )((unsigned int )func <= 3U ? (int )func * 32 + 66064 : ((int )func + -4) * 16 + 66220) + 1048576UL); writel(window, (void volatile *)offset); } ldv_50856: { tmp = readl((void const volatile *)offset); } if (window == tmp) { goto ldv_50854; } else { } { tmp___0 = __printk_ratelimit("netxen_nic_pci_set_crbwindow_128M"); } if (tmp___0 != 0) { { dev_warn((struct device const *)(& (adapter->pdev)->dev), "failed to set CRB window to %d\n", window == 33554432U); } } else { } { __const_udelay(4295UL); count = count - 1; } if (count > 0) { goto ldv_50856; } else { } ldv_50854: ; if (count > 0) { adapter->ahw.crb_win = window; } else { } return; } } static int netxen_nic_pci_get_crb_addr_2M(struct netxen_adapter *adapter , ulong off , void **addr ) { crb_128M_2M_sub_block_map_t *m ; { if (off - 100663296UL > 67108863UL) { return (-22); } else { } off = off - 100663296UL; m = (crb_128M_2M_sub_block_map_t *)(& crb_128M_2M_map[(off >> 20) & 63UL].sub_block) + ((off >> 16) & 15UL); if ((m->valid != 0U && (ulong )m->start_128M <= off) && (ulong )m->end_128M > off) { *addr = adapter->ahw.pci_base0 + ((unsigned long )m->start_2M + (off - (ulong )m->start_128M)); return (0); } else { } *addr = adapter->ahw.pci_base0 + ((off & 65535UL) + 1966080UL); return (1); } } static void netxen_nic_pci_set_crbwindow_2M(struct netxen_adapter *adapter , ulong off ) { u32 window ; void *addr ; int tmp ; unsigned int tmp___0 ; { { addr = adapter->ahw.pci_base0 + 1245280UL; off = off - 100663296UL; window = (crb_hub_agt[(off >> 20) & 63UL] << 20) | ((u32 )off & 983040U); writel(window, (void volatile *)addr); tmp___0 = readl((void const volatile *)addr); } if (tmp___0 != window) { { tmp = __printk_ratelimit("netxen_nic_pci_set_crbwindow_2M"); } if (tmp != 0) { { dev_warn((struct device const *)(& (adapter->pdev)->dev), "failed to set CRB window to %d off 0x%lx\n", window, off); } } else { } } else { } return; } } static void *netxen_nic_map_indirect_address_128M(struct netxen_adapter *adapter , ulong win_off , void **mem_ptr ) { ulong off ; void *addr ; resource_size_t mem_base ; { off = win_off; if (win_off - 134217729UL <= 33554430UL) { off = win_off - 33554432UL; } else { } { addr = pci_base_offset(adapter, off); } if ((unsigned long )addr != (unsigned long )((void *)0)) { return (addr); } else { } if (adapter->ahw.pci_len0 == 0UL) { off = off - 100663296UL; } else { } { mem_base = (adapter->pdev)->resource[0].start; *mem_ptr = ioremap(mem_base + ((unsigned long long )off & 0xfffffffffffff000ULL), 4096UL); } if ((unsigned long )*mem_ptr != (unsigned long )((void *)0)) { addr = *mem_ptr + (off & 4095UL); } else { } return (addr); } } static int netxen_nic_hw_write_wx_128M(struct netxen_adapter *adapter , ulong off , u32 data ) { unsigned long flags ; void *addr ; void *mem_ptr ; { { mem_ptr = (void *)0; addr = netxen_nic_map_indirect_address_128M(adapter, off, & mem_ptr); } if ((unsigned long )addr == (unsigned long )((void *)0)) { return (-5); } else { } if (off - 134217729UL <= 33554430UL) { { netxen_nic_io_write_128M(adapter, addr, data); } } else { { flags = _raw_write_lock_irqsave(& adapter->ahw.crb_lock); netxen_nic_pci_set_crbwindow_128M(adapter, 0U); writel(data, (void volatile *)addr); netxen_nic_pci_set_crbwindow_128M(adapter, 33554432U); _raw_write_unlock_irqrestore(& adapter->ahw.crb_lock, flags); } } if ((unsigned long )mem_ptr != (unsigned long )((void *)0)) { { iounmap((void volatile *)mem_ptr); } } else { } return (0); } } static u32 netxen_nic_hw_read_wx_128M(struct netxen_adapter *adapter , ulong off ) { unsigned long flags ; void *addr ; void *mem_ptr ; u32 data ; { { mem_ptr = (void *)0; addr = netxen_nic_map_indirect_address_128M(adapter, off, & mem_ptr); } if ((unsigned long )addr == (unsigned long )((void *)0)) { return (4294967291U); } else { } if (off - 134217729UL <= 33554430UL) { { data = netxen_nic_io_read_128M(adapter, addr); } } else { { flags = _raw_write_lock_irqsave(& adapter->ahw.crb_lock); netxen_nic_pci_set_crbwindow_128M(adapter, 0U); data = readl((void const volatile *)addr); netxen_nic_pci_set_crbwindow_128M(adapter, 33554432U); _raw_write_unlock_irqrestore(& adapter->ahw.crb_lock, flags); } } if ((unsigned long )mem_ptr != (unsigned long )((void *)0)) { { iounmap((void volatile *)mem_ptr); } } else { } return (data); } } static int netxen_nic_hw_write_wx_2M(struct netxen_adapter *adapter , ulong off , u32 data ) { unsigned long flags ; int rv ; void *addr ; { { addr = (void *)0; rv = netxen_nic_pci_get_crb_addr_2M(adapter, off, & addr); } if (rv == 0) { { writel(data, (void volatile *)addr); } return (0); } else { } if (rv > 0) { { flags = _raw_write_lock_irqsave(& adapter->ahw.crb_lock); netxen_pcie_sem_lock(adapter, 7, 136323364U); netxen_nic_pci_set_crbwindow_2M(adapter, off); writel(data, (void volatile *)addr); netxen_pcie_sem_unlock(adapter, 7); _raw_write_unlock_irqrestore(& adapter->ahw.crb_lock, flags); } return (0); } else { } { dev_err((struct device const *)(& (adapter->pdev)->dev), "%s: invalid offset: 0x%016lx\n", "netxen_nic_hw_write_wx_2M", off); dump_stack(); } return (-5); } } static u32 netxen_nic_hw_read_wx_2M(struct netxen_adapter *adapter , ulong off ) { unsigned long flags ; int rv ; u32 data ; void *addr ; unsigned int tmp ; { { addr = (void *)0; rv = netxen_nic_pci_get_crb_addr_2M(adapter, off, & addr); } if (rv == 0) { { tmp = readl((void const volatile *)addr); } return (tmp); } else { } if (rv > 0) { { flags = _raw_write_lock_irqsave(& adapter->ahw.crb_lock); netxen_pcie_sem_lock(adapter, 7, 136323364U); netxen_nic_pci_set_crbwindow_2M(adapter, off); data = readl((void const volatile *)addr); netxen_pcie_sem_unlock(adapter, 7); _raw_write_unlock_irqrestore(& adapter->ahw.crb_lock, flags); } return (data); } else { } { dev_err((struct device const *)(& (adapter->pdev)->dev), "%s: invalid offset: 0x%016lx\n", "netxen_nic_hw_read_wx_2M", off); dump_stack(); } return (4294967295U); } } static void netxen_nic_io_write_128M(struct netxen_adapter *adapter , void *addr , u32 data ) { { { _raw_read_lock(& adapter->ahw.crb_lock); writel(data, (void volatile *)addr); _raw_read_unlock(& adapter->ahw.crb_lock); } return; } } static u32 netxen_nic_io_read_128M(struct netxen_adapter *adapter , void *addr ) { u32 val ; { { _raw_read_lock(& adapter->ahw.crb_lock); val = readl((void const volatile *)addr); _raw_read_unlock(& adapter->ahw.crb_lock); } return (val); } } static void netxen_nic_io_write_2M(struct netxen_adapter *adapter , void *addr , u32 data ) { { { writel(data, (void volatile *)addr); } return; } } static u32 netxen_nic_io_read_2M(struct netxen_adapter *adapter , void *addr ) { unsigned int tmp ; { { tmp = readl((void const volatile *)addr); } return (tmp); } } void *netxen_get_ioaddr(struct netxen_adapter *adapter , u32 offset ) { void *addr ; int __ret_warn_on ; int tmp ; long tmp___0 ; { addr = (void *)0; if ((unsigned int )adapter->ahw.revision_id <= 37U) { if (offset - 100663297U <= 33554430U) { addr = adapter->ahw.pci_base1 + ((unsigned long )offset + 0xfffffffffa000000UL); } else { { addr = pci_base_offset(adapter, (unsigned long )offset - 33554432UL); } } } else { { tmp = netxen_nic_pci_get_crb_addr_2M(adapter, (ulong )offset, & addr); __ret_warn_on = tmp != 0; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/ethernet/qlogic/netxen/netxen_nic_hw.c", 1367); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } } return (addr); } } static int netxen_nic_pci_set_window_128M(struct netxen_adapter *adapter , u64 addr , u32 *start ) { { if (addr - 8589934592ULL <= 1048574ULL) { *start = (u32 )addr - 4211081216U; return (0); } else if (addr - 8594128896ULL <= 1048574ULL) { *start = (u32 )addr - 4214226944U; return (0); } else { } return (-5); } } static int netxen_nic_pci_set_window_2M(struct netxen_adapter *adapter , u64 addr , u32 *start ) { u32 window ; { { window = (u32 )((addr & 33488896ULL) >> 1) | ((u32 )(addr >> 25) & 1023U); writel(window, (void volatile *)adapter->ahw.ocm_win_crb); readl((void const volatile *)adapter->ahw.ocm_win_crb); adapter->ahw.ocm_win = window; *start = ((u32 )addr & 262143U) + 786432U; } return (0); } } static int netxen_nic_pci_mem_access_direct(struct netxen_adapter *adapter , u64 off , u64 *data , int op ) { void *addr ; void *mem_ptr ; resource_size_t mem_base ; int ret ; u32 start ; unsigned long tmp ; { { mem_ptr = (void *)0; ldv_spin_lock_101(& adapter->ahw.mem_lock); ret = (*(adapter->pci_set_window))(adapter, off, & start); } if (ret != 0) { goto unlock; } else { } if ((unsigned int )adapter->ahw.revision_id > 47U) { addr = adapter->ahw.pci_base0 + (unsigned long )start; } else { { addr = pci_base_offset(adapter, (unsigned long )start); } if ((unsigned long )addr != (unsigned long )((void *)0)) { goto noremap; } else { } { mem_base = (adapter->pdev)->resource[0].start + ((unsigned long long )start & 0xfffffffffffff000ULL); mem_ptr = ioremap(mem_base, 4096UL); } if ((unsigned long )mem_ptr == (unsigned long )((void *)0)) { ret = -5; goto unlock; } else { } addr = mem_ptr + ((unsigned long )start & 4095UL); } noremap: ; if (op == 0) { { tmp = readq((void const volatile *)addr); *data = (u64 )tmp; } } else { { writeq((unsigned long )*data, (void volatile *)addr); } } unlock: { ldv_spin_unlock_102(& adapter->ahw.mem_lock); } if ((unsigned long )mem_ptr != (unsigned long )((void *)0)) { { iounmap((void volatile *)mem_ptr); } } else { } return (ret); } } void netxen_pci_camqm_read_2M(struct netxen_adapter *adapter , u64 off , u64 *data ) { void *addr ; unsigned long tmp ; { { addr = adapter->ahw.pci_base0 + ((unsigned long )off + 0xfffffffffb8ff800UL); ldv_spin_lock_101(& adapter->ahw.mem_lock); tmp = readq((void const volatile *)addr); *data = (u64 )tmp; ldv_spin_unlock_102(& adapter->ahw.mem_lock); } return; } } void netxen_pci_camqm_write_2M(struct netxen_adapter *adapter , u64 off , u64 data ) { void *addr ; { { addr = adapter->ahw.pci_base0 + ((unsigned long )off + 0xfffffffffb8ff800UL); ldv_spin_lock_101(& adapter->ahw.mem_lock); writeq((unsigned long )data, (void volatile *)addr); ldv_spin_unlock_102(& adapter->ahw.mem_lock); } return; } } static int netxen_nic_pci_mem_write_128M(struct netxen_adapter *adapter , u64 off , u64 data ) { int j ; int ret ; u32 temp ; u32 off_lo ; u32 off_hi ; u32 addr_hi ; u32 data_hi ; u32 data_lo ; void *mem_crb ; int tmp ; int tmp___0 ; { if ((off & 7ULL) != 0ULL) { return (-5); } else { } if (off - 12884901888ULL <= 4194302ULL) { { mem_crb = pci_base_offset(adapter, 131072096UL); addr_hi = 24U; data_lo = 8U; data_hi = 12U; off_lo = (u32 )off & 4194296U; off_hi = (u32 )(off >> 22); } goto correct; } else { } if (off <= 268435454ULL) { { mem_crb = pci_base_offset(adapter, 102760592UL); addr_hi = 8U; data_lo = 16U; data_hi = 20U; off_lo = (u32 )off & 4294967288U; off_hi = 0U; } goto correct; } else { } if (off - 8589934592ULL <= 1048574ULL || off - 8594128896ULL <= 1048574ULL) { if (adapter->ahw.pci_len0 != 0UL) { { tmp = netxen_nic_pci_mem_access_direct(adapter, off, & data, 1); } return (tmp); } else { } } else { } return (-5); correct: { ldv_spin_lock_101(& adapter->ahw.mem_lock); netxen_nic_pci_set_crbwindow_128M(adapter, 0U); writel(off_lo, (void volatile *)mem_crb + 4U); writel(off_hi, (void volatile *)mem_crb + (unsigned long )addr_hi); writel((unsigned int )data, (void volatile *)mem_crb + (unsigned long )data_lo); writel((unsigned int )(data >> 32), (void volatile *)mem_crb + (unsigned long )data_hi); writel(6U, (void volatile *)mem_crb); writel(7U, (void volatile *)mem_crb); j = 0; } goto ldv_51015; ldv_51014: { temp = readl((void const volatile *)mem_crb); } if ((temp & 8U) == 0U) { goto ldv_51013; } else { } j = j + 1; ldv_51015: ; if (j <= 999) { goto ldv_51014; } else { } ldv_51013: ; if (j > 999) { { tmp___0 = __printk_ratelimit("netxen_nic_pci_mem_write_128M"); } if (tmp___0 != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "failed to write through agent\n"); } } else { } ret = -5; } else { ret = 0; } { netxen_nic_pci_set_crbwindow_128M(adapter, 33554432U); ldv_spin_unlock_102(& adapter->ahw.mem_lock); } return (ret); } } static int netxen_nic_pci_mem_read_128M(struct netxen_adapter *adapter , u64 off , u64 *data ) { int j ; int ret ; u32 temp ; u32 off_lo ; u32 off_hi ; u32 addr_hi ; u32 data_hi ; u32 data_lo ; u64 val ; void *mem_crb ; int tmp ; int tmp___0 ; unsigned int tmp___1 ; { if ((off & 7ULL) != 0ULL) { return (-5); } else { } if (off - 12884901888ULL <= 4194302ULL) { { mem_crb = pci_base_offset(adapter, 131072096UL); addr_hi = 24U; data_lo = 16U; data_hi = 20U; off_lo = (u32 )off & 4194296U; off_hi = (u32 )(off >> 22); } goto correct; } else { } if (off <= 268435454ULL) { { mem_crb = pci_base_offset(adapter, 102760592UL); addr_hi = 8U; data_lo = 24U; data_hi = 28U; off_lo = (u32 )off & 4294967288U; off_hi = 0U; } goto correct; } else { } if (off - 8589934592ULL <= 1048574ULL || off - 8594128896ULL <= 1048574ULL) { if (adapter->ahw.pci_len0 != 0UL) { { tmp = netxen_nic_pci_mem_access_direct(adapter, off, data, 0); } return (tmp); } else { } } else { } return (-5); correct: { ldv_spin_lock_101(& adapter->ahw.mem_lock); netxen_nic_pci_set_crbwindow_128M(adapter, 0U); writel(off_lo, (void volatile *)mem_crb + 4U); writel(off_hi, (void volatile *)mem_crb + (unsigned long )addr_hi); writel(2U, (void volatile *)mem_crb); writel(3U, (void volatile *)mem_crb); j = 0; } goto ldv_51035; ldv_51034: { temp = readl((void const volatile *)mem_crb); } if ((temp & 8U) == 0U) { goto ldv_51033; } else { } j = j + 1; ldv_51035: ; if (j <= 999) { goto ldv_51034; } else { } ldv_51033: ; if (j > 999) { { tmp___0 = __printk_ratelimit("netxen_nic_pci_mem_read_128M"); } if (tmp___0 != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "failed to read through agent\n"); } } else { } ret = -5; } else { { temp = readl((void const volatile *)mem_crb + (unsigned long )data_hi); val = (unsigned long long )temp << 32; tmp___1 = readl((void const volatile *)mem_crb + (unsigned long )data_lo); val = val | (u64 )tmp___1; *data = val; ret = 0; } } { netxen_nic_pci_set_crbwindow_128M(adapter, 33554432U); ldv_spin_unlock_102(& adapter->ahw.mem_lock); } return (ret); } } static int netxen_nic_pci_mem_write_2M(struct netxen_adapter *adapter , u64 off , u64 data ) { int j ; int ret ; u32 temp ; u32 off8 ; void *mem_crb ; int tmp ; int tmp___0 ; { if ((off & 7ULL) != 0ULL) { return (-5); } else { } if (off - 12884901888ULL <= 67108862ULL) { { mem_crb = netxen_get_ioaddr(adapter, 131072144U); } goto correct; } else { } if (off <= 268435454ULL) { { mem_crb = netxen_get_ioaddr(adapter, 102760592U); } goto correct; } else { } if (off - 8589934592ULL <= 1048574ULL) { { tmp = netxen_nic_pci_mem_access_direct(adapter, off, & data, 1); } return (tmp); } else { } return (-5); correct: { off8 = (u32 )off & 4294967288U; ldv_spin_lock_101(& adapter->ahw.mem_lock); writel(off8, (void volatile *)mem_crb + 4U); writel(0U, (void volatile *)mem_crb + 8U); writel((unsigned int )data, (void volatile *)mem_crb + 16U); writel((unsigned int )(data >> 32), (void volatile *)mem_crb + 20U); writel(6U, (void volatile *)mem_crb); writel(7U, (void volatile *)mem_crb); j = 0; } goto ldv_51050; ldv_51049: { temp = readl((void const volatile *)mem_crb); } if ((temp & 8U) == 0U) { goto ldv_51048; } else { } j = j + 1; ldv_51050: ; if (j <= 999) { goto ldv_51049; } else { } ldv_51048: ; if (j > 999) { { tmp___0 = __printk_ratelimit("netxen_nic_pci_mem_write_2M"); } if (tmp___0 != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "failed to write through agent\n"); } } else { } ret = -5; } else { ret = 0; } { ldv_spin_unlock_102(& adapter->ahw.mem_lock); } return (ret); } } static int netxen_nic_pci_mem_read_2M(struct netxen_adapter *adapter , u64 off , u64 *data ) { int j ; int ret ; u32 temp ; u32 off8 ; u64 val ; void *mem_crb ; int tmp ; int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; { if ((off & 7ULL) != 0ULL) { return (-5); } else { } if (off - 12884901888ULL <= 67108862ULL) { { mem_crb = netxen_get_ioaddr(adapter, 131072144U); } goto correct; } else { } if (off <= 268435454ULL) { { mem_crb = netxen_get_ioaddr(adapter, 102760592U); } goto correct; } else { } if (off - 8589934592ULL <= 1048574ULL) { { tmp = netxen_nic_pci_mem_access_direct(adapter, off, data, 0); } return (tmp); } else { } return (-5); correct: { off8 = (u32 )off & 4294967288U; ldv_spin_lock_101(& adapter->ahw.mem_lock); writel(off8, (void volatile *)mem_crb + 4U); writel(0U, (void volatile *)mem_crb + 8U); writel(2U, (void volatile *)mem_crb); writel(3U, (void volatile *)mem_crb); j = 0; } goto ldv_51066; ldv_51065: { temp = readl((void const volatile *)mem_crb); } if ((temp & 8U) == 0U) { goto ldv_51064; } else { } j = j + 1; ldv_51066: ; if (j <= 999) { goto ldv_51065; } else { } ldv_51064: ; if (j > 999) { { tmp___0 = __printk_ratelimit("netxen_nic_pci_mem_read_2M"); } if (tmp___0 != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "failed to read through agent\n"); } } else { } ret = -5; } else { { tmp___1 = readl((void const volatile *)mem_crb + 28U); val = (unsigned long long )tmp___1 << 32; tmp___2 = readl((void const volatile *)mem_crb + 24U); val = val | (u64 )tmp___2; *data = val; ret = 0; } } { ldv_spin_unlock_102(& adapter->ahw.mem_lock); } return (ret); } } void netxen_setup_hwops(struct netxen_adapter *adapter ) { { adapter->init_port = & netxen_niu_xg_init_port; adapter->stop_port = & netxen_niu_disable_xg_port; if ((unsigned int )adapter->ahw.revision_id <= 37U) { adapter->crb_read = & netxen_nic_hw_read_wx_128M; adapter->crb_write = & netxen_nic_hw_write_wx_128M; adapter->pci_set_window = & netxen_nic_pci_set_window_128M; adapter->pci_mem_read = & netxen_nic_pci_mem_read_128M; adapter->pci_mem_write = & netxen_nic_pci_mem_write_128M; adapter->io_read = & netxen_nic_io_read_128M; adapter->io_write = & netxen_nic_io_write_128M; adapter->macaddr_set = & netxen_p2_nic_set_mac_addr; adapter->set_multi = & netxen_p2_nic_set_multi; adapter->set_mtu = & netxen_nic_set_mtu_xgb; adapter->set_promisc = & netxen_p2_nic_set_promisc; } else { adapter->crb_read = & netxen_nic_hw_read_wx_2M; adapter->crb_write = & netxen_nic_hw_write_wx_2M; adapter->pci_set_window = & netxen_nic_pci_set_window_2M; adapter->pci_mem_read = & netxen_nic_pci_mem_read_2M; adapter->pci_mem_write = & netxen_nic_pci_mem_write_2M; adapter->io_read = & netxen_nic_io_read_2M; adapter->io_write = & netxen_nic_io_write_2M; adapter->set_mtu = & nx_fw_cmd_set_mtu; adapter->set_promisc = & netxen_p3_nic_set_promisc; adapter->macaddr_set = & netxen_p3_nic_set_mac_addr; adapter->set_multi = & netxen_p3_nic_set_multi; adapter->phy_read = & nx_fw_cmd_query_phy; adapter->phy_write = & nx_fw_cmd_set_phy; } return; } } int netxen_nic_get_board_info(struct netxen_adapter *adapter ) { int offset ; int board_type ; int magic ; struct pci_dev *pdev ; int tmp ; int tmp___0 ; u32 gpio ; u32 tmp___1 ; { { pdev = adapter->pdev; offset = 16680; tmp = netxen_rom_fast_read(adapter, offset, & magic); } if (tmp != 0) { return (-5); } else { } if (magic != 305419896) { { dev_err((struct device const *)(& pdev->dev), "invalid board config, magic=%08x\n", magic); } return (-5); } else { } { offset = 16392; tmp___0 = netxen_rom_fast_read(adapter, offset, & board_type); } if (tmp___0 != 0) { return (-5); } else { } if (board_type == 41) { { tmp___1 = (*(adapter->crb_read))(adapter, 154140684UL); gpio = tmp___1; } if ((gpio & 32768U) == 0U) { board_type = 128; } else { } } else { } adapter->ahw.board_type = (u16 )board_type; { if (board_type == 10) { goto case_10; } else { } if (board_type == 11) { goto case_11; } else { } if (board_type == 13) { goto case_13; } else { } if (board_type == 14) { goto case_14; } else { } if (board_type == 15) { goto case_15; } else { } if (board_type == 34) { goto case_34; } else { } if (board_type == 40) { goto case_40; } else { } if (board_type == 49) { goto case_49; } else { } if (board_type == 35) { goto case_35; } else { } if (board_type == 37) { goto case_37; } else { } if (board_type == 38) { goto case_38; } else { } if (board_type == 42) { goto case_42; } else { } if (board_type == 43) { goto case_43; } else { } if (board_type == 50) { goto case_50; } else { } if (board_type == 39) { goto case_39; } else { } if (board_type == 0) { goto case_0; } else { } if (board_type == 1) { goto case_1; } else { } if (board_type == 2) { goto case_2; } else { } if (board_type == 3) { goto case_3; } else { } if (board_type == 33) { goto case_33; } else { } if (board_type == 36) { goto case_36; } else { } if (board_type == 41) { goto case_41; } else { } if (board_type == 128) { goto case_128; } else { } goto switch_default; case_10: /* CIL Label */ adapter->ahw.port_type = 1U; goto ldv_51080; case_11: /* CIL Label */ ; case_13: /* CIL Label */ ; case_14: /* CIL Label */ ; case_15: /* CIL Label */ ; case_34: /* CIL Label */ ; case_40: /* CIL Label */ ; case_49: /* CIL Label */ ; case_35: /* CIL Label */ ; case_37: /* CIL Label */ ; case_38: /* CIL Label */ ; case_42: /* CIL Label */ ; case_43: /* CIL Label */ ; case_50: /* CIL Label */ ; case_39: /* CIL Label */ adapter->ahw.port_type = 2U; goto ldv_51080; case_0: /* CIL Label */ ; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_33: /* CIL Label */ ; case_36: /* CIL Label */ ; case_41: /* CIL Label */ adapter->ahw.port_type = 1U; goto ldv_51080; case_128: /* CIL Label */ adapter->ahw.port_type = (unsigned int )adapter->portnum <= 1U ? 2U : 1U; goto ldv_51080; switch_default: /* CIL Label */ { dev_err((struct device const *)(& pdev->dev), "unknown board type %x\n", board_type); adapter->ahw.port_type = 2U; } goto ldv_51080; switch_break: /* CIL Label */ ; } ldv_51080: ; return (0); } } static int netxen_nic_set_mtu_xgb(struct netxen_adapter *adapter , int new_mtu ) { { new_mtu = new_mtu + 100; if ((unsigned int )adapter->physical_port == 0U) { { (*(adapter->crb_write))(adapter, 107413532UL, (u32 )new_mtu); } } else { { (*(adapter->crb_write))(adapter, 107479068UL, (u32 )new_mtu); } } return (0); } } void netxen_nic_set_link_parameters(struct netxen_adapter *adapter ) { __u32 status ; __u32 autoneg ; __u32 port_mode___0 ; bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = netif_carrier_ok((struct net_device const *)adapter->netdev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { adapter->link_speed = 0U; adapter->link_duplex = 65535U; adapter->link_autoneg = 1U; return; } else { } if ((unsigned int )adapter->ahw.port_type == 1U) { { port_mode___0 = (*(adapter->crb_read))(adapter, 136323108UL); } if (port_mode___0 == 3U) { adapter->link_speed = 1000U; adapter->link_duplex = 1U; adapter->link_autoneg = 0U; return; } else { } if ((unsigned long )adapter->phy_read != (unsigned long )((int (*)(struct netxen_adapter * , u32 , u32 * ))0)) { { tmp___2 = (*(adapter->phy_read))(adapter, 17U, & status); } if (tmp___2 == 0) { if ((status & 1024U) != 0U) { { if (((status >> 14) & 3U) == 0U) { goto case_0; } else { } if (((status >> 14) & 3U) == 1U) { goto case_1; } else { } if (((status >> 14) & 3U) == 2U) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ adapter->link_speed = 10U; goto ldv_51115; case_1: /* CIL Label */ adapter->link_speed = 100U; goto ldv_51115; case_2: /* CIL Label */ adapter->link_speed = 1000U; goto ldv_51115; switch_default: /* CIL Label */ adapter->link_speed = 0U; goto ldv_51115; switch_break: /* CIL Label */ ; } ldv_51115: ; { if (((status >> 13) & 1U) == 0U) { goto case_0___0; } else { } if (((status >> 13) & 1U) == 1U) { goto case_1___0; } else { } goto switch_default___0; case_0___0: /* CIL Label */ adapter->link_duplex = 0U; goto ldv_51120; case_1___0: /* CIL Label */ adapter->link_duplex = 1U; goto ldv_51120; switch_default___0: /* CIL Label */ adapter->link_duplex = 65535U; goto ldv_51120; switch_break___0: /* CIL Label */ ; } ldv_51120: ; if ((unsigned long )adapter->phy_read != (unsigned long )((int (*)(struct netxen_adapter * , u32 , u32 * ))0)) { { tmp___1 = (*(adapter->phy_read))(adapter, 4U, & autoneg); } if (tmp___1 != 0) { adapter->link_autoneg = (u16 )autoneg; } else { } } else { } } else { goto link_down; } } else { goto link_down; } } else { link_down: adapter->link_speed = 0U; adapter->link_duplex = 65535U; } } else { } return; } } int netxen_nic_wol_supported(struct netxen_adapter *adapter ) { u32 wol_cfg ; { if ((unsigned int )adapter->ahw.revision_id <= 37U) { return (0); } else { } { wol_cfg = (*(adapter->crb_read))(adapter, 136323460UL); } if ((int )((unsigned long )wol_cfg >> (int )adapter->portnum) & 1) { { wol_cfg = (*(adapter->crb_read))(adapter, 136323464UL); } if ((wol_cfg & (u32 )(1 << (int )adapter->portnum)) != 0U) { return (1); } else { } } else { } return (0); } } static u32 netxen_md_cntrl(struct netxen_adapter *adapter , struct netxen_minidump_template_hdr *template_hdr , struct netxen_minidump_entry_crb *crtEntry ) { int loop_cnt ; int i ; int rv ; int timeout_flag ; u32 op_count ; u32 stride ; u32 opcode ; u32 read_value ; u32 addr ; unsigned long timeout ; unsigned long timeout_jiffies ; unsigned long tmp ; { rv = 0; addr = crtEntry->addr; op_count = crtEntry->op_count; stride = (u32 )crtEntry->__annonCompField103.__annonCompField102.addr_stride; loop_cnt = 0; goto ldv_51168; ldv_51167: i = 0; goto ldv_51165; ldv_51164: opcode = (u32 )((int )crtEntry->__annonCompField105.__annonCompField104.opcode & (1 << i)); if (opcode != 0U) { { if (opcode == 1U) { goto case_1; } else { } if (opcode == 2U) { goto case_2; } else { } if (opcode == 4U) { goto case_4; } else { } if (opcode == 8U) { goto case_8; } else { } if (opcode == 16U) { goto case_16; } else { } if (opcode == 32U) { goto case_32; } else { } if (opcode == 64U) { goto case_64; } else { } if (opcode == 128U) { goto case_128; } else { } goto switch_default; case_1: /* CIL Label */ { writel(addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); writel(crtEntry->value_1, (void volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )addr) + 1966080UL))); readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )addr) + 1966080UL))); } goto ldv_51145; case_2: /* CIL Label */ { writel(addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); read_value = readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )addr) + 1966080UL))); writel(addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); writel(read_value, (void volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )addr) + 1966080UL))); readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )addr) + 1966080UL))); } goto ldv_51145; case_4: /* CIL Label */ { writel(addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); read_value = readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )addr) + 1966080UL))); read_value = read_value & crtEntry->value_2; writel(addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); writel(read_value, (void volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )addr) + 1966080UL))); readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )addr) + 1966080UL))); } goto ldv_51145; case_8: /* CIL Label */ { writel(addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); read_value = readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )addr) + 1966080UL))); read_value = read_value | crtEntry->value_3; writel(addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); writel(read_value, (void volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )addr) + 1966080UL))); readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )addr) + 1966080UL))); } goto ldv_51145; case_16: /* CIL Label */ { timeout = (unsigned long )crtEntry->__annonCompField103.__annonCompField102.poll_timeout; writel(addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); read_value = readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )addr) + 1966080UL))); tmp = msecs_to_jiffies((unsigned int const )timeout); timeout_jiffies = tmp + (unsigned long )jiffies; timeout_flag = 0; } goto ldv_51157; ldv_51156: ; if ((long )(timeout_jiffies - (unsigned long )jiffies) < 0L) { timeout_flag = 1; } else { } { writel(addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); read_value = readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )addr) + 1966080UL))); } ldv_51157: ; if (timeout_flag == 0 && (read_value & crtEntry->value_2) != crtEntry->value_1) { goto ldv_51156; } else { } if (timeout_flag != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "%s : Timeout in poll_crb control operation.\n", "netxen_md_cntrl"); } return (4294967295U); } else { } goto ldv_51145; case_32: /* CIL Label */ ; if ((unsigned int )crtEntry->__annonCompField103.__annonCompField102.state_index_a != 0U) { addr = template_hdr->saved_state_array[(int )crtEntry->__annonCompField103.__annonCompField102.state_index_a]; } else { } { writel(addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); read_value = readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )addr) + 1966080UL))); template_hdr->saved_state_array[(int )crtEntry->__annonCompField105.__annonCompField104.state_index_v] = read_value; } goto ldv_51145; case_64: /* CIL Label */ ; if ((unsigned int )crtEntry->__annonCompField105.__annonCompField104.state_index_v != 0U) { read_value = template_hdr->saved_state_array[(int )crtEntry->__annonCompField105.__annonCompField104.state_index_v]; } else { read_value = crtEntry->value_1; } if ((unsigned int )crtEntry->__annonCompField103.__annonCompField102.state_index_a != 0U) { addr = template_hdr->saved_state_array[(int )crtEntry->__annonCompField103.__annonCompField102.state_index_a]; } else { } { writel(addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); writel(read_value, (void volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )addr) + 1966080UL))); readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )addr) + 1966080UL))); } goto ldv_51145; case_128: /* CIL Label */ read_value = template_hdr->saved_state_array[(int )crtEntry->__annonCompField105.__annonCompField104.state_index_v]; read_value = read_value << (int )crtEntry->__annonCompField105.__annonCompField104.shl; read_value = read_value >> (int )crtEntry->__annonCompField105.__annonCompField104.shr; if (crtEntry->value_2 != 0U) { read_value = read_value & crtEntry->value_2; } else { } read_value = read_value | crtEntry->value_3; read_value = read_value + crtEntry->value_1; template_hdr->saved_state_array[(int )crtEntry->__annonCompField105.__annonCompField104.state_index_v] = read_value; goto ldv_51145; switch_default: /* CIL Label */ rv = 1; goto ldv_51145; switch_break: /* CIL Label */ ; } ldv_51145: ; } else { } i = i + 1; ldv_51165: ; if ((unsigned int )i <= 7U) { goto ldv_51164; } else { } addr = addr + stride; loop_cnt = loop_cnt + 1; ldv_51168: ; if ((u32 )loop_cnt < op_count) { goto ldv_51167; } else { } return ((u32 )rv); } } static u32 netxen_md_rdmem(struct netxen_adapter *adapter , struct netxen_minidump_entry_rdmem *memEntry , u64 *data_buff ) { u64 addr ; u64 value ; int i ; int loop_cnt ; int tmp ; u64 *tmp___0 ; { value = 0ULL; i = 0; addr = (unsigned long long )memEntry->read_addr; loop_cnt = (int )memEntry->read_data_size; loop_cnt = (int )((unsigned long )loop_cnt / 8UL); i = 0; goto ldv_51181; ldv_51180: { tmp = netxen_nic_pci_mem_read_2M(adapter, addr, & value); } if (tmp != 0) { goto out; } else { } tmp___0 = data_buff; data_buff = data_buff + 1; *tmp___0 = value; addr = addr + 8ULL; i = i + 1; ldv_51181: ; if (i < loop_cnt) { goto ldv_51180; } else { } out: ; return ((u32 )((unsigned long )i) * 8U); } } static u32 netxen_md_rd_crb(struct netxen_adapter *adapter , struct netxen_minidump_entry_crb *crbEntry , u32 *data_buff ) { int loop_cnt ; u32 op_count ; u32 addr ; u32 stride ; u32 value ; u32 *tmp ; u32 *tmp___0 ; { addr = crbEntry->addr; op_count = crbEntry->op_count; stride = (u32 )crbEntry->__annonCompField103.__annonCompField102.addr_stride; loop_cnt = 0; goto ldv_51194; ldv_51193: { writel(addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); value = readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )addr) + 1966080UL))); tmp = data_buff; data_buff = data_buff + 1; *tmp = addr; tmp___0 = data_buff; data_buff = data_buff + 1; *tmp___0 = value; addr = addr + stride; loop_cnt = loop_cnt + 1; } ldv_51194: ; if ((u32 )loop_cnt < op_count) { goto ldv_51193; } else { } return ((u32 )((unsigned long )loop_cnt) * 8U); } } static u32 netxen_md_rdrom(struct netxen_adapter *adapter , struct netxen_minidump_entry_rdrom *romEntry , __le32 *data_buff ) { int i ; int count ; u32 size ; u32 lck_val ; u32 val ; u32 fl_addr ; u32 waddr ; u32 raddr ; __le32 *tmp ; { count = 0; fl_addr = romEntry->read_addr; size = romEntry->read_data_size / 4U; lock_try: { lck_val = readl((void const volatile *)adapter->ahw.pci_base0 + 1294352U); } if (lck_val == 0U && count <= 999) { { msleep(20U); count = count + 1; } goto lock_try; } else { } { writel((unsigned int )adapter->ahw.pci_func, (void volatile *)adapter->ahw.pci_base0 + 1777920U); i = 0; } goto ldv_51211; ldv_51210: { waddr = fl_addr & 4294901760U; writel(1108410368U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); writel(waddr, (void volatile *)adapter->ahw.pci_base0 + 1966128U); readl((void const volatile *)adapter->ahw.pci_base0 + 1966128U); raddr = (fl_addr & 65535U) + 1108672512U; writel(raddr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); val = readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )raddr) + 1966080UL))); tmp = data_buff; data_buff = data_buff + 1; *tmp = val; fl_addr = fl_addr + 4U; i = i + 1; } ldv_51211: ; if ((u32 )i < size) { goto ldv_51210; } else { } { readl((void const volatile *)adapter->ahw.pci_base0 + 1294356U); } return (romEntry->read_data_size); } } static u32 netxen_md_L2Cache(struct netxen_adapter *adapter , struct netxen_minidump_entry_cache *cacheEntry , u32 *data_buff ) { int loop_cnt ; int i ; int k ; int timeout_flag ; u32 addr ; u32 read_addr ; u32 read_value ; u32 cntrl_addr ; u32 tag_reg_addr ; u32 tag_value ; u32 read_cnt ; u8 cntl_value_w ; u8 cntl_value_r ; unsigned long timeout ; unsigned long timeout_jiffies ; unsigned int tmp ; unsigned long tmp___0 ; unsigned int tmp___1 ; u32 *tmp___2 ; { timeout_flag = 0; loop_cnt = (int )cacheEntry->op_count; read_addr = cacheEntry->read_addr; cntrl_addr = cacheEntry->control_addr; cntl_value_w = (u8 )cacheEntry->__annonCompField121.__annonCompField120.write_value; tag_reg_addr = cacheEntry->tag_reg_addr; tag_value = (u32 )cacheEntry->__annonCompField119.__annonCompField118.init_tag_value; read_cnt = (u32 )cacheEntry->__annonCompField123.__annonCompField122.read_addr_cnt; i = 0; goto ldv_51246; ldv_51245: { writel(tag_reg_addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); writel(tag_value, (void volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )tag_reg_addr) + 1966080UL))); readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )tag_reg_addr) + 1966080UL))); } if ((unsigned int )cntl_value_w != 0U) { { writel(cntrl_addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); writel((unsigned int )cntl_value_w, (void volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )cntrl_addr) + 1966080UL))); readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )cntrl_addr) + 1966080UL))); } } else { } if ((unsigned int )cacheEntry->__annonCompField121.__annonCompField120.poll_mask != 0U) { { timeout = (unsigned long )cacheEntry->__annonCompField121.__annonCompField120.poll_wait; writel(cntrl_addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); tmp = readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )cntrl_addr) + 1966080UL))); cntl_value_r = (u8 )tmp; tmp___0 = msecs_to_jiffies((unsigned int const )timeout); timeout_jiffies = tmp___0 + (unsigned long )jiffies; timeout_flag = 0; } goto ldv_51240; ldv_51239: ; if ((long )(timeout_jiffies - (unsigned long )jiffies) < 0L) { timeout_flag = 1; } else { } { writel(cntrl_addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); tmp___1 = readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )cntrl_addr) + 1966080UL))); cntl_value_r = (u8 )tmp___1; } ldv_51240: ; if (timeout_flag == 0 && (unsigned int )((int )cntl_value_r & (int )cacheEntry->__annonCompField121.__annonCompField120.poll_mask) != 0U) { goto ldv_51239; } else { } if (timeout_flag != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Timeout in processing L2 Tag poll.\n"); } return (4294967295U); } else { } } else { } addr = read_addr; k = 0; goto ldv_51243; ldv_51242: { writel(addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); read_value = readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )addr) + 1966080UL))); tmp___2 = data_buff; data_buff = data_buff + 1; *tmp___2 = read_value; addr = addr + (u32 )cacheEntry->__annonCompField123.__annonCompField122.read_addr_stride; k = k + 1; } ldv_51243: ; if ((u32 )k < read_cnt) { goto ldv_51242; } else { } tag_value = tag_value + (u32 )cacheEntry->__annonCompField119.__annonCompField118.tag_value_stride; i = i + 1; ldv_51246: ; if (i < loop_cnt) { goto ldv_51245; } else { } return ((read_cnt * (u32 )loop_cnt) * 4U); } } static u32 netxen_md_L1Cache(struct netxen_adapter *adapter , struct netxen_minidump_entry_cache *cacheEntry , u32 *data_buff ) { int i ; int k ; int loop_cnt ; u32 addr ; u32 read_addr ; u32 read_value ; u32 cntrl_addr ; u32 tag_reg_addr ; u32 tag_value ; u32 read_cnt ; u8 cntl_value_w ; u32 *tmp ; { loop_cnt = (int )cacheEntry->op_count; read_addr = cacheEntry->read_addr; cntrl_addr = cacheEntry->control_addr; cntl_value_w = (u8 )cacheEntry->__annonCompField121.__annonCompField120.write_value; tag_reg_addr = cacheEntry->tag_reg_addr; tag_value = (u32 )cacheEntry->__annonCompField119.__annonCompField118.init_tag_value; read_cnt = (u32 )cacheEntry->__annonCompField123.__annonCompField122.read_addr_cnt; i = 0; goto ldv_51268; ldv_51267: { writel(tag_reg_addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); writel(tag_value, (void volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )tag_reg_addr) + 1966080UL))); readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )tag_reg_addr) + 1966080UL))); writel(cntrl_addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); writel((unsigned int )cntl_value_w, (void volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )cntrl_addr) + 1966080UL))); readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )cntrl_addr) + 1966080UL))); addr = read_addr; k = 0; } goto ldv_51265; ldv_51264: { writel(addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); read_value = readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )addr) + 1966080UL))); tmp = data_buff; data_buff = data_buff + 1; *tmp = read_value; addr = addr + (u32 )cacheEntry->__annonCompField123.__annonCompField122.read_addr_stride; k = k + 1; } ldv_51265: ; if ((u32 )k < read_cnt) { goto ldv_51264; } else { } tag_value = tag_value + (u32 )cacheEntry->__annonCompField119.__annonCompField118.tag_value_stride; i = i + 1; ldv_51268: ; if (i < loop_cnt) { goto ldv_51267; } else { } return ((read_cnt * (u32 )loop_cnt) * 4U); } } static u32 netxen_md_rdocm(struct netxen_adapter *adapter , struct netxen_minidump_entry_rdocm *ocmEntry , u32 *data_buff ) { int i ; int loop_cnt ; u32 value ; void *addr ; u32 *tmp ; { addr = adapter->ahw.pci_base0 + (unsigned long )ocmEntry->read_addr; loop_cnt = (int )ocmEntry->op_count; i = 0; goto ldv_51280; ldv_51279: { value = readl((void const volatile *)addr); tmp = data_buff; data_buff = data_buff + 1; *tmp = value; addr = addr + (unsigned long )ocmEntry->__annonCompField127.__annonCompField126.read_addr_stride; i = i + 1; } ldv_51280: ; if (i < loop_cnt) { goto ldv_51279; } else { } return ((u32 )((unsigned long )i) * 4U); } } static u32 netxen_md_rdmux(struct netxen_adapter *adapter , struct netxen_minidump_entry_mux *muxEntry , u32 *data_buff ) { int loop_cnt ; u32 read_addr ; u32 read_value ; u32 select_addr ; u32 sel_value ; u32 *tmp ; u32 *tmp___0 ; { loop_cnt = 0; read_addr = muxEntry->read_addr; sel_value = muxEntry->select_value; select_addr = muxEntry->select_addr; loop_cnt = 0; goto ldv_51293; ldv_51292: { writel(select_addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); writel(sel_value, (void volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )select_addr) + 1966080UL))); readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )select_addr) + 1966080UL))); writel(read_addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); read_value = readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )read_addr) + 1966080UL))); tmp = data_buff; data_buff = data_buff + 1; *tmp = sel_value; tmp___0 = data_buff; data_buff = data_buff + 1; *tmp___0 = read_value; sel_value = sel_value + muxEntry->select_value_stride; loop_cnt = loop_cnt + 1; } ldv_51293: ; if ((u32 )loop_cnt < muxEntry->op_count) { goto ldv_51292; } else { } return ((u32 )((unsigned long )loop_cnt) * 8U); } } static u32 netxen_md_rdqueue(struct netxen_adapter *adapter , struct netxen_minidump_entry_queue *queueEntry , u32 *data_buff ) { int loop_cnt ; int k ; u32 queue_id ; u32 read_addr ; u32 read_value ; u32 read_stride ; u32 select_addr ; u32 read_cnt ; u32 *tmp ; { read_cnt = (u32 )queueEntry->__annonCompField133.__annonCompField132.read_addr_cnt; read_stride = (u32 )queueEntry->__annonCompField133.__annonCompField132.read_addr_stride; select_addr = queueEntry->select_addr; loop_cnt = 0; queue_id = 0U; goto ldv_51312; ldv_51311: { writel(select_addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); writel(queue_id, (void volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )select_addr) + 1966080UL))); readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )select_addr) + 1966080UL))); read_addr = queueEntry->read_addr; k = 0; } goto ldv_51309; ldv_51308: { writel(read_addr & 4294901760U, (void volatile *)adapter->ahw.pci_base0 + 1245280U); readl((void const volatile *)adapter->ahw.pci_base0 + 1245280U); read_value = readl((void const volatile *)(adapter->ahw.pci_base0 + ((unsigned long )((unsigned short )read_addr) + 1966080UL))); tmp = data_buff; data_buff = data_buff + 1; *tmp = read_value; read_addr = read_addr + read_stride; k = k - 1; } ldv_51309: ; if ((u32 )k < read_cnt) { goto ldv_51308; } else { } queue_id = queue_id + (u32 )queueEntry->__annonCompField131.__annonCompField130.queue_id_stride; loop_cnt = loop_cnt + 1; ldv_51312: ; if ((u32 )loop_cnt < queueEntry->op_count) { goto ldv_51311; } else { } return (((u32 )((unsigned long )loop_cnt) * read_cnt) * 4U); } } static int netxen_md_entry_err_chk(struct netxen_adapter *adapter , struct netxen_minidump_entry *entry , int esize ) { { if (esize < 0) { entry->hdr.__annonCompField89.__annonCompField88.driver_flags = (u8 )((unsigned int )entry->hdr.__annonCompField89.__annonCompField88.driver_flags | 128U); return (esize); } else { } if ((u32 )esize != entry->hdr.entry_capture_size) { { entry->hdr.entry_capture_size = (u32 )esize; entry->hdr.__annonCompField89.__annonCompField88.driver_flags = (u8 )((unsigned int )entry->hdr.__annonCompField89.__annonCompField88.driver_flags | 64U); _dev_info((struct device const *)(& (adapter->pdev)->dev), "Invalidate dump, Type:%d\tMask:%d\tSize:%dCap_size:%d\n", entry->hdr.entry_type, (int )entry->hdr.__annonCompField89.__annonCompField88.entry_capture_mask, esize, entry->hdr.entry_capture_size); _dev_info((struct device const *)(& (adapter->pdev)->dev), "Aborting further dump capture\n"); } } else { } return (0); } } static int netxen_parse_md_template(struct netxen_adapter *adapter ) { int num_of_entries ; int buff_level ; int e_cnt ; int esize ; int end_cnt ; int rv ; int sane_start ; int sane_end ; char *dbuff ; void *template_buff ; char *dump_buff ; int capture_mask ; struct netxen_minidump_template_hdr *template_hdr ; struct netxen_minidump_entry *entry ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; u32 tmp___4 ; u32 tmp___5 ; u32 tmp___6 ; u32 tmp___7 ; { end_cnt = 0; rv = 0; sane_start = 0; sane_end = 0; template_buff = adapter->mdump.md_template; dump_buff = (char *)adapter->mdump.md_capture_buff; capture_mask = (int )adapter->mdump.md_capture_mask; if ((capture_mask & 3) != 3) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Capture mask %02x below minimum needed for valid firmware dump\n", capture_mask); } return (-22); } else { } { template_hdr = (struct netxen_minidump_template_hdr *)template_buff; num_of_entries = (int )template_hdr->num_of_entries; entry = (struct netxen_minidump_entry *)template_buff + (unsigned long )template_hdr->first_entry_offset; memcpy((void *)dump_buff, (void const *)template_buff, (size_t )adapter->mdump.md_template_size); dump_buff = dump_buff + (unsigned long )adapter->mdump.md_template_size; } if (template_hdr->entry_type == 99U) { sane_start = 1; } else { } e_cnt = 0; buff_level = 0; goto ldv_51357; ldv_51356: ; if (((int )entry->hdr.__annonCompField89.__annonCompField88.entry_capture_mask & capture_mask) == 0) { entry->hdr.__annonCompField89.__annonCompField88.driver_flags = (u8 )((unsigned int )entry->hdr.__annonCompField89.__annonCompField88.driver_flags | 128U); entry = entry + (unsigned long )entry->hdr.entry_size; goto ldv_51336; } else { } { if (entry->hdr.entry_type == 0U) { goto case_0; } else { } if (entry->hdr.entry_type == 255U) { goto case_255; } else { } if (entry->hdr.entry_type == 98U) { goto case_98; } else { } if (entry->hdr.entry_type == 1U) { goto case_1; } else { } if (entry->hdr.entry_type == 73U) { goto case_73; } else { } if (entry->hdr.entry_type == 72U) { goto case_72; } else { } if (entry->hdr.entry_type == 4U) { goto case_4; } else { } if (entry->hdr.entry_type == 71U) { goto case_71; } else { } if (entry->hdr.entry_type == 22U) { goto case_22; } else { } if (entry->hdr.entry_type == 21U) { goto case_21; } else { } if (entry->hdr.entry_type == 23U) { goto case_23; } else { } if (entry->hdr.entry_type == 24U) { goto case_24; } else { } if (entry->hdr.entry_type == 11U) { goto case_11; } else { } if (entry->hdr.entry_type == 12U) { goto case_12; } else { } if (entry->hdr.entry_type == 6U) { goto case_6; } else { } if (entry->hdr.entry_type == 2U) { goto case_2; } else { } if (entry->hdr.entry_type == 3U) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ entry->hdr.__annonCompField89.__annonCompField88.driver_flags = (u8 )((unsigned int )entry->hdr.__annonCompField89.__annonCompField88.driver_flags | 128U); goto ldv_51338; case_255: /* CIL Label */ entry->hdr.__annonCompField89.__annonCompField88.driver_flags = (u8 )((unsigned int )entry->hdr.__annonCompField89.__annonCompField88.driver_flags | 128U); if (sane_end == 0) { end_cnt = e_cnt; } else { } sane_end = sane_end + 1; goto ldv_51338; case_98: /* CIL Label */ { tmp = netxen_md_cntrl(adapter, template_hdr, (struct netxen_minidump_entry_crb *)entry); rv = (int )tmp; } if (rv != 0) { entry->hdr.__annonCompField89.__annonCompField88.driver_flags = (u8 )((unsigned int )entry->hdr.__annonCompField89.__annonCompField88.driver_flags | 128U); } else { } goto ldv_51338; case_1: /* CIL Label */ { dbuff = dump_buff + (unsigned long )buff_level; tmp___0 = netxen_md_rd_crb(adapter, (struct netxen_minidump_entry_crb *)entry, (u32 *)dbuff); esize = (int )tmp___0; rv = netxen_md_entry_err_chk(adapter, entry, esize); } if (rv < 0) { goto ldv_51338; } else { } buff_level = buff_level + esize; goto ldv_51338; case_73: /* CIL Label */ ; case_72: /* CIL Label */ { dbuff = dump_buff + (unsigned long )buff_level; tmp___1 = netxen_md_rdmem(adapter, (struct netxen_minidump_entry_rdmem *)entry, (u64 *)dbuff); esize = (int )tmp___1; rv = netxen_md_entry_err_chk(adapter, entry, esize); } if (rv < 0) { goto ldv_51338; } else { } buff_level = buff_level + esize; goto ldv_51338; case_4: /* CIL Label */ ; case_71: /* CIL Label */ { dbuff = dump_buff + (unsigned long )buff_level; tmp___2 = netxen_md_rdrom(adapter, (struct netxen_minidump_entry_rdrom *)entry, (__le32 *)dbuff); esize = (int )tmp___2; rv = netxen_md_entry_err_chk(adapter, entry, esize); } if (rv < 0) { goto ldv_51338; } else { } buff_level = buff_level + esize; goto ldv_51338; case_22: /* CIL Label */ ; case_21: /* CIL Label */ ; case_23: /* CIL Label */ ; case_24: /* CIL Label */ { dbuff = dump_buff + (unsigned long )buff_level; tmp___3 = netxen_md_L2Cache(adapter, (struct netxen_minidump_entry_cache *)entry, (u32 *)dbuff); esize = (int )tmp___3; rv = netxen_md_entry_err_chk(adapter, entry, esize); } if (rv < 0) { goto ldv_51338; } else { } buff_level = buff_level + esize; goto ldv_51338; case_11: /* CIL Label */ ; case_12: /* CIL Label */ { dbuff = dump_buff + (unsigned long )buff_level; tmp___4 = netxen_md_L1Cache(adapter, (struct netxen_minidump_entry_cache *)entry, (u32 *)dbuff); esize = (int )tmp___4; rv = netxen_md_entry_err_chk(adapter, entry, esize); } if (rv < 0) { goto ldv_51338; } else { } buff_level = buff_level + esize; goto ldv_51338; case_6: /* CIL Label */ { dbuff = dump_buff + (unsigned long )buff_level; tmp___5 = netxen_md_rdocm(adapter, (struct netxen_minidump_entry_rdocm *)entry, (u32 *)dbuff); esize = (int )tmp___5; rv = netxen_md_entry_err_chk(adapter, entry, esize); } if (rv < 0) { goto ldv_51338; } else { } buff_level = buff_level + esize; goto ldv_51338; case_2: /* CIL Label */ { dbuff = dump_buff + (unsigned long )buff_level; tmp___6 = netxen_md_rdmux(adapter, (struct netxen_minidump_entry_mux *)entry, (u32 *)dbuff); esize = (int )tmp___6; rv = netxen_md_entry_err_chk(adapter, entry, esize); } if (rv < 0) { goto ldv_51338; } else { } buff_level = buff_level + esize; goto ldv_51338; case_3: /* CIL Label */ { dbuff = dump_buff + (unsigned long )buff_level; tmp___7 = netxen_md_rdqueue(adapter, (struct netxen_minidump_entry_queue *)entry, (u32 *)dbuff); esize = (int )tmp___7; rv = netxen_md_entry_err_chk(adapter, entry, esize); } if (rv < 0) { goto ldv_51338; } else { } buff_level = buff_level + esize; goto ldv_51338; switch_default: /* CIL Label */ entry->hdr.__annonCompField89.__annonCompField88.driver_flags = (u8 )((unsigned int )entry->hdr.__annonCompField89.__annonCompField88.driver_flags | 128U); goto ldv_51338; switch_break: /* CIL Label */ ; } ldv_51338: entry = entry + (unsigned long )entry->hdr.entry_size; ldv_51336: e_cnt = e_cnt + 1; ldv_51357: ; if (e_cnt < num_of_entries) { goto ldv_51356; } else { } if (sane_start == 0 || sane_end > 1) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Firmware minidump template configuration error.\n"); } } else { } return (0); } } static int netxen_collect_minidump(struct netxen_adapter *adapter ) { int ret ; struct netxen_minidump_template_hdr *hdr ; struct timespec val ; { { ret = 0; hdr = (struct netxen_minidump_template_hdr *)adapter->mdump.md_template; hdr->driver_capture_mask = (u32 )adapter->mdump.md_capture_mask; jiffies_to_timespec(jiffies, & val); hdr->driver_timestamp = (unsigned int )val.tv_sec; hdr->driver_info_word2 = adapter->fw_version; hdr->driver_info_word3 = (*(adapter->crb_read))(adapter, 136324256UL); ret = netxen_parse_md_template(adapter); } if (ret != 0) { return (ret); } else { } return (ret); } } void netxen_dump_fw(struct netxen_adapter *adapter ) { struct netxen_minidump_template_hdr *hdr ; int i ; int k ; int data_size ; u32 capture_mask ; int tmp ; { data_size = 0; hdr = (struct netxen_minidump_template_hdr *)adapter->mdump.md_template; capture_mask = (u32 )adapter->mdump.md_capture_mask; i = 2; k = 1; goto ldv_51374; ldv_51373: ; if (((u32 )i & capture_mask) != 0U) { data_size = (int )((u32 )data_size + hdr->capture_size_array[k]); } else { } i = i << 1; k = k + 1; ldv_51374: ; if ((i & 255) != 0) { goto ldv_51373; } else { } if (data_size == 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Invalid cap sizes for capture_mask=0x%x\n", (int )adapter->mdump.md_capture_mask); } return; } else { } adapter->mdump.md_capture_size = (u32 )data_size; adapter->mdump.md_dump_size = adapter->mdump.md_template_size + adapter->mdump.md_capture_size; if ((unsigned long )adapter->mdump.md_capture_buff == (unsigned long )((void *)0)) { { adapter->mdump.md_capture_buff = ldv_vzalloc_115((unsigned long )adapter->mdump.md_dump_size); } if ((unsigned long )adapter->mdump.md_capture_buff == (unsigned long )((void *)0)) { return; } else { } { tmp = netxen_collect_minidump(adapter); } if (tmp != 0) { { adapter->mdump.has_valid_dump = 0U; adapter->mdump.md_dump_size = 0U; vfree((void const *)adapter->mdump.md_capture_buff); adapter->mdump.md_capture_buff = (void *)0; dev_err((struct device const *)(& (adapter->pdev)->dev), "Error in collecting firmware minidump.\n"); } } else { { adapter->mdump.md_timestamp = (u64 )jiffies; adapter->mdump.has_valid_dump = 1U; adapter->fw_mdump_rdy = 1; _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s Successfully collected fw dump.\n", (char *)(& (adapter->netdev)->name)); } } } else { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Cannot overwrite previously collected firmware minidump.\n"); adapter->fw_mdump_rdy = 1; } return; } return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } __inline static void ldv_spin_lock_bh_70(spinlock_t *lock ) { { { ldv_spin_lock__xmit_lock_of_netdev_queue(); spin_lock_bh(lock); } return; } } __inline static void ldv_spin_unlock_bh_73(spinlock_t *lock ) { { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); spin_unlock_bh(lock); } return; } } __inline static void ldv_spin_lock_101(spinlock_t *lock ) { { { ldv_spin_lock_mem_lock_of_netxen_hardware_context(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_102(spinlock_t *lock ) { { { ldv_spin_unlock_mem_lock_of_netxen_hardware_context(); spin_unlock(lock); } return; } } static void *ldv_vzalloc_115(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc_unknown_size(); } return (tmp); } } extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void *external_allocated_data(void) ; int ldv_undef_int(void) ; void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; extern struct module __this_module ; __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } extern void __might_sleep(char const * , int , int ) ; extern int kstrtoull(char const * , unsigned int , unsigned long long * ) ; __inline static int kstrtoul(char const *s , unsigned int base , unsigned long *res ) { int tmp ; { { tmp = kstrtoull(s, base, (unsigned long long *)res); } return (tmp); } } extern int sprintf(char * , char const * , ...) ; extern unsigned long __phys_addr(unsigned long ) ; extern char *strcpy(char * , char const * ) ; extern int __bitmap_weight(unsigned long const * , int ) ; __inline static int bitmap_weight(unsigned long const *src , int nbits ) { int tmp___0 ; { { tmp___0 = __bitmap_weight(src, nbits); } return (tmp___0); } } extern int nr_cpu_ids ; extern struct cpumask const * const cpu_online_mask ; __inline static unsigned int cpumask_weight(struct cpumask const *srcp ) { int tmp ; { { tmp = bitmap_weight((unsigned long const *)(& srcp->bits), nr_cpu_ids); } return ((unsigned int )tmp); } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { { __asm__ volatile ("":); return (0); return (1); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void lock_acquire(struct lockdep_map * , unsigned int , int , int , int , struct lockdep_map * , unsigned long ) ; extern void lock_release(struct lockdep_map * , int , unsigned long ) ; extern int lock_is_held(struct lockdep_map * ) ; extern void lockdep_rcu_suspicious(char const * , int const , char const * ) ; void ldv_spin_lock_tx_clean_lock_of_netxen_adapter(void) ; void ldv_spin_unlock_tx_clean_lock_of_netxen_adapter(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; extern int __preempt_count ; __inline static void __preempt_count_add(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (val)); } goto ldv_6638; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6638; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6638; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (val)); } goto ldv_6638; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6638: ; return; } } __inline static void __preempt_count_sub(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (- val)); } goto ldv_6650; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6650; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6650; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (- val)); } goto ldv_6650; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6650: ; return; } } extern void __local_bh_disable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_disable(void) { { { __local_bh_disable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __local_bh_enable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_enable(void) { { { __local_bh_enable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void __rwlock_init(rwlock_t * , char const * , struct lock_class_key * ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void ldv_spin_lock_69(spinlock_t *lock ) ; __inline static void ldv_spin_lock_103___0(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_72(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_104___0(spinlock_t *lock ) ; __inline static void __rcu_read_lock(void) { { { __preempt_count_add(1); __asm__ volatile ("": : : "memory"); } return; } } __inline static void __rcu_read_unlock(void) { { { __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); } return; } } extern bool rcu_is_watching(void) ; extern bool rcu_lockdep_current_cpu_online(void) ; __inline static void rcu_lock_acquire(struct lockdep_map *map ) { { { lock_acquire(map, 0U, 0, 2, 1, (struct lockdep_map *)0, (unsigned long )((void *)0)); } return; } } __inline static void rcu_lock_release(struct lockdep_map *map ) { { { lock_release(map, 1, (unsigned long )((void *)0)); } return; } } extern struct lockdep_map rcu_lock_map ; extern int debug_lockdep_rcu_enabled(void) ; __inline static int rcu_read_lock_held(void) { int tmp ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; int tmp___4 ; { { tmp = debug_lockdep_rcu_enabled(); } if (tmp == 0) { return (1); } else { } { tmp___0 = rcu_is_watching(); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (0); } else { } { tmp___2 = rcu_lockdep_current_cpu_online(); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { return (0); } else { } { tmp___4 = lock_is_held(& rcu_lock_map); } return (tmp___4); } } __inline static void rcu_read_lock(void) { bool __warned ; int tmp ; bool tmp___0 ; int tmp___1 ; { { __rcu_read_lock(); rcu_lock_acquire(& rcu_lock_map); tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_is_watching(); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { __warned = 1; lockdep_rcu_suspicious("include/linux/rcupdate.h", 812, "rcu_read_lock() used illegally while idle"); } } else { } } else { } return; } } __inline static void rcu_read_unlock(void) { bool __warned ; int tmp ; bool tmp___0 ; int tmp___1 ; { { tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_is_watching(); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { __warned = 1; lockdep_rcu_suspicious("include/linux/rcupdate.h", 833, "rcu_read_unlock() used illegally while idle"); } } else { } } else { } { rcu_lock_release(& rcu_lock_map); __rcu_read_unlock(); } return; } } extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern void delayed_work_timer_fn(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool queue_delayed_work_on(int , struct workqueue_struct * , struct delayed_work * , unsigned long ) ; extern bool cancel_work_sync(struct work_struct * ) ; extern bool cancel_delayed_work_sync(struct delayed_work * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool queue_delayed_work(struct workqueue_struct *wq , struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { { tmp = queue_delayed_work_on(8192, wq, dwork, delay); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } __inline static bool schedule_delayed_work(struct delayed_work *dwork , unsigned long delay ) { bool tmp ; { { tmp = queue_delayed_work(system_wq, dwork, delay); } return (tmp); } } extern int device_create_file(struct device * , struct device_attribute const * ) ; extern void device_remove_file(struct device * , struct device_attribute const * ) ; extern int device_create_bin_file(struct device * , struct bin_attribute const * ) ; extern void device_remove_bin_file(struct device * , struct bin_attribute const * ) ; static void *ldv_dev_get_drvdata_81(struct device const *dev ) ; static void *ldv_dev_get_drvdata_110(struct device const *dev ) ; static void *ldv_dev_get_drvdata_111(struct device const *dev ) ; static void *ldv_dev_get_drvdata_112(struct device const *dev ) ; static void *ldv_dev_get_drvdata_113(struct device const *dev ) ; static void *ldv_dev_get_drvdata_114(struct device const *dev ) ; static void *ldv_dev_get_drvdata_115(struct device const *dev ) ; static void *ldv_dev_get_drvdata_116(struct device const *dev ) ; static int ldv_dev_set_drvdata_82(struct device *dev , void *data ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (79), "i" (12UL)); __builtin_unreachable(); } } else { } { addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); } return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (91), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 0); } return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } extern unsigned char *__pskb_pull_tail(struct sk_buff * , int ) ; __inline static unsigned char *skb_transport_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->transport_header); } } __inline static unsigned char *skb_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->network_header); } } __inline static int skb_transport_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } __inline static int skb_network_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); } return (tmp___0); } } __inline static void skb_copy_from_linear_data(struct sk_buff const *skb , void *to , unsigned int const len ) { { { memcpy(to, (void const *)skb->data, (size_t )len); } return; } } __inline static void skb_copy_from_linear_data_offset(struct sk_buff const *skb , int const offset , void *to , unsigned int const len ) { { { memcpy(to, (void const *)skb->data + (unsigned long )offset, (size_t )len); } return; } } __inline static bool skb_is_gso(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_end_pointer(skb); } return ((unsigned int )((struct skb_shared_info *)tmp)->gso_size != 0U); } } extern struct net init_net ; extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); } return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = napi_disable_pending(n); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = test_and_clear_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } __inline static void napi_schedule(struct napi_struct *n ) { bool tmp ; { { tmp = napi_schedule_prep(n); } if ((int )tmp) { { __napi_schedule(n); } } else { } return; } } extern void napi_complete(struct napi_struct * ) ; __inline static void napi_disable(struct napi_struct *n ) { int tmp ; { { __might_sleep("include/linux/netdevice.h", 486, 0); set_bit(1L, (unsigned long volatile *)(& n->state)); } goto ldv_38496; ldv_38495: { msleep(1U); } ldv_38496: { tmp = test_and_clear_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp != 0) { goto ldv_38495; } else { } { clear_bit(1L, (unsigned long volatile *)(& n->state)); } return; } } __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (502), "i" (12UL)); __builtin_unreachable(); } } else { } { __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); } return; } } __inline static void napi_synchronize(struct napi_struct const *n ) { int tmp ; { goto ldv_38505; ldv_38504: { msleep(1U); } ldv_38505: { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); } if (tmp != 0) { goto ldv_38504; } else { } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void netif_napi_del(struct napi_struct * ) ; extern int register_netdevice_notifier(struct notifier_block * ) ; static int ldv_register_netdevice_notifier_117(struct notifier_block *ldv_func_arg1 ) ; extern int unregister_netdevice_notifier(struct notifier_block * ) ; static int ldv_unregister_netdevice_notifier_122(struct notifier_block *ldv_func_arg1 ) ; __inline static struct net_device *netdev_notifier_info_to_dev(struct netdev_notifier_info const *info ) { { return ((struct net_device *)info->dev); } } extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_107(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_109(struct net_device *ldv_func_arg1 ) ; __inline static void netif_start_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_start_queue(tmp); } return; } } __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); } return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); } return; } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { { __dev_kfree_skb_any(skb, 1); } return; } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; __inline static void __netif_tx_lock(struct netdev_queue *txq , int cpu ) { { { ldv_spin_lock_69(& txq->_xmit_lock); txq->xmit_lock_owner = cpu; } return; } } __inline static void __netif_tx_unlock(struct netdev_queue *txq ) { { { txq->xmit_lock_owner = -1; ldv_spin_unlock_72(& txq->_xmit_lock); } return; } } __inline static void netif_tx_disable(struct net_device *dev ) { unsigned int i ; int cpu ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { { local_bh_disable(); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_39958; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39958; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39958; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39958; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_39958: pscr_ret__ = pfo_ret__; goto ldv_39964; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39968; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39968; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39968; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39968; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_39968: pscr_ret__ = pfo_ret_____0; goto ldv_39964; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39977; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39977; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39977; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39977; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_39977: pscr_ret__ = pfo_ret_____1; goto ldv_39964; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39986; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39986; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39986; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39986; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_39986: pscr_ret__ = pfo_ret_____2; goto ldv_39964; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_39964; switch_break: /* CIL Label */ ; } ldv_39964: cpu = pscr_ret__; i = 0U; goto ldv_39996; ldv_39995: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; __netif_tx_lock(txq, cpu); netif_tx_stop_queue(txq); __netif_tx_unlock(txq); i = i + 1U; } ldv_39996: ; if (i < dev->num_tx_queues) { goto ldv_39995; } else { } { local_bh_enable(); } return; } } extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_105(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_108(struct net_device *ldv_func_arg1 ) ; extern struct net_device *netdev_master_upper_dev_get_rcu(struct net_device * ) ; __inline static bool netif_is_bond_master(struct net_device *dev ) { { return (*((unsigned long *)dev + 63UL) == 137438954496UL); } } __inline static bool netif_is_bond_slave(struct net_device *dev ) { { return (*((unsigned long *)dev + 63UL) == 137438955520UL); } } extern int netdev_err(struct net_device const * , char const * , ...) ; extern int netdev_info(struct net_device const * , char const * , ...) ; extern int pci_find_capability(struct pci_dev * , int ) ; extern int pci_find_ext_capability(struct pci_dev * , int ) ; extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; extern int pci_bus_write_config_dword(struct pci_bus * , unsigned int , int , u32 ) ; __inline static int pci_read_config_dword(struct pci_dev const *dev , int where , u32 *val ) { int tmp ; { { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_write_config_dword(struct pci_dev const *dev , int where , u32 val ) { int tmp ; { { tmp = pci_bus_write_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern pci_power_t pci_choose_state(struct pci_dev * , pm_message_t ) ; extern int __pci_enable_wake(struct pci_dev * , pci_power_t , bool , bool ) ; __inline static int pci_enable_wake(struct pci_dev *dev , pci_power_t state , bool enable ) { int tmp ; { { tmp = __pci_enable_wake(dev, state, 0, (int )enable); } return (tmp); } } extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_119(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_120(struct pci_driver *ldv_func_arg1 ) ; extern int pci_enable_msi_block(struct pci_dev * , int ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern int pci_enable_msix(struct pci_dev * , struct msix_entry * , int ) ; extern void pci_disable_msix(struct pci_dev * ) ; __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } __inline static void pci_unmap_page(struct pci_dev *hwdev , dma_addr_t dma_address , size_t size , int direction ) { { { dma_unmap_page((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_address, size, (enum dma_data_direction )direction); } return; } } __inline static int pci_dma_mapping_error(struct pci_dev *pdev , dma_addr_t dma_addr ) { int tmp ; { { tmp = dma_mapping_error(& pdev->dev, dma_addr); } return (tmp); } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_81((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_82(& pdev->dev, data); } return; } } extern void *pci_ioremap_bar(struct pci_dev * , int ) ; __inline static u16 pcie_caps_reg(struct pci_dev const *dev ) { { return ((u16 )dev->pcie_flags_reg); } } __inline static int pci_pcie_type(struct pci_dev const *dev ) { u16 tmp ; { { tmp = pcie_caps_reg(dev); } return (((int )tmp & 240) >> 4); } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_101(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_102(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void disable_irq(unsigned int ) ; extern void enable_irq(unsigned int ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_106(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static struct iphdr *ip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct iphdr *)tmp); } } extern void rtnl_lock(void) ; extern void rtnl_unlock(void) ; __inline static struct tcphdr *tcp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((struct tcphdr *)tmp); } } __inline static unsigned int tcp_hdrlen(struct sk_buff const *skb ) { struct tcphdr *tmp ; { { tmp = tcp_hdr(skb); } return ((unsigned int )((int )tmp->doff * 4)); } } char netxen_nic_driver_name[11U] ; int netxen_init_dummy_dma(struct netxen_adapter *adapter ) ; void netxen_free_dummy_dma(struct netxen_adapter *adapter ) ; int netxen_check_flash_fw_compatibility(struct netxen_adapter *adapter ) ; int netxen_phantom_init(struct netxen_adapter *adapter , int pegtune_val ) ; int netxen_load_firmware(struct netxen_adapter *adapter ) ; int netxen_need_fw_reset(struct netxen_adapter *adapter ) ; void netxen_request_firmware(struct netxen_adapter *adapter ) ; void netxen_release_firmware(struct netxen_adapter *adapter ) ; int netxen_pinit_from_rom(struct netxen_adapter *adapter ) ; int netxen_alloc_sw_resources(struct netxen_adapter *adapter ) ; void netxen_free_sw_resources(struct netxen_adapter *adapter ) ; int netxen_alloc_hw_resources(struct netxen_adapter *adapter ) ; void netxen_free_hw_resources(struct netxen_adapter *adapter ) ; void netxen_release_rx_buffers(struct netxen_adapter *adapter ) ; void netxen_release_tx_buffers(struct netxen_adapter *adapter ) ; int netxen_init_firmware(struct netxen_adapter *adapter ) ; void netxen_nic_clear_stats(struct netxen_adapter *adapter ) ; void netxen_post_rx_buffers(struct netxen_adapter *adapter , u32 ringid , struct nx_host_rds_ring *rds_ring ) ; int netxen_process_cmd_ring(struct netxen_adapter *adapter ) ; int netxen_process_rcv_ring(struct nx_host_sds_ring *sds_ring , int max ) ; void netxen_advert_link_change(struct netxen_adapter *adapter , int linkup ) ; int netxen_setup_minidump(struct netxen_adapter *adapter ) ; int netxen_nic_reset_context(struct netxen_adapter *adapter ) ; int nx_dev_request_reset(struct netxen_adapter *adapter ) ; static struct netxen_brdinfo const netxen_boards[19U] = { {15, 1L, {'X', 'G', 'b', ' ', 'C', 'X', '4', '\000'}}, {14, 1L, {'X', 'G', 'b', ' ', 'H', 'M', 'E', 'Z', '\000'}}, {13, 2L, {'X', 'G', 'b', ' ', 'I', 'M', 'E', 'Z', '\000'}}, {11, 1L, {'X', 'G', 'b', ' ', 'X', 'F', 'P', '\000'}}, {10, 4L, {'Q', 'u', 'a', 'd', ' ', 'G', 'b', '\000'}}, {12, 2L, {'D', 'u', 'a', 'l', ' ', 'G', 'b', '\000'}}, {33, 4L, {'R', 'e', 'f', 'e', 'r', 'e', 'n', 'c', 'e', ' ', 'Q', 'u', 'a', 'd', ' ', 'G', 'i', 'g', ' ', '\000'}}, {34, 2L, {'D', 'u', 'a', 'l', ' ', 'X', 'G', 'b', ' ', 'H', 'M', 'E', 'Z', '\000'}}, {35, 2L, {'D', 'u', 'a', 'l', ' ', 'X', 'G', 'b', ' ', 'C', 'X', '4', ' ', 'L', 'P', '\000'}}, {36, 4L, {'Q', 'u', 'a', 'd', ' ', 'G', 'i', 'g', ' ', 'L', 'P', '\000'}}, {37, 2L, {'D', 'u', 'a', 'l', ' ', 'X', 'G', 'b', ' ', 'I', 'M', 'E', 'Z', '\000'}}, {38, 2L, {'D', 'u', 'a', 'l', ' ', 'X', 'G', 'b', ' ', 'S', 'F', 'P', '+', ' ', 'L', 'P', '\000'}}, {39, 1L, {'X', 'G', 'B', ' ', '1', '0', 'G', ' ', 'B', 'a', 's', 'e', 'T', ' ', 'L', 'P', '\000'}}, {40, 2L, {'D', 'u', 'a', 'l', ' ', 'X', 'G', 'b', ' ', 'L', 'O', 'M', '\000'}}, {41, 4L, {'N', 'X', '3', '0', '3', '1', ' ', 'G', 'i', 'g', 'a', 'b', 'i', 't', ' ', 'E', 't', 'h', 'e', 'r', 'n', 'e', 't', '\000'}}, {42, 2L, {'N', 'X', '3', '0', '3', '1', ' ', '1', '0', ' ', 'G', 'i', 'g', 'a', 'b', 'i', 't', ' ', 'E', 't', 'h', 'e', 'r', 'n', 'e', 't', '\000'}}, {43, 2L, {'Q', 'u', 'a', 'n', 't', 'a', ' ', 'D', 'u', 'a', 'l', ' ', 'X', 'G', 'b', ' ', 'S', 'F', 'P', '+', '\000'}}, {49, 2L, {'R', 'e', 'f', 'e', 'r', 'e', 'n', 'c', 'e', ' ', 'D', 'u', 'a', 'l', ' ', 'C', 'X', '4', ' ', 'O', 'p', 't', 'i', 'o', 'n', '\000'}}, {50, 1L, {'R', 'e', 'f', 'e', 'r', 'e', 'n', 'c', 'e', ' ', 'S', 'i', 'n', 'g', 'l', 'e', ' ', 'X', 'F', 'P', ' ', 'O', 'p', 't', 'i', 'o', 'n', '\000'}}}; __inline static int netxen_nic_get_brd_name_by_type(u32 type , char *name ) { int i ; int found ; { found = 0; i = 0; goto ldv_48998; ldv_48997: ; if ((u32 )netxen_boards[i].brdtype == type) { { strcpy(name, (char const *)(& netxen_boards[i].short_name)); found = 1; } goto ldv_48996; } else { } i = i + 1; ldv_48998: ; if ((unsigned int )i <= 18U) { goto ldv_48997; } else { } ldv_48996: ; if (found == 0) { { strcpy(name, "Unknown"); } return (-22); } else { } return (0); } } struct ethtool_ops const netxen_nic_ethtool_ops ; extern struct net_device *vlan_dev_real_dev(struct net_device const * ) ; __inline static struct ipv6hdr *ipv6_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct ipv6hdr *)tmp); } } extern int register_inetaddr_notifier(struct notifier_block * ) ; static int ldv_register_inetaddr_notifier_118(struct notifier_block *ldv_func_arg1 ) ; extern int unregister_inetaddr_notifier(struct notifier_block * ) ; static int ldv_unregister_inetaddr_notifier_121(struct notifier_block *ldv_func_arg1 ) ; __inline static struct in_device *__in_dev_get_rcu(struct net_device const *dev ) { struct in_device *_________p1 ; bool __warned ; int tmp ; int tmp___0 ; { { _________p1 = *((struct in_device * const volatile *)(& dev->ip_ptr)); tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_read_lock_held(); } if (tmp___0 == 0) { { __warned = 1; lockdep_rcu_suspicious("include/linux/inetdevice.h", 202, "suspicious rcu_dereference_check() usage"); } } else { } } else { } return (_________p1); } } __inline static struct in_device *in_dev_get(struct net_device const *dev ) { struct in_device *in_dev ; { { rcu_read_lock(); in_dev = __in_dev_get_rcu(dev); } if ((unsigned long )in_dev != (unsigned long )((struct in_device *)0)) { { atomic_inc(& in_dev->refcnt); } } else { } { rcu_read_unlock(); } return (in_dev); } } extern void in_dev_finish_destroy(struct in_device * ) ; __inline static void in_dev_put(struct in_device *idev ) { int tmp ; { { tmp = atomic_dec_and_test(& idev->refcnt); } if (tmp != 0) { { in_dev_finish_destroy(idev); } } else { } return; } } extern int pci_enable_pcie_error_reporting(struct pci_dev * ) ; extern int pci_disable_pcie_error_reporting(struct pci_dev * ) ; extern int pci_cleanup_aer_uncorrect_error_status(struct pci_dev * ) ; char netxen_nic_driver_name[11U] = { 'n', 'e', 't', 'x', 'e', 'n', '_', 'n', 'i', 'c', '\000'}; static char netxen_nic_driver_string[37U] = { 'Q', 'L', 'o', 'g', 'i', 'c', '/', 'N', 'e', 't', 'X', 'e', 'n', ' ', 'N', 'e', 't', 'w', 'o', 'r', 'k', ' ', 'D', 'r', 'i', 'v', 'e', 'r', ' ', 'v', '4', '.', '0', '.', '8', '2', '\000'}; static int port_mode = 4; static int wol_port_mode = 5; static int use_msi = 1; static int use_msi_x = 1; static int auto_fw_reset = -284119278; static int netxen_nic_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) ; static void netxen_nic_remove(struct pci_dev *pdev ) ; static int netxen_nic_open(struct net_device *netdev ) ; static int netxen_nic_close(struct net_device *netdev ) ; static netdev_tx_t netxen_nic_xmit_frame(struct sk_buff *skb , struct net_device *netdev ) ; static void netxen_tx_timeout(struct net_device *netdev ) ; static void netxen_tx_timeout_task(struct work_struct *work ) ; static void netxen_fw_poll_work(struct work_struct *work ) ; static void netxen_schedule_work(struct netxen_adapter *adapter , void (*func)(struct work_struct * ) , int delay ) ; static void netxen_cancel_fw_work(struct netxen_adapter *adapter ) ; static int netxen_nic_poll(struct napi_struct *napi , int budget ) ; static void netxen_nic_poll_controller(struct net_device *netdev ) ; static void netxen_create_sysfs_entries(struct netxen_adapter *adapter ) ; static void netxen_remove_sysfs_entries(struct netxen_adapter *adapter ) ; static void netxen_create_diag_entries(struct netxen_adapter *adapter ) ; static void netxen_remove_diag_entries(struct netxen_adapter *adapter ) ; static int nx_dev_request_aer(struct netxen_adapter *adapter ) ; static int nx_decr_dev_ref_cnt(struct netxen_adapter *adapter ) ; static int netxen_can_start_firmware(struct netxen_adapter *adapter ) ; static irqreturn_t netxen_intr(int irq , void *data ) ; static irqreturn_t netxen_msi_intr(int irq , void *data ) ; static irqreturn_t netxen_msix_intr(int irq , void *data ) ; static void netxen_free_ip_list(struct netxen_adapter *adapter , bool master ) ; static void netxen_restore_indev_addr(struct net_device *netdev , unsigned long event ) ; static struct rtnl_link_stats64 *netxen_nic_get_stats(struct net_device *netdev , struct rtnl_link_stats64 *stats ) ; static int netxen_nic_set_mac(struct net_device *netdev , void *p ) ; static struct pci_device_id const netxen_pci_tbl[9U] = { {16448U, 1U, 4294967295U, 4294967295U, 131072U, 4294967295U, 0UL}, {16448U, 2U, 4294967295U, 4294967295U, 131072U, 4294967295U, 0UL}, {16448U, 3U, 4294967295U, 4294967295U, 131072U, 4294967295U, 0UL}, {16448U, 4U, 4294967295U, 4294967295U, 131072U, 4294967295U, 0UL}, {16448U, 5U, 4294967295U, 4294967295U, 131072U, 4294967295U, 0UL}, {16448U, 36U, 4294967295U, 4294967295U, 131072U, 4294967295U, 0UL}, {16448U, 37U, 4294967295U, 4294967295U, 131072U, 4294967295U, 0UL}, {16448U, 256U, 4294967295U, 4294967295U, 131072U, 4294967295U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; static uint32_t crb_cmd_producer[4U] = { 136323592U, 136324012U, 136324024U, 136324048U}; void netxen_nic_update_cmd_producer(struct netxen_adapter *adapter , struct nx_host_tx_ring *tx_ring ) { { { (*(adapter->io_write))(adapter, tx_ring->crb_cmd_producer, tx_ring->producer); } return; } } static uint32_t crb_cmd_consumer[4U] = { 136323596U, 136324016U, 136324028U, 136324052U}; __inline static void netxen_nic_update_cmd_consumer(struct netxen_adapter *adapter , struct nx_host_tx_ring *tx_ring ) { { { (*(adapter->io_write))(adapter, tx_ring->crb_cmd_consumer, tx_ring->sw_consumer); } return; } } static uint32_t msi_tgt_status[8U] = { 101777688U, 101777760U, 101777764U, 101777768U, 101778272U, 101778276U, 101778280U, 101778284U}; static struct netxen_legacy_intr_set legacy_intr[8U] = { {128U, 101777688U, 101777704U, 101789696U}, {256U, 101777760U, 101777776U, 101789700U}, {512U, 101777764U, 101777780U, 101789704U}, {1024U, 101777768U, 101777784U, 101789708U}, {2048U, 101778272U, 101778288U, 101789712U}, {4096U, 101778276U, 101778292U, 101789716U}, {8192U, 101778280U, 101778296U, 101789720U}, {16384U, 101778284U, 101778300U, 101789724U}}; __inline static void netxen_nic_disable_int(struct nx_host_sds_ring *sds_ring ) { struct netxen_adapter *adapter ; { { adapter = sds_ring->adapter; (*(adapter->io_write))(adapter, sds_ring->crb_intr_mask, 0U); } return; } } __inline static void netxen_nic_enable_int(struct nx_host_sds_ring *sds_ring ) { struct netxen_adapter *adapter ; { { adapter = sds_ring->adapter; (*(adapter->io_write))(adapter, sds_ring->crb_intr_mask, 1U); } if ((adapter->flags & 6U) == 0U) { { (*(adapter->io_write))(adapter, adapter->tgt_mask_reg, 64511U); } } else { } return; } } static int netxen_alloc_sds_rings(struct netxen_recv_context *recv_ctx , int count ) { int size ; void *tmp ; { { size = (int )((unsigned int )count * 312U); tmp = kzalloc((size_t )size, 208U); recv_ctx->sds_rings = (struct nx_host_sds_ring *)tmp; } return ((unsigned long )recv_ctx->sds_rings == (unsigned long )((struct nx_host_sds_ring *)0)); } } static void netxen_free_sds_rings(struct netxen_recv_context *recv_ctx ) { { if ((unsigned long )recv_ctx->sds_rings != (unsigned long )((struct nx_host_sds_ring *)0)) { { kfree((void const *)recv_ctx->sds_rings); } } else { } recv_ctx->sds_rings = (struct nx_host_sds_ring *)0; return; } } static int netxen_napi_add(struct netxen_adapter *adapter , struct net_device *netdev ) { int ring ; struct nx_host_sds_ring *sds_ring ; struct netxen_recv_context *recv_ctx ; int tmp ; { { recv_ctx = & adapter->recv_ctx; tmp = netxen_alloc_sds_rings(recv_ctx, (int )adapter->max_sds_rings); } if (tmp != 0) { return (-12); } else { } ring = 0; goto ldv_51417; ldv_51416: { sds_ring = recv_ctx->sds_rings + (unsigned long )ring; netif_napi_add(netdev, & sds_ring->napi, & netxen_nic_poll, 64); ring = ring + 1; } ldv_51417: ; if (ring < (int )adapter->max_sds_rings) { goto ldv_51416; } else { } return (0); } } static void netxen_napi_del(struct netxen_adapter *adapter ) { int ring ; struct nx_host_sds_ring *sds_ring ; struct netxen_recv_context *recv_ctx ; { recv_ctx = & adapter->recv_ctx; ring = 0; goto ldv_51426; ldv_51425: { sds_ring = recv_ctx->sds_rings + (unsigned long )ring; netif_napi_del(& sds_ring->napi); ring = ring + 1; } ldv_51426: ; if (ring < (int )adapter->max_sds_rings) { goto ldv_51425; } else { } { netxen_free_sds_rings(& adapter->recv_ctx); } return; } } static void netxen_napi_enable(struct netxen_adapter *adapter ) { int ring ; struct nx_host_sds_ring *sds_ring ; struct netxen_recv_context *recv_ctx ; { recv_ctx = & adapter->recv_ctx; ring = 0; goto ldv_51435; ldv_51434: { sds_ring = recv_ctx->sds_rings + (unsigned long )ring; napi_enable(& sds_ring->napi); netxen_nic_enable_int(sds_ring); ring = ring + 1; } ldv_51435: ; if (ring < (int )adapter->max_sds_rings) { goto ldv_51434; } else { } return; } } static void netxen_napi_disable(struct netxen_adapter *adapter ) { int ring ; struct nx_host_sds_ring *sds_ring ; struct netxen_recv_context *recv_ctx ; { recv_ctx = & adapter->recv_ctx; ring = 0; goto ldv_51444; ldv_51443: { sds_ring = recv_ctx->sds_rings + (unsigned long )ring; netxen_nic_disable_int(sds_ring); napi_synchronize((struct napi_struct const *)(& sds_ring->napi)); napi_disable(& sds_ring->napi); ring = ring + 1; } ldv_51444: ; if (ring < (int )adapter->max_sds_rings) { goto ldv_51443; } else { } return; } } static int nx_set_dma_mask(struct netxen_adapter *adapter ) { struct pci_dev *pdev ; uint64_t mask ; uint64_t cmask ; int tmp ; int tmp___0 ; { pdev = adapter->pdev; adapter->pci_using_dac = 0U; mask = 4294967295ULL; cmask = 4294967295ULL; if ((unsigned int )adapter->ahw.revision_id <= 37U) { mask = 34359738367ULL; } else { mask = 549755813887ULL; cmask = mask; } { tmp = pci_set_dma_mask(pdev, mask); } if (tmp == 0) { { tmp___0 = pci_set_consistent_dma_mask(pdev, cmask); } if (tmp___0 == 0) { adapter->pci_using_dac = 1U; return (0); } else { } } else { } return (-5); } } static int nx_update_dma_mask(struct netxen_adapter *adapter ) { int change ; int shift ; int err ; uint64_t mask ; uint64_t old_mask ; uint64_t old_cmask ; struct pci_dev *pdev ; u32 tmp ; { { pdev = adapter->pdev; change = 0; tmp = (*(adapter->crb_read))(adapter, 136323788UL); shift = (int )tmp; } if (shift > 32) { return (0); } else { } if ((unsigned int )adapter->ahw.revision_id > 47U && shift > 9) { change = 1; } else if ((unsigned int )adapter->ahw.revision_id == 37U && shift <= 4) { change = 1; } else { } if (change != 0) { { old_mask = pdev->dma_mask; old_cmask = pdev->dev.coherent_dma_mask; mask = shift != 32 ? (1ULL << (shift + 32)) - 1ULL : 0xffffffffffffffffULL; err = pci_set_dma_mask(pdev, mask); } if (err != 0) { goto err_out; } else { } if ((unsigned int )adapter->ahw.revision_id > 47U) { { err = pci_set_consistent_dma_mask(pdev, mask); } if (err != 0) { goto err_out; } else { } } else { } { _dev_info((struct device const *)(& pdev->dev), "using %d-bit dma mask\n", shift + 32); } } else { } return (0); err_out: { pci_set_dma_mask(pdev, old_mask); pci_set_consistent_dma_mask(pdev, old_cmask); } return (err); } } static int netxen_check_hw_init(struct netxen_adapter *adapter , int first_boot ) { u32 val ; u32 timeout ; u32 tmp ; u32 tmp___0 ; { if (first_boot == 1431655765) { { (*(adapter->crb_write))(adapter, 136323580UL, 305419896U); } if ((unsigned int )adapter->ahw.revision_id > 37U) { return (0); } else { } { tmp = (*(adapter->crb_read))(adapter, 101711876UL); first_boot = (int )tmp; } if ((first_boot & 4) == 0) { { first_boot = first_boot | 4; (*(adapter->crb_write))(adapter, 101711876UL, (u32 )first_boot); (*(adapter->crb_read))(adapter, 101711876UL); } } else { } { tmp___0 = (*(adapter->crb_read))(adapter, 154140680UL); first_boot = (int )tmp___0; } if (first_boot != 8388623) { { (*(adapter->crb_write))(adapter, 136323580UL, 0U); } return (-5); } else { } { val = (*(adapter->crb_read))(adapter, 154140764UL); (*(adapter->crb_write))(adapter, 154140764UL, val | 1U); timeout = 0U; } ldv_51469: { msleep(1U); val = (*(adapter->crb_read))(adapter, 136323580UL); timeout = timeout + 1U; } if (timeout > 5000U) { return (-5); } else { } if (val == 305419896U) { goto ldv_51469; } else { } } else { } return (0); } } static void netxen_set_port_mode(struct netxen_adapter *adapter ) { u32 val ; u32 data ; { val = (u32 )adapter->ahw.board_type; if (val == 34U || val == 40U) { if (port_mode == 3) { { data = 3U; (*(adapter->crb_write))(adapter, 136323108UL, data); } } else if (port_mode == 1) { { data = 1U; (*(adapter->crb_write))(adapter, 136323108UL, data); } } else if (port_mode == 5) { { data = 5U; (*(adapter->crb_write))(adapter, 136323108UL, data); } } else if (port_mode == 6) { { data = 6U; (*(adapter->crb_write))(adapter, 136323108UL, data); } } else { { data = 4U; (*(adapter->crb_write))(adapter, 136323108UL, data); } } if (((wol_port_mode != 3 && wol_port_mode != 1) && wol_port_mode != 5) && wol_port_mode != 6) { wol_port_mode = 4; } else { } { (*(adapter->crb_write))(adapter, 136323480UL, (u32 )wol_port_mode); } } else { } return; } } static void netxen_pcie_strap_init(struct netxen_adapter *adapter ) { u32 pdevfuncsave ; u32 c8c9value ; u32 chicken ; u32 control ; int i ; int pos ; struct pci_dev *pdev ; { { c8c9value = 0U; chicken = 0U; control = 0U; pdev = adapter->pdev; chicken = (*(adapter->crb_read))(adapter, 101785800UL); chicken = chicken & 4244635647U; pos = pci_find_capability(pdev, 16); } if (pos == 192) { { pci_read_config_dword((struct pci_dev const *)pdev, pos + 16, & control); } if ((control & 983040U) != 131072U) { chicken = chicken | 16777216U; } else { } { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Gen2 strapping detected\n"); c8c9value = 987136U; } } else { { chicken = chicken | 16777216U; _dev_info((struct device const *)(& (adapter->pdev)->dev), "Gen1 strapping detected\n"); } if ((unsigned int )adapter->ahw.revision_id == 64U) { c8c9value = 987168U; } else { c8c9value = 0U; } } { (*(adapter->crb_write))(adapter, 101785800UL, chicken); } if (c8c9value == 0U) { return; } else { } pdevfuncsave = pdev->devfn; if ((pdevfuncsave & 7U) != 0U) { return; } else { } i = 0; goto ldv_51487; ldv_51486: { pci_read_config_dword((struct pci_dev const *)pdev, pos + 8, & control); pci_read_config_dword((struct pci_dev const *)pdev, pos + 8, & control); pci_write_config_dword((struct pci_dev const *)pdev, pos + 8, c8c9value); pdev->devfn = pdev->devfn + 1U; i = i + 1; } ldv_51487: ; if (i <= 7) { goto ldv_51486; } else { } pdev->devfn = pdevfuncsave; return; } } static void netxen_set_msix_bit(struct pci_dev *pdev , int enable ) { u32 control ; { if ((unsigned int )pdev->msix_cap != 0U) { { pci_read_config_dword((struct pci_dev const *)pdev, (int )pdev->msix_cap, & control); } if (enable != 0) { control = control | 32768U; } else { control = 0U; } { pci_write_config_dword((struct pci_dev const *)pdev, (int )pdev->msix_cap, control); } } else { } return; } } static void netxen_init_msix_entries(struct netxen_adapter *adapter , int count ) { int i ; { i = 0; goto ldv_51500; ldv_51499: adapter->msix_entries[i].entry = (u16 )i; i = i + 1; ldv_51500: ; if (i < count) { goto ldv_51499; } else { } return; } } static int netxen_read_mac_addr(struct netxen_adapter *adapter ) { int i ; unsigned char *p ; u64 mac_addr ; struct net_device *netdev ; struct pci_dev *pdev ; int tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; { netdev = adapter->netdev; pdev = adapter->pdev; if ((unsigned int )adapter->ahw.revision_id > 47U) { { tmp = netxen_p3_get_mac_addr(adapter, & mac_addr); } if (tmp != 0) { return (-5); } else { } } else { { tmp___0 = netxen_get_flash_mac_addr(adapter, & mac_addr); } if (tmp___0 != 0) { return (-5); } else { } } p = (unsigned char *)(& mac_addr); i = 0; goto ldv_51511; ldv_51510: *(netdev->dev_addr + (unsigned long )i) = *(p + (5UL - (unsigned long )i)); i = i + 1; ldv_51511: ; if (i <= 5) { goto ldv_51510; } else { } { memcpy((void *)(& adapter->mac_addr), (void const *)netdev->dev_addr, (size_t )netdev->addr_len); tmp___1 = is_valid_ether_addr((u8 const *)netdev->dev_addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { { dev_warn((struct device const *)(& pdev->dev), "Bad MAC address %pM.\n", netdev->dev_addr); } } else { } return (0); } } static int netxen_nic_set_mac(struct net_device *netdev , void *p ) { struct netxen_adapter *adapter ; void *tmp ; struct sockaddr *addr ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; bool tmp___3 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct netxen_adapter *)tmp; addr = (struct sockaddr *)p; tmp___0 = is_valid_ether_addr((u8 const *)(& addr->sa_data)); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-99); } else { } { tmp___2 = netif_running((struct net_device const *)netdev); } if ((int )tmp___2) { { netif_device_detach(netdev); netxen_napi_disable(adapter); } } else { } { memcpy((void *)(& adapter->mac_addr), (void const *)(& addr->sa_data), (size_t )netdev->addr_len); memcpy((void *)netdev->dev_addr, (void const *)(& addr->sa_data), (size_t )netdev->addr_len); (*(adapter->macaddr_set))(adapter, (u8 *)(& addr->sa_data)); tmp___3 = netif_running((struct net_device const *)netdev); } if ((int )tmp___3) { { netif_device_attach(netdev); netxen_napi_enable(adapter); } } else { } return (0); } } static void netxen_set_multicast_list(struct net_device *dev ) { struct netxen_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); adapter = (struct netxen_adapter *)tmp; (*(adapter->set_multi))(dev); } return; } } static netdev_features_t netxen_fix_features(struct net_device *dev , netdev_features_t features ) { { if ((features & 4294967296ULL) == 0ULL) { { netdev_info((struct net_device const *)dev, "disabling LRO as RXCSUM is off\n"); features = features & 0xffffffffffff7fffULL; } } else { } return (features); } } static int netxen_set_features(struct net_device *dev , netdev_features_t features ) { struct netxen_adapter *adapter ; void *tmp ; int hw_lro ; int tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); adapter = (struct netxen_adapter *)tmp; } if (((dev->features ^ features) & 32768ULL) == 0ULL) { return (0); } else { } { hw_lro = (features & 32768ULL) != 0ULL ? 8 : 0; tmp___0 = netxen_config_hw_lro(adapter, hw_lro); } if (tmp___0 != 0) { return (-5); } else { } if ((features & 32768ULL) == 0ULL) { { tmp___1 = netxen_send_lro_cleanup(adapter); } if (tmp___1 != 0) { return (-5); } else { } } else { } return (0); } } static struct net_device_ops const netxen_netdev_ops = {0, 0, & netxen_nic_open, & netxen_nic_close, & netxen_nic_xmit_frame, 0, 0, & netxen_set_multicast_list, & netxen_nic_set_mac, & eth_validate_addr, 0, 0, & netxen_nic_change_mtu, 0, & netxen_tx_timeout, & netxen_nic_get_stats, 0, 0, 0, & netxen_nic_poll_controller, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & netxen_fix_features, & netxen_set_features, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; __inline static bool netxen_function_zero(struct pci_dev *pdev ) { { return ((pdev->devfn & 7U) == 0U); } } __inline static void netxen_set_interrupt_mode(struct netxen_adapter *adapter , u32 mode ) { { { (*(adapter->crb_write))(adapter, 136323652UL, mode); } return; } } __inline static u32 netxen_get_interrupt_mode(struct netxen_adapter *adapter ) { u32 tmp ; { { tmp = (*(adapter->crb_read))(adapter, 136323652UL); } return (tmp); } } static void netxen_initialize_interrupt_registers(struct netxen_adapter *adapter ) { struct netxen_legacy_intr_set *legacy_intrp ; u32 tgt_status_reg ; u32 int_state_reg ; { if ((unsigned int )adapter->ahw.revision_id > 63U) { legacy_intrp = (struct netxen_legacy_intr_set *)(& legacy_intr) + (unsigned long )adapter->ahw.pci_func; } else { legacy_intrp = (struct netxen_legacy_intr_set *)(& legacy_intr); } { tgt_status_reg = legacy_intrp->tgt_status_reg; int_state_reg = 101785708U; adapter->int_vec_bit = legacy_intrp->int_vec_bit; adapter->tgt_status_reg = netxen_get_ioaddr(adapter, tgt_status_reg); adapter->tgt_mask_reg = netxen_get_ioaddr(adapter, legacy_intrp->tgt_mask_reg); adapter->pci_int_reg = netxen_get_ioaddr(adapter, legacy_intrp->pci_int_reg); adapter->isr_int_vec = netxen_get_ioaddr(adapter, 101777664U); } if ((unsigned int )adapter->ahw.revision_id > 64U) { { adapter->crb_int_state_reg = netxen_get_ioaddr(adapter, int_state_reg); } } else { { adapter->crb_int_state_reg = netxen_get_ioaddr(adapter, 136323796U); } } return; } } static int netxen_setup_msi_interrupts(struct netxen_adapter *adapter , int num_msix ) { struct pci_dev *pdev ; u32 value ; int err ; int tmp ; { pdev = adapter->pdev; if ((unsigned int )adapter->msix_supported != 0U) { { netxen_init_msix_entries(adapter, num_msix); err = pci_enable_msix(pdev, (struct msix_entry *)(& adapter->msix_entries), num_msix); } if (err == 0) { { adapter->flags = adapter->flags | 4U; netxen_set_msix_bit(pdev, 1); } if ((unsigned int )adapter->rss_supported != 0U) { adapter->max_sds_rings = (u8 )num_msix; } else { } { _dev_info((struct device const *)(& pdev->dev), "using msi-x interrupts\n"); } return (0); } else { } } else { } if (use_msi != 0) { { tmp = pci_enable_msi_block(pdev, 1); } if (tmp == 0) { { value = msi_tgt_status[(int )adapter->ahw.pci_func]; adapter->flags = adapter->flags | 2U; adapter->tgt_status_reg = netxen_get_ioaddr(adapter, value); adapter->msix_entries[0].vector = pdev->irq; _dev_info((struct device const *)(& pdev->dev), "using msi interrupts\n"); } return (0); } else { } } else { } { dev_err((struct device const *)(& pdev->dev), "Failed to acquire MSI-X/MSI interrupt vector\n"); } return (-5); } } static int netxen_setup_intr(struct netxen_adapter *adapter ) { struct pci_dev *pdev ; int num_msix ; unsigned int tmp ; int tmp___0 ; u32 tmp___1 ; int tmp___2 ; bool tmp___3 ; { pdev = adapter->pdev; if ((unsigned int )adapter->rss_supported != 0U) { { tmp = cpumask_weight(cpu_online_mask); num_msix = tmp > 3U ? 4 : 2; } } else { num_msix = 1; } { adapter->max_sds_rings = 1U; adapter->flags = adapter->flags & 4294967289U; netxen_initialize_interrupt_registers(adapter); netxen_set_msix_bit(pdev, 0); tmp___3 = netxen_function_zero(pdev); } if ((int )tmp___3) { { tmp___0 = netxen_setup_msi_interrupts(adapter, num_msix); } if (tmp___0 == 0) { { netxen_set_interrupt_mode(adapter, 1U); } } else { { netxen_set_interrupt_mode(adapter, 2U); } } } else { { tmp___1 = netxen_get_interrupt_mode(adapter); } if (tmp___1 == 1U) { { tmp___2 = netxen_setup_msi_interrupts(adapter, num_msix); } if (tmp___2 != 0) { { dev_err((struct device const *)(& pdev->dev), "Co-existence of MSI-X/MSI and INTx interrupts is not supported\n"); } return (-5); } else { } } else { } } if ((adapter->flags & 6U) == 0U) { { adapter->msix_entries[0].vector = pdev->irq; _dev_info((struct device const *)(& pdev->dev), "using legacy interrupts\n"); } } else { } return (0); } } static void netxen_teardown_intr(struct netxen_adapter *adapter ) { { if ((adapter->flags & 4U) != 0U) { { pci_disable_msix(adapter->pdev); } } else { } if ((adapter->flags & 2U) != 0U) { { pci_disable_msi(adapter->pdev); } } else { } return; } } static void netxen_cleanup_pci_map(struct netxen_adapter *adapter ) { { if ((unsigned long )adapter->ahw.db_base != (unsigned long )((void *)0)) { { iounmap((void volatile *)adapter->ahw.db_base); } } else { } if ((unsigned long )adapter->ahw.pci_base0 != (unsigned long )((void *)0)) { { iounmap((void volatile *)adapter->ahw.pci_base0); } } else { } if ((unsigned long )adapter->ahw.pci_base1 != (unsigned long )((void *)0)) { { iounmap((void volatile *)adapter->ahw.pci_base1); } } else { } if ((unsigned long )adapter->ahw.pci_base2 != (unsigned long )((void *)0)) { { iounmap((void volatile *)adapter->ahw.pci_base2); } } else { } return; } } static int netxen_setup_pci_map(struct netxen_adapter *adapter ) { void *db_ptr ; resource_size_t mem_base ; resource_size_t db_base ; unsigned long mem_len ; unsigned long db_len ; struct pci_dev *pdev ; int pci_func ; struct netxen_hardware_context *ahw ; int err ; { db_ptr = (void *)0; db_len = 0UL; pdev = adapter->pdev; pci_func = (int )adapter->ahw.pci_func; ahw = & adapter->ahw; err = 0; adapter->ahw.crb_win = 4294967295U; adapter->ahw.ocm_win = 4294967295U; mem_base = pdev->resource[0].start; mem_len = pdev->resource[0].start != 0ULL || pdev->resource[0].end != pdev->resource[0].start ? (unsigned long )((pdev->resource[0].end - pdev->resource[0].start) + 1ULL) : 0UL; if (mem_len == 134217728UL) { { ahw->pci_base0 = ioremap(mem_base, 1048576UL); ahw->pci_base1 = ioremap(mem_base + 100663296ULL, 9158656UL); ahw->pci_base2 = ioremap(mem_base + 118374400ULL, 15843328UL); } if (((unsigned long )ahw->pci_base0 == (unsigned long )((void *)0) || (unsigned long )ahw->pci_base1 == (unsigned long )((void *)0)) || (unsigned long )ahw->pci_base2 == (unsigned long )((void *)0)) { { dev_err((struct device const *)(& pdev->dev), "failed to map PCI bar 0\n"); err = -5; } goto err_out; } else { } ahw->pci_len0 = 1048576UL; } else if (mem_len == 33554432UL) { { ahw->pci_base1 = ioremap(mem_base, 9158656UL); ahw->pci_base2 = ioremap(mem_base + 17711104ULL, 15843328UL); } if ((unsigned long )ahw->pci_base1 == (unsigned long )((void *)0) || (unsigned long )ahw->pci_base2 == (unsigned long )((void *)0)) { { dev_err((struct device const *)(& pdev->dev), "failed to map PCI bar 0\n"); err = -5; } goto err_out; } else { } } else if (mem_len == 2097152UL) { { ahw->pci_base0 = pci_ioremap_bar(pdev, 0); } if ((unsigned long )ahw->pci_base0 == (unsigned long )((void *)0)) { { dev_err((struct device const *)(& pdev->dev), "failed to map PCI bar 0\n"); } return (-5); } else { } ahw->pci_len0 = mem_len; } else { return (-5); } { netxen_setup_hwops(adapter); _dev_info((struct device const *)(& pdev->dev), "%dMB memory map\n", (int )(mem_len >> 20)); } if ((unsigned int )adapter->ahw.revision_id > 79U) { { adapter->ahw.ocm_win_crb = netxen_get_ioaddr(adapter, ((u32 )pci_func + 3180608U) * 32U); } } else if ((unsigned int )adapter->ahw.revision_id > 47U) { { adapter->ahw.ocm_win_crb = netxen_get_ioaddr(adapter, pci_func <= 3 ? ((u32 )pci_func + 3180560U) * 32U : ((u32 )pci_func + 6361126U) * 16U); } } else { } if ((unsigned int )adapter->ahw.revision_id > 47U) { goto skip_doorbell; } else { } db_base = pdev->resource[4].start; db_len = pdev->resource[4].start != 0ULL || pdev->resource[4].end != pdev->resource[4].start ? (unsigned long )((pdev->resource[4].end - pdev->resource[4].start) + 1ULL) : 0UL; if (db_len == 0UL) { { printk("\v%s: doorbell is disabled\n", (char *)(& netxen_nic_driver_name)); err = -5; } goto err_out; } else { } { db_ptr = ioremap(db_base, 4096UL); } if ((unsigned long )db_ptr == (unsigned long )((void *)0)) { { printk("\v%s: Failed to allocate doorbell map.", (char *)(& netxen_nic_driver_name)); err = -5; } goto err_out; } else { } skip_doorbell: adapter->ahw.db_base = db_ptr; adapter->ahw.db_len = db_len; return (0); err_out: { netxen_cleanup_pci_map(adapter); } return (err); } } static void netxen_check_options(struct netxen_adapter *adapter ) { u32 fw_major ; u32 fw_minor ; u32 fw_build ; u32 prev_fw_version ; char brd_name[32U] ; char serial_num[32U] ; int i ; int offset ; int val ; int err ; __le32 *ptr32 ; struct pci_dev *pdev ; int tmp ; int tmp___0 ; struct module *__mod ; u32 tmp___1 ; u32 flashed_ver ; { pdev = adapter->pdev; adapter->driver_mismatch = 0U; ptr32 = (__le32 *)(& serial_num); offset = 4098076; i = 0; goto ldv_51598; ldv_51597: { tmp = netxen_rom_fast_read(adapter, offset, & val); } if (tmp == -1) { { dev_err((struct device const *)(& pdev->dev), "error reading board info\n"); adapter->driver_mismatch = 1U; } return; } else { } *(ptr32 + (unsigned long )i) = (unsigned int )val; offset = (int )((unsigned int )offset + 4U); i = i + 1; ldv_51598: ; if (i <= 7) { goto ldv_51597; } else { } { fw_major = (*(adapter->crb_read))(adapter, 136323408UL); fw_minor = (*(adapter->crb_read))(adapter, 136323412UL); fw_build = (*(adapter->crb_read))(adapter, 136323416UL); prev_fw_version = adapter->fw_version; adapter->fw_version = ((fw_major << 24) + (fw_minor << 16)) + fw_build; } if ((unsigned int )adapter->ahw.revision_id > 47U) { if ((unsigned long )adapter->mdump.md_template == (unsigned long )((void *)0) || adapter->fw_version > prev_fw_version) { { kfree((void const *)adapter->mdump.md_template); adapter->mdump.md_template = (void *)0; err = netxen_setup_minidump(adapter); } if (err != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Failed to setup minidump rcode = %d\n", err); } } else { } } else { } } else { } if ((unsigned int )adapter->portnum == 0U) { { tmp___0 = netxen_nic_get_brd_name_by_type((u32 )adapter->ahw.board_type, (char *)(& brd_name)); } if (tmp___0 != 0) { { strcpy((char *)(& serial_num), "Unknown"); } } else { } { __mod = & __this_module; printk("\016%s: %s Board S/N %s Chip rev 0x%x\n", (unsigned long )__mod != (unsigned long )((struct module *)0) ? (char *)(& __mod->name) : (char *)"kernel", (char *)(& brd_name), (char *)(& serial_num), (int )adapter->ahw.revision_id); } } else { } if (adapter->fw_version <= 50594007U) { { adapter->driver_mismatch = 1U; dev_warn((struct device const *)(& pdev->dev), "firmware version %d.%d.%d unsupported\n", fw_major, fw_minor, fw_build); } return; } else { } if ((unsigned int )adapter->ahw.revision_id > 47U) { { tmp___1 = (*(adapter->crb_read))(adapter, 105906220UL); i = (int )tmp___1; adapter->ahw.cut_through = (i & 32768) != 0; } } else { } { _dev_info((struct device const *)(& pdev->dev), "Driver v%s, firmware v%d.%d.%d [%s]\n", (char *)"4.0.82", fw_major, fw_minor, fw_build, (unsigned int )adapter->ahw.cut_through != 0U ? (char *)"cut-through" : (char *)"legacy"); } if (adapter->fw_version > 67109085U) { { adapter->capabilities = (*(adapter->crb_read))(adapter, 136323368UL); } } else { } if ((unsigned int )adapter->ahw.port_type == 2U) { adapter->num_rxd = 4096U; adapter->num_jumbo_rxd = 1024U; } else if ((unsigned int )adapter->ahw.port_type == 1U) { adapter->num_rxd = 2048U; adapter->num_jumbo_rxd = 512U; } else { } adapter->msix_supported = 0U; if ((unsigned int )adapter->ahw.revision_id > 47U) { adapter->msix_supported = use_msi_x != 0; adapter->rss_supported = use_msi_x != 0; } else { { flashed_ver = 0U; netxen_rom_fast_read(adapter, 4097032, (int *)(& flashed_ver)); flashed_ver = ((flashed_ver << 24) + (((flashed_ver >> 8) & 255U) << 16)) + (flashed_ver >> 16); } if (flashed_ver > 50594127U) { { if ((int )adapter->ahw.board_type == 11) { goto case_11; } else { } if ((int )adapter->ahw.board_type == 15) { goto case_15; } else { } goto switch_default; case_11: /* CIL Label */ ; case_15: /* CIL Label */ adapter->msix_supported = use_msi_x != 0; adapter->rss_supported = use_msi_x != 0; goto ldv_51605; switch_default: /* CIL Label */ ; goto ldv_51605; switch_break: /* CIL Label */ ; } ldv_51605: ; } else { } } adapter->num_txd = 1024U; if ((unsigned int )adapter->ahw.revision_id <= 37U) { adapter->num_lro_rxd = 8U; adapter->max_rds_rings = 3U; } else { adapter->num_lro_rxd = 0U; adapter->max_rds_rings = 2U; } return; } } static int netxen_start_firmware(struct netxen_adapter *adapter ) { int val ; int err ; int first_boot ; struct pci_dev *pdev ; u32 tmp ; { { pdev = adapter->pdev; err = nx_set_dma_mask(adapter); } if (err != 0) { return (err); } else { } { err = netxen_can_start_firmware(adapter); } if (err < 0) { return (err); } else { } if (err == 0) { goto wait_init; } else { } { tmp = (*(adapter->crb_read))(adapter, 136323580UL); first_boot = (int )tmp; err = netxen_check_hw_init(adapter, first_boot); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "error in init HW init sequence\n"); } return (err); } else { } { netxen_request_firmware(adapter); err = netxen_need_fw_reset(adapter); } if (err < 0) { goto err_out; } else { } if (err == 0) { goto pcie_strap_init; } else { } if (first_boot != 1431655765) { { (*(adapter->crb_write))(adapter, 136323664UL, 0U); netxen_pinit_from_rom(adapter); msleep(1U); } } else { } { (*(adapter->crb_write))(adapter, 136323788UL, 1431655765U); (*(adapter->crb_write))(adapter, 136323240UL, 0U); (*(adapter->crb_write))(adapter, 136323244UL, 0U); } if ((unsigned int )adapter->ahw.revision_id > 47U) { { netxen_set_port_mode(adapter); } } else { } { err = netxen_load_firmware(adapter); } if (err != 0) { goto err_out; } else { } { netxen_release_firmware(adapter); } if ((unsigned int )adapter->ahw.revision_id <= 37U) { val = 30292; if ((unsigned int )adapter->ahw.port_type == 2U) { val = val | 251658240; } else { } { (*(adapter->crb_write))(adapter, 106958848UL, (u32 )val); } } else { } { err = netxen_init_dummy_dma(adapter); } if (err != 0) { goto err_out; } else { } { val = 262226; (*(adapter->crb_write))(adapter, 136324256UL, (u32 )val); } pcie_strap_init: ; if ((unsigned int )adapter->ahw.revision_id > 47U) { { netxen_pcie_strap_init(adapter); } } else { } wait_init: { err = netxen_phantom_init(adapter, 0); } if (err != 0) { { netxen_free_dummy_dma(adapter); } goto err_out; } else { } { (*(adapter->crb_write))(adapter, 136323392UL, 3U); nx_update_dma_mask(adapter); netxen_check_options(adapter); adapter->need_fw_reset = 0U; } err_out: { netxen_release_firmware(adapter); } return (err); } } static int netxen_nic_request_irq(struct netxen_adapter *adapter ) { irqreturn_t (*handler)(int , void * ) ; struct nx_host_sds_ring *sds_ring ; int err ; int ring ; unsigned long flags ; struct net_device *netdev ; struct netxen_recv_context *recv_ctx ; { flags = 0UL; netdev = adapter->netdev; recv_ctx = & adapter->recv_ctx; if ((adapter->flags & 4U) != 0U) { handler = & netxen_msix_intr; } else if ((adapter->flags & 2U) != 0U) { handler = & netxen_msi_intr; } else { flags = flags | 128UL; handler = & netxen_intr; } adapter->irq = (u32 )netdev->irq; ring = 0; goto ldv_51628; ldv_51627: { sds_ring = recv_ctx->sds_rings + (unsigned long )ring; sprintf((char *)(& sds_ring->name), "%s[%d]", (char *)(& netdev->name), ring); err = ldv_request_irq_101((unsigned int )sds_ring->irq, handler, flags, (char const *)(& sds_ring->name), (void *)sds_ring); } if (err != 0) { return (err); } else { } ring = ring + 1; ldv_51628: ; if (ring < (int )adapter->max_sds_rings) { goto ldv_51627; } else { } return (0); } } static void netxen_nic_free_irq(struct netxen_adapter *adapter ) { int ring ; struct nx_host_sds_ring *sds_ring ; struct netxen_recv_context *recv_ctx ; { recv_ctx = & adapter->recv_ctx; ring = 0; goto ldv_51637; ldv_51636: { sds_ring = recv_ctx->sds_rings + (unsigned long )ring; ldv_free_irq_102((unsigned int )sds_ring->irq, (void *)sds_ring); ring = ring + 1; } ldv_51637: ; if (ring < (int )adapter->max_sds_rings) { goto ldv_51636; } else { } return; } } static void netxen_nic_init_coalesce_defaults(struct netxen_adapter *adapter ) { { adapter->coal.flags = 4U; adapter->coal.normal.data.rx_time_us = 3U; adapter->coal.normal.data.rx_packets = 256U; adapter->coal.normal.data.tx_time_us = 4U; adapter->coal.normal.data.tx_packets = 64U; return; } } static int __netxen_nic_up(struct netxen_adapter *adapter , struct net_device *netdev ) { int err ; { if ((unsigned int )adapter->is_up != 777U) { return (-5); } else { } { err = (*(adapter->init_port))(adapter, (int )adapter->physical_port); } if (err != 0) { { printk("\v%s: Failed to initialize port %d\n", (char *)(& netxen_nic_driver_name), (int )adapter->portnum); } return (err); } else { } if ((unsigned int )adapter->ahw.revision_id <= 37U) { { (*(adapter->macaddr_set))(adapter, (u8 *)(& adapter->mac_addr)); } } else { } { (*(adapter->set_multi))(netdev); (*(adapter->set_mtu))(adapter, (int )netdev->mtu); adapter->ahw.linkup = 0U; } if ((unsigned int )adapter->max_sds_rings > 1U) { { netxen_config_rss(adapter, 1); } } else { } if ((unsigned int )adapter->ahw.revision_id > 47U) { { netxen_config_intr_coalesce(adapter); } } else { } if ((netdev->features & 32768ULL) != 0ULL) { { netxen_config_hw_lro(adapter, 8); } } else { } { netxen_napi_enable(adapter); } if ((adapter->capabilities & 32U) != 0U) { { netxen_linkevent_request(adapter, 1); } } else { { netxen_nic_set_link_parameters(adapter); } } { set_bit(1L, (unsigned long volatile *)(& adapter->state)); } return (0); } } __inline static int netxen_nic_up(struct netxen_adapter *adapter , struct net_device *netdev ) { int err ; bool tmp ; { { err = 0; rtnl_lock(); tmp = netif_running((struct net_device const *)netdev); } if ((int )tmp) { { err = __netxen_nic_up(adapter, netdev); } } else { } { rtnl_unlock(); } return (err); } } static void __netxen_nic_down(struct netxen_adapter *adapter , struct net_device *netdev ) { int tmp ; { if ((unsigned int )adapter->is_up != 777U) { return; } else { } { tmp = test_and_clear_bit(1L, (unsigned long volatile *)(& adapter->state)); } if (tmp == 0) { return; } else { } { __asm__ volatile ("mfence": : : "memory"); ldv_spin_lock_103___0(& adapter->tx_clean_lock); netif_carrier_off(netdev); netif_tx_disable(netdev); } if ((adapter->capabilities & 32U) != 0U) { { netxen_linkevent_request(adapter, 0); } } else { } if ((unsigned long )adapter->stop_port != (unsigned long )((int (*)(struct netxen_adapter * ))0)) { { (*(adapter->stop_port))(adapter); } } else { } if ((unsigned int )adapter->ahw.revision_id > 47U) { { netxen_p3_free_mac_list(adapter); } } else { } { (*(adapter->set_promisc))(adapter, 0U); netxen_napi_disable(adapter); netxen_release_tx_buffers(adapter); ldv_spin_unlock_104___0(& adapter->tx_clean_lock); } return; } } __inline static void netxen_nic_down(struct netxen_adapter *adapter , struct net_device *netdev ) { bool tmp ; { { rtnl_lock(); tmp = netif_running((struct net_device const *)netdev); } if ((int )tmp) { { __netxen_nic_down(adapter, netdev); } } else { } { rtnl_unlock(); } return; } } static int netxen_nic_attach(struct netxen_adapter *adapter ) { struct net_device *netdev ; struct pci_dev *pdev ; int err ; int ring ; struct nx_host_rds_ring *rds_ring ; struct nx_host_tx_ring *tx_ring ; u32 capab2 ; { netdev = adapter->netdev; pdev = adapter->pdev; if ((unsigned int )adapter->is_up == 777U) { return (0); } else { } { err = netxen_init_firmware(adapter); } if (err != 0) { return (err); } else { } adapter->flags = adapter->flags & 4294967167U; if ((int )adapter->capabilities < 0) { { capab2 = (*(adapter->crb_read))(adapter, 136323372UL); } if ((capab2 & 4U) != 0U) { adapter->flags = adapter->flags | 128U; } else { } } else { } { err = netxen_napi_add(adapter, netdev); } if (err != 0) { return (err); } else { } { err = netxen_alloc_sw_resources(adapter); } if (err != 0) { { printk("\v%s: Error in setting sw resources\n", (char *)(& netdev->name)); } return (err); } else { } { err = netxen_alloc_hw_resources(adapter); } if (err != 0) { { printk("\v%s: Error in setting hw resources\n", (char *)(& netdev->name)); } goto err_out_free_sw; } else { } if ((unsigned int )adapter->ahw.revision_id <= 37U) { { tx_ring = adapter->tx_ring; tx_ring->crb_cmd_producer = netxen_get_ioaddr(adapter, crb_cmd_producer[(int )adapter->portnum]); tx_ring->crb_cmd_consumer = netxen_get_ioaddr(adapter, crb_cmd_consumer[(int )adapter->portnum]); tx_ring->producer = 0U; tx_ring->sw_consumer = 0U; netxen_nic_update_cmd_producer(adapter, tx_ring); netxen_nic_update_cmd_consumer(adapter, tx_ring); } } else { } ring = 0; goto ldv_51672; ldv_51671: { rds_ring = adapter->recv_ctx.rds_rings + (unsigned long )ring; netxen_post_rx_buffers(adapter, (u32 )ring, rds_ring); ring = ring + 1; } ldv_51672: ; if (ring < (int )adapter->max_rds_rings) { goto ldv_51671; } else { } { err = netxen_nic_request_irq(adapter); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "%s: failed to setup interrupt\n", (char *)(& netdev->name)); } goto err_out_free_rxbuf; } else { } if ((unsigned int )adapter->ahw.revision_id > 47U) { { netxen_nic_init_coalesce_defaults(adapter); } } else { } { netxen_create_sysfs_entries(adapter); adapter->is_up = 777U; } return (0); err_out_free_rxbuf: { netxen_release_rx_buffers(adapter); netxen_free_hw_resources(adapter); } err_out_free_sw: { netxen_free_sw_resources(adapter); } return (err); } } static void netxen_nic_detach(struct netxen_adapter *adapter ) { { if ((unsigned int )adapter->is_up != 777U) { return; } else { } { netxen_remove_sysfs_entries(adapter); netxen_free_hw_resources(adapter); netxen_release_rx_buffers(adapter); netxen_nic_free_irq(adapter); netxen_napi_del(adapter); netxen_free_sw_resources(adapter); adapter->is_up = 0U; } return; } } int netxen_nic_reset_context(struct netxen_adapter *adapter ) { int err ; struct net_device *netdev ; int tmp ; bool tmp___0 ; bool tmp___1 ; { { err = 0; netdev = adapter->netdev; tmp = test_and_clear_bit(2L, (unsigned long volatile *)(& adapter->state)); } if (tmp != 0) { return (-16); } else { } if ((unsigned int )adapter->is_up == 777U) { { netif_device_detach(netdev); tmp___0 = netif_running((struct net_device const *)netdev); } if ((int )tmp___0) { { __netxen_nic_down(adapter, netdev); } } else { } { netxen_nic_detach(adapter); tmp___1 = netif_running((struct net_device const *)netdev); } if ((int )tmp___1) { { err = netxen_nic_attach(adapter); } if (err == 0) { { err = __netxen_nic_up(adapter, netdev); } } else { } if (err != 0) { goto done; } else { } } else { } { netif_device_attach(netdev); } } else { } done: { clear_bit(2L, (unsigned long volatile *)(& adapter->state)); } return (err); } } static int netxen_setup_netdev(struct netxen_adapter *adapter , struct net_device *netdev ) { int err ; struct pci_dev *pdev ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; int tmp ; { err = 0; pdev = adapter->pdev; adapter->mc_enabled = 0U; if ((unsigned int )adapter->ahw.revision_id > 47U) { adapter->max_mc_count = 38U; } else { adapter->max_mc_count = 16U; } { netdev->netdev_ops = & netxen_netdev_ops; netdev->watchdog_timeo = 1250; netxen_nic_change_mtu(netdev, (int )netdev->mtu); netdev->ethtool_ops = & netxen_nic_ethtool_ops; netdev->hw_features = 4295032835ULL; } if ((unsigned int )adapter->ahw.revision_id > 47U) { netdev->hw_features = netdev->hw_features | 1048592ULL; } else { } netdev->vlan_features = netdev->vlan_features | netdev->hw_features; if ((unsigned int )adapter->pci_using_dac != 0U) { netdev->features = netdev->features | 32ULL; netdev->vlan_features = netdev->vlan_features | 32ULL; } else { } if ((adapter->capabilities & 512U) != 0U) { netdev->hw_features = netdev->hw_features | 128ULL; } else { } if ((adapter->capabilities & 1024U) != 0U) { netdev->hw_features = netdev->hw_features | 32768ULL; } else { } { netdev->features = netdev->features | netdev->hw_features; netdev->irq = (int )adapter->msix_entries[0].vector; __init_work(& adapter->tx_timeout_task, 0); __constr_expr_0.counter = 137438953408L; adapter->tx_timeout_task.data = __constr_expr_0; lockdep_init_map(& adapter->tx_timeout_task.lockdep_map, "(&adapter->tx_timeout_task)", & __key, 0); INIT_LIST_HEAD(& adapter->tx_timeout_task.entry); adapter->tx_timeout_task.func = & netxen_tx_timeout_task; tmp = netxen_read_mac_addr(adapter); } if (tmp != 0) { { dev_warn((struct device const *)(& pdev->dev), "failed to read mac addr\n"); } } else { } { netif_carrier_off(netdev); err = ldv_register_netdev_105(netdev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "failed to register net device\n"); } return (err); } else { } return (0); } } static void netxen_read_ula_info(struct netxen_adapter *adapter ) { u32 temp ; { if ((unsigned int )adapter->portnum != 0U) { return; } else { } { temp = (*(adapter->crb_read))(adapter, 136323448UL); } { if (temp == 3671960833U) { goto case_3671960833; } else { } if (temp == 3671960832U) { goto case_3671960832; } else { } goto switch_default; case_3671960833: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "ULA adapter"); } goto ldv_51697; case_3671960832: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "non ULA adapter"); } goto ldv_51697; switch_default: /* CIL Label */ ; goto ldv_51697; switch_break: /* CIL Label */ ; } ldv_51697: ; return; } } static void netxen_mask_aer_correctable(struct netxen_adapter *adapter ) { struct pci_dev *pdev ; struct pci_dev *root ; u32 aer_pos ; int tmp ; int tmp___0 ; { pdev = adapter->pdev; root = (pdev->bus)->self; if ((unsigned long )root == (unsigned long )((struct pci_dev *)0)) { return; } else { } if ((unsigned int )adapter->ahw.board_type != 41U && (unsigned int )adapter->ahw.board_type != 128U) { return; } else { } { tmp = pci_pcie_type((struct pci_dev const *)root); } if (tmp != 4) { return; } else { } { tmp___0 = pci_find_ext_capability(root, 1); aer_pos = (u32 )tmp___0; } if (aer_pos == 0U) { return; } else { } { pci_write_config_dword((struct pci_dev const *)root, (int )(aer_pos + 20U), 65535U); } return; } } static int netxen_nic_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) { struct net_device *netdev ; struct netxen_adapter *adapter ; int i ; int err ; int pci_func_id ; uint8_t revision_id ; u32 val ; struct module *__mod ; void *tmp ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; u32 tmp___0 ; { netdev = (struct net_device *)0; adapter = (struct netxen_adapter *)0; i = 0; pci_func_id = (int )pdev->devfn & 7; if ((unsigned int )pdev->revision - 48U <= 17U) { { __mod = & __this_module; printk("\f%s: chip revisions between 0x%x-0x%x will not be enabled.\n", (unsigned long )__mod != (unsigned long )((struct module *)0) ? (char *)(& __mod->name) : (char *)"kernel", 48, 65); } return (-19); } else { } { err = pci_enable_device(pdev); } if (err != 0) { return (err); } else { } if ((pdev->resource[0].flags & 512UL) == 0UL) { err = -19; goto err_out_disable_pdev; } else { } { err = pci_request_regions(pdev, (char const *)(& netxen_nic_driver_name)); } if (err != 0) { goto err_out_disable_pdev; } else { } if ((unsigned int )pdev->revision > 47U) { { pci_enable_pcie_error_reporting(pdev); } } else { } { pci_set_master(pdev); netdev = ldv_alloc_etherdev_mqs_106(1168, 1U, 1U); } if ((unsigned long )netdev == (unsigned long )((struct net_device *)0)) { err = -12; goto err_out_free_res; } else { } { netdev->dev.parent = & pdev->dev; tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct netxen_adapter *)tmp; adapter->netdev = netdev; adapter->pdev = pdev; adapter->ahw.pci_func = (u8 )pci_func_id; revision_id = pdev->revision; adapter->ahw.revision_id = revision_id; __rwlock_init(& adapter->ahw.crb_lock, "&adapter->ahw.crb_lock", & __key); spinlock_check(& adapter->ahw.mem_lock); __raw_spin_lock_init(& adapter->ahw.mem_lock.__annonCompField19.rlock, "&(&adapter->ahw.mem_lock)->rlock", & __key___0); spinlock_check(& adapter->tx_clean_lock); __raw_spin_lock_init(& adapter->tx_clean_lock.__annonCompField19.rlock, "&(&adapter->tx_clean_lock)->rlock", & __key___1); INIT_LIST_HEAD(& adapter->mac_list); INIT_LIST_HEAD(& adapter->ip_list); err = netxen_setup_pci_map(adapter); } if (err != 0) { goto err_out_free_netdev; } else { } { adapter->portnum = (u8 )pci_func_id; err = netxen_nic_get_board_info(adapter); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "Error getting board config info.\n"); } goto err_out_iounmap; } else { } { netxen_mask_aer_correctable(adapter); } { if ((int )adapter->ahw.board_type == 13) { goto case_13; } else { } if ((int )adapter->ahw.board_type == 14) { goto case_14; } else { } goto switch_default; case_13: /* CIL Label */ ; case_14: /* CIL Label */ ; if (pci_func_id > 1) { adapter->portnum = (unsigned int )((u8 )pci_func_id) + 254U; } else { } goto ldv_51728; switch_default: /* CIL Label */ ; goto ldv_51728; switch_break: /* CIL Label */ ; } ldv_51728: { err = netxen_check_flash_fw_compatibility(adapter); } if (err != 0) { goto err_out_iounmap; } else { } if ((unsigned int )adapter->portnum == 0U) { { val = (*(adapter->crb_read))(adapter, 136323384UL); } if (val - 1U <= 4294967293U) { { (*(adapter->crb_write))(adapter, 136323384UL, 0U); adapter->need_fw_reset = 1U; } } else { } } else { } { err = netxen_start_firmware(adapter); } if (err != 0) { goto err_out_decr_ref; } else { } adapter->physical_port = adapter->portnum; if ((unsigned int )adapter->ahw.revision_id <= 37U) { { tmp___0 = (*(adapter->crb_read))(adapter, (unsigned long )((int )adapter->portnum * 4) + 136324240UL); i = (int )tmp___0; } if (i != 1431655765) { adapter->physical_port = (u8 )i; } else { } } else { } { netxen_nic_clear_stats(adapter); err = netxen_setup_intr(adapter); } if (err != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Failed to setup interrupts, error = %d\n", err); } goto err_out_disable_msi; } else { } { netxen_read_ula_info(adapter); err = netxen_setup_netdev(adapter, netdev); } if (err != 0) { goto err_out_disable_msi; } else { } { pci_set_drvdata(pdev, (void *)adapter); netxen_schedule_work(adapter, & netxen_fw_poll_work, 500); } { if ((int )adapter->ahw.port_type == 1) { goto case_1; } else { } if ((int )adapter->ahw.port_type == 2) { goto case_2; } else { } goto switch_break___0; case_1: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s: GbE port initialized\n", (char *)(& (adapter->netdev)->name)); } goto ldv_51733; case_2: /* CIL Label */ { _dev_info((struct device const *)(& (adapter->pdev)->dev), "%s: XGbE port initialized\n", (char *)(& (adapter->netdev)->name)); } goto ldv_51733; switch_break___0: /* CIL Label */ ; } ldv_51733: { netxen_create_diag_entries(adapter); } return (0); err_out_disable_msi: { netxen_teardown_intr(adapter); netxen_free_dummy_dma(adapter); } err_out_decr_ref: { nx_decr_dev_ref_cnt(adapter); } err_out_iounmap: { netxen_cleanup_pci_map(adapter); } err_out_free_netdev: { ldv_free_netdev_107(netdev); } err_out_free_res: { pci_release_regions(pdev); } err_out_disable_pdev: { pci_disable_device(pdev); } return (err); } } static void netxen_cleanup_minidump(struct netxen_adapter *adapter ) { { { kfree((void const *)adapter->mdump.md_template); adapter->mdump.md_template = (void *)0; } if ((unsigned long )adapter->mdump.md_capture_buff != (unsigned long )((void *)0)) { { vfree((void const *)adapter->mdump.md_capture_buff); adapter->mdump.md_capture_buff = (void *)0; } } else { } return; } } static void netxen_nic_remove(struct pci_dev *pdev ) { struct netxen_adapter *adapter ; struct net_device *netdev ; void *tmp ; { { tmp = pci_get_drvdata(pdev); adapter = (struct netxen_adapter *)tmp; } if ((unsigned long )adapter == (unsigned long )((struct netxen_adapter *)0)) { return; } else { } { netdev = adapter->netdev; netxen_cancel_fw_work(adapter); ldv_unregister_netdev_108(netdev); cancel_work_sync(& adapter->tx_timeout_task); netxen_free_ip_list(adapter, 0); netxen_nic_detach(adapter); nx_decr_dev_ref_cnt(adapter); } if ((unsigned int )adapter->portnum == 0U) { { netxen_free_dummy_dma(adapter); } } else { } { clear_bit(2L, (unsigned long volatile *)(& adapter->state)); netxen_teardown_intr(adapter); netxen_set_interrupt_mode(adapter, 0U); netxen_remove_diag_entries(adapter); netxen_cleanup_pci_map(adapter); netxen_release_firmware(adapter); } if ((unsigned int )pdev->revision > 47U) { { netxen_cleanup_minidump(adapter); pci_disable_pcie_error_reporting(pdev); } } else { } { pci_release_regions(pdev); pci_disable_device(pdev); ldv_free_netdev_109(netdev); } return; } } static void netxen_nic_detach_func(struct netxen_adapter *adapter ) { struct net_device *netdev ; bool tmp ; { { netdev = adapter->netdev; netif_device_detach(netdev); netxen_cancel_fw_work(adapter); tmp = netif_running((struct net_device const *)netdev); } if ((int )tmp) { { netxen_nic_down(adapter, netdev); } } else { } { cancel_work_sync(& adapter->tx_timeout_task); netxen_nic_detach(adapter); } if ((unsigned int )adapter->portnum == 0U) { { netxen_free_dummy_dma(adapter); } } else { } { nx_decr_dev_ref_cnt(adapter); clear_bit(2L, (unsigned long volatile *)(& adapter->state)); } return; } } static int netxen_nic_attach_func(struct pci_dev *pdev ) { struct netxen_adapter *adapter ; void *tmp ; struct net_device *netdev ; int err ; bool tmp___0 ; { { tmp = pci_get_drvdata(pdev); adapter = (struct netxen_adapter *)tmp; netdev = adapter->netdev; err = pci_enable_device(pdev); } if (err != 0) { return (err); } else { } { pci_set_power_state(pdev, 0); pci_set_master(pdev); pci_restore_state(pdev); adapter->ahw.crb_win = 4294967295U; adapter->ahw.ocm_win = 4294967295U; err = netxen_start_firmware(adapter); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "failed to start firmware\n"); } return (err); } else { } { tmp___0 = netif_running((struct net_device const *)netdev); } if ((int )tmp___0) { { err = netxen_nic_attach(adapter); } if (err != 0) { goto err_out; } else { } { err = netxen_nic_up(adapter, netdev); } if (err != 0) { goto err_out_detach; } else { } { netxen_restore_indev_addr(netdev, 1UL); } } else { } { netif_device_attach(netdev); netxen_schedule_work(adapter, & netxen_fw_poll_work, 500); } return (0); err_out_detach: { netxen_nic_detach(adapter); } err_out: { nx_decr_dev_ref_cnt(adapter); } return (err); } } static pci_ers_result_t netxen_io_error_detected(struct pci_dev *pdev , pci_channel_state_t state ) { struct netxen_adapter *adapter ; void *tmp ; int tmp___0 ; { { tmp = pci_get_drvdata(pdev); adapter = (struct netxen_adapter *)tmp; } if (state == 3U) { return (4U); } else { } { tmp___0 = nx_dev_request_aer(adapter); } if (tmp___0 != 0) { return (5U); } else { } { netxen_nic_detach_func(adapter); pci_disable_device(pdev); } return (3U); } } static pci_ers_result_t netxen_io_slot_reset(struct pci_dev *pdev ) { int err ; { { err = 0; err = netxen_nic_attach_func(pdev); } return (err != 0 ? 4U : 5U); } } static void netxen_io_resume(struct pci_dev *pdev ) { { { pci_cleanup_aer_uncorrect_error_status(pdev); } return; } } static void netxen_nic_shutdown(struct pci_dev *pdev ) { struct netxen_adapter *adapter ; void *tmp ; int tmp___0 ; int tmp___1 ; { { tmp = pci_get_drvdata(pdev); adapter = (struct netxen_adapter *)tmp; netxen_nic_detach_func(adapter); tmp___0 = pci_save_state(pdev); } if (tmp___0 != 0) { return; } else { } { tmp___1 = netxen_nic_wol_supported(adapter); } if (tmp___1 != 0) { { pci_enable_wake(pdev, 4, 1); pci_enable_wake(pdev, 3, 1); } } else { } { pci_disable_device(pdev); } return; } } static int netxen_nic_suspend(struct pci_dev *pdev , pm_message_t state ) { struct netxen_adapter *adapter ; void *tmp ; int retval ; int tmp___0 ; pci_power_t tmp___1 ; { { tmp = pci_get_drvdata(pdev); adapter = (struct netxen_adapter *)tmp; netxen_nic_detach_func(adapter); retval = pci_save_state(pdev); } if (retval != 0) { return (retval); } else { } { tmp___0 = netxen_nic_wol_supported(adapter); } if (tmp___0 != 0) { { pci_enable_wake(pdev, 4, 1); pci_enable_wake(pdev, 3, 1); } } else { } { pci_disable_device(pdev); tmp___1 = pci_choose_state(pdev, state); pci_set_power_state(pdev, tmp___1); } return (0); } } static int netxen_nic_resume(struct pci_dev *pdev ) { int tmp ; { { tmp = netxen_nic_attach_func(pdev); } return (tmp); } } static int netxen_nic_open(struct net_device *netdev ) { struct netxen_adapter *adapter ; void *tmp ; int err ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct netxen_adapter *)tmp; err = 0; } if ((unsigned int )adapter->driver_mismatch != 0U) { return (-5); } else { } { err = netxen_nic_attach(adapter); } if (err != 0) { return (err); } else { } { err = __netxen_nic_up(adapter, netdev); } if (err != 0) { goto err_out; } else { } { netif_start_queue(netdev); } return (0); err_out: { netxen_nic_detach(adapter); } return (err); } } static int netxen_nic_close(struct net_device *netdev ) { struct netxen_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct netxen_adapter *)tmp; __netxen_nic_down(adapter, netdev); } return (0); } } static void netxen_tso_check(struct net_device *netdev , struct nx_host_tx_ring *tx_ring , struct cmd_desc_type0 *first_desc , struct sk_buff *skb ) { u8 opcode ; __be16 protocol ; u16 flags ; u16 vid ; u32 producer ; int copied ; int offset ; int copy_len ; int hdr_len ; int tso ; int vlan_oob ; struct cmd_desc_type0 *hwdesc ; struct vlan_ethhdr *vh ; int tmp ; unsigned int tmp___0 ; unsigned char *tmp___1 ; u8 l4proto ; struct iphdr *tmp___2 ; struct ipv6hdr *tmp___3 ; unsigned char *tmp___4 ; int tmp___5 ; int tmp___6 ; int _min1 ; int _min2 ; __u16 tmp___7 ; int _min1___0 ; int _min2___0 ; { opcode = 1U; protocol = skb->protocol; flags = 0U; vid = 0U; hdr_len = 0; tso = 0; vlan_oob = 0; if ((unsigned int )protocol == 129U) { vh = (struct vlan_ethhdr *)skb->data; protocol = vh->h_vlan_encapsulated_proto; flags = 16U; } else if (((int )skb->vlan_tci & 4096) != 0) { flags = 64U; vid = (unsigned int )skb->vlan_tci & 61439U; first_desc->vlan_TCI = vid; vlan_oob = 1; } else { } if ((netdev->features & 1114112ULL) != 0ULL) { { tmp___4 = skb_end_pointer((struct sk_buff const *)skb); } if ((unsigned int )((struct skb_shared_info *)tmp___4)->gso_size != 0U) { { tmp = skb_transport_offset((struct sk_buff const *)skb); tmp___0 = tcp_hdrlen((struct sk_buff const *)skb); hdr_len = (int )((unsigned int )tmp + tmp___0); tmp___1 = skb_end_pointer((struct sk_buff const *)skb); first_desc->mss = ((struct skb_shared_info *)tmp___1)->gso_size; first_desc->total_hdr_length = (u8 )hdr_len; } if (vlan_oob != 0) { first_desc->total_hdr_length = (unsigned int )first_desc->total_hdr_length + 4U; first_desc->tcp_hdr_offset = 4U; first_desc->ip_hdr_offset = 4U; flags = (u16 )((unsigned int )flags | 16U); } else { } opcode = (unsigned int )protocol == 56710U ? 6U : 5U; tso = 1; } else { goto _L; } } else _L: /* CIL Label */ if ((unsigned int )*((unsigned char *)skb + 124UL) == 12U) { if ((unsigned int )protocol == 8U) { { tmp___2 = ip_hdr((struct sk_buff const *)skb); l4proto = tmp___2->protocol; } if ((unsigned int )l4proto == 6U) { opcode = 2U; } else if ((unsigned int )l4proto == 17U) { opcode = 3U; } else { } } else if ((unsigned int )protocol == 56710U) { { tmp___3 = ipv6_hdr((struct sk_buff const *)skb); l4proto = tmp___3->nexthdr; } if ((unsigned int )l4proto == 6U) { opcode = 11U; } else if ((unsigned int )l4proto == 17U) { opcode = 12U; } else { } } else { } } else { } { tmp___5 = skb_transport_offset((struct sk_buff const *)skb); first_desc->tcp_hdr_offset = (int )first_desc->tcp_hdr_offset + (int )((u8 )tmp___5); tmp___6 = skb_network_offset((struct sk_buff const *)skb); first_desc->ip_hdr_offset = (int )first_desc->ip_hdr_offset + (int )((u8 )tmp___6); first_desc->flags_opcode = (unsigned short )(((int )((short )flags) & 127) | (int )((short )(((int )opcode & 63) << 7))); } if (tso == 0) { return; } else { } producer = tx_ring->producer; copied = 0; offset = 2; if (vlan_oob != 0) { { hwdesc = tx_ring->desc_head + (unsigned long )producer; (tx_ring->cmd_buf_arr + (unsigned long )producer)->skb = (struct sk_buff *)0; _min1 = 64 - offset; _min2 = hdr_len + 4; copy_len = _min1 < _min2 ? _min1 : _min2; vh = (struct vlan_ethhdr *)hwdesc + 2U; skb_copy_from_linear_data((struct sk_buff const *)skb, (void *)vh, 12U); vh->h_vlan_proto = 129U; tmp___7 = __fswab16((int )vid); vh->h_vlan_TCI = tmp___7; skb_copy_from_linear_data_offset((struct sk_buff const *)skb, 12, (void *)vh + 16U, (unsigned int const )(copy_len + -16)); copied = copy_len + -4; offset = 0; producer = (producer + 1U) & (tx_ring->num_desc - 1U); } } else { } goto ldv_51817; ldv_51816: { _min1___0 = 64 - offset; _min2___0 = hdr_len - copied; copy_len = _min1___0 < _min2___0 ? _min1___0 : _min2___0; hwdesc = tx_ring->desc_head + (unsigned long )producer; (tx_ring->cmd_buf_arr + (unsigned long )producer)->skb = (struct sk_buff *)0; skb_copy_from_linear_data_offset((struct sk_buff const *)skb, copied, (void *)hwdesc + (unsigned long )offset, (unsigned int const )copy_len); copied = copied + copy_len; offset = 0; producer = (producer + 1U) & (tx_ring->num_desc - 1U); } ldv_51817: ; if (copied < hdr_len) { goto ldv_51816; } else { } tx_ring->producer = producer; __asm__ volatile ("": : : "memory"); return; } } static int netxen_map_tx_skb(struct pci_dev *pdev , struct sk_buff *skb , struct netxen_cmd_buffer *pbuf ) { struct netxen_skb_frag *nf ; struct skb_frag_struct *frag ; int i ; int nr_frags ; dma_addr_t map ; unsigned char *tmp ; unsigned int tmp___0 ; int tmp___1 ; unsigned int tmp___2 ; unsigned char *tmp___3 ; unsigned int tmp___4 ; int tmp___5 ; unsigned int tmp___6 ; unsigned int tmp___7 ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); nr_frags = (int )((struct skb_shared_info *)tmp)->nr_frags; nf = (struct netxen_skb_frag *)(& pbuf->frag_array); tmp___0 = skb_headlen((struct sk_buff const *)skb); map = pci_map_single(pdev, (void *)skb->data, (size_t )tmp___0, 1); tmp___1 = pci_dma_mapping_error(pdev, map); } if (tmp___1 != 0) { goto out_err; } else { } { nf->dma = map; tmp___2 = skb_headlen((struct sk_buff const *)skb); nf->length = (u64 )tmp___2; i = 0; } goto ldv_51832; ldv_51831: { tmp___3 = skb_end_pointer((struct sk_buff const *)skb); frag = (struct skb_frag_struct *)(& ((struct skb_shared_info *)tmp___3)->frags) + (unsigned long )i; nf = (struct netxen_skb_frag *)(& pbuf->frag_array) + ((unsigned long )i + 1UL); tmp___4 = skb_frag_size((skb_frag_t const *)frag); map = skb_frag_dma_map(& pdev->dev, (skb_frag_t const *)frag, 0UL, (size_t )tmp___4, 1); tmp___5 = dma_mapping_error(& pdev->dev, map); } if (tmp___5 != 0) { goto unwind; } else { } { nf->dma = map; tmp___6 = skb_frag_size((skb_frag_t const *)frag); nf->length = (u64 )tmp___6; i = i + 1; } ldv_51832: ; if (i < nr_frags) { goto ldv_51831; } else { } return (0); unwind: ; goto ldv_51835; ldv_51834: { nf = (struct netxen_skb_frag *)(& pbuf->frag_array) + ((unsigned long )i + 1UL); pci_unmap_page(pdev, nf->dma, (size_t )nf->length, 1); nf->dma = 0ULL; } ldv_51835: i = i - 1; if (i >= 0) { goto ldv_51834; } else { } { nf = (struct netxen_skb_frag *)(& pbuf->frag_array); tmp___7 = skb_headlen((struct sk_buff const *)skb); pci_unmap_single(pdev, nf->dma, (size_t )tmp___7, 1); nf->dma = 0ULL; } out_err: ; return (-12); } } __inline static void netxen_clear_cmddesc(u64 *desc ) { { *desc = 0ULL; *(desc + 2UL) = 0ULL; return; } } static netdev_tx_t netxen_nic_xmit_frame(struct sk_buff *skb , struct net_device *netdev ) { struct netxen_adapter *adapter ; void *tmp ; struct nx_host_tx_ring *tx_ring ; struct netxen_cmd_buffer *pbuf ; struct netxen_skb_frag *buffrag ; struct cmd_desc_type0 *hwdesc ; struct cmd_desc_type0 *first_desc ; struct pci_dev *pdev ; int i ; int k ; int delta ; struct skb_frag_struct *frag ; u32 producer ; int frag_count ; int no_of_desc ; u32 num_txd ; unsigned char *tmp___0 ; unsigned char *tmp___1 ; unsigned int tmp___2 ; unsigned char *tmp___3 ; unsigned char *tmp___4 ; bool tmp___5 ; int tmp___6 ; u32 tmp___7 ; u32 tmp___8 ; long tmp___9 ; int tmp___10 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct netxen_adapter *)tmp; tx_ring = adapter->tx_ring; delta = 0; num_txd = tx_ring->num_desc; tmp___0 = skb_end_pointer((struct sk_buff const *)skb); frag_count = (int )((struct skb_shared_info *)tmp___0)->nr_frags + 1; tmp___5 = skb_is_gso((struct sk_buff const *)skb); } if (tmp___5) { tmp___6 = 0; } else { tmp___6 = 1; } if (tmp___6 && frag_count > 14) { i = 0; goto ldv_51860; ldv_51859: { tmp___1 = skb_end_pointer((struct sk_buff const *)skb); frag = (struct skb_frag_struct *)(& ((struct skb_shared_info *)tmp___1)->frags) + (unsigned long )i; tmp___2 = skb_frag_size((skb_frag_t const *)frag); delta = (int )((unsigned int )delta + tmp___2); i = i + 1; } ldv_51860: ; if (i < frag_count + -14) { goto ldv_51859; } else { } { tmp___3 = __pskb_pull_tail(skb, delta); } if ((unsigned long )tmp___3 == (unsigned long )((unsigned char *)0U)) { goto drop_packet; } else { } { tmp___4 = skb_end_pointer((struct sk_buff const *)skb); frag_count = (int )((struct skb_shared_info *)tmp___4)->nr_frags + 1; } } else { } { no_of_desc = (frag_count + 3) >> 2; tmp___8 = netxen_tx_avail(tx_ring); tmp___9 = ldv__builtin_expect(tmp___8 <= 10U, 0L); } if (tmp___9 != 0L) { { netif_stop_queue(netdev); __asm__ volatile ("mfence": : : "memory"); tmp___7 = netxen_tx_avail(tx_ring); } if (tmp___7 > 10U) { { netif_start_queue(netdev); } } else { return (16); } } else { } { producer = tx_ring->producer; pbuf = tx_ring->cmd_buf_arr + (unsigned long )producer; pdev = adapter->pdev; tmp___10 = netxen_map_tx_skb(pdev, skb, pbuf); } if (tmp___10 != 0) { goto drop_packet; } else { } { pbuf->skb = skb; pbuf->frag_count = (u32 )frag_count; hwdesc = tx_ring->desc_head + (unsigned long )producer; first_desc = hwdesc; netxen_clear_cmddesc((u64 *)hwdesc); first_desc->nfrags__length = ((unsigned int )frag_count & 255U) | (skb->len << 8); first_desc->port_ctxid = (u8 )(((int )((signed char )adapter->portnum) & 15) | (int )((signed char )((int )adapter->portnum << 4))); i = 0; } goto ldv_51869; ldv_51868: k = i % 4; if (k == 0 && i > 0) { { producer = (producer + 1U) & (num_txd - 1U); hwdesc = tx_ring->desc_head + (unsigned long )producer; netxen_clear_cmddesc((u64 *)hwdesc); (tx_ring->cmd_buf_arr + (unsigned long )producer)->skb = (struct sk_buff *)0; } } else { } buffrag = (struct netxen_skb_frag *)(& pbuf->frag_array) + (unsigned long )i; hwdesc->buffer_length[k] = (unsigned short )buffrag->length; { if (k == 0) { goto case_0; } else { } if (k == 1) { goto case_1; } else { } if (k == 2) { goto case_2; } else { } if (k == 3) { goto case_3; } else { } goto switch_break; case_0: /* CIL Label */ hwdesc->addr_buffer1 = buffrag->dma; goto ldv_51864; case_1: /* CIL Label */ hwdesc->addr_buffer2 = buffrag->dma; goto ldv_51864; case_2: /* CIL Label */ hwdesc->addr_buffer3 = buffrag->dma; goto ldv_51864; case_3: /* CIL Label */ hwdesc->addr_buffer4 = buffrag->dma; goto ldv_51864; switch_break: /* CIL Label */ ; } ldv_51864: i = i + 1; ldv_51869: ; if (i < frag_count) { goto ldv_51868; } else { } { tx_ring->producer = (producer + 1U) & (num_txd - 1U); netxen_tso_check(netdev, tx_ring, first_desc, skb); adapter->stats.txbytes = adapter->stats.txbytes + (u64 )skb->len; adapter->stats.xmitcalled = adapter->stats.xmitcalled + 1ULL; netxen_nic_update_cmd_producer(adapter, tx_ring); } return (0); drop_packet: { adapter->stats.txdropped = adapter->stats.txdropped + 1ULL; dev_kfree_skb_any(skb); } return (0); } } static int netxen_nic_check_temp(struct netxen_adapter *adapter ) { struct net_device *netdev ; uint32_t temp ; uint32_t temp_state ; uint32_t temp_val ; int rv ; { { netdev = adapter->netdev; rv = 0; temp = (*(adapter->crb_read))(adapter, 136324020UL); temp_state = temp & 65535U; temp_val = temp >> 16; } if (temp_state == 3U) { { printk("\t%s: Device temperature %d degrees C exceeds maximum allowed. Hardware has been shut down.\n", (char *)(& netdev->name), temp_val); rv = 1; } } else if (temp_state == 2U) { if (adapter->temp == 1U) { { printk("\t%s: Device temperature %d degrees C exceeds operating range. Immediate action needed.\n", (char *)(& netdev->name), temp_val); } } else { } } else if (adapter->temp == 2U) { { printk("\016%s: Device temperature is now %d degrees C in normal range.\n", (char *)(& netdev->name), temp_val); } } else { } adapter->temp = temp_state; return (rv); } } void netxen_advert_link_change(struct netxen_adapter *adapter , int linkup ) { struct net_device *netdev ; bool tmp ; bool tmp___0 ; { netdev = adapter->netdev; if ((unsigned int )adapter->ahw.linkup != 0U && linkup == 0) { { printk("\016%s: %s NIC Link is down\n", (char *)(& netxen_nic_driver_name), (char *)(& netdev->name)); adapter->ahw.linkup = 0U; tmp = netif_running((struct net_device const *)netdev); } if ((int )tmp) { { netif_carrier_off(netdev); netif_stop_queue(netdev); } } else { } adapter->link_changed = (unsigned int )adapter->has_link_events == 0U; } else if ((unsigned int )adapter->ahw.linkup == 0U && linkup != 0) { { printk("\016%s: %s NIC Link is up\n", (char *)(& netxen_nic_driver_name), (char *)(& netdev->name)); adapter->ahw.linkup = 1U; tmp___0 = netif_running((struct net_device const *)netdev); } if ((int )tmp___0) { { netif_carrier_on(netdev); netif_wake_queue(netdev); } } else { } adapter->link_changed = (unsigned int )adapter->has_link_events == 0U; } else { } return; } } static void netxen_nic_handle_phy_intr(struct netxen_adapter *adapter ) { u32 val ; u32 port ; u32 linkup ; { port = (u32 )adapter->physical_port; if ((unsigned int )adapter->ahw.revision_id > 47U) { { val = (*(adapter->crb_read))(adapter, 136323736UL); val = (val >> (int )adapter->ahw.pci_func * 4) & 15U; linkup = val == 1U; } } else { { val = (*(adapter->crb_read))(adapter, 136323732UL); val = (val >> (int )(port * 8U)) & 255U; linkup = val == 16U; } } { netxen_advert_link_change(adapter, (int )linkup); } return; } } static void netxen_tx_timeout(struct net_device *netdev ) { struct netxen_adapter *adapter ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct netxen_adapter *)tmp; tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->state)); } if (tmp___0 != 0) { return; } else { } { dev_err((struct device const *)(& netdev->dev), "transmit timeout, resetting.\n"); schedule_work(& adapter->tx_timeout_task); } return; } } static void netxen_tx_timeout_task(struct work_struct *work ) { struct netxen_adapter *adapter ; struct work_struct const *__mptr ; bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { __mptr = (struct work_struct const *)work; adapter = (struct netxen_adapter *)__mptr + 0xfffffffffffffc40UL; tmp = netif_running((struct net_device const *)adapter->netdev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } { tmp___1 = test_and_clear_bit(2L, (unsigned long volatile *)(& adapter->state)); } if (tmp___1 != 0) { return; } else { } adapter->tx_timeo_cnt = (u8 )((int )adapter->tx_timeo_cnt + 1); if ((unsigned int )adapter->tx_timeo_cnt > 1U) { goto request_reset; } else { } { rtnl_lock(); } if ((unsigned int )adapter->ahw.revision_id <= 37U) { { netxen_napi_disable(adapter); netxen_napi_enable(adapter); netif_wake_queue(adapter->netdev); clear_bit(2L, (unsigned long volatile *)(& adapter->state)); } } else { { clear_bit(2L, (unsigned long volatile *)(& adapter->state)); tmp___2 = netxen_nic_reset_context(adapter); } if (tmp___2 != 0) { { rtnl_unlock(); } goto request_reset; } else { } } { (adapter->netdev)->trans_start = jiffies; rtnl_unlock(); } return; request_reset: { adapter->need_fw_reset = 1U; clear_bit(2L, (unsigned long volatile *)(& adapter->state)); } return; } } static struct rtnl_link_stats64 *netxen_nic_get_stats(struct net_device *netdev , struct rtnl_link_stats64 *stats ) { struct netxen_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct netxen_adapter *)tmp; stats->rx_packets = adapter->stats.rx_pkts + adapter->stats.lro_pkts; stats->tx_packets = adapter->stats.xmitfinished; stats->rx_bytes = adapter->stats.rxbytes; stats->tx_bytes = adapter->stats.txbytes; stats->rx_dropped = adapter->stats.rxdropped; stats->tx_dropped = adapter->stats.txdropped; } return (stats); } } static irqreturn_t netxen_intr(int irq , void *data ) { struct nx_host_sds_ring *sds_ring ; struct netxen_adapter *adapter ; u32 status ; unsigned long our_int ; unsigned int tmp ; int tmp___0 ; { { sds_ring = (struct nx_host_sds_ring *)data; adapter = sds_ring->adapter; status = 0U; status = readl((void const volatile *)adapter->isr_int_vec); } if ((status & adapter->int_vec_bit) == 0U) { return (0); } else { } if ((unsigned int )adapter->ahw.revision_id > 47U) { { status = readl((void const volatile *)adapter->crb_int_state_reg); } if ((status & 768U) != 512U) { return (0); } else { } } else { { our_int = 0UL; tmp = readl((void const volatile *)adapter->crb_int_state_reg); our_int = (unsigned long )tmp; tmp___0 = test_and_clear_bit((long )((int )adapter->portnum + 7), (unsigned long volatile *)(& our_int)); } if (tmp___0 == 0) { return (0); } else { } { writel((unsigned int )our_int, (void volatile *)adapter->crb_int_state_reg); netxen_nic_disable_int(sds_ring); } } { writel(4294967295U, (void volatile *)adapter->tgt_status_reg); readl((void const volatile *)adapter->isr_int_vec); readl((void const volatile *)adapter->isr_int_vec); napi_schedule(& sds_ring->napi); } return (1); } } static irqreturn_t netxen_msi_intr(int irq , void *data ) { struct nx_host_sds_ring *sds_ring ; struct netxen_adapter *adapter ; { { sds_ring = (struct nx_host_sds_ring *)data; adapter = sds_ring->adapter; writel(4294967295U, (void volatile *)adapter->tgt_status_reg); napi_schedule(& sds_ring->napi); } return (1); } } static irqreturn_t netxen_msix_intr(int irq , void *data ) { struct nx_host_sds_ring *sds_ring ; { { sds_ring = (struct nx_host_sds_ring *)data; napi_schedule(& sds_ring->napi); } return (1); } } static int netxen_nic_poll(struct napi_struct *napi , int budget ) { struct nx_host_sds_ring *sds_ring ; struct napi_struct const *__mptr ; struct netxen_adapter *adapter ; int tx_complete ; int work_done ; int tmp ; { { __mptr = (struct napi_struct const *)napi; sds_ring = (struct nx_host_sds_ring *)__mptr + 0xffffffffffffffd8UL; adapter = sds_ring->adapter; tx_complete = netxen_process_cmd_ring(adapter); work_done = netxen_process_rcv_ring(sds_ring, budget); } if (work_done < budget && tx_complete != 0) { { napi_complete(& sds_ring->napi); tmp = constant_test_bit(1L, (unsigned long const volatile *)(& adapter->state)); } if (tmp != 0) { { netxen_nic_enable_int(sds_ring); } } else { } } else { } return (work_done); } } static void netxen_nic_poll_controller(struct net_device *netdev ) { int ring ; struct nx_host_sds_ring *sds_ring ; struct netxen_adapter *adapter ; void *tmp ; struct netxen_recv_context *recv_ctx ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct netxen_adapter *)tmp; recv_ctx = & adapter->recv_ctx; disable_irq(adapter->irq); ring = 0; } goto ldv_51943; ldv_51942: { sds_ring = recv_ctx->sds_rings + (unsigned long )ring; netxen_intr((int )adapter->irq, (void *)sds_ring); ring = ring + 1; } ldv_51943: ; if (ring < (int )adapter->max_sds_rings) { goto ldv_51942; } else { } { enable_irq(adapter->irq); } return; } } static int nx_incr_dev_ref_cnt(struct netxen_adapter *adapter ) { int count ; int tmp ; u32 tmp___0 ; { { tmp = netxen_pcie_sem_lock(adapter, 5, 0U); } if (tmp != 0) { return (-5); } else { } { tmp___0 = (*(adapter->crb_read))(adapter, 136323384UL); count = (int )tmp___0; count = count + 1; (*(adapter->crb_write))(adapter, 136323384UL, (u32 )count); netxen_pcie_sem_unlock(adapter, 5); } return (count); } } static int nx_decr_dev_ref_cnt(struct netxen_adapter *adapter ) { int count ; int state ; int tmp ; u32 tmp___0 ; int __ret_warn_on ; long tmp___1 ; u32 tmp___2 ; { { tmp = netxen_pcie_sem_lock(adapter, 5, 0U); } if (tmp != 0) { return (-5); } else { } { tmp___0 = (*(adapter->crb_read))(adapter, 136323384UL); count = (int )tmp___0; __ret_warn_on = count == 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("drivers/net/ethernet/qlogic/netxen/netxen_nic_main.c", 2442); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); count = count - 1; (*(adapter->crb_write))(adapter, 136323384UL, (u32 )count); tmp___2 = (*(adapter->crb_read))(adapter, 136323392UL); state = (int )tmp___2; } if (count == 0 && state != 7) { { (*(adapter->crb_write))(adapter, 136323392UL, 1U); } } else { } { netxen_pcie_sem_unlock(adapter, 5); } return (count); } } static int nx_dev_request_aer(struct netxen_adapter *adapter ) { u32 state ; int ret ; int tmp ; { { ret = -22; tmp = netxen_pcie_sem_lock(adapter, 5, 0U); } if (tmp != 0) { return (ret); } else { } { state = (*(adapter->crb_read))(adapter, 136323392UL); } if (state == 6U) { ret = 0; } else if (state == 3U) { { (*(adapter->crb_write))(adapter, 136323392UL, 6U); ret = 0; } } else { } { netxen_pcie_sem_unlock(adapter, 5); } return (ret); } } int nx_dev_request_reset(struct netxen_adapter *adapter ) { u32 state ; int ret ; int tmp ; { { ret = -22; tmp = netxen_pcie_sem_lock(adapter, 5, 0U); } if (tmp != 0) { return (ret); } else { } { state = (*(adapter->crb_read))(adapter, 136323392UL); } if (state == 4U || state == 7U) { ret = 0; } else if (state != 2U && state != 6U) { { (*(adapter->crb_write))(adapter, 136323392UL, 4U); adapter->flags = adapter->flags | 64U; ret = 0; } } else { } { netxen_pcie_sem_unlock(adapter, 5); } return (ret); } } static int netxen_can_start_firmware(struct netxen_adapter *adapter ) { int count ; int can_start ; int tmp ; u32 tmp___0 ; { { can_start = 0; tmp = netxen_pcie_sem_lock(adapter, 5, 0U); } if (tmp != 0) { { nx_incr_dev_ref_cnt(adapter); } return (-1); } else { } { tmp___0 = (*(adapter->crb_read))(adapter, 136323384UL); count = (int )tmp___0; } if ((unsigned int )count > 7U) { count = 0; } else { } if (count == 0) { { can_start = 1; (*(adapter->crb_write))(adapter, 136323392UL, 2U); } } else { } { count = count + 1; (*(adapter->crb_write))(adapter, 136323384UL, (u32 )count); netxen_pcie_sem_unlock(adapter, 5); } return (can_start); } } static void netxen_schedule_work(struct netxen_adapter *adapter , void (*func)(struct work_struct * ) , int delay ) { struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___0 ; { { __init_work(& adapter->fw_work.work, 0); __constr_expr_0.counter = 137438953408L; adapter->fw_work.work.data = __constr_expr_0; lockdep_init_map(& adapter->fw_work.work.lockdep_map, "(&(&adapter->fw_work)->work)", & __key, 0); INIT_LIST_HEAD(& adapter->fw_work.work.entry); adapter->fw_work.work.func = func; init_timer_key(& adapter->fw_work.timer, 2U, "(&(&adapter->fw_work)->timer)", & __key___0); adapter->fw_work.timer.function = & delayed_work_timer_fn; adapter->fw_work.timer.data = (unsigned long )(& adapter->fw_work); schedule_delayed_work(& adapter->fw_work, (unsigned long )delay); } return; } } static void netxen_cancel_fw_work(struct netxen_adapter *adapter ) { int tmp ; { goto ldv_51983; ldv_51982: { msleep(10U); } ldv_51983: { tmp = test_and_clear_bit(2L, (unsigned long volatile *)(& adapter->state)); } if (tmp != 0) { goto ldv_51982; } else { } { cancel_delayed_work_sync(& adapter->fw_work); } return; } } static void netxen_attach_work(struct work_struct *work ) { struct netxen_adapter *adapter ; struct work_struct const *__mptr ; struct net_device *netdev ; int err ; bool tmp ; { { __mptr = (struct work_struct const *)work; adapter = (struct netxen_adapter *)__mptr + 0xfffffffffffffd20UL; netdev = adapter->netdev; err = 0; tmp = netif_running((struct net_device const *)netdev); } if ((int )tmp) { { err = netxen_nic_attach(adapter); } if (err != 0) { goto done; } else { } { err = netxen_nic_up(adapter, netdev); } if (err != 0) { { netxen_nic_detach(adapter); } goto done; } else { } { netxen_restore_indev_addr(netdev, 1UL); } } else { } { netif_device_attach(netdev); } done: { adapter->fw_fail_cnt = 0U; clear_bit(2L, (unsigned long volatile *)(& adapter->state)); netxen_schedule_work(adapter, & netxen_fw_poll_work, 500); } return; } } static void netxen_fwinit_work(struct work_struct *work ) { struct netxen_adapter *adapter ; struct work_struct const *__mptr ; int dev_state ; int count ; u32 tmp ; u32 tmp___0 ; int __ret_warn_on ; long tmp___1 ; int tmp___2 ; u32 tmp___3 ; int tmp___4 ; int tmp___5 ; { { __mptr = (struct work_struct const *)work; adapter = (struct netxen_adapter *)__mptr + 0xfffffffffffffd20UL; tmp = (*(adapter->crb_read))(adapter, 136323392UL); dev_state = (int )tmp; } if ((adapter->flags & 64U) != 0U) { { tmp___0 = (*(adapter->crb_read))(adapter, 136323384UL); count = (int )tmp___0; __ret_warn_on = count == 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("drivers/net/ethernet/qlogic/netxen/netxen_nic_main.c", 2585); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (count == 1) { if ((unsigned int )adapter->mdump.md_enabled != 0U) { { rtnl_lock(); netxen_dump_fw(adapter); rtnl_unlock(); } } else { } { adapter->flags = adapter->flags & 4294967231U; tmp___2 = netxen_pcie_sem_lock(adapter, 5, 0U); } if (tmp___2 != 0) { { clear_bit(2L, (unsigned long volatile *)(& adapter->state)); (*(adapter->crb_write))(adapter, 136323392UL, 7U); } return; } else { } { tmp___3 = (*(adapter->crb_read))(adapter, 136323384UL); count = (int )tmp___3; count = count - 1; (*(adapter->crb_write))(adapter, 136323384UL, (u32 )count); (*(adapter->crb_write))(adapter, 136323392UL, 1U); dev_state = 1; netxen_pcie_sem_unlock(adapter, 5); } } else { } } else { } { if (dev_state == 1) { goto case_1; } else { } if (dev_state == 3) { goto case_3; } else { } if (dev_state == 4) { goto case_4; } else { } if (dev_state == 2) { goto case_2; } else { } if (dev_state == 7) { goto case_7; } else { } goto switch_default; case_1: /* CIL Label */ ; case_3: /* CIL Label */ { tmp___4 = netxen_start_firmware(adapter); } if (tmp___4 == 0) { { netxen_schedule_work(adapter, & netxen_attach_work, 0); } return; } else { } goto ldv_52006; case_4: /* CIL Label */ ; case_2: /* CIL Label */ { netxen_schedule_work(adapter, & netxen_fwinit_work, 1000); } return; case_7: /* CIL Label */ ; switch_default: /* CIL Label */ { nx_incr_dev_ref_cnt(adapter); } goto ldv_52006; switch_break: /* CIL Label */ ; } ldv_52006: { tmp___5 = netxen_pcie_sem_lock(adapter, 5, 0U); } if (tmp___5 != 0) { { clear_bit(2L, (unsigned long volatile *)(& adapter->state)); } return; } else { } { (*(adapter->crb_write))(adapter, 136323392UL, 7U); netxen_pcie_sem_unlock(adapter, 5); dev_err((struct device const *)(& (adapter->pdev)->dev), "%s: Device initialization Failed\n", (char *)(& (adapter->netdev)->name)); clear_bit(2L, (unsigned long volatile *)(& adapter->state)); } return; } } static void netxen_detach_work(struct work_struct *work ) { struct netxen_adapter *adapter ; struct work_struct const *__mptr ; struct net_device *netdev ; int ref_cnt ; int delay ; u32 status ; { { __mptr = (struct work_struct const *)work; adapter = (struct netxen_adapter *)__mptr + 0xfffffffffffffd20UL; netdev = adapter->netdev; ref_cnt = 0; netif_device_detach(netdev); netxen_nic_down(adapter, netdev); rtnl_lock(); netxen_nic_detach(adapter); rtnl_unlock(); status = (*(adapter->crb_read))(adapter, 136323240UL); } if ((int )status < 0) { goto err_ret; } else { } if (adapter->temp == 3U) { goto err_ret; } else { } if ((adapter->flags & 64U) == 0U) { { ref_cnt = nx_decr_dev_ref_cnt(adapter); } } else { } if (ref_cnt == -5) { goto err_ret; } else { } { delay = ref_cnt == 0 ? 0 : 1000; adapter->fw_wait_cnt = 0U; netxen_schedule_work(adapter, & netxen_fwinit_work, delay); } return; err_ret: { clear_bit(2L, (unsigned long volatile *)(& adapter->state)); } return; } } static int netxen_check_health(struct netxen_adapter *adapter ) { u32 state ; u32 heartbit ; u32 peg_status ; struct net_device *netdev ; int tmp ; int tmp___0 ; int tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; u32 tmp___4 ; u32 tmp___5 ; u32 tmp___6 ; u32 tmp___7 ; int tmp___8 ; { { netdev = adapter->netdev; state = (*(adapter->crb_read))(adapter, 136323392UL); } if (state == 6U) { return (0); } else { } { tmp = netxen_nic_check_temp(adapter); } if (tmp != 0) { goto detach; } else { } if ((unsigned int )adapter->need_fw_reset != 0U) { { tmp___0 = nx_dev_request_reset(adapter); } if (tmp___0 != 0) { return (0); } else { } goto detach; } else { } if (state == 4U || state == 7U) { adapter->need_fw_reset = 1U; if ((unsigned int )adapter->ahw.revision_id <= 37U) { goto detach; } else { } } else { } if ((unsigned int )adapter->ahw.revision_id <= 37U) { return (0); } else { } { heartbit = (*(adapter->crb_read))(adapter, 136323248UL); } if (heartbit != adapter->heartbit) { adapter->heartbit = heartbit; adapter->fw_fail_cnt = 0U; if ((unsigned int )adapter->need_fw_reset != 0U) { goto detach; } else { } return (0); } else { } adapter->fw_fail_cnt = (u8 )((int )adapter->fw_fail_cnt + 1); if ((unsigned int )adapter->fw_fail_cnt <= 2U) { return (0); } else { } { tmp___1 = nx_dev_request_reset(adapter); } if (tmp___1 != 0) { return (0); } else { } { clear_bit(0L, (unsigned long volatile *)(& adapter->state)); dev_err((struct device const *)(& netdev->dev), "firmware hang detected\n"); peg_status = (*(adapter->crb_read))(adapter, 136323240UL); tmp___2 = (*(adapter->crb_read))(adapter, 116391996UL); tmp___3 = (*(adapter->crb_read))(adapter, 121634876UL); tmp___4 = (*(adapter->crb_read))(adapter, 120586300UL); tmp___5 = (*(adapter->crb_read))(adapter, 119537724UL); tmp___6 = (*(adapter->crb_read))(adapter, 118489148UL); tmp___7 = (*(adapter->crb_read))(adapter, 136323244UL); dev_err((struct device const *)(& (adapter->pdev)->dev), "Dumping hw/fw registers\nPEG_HALT_STATUS1: 0x%x, PEG_HALT_STATUS2: 0x%x,\nPEG_NET_0_PC: 0x%x, PEG_NET_1_PC: 0x%x,\nPEG_NET_2_PC: 0x%x, PEG_NET_3_PC: 0x%x,\nPEG_NET_4_PC: 0x%x\n", peg_status, tmp___7, tmp___6, tmp___5, tmp___4, tmp___3, tmp___2); } if (((peg_status >> 8) & 2097151U) == 103U) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Firmware aborted with error code 0x00006700. Device is being reset.\n"); } } else { } detach: ; if (auto_fw_reset == -284119278) { { tmp___8 = test_and_clear_bit(2L, (unsigned long volatile *)(& adapter->state)); } if (tmp___8 == 0) { { netxen_schedule_work(adapter, & netxen_detach_work, 0); } } else { } } else { } return (1); } } static void netxen_fw_poll_work(struct work_struct *work ) { struct netxen_adapter *adapter ; struct work_struct const *__mptr ; int tmp ; int tmp___0 ; int tmp___1 ; { { __mptr = (struct work_struct const *)work; adapter = (struct netxen_adapter *)__mptr + 0xfffffffffffffd20UL; tmp = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->state)); } if (tmp != 0) { goto reschedule; } else { } { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& adapter->state)); } if (tmp___0 != 0) { if ((unsigned int )adapter->has_link_events == 0U) { { netxen_nic_handle_phy_intr(adapter); } if ((unsigned int )adapter->link_changed != 0U) { { netxen_nic_set_link_parameters(adapter); } } else { } } else { } } else { } { tmp___1 = netxen_check_health(adapter); } if (tmp___1 != 0) { return; } else { } reschedule: { netxen_schedule_work(adapter, & netxen_fw_poll_work, 500); } return; } } static ssize_t netxen_store_bridged_mode(struct device *dev , struct device_attribute *attr , char const *buf , size_t len ) { struct net_device *net ; struct device const *__mptr ; struct netxen_adapter *adapter ; void *tmp ; unsigned long new ; int ret ; int tmp___0 ; int tmp___1 ; { { __mptr = (struct device const *)dev; net = (struct net_device *)__mptr + 0xfffffffffffffac8UL; tmp = netdev_priv((struct net_device const *)net); adapter = (struct netxen_adapter *)tmp; ret = -22; } if ((adapter->capabilities & 256U) == 0U) { goto err_out; } else { } if ((unsigned int )adapter->is_up != 777U) { goto err_out; } else { } { tmp___0 = kstrtoul(buf, 2U, & new); } if (tmp___0 != 0) { goto err_out; } else { } { tmp___1 = netxen_config_bridged_mode(adapter, new != 0UL); } if (tmp___1 == 0) { ret = (int )len; } else { } err_out: ; return ((ssize_t )ret); } } static ssize_t netxen_show_bridged_mode(struct device *dev , struct device_attribute *attr , char *buf ) { struct net_device *net ; struct device const *__mptr ; struct netxen_adapter *adapter ; int bridged_mode ; void *tmp ; int tmp___0 ; { { __mptr = (struct device const *)dev; net = (struct net_device *)__mptr + 0xfffffffffffffac8UL; bridged_mode = 0; tmp = netdev_priv((struct net_device const *)net); adapter = (struct netxen_adapter *)tmp; } if ((adapter->capabilities & 256U) != 0U) { bridged_mode = (adapter->flags & 16U) != 0U; } else { } { tmp___0 = sprintf(buf, "%d\n", bridged_mode); } return ((ssize_t )tmp___0); } } static struct device_attribute dev_attr_bridged_mode = {{"bridged_mode", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & netxen_show_bridged_mode, & netxen_store_bridged_mode}; static ssize_t netxen_store_diag_mode(struct device *dev , struct device_attribute *attr , char const *buf , size_t len ) { struct netxen_adapter *adapter ; void *tmp ; unsigned long new ; int tmp___0 ; { { tmp = ldv_dev_get_drvdata_110((struct device const *)dev); adapter = (struct netxen_adapter *)tmp; tmp___0 = kstrtoul(buf, 2U, & new); } if (tmp___0 != 0) { return (-22L); } else { } if ((new != 0UL) ^ ((adapter->flags & 32U) != 0U)) { adapter->flags = adapter->flags ^ 32U; } else { } return ((ssize_t )len); } } static ssize_t netxen_show_diag_mode(struct device *dev , struct device_attribute *attr , char *buf ) { struct netxen_adapter *adapter ; void *tmp ; int tmp___0 ; { { tmp = ldv_dev_get_drvdata_111((struct device const *)dev); adapter = (struct netxen_adapter *)tmp; tmp___0 = sprintf(buf, "%d\n", (adapter->flags & 32U) != 0U); } return ((ssize_t )tmp___0); } } static struct device_attribute dev_attr_diag_mode = {{"diag_mode", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, & netxen_show_diag_mode, & netxen_store_diag_mode}; static int netxen_sysfs_validate_crb(struct netxen_adapter *adapter , loff_t offset , size_t size ) { size_t crb_size ; { crb_size = 4UL; if ((adapter->flags & 32U) == 0U) { return (-5); } else { } if ((unsigned long long )offset <= 100663295ULL) { if ((unsigned int )adapter->ahw.revision_id <= 37U) { return (-22); } else { } if ((unsigned long )offset - 75497472UL <= 2047UL) { crb_size = 8UL; } else { return (-22); } } else { } if (size != crb_size || ((unsigned long long )offset & (unsigned long long )(crb_size - 1UL)) != 0ULL) { return (-22); } else { } return (0); } } static ssize_t netxen_sysfs_read_crb(struct file *filp , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t offset , size_t size ) { struct device *dev ; struct kobject const *__mptr ; struct netxen_adapter *adapter ; void *tmp ; u32 data ; u64 qmdata ; int ret ; { { __mptr = (struct kobject const *)kobj; dev = (struct device *)__mptr + 0xfffffffffffffff0UL; tmp = ldv_dev_get_drvdata_112((struct device const *)dev); adapter = (struct netxen_adapter *)tmp; ret = netxen_sysfs_validate_crb(adapter, offset, size); } if (ret != 0) { return ((ssize_t )ret); } else { } if ((unsigned int )adapter->ahw.revision_id > 47U && (unsigned long )offset - 75497472UL <= 2047UL) { { netxen_pci_camqm_read_2M(adapter, (u64 )offset, & qmdata); memcpy((void *)buf, (void const *)(& qmdata), size); } } else { { data = (*(adapter->crb_read))(adapter, (ulong )offset); memcpy((void *)buf, (void const *)(& data), size); } } return ((ssize_t )size); } } static ssize_t netxen_sysfs_write_crb(struct file *filp , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t offset , size_t size ) { struct device *dev ; struct kobject const *__mptr ; struct netxen_adapter *adapter ; void *tmp ; u32 data ; u64 qmdata ; int ret ; { { __mptr = (struct kobject const *)kobj; dev = (struct device *)__mptr + 0xfffffffffffffff0UL; tmp = ldv_dev_get_drvdata_113((struct device const *)dev); adapter = (struct netxen_adapter *)tmp; ret = netxen_sysfs_validate_crb(adapter, offset, size); } if (ret != 0) { return ((ssize_t )ret); } else { } if ((unsigned int )adapter->ahw.revision_id > 47U && (unsigned long )offset - 75497472UL <= 2047UL) { { memcpy((void *)(& qmdata), (void const *)buf, size); netxen_pci_camqm_write_2M(adapter, (u64 )offset, qmdata); } } else { { memcpy((void *)(& data), (void const *)buf, size); (*(adapter->crb_write))(adapter, (ulong )offset, data); } } return ((ssize_t )size); } } static int netxen_sysfs_validate_mem(struct netxen_adapter *adapter , loff_t offset , size_t size ) { { if ((adapter->flags & 32U) == 0U) { return (-5); } else { } if (size != 8UL || (offset & 7LL) != 0LL) { return (-5); } else { } return (0); } } static ssize_t netxen_sysfs_read_mem(struct file *filp , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t offset , size_t size ) { struct device *dev ; struct kobject const *__mptr ; struct netxen_adapter *adapter ; void *tmp ; u64 data ; int ret ; int tmp___0 ; { { __mptr = (struct kobject const *)kobj; dev = (struct device *)__mptr + 0xfffffffffffffff0UL; tmp = ldv_dev_get_drvdata_114((struct device const *)dev); adapter = (struct netxen_adapter *)tmp; ret = netxen_sysfs_validate_mem(adapter, offset, size); } if (ret != 0) { return ((ssize_t )ret); } else { } { tmp___0 = (*(adapter->pci_mem_read))(adapter, (u64 )offset, & data); } if (tmp___0 != 0) { return (-5L); } else { } { memcpy((void *)buf, (void const *)(& data), size); } return ((ssize_t )size); } } static ssize_t netxen_sysfs_write_mem(struct file *filp , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t offset , size_t size ) { struct device *dev ; struct kobject const *__mptr ; struct netxen_adapter *adapter ; void *tmp ; u64 data ; int ret ; int tmp___0 ; { { __mptr = (struct kobject const *)kobj; dev = (struct device *)__mptr + 0xfffffffffffffff0UL; tmp = ldv_dev_get_drvdata_115((struct device const *)dev); adapter = (struct netxen_adapter *)tmp; ret = netxen_sysfs_validate_mem(adapter, offset, size); } if (ret != 0) { return ((ssize_t )ret); } else { } { memcpy((void *)(& data), (void const *)buf, size); tmp___0 = (*(adapter->pci_mem_write))(adapter, (u64 )offset, data); } if (tmp___0 != 0) { return (-5L); } else { } return ((ssize_t )size); } } static struct bin_attribute bin_attr_crb = {{"crb", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0UL, 0, & netxen_sysfs_read_crb, & netxen_sysfs_write_crb, 0}; static struct bin_attribute bin_attr_mem = {{"mem", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0UL, 0, & netxen_sysfs_read_mem, & netxen_sysfs_write_mem, 0}; static ssize_t netxen_sysfs_read_dimm(struct file *filp , struct kobject *kobj , struct bin_attribute *attr , char *buf , loff_t offset , size_t size ) { struct device *dev ; struct kobject const *__mptr ; struct netxen_adapter *adapter ; void *tmp ; struct net_device *netdev ; struct netxen_dimm_cfg dimm ; u8 dw ; u8 rows ; u8 cols ; u8 banks ; u8 ranks ; u32 val ; { { __mptr = (struct kobject const *)kobj; dev = (struct device *)__mptr + 0xfffffffffffffff0UL; tmp = ldv_dev_get_drvdata_116((struct device const *)dev); adapter = (struct netxen_adapter *)tmp; netdev = adapter->netdev; } if (size != 8UL) { { netdev_err((struct net_device const *)netdev, "Invalid size\n"); } return (-1L); } else { } { memset((void *)(& dimm), 0, 8UL); val = (*(adapter->crb_read))(adapter, 136323672UL); } if ((int )val < 0) { { netdev_err((struct net_device const *)netdev, "Invalid DIMM flag\n"); dimm.presence = 255U; } goto out; } else { } rows = (unsigned int )((u8 )(val >> 7)) & 15U; cols = (unsigned int )((u8 )(val >> 11)) & 15U; ranks = (unsigned int )((u8 )(val >> 15)) & 3U; banks = (unsigned int )((u8 )(val >> 21)) & 15U; dw = (unsigned int )((u8 )(val >> 18)) & 3U; dimm.presence = (unsigned int )((u8 )val) & 1U; if ((unsigned int )dimm.presence == 0U) { { netdev_err((struct net_device const *)netdev, "DIMM not present\n"); } goto out; } else { } dimm.dimm_type = (unsigned int )((u8 )(val >> 25)) & 63U; { if ((int )dimm.dimm_type == 1) { goto case_1; } else { } if ((int )dimm.dimm_type == 2) { goto case_2; } else { } if ((int )dimm.dimm_type == 4) { goto case_4; } else { } if ((int )dimm.dimm_type == 8) { goto case_8; } else { } if ((int )dimm.dimm_type == 16) { goto case_16; } else { } if ((int )dimm.dimm_type == 32) { goto case_32; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_4: /* CIL Label */ ; case_8: /* CIL Label */ ; case_16: /* CIL Label */ ; case_32: /* CIL Label */ ; goto ldv_52174; switch_default: /* CIL Label */ { netdev_err((struct net_device const *)netdev, "Invalid DIMM type %x\n", (int )dimm.dimm_type); } goto out; switch_break: /* CIL Label */ ; } ldv_52174: ; if ((val & 2U) != 0U) { dimm.mem_type = 8U; } else { dimm.mem_type = (unsigned int )((u8 )(val >> 3)) & 15U; } if ((val & 4U) != 0U) { dimm.size = 512U; goto out; } else { } if ((unsigned int )rows == 0U) { { netdev_err((struct net_device const *)netdev, "Invalid no of rows %x\n", (int )rows); } goto out; } else { } if ((unsigned int )cols == 0U) { { netdev_err((struct net_device const *)netdev, "Invalid no of columns %x\n", (int )cols); } goto out; } else { } if ((unsigned int )banks == 0U) { { netdev_err((struct net_device const *)netdev, "Invalid no of banks %x\n", (int )banks); } goto out; } else { } ranks = (unsigned int )ranks + 1U; { if ((int )dw == 0) { goto case_0; } else { } if ((int )dw == 1) { goto case_1___0; } else { } if ((int )dw == 2) { goto case_2___0; } else { } if ((int )dw == 3) { goto case_3; } else { } if ((int )dw == 4) { goto case_4___0; } else { } if ((int )dw == 5) { goto case_5; } else { } if ((int )dw == 6) { goto case_6; } else { } if ((int )dw == 7) { goto case_7; } else { } goto switch_default___0; case_0: /* CIL Label */ dw = 32U; goto ldv_52177; case_1___0: /* CIL Label */ dw = 33U; goto ldv_52177; case_2___0: /* CIL Label */ dw = 36U; goto ldv_52177; case_3: /* CIL Label */ dw = 64U; goto ldv_52177; case_4___0: /* CIL Label */ dw = 72U; goto ldv_52177; case_5: /* CIL Label */ dw = 80U; goto ldv_52177; case_6: /* CIL Label */ dw = 128U; goto ldv_52177; case_7: /* CIL Label */ dw = 144U; goto ldv_52177; switch_default___0: /* CIL Label */ { netdev_err((struct net_device const *)netdev, "Invalid data-width %x\n", (int )dw); } goto out; switch_break___0: /* CIL Label */ ; } ldv_52177: dimm.size = (u32 )((((((1 << (int )rows) << (int )cols) * (int )dw) * (int )banks) * (int )ranks) / 8); dimm.size = dimm.size / 1048576U; out: { memcpy((void *)buf, (void const *)(& dimm), 8UL); } return (8L); } } static struct bin_attribute bin_attr_dimm = {{"dimm", 420U, (_Bool)0, 0, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, 0UL, 0, & netxen_sysfs_read_dimm, 0, 0}; static void netxen_create_sysfs_entries(struct netxen_adapter *adapter ) { struct device *dev ; int tmp ; { dev = & (adapter->pdev)->dev; if ((adapter->capabilities & 256U) != 0U) { { tmp = device_create_file(dev, (struct device_attribute const *)(& dev_attr_bridged_mode)); } if (tmp != 0) { { dev_warn((struct device const *)dev, "failed to create bridged_mode sysfs entry\n"); } } else { } } else { } return; } } static void netxen_remove_sysfs_entries(struct netxen_adapter *adapter ) { struct device *dev ; { dev = & (adapter->pdev)->dev; if ((adapter->capabilities & 256U) != 0U) { { device_remove_file(dev, (struct device_attribute const *)(& dev_attr_bridged_mode)); } } else { } return; } } static void netxen_create_diag_entries(struct netxen_adapter *adapter ) { struct pci_dev *pdev ; struct device *dev ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { pdev = adapter->pdev; dev = & pdev->dev; tmp = device_create_file(dev, (struct device_attribute const *)(& dev_attr_diag_mode)); } if (tmp != 0) { { _dev_info((struct device const *)dev, "failed to create diag_mode sysfs entry\n"); } } else { } { tmp___0 = device_create_bin_file(dev, (struct bin_attribute const *)(& bin_attr_crb)); } if (tmp___0 != 0) { { _dev_info((struct device const *)dev, "failed to create crb sysfs entry\n"); } } else { } { tmp___1 = device_create_bin_file(dev, (struct bin_attribute const *)(& bin_attr_mem)); } if (tmp___1 != 0) { { _dev_info((struct device const *)dev, "failed to create mem sysfs entry\n"); } } else { } { tmp___2 = device_create_bin_file(dev, (struct bin_attribute const *)(& bin_attr_dimm)); } if (tmp___2 != 0) { { _dev_info((struct device const *)dev, "failed to create dimm sysfs entry\n"); } } else { } return; } } static void netxen_remove_diag_entries(struct netxen_adapter *adapter ) { struct pci_dev *pdev ; struct device *dev ; { { pdev = adapter->pdev; dev = & pdev->dev; device_remove_file(dev, (struct device_attribute const *)(& dev_attr_diag_mode)); device_remove_bin_file(dev, (struct bin_attribute const *)(& bin_attr_crb)); device_remove_bin_file(dev, (struct bin_attribute const *)(& bin_attr_mem)); device_remove_bin_file(dev, (struct bin_attribute const *)(& bin_attr_dimm)); } return; } } static int netxen_destip_supported(struct netxen_adapter *adapter ) { { if ((unsigned int )adapter->ahw.revision_id <= 37U) { return (0); } else { } if ((unsigned int )adapter->ahw.cut_through != 0U) { return (0); } else { } return (1); } } static void netxen_free_ip_list(struct netxen_adapter *adapter , bool master ) { struct nx_ip_list *cur ; struct nx_ip_list *tmp_cur ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; { __mptr = (struct list_head const *)adapter->ip_list.next; cur = (struct nx_ip_list *)__mptr; __mptr___0 = (struct list_head const *)cur->list.next; tmp_cur = (struct nx_ip_list *)__mptr___0; goto ldv_52221; ldv_52220: ; if ((int )master) { if ((int )cur->master) { { netxen_config_ipaddr(adapter, cur->ip_addr, 3); list_del(& cur->list); kfree((void const *)cur); } } else { } } else { { netxen_config_ipaddr(adapter, cur->ip_addr, 3); list_del(& cur->list); kfree((void const *)cur); } } cur = tmp_cur; __mptr___1 = (struct list_head const *)tmp_cur->list.next; tmp_cur = (struct nx_ip_list *)__mptr___1; ldv_52221: ; if ((unsigned long )(& cur->list) != (unsigned long )(& adapter->ip_list)) { goto ldv_52220; } else { } return; } } static bool netxen_list_config_ip(struct netxen_adapter *adapter , struct in_ifaddr *ifa , unsigned long event ) { struct net_device *dev ; struct nx_ip_list *cur ; struct nx_ip_list *tmp_cur ; struct list_head *head ; bool ret ; struct list_head const *__mptr ; void *tmp ; bool tmp___0 ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; { ret = 0; dev = (unsigned long )ifa->ifa_dev != (unsigned long )((struct in_device *)0) ? (ifa->ifa_dev)->dev : (struct net_device *)0; if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { goto out; } else { } { if (event == 2UL) { goto case_2; } else { } if (event == 3UL) { goto case_3; } else { } goto switch_break; case_2: /* CIL Label */ head = adapter->ip_list.next; goto ldv_52238; ldv_52237: __mptr = (struct list_head const *)head; cur = (struct nx_ip_list *)__mptr; if (cur->ip_addr == ifa->ifa_address) { goto out; } else { } head = head->next; ldv_52238: ; if ((unsigned long )head != (unsigned long )(& adapter->ip_list)) { goto ldv_52237; } else { } { tmp = kzalloc(24UL, 32U); cur = (struct nx_ip_list *)tmp; } if ((unsigned long )cur == (unsigned long )((struct nx_ip_list *)0)) { goto out; } else { } if ((int )dev->priv_flags & 1) { { dev = vlan_dev_real_dev((struct net_device const *)dev); } } else { } { tmp___0 = netif_is_bond_master(dev); cur->master = (int )tmp___0 != 0; cur->ip_addr = ifa->ifa_address; list_add_tail(& cur->list, & adapter->ip_list); netxen_config_ipaddr(adapter, ifa->ifa_address, 2); ret = 1; } goto ldv_52240; case_3: /* CIL Label */ __mptr___0 = (struct list_head const *)adapter->ip_list.next; cur = (struct nx_ip_list *)__mptr___0; __mptr___1 = (struct list_head const *)cur->list.next; tmp_cur = (struct nx_ip_list *)__mptr___1; goto ldv_52250; ldv_52249: ; if (cur->ip_addr == ifa->ifa_address) { { list_del(& cur->list); kfree((void const *)cur); netxen_config_ipaddr(adapter, ifa->ifa_address, 3); ret = 1; } goto ldv_52248; } else { } cur = tmp_cur; __mptr___2 = (struct list_head const *)tmp_cur->list.next; tmp_cur = (struct nx_ip_list *)__mptr___2; ldv_52250: ; if ((unsigned long )(& cur->list) != (unsigned long )(& adapter->ip_list)) { goto ldv_52249; } else { } ldv_52248: ; switch_break: /* CIL Label */ ; } ldv_52240: ; out: ; return (ret); } } static void netxen_config_indev_addr(struct netxen_adapter *adapter , struct net_device *dev , unsigned long event ) { struct in_device *indev ; int tmp ; struct in_ifaddr *ifa ; { { tmp = netxen_destip_supported(adapter); } if (tmp == 0) { return; } else { } { indev = in_dev_get((struct net_device const *)dev); } if ((unsigned long )indev == (unsigned long )((struct in_device *)0)) { return; } else { } ifa = indev->ifa_list; goto ldv_52263; ldv_52262: ; { if (event == 1UL) { goto case_1; } else { } if (event == 2UL) { goto case_2; } else { } goto switch_default; case_1: /* CIL Label */ { netxen_list_config_ip(adapter, ifa, 2UL); } goto ldv_52259; case_2: /* CIL Label */ { netxen_list_config_ip(adapter, ifa, 3UL); } goto ldv_52259; switch_default: /* CIL Label */ ; goto ldv_52259; switch_break: /* CIL Label */ ; } ldv_52259: ifa = ifa->ifa_next; ldv_52263: ; if ((unsigned long )ifa != (unsigned long )((struct in_ifaddr *)0)) { goto ldv_52262; } else { } { in_dev_put(indev); } return; } } static void netxen_restore_indev_addr(struct net_device *netdev , unsigned long event ) { struct netxen_adapter *adapter ; void *tmp ; struct nx_ip_list *pos ; struct nx_ip_list *tmp_pos ; unsigned long ip_event ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct netxen_adapter *)tmp; ip_event = event == 1UL ? 2UL : 3UL; netxen_config_indev_addr(adapter, netdev, event); __mptr = (struct list_head const *)adapter->ip_list.next; pos = (struct nx_ip_list *)__mptr; __mptr___0 = (struct list_head const *)pos->list.next; tmp_pos = (struct nx_ip_list *)__mptr___0; } goto ldv_52280; ldv_52279: { netxen_config_ipaddr(adapter, pos->ip_addr, (int )ip_event); pos = tmp_pos; __mptr___1 = (struct list_head const *)tmp_pos->list.next; tmp_pos = (struct nx_ip_list *)__mptr___1; } ldv_52280: ; if ((unsigned long )(& pos->list) != (unsigned long )(& adapter->ip_list)) { goto ldv_52279; } else { } return; } } __inline static bool netxen_config_checkdev(struct net_device *dev ) { struct netxen_adapter *adapter ; void *tmp ; int tmp___0 ; { if ((unsigned long )dev->netdev_ops != (unsigned long )(& netxen_netdev_ops)) { return (0); } else { } { tmp = netdev_priv((struct net_device const *)dev); adapter = (struct netxen_adapter *)tmp; } if ((unsigned long )adapter == (unsigned long )((struct netxen_adapter *)0)) { return (0); } else { } { tmp___0 = netxen_destip_supported(adapter); } if (tmp___0 == 0) { return (0); } else { } if ((unsigned int )adapter->is_up != 777U) { return (0); } else { } return (1); } } static void netxen_config_master(struct net_device *dev , unsigned long event ) { struct net_device *master ; struct net_device *slave ; struct netxen_adapter *adapter ; void *tmp ; struct list_head *__ptr ; struct list_head const *__mptr ; struct list_head *_________p1 ; bool __warned ; int tmp___0 ; struct net_device *tmp___1 ; struct list_head *__ptr___0 ; struct list_head const *__mptr___0 ; struct list_head *_________p1___0 ; bool __warned___0 ; int tmp___2 ; bool tmp___3 ; bool tmp___4 ; int tmp___5 ; { { tmp = netdev_priv((struct net_device const *)dev); adapter = (struct netxen_adapter *)tmp; rcu_read_lock(); master = netdev_master_upper_dev_get_rcu(dev); } if ((unsigned long )master != (unsigned long )((struct net_device *)0)) { { tmp___3 = netif_is_bond_master(master); } if ((int )tmp___3) { { tmp___4 = netif_is_bond_slave(dev); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { { netxen_config_indev_addr(adapter, master, event); __ptr = init_net.dev_base_head.next; _________p1 = *((struct list_head * volatile *)(& __ptr)); tmp___0 = debug_lockdep_rcu_enabled(); } if (tmp___0 != 0 && ! __warned) { { rcu_read_lock_held(); } } else { } __mptr = (struct list_head const *)_________p1; slave = (struct net_device *)__mptr + 0xffffffffffffffb0UL; goto ldv_52308; ldv_52307: ; if ((int )slave->priv_flags & 1) { { tmp___1 = vlan_dev_real_dev((struct net_device const *)slave); } if ((unsigned long )tmp___1 == (unsigned long )master) { { netxen_config_indev_addr(adapter, slave, event); } } else { } } else { } { __ptr___0 = slave->dev_list.next; _________p1___0 = *((struct list_head * volatile *)(& __ptr___0)); tmp___2 = debug_lockdep_rcu_enabled(); } if (tmp___2 != 0 && ! __warned___0) { { rcu_read_lock_held(); } } else { } __mptr___0 = (struct list_head const *)_________p1___0; slave = (struct net_device *)__mptr___0 + 0xffffffffffffffb0UL; ldv_52308: ; if ((unsigned long )(& slave->dev_list) != (unsigned long )(& init_net.dev_base_head)) { goto ldv_52307; } else { } } else { } } else { } } else { } { rcu_read_unlock(); } if ((unsigned long )master == (unsigned long )((struct net_device *)0) && (dev->priv_flags & 32U) != 0U) { { netxen_free_ip_list(adapter, 1); } } else { } return; } } static int netxen_netdev_event(struct notifier_block *this , unsigned long event , void *ptr ) { struct netxen_adapter *adapter ; struct net_device *dev ; struct net_device *tmp ; struct net_device *orig_dev ; struct net_device *slave ; struct list_head *__ptr ; struct list_head const *__mptr ; struct list_head *_________p1 ; bool __warned ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; void *tmp___3 ; struct net_device *tmp___4 ; struct list_head *__ptr___0 ; struct list_head const *__mptr___0 ; struct list_head *_________p1___0 ; bool __warned___0 ; int tmp___5 ; bool tmp___6 ; int tmp___7 ; void *tmp___8 ; bool tmp___9 ; { { tmp = netdev_notifier_info_to_dev((struct netdev_notifier_info const *)ptr); dev = tmp; orig_dev = dev; } recheck: ; if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { goto done; } else { } if ((int )dev->priv_flags & 1) { { dev = vlan_dev_real_dev((struct net_device const *)dev); } goto recheck; } else { } if (event - 1UL <= 1UL) { { tmp___9 = netif_is_bond_master(dev); } if ((int )tmp___9) { { rcu_read_lock(); __ptr = init_net.dev_base_head.next; _________p1 = *((struct list_head * volatile *)(& __ptr)); tmp___0 = debug_lockdep_rcu_enabled(); } if (tmp___0 != 0 && ! __warned) { { rcu_read_lock_held(); } } else { } __mptr = (struct list_head const *)_________p1; slave = (struct net_device *)__mptr + 0xffffffffffffffb0UL; goto ldv_52337; ldv_52336: { tmp___4 = netdev_master_upper_dev_get_rcu(slave); } if ((unsigned long )tmp___4 == (unsigned long )dev) { { tmp___1 = netxen_config_checkdev(slave); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { goto ldv_52335; } else { } { tmp___3 = netdev_priv((struct net_device const *)slave); adapter = (struct netxen_adapter *)tmp___3; netxen_config_indev_addr(adapter, orig_dev, event); } } else { } ldv_52335: { __ptr___0 = slave->dev_list.next; _________p1___0 = *((struct list_head * volatile *)(& __ptr___0)); tmp___5 = debug_lockdep_rcu_enabled(); } if (tmp___5 != 0 && ! __warned___0) { { rcu_read_lock_held(); } } else { } __mptr___0 = (struct list_head const *)_________p1___0; slave = (struct net_device *)__mptr___0 + 0xffffffffffffffb0UL; ldv_52337: ; if ((unsigned long )(& slave->dev_list) != (unsigned long )(& init_net.dev_base_head)) { goto ldv_52336; } else { } { rcu_read_unlock(); } } else { { tmp___6 = netxen_config_checkdev(dev); } if (tmp___6) { tmp___7 = 0; } else { tmp___7 = 1; } if (tmp___7) { goto done; } else { } { tmp___8 = netdev_priv((struct net_device const *)dev); adapter = (struct netxen_adapter *)tmp___8; } if ((unsigned long )orig_dev == (unsigned long )dev) { { netxen_config_master(dev, event); } } else { } { netxen_config_indev_addr(adapter, orig_dev, event); } } } else { } done: ; return (0); } } static int netxen_inetaddr_event(struct notifier_block *this , unsigned long event , void *ptr ) { struct netxen_adapter *adapter ; struct net_device *dev ; struct net_device *slave ; struct in_ifaddr *ifa ; unsigned long ip_event ; struct list_head *__ptr ; struct list_head const *__mptr ; struct list_head *_________p1 ; bool __warned ; int tmp ; bool tmp___0 ; int tmp___1 ; void *tmp___2 ; struct net_device *tmp___3 ; struct list_head *__ptr___0 ; struct list_head const *__mptr___0 ; struct list_head *_________p1___0 ; bool __warned___0 ; int tmp___4 ; bool tmp___5 ; int tmp___6 ; void *tmp___7 ; bool tmp___8 ; { ifa = (struct in_ifaddr *)ptr; dev = (unsigned long )ifa->ifa_dev != (unsigned long )((struct in_device *)0) ? (ifa->ifa_dev)->dev : (struct net_device *)0; ip_event = event == 1UL ? 2UL : 3UL; recheck: ; if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { goto done; } else { } if ((int )dev->priv_flags & 1) { { dev = vlan_dev_real_dev((struct net_device const *)dev); } goto recheck; } else { } if (event - 1UL <= 1UL) { { tmp___8 = netif_is_bond_master(dev); } if ((int )tmp___8) { { rcu_read_lock(); __ptr = init_net.dev_base_head.next; _________p1 = *((struct list_head * volatile *)(& __ptr)); tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { rcu_read_lock_held(); } } else { } __mptr = (struct list_head const *)_________p1; slave = (struct net_device *)__mptr + 0xffffffffffffffb0UL; goto ldv_52367; ldv_52366: { tmp___3 = netdev_master_upper_dev_get_rcu(slave); } if ((unsigned long )tmp___3 == (unsigned long )dev) { { tmp___0 = netxen_config_checkdev(slave); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { goto ldv_52365; } else { } { tmp___2 = netdev_priv((struct net_device const *)slave); adapter = (struct netxen_adapter *)tmp___2; netxen_list_config_ip(adapter, ifa, ip_event); } } else { } ldv_52365: { __ptr___0 = slave->dev_list.next; _________p1___0 = *((struct list_head * volatile *)(& __ptr___0)); tmp___4 = debug_lockdep_rcu_enabled(); } if (tmp___4 != 0 && ! __warned___0) { { rcu_read_lock_held(); } } else { } __mptr___0 = (struct list_head const *)_________p1___0; slave = (struct net_device *)__mptr___0 + 0xffffffffffffffb0UL; ldv_52367: ; if ((unsigned long )(& slave->dev_list) != (unsigned long )(& init_net.dev_base_head)) { goto ldv_52366; } else { } { rcu_read_unlock(); } } else { { tmp___5 = netxen_config_checkdev(dev); } if (tmp___5) { tmp___6 = 0; } else { tmp___6 = 1; } if (tmp___6) { goto done; } else { } { tmp___7 = netdev_priv((struct net_device const *)dev); adapter = (struct netxen_adapter *)tmp___7; netxen_list_config_ip(adapter, ifa, ip_event); } } } else { } done: ; return (0); } } static struct notifier_block netxen_netdev_cb = {& netxen_netdev_event, 0, 0}; static struct notifier_block netxen_inetaddr_cb = {& netxen_inetaddr_event, 0, 0}; static struct pci_error_handlers const netxen_err_handler = {(pci_ers_result_t (*)(struct pci_dev * , enum pci_channel_state ))(& netxen_io_error_detected), 0, 0, & netxen_io_slot_reset, & netxen_io_resume}; static struct pci_driver netxen_driver = {{0, 0}, (char const *)(& netxen_nic_driver_name), (struct pci_device_id const *)(& netxen_pci_tbl), & netxen_nic_probe, & netxen_nic_remove, & netxen_nic_suspend, 0, 0, & netxen_nic_resume, & netxen_nic_shutdown, 0, & netxen_err_handler, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int netxen_init_module(void) { int tmp ; { { printk("\016%s\n", (char *)(& netxen_nic_driver_string)); ldv_register_netdevice_notifier_117(& netxen_netdev_cb); ldv_register_inetaddr_notifier_118(& netxen_inetaddr_cb); tmp = ldv___pci_register_driver_119(& netxen_driver, & __this_module, "netxen_nic"); } return (tmp); } } static void netxen_exit_module(void) { { { ldv_pci_unregister_driver_120(& netxen_driver); ldv_unregister_inetaddr_notifier_121(& netxen_inetaddr_cb); ldv_unregister_netdevice_notifier_122(& netxen_netdev_cb); } return; } } void ldv_EMGentry_exit_netxen_exit_module_22_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_netxen_init_module_22_11(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_allocate_external_0(void) ; void ldv_dispatch_deregister_15_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_16_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_18_1(struct notifier_block *arg0 ) ; void ldv_dispatch_deregister_dummy_factory_19_22_4(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_12_22_5(void) ; void ldv_dispatch_instance_deregister_9_2(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_9_3(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_11_1(int arg0 ) ; void ldv_dispatch_irq_register_14_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_13_4(struct net_device *arg0 ) ; void ldv_dispatch_register_17_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_20_2(struct notifier_block *arg0 ) ; void ldv_dispatch_register_dummy_factory_19_22_6(void) ; void ldv_dispatch_register_dummy_resourceless_instance_12_22_7(void) ; void ldv_dummy_resourceless_instance_callback_1_10(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_13(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_14(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_17(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_18(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_19(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_20(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_21(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_22(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_23(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_26(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_29(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_3(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_30(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_33(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_36(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_37(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_38(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_41(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_42(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_43(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_44(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_45(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_46(void (*arg0)(struct net_device * , struct ethtool_test * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_test *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_49(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_50(int (*arg0)(struct net_device * , struct ethtool_dump * ) , struct net_device *arg1 , struct ethtool_dump *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_51(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_52(int (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_53(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_54(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_7(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_8(int (*arg0)(struct net_device * , struct ethtool_dump * , void * ) , struct net_device *arg1 , struct ethtool_dump *arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_9(int (*arg0)(struct net_device * , struct ethtool_dump * ) , struct net_device *arg1 , struct ethtool_dump *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_12(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_3_15(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_3_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_3_9(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_12(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_4_15(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_4_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_4_9(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_12(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) ; void ldv_dummy_resourceless_instance_callback_5_15(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_5_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) ; void ldv_dummy_resourceless_instance_callback_5_9(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_6_3(int (*arg0)(struct notifier_block * , unsigned long , void * ) , struct notifier_block *arg1 , unsigned long arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_7_3(int (*arg0)(struct notifier_block * , unsigned long , void * ) , struct notifier_block *arg1 , unsigned long arg2 , void *arg3 ) ; void ldv_entry_EMGentry_22(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_initialize_external_data(void) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_net_dummy_resourceless_instance_1(void *arg0 ) ; void ldv_pci_instance_callback_2_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) ; void ldv_pci_instance_callback_2_23(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_callback_2_24(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_2(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_register_inetaddr_notifier(int arg0 , struct notifier_block *arg1 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_13_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_register_netdevice_notifier(int arg0 , struct notifier_block *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_3(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_4(void *arg0 ) ; void ldv_struct_device_attribute_dummy_resourceless_instance_5(void *arg0 ) ; void ldv_struct_notifier_block_dummy_resourceless_instance_6(void *arg0 ) ; void ldv_struct_notifier_block_dummy_resourceless_instance_7(void *arg0 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; int ldv_switch_2(void) ; void ldv_switch_automaton_state_0_1(void) ; void ldv_switch_automaton_state_0_6(void) ; void ldv_switch_automaton_state_1_1(void) ; void ldv_switch_automaton_state_1_5(void) ; void ldv_switch_automaton_state_2_11(void) ; void ldv_switch_automaton_state_2_20(void) ; void ldv_switch_automaton_state_3_1(void) ; void ldv_switch_automaton_state_3_5(void) ; void ldv_switch_automaton_state_4_1(void) ; void ldv_switch_automaton_state_4_5(void) ; void ldv_switch_automaton_state_5_1(void) ; void ldv_switch_automaton_state_5_5(void) ; void ldv_switch_automaton_state_6_1(void) ; void ldv_switch_automaton_state_6_5(void) ; void ldv_switch_automaton_state_7_1(void) ; void ldv_switch_automaton_state_7_5(void) ; void ldv_switch_automaton_state_8_1(void) ; void ldv_switch_automaton_state_8_3(void) ; void ldv_switch_automaton_state_9_1(void) ; void ldv_switch_automaton_state_9_4(void) ; void ldv_timer_dummy_factory_9(void *arg0 ) ; void ldv_timer_instance_callback_8_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_8(void *arg0 ) ; int ldv_unregister_inetaddr_notifier(int arg0 , struct notifier_block *arg1 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_15_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_unregister_netdevice_notifier(int arg0 , struct notifier_block *arg1 ) ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; int (*ldv_1_callback_get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*ldv_1_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*ldv_1_callback_get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*ldv_1_callback_get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*ldv_1_callback_get_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) ; int (*ldv_1_callback_get_eeprom_len)(struct net_device * ) ; void (*ldv_1_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_1_callback_get_link)(struct net_device * ) ; void (*ldv_1_callback_get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*ldv_1_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; int (*ldv_1_callback_get_regs_len)(struct net_device * ) ; void (*ldv_1_callback_get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_1_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_1_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_1_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; void (*ldv_1_callback_get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) ; unsigned long long (*ldv_1_callback_ndo_fix_features)(struct net_device * , unsigned long long ) ; struct rtnl_link_stats64 *(*ldv_1_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; void (*ldv_1_callback_ndo_poll_controller)(struct net_device * ) ; int (*ldv_1_callback_ndo_set_features)(struct net_device * , unsigned long long ) ; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_1_callback_ndo_tx_timeout)(struct net_device * ) ; int (*ldv_1_callback_ndo_validate_addr)(struct net_device * ) ; void (*ldv_1_callback_self_test)(struct net_device * , struct ethtool_test * , unsigned long long * ) ; int (*ldv_1_callback_set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*ldv_1_callback_set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*ldv_1_callback_set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*ldv_1_callback_set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_1_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_1_callback_set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; struct net_device *ldv_1_container_net_device ; struct ethtool_cmd *ldv_1_container_struct_ethtool_cmd_ptr ; struct ethtool_coalesce *ldv_1_container_struct_ethtool_coalesce_ptr ; struct ethtool_drvinfo *ldv_1_container_struct_ethtool_drvinfo_ptr ; struct ethtool_dump *ldv_1_container_struct_ethtool_dump_ptr ; struct ethtool_eeprom *ldv_1_container_struct_ethtool_eeprom_ptr ; struct ethtool_pauseparam *ldv_1_container_struct_ethtool_pauseparam_ptr ; struct ethtool_regs *ldv_1_container_struct_ethtool_regs_ptr ; struct ethtool_ringparam *ldv_1_container_struct_ethtool_ringparam_ptr ; struct ethtool_stats *ldv_1_container_struct_ethtool_stats_ptr ; struct ethtool_test *ldv_1_container_struct_ethtool_test_ptr ; struct ethtool_wolinfo *ldv_1_container_struct_ethtool_wolinfo_ptr ; struct rtnl_link_stats64 *ldv_1_container_struct_rtnl_link_stats64_ptr ; struct sk_buff *ldv_1_container_struct_sk_buff_ptr ; unsigned char *ldv_1_ldv_param_10_2_default ; unsigned long long *ldv_1_ldv_param_14_2_default ; int ldv_1_ldv_param_23_1_default ; unsigned int ldv_1_ldv_param_26_1_default ; unsigned char *ldv_1_ldv_param_26_2_default ; int ldv_1_ldv_param_30_1_default ; unsigned long long ldv_1_ldv_param_33_1_default ; unsigned long long ldv_1_ldv_param_38_1_default ; unsigned long long *ldv_1_ldv_param_46_2_default ; void (*ldv_22_exit_netxen_exit_module_default)(void) ; int (*ldv_22_init_netxen_init_module_default)(void) ; int ldv_22_ret_default ; unsigned int (*ldv_2_callback_error_detected)(struct pci_dev * , enum pci_channel_state ) ; void (*ldv_2_callback_func_1_ptr)(struct pci_dev * ) ; unsigned int (*ldv_2_callback_slot_reset)(struct pci_dev * ) ; struct pci_driver *ldv_2_container_pci_driver ; struct pci_dev *ldv_2_resource_dev ; enum pci_channel_state ldv_2_resource_enum_pci_channel_state ; struct pm_message ldv_2_resource_pm_message ; struct pci_device_id *ldv_2_resource_struct_pci_device_id_ptr ; int ldv_2_ret_default ; long (*ldv_3_callback_read)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; long (*ldv_3_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_3_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; long (*ldv_3_callback_write)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; struct bin_attribute *ldv_3_container_struct_bin_attribute ; struct device_attribute *ldv_3_container_struct_device_attribute ; struct device *ldv_3_container_struct_device_ptr ; struct file *ldv_3_container_struct_file_ptr ; struct kobject *ldv_3_container_struct_kobject_ptr ; char *ldv_3_ldv_param_12_2_default ; unsigned long ldv_3_ldv_param_12_3_default ; char *ldv_3_ldv_param_15_3_default ; long long ldv_3_ldv_param_15_4_default ; unsigned long ldv_3_ldv_param_15_5_default ; char *ldv_3_ldv_param_3_3_default ; long long ldv_3_ldv_param_3_4_default ; unsigned long ldv_3_ldv_param_3_5_default ; char *ldv_3_ldv_param_9_2_default ; long (*ldv_4_callback_read)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; long (*ldv_4_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_4_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; long (*ldv_4_callback_write)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; struct bin_attribute *ldv_4_container_struct_bin_attribute ; struct device_attribute *ldv_4_container_struct_device_attribute ; struct device *ldv_4_container_struct_device_ptr ; struct file *ldv_4_container_struct_file_ptr ; struct kobject *ldv_4_container_struct_kobject_ptr ; char *ldv_4_ldv_param_12_2_default ; unsigned long ldv_4_ldv_param_12_3_default ; char *ldv_4_ldv_param_15_3_default ; long long ldv_4_ldv_param_15_4_default ; unsigned long ldv_4_ldv_param_15_5_default ; char *ldv_4_ldv_param_3_3_default ; long long ldv_4_ldv_param_3_4_default ; unsigned long ldv_4_ldv_param_3_5_default ; char *ldv_4_ldv_param_9_2_default ; long (*ldv_5_callback_read)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; long (*ldv_5_callback_show)(struct device * , struct device_attribute * , char * ) ; long (*ldv_5_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) ; long (*ldv_5_callback_write)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) ; struct bin_attribute *ldv_5_container_struct_bin_attribute ; struct device_attribute *ldv_5_container_struct_device_attribute ; struct device *ldv_5_container_struct_device_ptr ; struct file *ldv_5_container_struct_file_ptr ; struct kobject *ldv_5_container_struct_kobject_ptr ; char *ldv_5_ldv_param_12_2_default ; unsigned long ldv_5_ldv_param_12_3_default ; char *ldv_5_ldv_param_15_3_default ; long long ldv_5_ldv_param_15_4_default ; unsigned long ldv_5_ldv_param_15_5_default ; char *ldv_5_ldv_param_3_3_default ; long long ldv_5_ldv_param_3_4_default ; unsigned long ldv_5_ldv_param_3_5_default ; char *ldv_5_ldv_param_9_2_default ; int (*ldv_6_callback_notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *ldv_6_container_struct_notifier_block ; unsigned long ldv_6_ldv_param_3_1_default ; void *ldv_6_ldv_param_3_2_default ; int (*ldv_7_callback_notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *ldv_7_container_struct_notifier_block ; unsigned long ldv_7_ldv_param_3_1_default ; void *ldv_7_ldv_param_3_2_default ; struct timer_list *ldv_8_container_timer_list ; struct timer_list *ldv_9_container_timer_list ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_2 ; int ldv_statevar_22 ; int ldv_statevar_3 ; int ldv_statevar_4 ; int ldv_statevar_5 ; int ldv_statevar_6 ; int ldv_statevar_7 ; int ldv_statevar_8 ; int ldv_statevar_9 ; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) = & netxen_nic_change_mtu; unsigned long long (*ldv_1_callback_ndo_fix_features)(struct net_device * , unsigned long long ) = & netxen_fix_features; struct rtnl_link_stats64 *(*ldv_1_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) = & netxen_nic_get_stats; void (*ldv_1_callback_ndo_poll_controller)(struct net_device * ) = & netxen_nic_poll_controller; int (*ldv_1_callback_ndo_set_features)(struct net_device * , unsigned long long ) = & netxen_set_features; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) = & netxen_nic_set_mac; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) = & netxen_set_multicast_list; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) = & netxen_nic_xmit_frame; void (*ldv_1_callback_ndo_tx_timeout)(struct net_device * ) = & netxen_tx_timeout; int (*ldv_1_callback_ndo_validate_addr)(struct net_device * ) = & eth_validate_addr; void (*ldv_22_exit_netxen_exit_module_default)(void) = & netxen_exit_module; int (*ldv_22_init_netxen_init_module_default)(void) = & netxen_init_module; unsigned int (*ldv_2_callback_error_detected)(struct pci_dev * , enum pci_channel_state ) = (unsigned int (*)(struct pci_dev * , enum pci_channel_state ))(& netxen_io_error_detected); void (*ldv_2_callback_func_1_ptr)(struct pci_dev * ) = & netxen_io_resume; unsigned int (*ldv_2_callback_slot_reset)(struct pci_dev * ) = & netxen_io_slot_reset; long (*ldv_3_callback_read)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) = & netxen_sysfs_read_crb; long (*ldv_3_callback_show)(struct device * , struct device_attribute * , char * ) = & netxen_show_bridged_mode; long (*ldv_3_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) = (long (*)(struct device * , struct device_attribute * , char * , unsigned long ))(& netxen_store_bridged_mode); long (*ldv_3_callback_write)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) = & netxen_sysfs_write_crb; long (*ldv_4_callback_read)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) = & netxen_sysfs_read_dimm; long (*ldv_4_callback_show)(struct device * , struct device_attribute * , char * ) = & netxen_show_diag_mode; long (*ldv_4_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) = (long (*)(struct device * , struct device_attribute * , char * , unsigned long ))(& netxen_store_diag_mode); long (*ldv_5_callback_read)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) = & netxen_sysfs_read_mem; long (*ldv_5_callback_show)(struct device * , struct device_attribute * , char * ) = & netxen_show_bridged_mode; long (*ldv_5_callback_store)(struct device * , struct device_attribute * , char * , unsigned long ) = (long (*)(struct device * , struct device_attribute * , char * , unsigned long ))(& netxen_store_bridged_mode); long (*ldv_5_callback_write)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) = & netxen_sysfs_write_mem; int (*ldv_6_callback_notifier_call)(struct notifier_block * , unsigned long , void * ) = & netxen_inetaddr_event; int (*ldv_7_callback_notifier_call)(struct notifier_block * , unsigned long , void * ) = & netxen_netdev_event; void ldv_EMGentry_exit_netxen_exit_module_22_2(void (*arg0)(void) ) { { { netxen_exit_module(); } return; } } int ldv_EMGentry_init_netxen_init_module_22_11(int (*arg0)(void) ) { int tmp ; { { tmp = netxen_init_module(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_17_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_17_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 20); ldv_dispatch_register_17_2(ldv_17_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_10_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3200UL); ldv_10_netdev_net_device = (struct net_device *)tmp; } return (ldv_10_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } void ldv_allocate_external_0(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; void *tmp___13 ; void *tmp___14 ; void *tmp___15 ; void *tmp___16 ; void *tmp___17 ; void *tmp___18 ; void *tmp___19 ; void *tmp___20 ; void *tmp___21 ; void *tmp___22 ; void *tmp___23 ; void *tmp___24 ; void *tmp___25 ; void *tmp___26 ; void *tmp___27 ; void *tmp___28 ; void *tmp___29 ; void *tmp___30 ; void *tmp___31 ; void *tmp___32 ; void *tmp___33 ; void *tmp___34 ; void *tmp___35 ; void *tmp___36 ; void *tmp___37 ; void *tmp___38 ; void *tmp___39 ; void *tmp___40 ; void *tmp___41 ; void *tmp___42 ; void *tmp___43 ; { { tmp = external_allocated_data(); ldv_0_callback_handler = (enum irqreturn (*)(int , void * ))tmp; ldv_0_data_data = external_allocated_data(); tmp___0 = external_allocated_data(); ldv_0_thread_thread = (enum irqreturn (*)(int , void * ))tmp___0; tmp___1 = external_allocated_data(); ldv_1_container_net_device = (struct net_device *)tmp___1; tmp___2 = external_allocated_data(); ldv_1_container_struct_ethtool_cmd_ptr = (struct ethtool_cmd *)tmp___2; tmp___3 = external_allocated_data(); ldv_1_container_struct_ethtool_coalesce_ptr = (struct ethtool_coalesce *)tmp___3; tmp___4 = external_allocated_data(); ldv_1_container_struct_ethtool_drvinfo_ptr = (struct ethtool_drvinfo *)tmp___4; tmp___5 = external_allocated_data(); ldv_1_container_struct_ethtool_dump_ptr = (struct ethtool_dump *)tmp___5; tmp___6 = external_allocated_data(); ldv_1_container_struct_ethtool_eeprom_ptr = (struct ethtool_eeprom *)tmp___6; tmp___7 = external_allocated_data(); ldv_1_container_struct_ethtool_pauseparam_ptr = (struct ethtool_pauseparam *)tmp___7; tmp___8 = external_allocated_data(); ldv_1_container_struct_ethtool_regs_ptr = (struct ethtool_regs *)tmp___8; tmp___9 = external_allocated_data(); ldv_1_container_struct_ethtool_ringparam_ptr = (struct ethtool_ringparam *)tmp___9; tmp___10 = external_allocated_data(); ldv_1_container_struct_ethtool_stats_ptr = (struct ethtool_stats *)tmp___10; tmp___11 = external_allocated_data(); ldv_1_container_struct_ethtool_test_ptr = (struct ethtool_test *)tmp___11; tmp___12 = external_allocated_data(); ldv_1_container_struct_ethtool_wolinfo_ptr = (struct ethtool_wolinfo *)tmp___12; tmp___13 = external_allocated_data(); ldv_1_container_struct_rtnl_link_stats64_ptr = (struct rtnl_link_stats64 *)tmp___13; tmp___14 = external_allocated_data(); ldv_1_container_struct_sk_buff_ptr = (struct sk_buff *)tmp___14; tmp___15 = external_allocated_data(); ldv_1_ldv_param_10_2_default = (unsigned char *)tmp___15; tmp___16 = external_allocated_data(); ldv_1_ldv_param_14_2_default = (unsigned long long *)tmp___16; tmp___17 = external_allocated_data(); ldv_1_ldv_param_26_2_default = (unsigned char *)tmp___17; tmp___18 = external_allocated_data(); ldv_1_ldv_param_46_2_default = (unsigned long long *)tmp___18; tmp___19 = external_allocated_data(); ldv_2_resource_dev = (struct pci_dev *)tmp___19; tmp___20 = external_allocated_data(); ldv_3_container_struct_device_ptr = (struct device *)tmp___20; tmp___21 = external_allocated_data(); ldv_3_container_struct_file_ptr = (struct file *)tmp___21; tmp___22 = external_allocated_data(); ldv_3_container_struct_kobject_ptr = (struct kobject *)tmp___22; tmp___23 = external_allocated_data(); ldv_3_ldv_param_12_2_default = (char *)tmp___23; tmp___24 = external_allocated_data(); ldv_3_ldv_param_15_3_default = (char *)tmp___24; tmp___25 = external_allocated_data(); ldv_3_ldv_param_3_3_default = (char *)tmp___25; tmp___26 = external_allocated_data(); ldv_3_ldv_param_9_2_default = (char *)tmp___26; tmp___27 = external_allocated_data(); ldv_4_callback_write = (long (*)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ))tmp___27; tmp___28 = external_allocated_data(); ldv_4_container_struct_device_ptr = (struct device *)tmp___28; tmp___29 = external_allocated_data(); ldv_4_container_struct_file_ptr = (struct file *)tmp___29; tmp___30 = external_allocated_data(); ldv_4_container_struct_kobject_ptr = (struct kobject *)tmp___30; tmp___31 = external_allocated_data(); ldv_4_ldv_param_12_2_default = (char *)tmp___31; tmp___32 = external_allocated_data(); ldv_4_ldv_param_15_3_default = (char *)tmp___32; tmp___33 = external_allocated_data(); ldv_4_ldv_param_3_3_default = (char *)tmp___33; tmp___34 = external_allocated_data(); ldv_4_ldv_param_9_2_default = (char *)tmp___34; tmp___35 = external_allocated_data(); ldv_5_container_struct_device_ptr = (struct device *)tmp___35; tmp___36 = external_allocated_data(); ldv_5_container_struct_file_ptr = (struct file *)tmp___36; tmp___37 = external_allocated_data(); ldv_5_container_struct_kobject_ptr = (struct kobject *)tmp___37; tmp___38 = external_allocated_data(); ldv_5_ldv_param_12_2_default = (char *)tmp___38; tmp___39 = external_allocated_data(); ldv_5_ldv_param_15_3_default = (char *)tmp___39; tmp___40 = external_allocated_data(); ldv_5_ldv_param_3_3_default = (char *)tmp___40; tmp___41 = external_allocated_data(); ldv_5_ldv_param_9_2_default = (char *)tmp___41; ldv_6_ldv_param_3_2_default = external_allocated_data(); ldv_7_ldv_param_3_2_default = external_allocated_data(); tmp___42 = external_allocated_data(); ldv_8_container_timer_list = (struct timer_list *)tmp___42; tmp___43 = external_allocated_data(); ldv_9_container_timer_list = (struct timer_list *)tmp___43; } return; } } void ldv_dispatch_deregister_15_1(struct net_device *arg0 ) { { { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_1(); } return; } } void ldv_dispatch_deregister_16_1(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_11(); } return; } } void ldv_dispatch_deregister_18_1(struct notifier_block *arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_6_container_struct_notifier_block = arg0; ldv_switch_automaton_state_6_1(); } } else { { ldv_7_container_struct_notifier_block = arg0; ldv_switch_automaton_state_7_1(); } } return; } } void ldv_dispatch_deregister_dummy_factory_19_22_4(void) { { { ldv_switch_automaton_state_9_1(); } return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_12_22_5(void) { { { ldv_switch_automaton_state_3_1(); ldv_switch_automaton_state_4_1(); ldv_switch_automaton_state_5_1(); } return; } } void ldv_dispatch_instance_deregister_9_2(struct timer_list *arg0 ) { { { ldv_8_container_timer_list = arg0; ldv_switch_automaton_state_8_1(); } return; } } void ldv_dispatch_instance_register_9_3(struct timer_list *arg0 ) { { { ldv_8_container_timer_list = arg0; ldv_switch_automaton_state_8_3(); } return; } } void ldv_dispatch_irq_deregister_11_1(int arg0 ) { { { ldv_0_line_line = arg0; ldv_switch_automaton_state_0_1(); } return; } } void ldv_dispatch_irq_register_14_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { { { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } return; } } void ldv_dispatch_register_13_4(struct net_device *arg0 ) { { { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_5(); } return; } } void ldv_dispatch_register_17_2(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_20(); } return; } } void ldv_dispatch_register_20_2(struct notifier_block *arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_6_container_struct_notifier_block = arg0; ldv_switch_automaton_state_6_5(); } } else { { ldv_7_container_struct_notifier_block = arg0; ldv_switch_automaton_state_7_5(); } } return; } } void ldv_dispatch_register_dummy_factory_19_22_6(void) { { { ldv_switch_automaton_state_9_4(); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_12_22_7(void) { { { ldv_switch_automaton_state_3_5(); ldv_switch_automaton_state_4_5(); ldv_switch_automaton_state_5_5(); } return; } } void ldv_dummy_resourceless_instance_callback_1_30(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { netxen_nic_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_33(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { netxen_fix_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_36(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) { { { netxen_nic_get_stats(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_37(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { netxen_nic_poll_controller(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_38(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { netxen_set_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_41(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { netxen_nic_set_mac(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_42(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { netxen_set_multicast_list(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_43(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { netxen_nic_xmit_frame(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_44(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { netxen_tx_timeout(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_45(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_12(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { netxen_store_bridged_mode(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_3_15(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { netxen_sysfs_write_crb(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_3_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { netxen_sysfs_read_crb(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_3_9(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { netxen_show_bridged_mode(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_12(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { netxen_store_diag_mode(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_4_15(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { (*arg0)(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_4_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { netxen_sysfs_read_dimm(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_4_9(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { netxen_show_diag_mode(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_5_12(long (*arg0)(struct device * , struct device_attribute * , char * , unsigned long ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 , unsigned long arg4 ) { { { netxen_store_bridged_mode(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_5_15(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { netxen_sysfs_write_mem(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_5_3(long (*arg0)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ) , struct file *arg1 , struct kobject *arg2 , struct bin_attribute *arg3 , char *arg4 , long long arg5 , unsigned long arg6 ) { { { netxen_sysfs_read_mem(arg1, arg2, arg3, arg4, arg5, arg6); } return; } } void ldv_dummy_resourceless_instance_callback_5_9(long (*arg0)(struct device * , struct device_attribute * , char * ) , struct device *arg1 , struct device_attribute *arg2 , char *arg3 ) { { { netxen_show_bridged_mode(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_6_3(int (*arg0)(struct notifier_block * , unsigned long , void * ) , struct notifier_block *arg1 , unsigned long arg2 , void *arg3 ) { { { netxen_inetaddr_event(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_7_3(int (*arg0)(struct notifier_block * , unsigned long , void * ) , struct notifier_block *arg1 , unsigned long arg2 , void *arg3 ) { { { netxen_netdev_event(arg1, arg2, arg3); } return; } } void ldv_entry_EMGentry_22(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_22 == 2) { goto case_2; } else { } if (ldv_statevar_22 == 3) { goto case_3; } else { } if (ldv_statevar_22 == 4) { goto case_4; } else { } if (ldv_statevar_22 == 5) { goto case_5; } else { } if (ldv_statevar_22 == 6) { goto case_6; } else { } if (ldv_statevar_22 == 7) { goto case_7; } else { } if (ldv_statevar_22 == 8) { goto case_8; } else { } if (ldv_statevar_22 == 10) { goto case_10; } else { } if (ldv_statevar_22 == 11) { goto case_11; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((ldv_statevar_2 == 12 || ldv_statevar_6 == 1) || ldv_statevar_7 == 1); ldv_EMGentry_exit_netxen_exit_module_22_2(ldv_22_exit_netxen_exit_module_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_22 = 11; } goto ldv_53683; case_3: /* CIL Label */ { ldv_assume((ldv_statevar_2 == 12 || ldv_statevar_6 == 1) || ldv_statevar_7 == 1); ldv_EMGentry_exit_netxen_exit_module_22_2(ldv_22_exit_netxen_exit_module_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_22 = 11; } goto ldv_53683; case_4: /* CIL Label */ { ldv_assume(ldv_statevar_9 == 2); ldv_dispatch_deregister_dummy_factory_19_22_4(); ldv_statevar_22 = 2; } goto ldv_53683; case_5: /* CIL Label */ { ldv_assume((ldv_statevar_3 == 1 || ldv_statevar_4 == 1) || ldv_statevar_5 == 1); ldv_dispatch_deregister_dummy_resourceless_instance_12_22_5(); ldv_statevar_22 = 4; } goto ldv_53683; case_6: /* CIL Label */ { ldv_assume(ldv_statevar_9 == 4); ldv_dispatch_register_dummy_factory_19_22_6(); ldv_statevar_22 = 5; } goto ldv_53683; case_7: /* CIL Label */ { ldv_assume((ldv_statevar_3 == 5 || ldv_statevar_4 == 5) || ldv_statevar_5 == 5); ldv_dispatch_register_dummy_resourceless_instance_12_22_7(); ldv_statevar_22 = 6; } goto ldv_53683; case_8: /* CIL Label */ { ldv_assume(ldv_22_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_22 = 3; } else { ldv_statevar_22 = 7; } goto ldv_53683; case_10: /* CIL Label */ { ldv_assume(ldv_22_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_22 = 11; } goto ldv_53683; case_11: /* CIL Label */ { ldv_assume((ldv_statevar_2 == 20 || ldv_statevar_6 == 5) || ldv_statevar_7 == 5); ldv_22_ret_default = ldv_EMGentry_init_netxen_init_module_22_11(ldv_22_init_netxen_init_module_default); ldv_22_ret_default = ldv_post_init(ldv_22_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_22 = 8; } else { ldv_statevar_22 = 10; } goto ldv_53683; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53683: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_22 = 11; ldv_statevar_0 = 6; ldv_statevar_1 = 5; ldv_2_ret_default = 1; ldv_statevar_2 = 20; ldv_statevar_3 = 5; ldv_statevar_4 = 5; ldv_statevar_5 = 5; ldv_statevar_6 = 5; ldv_statevar_7 = 5; ldv_statevar_8 = 3; ldv_statevar_9 = 4; } ldv_53708: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_22((void *)0); } goto ldv_53696; case_1: /* CIL Label */ { ldv_interrupt_interrupt_instance_0((void *)0); } goto ldv_53696; case_2: /* CIL Label */ { ldv_net_dummy_resourceless_instance_1((void *)0); } goto ldv_53696; case_3: /* CIL Label */ { ldv_pci_pci_instance_2((void *)0); } goto ldv_53696; case_4: /* CIL Label */ { ldv_struct_device_attribute_dummy_resourceless_instance_3((void *)0); } goto ldv_53696; case_5: /* CIL Label */ { ldv_struct_device_attribute_dummy_resourceless_instance_4((void *)0); } goto ldv_53696; case_6: /* CIL Label */ { ldv_struct_device_attribute_dummy_resourceless_instance_5((void *)0); } goto ldv_53696; case_7: /* CIL Label */ { ldv_struct_notifier_block_dummy_resourceless_instance_6((void *)0); } goto ldv_53696; case_8: /* CIL Label */ { ldv_struct_notifier_block_dummy_resourceless_instance_7((void *)0); } goto ldv_53696; case_9: /* CIL Label */ { ldv_timer_timer_instance_8((void *)0); } goto ldv_53696; case_10: /* CIL Label */ { ldv_timer_dummy_factory_9((void *)0); } goto ldv_53696; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_53696: ; goto ldv_53708; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_11_line_line ; { { ldv_11_line_line = arg1; ldv_assume(ldv_statevar_0 == 2); ldv_dispatch_irq_deregister_11_1(ldv_11_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_12_netdev_net_device ; { { ldv_12_netdev_net_device = arg1; ldv_free((void *)ldv_12_netdev_net_device); } return; return; } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { enum irqreturn tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { int tmp ; { { if (ldv_statevar_0 == 2) { goto case_2; } else { } if (ldv_statevar_0 == 4) { goto case_4; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); ldv_statevar_0 = 6; } goto ldv_53740; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } ldv_statevar_0 = 6; goto ldv_53740; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_0_callback_handler != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); } } else { } { ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 2; } else { ldv_statevar_0 = 4; } goto ldv_53740; case_6: /* CIL Label */ ; goto ldv_53740; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53740: ; return; } } void ldv_net_dummy_resourceless_instance_1(void *arg0 ) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; { { if (ldv_statevar_1 == 1) { goto case_1; } else { } if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 3) { goto case_3; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 7) { goto case_7; } else { } if (ldv_statevar_1 == 8) { goto case_8; } else { } if (ldv_statevar_1 == 9) { goto case_9; } else { } if (ldv_statevar_1 == 11) { goto case_11; } else { } if (ldv_statevar_1 == 13) { goto case_13; } else { } if (ldv_statevar_1 == 15) { goto case_15; } else { } if (ldv_statevar_1 == 17) { goto case_17; } else { } if (ldv_statevar_1 == 18) { goto case_18; } else { } if (ldv_statevar_1 == 19) { goto case_19; } else { } if (ldv_statevar_1 == 20) { goto case_20; } else { } if (ldv_statevar_1 == 21) { goto case_21; } else { } if (ldv_statevar_1 == 22) { goto case_22; } else { } if (ldv_statevar_1 == 24) { goto case_24; } else { } if (ldv_statevar_1 == 27) { goto case_27; } else { } if (ldv_statevar_1 == 29) { goto case_29; } else { } if (ldv_statevar_1 == 31) { goto case_31; } else { } if (ldv_statevar_1 == 34) { goto case_34; } else { } if (ldv_statevar_1 == 36) { goto case_36; } else { } if (ldv_statevar_1 == 37) { goto case_37; } else { } if (ldv_statevar_1 == 39) { goto case_39; } else { } if (ldv_statevar_1 == 41) { goto case_41; } else { } if (ldv_statevar_1 == 42) { goto case_42; } else { } if (ldv_statevar_1 == 43) { goto case_43; } else { } if (ldv_statevar_1 == 44) { goto case_44; } else { } if (ldv_statevar_1 == 45) { goto case_45; } else { } if (ldv_statevar_1 == 47) { goto case_47; } else { } if (ldv_statevar_1 == 49) { goto case_49; } else { } if (ldv_statevar_1 == 50) { goto case_50; } else { } if (ldv_statevar_1 == 51) { goto case_51; } else { } if (ldv_statevar_1 == 52) { goto case_52; } else { } if (ldv_statevar_1 == 53) { goto case_53; } else { } if (ldv_statevar_1 == 54) { goto case_54; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53749; case_2: /* CIL Label */ { ldv_statevar_1 = ldv_switch_0(); } goto ldv_53749; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_3(ldv_1_callback_get_coalesce, ldv_1_container_net_device, ldv_1_container_struct_ethtool_coalesce_ptr); ldv_statevar_1 = 2; } goto ldv_53749; case_4: /* CIL Label */ { ldv_statevar_1 = ldv_switch_0(); } goto ldv_53749; case_5: /* CIL Label */ ; goto ldv_53749; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_7(ldv_1_callback_get_drvinfo, ldv_1_container_net_device, ldv_1_container_struct_ethtool_drvinfo_ptr); ldv_statevar_1 = 2; } goto ldv_53749; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_8(ldv_1_callback_get_dump_data, ldv_1_container_net_device, ldv_1_container_struct_ethtool_dump_ptr, (void *)ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_53749; case_9: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_9(ldv_1_callback_get_dump_flag, ldv_1_container_net_device, ldv_1_container_struct_ethtool_dump_ptr); ldv_statevar_1 = 2; } goto ldv_53749; case_11: /* CIL Label */ { tmp = ldv_xmalloc(1UL); ldv_1_ldv_param_10_2_default = (unsigned char *)tmp; ldv_dummy_resourceless_instance_callback_1_10(ldv_1_callback_get_eeprom, ldv_1_container_net_device, ldv_1_container_struct_ethtool_eeprom_ptr, ldv_1_ldv_param_10_2_default); ldv_free((void *)ldv_1_ldv_param_10_2_default); ldv_statevar_1 = 2; } goto ldv_53749; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_13(ldv_1_callback_get_eeprom_len, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_53749; case_15: /* CIL Label */ { tmp___0 = ldv_xmalloc(8UL); ldv_1_ldv_param_14_2_default = (unsigned long long *)tmp___0; ldv_dummy_resourceless_instance_callback_1_14(ldv_1_callback_get_ethtool_stats, ldv_1_container_net_device, ldv_1_container_struct_ethtool_stats_ptr, ldv_1_ldv_param_14_2_default); ldv_free((void *)ldv_1_ldv_param_14_2_default); ldv_statevar_1 = 2; } goto ldv_53749; case_17: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_17(ldv_1_callback_get_link, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_53749; case_18: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_18(ldv_1_callback_get_pauseparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_pauseparam_ptr); ldv_statevar_1 = 2; } goto ldv_53749; case_19: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_19(ldv_1_callback_get_regs, ldv_1_container_net_device, ldv_1_container_struct_ethtool_regs_ptr, (void *)ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_53749; case_20: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_20(ldv_1_callback_get_regs_len, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_53749; case_21: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_21(ldv_1_callback_get_ringparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_ringparam_ptr); ldv_statevar_1 = 2; } goto ldv_53749; case_22: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_22(ldv_1_callback_get_settings, ldv_1_container_net_device, ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_53749; case_24: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_23(ldv_1_callback_get_sset_count, ldv_1_container_net_device, ldv_1_ldv_param_23_1_default); ldv_statevar_1 = 2; } goto ldv_53749; case_27: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_1_ldv_param_26_2_default = (unsigned char *)tmp___1; ldv_dummy_resourceless_instance_callback_1_26(ldv_1_callback_get_strings, ldv_1_container_net_device, ldv_1_ldv_param_26_1_default, ldv_1_ldv_param_26_2_default); ldv_free((void *)ldv_1_ldv_param_26_2_default); ldv_statevar_1 = 2; } goto ldv_53749; case_29: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_29(ldv_1_callback_get_wol, ldv_1_container_net_device, ldv_1_container_struct_ethtool_wolinfo_ptr); ldv_statevar_1 = 2; } goto ldv_53749; case_31: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_30(ldv_1_callback_ndo_change_mtu, ldv_1_container_net_device, ldv_1_ldv_param_30_1_default); ldv_statevar_1 = 2; } goto ldv_53749; case_34: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_33(ldv_1_callback_ndo_fix_features, ldv_1_container_net_device, ldv_1_ldv_param_33_1_default); ldv_statevar_1 = 2; } goto ldv_53749; case_36: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_36(ldv_1_callback_ndo_get_stats64, ldv_1_container_net_device, ldv_1_container_struct_rtnl_link_stats64_ptr); ldv_statevar_1 = 2; } goto ldv_53749; case_37: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_37(ldv_1_callback_ndo_poll_controller, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_53749; case_39: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_38(ldv_1_callback_ndo_set_features, ldv_1_container_net_device, ldv_1_ldv_param_38_1_default); ldv_statevar_1 = 2; } goto ldv_53749; case_41: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_41(ldv_1_callback_ndo_set_mac_address, ldv_1_container_net_device, (void *)ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_53749; case_42: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_42(ldv_1_callback_ndo_set_rx_mode, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_53749; case_43: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_43(ldv_1_callback_ndo_start_xmit, ldv_1_container_struct_sk_buff_ptr, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_53749; case_44: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_44(ldv_1_callback_ndo_tx_timeout, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_53749; case_45: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_45(ldv_1_callback_ndo_validate_addr, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_53749; case_47: /* CIL Label */ { tmp___2 = ldv_xmalloc(8UL); ldv_1_ldv_param_46_2_default = (unsigned long long *)tmp___2; ldv_dummy_resourceless_instance_callback_1_46(ldv_1_callback_self_test, ldv_1_container_net_device, ldv_1_container_struct_ethtool_test_ptr, ldv_1_ldv_param_46_2_default); ldv_free((void *)ldv_1_ldv_param_46_2_default); ldv_statevar_1 = 2; } goto ldv_53749; case_49: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_49(ldv_1_callback_set_coalesce, ldv_1_container_net_device, ldv_1_container_struct_ethtool_coalesce_ptr); ldv_statevar_1 = 2; } goto ldv_53749; case_50: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_50(ldv_1_callback_set_dump, ldv_1_container_net_device, ldv_1_container_struct_ethtool_dump_ptr); ldv_statevar_1 = 2; } goto ldv_53749; case_51: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_51(ldv_1_callback_set_pauseparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_pauseparam_ptr); ldv_statevar_1 = 2; } goto ldv_53749; case_52: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_52(ldv_1_callback_set_ringparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_ringparam_ptr); ldv_statevar_1 = 2; } goto ldv_53749; case_53: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_53(ldv_1_callback_set_settings, ldv_1_container_net_device, ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_53749; case_54: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_54(ldv_1_callback_set_wol, ldv_1_container_net_device, ldv_1_container_struct_ethtool_wolinfo_ptr); ldv_statevar_1 = 2; } goto ldv_53749; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53749: ; return; } } void ldv_pci_instance_callback_2_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) { { { netxen_io_error_detected(arg1, (pci_channel_state_t )arg2); } return; } } void ldv_pci_instance_callback_2_23(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { netxen_io_resume(arg1); } return; } } void ldv_pci_instance_callback_2_24(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { netxen_io_slot_reset(arg1); } return; } } int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = netxen_nic_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { netxen_nic_remove(arg1); } return; } } void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { netxen_nic_resume(arg1); } return; } } void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { netxen_nic_shutdown(arg1); } return; } } int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = netxen_nic_suspend(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_2(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_2 == 1) { goto case_1; } else { } if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 3) { goto case_3; } else { } if (ldv_statevar_2 == 4) { goto case_4; } else { } if (ldv_statevar_2 == 5) { goto case_5; } else { } if (ldv_statevar_2 == 6) { goto case_6; } else { } if (ldv_statevar_2 == 7) { goto case_7; } else { } if (ldv_statevar_2 == 8) { goto case_8; } else { } if (ldv_statevar_2 == 9) { goto case_9; } else { } if (ldv_statevar_2 == 10) { goto case_10; } else { } if (ldv_statevar_2 == 12) { goto case_12; } else { } if (ldv_statevar_2 == 14) { goto case_14; } else { } if (ldv_statevar_2 == 16) { goto case_16; } else { } if (ldv_statevar_2 == 17) { goto case_17; } else { } if (ldv_statevar_2 == 19) { goto case_19; } else { } if (ldv_statevar_2 == 20) { goto case_20; } else { } if (ldv_statevar_2 == 23) { goto case_23; } else { } if (ldv_statevar_2 == 24) { goto case_24; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_53849; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_1 == 1); ldv_pci_instance_release_2_2(ldv_2_container_pci_driver->remove, ldv_2_resource_dev); ldv_statevar_2 = 1; } goto ldv_53849; case_3: /* CIL Label */ { ldv_pci_instance_shutdown_2_3(ldv_2_container_pci_driver->shutdown, ldv_2_resource_dev); ldv_statevar_2 = 2; } goto ldv_53849; case_4: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_53849; case_5: /* CIL Label */ { ldv_pci_instance_resume_2_5(ldv_2_container_pci_driver->resume, ldv_2_resource_dev); ldv_statevar_2 = 4; } goto ldv_53849; case_6: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_2_6(ldv_2_container_pci_driver->resume_early, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 5; goto ldv_53849; case_7: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_late_2_7(ldv_2_container_pci_driver->suspend_late, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 6; } goto ldv_53849; case_8: /* CIL Label */ { ldv_2_ret_default = ldv_pci_instance_suspend_2_8(ldv_2_container_pci_driver->suspend, ldv_2_resource_dev, ldv_2_resource_pm_message); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 7; } goto ldv_53849; case_9: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_53849; case_10: /* CIL Label */ { ldv_pci_instance_callback_2_10(ldv_2_callback_error_detected, ldv_2_resource_dev, ldv_2_resource_enum_pci_channel_state); ldv_statevar_2 = 9; } goto ldv_53849; case_12: /* CIL Label */ { ldv_free((void *)ldv_2_resource_dev); ldv_free((void *)ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = 1; ldv_statevar_2 = 20; } goto ldv_53849; case_14: /* CIL Label */ { ldv_assume(ldv_2_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_53849; case_16: /* CIL Label */ { ldv_assume(ldv_2_ret_default == 0); ldv_statevar_2 = ldv_switch_1(); } goto ldv_53849; case_17: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 5); ldv_pre_probe(); ldv_2_ret_default = ldv_pci_instance_probe_2_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_2_container_pci_driver->probe, ldv_2_resource_dev, ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = ldv_post_probe(ldv_2_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_2 = 14; } else { ldv_statevar_2 = 16; } goto ldv_53849; case_19: /* CIL Label */ { tmp___2 = ldv_xmalloc(2936UL); ldv_2_resource_dev = (struct pci_dev *)tmp___2; tmp___3 = ldv_xmalloc(32UL); ldv_2_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___3; tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_53849; case_20: /* CIL Label */ ; goto ldv_53849; case_23: /* CIL Label */ { ldv_pci_instance_callback_2_23(ldv_2_callback_func_1_ptr, ldv_2_resource_dev); ldv_statevar_2 = 9; } goto ldv_53849; case_24: /* CIL Label */ { ldv_pci_instance_callback_2_24(ldv_2_callback_slot_reset, ldv_2_resource_dev); ldv_statevar_2 = 9; } goto ldv_53849; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53849: ; return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_16_pci_driver_pci_driver ; { { ldv_16_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 12); ldv_dispatch_deregister_16_1(ldv_16_pci_driver_pci_driver); } return; return; } } int ldv_register_inetaddr_notifier(int arg0 , struct notifier_block *arg1 ) { struct notifier_block *ldv_20_struct_notifier_block_struct_notifier_block ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_20_struct_notifier_block_struct_notifier_block = arg1; ldv_assume(ldv_statevar_6 == 5 || ldv_statevar_7 == 5); ldv_dispatch_register_20_2(ldv_20_struct_notifier_block_struct_notifier_block); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_13_netdev_net_device ; int ldv_13_ret_default ; int tmp ; int tmp___0 ; { { ldv_13_ret_default = 1; ldv_13_ret_default = ldv_pre_register_netdev(); ldv_13_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_13_ret_default == 0); ldv_assume(ldv_statevar_0 == 6 || ldv_statevar_0 == 2); ldv_13_ret_default = ldv_register_netdev_open_13_6((ldv_13_netdev_net_device->netdev_ops)->ndo_open, ldv_13_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_13_ret_default == 0); ldv_assume(ldv_statevar_1 == 5); ldv_dispatch_register_13_4(ldv_13_netdev_net_device); } } else { { ldv_assume(ldv_13_ret_default != 0); } } } else { { ldv_assume(ldv_13_ret_default != 0); } } return (ldv_13_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_13_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = netxen_nic_open(arg1); } return (tmp); } } int ldv_register_netdevice_notifier(int arg0 , struct notifier_block *arg1 ) { struct notifier_block *ldv_21_struct_notifier_block_struct_notifier_block ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_21_struct_notifier_block_struct_notifier_block = arg1; } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_14_callback_handler)(int , void * ) ; void *ldv_14_data_data ; int ldv_14_line_line ; enum irqreturn (*ldv_14_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_14_line_line = (int )arg1; ldv_14_callback_handler = arg2; ldv_14_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_14_data_data = arg5; ldv_assume(ldv_statevar_0 == 6); ldv_dispatch_irq_register_14_2(ldv_14_line_line, ldv_14_callback_handler, ldv_14_thread_thread, ldv_14_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_struct_device_attribute_dummy_resourceless_instance_3(void *arg0 ) { int tmp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; { { if (ldv_statevar_3 == 1) { goto case_1; } else { } if (ldv_statevar_3 == 2) { goto case_2; } else { } if (ldv_statevar_3 == 3) { goto case_3; } else { } if (ldv_statevar_3 == 4) { goto case_4; } else { } if (ldv_statevar_3 == 5) { goto case_5; } else { } if (ldv_statevar_3 == 7) { goto case_7; } else { } if (ldv_statevar_3 == 10) { goto case_10; } else { } if (ldv_statevar_3 == 13) { goto case_13; } else { } if (ldv_statevar_3 == 16) { goto case_16; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53916; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_3 = 1; } else { ldv_statevar_3 = 7; } goto ldv_53916; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_3(ldv_3_callback_read, ldv_3_container_struct_file_ptr, ldv_3_container_struct_kobject_ptr, ldv_3_container_struct_bin_attribute, ldv_3_ldv_param_3_3_default, ldv_3_ldv_param_3_4_default, ldv_3_ldv_param_3_5_default); ldv_free((void *)ldv_3_ldv_param_3_3_default); ldv_statevar_3 = 2; } goto ldv_53916; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_3 = 1; } else { ldv_statevar_3 = 7; } goto ldv_53916; case_5: /* CIL Label */ ; goto ldv_53916; case_7: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_3_ldv_param_3_3_default = (char *)tmp___1; ldv_statevar_3 = ldv_switch_2(); } goto ldv_53916; case_10: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_3_ldv_param_9_2_default = (char *)tmp___2; ldv_dummy_resourceless_instance_callback_3_9(ldv_3_callback_show, ldv_3_container_struct_device_ptr, ldv_3_container_struct_device_attribute, ldv_3_ldv_param_9_2_default); ldv_free((void *)ldv_3_ldv_param_9_2_default); ldv_free((void *)ldv_3_ldv_param_3_3_default); ldv_statevar_3 = 2; } goto ldv_53916; case_13: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_3_ldv_param_12_2_default = (char *)tmp___3; ldv_dummy_resourceless_instance_callback_3_12(ldv_3_callback_store, ldv_3_container_struct_device_ptr, ldv_3_container_struct_device_attribute, ldv_3_ldv_param_12_2_default, ldv_3_ldv_param_12_3_default); ldv_free((void *)ldv_3_ldv_param_12_2_default); ldv_free((void *)ldv_3_ldv_param_3_3_default); ldv_statevar_3 = 2; } goto ldv_53916; case_16: /* CIL Label */ { tmp___4 = ldv_xmalloc(1UL); ldv_3_ldv_param_15_3_default = (char *)tmp___4; ldv_dummy_resourceless_instance_callback_3_15(ldv_3_callback_write, ldv_3_container_struct_file_ptr, ldv_3_container_struct_kobject_ptr, ldv_3_container_struct_bin_attribute, ldv_3_ldv_param_15_3_default, ldv_3_ldv_param_15_4_default, ldv_3_ldv_param_15_5_default); ldv_free((void *)ldv_3_ldv_param_15_3_default); ldv_free((void *)ldv_3_ldv_param_3_3_default); ldv_statevar_3 = 2; } goto ldv_53916; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53916: ; return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_4(void *arg0 ) { int tmp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; { { if (ldv_statevar_4 == 1) { goto case_1; } else { } if (ldv_statevar_4 == 2) { goto case_2; } else { } if (ldv_statevar_4 == 3) { goto case_3; } else { } if (ldv_statevar_4 == 4) { goto case_4; } else { } if (ldv_statevar_4 == 5) { goto case_5; } else { } if (ldv_statevar_4 == 7) { goto case_7; } else { } if (ldv_statevar_4 == 10) { goto case_10; } else { } if (ldv_statevar_4 == 13) { goto case_13; } else { } if (ldv_statevar_4 == 16) { goto case_16; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53930; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_4 = 1; } else { ldv_statevar_4 = 7; } goto ldv_53930; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_3(ldv_4_callback_read, ldv_4_container_struct_file_ptr, ldv_4_container_struct_kobject_ptr, ldv_4_container_struct_bin_attribute, ldv_4_ldv_param_3_3_default, ldv_4_ldv_param_3_4_default, ldv_4_ldv_param_3_5_default); ldv_free((void *)ldv_4_ldv_param_3_3_default); ldv_statevar_4 = 2; } goto ldv_53930; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_4 = 1; } else { ldv_statevar_4 = 7; } goto ldv_53930; case_5: /* CIL Label */ ; goto ldv_53930; case_7: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_4_ldv_param_3_3_default = (char *)tmp___1; ldv_statevar_4 = ldv_switch_2(); } goto ldv_53930; case_10: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_4_ldv_param_9_2_default = (char *)tmp___2; ldv_dummy_resourceless_instance_callback_4_9(ldv_4_callback_show, ldv_4_container_struct_device_ptr, ldv_4_container_struct_device_attribute, ldv_4_ldv_param_9_2_default); ldv_free((void *)ldv_4_ldv_param_9_2_default); ldv_free((void *)ldv_4_ldv_param_3_3_default); ldv_statevar_4 = 2; } goto ldv_53930; case_13: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_4_ldv_param_12_2_default = (char *)tmp___3; ldv_dummy_resourceless_instance_callback_4_12(ldv_4_callback_store, ldv_4_container_struct_device_ptr, ldv_4_container_struct_device_attribute, ldv_4_ldv_param_12_2_default, ldv_4_ldv_param_12_3_default); ldv_free((void *)ldv_4_ldv_param_12_2_default); ldv_free((void *)ldv_4_ldv_param_3_3_default); ldv_statevar_4 = 2; } goto ldv_53930; case_16: /* CIL Label */ { tmp___4 = ldv_xmalloc(1UL); ldv_4_ldv_param_15_3_default = (char *)tmp___4; } if ((unsigned long )ldv_4_callback_write != (unsigned long )((long (*)(struct file * , struct kobject * , struct bin_attribute * , char * , long long , unsigned long ))0)) { { ldv_dummy_resourceless_instance_callback_4_15(ldv_4_callback_write, ldv_4_container_struct_file_ptr, ldv_4_container_struct_kobject_ptr, ldv_4_container_struct_bin_attribute, ldv_4_ldv_param_15_3_default, ldv_4_ldv_param_15_4_default, ldv_4_ldv_param_15_5_default); } } else { } { ldv_free((void *)ldv_4_ldv_param_15_3_default); ldv_free((void *)ldv_4_ldv_param_3_3_default); ldv_statevar_4 = 2; } goto ldv_53930; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53930: ; return; } } void ldv_struct_device_attribute_dummy_resourceless_instance_5(void *arg0 ) { int tmp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; { { if (ldv_statevar_5 == 1) { goto case_1; } else { } if (ldv_statevar_5 == 2) { goto case_2; } else { } if (ldv_statevar_5 == 3) { goto case_3; } else { } if (ldv_statevar_5 == 4) { goto case_4; } else { } if (ldv_statevar_5 == 5) { goto case_5; } else { } if (ldv_statevar_5 == 7) { goto case_7; } else { } if (ldv_statevar_5 == 10) { goto case_10; } else { } if (ldv_statevar_5 == 13) { goto case_13; } else { } if (ldv_statevar_5 == 16) { goto case_16; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53944; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_5 = 1; } else { ldv_statevar_5 = 7; } goto ldv_53944; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_3(ldv_5_callback_read, ldv_5_container_struct_file_ptr, ldv_5_container_struct_kobject_ptr, ldv_5_container_struct_bin_attribute, ldv_5_ldv_param_3_3_default, ldv_5_ldv_param_3_4_default, ldv_5_ldv_param_3_5_default); ldv_free((void *)ldv_5_ldv_param_3_3_default); ldv_statevar_5 = 2; } goto ldv_53944; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_5 = 1; } else { ldv_statevar_5 = 7; } goto ldv_53944; case_5: /* CIL Label */ ; goto ldv_53944; case_7: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_5_ldv_param_3_3_default = (char *)tmp___1; ldv_statevar_5 = ldv_switch_2(); } goto ldv_53944; case_10: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_5_ldv_param_9_2_default = (char *)tmp___2; ldv_dummy_resourceless_instance_callback_5_9(ldv_5_callback_show, ldv_5_container_struct_device_ptr, ldv_5_container_struct_device_attribute, ldv_5_ldv_param_9_2_default); ldv_free((void *)ldv_5_ldv_param_9_2_default); ldv_free((void *)ldv_5_ldv_param_3_3_default); ldv_statevar_5 = 2; } goto ldv_53944; case_13: /* CIL Label */ { tmp___3 = ldv_xmalloc(1UL); ldv_5_ldv_param_12_2_default = (char *)tmp___3; ldv_dummy_resourceless_instance_callback_5_12(ldv_5_callback_store, ldv_5_container_struct_device_ptr, ldv_5_container_struct_device_attribute, ldv_5_ldv_param_12_2_default, ldv_5_ldv_param_12_3_default); ldv_free((void *)ldv_5_ldv_param_12_2_default); ldv_free((void *)ldv_5_ldv_param_3_3_default); ldv_statevar_5 = 2; } goto ldv_53944; case_16: /* CIL Label */ { tmp___4 = ldv_xmalloc(1UL); ldv_5_ldv_param_15_3_default = (char *)tmp___4; ldv_dummy_resourceless_instance_callback_5_15(ldv_5_callback_write, ldv_5_container_struct_file_ptr, ldv_5_container_struct_kobject_ptr, ldv_5_container_struct_bin_attribute, ldv_5_ldv_param_15_3_default, ldv_5_ldv_param_15_4_default, ldv_5_ldv_param_15_5_default); ldv_free((void *)ldv_5_ldv_param_15_3_default); ldv_free((void *)ldv_5_ldv_param_3_3_default); ldv_statevar_5 = 2; } goto ldv_53944; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53944: ; return; } } void ldv_struct_notifier_block_dummy_resourceless_instance_6(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_6 == 1) { goto case_1; } else { } if (ldv_statevar_6 == 2) { goto case_2; } else { } if (ldv_statevar_6 == 4) { goto case_4; } else { } if (ldv_statevar_6 == 5) { goto case_5; } else { } if (ldv_statevar_6 == 7) { goto case_7; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53958; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_6 = 1; } else { ldv_statevar_6 = 7; } goto ldv_53958; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_6 = 1; } else { ldv_statevar_6 = 7; } goto ldv_53958; case_5: /* CIL Label */ ; goto ldv_53958; case_7: /* CIL Label */ { ldv_6_ldv_param_3_2_default = ldv_xmalloc(1UL); ldv_dummy_resourceless_instance_callback_6_3(ldv_6_callback_notifier_call, ldv_6_container_struct_notifier_block, ldv_6_ldv_param_3_1_default, ldv_6_ldv_param_3_2_default); ldv_free(ldv_6_ldv_param_3_2_default); ldv_statevar_6 = 2; } goto ldv_53958; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53958: ; return; } } void ldv_struct_notifier_block_dummy_resourceless_instance_7(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_7 == 1) { goto case_1; } else { } if (ldv_statevar_7 == 2) { goto case_2; } else { } if (ldv_statevar_7 == 4) { goto case_4; } else { } if (ldv_statevar_7 == 5) { goto case_5; } else { } if (ldv_statevar_7 == 7) { goto case_7; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53968; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_7 = 1; } else { ldv_statevar_7 = 7; } goto ldv_53968; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_7 = 1; } else { ldv_statevar_7 = 7; } goto ldv_53968; case_5: /* CIL Label */ ; goto ldv_53968; case_7: /* CIL Label */ { ldv_7_ldv_param_3_2_default = ldv_xmalloc(1UL); ldv_dummy_resourceless_instance_callback_7_3(ldv_7_callback_notifier_call, ldv_7_container_struct_notifier_block, ldv_7_ldv_param_3_1_default, ldv_7_ldv_param_3_2_default); ldv_free(ldv_7_ldv_param_3_2_default); ldv_statevar_7 = 2; } goto ldv_53968; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53968: ; return; } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } if (tmp == 22) { goto case_22; } else { } if (tmp == 23) { goto case_23; } else { } if (tmp == 24) { goto case_24; } else { } if (tmp == 25) { goto case_25; } else { } if (tmp == 26) { goto case_26; } else { } if (tmp == 27) { goto case_27; } else { } if (tmp == 28) { goto case_28; } else { } if (tmp == 29) { goto case_29; } else { } if (tmp == 30) { goto case_30; } else { } if (tmp == 31) { goto case_31; } else { } if (tmp == 32) { goto case_32; } else { } if (tmp == 33) { goto case_33; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (3); case_2: /* CIL Label */ ; return (7); case_3: /* CIL Label */ ; return (8); case_4: /* CIL Label */ ; return (9); case_5: /* CIL Label */ ; return (11); case_6: /* CIL Label */ ; return (13); case_7: /* CIL Label */ ; return (15); case_8: /* CIL Label */ ; return (17); case_9: /* CIL Label */ ; return (18); case_10: /* CIL Label */ ; return (19); case_11: /* CIL Label */ ; return (20); case_12: /* CIL Label */ ; return (21); case_13: /* CIL Label */ ; return (22); case_14: /* CIL Label */ ; return (24); case_15: /* CIL Label */ ; return (27); case_16: /* CIL Label */ ; return (29); case_17: /* CIL Label */ ; return (31); case_18: /* CIL Label */ ; return (34); case_19: /* CIL Label */ ; return (36); case_20: /* CIL Label */ ; return (37); case_21: /* CIL Label */ ; return (39); case_22: /* CIL Label */ ; return (41); case_23: /* CIL Label */ ; return (42); case_24: /* CIL Label */ ; return (43); case_25: /* CIL Label */ ; return (44); case_26: /* CIL Label */ ; return (45); case_27: /* CIL Label */ ; return (47); case_28: /* CIL Label */ ; return (49); case_29: /* CIL Label */ ; return (50); case_30: /* CIL Label */ ; return (51); case_31: /* CIL Label */ ; return (52); case_32: /* CIL Label */ ; return (53); case_33: /* CIL Label */ ; return (54); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (8); case_2: /* CIL Label */ ; return (10); case_3: /* CIL Label */ ; return (23); case_4: /* CIL Label */ ; return (24); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_2(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (10); case_2: /* CIL Label */ ; return (13); case_3: /* CIL Label */ ; return (16); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_0_1(void) { { ldv_statevar_0 = 6; return; } } void ldv_switch_automaton_state_0_6(void) { { ldv_statevar_0 = 5; return; } } void ldv_switch_automaton_state_1_1(void) { { ldv_statevar_1 = 5; return; } } void ldv_switch_automaton_state_1_5(void) { { ldv_statevar_1 = 4; return; } } void ldv_switch_automaton_state_2_11(void) { { ldv_2_ret_default = 1; ldv_statevar_2 = 20; return; } } void ldv_switch_automaton_state_2_20(void) { { ldv_statevar_2 = 19; return; } } void ldv_switch_automaton_state_3_1(void) { { ldv_statevar_3 = 5; return; } } void ldv_switch_automaton_state_3_5(void) { { ldv_statevar_3 = 4; return; } } void ldv_switch_automaton_state_4_1(void) { { ldv_statevar_4 = 5; return; } } void ldv_switch_automaton_state_4_5(void) { { ldv_statevar_4 = 4; return; } } void ldv_switch_automaton_state_5_1(void) { { ldv_statevar_5 = 5; return; } } void ldv_switch_automaton_state_5_5(void) { { ldv_statevar_5 = 4; return; } } void ldv_switch_automaton_state_6_1(void) { { ldv_statevar_6 = 5; return; } } void ldv_switch_automaton_state_6_5(void) { { ldv_statevar_6 = 4; return; } } void ldv_switch_automaton_state_7_1(void) { { ldv_statevar_7 = 5; return; } } void ldv_switch_automaton_state_7_5(void) { { ldv_statevar_7 = 4; return; } } void ldv_switch_automaton_state_8_1(void) { { ldv_statevar_8 = 3; return; } } void ldv_switch_automaton_state_8_3(void) { { ldv_statevar_8 = 2; return; } } void ldv_switch_automaton_state_9_1(void) { { ldv_statevar_9 = 4; return; } } void ldv_switch_automaton_state_9_4(void) { { ldv_statevar_9 = 3; return; } } void ldv_timer_dummy_factory_9(void *arg0 ) { { { if (ldv_statevar_9 == 2) { goto case_2; } else { } if (ldv_statevar_9 == 3) { goto case_3; } else { } if (ldv_statevar_9 == 4) { goto case_4; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_8 == 2); ldv_dispatch_instance_deregister_9_2(ldv_9_container_timer_list); ldv_statevar_9 = 4; } goto ldv_54070; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_8 == 3); ldv_dispatch_instance_register_9_3(ldv_9_container_timer_list); ldv_statevar_9 = 2; } goto ldv_54070; case_4: /* CIL Label */ ; goto ldv_54070; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54070: ; return; } } void ldv_timer_instance_callback_8_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_8(void *arg0 ) { { { if (ldv_statevar_8 == 2) { goto case_2; } else { } if (ldv_statevar_8 == 3) { goto case_3; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_8_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_8_2(ldv_8_container_timer_list->function, ldv_8_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); ldv_statevar_8 = 3; } goto ldv_54083; case_3: /* CIL Label */ ; goto ldv_54083; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_54083: ; return; } } int ldv_unregister_inetaddr_notifier(int arg0 , struct notifier_block *arg1 ) { struct notifier_block *ldv_18_struct_notifier_block_struct_notifier_block ; { { ldv_18_struct_notifier_block_struct_notifier_block = arg1; ldv_assume(ldv_statevar_6 == 1 || ldv_statevar_7 == 1); ldv_dispatch_deregister_18_1(ldv_18_struct_notifier_block_struct_notifier_block); } return (arg0); return (arg0); } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_15_netdev_net_device ; { { ldv_15_netdev_net_device = arg1; ldv_unregister_netdev_stop_15_2((ldv_15_netdev_net_device->netdev_ops)->ndo_stop, ldv_15_netdev_net_device); ldv_assume(ldv_statevar_1 == 1); ldv_dispatch_deregister_15_1(ldv_15_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_15_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { netxen_nic_close(arg1); } return; } } int ldv_unregister_netdevice_notifier(int arg0 , struct notifier_block *arg1 ) { struct notifier_block *ldv_19_struct_notifier_block_struct_notifier_block ; { ldv_19_struct_notifier_block_struct_notifier_block = arg1; return (arg0); return (arg0); } } __inline static void ldv_spin_lock_69(spinlock_t *lock ) { { { ldv_spin_lock__xmit_lock_of_netdev_queue(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_72(spinlock_t *lock ) { { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); spin_unlock(lock); } return; } } static void *ldv_dev_get_drvdata_81(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_82(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } __inline static int ldv_request_irq_101(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_102(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static void ldv_spin_lock_103___0(spinlock_t *lock ) { { { ldv_spin_lock_tx_clean_lock_of_netxen_adapter(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_104___0(spinlock_t *lock ) { { { ldv_spin_unlock_tx_clean_lock_of_netxen_adapter(); spin_unlock(lock); } return; } } static int ldv_register_netdev_105(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static struct net_device *ldv_alloc_etherdev_mqs_106(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_107(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_108(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_109(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void *ldv_dev_get_drvdata_110(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_111(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_112(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_113(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_114(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_115(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static void *ldv_dev_get_drvdata_116(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_register_netdevice_notifier_117(struct notifier_block *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdevice_notifier(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdevice_notifier(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_inetaddr_notifier_118(struct notifier_block *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_inetaddr_notifier(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_inetaddr_notifier(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv___pci_register_driver_119(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_120(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static int ldv_unregister_inetaddr_notifier_121(struct notifier_block *ldv_func_arg1 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = unregister_inetaddr_notifier(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_unregister_inetaddr_notifier(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_unregister_netdevice_notifier_122(struct notifier_block *ldv_func_arg1 ) { ldv_func_ret_type___7 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = unregister_netdevice_notifier(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_unregister_netdevice_notifier(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } extern void ldv_after_alloc(void * ) ; extern struct pv_irq_ops pv_irq_ops ; __inline static __u32 __fswab32(__u32 val ) { int tmp ; { { tmp = __builtin_bswap32(val); } return ((__u32 )tmp); } } extern int sscanf(char const * , char const * , ...) ; extern int strncmp(char const * , char const * , __kernel_size_t ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/de2fed6/linux-alloc-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } void ldv_spin_lock_lock_of_nx_host_rds_ring(void) ; void ldv_spin_unlock_lock_of_nx_host_rds_ring(void) ; int ldv_spin_trylock_lock_of_nx_host_rds_ring(void) ; int ldv_spin_trylock_tx_clean_lock_of_netxen_adapter(void) ; extern int _raw_spin_trylock(raw_spinlock_t * ) ; __inline static void ldv_spin_lock_103___1(spinlock_t *lock ) ; __inline static int spin_trylock(spinlock_t *lock ) { int tmp ; { { tmp = _raw_spin_trylock(& lock->__annonCompField19.rlock); } return (tmp); } } __inline static int ldv_spin_trylock_105(spinlock_t *lock ) ; __inline static int ldv_spin_trylock_107(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_104___1(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_104___0(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_104___1(spinlock_t *lock ) ; static void *ldv_vzalloc_101(unsigned long ldv_func_arg1 ) ; static void *ldv_vzalloc_102(unsigned long ldv_func_arg1 ) ; extern unsigned long msleep_interruptible(unsigned int ) ; extern int _cond_resched(void) ; __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static __sum16 csum_fold(__wsum sum ) { { __asm__ (" addl %1,%0\n adcl $0xffff,%0": "=r" (sum): "r" (sum << 16), "0" (sum & 4294901760U)); return ((__sum16 )(~ sum >> 16)); } } extern __wsum csum_partial(void const * , int , __wsum ) ; __inline static __wsum csum_unfold(__sum16 n ) { { return ((__wsum )n); } } __inline static void csum_replace4(__sum16 *sum , __be32 from , __be32 to ) { __be32 diff[2U] ; __wsum tmp ; __wsum tmp___0 ; { { diff[0] = ~ from; diff[1] = to; tmp = csum_unfold((int )*sum); tmp___0 = csum_partial((void const *)(& diff), 8, ~ tmp); *sum = csum_fold(tmp___0); } return; } } __inline static void csum_replace2(__sum16 *sum , __be16 from , __be16 to ) { { { csum_replace4(sum, (unsigned int )from, (unsigned int )to); } return; } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/de2fed6/linux-alloc-spinlock/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_pull(struct sk_buff * , unsigned int ) ; __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } static struct sk_buff *ldv___netdev_alloc_skb_57(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = ldv___netdev_alloc_skb_57(dev, length, 32U); } return (tmp); } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); } return (tmp != 0); } } __inline static bool netif_queue_stopped(struct net_device const *dev ) { struct netdev_queue *tmp ; bool tmp___0 ; { { tmp = netdev_get_tx_queue(dev, 0U); tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)tmp); } return (tmp___0); } } extern int netif_receive_skb(struct sk_buff * ) ; extern gro_result_t napi_gro_receive(struct napi_struct * , struct sk_buff * ) ; __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); } return; } } extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int request_firmware(struct firmware const ** , char const * , struct device * ) ; extern void release_firmware(struct firmware const * ) ; int netxen_rom_fast_read_words(struct netxen_adapter *adapter , int addr , u8 *bytes , size_t size ) ; static unsigned int crb_addr_xform[60U] ; static void netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter , struct nx_host_rds_ring *rds_ring ) ; static int netxen_p3_has_mn(struct netxen_adapter *adapter ) ; static void crb_addr_transform_setup(void) { { crb_addr_xform[49] = 1078984704U; crb_addr_xform[40] = 1097859072U; crb_addr_xform[5] = 218103808U; crb_addr_xform[11] = 238026752U; crb_addr_xform[10] = 236978176U; crb_addr_xform[9] = 235929600U; crb_addr_xform[8] = 234881024U; crb_addr_xform[16] = 1883242496U; crb_addr_xform[15] = 1882193920U; crb_addr_xform[14] = 1881145344U; crb_addr_xform[13] = 1880096768U; crb_addr_xform[48] = 1894776832U; crb_addr_xform[47] = 148897792U; crb_addr_xform[46] = 147849216U; crb_addr_xform[45] = 1891631104U; crb_addr_xform[44] = 1890582528U; crb_addr_xform[43] = 1889533952U; crb_addr_xform[42] = 143654912U; crb_addr_xform[53] = 142606336U; crb_addr_xform[51] = 1108344832U; crb_addr_xform[29] = 1090519040U; crb_addr_xform[7] = 241172480U; crb_addr_xform[12] = 1879048192U; crb_addr_xform[22] = 876609536U; crb_addr_xform[21] = 877658112U; crb_addr_xform[20] = 875560960U; crb_addr_xform[19] = 874512384U; crb_addr_xform[18] = 873463808U; crb_addr_xform[17] = 872415232U; crb_addr_xform[28] = 1010827264U; crb_addr_xform[27] = 1011875840U; crb_addr_xform[26] = 1009778688U; crb_addr_xform[25] = 1008730112U; crb_addr_xform[24] = 1007681536U; crb_addr_xform[23] = 1006632960U; crb_addr_xform[1] = 1999634432U; crb_addr_xform[0] = 698351616U; crb_addr_xform[6] = 454033408U; crb_addr_xform[50] = 1107296256U; crb_addr_xform[31] = 219152384U; crb_addr_xform[2] = 693108736U; crb_addr_xform[3] = 709885952U; crb_addr_xform[37] = 209715200U; crb_addr_xform[36] = 208666624U; crb_addr_xform[35] = 207618048U; crb_addr_xform[34] = 1096810496U; crb_addr_xform[39] = 1972371456U; crb_addr_xform[38] = 1971322880U; crb_addr_xform[58] = 1904214016U; crb_addr_xform[56] = 1080033280U; crb_addr_xform[59] = 428867584U; return; } } void netxen_release_rx_buffers(struct netxen_adapter *adapter ) { struct netxen_recv_context *recv_ctx ; struct nx_host_rds_ring *rds_ring ; struct netxen_rx_buffer *rx_buf ; int i ; int ring ; { recv_ctx = & adapter->recv_ctx; ring = 0; goto ldv_48802; ldv_48801: rds_ring = recv_ctx->rds_rings + (unsigned long )ring; i = 0; goto ldv_48799; ldv_48798: rx_buf = rds_ring->rx_buf_arr + (unsigned long )i; if ((unsigned int )rx_buf->state == 0U) { goto ldv_48797; } else { } { pci_unmap_single(adapter->pdev, rx_buf->dma, (size_t )rds_ring->dma_size, 2); } if ((unsigned long )rx_buf->skb != (unsigned long )((struct sk_buff *)0)) { { dev_kfree_skb_any(rx_buf->skb); } } else { } ldv_48797: i = i + 1; ldv_48799: ; if ((u32 )i < rds_ring->num_desc) { goto ldv_48798; } else { } ring = ring + 1; ldv_48802: ; if (ring < (int )adapter->max_rds_rings) { goto ldv_48801; } else { } return; } } void netxen_release_tx_buffers(struct netxen_adapter *adapter ) { struct netxen_cmd_buffer *cmd_buf ; struct netxen_skb_frag *buffrag ; int i ; int j ; struct nx_host_tx_ring *tx_ring ; { tx_ring = adapter->tx_ring; cmd_buf = tx_ring->cmd_buf_arr; i = 0; goto ldv_48816; ldv_48815: buffrag = (struct netxen_skb_frag *)(& cmd_buf->frag_array); if (buffrag->dma != 0ULL) { { pci_unmap_single(adapter->pdev, buffrag->dma, (size_t )buffrag->length, 1); buffrag->dma = 0ULL; } } else { } j = 1; goto ldv_48813; ldv_48812: buffrag = buffrag + 1; if (buffrag->dma != 0ULL) { { pci_unmap_page(adapter->pdev, buffrag->dma, (size_t )buffrag->length, 1); buffrag->dma = 0ULL; } } else { } j = j + 1; ldv_48813: ; if ((u32 )j < cmd_buf->frag_count) { goto ldv_48812; } else { } if ((unsigned long )cmd_buf->skb != (unsigned long )((struct sk_buff *)0)) { { dev_kfree_skb_any(cmd_buf->skb); cmd_buf->skb = (struct sk_buff *)0; } } else { } cmd_buf = cmd_buf + 1; i = i + 1; ldv_48816: ; if ((u32 )i < tx_ring->num_desc) { goto ldv_48815; } else { } return; } } void netxen_free_sw_resources(struct netxen_adapter *adapter ) { struct netxen_recv_context *recv_ctx ; struct nx_host_rds_ring *rds_ring ; struct nx_host_tx_ring *tx_ring ; int ring ; { recv_ctx = & adapter->recv_ctx; if ((unsigned long )recv_ctx->rds_rings == (unsigned long )((struct nx_host_rds_ring *)0)) { goto skip_rds; } else { } ring = 0; goto ldv_48827; ldv_48826: { rds_ring = recv_ctx->rds_rings + (unsigned long )ring; vfree((void const *)rds_ring->rx_buf_arr); rds_ring->rx_buf_arr = (struct netxen_rx_buffer *)0; ring = ring + 1; } ldv_48827: ; if (ring < (int )adapter->max_rds_rings) { goto ldv_48826; } else { } { kfree((void const *)recv_ctx->rds_rings); } skip_rds: ; if ((unsigned long )adapter->tx_ring == (unsigned long )((struct nx_host_tx_ring *)0)) { return; } else { } { tx_ring = adapter->tx_ring; vfree((void const *)tx_ring->cmd_buf_arr); kfree((void const *)tx_ring); adapter->tx_ring = (struct nx_host_tx_ring *)0; } return; } } int netxen_alloc_sw_resources(struct netxen_adapter *adapter ) { struct netxen_recv_context *recv_ctx ; struct nx_host_rds_ring *rds_ring ; struct nx_host_sds_ring *sds_ring ; struct nx_host_tx_ring *tx_ring ; struct netxen_rx_buffer *rx_buf ; int ring ; int i ; struct netxen_cmd_buffer *cmd_buf_arr ; struct net_device *netdev ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; struct lock_class_key __key ; { { netdev = adapter->netdev; tmp = kzalloc(80UL, 208U); tx_ring = (struct nx_host_tx_ring *)tmp; } if ((unsigned long )tx_ring == (unsigned long )((struct nx_host_tx_ring *)0)) { return (-12); } else { } { adapter->tx_ring = tx_ring; tx_ring->num_desc = (u32 )adapter->num_txd; tx_ring->txq = netdev_get_tx_queue((struct net_device const *)netdev, 0U); tmp___0 = ldv_vzalloc_101((unsigned long )tx_ring->num_desc * 304UL); cmd_buf_arr = (struct netxen_cmd_buffer *)tmp___0; } if ((unsigned long )cmd_buf_arr == (unsigned long )((struct netxen_cmd_buffer *)0)) { goto err_out; } else { } { tx_ring->cmd_buf_arr = cmd_buf_arr; recv_ctx = & adapter->recv_ctx; tmp___1 = kcalloc((size_t )adapter->max_rds_rings, 144UL, 208U); rds_ring = (struct nx_host_rds_ring *)tmp___1; } if ((unsigned long )rds_ring == (unsigned long )((struct nx_host_rds_ring *)0)) { goto err_out; } else { } recv_ctx->rds_rings = rds_ring; ring = 0; goto ldv_48851; ldv_48850: rds_ring = recv_ctx->rds_rings + (unsigned long )ring; { if (ring == 0) { goto case_0; } else { } if (ring == 1) { goto case_1; } else { } if (ring == 2) { goto case_2; } else { } goto switch_break; case_0: /* CIL Label */ rds_ring->num_desc = (u32 )adapter->num_rxd; if ((unsigned int )adapter->ahw.cut_through != 0U) { rds_ring->dma_size = 2048U; rds_ring->skb_size = 2048U; } else { if ((unsigned int )adapter->ahw.revision_id > 47U) { rds_ring->dma_size = 1532U; } else { rds_ring->dma_size = 1760U; } rds_ring->skb_size = rds_ring->dma_size; } goto ldv_48843; case_1: /* CIL Label */ rds_ring->num_desc = (u32 )adapter->num_jumbo_rxd; if ((unsigned int )adapter->ahw.revision_id > 47U) { rds_ring->dma_size = 9632U; } else { rds_ring->dma_size = 8032U; } if ((adapter->capabilities & 1024U) != 0U) { rds_ring->dma_size = rds_ring->dma_size + 2048U; } else { } rds_ring->skb_size = rds_ring->dma_size; goto ldv_48843; case_2: /* CIL Label */ rds_ring->num_desc = (u32 )adapter->num_lro_rxd; rds_ring->dma_size = 8060U; rds_ring->skb_size = rds_ring->dma_size; goto ldv_48843; switch_break: /* CIL Label */ ; } ldv_48843: { tmp___2 = ldv_vzalloc_102((unsigned long )rds_ring->num_desc * 40UL); rds_ring->rx_buf_arr = (struct netxen_rx_buffer *)tmp___2; } if ((unsigned long )rds_ring->rx_buf_arr == (unsigned long )((struct netxen_rx_buffer *)0)) { goto err_out; } else { } { INIT_LIST_HEAD(& rds_ring->free_list); rx_buf = rds_ring->rx_buf_arr; i = 0; } goto ldv_48847; ldv_48846: { list_add_tail(& rx_buf->list, & rds_ring->free_list); rx_buf->ref_handle = (u16 )i; rx_buf->state = 0U; rx_buf = rx_buf + 1; i = i + 1; } ldv_48847: ; if ((u32 )i < rds_ring->num_desc) { goto ldv_48846; } else { } { spinlock_check(& rds_ring->lock); __raw_spin_lock_init(& rds_ring->lock.__annonCompField19.rlock, "&(&rds_ring->lock)->rlock", & __key); ring = ring + 1; } ldv_48851: ; if (ring < (int )adapter->max_rds_rings) { goto ldv_48850; } else { } ring = 0; goto ldv_48857; ldv_48856: sds_ring = recv_ctx->sds_rings + (unsigned long )ring; sds_ring->irq = (int )adapter->msix_entries[ring].vector; sds_ring->adapter = adapter; sds_ring->num_desc = (u32 )adapter->num_rxd; i = 0; goto ldv_48854; ldv_48853: { INIT_LIST_HEAD((struct list_head *)(& sds_ring->free_list) + (unsigned long )i); i = i + 1; } ldv_48854: ; if (i <= 2) { goto ldv_48853; } else { } ring = ring + 1; ldv_48857: ; if (ring < (int )adapter->max_sds_rings) { goto ldv_48856; } else { } return (0); err_out: { netxen_free_sw_resources(adapter); } return (-12); } } static u32 netxen_decode_crb_addr(u32 addr ) { int i ; u32 base_addr ; u32 offset ; u32 pci_base ; { { crb_addr_transform_setup(); pci_base = 4294967295U; base_addr = addr & 4293918720U; offset = addr & 1048575U; i = 0; } goto ldv_48868; ldv_48867: ; if (crb_addr_xform[i] == base_addr) { pci_base = (u32 )(i << 20); goto ldv_48866; } else { } i = i + 1; ldv_48868: ; if (i <= 59) { goto ldv_48867; } else { } ldv_48866: ; if (pci_base == 4294967295U) { return (pci_base); } else { return (pci_base + offset); } } } static int netxen_wait_rom_done(struct netxen_adapter *adapter ) { long timeout ; long done ; u32 tmp ; { { timeout = 0L; done = 0L; __might_sleep("drivers/net/ethernet/qlogic/netxen/netxen_nic_init.c", 345, 0); _cond_resched(); } goto ldv_48876; ldv_48875: { tmp = (*(adapter->crb_read))(adapter, 154140676UL); done = (long )tmp; done = done & 2L; timeout = timeout + 1L; } if (timeout > 99L) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Timeout reached waiting for rom done"); } return (-5); } else { } { __const_udelay(4295UL); } ldv_48876: ; if (done == 0L) { goto ldv_48875; } else { } return (0); } } static int do_rom_fast_read(struct netxen_adapter *adapter , int addr , int *valp ) { int tmp ; u32 tmp___0 ; { { (*(adapter->crb_write))(adapter, 154206216UL, (u32 )addr); (*(adapter->crb_write))(adapter, 154206228UL, 0U); (*(adapter->crb_write))(adapter, 154206224UL, 3U); (*(adapter->crb_write))(adapter, 154206212UL, 11U); tmp = netxen_wait_rom_done(adapter); } if (tmp != 0) { { printk("Error waiting for rom done\n"); } return (-5); } else { } { (*(adapter->crb_write))(adapter, 154206224UL, 0U); __const_udelay(42950UL); (*(adapter->crb_write))(adapter, 154206228UL, 0U); tmp___0 = (*(adapter->crb_read))(adapter, 154206232UL); *valp = (int )tmp___0; } return (0); } } static int do_rom_fast_read_words(struct netxen_adapter *adapter , int addr , u8 *bytes , size_t size ) { int addridx ; int ret ; int v ; { ret = 0; addridx = addr; goto ldv_48894; ldv_48893: { ret = do_rom_fast_read(adapter, addridx, & v); } if (ret != 0) { goto ldv_48892; } else { } *((__le32 *)bytes) = (unsigned int )v; bytes = bytes + 4UL; addridx = addridx + 4; ldv_48894: ; if ((size_t )addridx < (size_t )addr + size) { goto ldv_48893; } else { } ldv_48892: ; return (ret); } } int netxen_rom_fast_read_words(struct netxen_adapter *adapter , int addr , u8 *bytes , size_t size ) { int ret ; { { ret = netxen_pcie_sem_lock(adapter, 2, 136323328U); } if (ret < 0) { return (ret); } else { } { ret = do_rom_fast_read_words(adapter, addr, bytes, size); netxen_pcie_sem_unlock(adapter, 2); } return (ret); } } int netxen_rom_fast_read(struct netxen_adapter *adapter , int addr , int *valp ) { int ret ; int tmp ; { { tmp = netxen_pcie_sem_lock(adapter, 2, 136323328U); } if (tmp != 0) { return (-5); } else { } { ret = do_rom_fast_read(adapter, addr, valp); netxen_pcie_sem_unlock(adapter, 2); } return (ret); } } int netxen_pinit_from_rom(struct netxen_adapter *adapter ) { int addr ; int val ; int i ; int n ; int init_delay ; struct crb_addr_pair *buf ; unsigned int offset ; u32 off ; int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; int tmp___3 ; int tmp___4 ; u32 tmp___5 ; { { init_delay = 0; netxen_pcie_sem_lock(adapter, 2, 136323328U); (*(adapter->crb_write))(adapter, 154140680UL, 4278190079U); netxen_pcie_sem_unlock(adapter, 2); } if ((unsigned int )adapter->ahw.revision_id > 47U) { { tmp = netxen_rom_fast_read(adapter, 0, & n); } if (tmp != 0 || n != -889271554) { { printk("\v%s: ERROR Reading crb_init area: n: %08x\n", (char *)(& netxen_nic_driver_name), n); } return (-5); } else { { tmp___0 = netxen_rom_fast_read(adapter, 4, & n); } if (tmp___0 != 0) { { printk("\v%s: ERROR Reading crb_init area: n: %08x\n", (char *)(& netxen_nic_driver_name), n); } return (-5); } else { } } offset = (unsigned int )n & 65535U; n = (int )((unsigned int )n >> 16); } else { { tmp___1 = netxen_rom_fast_read(adapter, 0, & n); } if (tmp___1 != 0 || n >= 0) { { printk("\v%s: ERROR Reading crb_init area: n: %08x\n", (char *)(& netxen_nic_driver_name), n); } return (-5); } else { } offset = 1U; n = n & 2147483647; } if (n > 1023) { { printk("\v%s:n=0x%x Error! NetXen card flash not initialized.\n", "netxen_pinit_from_rom", n); } return (-5); } else { } { tmp___2 = kcalloc((size_t )n, 8UL, 208U); buf = (struct crb_addr_pair *)tmp___2; } if ((unsigned long )buf == (unsigned long )((struct crb_addr_pair *)0)) { return (-12); } else { } i = 0; goto ldv_48921; ldv_48920: { tmp___3 = netxen_rom_fast_read(adapter, (int )(((unsigned int )(i * 2) + offset) * 4U), & val); } if (tmp___3 != 0) { { kfree((void const *)buf); } return (-5); } else { { tmp___4 = netxen_rom_fast_read(adapter, (int )((((unsigned int )(i * 2) + offset) + 1U) * 4U), & addr); } if (tmp___4 != 0) { { kfree((void const *)buf); } return (-5); } else { } } (buf + (unsigned long )i)->addr = (u32 )addr; (buf + (unsigned long )i)->data = (u32 )val; i = i + 1; ldv_48921: ; if (i < n) { goto ldv_48920; } else { } i = 0; goto ldv_48925; ldv_48924: { off = netxen_decode_crb_addr((buf + (unsigned long )i)->addr); } if (off == 4294967295U) { { printk("\vCRB init value out of range %x\n", (buf + (unsigned long )i)->addr); } goto ldv_48923; } else { } off = off + 100663296U; if ((int )off & 1) { goto ldv_48923; } else { } if (off == 136323580U) { goto ldv_48923; } else { } if ((unsigned int )adapter->ahw.revision_id > 47U) { if (off == 162529308U) { goto ldv_48923; } else { } if (off == 154140860U) { goto ldv_48923; } else { } if (off == 154140840U) { goto ldv_48923; } else { } if (off == 154140872U) { goto ldv_48923; } else { } if (off == 154140708U) { goto ldv_48923; } else { } if (off == 154140700U) { goto ldv_48923; } else { } if ((off & 267386880U) == 102760448U) { goto ldv_48923; } else { } if (off == 119537688U && (unsigned int )adapter->ahw.revision_id <= 79U) { (buf + (unsigned long )i)->data = 4128U; } else { } if (off == 101785664U) { goto ldv_48923; } else { } if (off == 101785672U) { goto ldv_48923; } else { } if ((off & 267386880U) == 161480704U) { goto ldv_48923; } else { } } else { } init_delay = 1; if (off == 154140680U) { init_delay = 1000; if ((unsigned int )adapter->ahw.revision_id <= 37U) { (buf + (unsigned long )i)->data = 8388863U; (buf + (unsigned long )i)->data = 8388863U; } else { } } else { } { (*(adapter->crb_write))(adapter, (ulong )off, (buf + (unsigned long )i)->data); msleep((unsigned int )init_delay); } ldv_48923: i = i + 1; ldv_48925: ; if (i < n) { goto ldv_48924; } else { } { kfree((void const *)buf); } if ((unsigned int )adapter->ahw.revision_id <= 37U) { { tmp___5 = (*(adapter->crb_read))(adapter, 154140680UL); val = (int )tmp___5; (*(adapter->crb_write))(adapter, 154140680UL, (unsigned int )val & 4294967055U); } } else { } { (*(adapter->crb_write))(adapter, 122683628UL, 30U); (*(adapter->crb_write))(adapter, 122683468UL, 8U); (*(adapter->crb_write))(adapter, 123732044UL, 8U); (*(adapter->crb_write))(adapter, 118489096UL, 0U); (*(adapter->crb_write))(adapter, 118489100UL, 0U); (*(adapter->crb_write))(adapter, 119537672UL, 0U); (*(adapter->crb_write))(adapter, 119537676UL, 0U); (*(adapter->crb_write))(adapter, 120586248UL, 0U); (*(adapter->crb_write))(adapter, 120586252UL, 0U); (*(adapter->crb_write))(adapter, 121634824UL, 0U); (*(adapter->crb_write))(adapter, 121634828UL, 0U); } return (0); } } static struct uni_table_desc *nx_get_table_desc(u8 const *unirom , int section ) { uint32_t i ; struct uni_table_desc *directory ; __le32 entries ; __le32 offs ; __le32 tab_type ; { directory = (struct uni_table_desc *)unirom; entries = directory->num_entries; i = 0U; goto ldv_48937; ldv_48936: offs = directory->findex + i * directory->entry_size; tab_type = *((u32 *)unirom + ((unsigned long )offs + 8UL)); if (tab_type == (__le32 )section) { return ((struct uni_table_desc *)unirom + (unsigned long )offs); } else { } i = i + 1U; ldv_48937: ; if (i < entries) { goto ldv_48936; } else { } return ((struct uni_table_desc *)0); } } static int netxen_nic_validate_header(struct netxen_adapter *adapter ) { u8 const *unirom ; struct uni_table_desc *directory ; u32 fw_file_size ; u32 tab_size ; __le32 entries ; __le32 entry_size ; { unirom = (adapter->fw)->data; directory = (struct uni_table_desc *)unirom; fw_file_size = (u32 )(adapter->fw)->size; if (fw_file_size <= 55U) { return (-22); } else { } entries = directory->num_entries; entry_size = directory->entry_size; tab_size = directory->findex + entries * entry_size; if (fw_file_size < tab_size) { return (-22); } else { } return (0); } } static int netxen_nic_validate_bootld(struct netxen_adapter *adapter ) { struct uni_table_desc *tab_desc ; struct uni_data_desc *descr ; u8 const *unirom ; __le32 idx ; u32 offs ; u32 tab_size ; u32 data_size ; { { unirom = (adapter->fw)->data; idx = (unsigned int )*((int *)unirom + ((unsigned long )adapter->file_prd_off + 27UL)); tab_desc = nx_get_table_desc(unirom, 6); } if ((unsigned long )tab_desc == (unsigned long )((struct uni_table_desc *)0)) { return (-22); } else { } tab_size = tab_desc->findex + tab_desc->entry_size * (idx + 1U); if ((unsigned long )(adapter->fw)->size < (unsigned long )tab_size) { return (-22); } else { } offs = tab_desc->findex + tab_desc->entry_size * idx; descr = (struct uni_data_desc *)unirom + (unsigned long )offs; data_size = descr->findex + descr->size; if ((unsigned long )(adapter->fw)->size < (unsigned long )data_size) { return (-22); } else { } return (0); } } static int netxen_nic_validate_fw(struct netxen_adapter *adapter ) { struct uni_table_desc *tab_desc ; struct uni_data_desc *descr ; u8 const *unirom ; __le32 idx ; u32 offs ; u32 tab_size ; u32 data_size ; { { unirom = (adapter->fw)->data; idx = (unsigned int )*((int *)unirom + ((unsigned long )adapter->file_prd_off + 29UL)); tab_desc = nx_get_table_desc(unirom, 7); } if ((unsigned long )tab_desc == (unsigned long )((struct uni_table_desc *)0)) { return (-22); } else { } tab_size = tab_desc->findex + tab_desc->entry_size * (idx + 1U); if ((unsigned long )(adapter->fw)->size < (unsigned long )tab_size) { return (-22); } else { } offs = tab_desc->findex + tab_desc->entry_size * idx; descr = (struct uni_data_desc *)unirom + (unsigned long )offs; data_size = descr->findex + descr->size; if ((unsigned long )(adapter->fw)->size < (unsigned long )data_size) { return (-22); } else { } return (0); } } static int netxen_nic_validate_product_offs(struct netxen_adapter *adapter ) { struct uni_table_desc *ptab_descr ; u8 const *unirom ; int mn_present ; int tmp ; int tmp___0 ; __le32 entries ; __le32 entry_size ; u32 tab_size ; u32 i ; __le32 flags ; __le32 file_chiprev ; __le32 offs ; u8 chiprev ; uint32_t flagbit ; { unirom = (adapter->fw)->data; if ((unsigned int )adapter->ahw.revision_id > 37U) { { tmp = netxen_p3_has_mn(adapter); tmp___0 = tmp; } } else { tmp___0 = 1; } { mn_present = tmp___0; ptab_descr = nx_get_table_desc(unirom, 0); } if ((unsigned long )ptab_descr == (unsigned long )((struct uni_table_desc *)0)) { return (-22); } else { } entries = ptab_descr->num_entries; entry_size = ptab_descr->entry_size; tab_size = ptab_descr->findex + entries * entry_size; if ((unsigned long )(adapter->fw)->size < (unsigned long )tab_size) { return (-22); } else { } nomn: i = 0U; goto ldv_48985; ldv_48984: chiprev = adapter->ahw.revision_id; offs = ptab_descr->findex + i * ptab_descr->entry_size; flags = (unsigned int )*((int *)unirom + ((unsigned long )offs + 11UL)); file_chiprev = (unsigned int )*((int *)unirom + ((unsigned long )offs + 10UL)); flagbit = mn_present != 0 ? 1U : 2U; if ((__le32 )chiprev == file_chiprev && (int )((unsigned long long )flags >> (int )flagbit) & 1) { adapter->file_prd_off = offs; return (0); } else { } i = i + 1U; ldv_48985: ; if (i < entries) { goto ldv_48984; } else { } if (mn_present != 0 && (unsigned int )adapter->ahw.revision_id > 47U) { mn_present = 0; goto nomn; } else { } return (-22); } } static int netxen_nic_validate_unified_romimage(struct netxen_adapter *adapter ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = netxen_nic_validate_header(adapter); } if (tmp != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "unified image: header validation failed\n"); } return (-22); } else { } { tmp___0 = netxen_nic_validate_product_offs(adapter); } if (tmp___0 != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "unified image: product validation failed\n"); } return (-22); } else { } { tmp___1 = netxen_nic_validate_bootld(adapter); } if (tmp___1 != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "unified image: bootld validation failed\n"); } return (-22); } else { } { tmp___2 = netxen_nic_validate_fw(adapter); } if (tmp___2 != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "unified image: firmware validation failed\n"); } return (-22); } else { } return (0); } } static struct uni_data_desc *nx_get_data_desc(struct netxen_adapter *adapter , u32 section , u32 idx_offset ) { u8 const *unirom ; int idx ; struct uni_table_desc *tab_desc ; __le32 offs ; { { unirom = (adapter->fw)->data; idx = *((int *)unirom + ((unsigned long )adapter->file_prd_off + (unsigned long )idx_offset)); tab_desc = nx_get_table_desc(unirom, (int )section); } if ((unsigned long )tab_desc == (unsigned long )((struct uni_table_desc *)0)) { return ((struct uni_data_desc *)0); } else { } offs = tab_desc->findex + tab_desc->entry_size * (uint32_t )idx; return ((struct uni_data_desc *)unirom + (unsigned long )offs); } } static u8 *nx_get_bootld_offs(struct netxen_adapter *adapter ) { u32 offs ; struct uni_data_desc *tmp ; { offs = 65536U; if ((unsigned int )adapter->fw_type == 3U) { { tmp = nx_get_data_desc(adapter, 6U, 27U); offs = tmp->findex; } } else { } return ((u8 *)(adapter->fw)->data + (unsigned long )offs); } } static u8 *nx_get_fw_offs(struct netxen_adapter *adapter ) { u32 offs ; struct uni_data_desc *tmp ; { offs = 274432U; if ((unsigned int )adapter->fw_type == 3U) { { tmp = nx_get_data_desc(adapter, 7U, 29U); offs = tmp->findex; } } else { } return ((u8 *)(adapter->fw)->data + (unsigned long )offs); } } static __le32 nx_get_fw_size(struct netxen_adapter *adapter ) { struct uni_data_desc *tmp ; { if ((unsigned int )adapter->fw_type == 3U) { { tmp = nx_get_data_desc(adapter, 7U, 29U); } return (tmp->size); } else { return (*((u32 *)(adapter->fw)->data + 4097036U)); } } } static __le32 nx_get_fw_version(struct netxen_adapter *adapter ) { struct uni_data_desc *fw_data_desc ; struct firmware const *fw ; __le32 major ; __le32 minor ; __le32 sub ; u8 const *ver_str ; int i ; int ret ; int tmp ; { fw = adapter->fw; ret = 0; if ((unsigned int )adapter->fw_type == 3U) { { fw_data_desc = nx_get_data_desc(adapter, 7U, 29U); ver_str = fw->data + (((unsigned long )fw_data_desc->findex + (unsigned long )fw_data_desc->size) + 0xffffffffffffffefUL); i = 0; } goto ldv_49023; ldv_49022: { tmp = strncmp((char const *)ver_str + (unsigned long )i, "REV=", 4UL); } if (tmp == 0) { { ret = sscanf((char const *)(ver_str + ((unsigned long )i + 4UL)), "%u.%u.%u ", & major, & minor, & sub); } goto ldv_49021; } else { } i = i + 1; ldv_49023: ; if (i <= 11) { goto ldv_49022; } else { } ldv_49021: ; if (ret != 3) { return (0U); } else { } return ((major + (minor << 8)) + (sub << 16)); } else { return (*((u32 *)fw->data + 4097032U)); } } } static __le32 nx_get_bios_version(struct netxen_adapter *adapter ) { struct firmware const *fw ; __le32 bios_ver ; __le32 prd_off ; { fw = adapter->fw; prd_off = adapter->file_prd_off; if ((unsigned int )adapter->fw_type == 3U) { bios_ver = *((u32 *)fw->data + ((unsigned long )prd_off + 12UL)); return (((bios_ver << 16) + ((bios_ver >> 8) & 65280U)) + (bios_ver >> 24)); } else { return (*((u32 *)fw->data + 4098108U)); } } } int netxen_need_fw_reset(struct netxen_adapter *adapter ) { u32 count ; u32 old_count ; u32 val ; u32 version ; u32 major ; u32 minor ; u32 build ; int i ; int timeout ; u8 fw_type ; u32 tmp ; unsigned long tmp___0 ; { if ((unsigned int )adapter->ahw.revision_id <= 37U) { return (1); } else { } if ((unsigned int )adapter->need_fw_reset != 0U) { return (1); } else { } { tmp = (*(adapter->crb_read))(adapter, 136323664UL); } if (tmp == 65535U) { return (1); } else { } { old_count = (*(adapter->crb_read))(adapter, 136323248UL); i = 0; } goto ldv_49045; ldv_49044: { tmp___0 = msleep_interruptible(200U); timeout = (int )tmp___0; } if (timeout != 0) { { (*(adapter->crb_write))(adapter, 136323664UL, 65535U); } return (-4); } else { } { count = (*(adapter->crb_read))(adapter, 136323248UL); } if (count != old_count) { goto ldv_49043; } else { } i = i + 1; ldv_49045: ; if (i <= 9) { goto ldv_49044; } else { } ldv_49043: ; if (count == old_count) { return (1); } else { } if ((unsigned long )adapter->fw != (unsigned long )((struct firmware const *)0)) { { val = nx_get_fw_version(adapter); version = ((val << 24) + (((val >> 8) & 255U) << 16)) + (val >> 16); major = (*(adapter->crb_read))(adapter, 136323408UL); minor = (*(adapter->crb_read))(adapter, 136323412UL); build = (*(adapter->crb_read))(adapter, 136323416UL); } if (version > ((major << 24) + (minor << 16)) + build) { return (1); } else { } if (version == ((major << 24) + (minor << 16)) + build && (unsigned int )adapter->fw_type != 3U) { { val = (*(adapter->crb_read))(adapter, 102760448UL); fw_type = (val & 4U) != 0U ? 1U : 2U; } if ((int )adapter->fw_type != (int )fw_type) { return (1); } else { } } else { } } else { } return (0); } } int netxen_check_flash_fw_compatibility(struct netxen_adapter *adapter ) { u32 flash_fw_ver ; u32 min_fw_ver ; int tmp ; { if ((unsigned int )adapter->ahw.revision_id <= 37U) { return (0); } else { } { tmp = netxen_rom_fast_read(adapter, 4097032, (int *)(& flash_fw_ver)); } if (tmp != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Unable to read flash fwversion\n"); } return (-5); } else { } flash_fw_ver = ((flash_fw_ver << 24) + (((flash_fw_ver >> 8) & 255U) << 16)) + (flash_fw_ver >> 16); min_fw_ver = 67109369U; if (flash_fw_ver >= min_fw_ver) { return (0); } else { } { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Flash fw[%d.%d.%d] is < min fw supported[4.0.505]. Please update firmware on flash\n", flash_fw_ver >> 24, (flash_fw_ver >> 16) & 255U, flash_fw_ver & 65535U); } return (-22); } } static char *fw_name[5U] = { (char *)"nxromimg.bin", (char *)"nx3fwct.bin", (char *)"nx3fwmn.bin", (char *)"phanfw.bin", (char *)"flash"}; int netxen_load_firmware(struct netxen_adapter *adapter ) { u64 *ptr64 ; u32 i ; u32 flashaddr ; u32 size ; struct firmware const *fw ; struct pci_dev *pdev ; __le64 data ; u8 *tmp ; int tmp___0 ; __le32 tmp___1 ; u8 *tmp___2 ; int tmp___3 ; __le32 tmp___4 ; int tmp___5 ; u64 data___0 ; u32 hi ; u32 lo ; int tmp___6 ; int tmp___7 ; int tmp___8 ; { { fw = adapter->fw; pdev = adapter->pdev; _dev_info((struct device const *)(& pdev->dev), "loading firmware from %s\n", fw_name[(int )adapter->fw_type]); } if ((unsigned int )adapter->ahw.revision_id <= 37U) { { (*(adapter->crb_write))(adapter, 154140728UL, 1U); } } else { } if ((unsigned long )fw != (unsigned long )((struct firmware const *)0)) { { size = 26112U; tmp = nx_get_bootld_offs(adapter); ptr64 = (u64 *)tmp; flashaddr = 65536U; i = 0U; } goto ldv_49063; ldv_49062: { data = *(ptr64 + (unsigned long )i); tmp___0 = (*(adapter->pci_mem_write))(adapter, (u64 )flashaddr, data); } if (tmp___0 != 0) { return (-5); } else { } flashaddr = flashaddr + 8U; i = i + 1U; ldv_49063: ; if (i < size) { goto ldv_49062; } else { } { tmp___1 = nx_get_fw_size(adapter); size = tmp___1 / 8U; tmp___2 = nx_get_fw_offs(adapter); ptr64 = (u64 *)tmp___2; flashaddr = 274432U; i = 0U; } goto ldv_49066; ldv_49065: { data = *(ptr64 + (unsigned long )i); tmp___3 = (*(adapter->pci_mem_write))(adapter, (u64 )flashaddr, data); } if (tmp___3 != 0) { return (-5); } else { } flashaddr = flashaddr + 8U; i = i + 1U; ldv_49066: ; if (i < size) { goto ldv_49065; } else { } { tmp___4 = nx_get_fw_size(adapter); size = tmp___4 & 7U; } if (size != 0U) { { data = *(ptr64 + (unsigned long )i); tmp___5 = (*(adapter->pci_mem_write))(adapter, (u64 )flashaddr, data); } if (tmp___5 != 0) { return (-5); } else { } } else { } } else { size = 26112U; flashaddr = 65536U; i = 0U; goto ldv_49072; ldv_49071: { tmp___6 = netxen_rom_fast_read(adapter, (int )flashaddr, (int *)(& lo)); } if (tmp___6 != 0) { return (-5); } else { } { tmp___7 = netxen_rom_fast_read(adapter, (int )(flashaddr + 4U), (int *)(& hi)); } if (tmp___7 != 0) { return (-5); } else { } { data___0 = ((unsigned long long )hi << 32) | (unsigned long long )lo; tmp___8 = (*(adapter->pci_mem_write))(adapter, (u64 )flashaddr, data___0); } if (tmp___8 != 0) { return (-5); } else { } flashaddr = flashaddr + 8U; i = i + 1U; ldv_49072: ; if (i < size) { goto ldv_49071; } else { } } { msleep(1U); } if ((unsigned int )adapter->ahw.revision_id > 79U) { { (*(adapter->crb_write))(adapter, 118489112UL, 4128U); (*(adapter->crb_write))(adapter, 154140680UL, 8388638U); } } else if ((unsigned int )adapter->ahw.revision_id > 47U) { { (*(adapter->crb_write))(adapter, 154140680UL, 8388637U); } } else { { (*(adapter->crb_write))(adapter, 154140840UL, 16383U); (*(adapter->crb_write))(adapter, 154140728UL, 0U); } } return (0); } } static int netxen_validate_firmware(struct netxen_adapter *adapter ) { __le32 val ; __le32 flash_fw_ver ; u32 file_fw_ver ; u32 min_ver ; u32 bios ; struct pci_dev *pdev ; struct firmware const *fw ; u8 fw_type ; u32 crbinit_fix_fw ; int tmp ; int tmp___0 ; int tmp___1 ; { pdev = adapter->pdev; fw = adapter->fw; fw_type = adapter->fw_type; if ((unsigned int )fw_type == 3U) { { tmp = netxen_nic_validate_unified_romimage(adapter); } if (tmp != 0) { return (-22); } else { } } else { val = *((u32 *)fw->data + 16680U); if (val != 305419896U) { return (-22); } else { } if ((unsigned long )fw->size <= 4194302UL) { return (-22); } else { } } { val = nx_get_fw_version(adapter); } if ((unsigned int )adapter->ahw.revision_id > 47U) { min_ver = 67109369U; } else { min_ver = 50594008U; } file_fw_ver = ((val << 24) + (((val >> 8) & 255U) << 16)) + (val >> 16); if (file_fw_ver >> 24 > 4U || file_fw_ver < min_ver) { { dev_err((struct device const *)(& pdev->dev), "%s: firmware version %d.%d.%d unsupported\n", fw_name[(int )fw_type], file_fw_ver >> 24, (file_fw_ver >> 16) & 255U, file_fw_ver & 65535U); } return (-22); } else { } { val = nx_get_bios_version(adapter); netxen_rom_fast_read(adapter, 4098108, (int *)(& bios)); } if (val != bios) { { dev_err((struct device const *)(& pdev->dev), "%s: firmware bios is incompatible\n", fw_name[(int )fw_type]); } return (-22); } else { } { tmp___0 = netxen_rom_fast_read(adapter, 4097032, (int *)(& flash_fw_ver)); } if (tmp___0 != 0) { { dev_err((struct device const *)(& pdev->dev), "Unable to read flash fw version\n"); } return (-5); } else { } flash_fw_ver = ((flash_fw_ver << 24) + (((flash_fw_ver >> 8) & 255U) << 16)) + (flash_fw_ver >> 16); crbinit_fix_fw = 67109418U; if ((file_fw_ver >= crbinit_fix_fw && flash_fw_ver < crbinit_fix_fw) && (unsigned int )adapter->ahw.revision_id > 47U) { { dev_err((struct device const *)(& pdev->dev), "Incompatibility detected between driver and firmware version on flash. This configuration is not recommended. Please update the firmware on flash immediately\n"); } return (-22); } else { } { tmp___1 = netxen_p3_has_mn(adapter); } if (tmp___1 == 0 || (unsigned int )adapter->ahw.revision_id <= 37U) { if (flash_fw_ver > file_fw_ver) { { _dev_info((struct device const *)(& pdev->dev), "%s: firmware is older than flash\n", fw_name[(int )fw_type]); } return (-22); } else { } } else { } { (*(adapter->crb_write))(adapter, 136323580UL, 305419896U); } return (0); } } static void nx_get_next_fwtype(struct netxen_adapter *adapter ) { u8 fw_type ; int tmp ; { { if ((int )adapter->fw_type == 255) { goto case_255; } else { } if ((int )adapter->fw_type == 3) { goto case_3; } else { } if ((int )adapter->fw_type == 2) { goto case_2; } else { } if ((int )adapter->fw_type == 0) { goto case_0; } else { } if ((int )adapter->fw_type == 1) { goto case_1; } else { } goto switch_default; case_255: /* CIL Label */ fw_type = 3U; goto ldv_49091; case_3: /* CIL Label */ ; if ((unsigned int )adapter->ahw.revision_id > 79U) { fw_type = 4U; } else if ((unsigned int )adapter->ahw.revision_id <= 37U) { fw_type = 0U; } else { { tmp = netxen_p3_has_mn(adapter); } if (tmp != 0) { fw_type = 2U; } else { fw_type = 1U; } } goto ldv_49091; case_2: /* CIL Label */ fw_type = 1U; goto ldv_49091; case_0: /* CIL Label */ ; case_1: /* CIL Label */ ; switch_default: /* CIL Label */ fw_type = 4U; goto ldv_49091; switch_break: /* CIL Label */ ; } ldv_49091: adapter->fw_type = fw_type; return; } } static int netxen_p3_has_mn(struct netxen_adapter *adapter ) { u32 capability ; u32 flashed_ver ; { capability = 0U; if ((unsigned int )adapter->ahw.revision_id <= 37U) { return (1); } else { } { netxen_rom_fast_read(adapter, 4097032, (int *)(& flashed_ver)); flashed_ver = ((flashed_ver << 24) + (((flashed_ver >> 8) & 255U) << 16)) + (flashed_ver >> 16); } if (flashed_ver > 67109083U) { { capability = (*(adapter->crb_read))(adapter, 136323116UL); } if ((int )capability & 1) { return (1); } else { } } else { } return (0); } } void netxen_request_firmware(struct netxen_adapter *adapter ) { struct pci_dev *pdev ; int rc ; { pdev = adapter->pdev; rc = 0; adapter->fw_type = 255U; next: { nx_get_next_fwtype(adapter); } if ((unsigned int )adapter->fw_type == 4U) { adapter->fw = (struct firmware const *)0; } else { { rc = request_firmware(& adapter->fw, (char const *)fw_name[(int )adapter->fw_type], & pdev->dev); } if (rc != 0) { goto next; } else { } { rc = netxen_validate_firmware(adapter); } if (rc != 0) { { release_firmware(adapter->fw); msleep(1U); } goto next; } else { } } return; } } void netxen_release_firmware(struct netxen_adapter *adapter ) { { { release_firmware(adapter->fw); adapter->fw = (struct firmware const *)0; } return; } } int netxen_init_dummy_dma(struct netxen_adapter *adapter ) { u64 addr ; u32 hi ; u32 lo ; { if ((unsigned int )adapter->ahw.revision_id > 37U) { return (0); } else { } { adapter->dummy_dma.addr = pci_alloc_consistent(adapter->pdev, 1024UL, & adapter->dummy_dma.phys_addr); } if ((unsigned long )adapter->dummy_dma.addr == (unsigned long )((void *)0)) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "ERROR: Could not allocate dummy DMA memory\n"); } return (-12); } else { } { addr = adapter->dummy_dma.phys_addr; hi = (u32 )(addr >> 32); lo = (u32 )addr; (*(adapter->crb_write))(adapter, 136323644UL, hi); (*(adapter->crb_write))(adapter, 136323648UL, lo); } return (0); } } void netxen_free_dummy_dma(struct netxen_adapter *adapter ) { int i ; u32 ctrl ; { i = 100; if ((unsigned int )adapter->ahw.revision_id > 37U) { return; } else { } if ((unsigned long )adapter->dummy_dma.addr == (unsigned long )((void *)0)) { return; } else { } { ctrl = (*(adapter->crb_read))(adapter, 136323092UL); } if ((int )ctrl & 1) { { (*(adapter->crb_write))(adapter, 136323092UL, ctrl | 2U); } goto ldv_49124; ldv_49123: { msleep(50U); ctrl = (*(adapter->crb_read))(adapter, 136323092UL); i = i - 1; } if (i == 0) { goto ldv_49122; } else { } ldv_49124: ; if ((int )ctrl & 1) { goto ldv_49123; } else { } ldv_49122: ; } else { } if (i != 0) { { pci_free_consistent(adapter->pdev, 1024UL, adapter->dummy_dma.addr, adapter->dummy_dma.phys_addr); adapter->dummy_dma.addr = (void *)0; } } else { { dev_err((struct device const *)(& (adapter->pdev)->dev), "dma_watchdog_shutdown failed\n"); } } return; } } int netxen_phantom_init(struct netxen_adapter *adapter , int pegtune_val ) { u32 val ; int retries ; { val = 0U; retries = 60; if (pegtune_val != 0) { return (0); } else { } ldv_49137: { val = (*(adapter->crb_read))(adapter, 136323664UL); } { if (val == 65281U) { goto case_65281; } else { } if (val == 61455U) { goto case_61455; } else { } if (val == 65535U) { goto case_65535; } else { } goto switch_default; case_65281: /* CIL Label */ ; case_61455: /* CIL Label */ ; return (0); case_65535: /* CIL Label */ ; goto out_err; switch_default: /* CIL Label */ ; goto ldv_49136; switch_break: /* CIL Label */ ; } ldv_49136: { msleep(500U); retries = retries - 1; } if (retries != 0) { goto ldv_49137; } else { } { (*(adapter->crb_write))(adapter, 136323664UL, 65535U); } out_err: { dev_warn((struct device const *)(& (adapter->pdev)->dev), "firmware init failed\n"); } return (-5); } } static int netxen_receive_peg_ready(struct netxen_adapter *adapter ) { u32 val ; int retries ; { val = 0U; retries = 2000; ldv_49144: { val = (*(adapter->crb_read))(adapter, 136323900UL); } if (val == 65281U) { return (0); } else { } { msleep(10U); retries = retries - 1; } if (retries != 0) { goto ldv_49144; } else { } if (retries == 0) { { printk("\vReceive Peg initialization not complete, state: 0x%x.\n", val); } return (-5); } else { } return (0); } } int netxen_init_firmware(struct netxen_adapter *adapter ) { int err ; { { err = netxen_receive_peg_ready(adapter); } if (err != 0) { return (err); } else { } { (*(adapter->crb_write))(adapter, 136324008UL, 1U); (*(adapter->crb_write))(adapter, 136323780UL, 8738U); (*(adapter->crb_write))(adapter, 136323664UL, 61455U); } if ((unsigned int )adapter->ahw.revision_id <= 37U) { { (*(adapter->crb_write))(adapter, 136324208UL, 1U); } } else { } return (err); } } static void netxen_handle_linkevent(struct netxen_adapter *adapter , nx_fw_msg_t *msg ) { u32 cable_OUI ; u16 cable_len ; u16 link_speed ; u8 link_status ; u8 module ; u8 duplex ; u8 autoneg ; struct net_device *netdev ; { netdev = adapter->netdev; adapter->has_link_events = 1U; cable_OUI = (u32 )msg->__annonCompField87.__annonCompField86.body[1]; cable_len = (u16 )(msg->__annonCompField87.__annonCompField86.body[1] >> 32); link_speed = (u16 )(msg->__annonCompField87.__annonCompField86.body[1] >> 48); link_status = (u8 )msg->__annonCompField87.__annonCompField86.body[2]; duplex = (u8 )(msg->__annonCompField87.__annonCompField86.body[2] >> 16); autoneg = (u8 )(msg->__annonCompField87.__annonCompField86.body[2] >> 24); module = (u8 )(msg->__annonCompField87.__annonCompField86.body[2] >> 8); if ((unsigned int )module == 6U) { { printk("\016%s: unsupported cable: OUI 0x%x, length %d\n", (char *)(& netdev->name), cable_OUI, (int )cable_len); } } else if ((unsigned int )module == 7U) { { printk("\016%s: unsupported cable length %d\n", (char *)(& netdev->name), (int )cable_len); } } else { } if ((unsigned int )duplex == 1U) { adapter->link_duplex = 1U; } else { adapter->link_duplex = 0U; } { adapter->module_type = (u16 )module; adapter->link_autoneg = (u16 )autoneg; adapter->link_speed = link_speed; netxen_advert_link_change(adapter, (int )link_status); } return; } } static void netxen_handle_fw_message(int desc_cnt , int index , struct nx_host_sds_ring *sds_ring ) { nx_fw_msg_t msg ; struct status_desc *desc ; int i ; int opcode ; int tmp ; int tmp___0 ; { i = 0; goto ldv_49172; ldv_49171: desc = sds_ring->desc_head + (unsigned long )index; tmp = i; i = i + 1; msg.__annonCompField87.words[tmp] = desc->status_desc_data[0]; tmp___0 = i; i = i + 1; msg.__annonCompField87.words[tmp___0] = desc->status_desc_data[1]; index = (int )((u32 )(index + 1) & (sds_ring->num_desc - 1U)); desc_cnt = desc_cnt - 1; ldv_49172: ; if (desc_cnt > 0 && i <= 7) { goto ldv_49171; } else { } opcode = (int )(msg.__annonCompField87.__annonCompField86.body[0] >> 32) & 255; { if (opcode == 141) { goto case_141; } else { } goto switch_default; case_141: /* CIL Label */ { netxen_handle_linkevent(sds_ring->adapter, & msg); } goto ldv_49175; switch_default: /* CIL Label */ ; goto ldv_49175; switch_break: /* CIL Label */ ; } ldv_49175: ; return; } } static int netxen_alloc_rx_skb(struct netxen_adapter *adapter , struct nx_host_rds_ring *rds_ring , struct netxen_rx_buffer *buffer ) { struct sk_buff *skb ; dma_addr_t dma ; struct pci_dev *pdev ; int tmp ; { { pdev = adapter->pdev; buffer->skb = netdev_alloc_skb(adapter->netdev, rds_ring->skb_size); } if ((unsigned long )buffer->skb == (unsigned long )((struct sk_buff *)0)) { return (1); } else { } skb = buffer->skb; if ((unsigned int )adapter->ahw.cut_through == 0U) { { skb_reserve(skb, 2); } } else { } { dma = pci_map_single(pdev, (void *)skb->data, (size_t )rds_ring->dma_size, 2); tmp = pci_dma_mapping_error(pdev, dma); } if (tmp != 0) { { dev_kfree_skb_any(skb); buffer->skb = (struct sk_buff *)0; } return (1); } else { } buffer->skb = skb; buffer->dma = dma; buffer->state = 1U; return (0); } } static struct sk_buff *netxen_process_rxbuf(struct netxen_adapter *adapter , struct nx_host_rds_ring *rds_ring , u16 index , u16 cksum ) { struct netxen_rx_buffer *buffer ; struct sk_buff *skb ; long tmp ; { { buffer = rds_ring->rx_buf_arr + (unsigned long )index; pci_unmap_single(adapter->pdev, buffer->dma, (size_t )rds_ring->dma_size, 2); skb = buffer->skb; } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto no_skb; } else { } { tmp = ldv__builtin_expect((long )(((adapter->netdev)->features & 4294967296ULL) != 0ULL && (unsigned int )cksum == 2U), 1L); } if (tmp != 0L) { adapter->stats.csummed = adapter->stats.csummed + 1ULL; skb->ip_summed = 1U; } else { skb->ip_summed = 0U; } buffer->skb = (struct sk_buff *)0; no_skb: buffer->state = 0U; return (skb); } } static struct netxen_rx_buffer *netxen_process_rcv(struct netxen_adapter *adapter , struct nx_host_sds_ring *sds_ring , int ring , u64 sts_data0 ) { struct net_device *netdev ; struct netxen_recv_context *recv_ctx ; struct netxen_rx_buffer *buffer ; struct sk_buff *skb ; struct nx_host_rds_ring *rds_ring ; int index ; int length ; int cksum ; int pkt_offset ; long tmp ; long tmp___0 ; { { netdev = adapter->netdev; recv_ctx = & adapter->recv_ctx; tmp = ldv__builtin_expect(ring >= (int )adapter->max_rds_rings, 0L); } if (tmp != 0L) { return ((struct netxen_rx_buffer *)0); } else { } { rds_ring = recv_ctx->rds_rings + (unsigned long )ring; index = (int )(sts_data0 >> 28) & 65535; tmp___0 = ldv__builtin_expect((u32 )index >= rds_ring->num_desc, 0L); } if (tmp___0 != 0L) { return ((struct netxen_rx_buffer *)0); } else { } { buffer = rds_ring->rx_buf_arr + (unsigned long )index; length = (int )(sts_data0 >> 12) & 65535; cksum = (int )(sts_data0 >> 4) & 15; pkt_offset = (int )(sts_data0 >> 48) & 31; skb = netxen_process_rxbuf(adapter, rds_ring, (int )((u16 )index), (int )((u16 )cksum)); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return (buffer); } else { } if ((u32 )length > rds_ring->skb_size) { { skb_put(skb, rds_ring->skb_size); } } else { { skb_put(skb, (unsigned int )length); } } if (pkt_offset != 0) { { skb_pull(skb, (unsigned int )pkt_offset); } } else { } { skb->protocol = eth_type_trans(skb, netdev); napi_gro_receive(& sds_ring->napi, skb); adapter->stats.rx_pkts = adapter->stats.rx_pkts + 1ULL; adapter->stats.rxbytes = adapter->stats.rxbytes + (u64 )length; } return (buffer); } } static struct netxen_rx_buffer *netxen_process_lro(struct netxen_adapter *adapter , struct nx_host_sds_ring *sds_ring , int ring , u64 sts_data0 , u64 sts_data1 ) { struct net_device *netdev ; struct netxen_recv_context *recv_ctx ; struct netxen_rx_buffer *buffer ; struct sk_buff *skb ; struct nx_host_rds_ring *rds_ring ; struct iphdr *iph ; struct tcphdr *th ; bool push ; bool timestamp ; int l2_hdr_offset ; int l4_hdr_offset ; int index ; u16 lro_length ; u16 length ; u16 data_offset ; u32 seq_number ; u8 vhdr_len ; long tmp ; long tmp___0 ; __u16 tmp___1 ; __u16 tmp___2 ; __u32 tmp___3 ; unsigned char *tmp___4 ; { { netdev = adapter->netdev; recv_ctx = & adapter->recv_ctx; vhdr_len = 0U; tmp = ldv__builtin_expect(ring >= (int )adapter->max_rds_rings, 0L); } if (tmp != 0L) { return ((struct netxen_rx_buffer *)0); } else { } { rds_ring = recv_ctx->rds_rings + (unsigned long )ring; index = (int )sts_data0 & 65535; tmp___0 = ldv__builtin_expect((u32 )index >= rds_ring->num_desc, 0L); } if (tmp___0 != 0L) { return ((struct netxen_rx_buffer *)0); } else { } { buffer = rds_ring->rx_buf_arr + (unsigned long )index; timestamp = ((sts_data0 >> 48) & 1ULL) != 0ULL; lro_length = (u16 )(sts_data0 >> 16); l2_hdr_offset = (int )(sts_data0 >> 32) & 255; l4_hdr_offset = (int )(sts_data0 >> 40) & 255; push = ((sts_data0 >> 52) & 1ULL) != 0ULL; seq_number = (u32 )sts_data1; skb = netxen_process_rxbuf(adapter, rds_ring, (int )((u16 )index), 2); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return (buffer); } else { } if ((int )timestamp) { data_offset = (unsigned int )((u16 )l4_hdr_offset) + 32U; } else { data_offset = (unsigned int )((u16 )l4_hdr_offset) + 20U; } { skb_put(skb, (unsigned int )((int )lro_length + (int )data_offset)); skb_pull(skb, (unsigned int )l2_hdr_offset); skb->protocol = eth_type_trans(skb, netdev); } if ((unsigned int )skb->protocol == 129U) { vhdr_len = 4U; } else { } { iph = (struct iphdr *)skb->data + (unsigned long )vhdr_len; th = (struct tcphdr *)(skb->data + ((unsigned long )vhdr_len + (unsigned long )((int )iph->ihl << 2))); length = (((int )((u16 )iph->ihl) << 2U) + ((int )th->doff << 2U)) + (int )lro_length; tmp___1 = __fswab16((int )length); csum_replace2(& iph->check, (int )iph->tot_len, (int )tmp___1); tmp___2 = __fswab16((int )length); iph->tot_len = tmp___2; th->psh = push; tmp___3 = __fswab32(seq_number); th->seq = tmp___3; length = (u16 )skb->len; } if ((adapter->flags & 128U) != 0U) { { tmp___4 = skb_end_pointer((struct sk_buff const *)skb); ((struct skb_shared_info *)tmp___4)->gso_size = (unsigned short )(sts_data1 >> 32); } } else { } { netif_receive_skb(skb); adapter->stats.lro_pkts = adapter->stats.lro_pkts + 1ULL; adapter->stats.rxbytes = adapter->stats.rxbytes + (u64 )length; } return (buffer); } } int netxen_process_rcv_ring(struct nx_host_sds_ring *sds_ring , int max ) { struct netxen_adapter *adapter ; struct list_head *cur ; struct status_desc *desc ; struct netxen_rx_buffer *rxbuf ; u32 consumer ; int count ; u64 sts_data0 ; u64 sts_data1 ; int opcode ; int ring ; int desc_cnt ; int __ret_warn_on ; long tmp ; struct nx_host_rds_ring *rds_ring ; struct list_head const *__mptr ; int tmp___0 ; { adapter = sds_ring->adapter; consumer = sds_ring->consumer; count = 0; ring = 0; goto ldv_49263; ldv_49262: desc = sds_ring->desc_head + (unsigned long )consumer; sts_data0 = desc->status_desc_data[0]; if ((sts_data0 & 72057594037927936ULL) == 0ULL) { goto ldv_49248; } else { } desc_cnt = (int )(sts_data0 >> 53) & 7; opcode = (int )(sts_data0 >> 58); { if (opcode == 4) { goto case_4; } else { } if (opcode == 63) { goto case_63; } else { } if (opcode == 3) { goto case_3; } else { } if (opcode == 18) { goto case_18; } else { } if (opcode == 5) { goto case_5; } else { } goto switch_default; case_4: /* CIL Label */ ; case_63: /* CIL Label */ ; case_3: /* CIL Label */ { ring = (int )(sts_data0 >> 8) & 15; rxbuf = netxen_process_rcv(adapter, sds_ring, ring, sts_data0); } goto ldv_49252; case_18: /* CIL Label */ { ring = (int )(sts_data0 >> 49) & 7; sts_data1 = desc->status_desc_data[1]; rxbuf = netxen_process_lro(adapter, sds_ring, ring, sts_data0, sts_data1); } goto ldv_49252; case_5: /* CIL Label */ { netxen_handle_fw_message(desc_cnt, (int )consumer, sds_ring); } switch_default: /* CIL Label */ ; goto skip; switch_break: /* CIL Label */ ; } ldv_49252: { __ret_warn_on = desc_cnt > 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/ethernet/qlogic/netxen/netxen_nic_init.c", 1711); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if ((unsigned long )rxbuf != (unsigned long )((struct netxen_rx_buffer *)0)) { { list_add_tail(& rxbuf->list, (struct list_head *)(& sds_ring->free_list) + (unsigned long )ring); } } else { } skip: ; goto ldv_49260; ldv_49259: desc = sds_ring->desc_head + (unsigned long )consumer; desc->status_desc_data[0] = 144115188075855872ULL; consumer = (consumer + 1U) & (sds_ring->num_desc - 1U); desc_cnt = desc_cnt - 1; ldv_49260: ; if (desc_cnt > 0) { goto ldv_49259; } else { } count = count + 1; ldv_49263: ; if (count < max) { goto ldv_49262; } else { } ldv_49248: ring = 0; goto ldv_49271; ldv_49270: { rds_ring = adapter->recv_ctx.rds_rings + (unsigned long )ring; tmp___0 = list_empty((struct list_head const *)(& sds_ring->free_list) + (unsigned long )ring); } if (tmp___0 == 0) { cur = ((struct list_head *)(& sds_ring->free_list) + (unsigned long )ring)->next; goto ldv_49268; ldv_49267: { __mptr = (struct list_head const *)cur; rxbuf = (struct netxen_rx_buffer *)__mptr; netxen_alloc_rx_skb(adapter, rds_ring, rxbuf); cur = cur->next; } ldv_49268: ; if ((unsigned long )cur != (unsigned long )((struct list_head *)(& sds_ring->free_list) + (unsigned long )ring)) { goto ldv_49267; } else { } { ldv_spin_lock_103___1(& rds_ring->lock); list_splice_tail_init((struct list_head *)(& sds_ring->free_list) + (unsigned long )ring, & rds_ring->free_list); ldv_spin_unlock_104___1(& rds_ring->lock); } } else { } { netxen_post_rx_buffers_nodb(adapter, rds_ring); ring = ring + 1; } ldv_49271: ; if (ring < (int )adapter->max_rds_rings) { goto ldv_49270; } else { } if (count != 0) { { sds_ring->consumer = consumer; (*(adapter->io_write))(adapter, sds_ring->crb_sts_consumer, consumer); } } else { } return (count); } } int netxen_process_cmd_ring(struct netxen_adapter *adapter ) { u32 sw_consumer ; u32 hw_consumer ; int count ; int i ; struct netxen_cmd_buffer *buffer ; struct pci_dev *pdev ; struct net_device *netdev ; struct netxen_skb_frag *frag ; int done ; struct nx_host_tx_ring *tx_ring ; int tmp ; u32 tmp___0 ; bool tmp___1 ; bool tmp___2 ; bool tmp___3 ; { { count = 0; pdev = adapter->pdev; netdev = adapter->netdev; done = 0; tx_ring = adapter->tx_ring; tmp = ldv_spin_trylock_105(& adapter->tx_clean_lock); } if (tmp == 0) { return (1); } else { } sw_consumer = tx_ring->sw_consumer; hw_consumer = *(tx_ring->hw_consumer); goto ldv_49291; ldv_49290: buffer = tx_ring->cmd_buf_arr + (unsigned long )sw_consumer; if ((unsigned long )buffer->skb != (unsigned long )((struct sk_buff *)0)) { { frag = (struct netxen_skb_frag *)(& buffer->frag_array); pci_unmap_single(pdev, frag->dma, (size_t )frag->length, 1); frag->dma = 0ULL; i = 1; } goto ldv_49287; ldv_49286: { frag = frag + 1; pci_unmap_page(pdev, frag->dma, (size_t )frag->length, 1); frag->dma = 0ULL; i = i + 1; } ldv_49287: ; if ((u32 )i < buffer->frag_count) { goto ldv_49286; } else { } { adapter->stats.xmitfinished = adapter->stats.xmitfinished + 1ULL; dev_kfree_skb_any(buffer->skb); buffer->skb = (struct sk_buff *)0; } } else { } sw_consumer = (sw_consumer + 1U) & (tx_ring->num_desc - 1U); count = count + 1; if (count > 63) { goto ldv_49289; } else { } ldv_49291: ; if (sw_consumer != hw_consumer) { goto ldv_49290; } else { } ldv_49289: ; if (count != 0) { { tmp___3 = netif_running((struct net_device const *)netdev); } if ((int )tmp___3) { { tx_ring->sw_consumer = sw_consumer; __asm__ volatile ("mfence": : : "memory"); tmp___1 = netif_queue_stopped((struct net_device const *)netdev); } if ((int )tmp___1) { { tmp___2 = netif_carrier_ok((struct net_device const *)netdev); } if ((int )tmp___2) { { tmp___0 = netxen_tx_avail(tx_ring); } if (tmp___0 > 10U) { { netif_wake_queue(netdev); } } else { } } else { } } else { } adapter->tx_timeo_cnt = 0U; } else { } } else { } { hw_consumer = *(tx_ring->hw_consumer); done = sw_consumer == hw_consumer; ldv_spin_unlock_104___0(& adapter->tx_clean_lock); } return (done); } } void netxen_post_rx_buffers(struct netxen_adapter *adapter , u32 ringid , struct nx_host_rds_ring *rds_ring ) { struct rcv_desc *pdesc ; struct netxen_rx_buffer *buffer ; int producer ; int count ; netxen_ctx_msg msg ; struct list_head *head ; struct list_head const *__mptr ; int tmp ; int tmp___0 ; { count = 0; msg = 0U; producer = (int )rds_ring->producer; head = & rds_ring->free_list; goto ldv_49307; ldv_49306: __mptr = (struct list_head const *)head->next; buffer = (struct netxen_rx_buffer *)__mptr; if ((unsigned long )buffer->skb == (unsigned long )((struct sk_buff *)0)) { { tmp = netxen_alloc_rx_skb(adapter, rds_ring, buffer); } if (tmp != 0) { goto ldv_49305; } else { } } else { } { count = count + 1; list_del(& buffer->list); pdesc = rds_ring->desc_head + (unsigned long )producer; pdesc->addr_buffer = buffer->dma; pdesc->reference_handle = buffer->ref_handle; pdesc->buffer_length = rds_ring->dma_size; producer = (int )((u32 )(producer + 1) & (rds_ring->num_desc - 1U)); } ldv_49307: { tmp___0 = list_empty((struct list_head const *)head); } if (tmp___0 == 0) { goto ldv_49306; } else { } ldv_49305: ; if (count != 0) { { rds_ring->producer = (u32 )producer; (*(adapter->io_write))(adapter, rds_ring->crb_rcv_producer, (u32 )(producer + -1) & (rds_ring->num_desc - 1U)); } if ((unsigned int )adapter->ahw.revision_id <= 37U) { { msg = msg & 4294967292U; msg = msg | 2U; msg = msg | 4U; msg = msg & 4294705159U; msg = msg | ((((u32 )(producer + -1) & (rds_ring->num_desc - 1U)) & 32767U) << 3); msg = msg & 4026793983U; msg = msg | (netxen_ctx_msg )((int )adapter->portnum << 18); msg = msg & 268435455U; msg = msg | (ringid << 28); (*(adapter->io_write))(adapter, adapter->ahw.db_base, msg); } } else { } } else { } return; } } static void netxen_post_rx_buffers_nodb(struct netxen_adapter *adapter , struct nx_host_rds_ring *rds_ring ) { struct rcv_desc *pdesc ; struct netxen_rx_buffer *buffer ; int producer ; int count ; struct list_head *head ; int tmp ; struct list_head const *__mptr ; int tmp___0 ; int tmp___1 ; { { count = 0; tmp = ldv_spin_trylock_107(& rds_ring->lock); } if (tmp == 0) { return; } else { } producer = (int )rds_ring->producer; head = & rds_ring->free_list; goto ldv_49321; ldv_49320: __mptr = (struct list_head const *)head->next; buffer = (struct netxen_rx_buffer *)__mptr; if ((unsigned long )buffer->skb == (unsigned long )((struct sk_buff *)0)) { { tmp___0 = netxen_alloc_rx_skb(adapter, rds_ring, buffer); } if (tmp___0 != 0) { goto ldv_49319; } else { } } else { } { count = count + 1; list_del(& buffer->list); pdesc = rds_ring->desc_head + (unsigned long )producer; pdesc->reference_handle = buffer->ref_handle; pdesc->buffer_length = rds_ring->dma_size; pdesc->addr_buffer = buffer->dma; producer = (int )((u32 )(producer + 1) & (rds_ring->num_desc - 1U)); } ldv_49321: { tmp___1 = list_empty((struct list_head const *)head); } if (tmp___1 == 0) { goto ldv_49320; } else { } ldv_49319: ; if (count != 0) { { rds_ring->producer = (u32 )producer; (*(adapter->io_write))(adapter, rds_ring->crb_rcv_producer, (u32 )(producer + -1) & (rds_ring->num_desc - 1U)); } } else { } { ldv_spin_unlock_104___1(& rds_ring->lock); } return; } } void netxen_nic_clear_stats(struct netxen_adapter *adapter ) { { { memset((void *)(& adapter->stats), 0, 72UL); } return; } } __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } static struct sk_buff *ldv___netdev_alloc_skb_57(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct sk_buff *)tmp); } } static void *ldv_vzalloc_101(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void *ldv_vzalloc_102(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc_unknown_size(); } return (tmp); } } __inline static void ldv_spin_lock_103___1(spinlock_t *lock ) { { { ldv_spin_lock_lock_of_nx_host_rds_ring(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_104___1(spinlock_t *lock ) { { { ldv_spin_unlock_lock_of_nx_host_rds_ring(); spin_unlock(lock); } return; } } __inline static int ldv_spin_trylock_105(spinlock_t *lock ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = spin_trylock(lock); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock_tx_clean_lock_of_netxen_adapter(); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_spin_trylock_107(spinlock_t *lock ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = spin_trylock(lock); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock_lock_of_nx_host_rds_ring(); } return (tmp___0); return (ldv_func_res); } } __inline static int fls64(__u64 x ) { int bitpos ; { bitpos = -1; __asm__ ("bsrq %1,%q0": "+r" (bitpos): "rm" (x)); return (bitpos + 1); } } __inline static unsigned int fls_long(unsigned long l ) { int tmp___0 ; { { tmp___0 = fls64((__u64 )l); } return ((unsigned int )tmp___0); } } __inline static unsigned long __roundup_pow_of_two(unsigned long n ) { unsigned int tmp ; { { tmp = fls_long(n - 1UL); } return (1UL << (int )tmp); } } extern int snprintf(char * , size_t , char const * , ...) ; extern size_t strlcpy(char * , char const * , size_t ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } __inline static __u32 ethtool_cmd_speed(struct ethtool_cmd const *ep ) { { return ((__u32 )(((int )ep->speed_hi << 16) | (int )ep->speed)); } } extern u32 ethtool_op_get_link(struct net_device * ) ; __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } static u32 const FW_DUMP_LEVELS[7U] = { 3U, 7U, 15U, 31U, 63U, 127U, 255U}; int nx_fw_cmd_set_gbe_port(struct netxen_adapter *adapter , u32 speed , u32 duplex , u32 autoneg ) ; static struct netxen_nic_stats const netxen_nic_gstrings_stats[9U] = { {{'x', 'm', 'i', 't', '_', 'c', 'a', 'l', 'l', 'e', 'd', '\000'}, 8, 408}, {{'x', 'm', 'i', 't', '_', 'f', 'i', 'n', 'i', 's', 'h', 'e', 'd', '\000'}, 8, 416}, {{'r', 'x', '_', 'd', 'r', 'o', 'p', 'p', 'e', 'd', '\000'}, 8, 424}, {{'t', 'x', '_', 'd', 'r', 'o', 'p', 'p', 'e', 'd', '\000'}, 8, 432}, {{'c', 's', 'u', 'm', 'm', 'e', 'd', '\000'}, 8, 440}, {{'r', 'x', '_', 'p', 'k', 't', 's', '\000'}, 8, 448}, {{'l', 'r', 'o', '_', 'p', 'k', 't', 's', '\000'}, 8, 456}, {{'r', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, 8, 464}, {{'t', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, 8, 472}}; static char const netxen_nic_gstrings_test[2U][32U] = { { 'R', 'e', 'g', 'i', 's', 't', 'e', 'r', '_', 'T', 'e', 's', 't', '_', 'o', 'n', '_', 'o', 'f', 'f', 'l', 'i', 'n', 'e', '\000'}, { 'L', 'i', 'n', 'k', '_', 'T', 'e', 's', 't', '_', 'o', 'n', '_', 'o', 'f', 'f', 'l', 'i', 'n', 'e', '\000'}}; static int netxen_nic_get_eeprom_len(struct net_device *dev ) { { return (4194304); } } static void netxen_nic_get_drvinfo(struct net_device *dev , struct ethtool_drvinfo *drvinfo ) { struct netxen_adapter *adapter ; void *tmp ; u32 fw_major ; u32 fw_minor ; u32 fw_build ; char const *tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); adapter = (struct netxen_adapter *)tmp; fw_major = 0U; fw_minor = 0U; fw_build = 0U; strlcpy((char *)(& drvinfo->driver), (char const *)(& netxen_nic_driver_name), 32UL); strlcpy((char *)(& drvinfo->version), "4.0.82", 32UL); fw_major = (*(adapter->crb_read))(adapter, 136323408UL); fw_minor = (*(adapter->crb_read))(adapter, 136323412UL); fw_build = (*(adapter->crb_read))(adapter, 136323416UL); snprintf((char *)(& drvinfo->fw_version), 32UL, "%d.%d.%d", fw_major, fw_minor, fw_build); tmp___0 = pci_name((struct pci_dev const *)adapter->pdev); strlcpy((char *)(& drvinfo->bus_info), tmp___0, 32UL); drvinfo->regdump_len = 120U; tmp___1 = netxen_nic_get_eeprom_len(dev); drvinfo->eedump_len = (__u32 )tmp___1; } return; } } static int netxen_nic_get_settings(struct net_device *dev , struct ethtool_cmd *ecmd ) { struct netxen_adapter *adapter ; void *tmp ; int check_sfp_module ; u32 val ; bool tmp___0 ; u16 pcifn ; bool tmp___1 ; bool tmp___2 ; bool tmp___3 ; int tmp___4 ; { { tmp = netdev_priv((struct net_device const *)dev); adapter = (struct netxen_adapter *)tmp; check_sfp_module = 0; } if ((unsigned int )adapter->ahw.port_type == 1U) { { ecmd->supported = 63U; ecmd->advertising = 60U; ecmd->port = 0U; ethtool_cmd_speed_set(ecmd, (__u32 )adapter->link_speed); ecmd->duplex = (__u8 )adapter->link_duplex; ecmd->autoneg = (__u8 )adapter->link_autoneg; } } else if ((unsigned int )adapter->ahw.port_type == 2U) { { val = (*(adapter->crb_read))(adapter, 136323108UL); } if (val == 3U) { ecmd->supported = 32U; ecmd->advertising = 32U; } else { ecmd->supported = 4096U; ecmd->advertising = 4096U; } { tmp___0 = netif_running((struct net_device const *)dev); } if ((int )tmp___0 && (unsigned int )adapter->has_link_events != 0U) { { ethtool_cmd_speed_set(ecmd, (__u32 )adapter->link_speed); ecmd->autoneg = (__u8 )adapter->link_autoneg; ecmd->duplex = (__u8 )adapter->link_duplex; } goto skip; } else { } ecmd->port = 0U; if ((unsigned int )adapter->ahw.revision_id > 47U) { { pcifn = (u16 )adapter->ahw.pci_func; val = (*(adapter->crb_read))(adapter, (unsigned long )((int )((unsigned int )pcifn / 4U) * 4) + 136323816UL); ethtool_cmd_speed_set(ecmd, ((val >> ((int )pcifn & 3) * 8) & 255U) * 100U); } } else { { ethtool_cmd_speed_set(ecmd, 10000U); } } ecmd->duplex = 1U; ecmd->autoneg = 0U; } else { return (-5); } skip: ecmd->phy_address = adapter->physical_port; ecmd->transceiver = 1U; { if ((int )adapter->ahw.board_type == 10) { goto case_10; } else { } if ((int )adapter->ahw.board_type == 12) { goto case_12; } else { } if ((int )adapter->ahw.board_type == 33) { goto case_33; } else { } if ((int )adapter->ahw.board_type == 36) { goto case_36; } else { } if ((int )adapter->ahw.board_type == 41) { goto case_41; } else { } if ((int )adapter->ahw.board_type == 15) { goto case_15; } else { } if ((int )adapter->ahw.board_type == 49) { goto case_49; } else { } if ((int )adapter->ahw.board_type == 35) { goto case_35; } else { } if ((int )adapter->ahw.board_type == 39) { goto case_39; } else { } if ((int )adapter->ahw.board_type == 14) { goto case_14; } else { } if ((int )adapter->ahw.board_type == 13) { goto case_13; } else { } if ((int )adapter->ahw.board_type == 37) { goto case_37; } else { } if ((int )adapter->ahw.board_type == 40) { goto case_40; } else { } if ((int )adapter->ahw.board_type == 34) { goto case_34; } else { } if ((int )adapter->ahw.board_type == 38) { goto case_38; } else { } if ((int )adapter->ahw.board_type == 42) { goto case_42; } else { } if ((int )adapter->ahw.board_type == 43) { goto case_43; } else { } if ((int )adapter->ahw.board_type == 11) { goto case_11; } else { } if ((int )adapter->ahw.board_type == 50) { goto case_50; } else { } if ((int )adapter->ahw.board_type == 128) { goto case_128; } else { } goto switch_default; case_10: /* CIL Label */ ; case_12: /* CIL Label */ ; case_33: /* CIL Label */ ; case_36: /* CIL Label */ ; case_41: /* CIL Label */ ecmd->supported = ecmd->supported | 64U; ecmd->advertising = ecmd->advertising | 64U; case_15: /* CIL Label */ ; case_49: /* CIL Label */ ; case_35: /* CIL Label */ ; case_39: /* CIL Label */ ecmd->supported = ecmd->supported | 128U; ecmd->advertising = ecmd->advertising | 128U; ecmd->port = 0U; ecmd->autoneg = (unsigned int )adapter->ahw.board_type != 15U ? (__u8 )adapter->link_autoneg : 0U; goto ldv_48605; case_14: /* CIL Label */ ; case_13: /* CIL Label */ ; case_37: /* CIL Label */ ; case_40: /* CIL Label */ ; case_34: /* CIL Label */ ecmd->supported = ecmd->supported | 512U; ecmd->advertising = ecmd->advertising | 512U; ecmd->port = 2U; ecmd->autoneg = 0U; goto ldv_48605; case_38: /* CIL Label */ ; case_42: /* CIL Label */ ; case_43: /* CIL Label */ { ecmd->advertising = ecmd->advertising | 128U; ecmd->supported = ecmd->supported | 128U; tmp___1 = netif_running((struct net_device const *)dev); check_sfp_module = (int )tmp___1 && (unsigned int )adapter->has_link_events != 0U; } case_11: /* CIL Label */ ; case_50: /* CIL Label */ ecmd->supported = ecmd->supported | 1024U; ecmd->advertising = ecmd->advertising | 1024U; ecmd->port = 3U; ecmd->autoneg = 0U; goto ldv_48605; case_128: /* CIL Label */ ; if ((unsigned int )adapter->ahw.port_type == 2U) { { ecmd->autoneg = 0U; ecmd->supported = ecmd->supported | 1152U; ecmd->advertising = ecmd->advertising | 1152U; ecmd->port = 3U; tmp___2 = netif_running((struct net_device const *)dev); check_sfp_module = (int )tmp___2 && (unsigned int )adapter->has_link_events != 0U; } } else { ecmd->supported = ecmd->supported | 192U; ecmd->advertising = ecmd->advertising | 192U; ecmd->port = 0U; } goto ldv_48605; switch_default: /* CIL Label */ { printk("\vnetxen-nic: Unsupported board model %d\n", (int )adapter->ahw.board_type); } return (-5); switch_break: /* CIL Label */ ; } ldv_48605: ; if (check_sfp_module != 0) { { if ((int )adapter->module_type == 2) { goto case_2; } else { } if ((int )adapter->module_type == 3) { goto case_3; } else { } if ((int )adapter->module_type == 4) { goto case_4; } else { } if ((int )adapter->module_type == 5) { goto case_5; } else { } if ((int )adapter->module_type == 6) { goto case_6; } else { } if ((int )adapter->module_type == 7) { goto case_7; } else { } if ((int )adapter->module_type == 8) { goto case_8; } else { } goto switch_default___0; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_4: /* CIL Label */ ; case_5: /* CIL Label */ ecmd->port = 3U; goto ldv_48622; case_6: /* CIL Label */ ; case_7: /* CIL Label */ ; case_8: /* CIL Label */ ecmd->port = 0U; goto ldv_48622; switch_default___0: /* CIL Label */ ecmd->port = 255U; switch_break___0: /* CIL Label */ ; } ldv_48622: ; } else { } { tmp___3 = netif_running((struct net_device const *)dev); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4 || (unsigned int )adapter->ahw.linkup == 0U) { { ecmd->duplex = 255U; ethtool_cmd_speed_set(ecmd, 4294967295U); } } else { } return (0); } } static int netxen_nic_set_settings(struct net_device *dev , struct ethtool_cmd *ecmd ) { struct netxen_adapter *adapter ; void *tmp ; u32 speed ; __u32 tmp___0 ; int ret ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); adapter = (struct netxen_adapter *)tmp; tmp___0 = ethtool_cmd_speed((struct ethtool_cmd const *)ecmd); speed = tmp___0; } if ((unsigned int )adapter->ahw.port_type != 1U) { return (-95); } else { } if ((adapter->capabilities & 2048U) == 0U) { return (-95); } else { } { ret = nx_fw_cmd_set_gbe_port(adapter, speed, (u32 )ecmd->duplex, (u32 )ecmd->autoneg); } if (ret == 9) { return (-95); } else if (ret != 0) { return (-5); } else { } { adapter->link_speed = (u16 )speed; adapter->link_duplex = (u16 )ecmd->duplex; adapter->link_autoneg = (u16 )ecmd->autoneg; tmp___1 = netif_running((struct net_device const *)dev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (0); } else { } { (*((dev->netdev_ops)->ndo_stop))(dev); tmp___3 = (*((dev->netdev_ops)->ndo_open))(dev); } return (tmp___3); } } static int netxen_nic_get_regs_len(struct net_device *dev ) { { return (120); } } static void netxen_nic_get_regs(struct net_device *dev , struct ethtool_regs *regs , void *p ) { struct netxen_adapter *adapter ; void *tmp ; struct netxen_recv_context *recv_ctx ; struct nx_host_sds_ring *sds_ring ; u32 *regs_buff ; int ring ; int i ; int port ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; int tmp___17 ; int tmp___18 ; int tmp___19 ; int tmp___20 ; int tmp___21 ; int tmp___22 ; int tmp___23 ; int tmp___24 ; { { tmp = netdev_priv((struct net_device const *)dev); adapter = (struct netxen_adapter *)tmp; recv_ctx = & adapter->recv_ctx; regs_buff = (u32 *)p; i = 0; port = (int )adapter->physical_port; memset(p, 0, 120UL); regs->version = (__u32 )((((int )adapter->ahw.revision_id << 16) | 16777216) | (int )(adapter->pdev)->device); } if ((unsigned int )adapter->is_up != 777U) { return; } else { } { tmp___0 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___0) = (*(adapter->crb_read))(adapter, 136323664UL); tmp___1 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___1) = (*(adapter->crb_read))(adapter, 136323900UL); tmp___2 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___2) = (*(adapter->crb_read))(adapter, 136323368UL); tmp___3 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___3) = (*(adapter->io_read))(adapter, adapter->crb_int_state_reg); tmp___4 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___4) = (*(adapter->crb_read))(adapter, 136323384UL); tmp___5 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___5) = (*(adapter->crb_read))(adapter, 136323392UL); tmp___6 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___6) = (*(adapter->crb_read))(adapter, 136323248UL); tmp___7 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___7) = (*(adapter->crb_read))(adapter, 136323240UL); tmp___8 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___8) = (*(adapter->crb_read))(adapter, 136323244UL); tmp___9 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___9) = (*(adapter->crb_read))(adapter, 118489148UL); tmp___10 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___10) = (*(adapter->crb_read))(adapter, 119537724UL); tmp___11 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___11) = (*(adapter->crb_read))(adapter, 120586300UL); tmp___12 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___12) = (*(adapter->crb_read))(adapter, 121634876UL); } if ((unsigned int )adapter->ahw.revision_id > 47U) { { tmp___13 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___13) = (*(adapter->crb_read))(adapter, 116391996UL); i = i + 2; tmp___14 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___14) = (*(adapter->crb_read))(adapter, 136323736UL); tmp___15 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___15) = *((adapter->tx_ring)->hw_consumer); } } else { { i = i + 1; tmp___16 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___16) = (*(adapter->crb_read))(adapter, (unsigned long )(port * 65536) + 107413504UL); tmp___17 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___17) = (*(adapter->crb_read))(adapter, (unsigned long )(port * 65536) + 107413508UL); tmp___18 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___18) = (*(adapter->crb_read))(adapter, 136323732UL); tmp___19 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___19) = (*(adapter->io_read))(adapter, (adapter->tx_ring)->crb_cmd_consumer); } } { tmp___20 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___20) = (*(adapter->io_read))(adapter, (adapter->tx_ring)->crb_cmd_producer); tmp___21 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___21) = (*(adapter->io_read))(adapter, (recv_ctx->rds_rings)->crb_rcv_producer); tmp___22 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___22) = (*(adapter->io_read))(adapter, (recv_ctx->rds_rings + 1UL)->crb_rcv_producer); tmp___23 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___23) = (u32 )adapter->max_sds_rings; ring = 0; } goto ldv_48650; ldv_48649: { sds_ring = recv_ctx->sds_rings + (unsigned long )ring; tmp___24 = i; i = i + 1; *(regs_buff + (unsigned long )tmp___24) = (*(adapter->io_read))(adapter, sds_ring->crb_sts_consumer); ring = ring + 1; } ldv_48650: ; if (ring < (int )adapter->max_sds_rings) { goto ldv_48649; } else { } return; } } static u32 netxen_nic_test_link(struct net_device *dev ) { struct netxen_adapter *adapter ; void *tmp ; u32 val ; u32 port ; { { tmp = netdev_priv((struct net_device const *)dev); adapter = (struct netxen_adapter *)tmp; port = (u32 )adapter->physical_port; } if ((unsigned int )adapter->ahw.revision_id > 47U) { { val = (*(adapter->crb_read))(adapter, 136323736UL); val = (val >> (int )adapter->ahw.pci_func * 4) & 15U; } return (val != 1U); } else { { val = (*(adapter->crb_read))(adapter, 136323732UL); val = (val >> (int )(port * 8U)) & 255U; } return (val != 16U); } } } static int netxen_nic_get_eeprom(struct net_device *dev , struct ethtool_eeprom *eeprom , u8 *bytes ) { struct netxen_adapter *adapter ; void *tmp ; int offset ; int ret ; { { tmp = netdev_priv((struct net_device const *)dev); adapter = (struct netxen_adapter *)tmp; } if (eeprom->len == 0U) { return (-22); } else { } { eeprom->magic = (__u32 )((int )(adapter->pdev)->vendor | ((int )(adapter->pdev)->device << 16)); offset = (int )eeprom->offset; ret = netxen_rom_fast_read_words(adapter, offset, bytes, (size_t )eeprom->len); } if (ret < 0) { return (ret); } else { } return (0); } } static void netxen_nic_get_ringparam(struct net_device *dev , struct ethtool_ringparam *ring ) { struct netxen_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); adapter = (struct netxen_adapter *)tmp; ring->rx_pending = (__u32 )adapter->num_rxd; ring->rx_jumbo_pending = (__u32 )adapter->num_jumbo_rxd; ring->rx_jumbo_pending = ring->rx_jumbo_pending + (__u32 )adapter->num_lro_rxd; ring->tx_pending = (__u32 )adapter->num_txd; } if ((unsigned int )adapter->ahw.port_type == 1U) { ring->rx_max_pending = 4096U; ring->rx_jumbo_max_pending = 512U; } else { ring->rx_max_pending = 8192U; ring->rx_jumbo_max_pending = 1024U; } ring->tx_max_pending = 1024U; return; } } static u32 netxen_validate_ringparam(u32 val , u32 min , u32 max , char *r_name ) { u32 num_desc ; u32 _max1 ; u32 _max2 ; u32 _min1 ; u32 _min2 ; unsigned long tmp___67 ; { { _max1 = val; _max2 = min; num_desc = _max1 > _max2 ? _max1 : _max2; _min1 = num_desc; _min2 = max; num_desc = _min1 < _min2 ? _min1 : _min2; tmp___67 = __roundup_pow_of_two((unsigned long )num_desc); num_desc = (u32 )tmp___67; } if (val != num_desc) { { printk("\016%s: setting %s ring size %d instead of %d\n", (char *)(& netxen_nic_driver_name), r_name, num_desc, val); } } else { } return (num_desc); } } static int netxen_nic_set_ringparam(struct net_device *dev , struct ethtool_ringparam *ring ) { struct netxen_adapter *adapter ; void *tmp ; u16 max_rcv_desc ; u16 max_jumbo_desc ; u16 num_rxd ; u16 num_jumbo_rxd ; u16 num_txd ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; int tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); adapter = (struct netxen_adapter *)tmp; max_rcv_desc = 8192U; max_jumbo_desc = 1024U; } if ((unsigned int )adapter->ahw.revision_id <= 37U) { return (-95); } else { } if (ring->rx_mini_pending != 0U) { return (-95); } else { } if ((unsigned int )adapter->ahw.port_type == 1U) { max_rcv_desc = 4096U; max_jumbo_desc = 1024U; } else { } { tmp___0 = netxen_validate_ringparam(ring->rx_pending, 64U, (u32 )max_rcv_desc, (char *)"rx"); num_rxd = (u16 )tmp___0; tmp___1 = netxen_validate_ringparam(ring->rx_jumbo_pending, 32U, (u32 )max_jumbo_desc, (char *)"rx jumbo"); num_jumbo_rxd = (u16 )tmp___1; tmp___2 = netxen_validate_ringparam(ring->tx_pending, 64U, 1024U, (char *)"tx"); num_txd = (u16 )tmp___2; } if (((int )num_rxd == (int )adapter->num_rxd && (int )num_txd == (int )adapter->num_txd) && (int )num_jumbo_rxd == (int )adapter->num_jumbo_rxd) { return (0); } else { } { adapter->num_rxd = num_rxd; adapter->num_jumbo_rxd = num_jumbo_rxd; adapter->num_txd = num_txd; tmp___3 = netxen_nic_reset_context(adapter); } return (tmp___3); } } static void netxen_nic_get_pauseparam(struct net_device *dev , struct ethtool_pauseparam *pause ) { struct netxen_adapter *adapter ; void *tmp ; __u32 val ; int port ; { { tmp = netdev_priv((struct net_device const *)dev); adapter = (struct netxen_adapter *)tmp; port = (int )adapter->physical_port; pause->autoneg = 0U; } if ((unsigned int )adapter->ahw.port_type == 1U) { if ((unsigned int )port > 3U) { return; } else { } { val = (*(adapter->crb_read))(adapter, (unsigned long )(port * 65536) + 107151360UL); pause->rx_pause = (val >> 5) & 1U; val = (*(adapter->crb_read))(adapter, 106955532UL); } { if (port == 0) { goto case_0; } else { } if (port == 1) { goto case_1; } else { } if (port == 2) { goto case_2; } else { } if (port == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ pause->tx_pause = (val & 1U) == 0U; goto ldv_48702; case_1: /* CIL Label */ pause->tx_pause = (val & 4U) == 0U; goto ldv_48702; case_2: /* CIL Label */ pause->tx_pause = (val & 16U) == 0U; goto ldv_48702; case_3: /* CIL Label */ ; switch_default: /* CIL Label */ pause->tx_pause = (val & 64U) == 0U; goto ldv_48702; switch_break: /* CIL Label */ ; } ldv_48702: ; } else if ((unsigned int )adapter->ahw.port_type == 2U) { if ((unsigned int )port > 1U) { return; } else { } { pause->rx_pause = 1U; val = (*(adapter->crb_read))(adapter, 106954904UL); } if (port == 0) { pause->tx_pause = (val & 1U) == 0U; } else { pause->tx_pause = (val & 8U) == 0U; } } else { { printk("\v%s: Unknown board type: %x\n", (char *)(& netxen_nic_driver_name), (int )adapter->ahw.port_type); } } return; } } static int netxen_nic_set_pauseparam(struct net_device *dev , struct ethtool_pauseparam *pause ) { struct netxen_adapter *adapter ; void *tmp ; __u32 val ; int port ; { { tmp = netdev_priv((struct net_device const *)dev); adapter = (struct netxen_adapter *)tmp; port = (int )adapter->physical_port; } if (pause->autoneg != 0U) { return (-22); } else { } if ((unsigned int )adapter->ahw.port_type == 1U) { if ((unsigned int )port > 3U) { return (-5); } else { } { val = (*(adapter->crb_read))(adapter, (unsigned long )(port * 65536) + 107151360UL); } if (pause->rx_pause != 0U) { val = val | 32U; } else { val = val & 4294967263U; } { (*(adapter->crb_write))(adapter, (unsigned long )(port * 65536) + 107151360UL, val); val = (*(adapter->crb_read))(adapter, 106955532UL); } { if (port == 0) { goto case_0; } else { } if (port == 1) { goto case_1; } else { } if (port == 2) { goto case_2; } else { } if (port == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ ; if (pause->tx_pause != 0U) { val = val & 4294967294U; } else { val = val | 1U; } goto ldv_48715; case_1: /* CIL Label */ ; if (pause->tx_pause != 0U) { val = val & 4294967291U; } else { val = val | 4U; } goto ldv_48715; case_2: /* CIL Label */ ; if (pause->tx_pause != 0U) { val = val & 4294967279U; } else { val = val | 16U; } goto ldv_48715; case_3: /* CIL Label */ ; switch_default: /* CIL Label */ ; if (pause->tx_pause != 0U) { val = val & 4294967231U; } else { val = val | 64U; } goto ldv_48715; switch_break: /* CIL Label */ ; } ldv_48715: { (*(adapter->crb_write))(adapter, 106955532UL, val); } } else if ((unsigned int )adapter->ahw.port_type == 2U) { if ((unsigned int )port > 1U) { return (-5); } else { } { val = (*(adapter->crb_read))(adapter, 106954904UL); } if (port == 0) { if (pause->tx_pause != 0U) { val = val & 4294967294U; } else { val = val | 1U; } } else if (pause->tx_pause != 0U) { val = val & 4294967287U; } else { val = val | 8U; } { (*(adapter->crb_write))(adapter, 106954904UL, val); } } else { { printk("\v%s: Unknown board type: %x\n", (char *)(& netxen_nic_driver_name), (int )adapter->ahw.port_type); } } return (0); } } static int netxen_nic_reg_test(struct net_device *dev ) { struct netxen_adapter *adapter ; void *tmp ; u32 data_read ; u32 data_written ; { { tmp = netdev_priv((struct net_device const *)dev); adapter = (struct netxen_adapter *)tmp; data_read = (*(adapter->crb_read))(adapter, 101711872UL); } if ((data_read & 65535U) != (u32 )(adapter->pdev)->vendor) { return (1); } else { } if ((unsigned int )adapter->ahw.revision_id > 47U) { return (0); } else { } { data_written = 2779096485U; (*(adapter->crb_write))(adapter, 136324224UL, data_written); data_read = (*(adapter->crb_read))(adapter, 136324224UL); } if (data_written != data_read) { return (1); } else { } return (0); } } static int netxen_get_sset_count(struct net_device *dev , int sset ) { { { if (sset == 0) { goto case_0; } else { } if (sset == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ ; return (2); case_1: /* CIL Label */ ; return (9); switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } } } static void netxen_nic_diag_test(struct net_device *dev , struct ethtool_test *eth_test , u64 *data ) { u64 tmp ; int tmp___0 ; u64 tmp___1 ; u32 tmp___2 ; { { memset((void *)data, 0, 16UL); tmp___0 = netxen_nic_reg_test(dev); tmp = (u64 )tmp___0; *data = tmp; } if (tmp != 0ULL) { eth_test->flags = eth_test->flags | 2U; } else { } { tmp___2 = netxen_nic_test_link(dev); tmp___1 = (unsigned long long )tmp___2; *(data + 1UL) = tmp___1; } if (tmp___1 != 0ULL) { eth_test->flags = eth_test->flags | 2U; } else { } return; } } static void netxen_nic_get_strings(struct net_device *dev , u32 stringset , u8 *data ) { int index ; { { if (stringset == 0U) { goto case_0; } else { } if (stringset == 1U) { goto case_1; } else { } goto switch_break; case_0: /* CIL Label */ { memcpy((void *)data, (void const *)(& netxen_nic_gstrings_test), 64UL); } goto ldv_48753; case_1: /* CIL Label */ index = 0; goto ldv_48758; ldv_48757: { memcpy((void *)data + (unsigned long )(index * 32), (void const *)(& netxen_nic_gstrings_stats[index].stat_string), 32UL); index = index + 1; } ldv_48758: ; if ((unsigned int )index <= 8U) { goto ldv_48757; } else { } goto ldv_48753; switch_break: /* CIL Label */ ; } ldv_48753: ; return; } } static void netxen_nic_get_ethtool_stats(struct net_device *dev , struct ethtool_stats *stats , u64 *data ) { struct netxen_adapter *adapter ; void *tmp ; int index ; char *p ; { { tmp = netdev_priv((struct net_device const *)dev); adapter = (struct netxen_adapter *)tmp; index = 0; } goto ldv_48771; ldv_48770: p = (char *)adapter + (unsigned long )netxen_nic_gstrings_stats[index].stat_offset; *(data + (unsigned long )index) = netxen_nic_gstrings_stats[index].sizeof_stat == 8 ? *((u64 *)p) : (u64 )*((u32 *)p); index = index + 1; ldv_48771: ; if ((unsigned int )index <= 8U) { goto ldv_48770; } else { } return; } } static void netxen_nic_get_wol(struct net_device *dev , struct ethtool_wolinfo *wol ) { struct netxen_adapter *adapter ; void *tmp ; u32 wol_cfg ; { { tmp = netdev_priv((struct net_device const *)dev); adapter = (struct netxen_adapter *)tmp; wol_cfg = 0U; wol->supported = 0U; wol->wolopts = 0U; } if ((unsigned int )adapter->ahw.revision_id <= 37U) { return; } else { } { wol_cfg = (*(adapter->crb_read))(adapter, 136323460UL); } if ((int )((unsigned long )wol_cfg >> (int )adapter->portnum) & 1) { wol->supported = wol->supported | 32U; } else { } { wol_cfg = (*(adapter->crb_read))(adapter, 136323464UL); } if ((int )((unsigned long )wol_cfg >> (int )adapter->portnum) & 1) { wol->wolopts = wol->wolopts | 32U; } else { } return; } } static int netxen_nic_set_wol(struct net_device *dev , struct ethtool_wolinfo *wol ) { struct netxen_adapter *adapter ; void *tmp ; u32 wol_cfg ; { { tmp = netdev_priv((struct net_device const *)dev); adapter = (struct netxen_adapter *)tmp; wol_cfg = 0U; } if ((unsigned int )adapter->ahw.revision_id <= 37U) { return (-95); } else { } if ((wol->wolopts & 4294967263U) != 0U) { return (-95); } else { } { wol_cfg = (*(adapter->crb_read))(adapter, 136323460UL); } if ((wol_cfg & (u32 )(1 << (int )adapter->portnum)) == 0U) { return (-95); } else { } { wol_cfg = (*(adapter->crb_read))(adapter, 136323464UL); } if ((wol->wolopts & 32U) != 0U) { wol_cfg = wol_cfg | (u32 )(1UL << (int )adapter->portnum); } else { wol_cfg = wol_cfg & ~ ((u32 )(1UL << (int )adapter->portnum)); } { (*(adapter->crb_write))(adapter, 136323464UL, wol_cfg); } return (0); } } static int netxen_set_intr_coalesce(struct net_device *netdev , struct ethtool_coalesce *ethcoal ) { struct netxen_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct netxen_adapter *)tmp; } if ((unsigned int )adapter->ahw.revision_id <= 47U) { return (-22); } else { } if ((unsigned int )adapter->is_up != 777U) { return (-22); } else { } if ((((((((((((((((((((ethcoal->rx_coalesce_usecs > 65535U || ethcoal->rx_max_coalesced_frames > 65535U) || ethcoal->tx_coalesce_usecs > 65535U) || ethcoal->tx_max_coalesced_frames > 65535U) || ethcoal->rx_coalesce_usecs_irq != 0U) || ethcoal->rx_max_coalesced_frames_irq != 0U) || ethcoal->tx_coalesce_usecs_irq != 0U) || ethcoal->tx_max_coalesced_frames_irq != 0U) || ethcoal->stats_block_coalesce_usecs != 0U) || ethcoal->use_adaptive_rx_coalesce != 0U) || ethcoal->use_adaptive_tx_coalesce != 0U) || ethcoal->pkt_rate_low != 0U) || ethcoal->rx_coalesce_usecs_low != 0U) || ethcoal->rx_max_coalesced_frames_low != 0U) || ethcoal->tx_coalesce_usecs_low != 0U) || ethcoal->tx_max_coalesced_frames_low != 0U) || ethcoal->pkt_rate_high != 0U) || ethcoal->rx_coalesce_usecs_high != 0U) || ethcoal->rx_max_coalesced_frames_high != 0U) || ethcoal->tx_coalesce_usecs_high != 0U) || ethcoal->tx_max_coalesced_frames_high != 0U) { return (-22); } else { } if (ethcoal->rx_coalesce_usecs == 0U || ethcoal->rx_max_coalesced_frames == 0U) { adapter->coal.flags = 4U; adapter->coal.normal.data.rx_time_us = 3U; adapter->coal.normal.data.rx_packets = 256U; } else { adapter->coal.flags = 0U; adapter->coal.normal.data.rx_time_us = (uint16_t )ethcoal->rx_coalesce_usecs; adapter->coal.normal.data.rx_packets = (uint16_t )ethcoal->rx_max_coalesced_frames; } { adapter->coal.normal.data.tx_time_us = (uint16_t )ethcoal->tx_coalesce_usecs; adapter->coal.normal.data.tx_packets = (uint16_t )ethcoal->tx_max_coalesced_frames; netxen_config_intr_coalesce(adapter); } return (0); } } static int netxen_get_intr_coalesce(struct net_device *netdev , struct ethtool_coalesce *ethcoal ) { struct netxen_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct netxen_adapter *)tmp; } if ((unsigned int )adapter->ahw.revision_id <= 47U) { return (-22); } else { } if ((unsigned int )adapter->is_up != 777U) { return (-22); } else { } ethcoal->rx_coalesce_usecs = (__u32 )adapter->coal.normal.data.rx_time_us; ethcoal->tx_coalesce_usecs = (__u32 )adapter->coal.normal.data.tx_time_us; ethcoal->rx_max_coalesced_frames = (__u32 )adapter->coal.normal.data.rx_packets; ethcoal->tx_max_coalesced_frames = (__u32 )adapter->coal.normal.data.tx_packets; return (0); } } static int netxen_get_dump_flag(struct net_device *netdev , struct ethtool_dump *dump ) { struct netxen_adapter *adapter ; void *tmp ; struct netxen_minidump *mdump ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct netxen_adapter *)tmp; mdump = & adapter->mdump; } if (adapter->fw_mdump_rdy != 0) { dump->len = mdump->md_dump_size; } else { dump->len = 0U; } if ((unsigned int )mdump->md_enabled == 0U) { dump->flag = 0U; } else { dump->flag = (__u32 )mdump->md_capture_mask; } dump->version = adapter->fw_version; return (0); } } static int netxen_set_dump(struct net_device *netdev , struct ethtool_dump *val ) { int i ; struct netxen_adapter *adapter ; void *tmp ; struct netxen_minidump *mdump ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct netxen_adapter *)tmp; mdump = & adapter->mdump; } { if (val->flag == 3735944941U) { goto case_3735944941; } else { } if (val->flag == 195952365U) { goto case_195952365; } else { } if (val->flag == 182320877U) { goto case_182320877; } else { } if (val->flag == 3735936685U) { goto case_3735936685; } else { } goto switch_default; case_3735944941: /* CIL Label */ ; if ((unsigned int )mdump->md_enabled == 0U) { { netdev_info((struct net_device const *)netdev, "FW dump not enabled\n"); } return (0); } else { } if (adapter->fw_mdump_rdy != 0) { { netdev_info((struct net_device const *)netdev, "Previous dump not cleared, not forcing dump\n"); } return (0); } else { } { netdev_info((struct net_device const *)netdev, "Forcing a fw dump\n"); nx_dev_request_reset(adapter); } goto ldv_48809; case_195952365: /* CIL Label */ ; if ((unsigned int )mdump->md_enabled != 0U) { { netdev_info((struct net_device const *)netdev, "Disabling FW Dump\n"); mdump->md_enabled = 0U; } } else { } goto ldv_48809; case_182320877: /* CIL Label */ ; if ((unsigned int )mdump->md_enabled == 0U) { { netdev_info((struct net_device const *)netdev, "Enabling FW dump\n"); mdump->md_enabled = 1U; } } else { } goto ldv_48809; case_3735936685: /* CIL Label */ { netdev_info((struct net_device const *)netdev, "Forcing FW reset\n"); nx_dev_request_reset(adapter); adapter->flags = adapter->flags & 4294967231U; } goto ldv_48809; switch_default: /* CIL Label */ i = 0; goto ldv_48817; ldv_48816: ; if (val->flag == (__u32 )FW_DUMP_LEVELS[i]) { { mdump->md_capture_mask = (u8 )val->flag; netdev_info((struct net_device const *)netdev, "Driver mask changed to: 0x%x\n", (int )mdump->md_capture_mask); } return (0); } else { } i = i + 1; ldv_48817: ; if ((unsigned int )i <= 6U) { goto ldv_48816; } else { } { netdev_info((struct net_device const *)netdev, "Invalid dump level: 0x%x\n", val->flag); } return (-22); switch_break: /* CIL Label */ ; } ldv_48809: ; return (0); } } static int netxen_get_dump_data(struct net_device *netdev , struct ethtool_dump *dump , void *buffer ) { int i ; int copy_sz ; u32 *hdr_ptr ; u32 *data ; struct netxen_adapter *adapter ; void *tmp ; struct netxen_minidump *mdump ; u32 *tmp___0 ; u32 *tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct netxen_adapter *)tmp; mdump = & adapter->mdump; } if (adapter->fw_mdump_rdy == 0) { { netdev_info((struct net_device const *)netdev, "Dump not available\n"); } return (-22); } else { } copy_sz = (int )mdump->md_template_size; hdr_ptr = (u32 *)mdump->md_template; data = (u32 *)buffer; i = 0; goto ldv_48831; ldv_48830: tmp___0 = data; data = data + 1; tmp___1 = hdr_ptr; hdr_ptr = hdr_ptr + 1; *tmp___0 = *tmp___1; i = i + 1; ldv_48831: ; if ((unsigned long )i < (unsigned long )copy_sz / 4UL) { goto ldv_48830; } else { } { memcpy(buffer + (unsigned long )copy_sz, (void const *)mdump->md_capture_buff + (unsigned long )mdump->md_template_size, (size_t )mdump->md_capture_size); dump->len = (u32 )copy_sz + mdump->md_capture_size; dump->flag = (__u32 )mdump->md_capture_mask; vfree((void const *)mdump->md_capture_buff); mdump->md_capture_buff = (void *)0; adapter->fw_mdump_rdy = 0; netdev_info((struct net_device const *)netdev, "extracted the fw dump Successfully\n"); } return (0); } } struct ethtool_ops const netxen_nic_ethtool_ops = {& netxen_nic_get_settings, & netxen_nic_set_settings, & netxen_nic_get_drvinfo, & netxen_nic_get_regs_len, & netxen_nic_get_regs, & netxen_nic_get_wol, & netxen_nic_set_wol, 0, 0, 0, & ethtool_op_get_link, & netxen_nic_get_eeprom_len, & netxen_nic_get_eeprom, 0, & netxen_get_intr_coalesce, & netxen_set_intr_coalesce, & netxen_nic_get_ringparam, & netxen_nic_set_ringparam, & netxen_nic_get_pauseparam, & netxen_nic_set_pauseparam, & netxen_nic_diag_test, & netxen_nic_get_strings, 0, & netxen_nic_get_ethtool_stats, 0, 0, 0, 0, & netxen_get_sset_count, 0, 0, 0, 0, 0, 0, 0, 0, 0, & netxen_get_dump_flag, & netxen_get_dump_data, & netxen_set_dump, 0, 0, 0, 0, 0}; int (*ldv_1_callback_get_coalesce)(struct net_device * , struct ethtool_coalesce * ) = & netxen_get_intr_coalesce; void (*ldv_1_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) = & netxen_nic_get_drvinfo; int (*ldv_1_callback_get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) = & netxen_get_dump_data; int (*ldv_1_callback_get_dump_flag)(struct net_device * , struct ethtool_dump * ) = & netxen_get_dump_flag; int (*ldv_1_callback_get_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) = & netxen_nic_get_eeprom; int (*ldv_1_callback_get_eeprom_len)(struct net_device * ) = & netxen_nic_get_eeprom_len; void (*ldv_1_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) = & netxen_nic_get_ethtool_stats; unsigned int (*ldv_1_callback_get_link)(struct net_device * ) = & ethtool_op_get_link; void (*ldv_1_callback_get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) = & netxen_nic_get_pauseparam; void (*ldv_1_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) = & netxen_nic_get_regs; int (*ldv_1_callback_get_regs_len)(struct net_device * ) = & netxen_nic_get_regs_len; void (*ldv_1_callback_get_ringparam)(struct net_device * , struct ethtool_ringparam * ) = & netxen_nic_get_ringparam; int (*ldv_1_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) = & netxen_nic_get_settings; int (*ldv_1_callback_get_sset_count)(struct net_device * , int ) = & netxen_get_sset_count; void (*ldv_1_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) = & netxen_nic_get_strings; void (*ldv_1_callback_get_wol)(struct net_device * , struct ethtool_wolinfo * ) = & netxen_nic_get_wol; void (*ldv_1_callback_self_test)(struct net_device * , struct ethtool_test * , unsigned long long * ) = & netxen_nic_diag_test; int (*ldv_1_callback_set_coalesce)(struct net_device * , struct ethtool_coalesce * ) = & netxen_set_intr_coalesce; int (*ldv_1_callback_set_dump)(struct net_device * , struct ethtool_dump * ) = & netxen_set_dump; int (*ldv_1_callback_set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) = & netxen_nic_set_pauseparam; int (*ldv_1_callback_set_ringparam)(struct net_device * , struct ethtool_ringparam * ) = & netxen_nic_set_ringparam; int (*ldv_1_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) = & netxen_nic_set_settings; int (*ldv_1_callback_set_wol)(struct net_device * , struct ethtool_wolinfo * ) = & netxen_nic_set_wol; void ldv_dummy_resourceless_instance_callback_1_10(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) { { { netxen_nic_get_eeprom(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_13(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { netxen_nic_get_eeprom_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_14(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { netxen_nic_get_ethtool_stats(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_17(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ethtool_op_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_18(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { netxen_nic_get_pauseparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_19(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) { { { netxen_nic_get_regs(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_20(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { netxen_nic_get_regs_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_21(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { netxen_nic_get_ringparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_22(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { netxen_nic_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_23(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { netxen_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_26(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { netxen_nic_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_29(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { netxen_nic_get_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_3(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { netxen_get_intr_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_46(void (*arg0)(struct net_device * , struct ethtool_test * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_test *arg2 , unsigned long long *arg3 ) { { { netxen_nic_diag_test(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_49(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { netxen_set_intr_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_50(int (*arg0)(struct net_device * , struct ethtool_dump * ) , struct net_device *arg1 , struct ethtool_dump *arg2 ) { { { netxen_set_dump(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_51(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { netxen_nic_set_pauseparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_52(int (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { netxen_nic_set_ringparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_53(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { netxen_nic_set_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_54(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { netxen_nic_set_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_7(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { netxen_nic_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_8(int (*arg0)(struct net_device * , struct ethtool_dump * , void * ) , struct net_device *arg1 , struct ethtool_dump *arg2 , void *arg3 ) { { { netxen_get_dump_data(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_9(int (*arg0)(struct net_device * , struct ethtool_dump * ) , struct net_device *arg1 , struct ethtool_dump *arg2 ) { { { netxen_get_dump_flag(arg1, arg2); } return; } } __inline static void *kmalloc(size_t size , gfp_t flags ) ; static u32 netxen_poll_rsp(struct netxen_adapter *adapter ) { u32 rsp ; int timeout ; { rsp = 1U; timeout = 0; ldv_48575: { msleep(1U); timeout = timeout + 1; } if (timeout > 4000) { return (3U); } else { } { rsp = (*(adapter->crb_read))(adapter, 136323608UL); } if ((int )rsp < 0) { goto ldv_48575; } else { } return (rsp); } } static u32 netxen_issue_cmd(struct netxen_adapter *adapter , struct netxen_cmd_args *cmd ) { u32 rsp ; u32 signature ; u32 rcode ; int tmp ; { { signature = 0U; rcode = 0U; signature = (u32 )((int )adapter->ahw.pci_func | -889323264); tmp = netxen_pcie_sem_lock(adapter, 5, 0U); } if (tmp != 0) { return (17U); } else { } { (*(adapter->crb_write))(adapter, 136323624UL, signature); (*(adapter->crb_write))(adapter, 136323612UL, cmd->req.arg1); (*(adapter->crb_write))(adapter, 136323616UL, cmd->req.arg2); (*(adapter->crb_write))(adapter, 136323620UL, cmd->req.arg3); (*(adapter->crb_write))(adapter, 136323608UL, cmd->req.cmd | 2147483648U); rsp = netxen_poll_rsp(adapter); } if (rsp == 3U) { { printk("\v%s: card response timeout.\n", (char *)(& netxen_nic_driver_name)); rcode = 17U; } } else if (rsp == 2U) { { rcode = (*(adapter->crb_read))(adapter, 136323612UL); printk("\v%s: failed card response code:0x%x\n", (char *)(& netxen_nic_driver_name), rcode); } } else if (rsp == 1U) { cmd->rsp.cmd = 0U; if (cmd->rsp.arg2 != 0U) { { cmd->rsp.arg2 = (*(adapter->crb_read))(adapter, 136323616UL); } } else { } if (cmd->rsp.arg3 != 0U) { { cmd->rsp.arg3 = (*(adapter->crb_read))(adapter, 136323620UL); } } else { } } else { } if (cmd->rsp.arg1 != 0U) { { cmd->rsp.arg1 = (*(adapter->crb_read))(adapter, 136323612UL); } } else { } { netxen_pcie_sem_unlock(adapter, 5); } return (rcode); } } static int netxen_get_minidump_template_size(struct netxen_adapter *adapter ) { struct netxen_cmd_args cmd ; { { memset((void *)(& cmd), 0, 32UL); cmd.req.cmd = 47U; memset((void *)(& cmd.rsp), 1, 16UL); netxen_issue_cmd(adapter, & cmd); } if (cmd.rsp.cmd != 0U) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Can\'t get template size %d\n", cmd.rsp.cmd); } return (-5); } else { } adapter->mdump.md_template_size = cmd.rsp.arg2; adapter->mdump.md_template_ver = cmd.rsp.arg3; return (0); } } static int netxen_get_minidump_template(struct netxen_adapter *adapter ) { dma_addr_t md_template_addr ; void *addr ; u32 size ; struct netxen_cmd_args cmd ; { size = adapter->mdump.md_template_size; if (size == 0U) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Can not capture Minidump template. Invalid template size.\n"); } return (6); } else { } { addr = pci_alloc_consistent(adapter->pdev, (size_t )size, & md_template_addr); } if ((unsigned long )addr == (unsigned long )((void *)0)) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Unable to allocate dmable memory for template.\n"); } return (-12); } else { } { memset(addr, 0, (size_t )size); memset((void *)(& cmd), 0, 32UL); memset((void *)(& cmd.rsp), 1, 16UL); cmd.req.cmd = 48U; cmd.req.arg1 = (unsigned int )md_template_addr; cmd.req.arg2 = (unsigned int )(md_template_addr >> 32ULL); cmd.req.arg3 = cmd.req.arg3 | size; netxen_issue_cmd(adapter, & cmd); } if (cmd.rsp.cmd == 0U && size == cmd.rsp.arg2) { { memcpy(adapter->mdump.md_template, (void const *)addr, (size_t )size); } } else { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Failed to get minidump template, err_code : %d, requested_size : %d, actual_size : %d\n ", cmd.rsp.cmd, size, cmd.rsp.arg2); } } { pci_free_consistent(adapter->pdev, (size_t )size, addr, md_template_addr); } return (0); } } static u32 netxen_check_template_checksum(struct netxen_adapter *adapter ) { u64 sum ; u32 *buff ; int count ; u32 *tmp ; int tmp___0 ; { sum = 0ULL; buff = (u32 *)adapter->mdump.md_template; count = (int )(adapter->mdump.md_template_size / 4U); goto ldv_48602; ldv_48601: tmp = buff; buff = buff + 1; sum = sum + (u64 )*tmp; ldv_48602: tmp___0 = count; count = count - 1; if (tmp___0 > 0) { goto ldv_48601; } else { } goto ldv_48605; ldv_48604: sum = (sum & 4294967295ULL) + (sum >> 32); ldv_48605: ; if (sum >> 32 != 0ULL) { goto ldv_48604; } else { } return (~ ((u32 )sum)); } } int netxen_setup_minidump(struct netxen_adapter *adapter ) { int err ; int i ; u32 *template ; u32 *tmp_buf ; struct netxen_minidump_template_hdr *hdr ; u32 tmp ; u32 *tmp___0 ; u32 *tmp___1 ; { { err = 0; err = netxen_get_minidump_template_size(adapter); } if (err != 0) { adapter->mdump.fw_supports_md = 0U; if ((unsigned int )err - 15U <= 1U) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "Flashed firmware version does not support minidump, minimum version required is [ %u.%u.%u ].\n ", 4, 0, 579); } } else { } return (err); } else { } if (adapter->mdump.md_template_size == 0U) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Error : Invalid template size ,should be non-zero.\n"); } return (-5); } else { } { adapter->mdump.md_template = kmalloc((size_t )adapter->mdump.md_template_size, 208U); } if ((unsigned long )adapter->mdump.md_template == (unsigned long )((void *)0)) { return (-12); } else { } { err = netxen_get_minidump_template(adapter); } if (err != 0) { if (err == 15) { adapter->mdump.fw_supports_md = 0U; } else { } goto free_template; } else { } { tmp = netxen_check_template_checksum(adapter); } if (tmp != 0U) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Minidump template checksum Error\n"); err = -5; } goto free_template; } else { } adapter->mdump.md_capture_mask = 31U; tmp_buf = (u32 *)adapter->mdump.md_template; template = (u32 *)adapter->mdump.md_template; i = 0; goto ldv_48617; ldv_48616: tmp___0 = template; template = template + 1; tmp___1 = tmp_buf; tmp_buf = tmp_buf + 1; *tmp___0 = *tmp___1; i = i + 1; ldv_48617: ; if ((unsigned long )i < (unsigned long )(adapter->mdump.md_template_size / 4U)) { goto ldv_48616; } else { } hdr = (struct netxen_minidump_template_hdr *)adapter->mdump.md_template; adapter->mdump.md_capture_buff = (void *)0; adapter->mdump.fw_supports_md = 1U; adapter->mdump.md_enabled = 0U; return (err); free_template: { kfree((void const *)adapter->mdump.md_template); adapter->mdump.md_template = (void *)0; } return (err); } } int nx_fw_cmd_set_mtu(struct netxen_adapter *adapter , int mtu ) { u32 rcode ; struct netxen_recv_context *recv_ctx ; struct netxen_cmd_args cmd ; { { rcode = 0U; recv_ctx = & adapter->recv_ctx; memset((void *)(& cmd), 0, 32UL); cmd.req.cmd = 18U; cmd.req.arg1 = (u32 )recv_ctx->context_id; cmd.req.arg2 = (u32 )mtu; cmd.req.arg3 = 0U; } if (recv_ctx->state == 2U) { { netxen_issue_cmd(adapter, & cmd); } } else { } if (rcode != 0U) { return (-5); } else { } return (0); } } int nx_fw_cmd_set_gbe_port(struct netxen_adapter *adapter , u32 speed , u32 duplex , u32 autoneg ) { struct netxen_cmd_args cmd ; u32 tmp ; { { memset((void *)(& cmd), 0, 32UL); cmd.req.cmd = 31U; cmd.req.arg1 = speed; cmd.req.arg2 = duplex; cmd.req.arg3 = autoneg; tmp = netxen_issue_cmd(adapter, & cmd); } return ((int )tmp); } } static int nx_fw_cmd_create_rx_ctx(struct netxen_adapter *adapter ) { void *addr ; nx_hostrq_rx_ctx_t *prq ; nx_cardrsp_rx_ctx_t *prsp ; nx_hostrq_rds_ring_t *prq_rds ; nx_hostrq_sds_ring_t *prq_sds ; nx_cardrsp_rds_ring_t *prsp_rds ; nx_cardrsp_sds_ring_t *prsp_sds ; struct nx_host_rds_ring *rds_ring ; struct nx_host_sds_ring *sds_ring ; struct netxen_cmd_args cmd ; dma_addr_t hostrq_phys_addr ; dma_addr_t cardrsp_phys_addr ; u64 phys_addr ; int i ; int nrds_rings ; int nsds_rings ; size_t rq_size ; size_t rsp_size ; u32 cap ; u32 reg ; u32 val ; int err ; struct netxen_recv_context *recv_ctx ; u32 tmp ; { { recv_ctx = & adapter->recv_ctx; nrds_rings = (int )adapter->max_rds_rings; nsds_rings = (int )adapter->max_sds_rings; rq_size = ((unsigned long )nrds_rings * 24UL + (unsigned long )nsds_rings * 16UL) + 176UL; rsp_size = (((unsigned long )nrds_rings + (unsigned long )nsds_rings) + 19UL) * 8UL; addr = pci_alloc_consistent(adapter->pdev, rq_size, & hostrq_phys_addr); } if ((unsigned long )addr == (unsigned long )((void *)0)) { return (-12); } else { } { prq = (nx_hostrq_rx_ctx_t *)addr; addr = pci_alloc_consistent(adapter->pdev, rsp_size, & cardrsp_phys_addr); } if ((unsigned long )addr == (unsigned long )((void *)0)) { err = -12; goto out_free_rq; } else { } prsp = (nx_cardrsp_rx_ctx_t *)addr; prq->host_rsp_dma_addr = cardrsp_phys_addr; cap = 5U; cap = cap | 384U; if ((adapter->flags & 128U) != 0U) { cap = cap | 2097152U; } else { } prq->capabilities[0] = cap; prq->host_int_crb_mode = 1U; prq->host_rds_crb_mode = 0U; prq->num_rds_rings = (unsigned short )nrds_rings; prq->num_sds_rings = (unsigned short )nsds_rings; prq->rds_ring_offset = 0U; val = prq->rds_ring_offset + (u32 )((unsigned long )nrds_rings) * 24U; prq->sds_ring_offset = val; prq_rds = (nx_hostrq_rds_ring_t *)(& prq->data) + (unsigned long )prq->rds_ring_offset; i = 0; goto ldv_48661; ldv_48660: rds_ring = recv_ctx->rds_rings + (unsigned long )i; (prq_rds + (unsigned long )i)->host_phys_addr = rds_ring->phys_addr; (prq_rds + (unsigned long )i)->ring_size = rds_ring->num_desc; (prq_rds + (unsigned long )i)->ring_kind = (unsigned int )i; (prq_rds + (unsigned long )i)->buff_size = (unsigned long long )rds_ring->dma_size; i = i + 1; ldv_48661: ; if (i < nrds_rings) { goto ldv_48660; } else { } prq_sds = (nx_hostrq_sds_ring_t *)(& prq->data) + (unsigned long )prq->sds_ring_offset; i = 0; goto ldv_48664; ldv_48663: sds_ring = recv_ctx->sds_rings + (unsigned long )i; (prq_sds + (unsigned long )i)->host_phys_addr = sds_ring->phys_addr; (prq_sds + (unsigned long )i)->ring_size = sds_ring->num_desc; (prq_sds + (unsigned long )i)->msi_index = (unsigned short )i; i = i + 1; ldv_48664: ; if (i < nsds_rings) { goto ldv_48663; } else { } { phys_addr = hostrq_phys_addr; memset((void *)(& cmd), 0, 32UL); cmd.req.arg1 = (unsigned int )(phys_addr >> 32); cmd.req.arg2 = (unsigned int )phys_addr; cmd.req.arg3 = (u32 )rq_size; cmd.req.cmd = 7U; tmp = netxen_issue_cmd(adapter, & cmd); err = (int )tmp; } if (err != 0) { { printk("\fFailed to create rx ctx in firmware%d\n", err); } goto out_free_rsp; } else { } prsp_rds = (nx_cardrsp_rds_ring_t *)(& prsp->data) + (unsigned long )prsp->rds_ring_offset; i = 0; goto ldv_48668; ldv_48667: { rds_ring = recv_ctx->rds_rings + (unsigned long )i; reg = (prsp_rds + (unsigned long )i)->host_producer_crb; rds_ring->crb_rcv_producer = netxen_get_ioaddr(adapter, reg + 136323072U); i = i + 1; } ldv_48668: ; if (i < (int )prsp->num_rds_rings) { goto ldv_48667; } else { } prsp_sds = (nx_cardrsp_sds_ring_t *)(& prsp->data) + (unsigned long )prsp->sds_ring_offset; i = 0; goto ldv_48671; ldv_48670: { sds_ring = recv_ctx->sds_rings + (unsigned long )i; reg = (prsp_sds + (unsigned long )i)->host_consumer_crb; sds_ring->crb_sts_consumer = netxen_get_ioaddr(adapter, reg + 136323072U); reg = (prsp_sds + (unsigned long )i)->interrupt_crb; sds_ring->crb_intr_mask = netxen_get_ioaddr(adapter, reg + 136323072U); i = i + 1; } ldv_48671: ; if (i < (int )prsp->num_sds_rings) { goto ldv_48670; } else { } recv_ctx->state = prsp->host_ctx_state; recv_ctx->context_id = prsp->context_id; recv_ctx->virt_port = (u16 )prsp->virt_port; out_free_rsp: { pci_free_consistent(adapter->pdev, rsp_size, (void *)prsp, cardrsp_phys_addr); } out_free_rq: { pci_free_consistent(adapter->pdev, rq_size, (void *)prq, hostrq_phys_addr); } return (err); } } static void nx_fw_cmd_destroy_rx_ctx(struct netxen_adapter *adapter ) { struct netxen_recv_context *recv_ctx ; struct netxen_cmd_args cmd ; u32 tmp ; { { recv_ctx = & adapter->recv_ctx; memset((void *)(& cmd), 0, 32UL); cmd.req.arg1 = (u32 )recv_ctx->context_id; cmd.req.arg2 = 0U; cmd.req.arg3 = 0U; cmd.req.cmd = 8U; tmp = netxen_issue_cmd(adapter, & cmd); } if (tmp != 0U) { { printk("\f%s: Failed to destroy rx ctx in firmware\n", (char *)(& netxen_nic_driver_name)); } } else { } return; } } static int nx_fw_cmd_create_tx_ctx(struct netxen_adapter *adapter ) { nx_hostrq_tx_ctx_t *prq ; nx_hostrq_cds_ring_t *prq_cds ; nx_cardrsp_tx_ctx_t *prsp ; void *rq_addr ; void *rsp_addr ; size_t rq_size ; size_t rsp_size ; u32 temp ; int err ; u64 offset ; u64 phys_addr ; dma_addr_t rq_phys_addr ; dma_addr_t rsp_phys_addr ; struct nx_host_tx_ring *tx_ring ; struct netxen_recv_context *recv_ctx ; struct netxen_cmd_args cmd ; u32 tmp ; { { err = 0; tx_ring = adapter->tx_ring; recv_ctx = & adapter->recv_ctx; rq_size = 200UL; rq_addr = pci_alloc_consistent(adapter->pdev, rq_size, & rq_phys_addr); } if ((unsigned long )rq_addr == (unsigned long )((void *)0)) { return (-12); } else { } { rsp_size = 144UL; rsp_addr = pci_alloc_consistent(adapter->pdev, rsp_size, & rsp_phys_addr); } if ((unsigned long )rsp_addr == (unsigned long )((void *)0)) { err = -12; goto out_free_rq; } else { } { memset(rq_addr, 0, rq_size); prq = (nx_hostrq_tx_ctx_t *)rq_addr; memset(rsp_addr, 0, rsp_size); prsp = (nx_cardrsp_tx_ctx_t *)rsp_addr; prq->host_rsp_dma_addr = rsp_phys_addr; temp = 69U; prq->capabilities[0] = temp; prq->host_int_crb_mode = 1U; prq->interrupt_ctl = 0U; prq->msi_index = 0U; prq->dummy_dma_addr = adapter->dummy_dma.phys_addr; offset = recv_ctx->phys_addr + 192ULL; prq->cmd_cons_dma_addr = offset; prq_cds = & prq->cds_ring; prq_cds->host_phys_addr = tx_ring->phys_addr; prq_cds->ring_size = tx_ring->num_desc; phys_addr = rq_phys_addr; memset((void *)(& cmd), 0, 32UL); cmd.req.arg1 = (unsigned int )(phys_addr >> 32); cmd.req.arg2 = (unsigned int )phys_addr; cmd.req.arg3 = (u32 )rq_size; cmd.req.cmd = 9U; tmp = netxen_issue_cmd(adapter, & cmd); err = (int )tmp; } if (err == 0) { { temp = prsp->cds_ring.host_producer_crb; tx_ring->crb_cmd_producer = netxen_get_ioaddr(adapter, temp + 136323072U); adapter->tx_context_id = prsp->context_id; } } else { { printk("\fFailed to create tx ctx in firmware%d\n", err); err = -5; } } { pci_free_consistent(adapter->pdev, rsp_size, rsp_addr, rsp_phys_addr); } out_free_rq: { pci_free_consistent(adapter->pdev, rq_size, rq_addr, rq_phys_addr); } return (err); } } static void nx_fw_cmd_destroy_tx_ctx(struct netxen_adapter *adapter ) { struct netxen_cmd_args cmd ; u32 tmp ; { { memset((void *)(& cmd), 0, 32UL); cmd.req.arg1 = (u32 )adapter->tx_context_id; cmd.req.arg2 = 0U; cmd.req.arg3 = 0U; cmd.req.cmd = 10U; tmp = netxen_issue_cmd(adapter, & cmd); } if (tmp != 0U) { { printk("\f%s: Failed to destroy tx ctx in firmware\n", (char *)(& netxen_nic_driver_name)); } } else { } return; } } int nx_fw_cmd_query_phy(struct netxen_adapter *adapter , u32 reg , u32 *val ) { u32 rcode ; struct netxen_cmd_args cmd ; { { memset((void *)(& cmd), 0, 32UL); cmd.req.arg1 = reg; cmd.req.arg2 = 0U; cmd.req.arg3 = 0U; cmd.req.cmd = 19U; cmd.rsp.arg1 = 1U; rcode = netxen_issue_cmd(adapter, & cmd); } if (rcode != 0U) { return (-5); } else { } if ((unsigned long )val == (unsigned long )((u32 *)0U)) { return (-5); } else { } *val = cmd.rsp.arg1; return (0); } } int nx_fw_cmd_set_phy(struct netxen_adapter *adapter , u32 reg , u32 val ) { u32 rcode ; struct netxen_cmd_args cmd ; { { memset((void *)(& cmd), 0, 32UL); cmd.req.arg1 = reg; cmd.req.arg2 = val; cmd.req.arg3 = 0U; cmd.req.cmd = 20U; rcode = netxen_issue_cmd(adapter, & cmd); } if (rcode != 0U) { return (-5); } else { } return (0); } } static u64 ctx_addr_sig_regs[4U][3U] = { { 136323976ULL, 136323980ULL, 136324032ULL}, { 136323984ULL, 136323988ULL, 136324036ULL}, { 136323992ULL, 136323996ULL, 136324040ULL}, { 136324000ULL, 136324004ULL, 136324044ULL}}; static struct netxen_recv_crb recv_crb_registers[4U] = { {{136323840U, 136323856U, 136323872U}, {136323896U, 136324864U, 136324868U, 136324872U}, {136324056U, 136324932U, 136324936U, 136324940U}}, {{136323908U, 136323924U, 136323940U}, {136323964U, 136324896U, 136324900U, 136324904U}, {136324064U, 136324964U, 136324968U, 136324972U}}, {{136324056U, 136324088U, 136324104U}, {136324128U, 136324924U, 136324924U, 136324924U}, {136324068U, 136324924U, 136324924U, 136324924U}}, {{136324140U, 136324156U, 136324172U}, {136324196U, 136324924U, 136324924U, 136324924U}, {136324072U, 136324924U, 136324924U, 136324924U}}}; static int netxen_init_old_ctx(struct netxen_adapter *adapter ) { struct netxen_recv_context *recv_ctx ; struct nx_host_rds_ring *rds_ring ; struct nx_host_sds_ring *sds_ring ; struct nx_host_tx_ring *tx_ring ; int ring ; int port ; struct netxen_ring_ctx *hwctx ; u32 signature ; { port = (int )adapter->portnum; tx_ring = adapter->tx_ring; recv_ctx = & adapter->recv_ctx; hwctx = recv_ctx->hwctx; hwctx->cmd_ring_addr = tx_ring->phys_addr; hwctx->cmd_ring_size = tx_ring->num_desc; ring = 0; goto ldv_48730; ldv_48729: rds_ring = recv_ctx->rds_rings + (unsigned long )ring; hwctx->rcv_rings[ring].addr = rds_ring->phys_addr; hwctx->rcv_rings[ring].size = rds_ring->num_desc; ring = ring + 1; ldv_48730: ; if (ring < (int )adapter->max_rds_rings) { goto ldv_48729; } else { } ring = 0; goto ldv_48733; ldv_48732: sds_ring = recv_ctx->sds_rings + (unsigned long )ring; if (ring == 0) { hwctx->sts_ring_addr = sds_ring->phys_addr; hwctx->sts_ring_size = sds_ring->num_desc; } else { } hwctx->sts_rings[ring].addr = sds_ring->phys_addr; hwctx->sts_rings[ring].size = sds_ring->num_desc; hwctx->sts_rings[ring].msi_index = (unsigned short )ring; ring = ring + 1; ldv_48733: ; if (ring < (int )adapter->max_sds_rings) { goto ldv_48732; } else { } { hwctx->sts_ring_count = (unsigned int )adapter->max_sds_rings; signature = (unsigned int )adapter->max_sds_rings > 1U ? 188128U : 57056U; (*(adapter->crb_write))(adapter, (ulong )ctx_addr_sig_regs[port][0], (unsigned int )recv_ctx->phys_addr); (*(adapter->crb_write))(adapter, (ulong )ctx_addr_sig_regs[port][2], (unsigned int )(recv_ctx->phys_addr >> 32)); (*(adapter->crb_write))(adapter, (ulong )ctx_addr_sig_regs[port][1], signature | (u32 )port); } return (0); } } int netxen_alloc_hw_resources(struct netxen_adapter *adapter ) { void *addr ; int err ; int ring ; struct netxen_recv_context *recv_ctx ; struct nx_host_rds_ring *rds_ring ; struct nx_host_sds_ring *sds_ring ; struct nx_host_tx_ring *tx_ring ; struct pci_dev *pdev ; struct net_device *netdev ; int port ; int tmp ; { { err = 0; pdev = adapter->pdev; netdev = adapter->netdev; port = (int )adapter->portnum; recv_ctx = & adapter->recv_ctx; tx_ring = adapter->tx_ring; addr = pci_alloc_consistent(pdev, 196UL, & recv_ctx->phys_addr); } if ((unsigned long )addr == (unsigned long )((void *)0)) { { dev_err((struct device const *)(& pdev->dev), "failed to allocate hw context\n"); } return (-12); } else { } { memset(addr, 0, 192UL); recv_ctx->hwctx = (struct netxen_ring_ctx *)addr; (recv_ctx->hwctx)->ctx_id = (unsigned int )port; (recv_ctx->hwctx)->cmd_consumer_offset = recv_ctx->phys_addr + 192ULL; tx_ring->hw_consumer = (__le32 *)addr + 192U; addr = pci_alloc_consistent(pdev, (unsigned long )tx_ring->num_desc * 64UL, & tx_ring->phys_addr); } if ((unsigned long )addr == (unsigned long )((void *)0)) { { dev_err((struct device const *)(& pdev->dev), "%s: failed to allocate tx desc ring\n", (char *)(& netdev->name)); err = -12; } goto err_out_free; } else { } tx_ring->desc_head = (struct cmd_desc_type0 *)addr; ring = 0; goto ldv_48750; ldv_48749: { rds_ring = recv_ctx->rds_rings + (unsigned long )ring; addr = pci_alloc_consistent(adapter->pdev, (unsigned long )rds_ring->num_desc * 16UL, & rds_ring->phys_addr); } if ((unsigned long )addr == (unsigned long )((void *)0)) { { dev_err((struct device const *)(& pdev->dev), "%s: failed to allocate rds ring [%d]\n", (char *)(& netdev->name), ring); err = -12; } goto err_out_free; } else { } rds_ring->desc_head = (struct rcv_desc *)addr; if ((unsigned int )adapter->ahw.revision_id <= 37U) { { rds_ring->crb_rcv_producer = netxen_get_ioaddr(adapter, recv_crb_registers[port].crb_rcv_producer[ring]); } } else { } ring = ring + 1; ldv_48750: ; if (ring < (int )adapter->max_rds_rings) { goto ldv_48749; } else { } ring = 0; goto ldv_48753; ldv_48752: { sds_ring = recv_ctx->sds_rings + (unsigned long )ring; addr = pci_alloc_consistent(adapter->pdev, (unsigned long )sds_ring->num_desc * 16UL, & sds_ring->phys_addr); } if ((unsigned long )addr == (unsigned long )((void *)0)) { { dev_err((struct device const *)(& pdev->dev), "%s: failed to allocate sds ring [%d]\n", (char *)(& netdev->name), ring); err = -12; } goto err_out_free; } else { } sds_ring->desc_head = (struct status_desc *)addr; if ((unsigned int )adapter->ahw.revision_id <= 37U) { { sds_ring->crb_sts_consumer = netxen_get_ioaddr(adapter, recv_crb_registers[port].crb_sts_consumer[ring]); sds_ring->crb_intr_mask = netxen_get_ioaddr(adapter, recv_crb_registers[port].sw_int_mask[ring]); } } else { } ring = ring + 1; ldv_48753: ; if (ring < (int )adapter->max_sds_rings) { goto ldv_48752; } else { } if ((unsigned int )adapter->ahw.revision_id > 37U) { { tmp = test_and_clear_bit(0L, (unsigned long volatile *)(& adapter->state)); } if (tmp != 0) { goto done; } else { } { err = nx_fw_cmd_create_rx_ctx(adapter); } if (err != 0) { goto err_out_free; } else { } { err = nx_fw_cmd_create_tx_ctx(adapter); } if (err != 0) { goto err_out_free; } else { } } else { { err = netxen_init_old_ctx(adapter); } if (err != 0) { goto err_out_free; } else { } } done: ; return (0); err_out_free: { netxen_free_hw_resources(adapter); } return (err); } } void netxen_free_hw_resources(struct netxen_adapter *adapter ) { struct netxen_recv_context *recv_ctx ; struct nx_host_rds_ring *rds_ring ; struct nx_host_sds_ring *sds_ring ; struct nx_host_tx_ring *tx_ring ; int ring ; int port ; int tmp ; { port = (int )adapter->portnum; if ((unsigned int )adapter->ahw.revision_id > 37U) { { tmp = test_and_clear_bit(0L, (unsigned long volatile *)(& adapter->state)); } if (tmp == 0) { goto done; } else { } { nx_fw_cmd_destroy_rx_ctx(adapter); nx_fw_cmd_destroy_tx_ctx(adapter); } } else { { netxen_pcie_sem_lock(adapter, 5, 0U); (*(adapter->crb_write))(adapter, (ulong )ctx_addr_sig_regs[port][1], (u32 )(port | 44224)); netxen_pcie_sem_unlock(adapter, 5); } } { msleep(20U); } done: recv_ctx = & adapter->recv_ctx; if ((unsigned long )recv_ctx->hwctx != (unsigned long )((struct netxen_ring_ctx *)0)) { { pci_free_consistent(adapter->pdev, 196UL, (void *)recv_ctx->hwctx, recv_ctx->phys_addr); recv_ctx->hwctx = (struct netxen_ring_ctx *)0; } } else { } tx_ring = adapter->tx_ring; if ((unsigned long )tx_ring->desc_head != (unsigned long )((struct cmd_desc_type0 *)0)) { { pci_free_consistent(adapter->pdev, (unsigned long )tx_ring->num_desc * 64UL, (void *)tx_ring->desc_head, tx_ring->phys_addr); tx_ring->desc_head = (struct cmd_desc_type0 *)0; } } else { } ring = 0; goto ldv_48767; ldv_48766: rds_ring = recv_ctx->rds_rings + (unsigned long )ring; if ((unsigned long )rds_ring->desc_head != (unsigned long )((struct rcv_desc *)0)) { { pci_free_consistent(adapter->pdev, (unsigned long )rds_ring->num_desc * 16UL, (void *)rds_ring->desc_head, rds_ring->phys_addr); rds_ring->desc_head = (struct rcv_desc *)0; } } else { } ring = ring + 1; ldv_48767: ; if (ring < (int )adapter->max_rds_rings) { goto ldv_48766; } else { } ring = 0; goto ldv_48770; ldv_48769: sds_ring = recv_ctx->sds_rings + (unsigned long )ring; if ((unsigned long )sds_ring->desc_head != (unsigned long )((struct status_desc *)0)) { { pci_free_consistent(adapter->pdev, (unsigned long )sds_ring->num_desc * 16UL, (void *)sds_ring->desc_head, sds_ring->phys_addr); sds_ring->desc_head = (struct status_desc *)0; } } else { } ring = ring + 1; ldv_48770: ; if (ring < (int )adapter->max_sds_rings) { goto ldv_48769; } else { } return; } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_nx_host_rds_ring = 1; void ldv_spin_lock_lock_of_nx_host_rds_ring(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_nx_host_rds_ring == 1); ldv_assume(ldv_spin_lock_of_nx_host_rds_ring == 1); ldv_spin_lock_of_nx_host_rds_ring = 2; } return; } } void ldv_spin_unlock_lock_of_nx_host_rds_ring(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_nx_host_rds_ring == 2); ldv_assume(ldv_spin_lock_of_nx_host_rds_ring == 2); ldv_spin_lock_of_nx_host_rds_ring = 1; } return; } } int ldv_spin_trylock_lock_of_nx_host_rds_ring(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_nx_host_rds_ring == 1); ldv_assume(ldv_spin_lock_of_nx_host_rds_ring == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_nx_host_rds_ring = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_nx_host_rds_ring(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_nx_host_rds_ring == 1); ldv_assume(ldv_spin_lock_of_nx_host_rds_ring == 1); } return; } } int ldv_spin_is_locked_lock_of_nx_host_rds_ring(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_nx_host_rds_ring == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_nx_host_rds_ring(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_nx_host_rds_ring(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_nx_host_rds_ring(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_nx_host_rds_ring(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_nx_host_rds_ring == 1); ldv_assume(ldv_spin_lock_of_nx_host_rds_ring == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_nx_host_rds_ring = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_res_counter = 1; void ldv_spin_lock_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); ldv_spin_lock_of_res_counter = 2; } return; } } void ldv_spin_unlock_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_res_counter == 2); ldv_assume(ldv_spin_lock_of_res_counter == 2); ldv_spin_lock_of_res_counter = 1; } return; } } int ldv_spin_trylock_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_res_counter = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); } return; } } int ldv_spin_is_locked_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_res_counter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_res_counter(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_res_counter(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_res_counter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_res_counter(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_res_counter = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_mem_lock_of_netxen_hardware_context = 1; void ldv_spin_lock_mem_lock_of_netxen_hardware_context(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_mem_lock_of_netxen_hardware_context == 1); ldv_assume(ldv_spin_mem_lock_of_netxen_hardware_context == 1); ldv_spin_mem_lock_of_netxen_hardware_context = 2; } return; } } void ldv_spin_unlock_mem_lock_of_netxen_hardware_context(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_mem_lock_of_netxen_hardware_context == 2); ldv_assume(ldv_spin_mem_lock_of_netxen_hardware_context == 2); ldv_spin_mem_lock_of_netxen_hardware_context = 1; } return; } } int ldv_spin_trylock_mem_lock_of_netxen_hardware_context(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_mem_lock_of_netxen_hardware_context == 1); ldv_assume(ldv_spin_mem_lock_of_netxen_hardware_context == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_mem_lock_of_netxen_hardware_context = 2; return (1); } } } void ldv_spin_unlock_wait_mem_lock_of_netxen_hardware_context(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_mem_lock_of_netxen_hardware_context == 1); ldv_assume(ldv_spin_mem_lock_of_netxen_hardware_context == 1); } return; } } int ldv_spin_is_locked_mem_lock_of_netxen_hardware_context(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_mem_lock_of_netxen_hardware_context == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_mem_lock_of_netxen_hardware_context(void) { int tmp ; { { tmp = ldv_spin_is_locked_mem_lock_of_netxen_hardware_context(); } return (tmp == 0); } } int ldv_spin_is_contended_mem_lock_of_netxen_hardware_context(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_mem_lock_of_netxen_hardware_context(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_mem_lock_of_netxen_hardware_context == 1); ldv_assume(ldv_spin_mem_lock_of_netxen_hardware_context == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_mem_lock_of_netxen_hardware_context = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_sk_dst_lock_of_sock = 1; void ldv_spin_lock_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); ldv_spin_sk_dst_lock_of_sock = 2; } return; } } void ldv_spin_unlock_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_sk_dst_lock_of_sock == 2); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 2); ldv_spin_sk_dst_lock_of_sock = 1; } return; } } int ldv_spin_trylock_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } } } void ldv_spin_unlock_wait_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); } return; } } int ldv_spin_is_locked_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_sk_dst_lock_of_sock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_sk_dst_lock_of_sock(void) { int tmp ; { { tmp = ldv_spin_is_locked_sk_dst_lock_of_sock(); } return (tmp == 0); } } int ldv_spin_is_contended_sk_dst_lock_of_sock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_sk_dst_lock_of_sock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } else { } return (0); } } static int ldv_spin_slock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_spin_slock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_spin_slock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_slock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_slock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_slock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_slock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_clean_lock_of_netxen_adapter = 1; void ldv_spin_lock_tx_clean_lock_of_netxen_adapter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_tx_clean_lock_of_netxen_adapter == 1); ldv_assume(ldv_spin_tx_clean_lock_of_netxen_adapter == 1); ldv_spin_tx_clean_lock_of_netxen_adapter = 2; } return; } } void ldv_spin_unlock_tx_clean_lock_of_netxen_adapter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_tx_clean_lock_of_netxen_adapter == 2); ldv_assume(ldv_spin_tx_clean_lock_of_netxen_adapter == 2); ldv_spin_tx_clean_lock_of_netxen_adapter = 1; } return; } } int ldv_spin_trylock_tx_clean_lock_of_netxen_adapter(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_clean_lock_of_netxen_adapter == 1); ldv_assume(ldv_spin_tx_clean_lock_of_netxen_adapter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_clean_lock_of_netxen_adapter = 2; return (1); } } } void ldv_spin_unlock_wait_tx_clean_lock_of_netxen_adapter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_clean_lock_of_netxen_adapter == 1); ldv_assume(ldv_spin_tx_clean_lock_of_netxen_adapter == 1); } return; } } int ldv_spin_is_locked_tx_clean_lock_of_netxen_adapter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_clean_lock_of_netxen_adapter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_clean_lock_of_netxen_adapter(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_clean_lock_of_netxen_adapter(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_clean_lock_of_netxen_adapter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_clean_lock_of_netxen_adapter(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_clean_lock_of_netxen_adapter == 1); ldv_assume(ldv_spin_tx_clean_lock_of_netxen_adapter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_clean_lock_of_netxen_adapter = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_i_lock_of_inode == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_nx_host_rds_ring == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_res_counter == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_mem_lock_of_netxen_hardware_context == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_ptl == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_siglock_of_sighand_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_tx_clean_lock_of_netxen_adapter == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lock_of_nx_host_rds_ring == 2) { return (1); } else { } if (ldv_spin_lock_of_res_counter == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_mem_lock_of_netxen_hardware_context == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_sk_dst_lock_of_sock == 2) { return (1); } else { } if (ldv_spin_slock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_tx_clean_lock_of_netxen_adapter == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }