/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct device; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef long long __s64; typedef unsigned long long __u64; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef __kernel_long_t __kernel_suseconds_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __be16; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct mutex; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct arch_spinlock; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_15 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_15 __annonCompField7 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_17 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_16 { s64 lock ; struct __anonstruct____missing_field_name_17 __annonCompField8 ; }; typedef union __anonunion_arch_rwlock_t_16 arch_rwlock_t; typedef void (*ctor_fn_t)(void); struct net_device; struct file_operations; struct completion; struct pid; struct lockdep_map; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct timeval { __kernel_time_t tv_sec ; __kernel_suseconds_t tv_usec ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct inode; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct backing_dev_info; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_41 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_40 { struct __anonstruct____missing_field_name_41 __annonCompField22 ; }; struct lockref { union __anonunion____missing_field_name_40 __annonCompField23 ; }; struct nameidata; struct path; struct vfsmount; struct __anonstruct____missing_field_name_43 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_42 { struct __anonstruct____missing_field_name_43 __annonCompField24 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_42 __annonCompField25 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_44 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_44 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct __anonstruct_nodemask_t_45 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_45 nodemask_t; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct llist_node; struct llist_node { struct llist_node *next ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct __anonstruct_mm_context_t_112 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_112 mm_context_t; struct device_node; struct block_device; struct io_context; struct export_operations; struct iovec; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct cred; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_139 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_139 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_140 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_140 __annonCompField37 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space; struct writeback_control; union __anonunion_arg_142 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_141 { size_t written ; size_t count ; union __anonunion_arg_142 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_141 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_143 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_144 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; union __anonunion____missing_field_name_145 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_143 __annonCompField38 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_144 __annonCompField39 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_145 __annonCompField40 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_146 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_146 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_148 { struct list_head link ; int state ; }; union __anonunion_fl_u_147 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_148 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_147 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_151 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_152 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_150 { struct __anonstruct____missing_field_name_151 __annonCompField42 ; struct __anonstruct____missing_field_name_152 __annonCompField43 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_150 __annonCompField44 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; union __anonunion____missing_field_name_153 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_155 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_159 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_158 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_159 __annonCompField47 ; int units ; }; struct __anonstruct____missing_field_name_157 { union __anonunion____missing_field_name_158 __annonCompField48 ; atomic_t _count ; }; union __anonunion____missing_field_name_156 { unsigned long counters ; struct __anonstruct____missing_field_name_157 __annonCompField49 ; unsigned int active ; }; struct __anonstruct____missing_field_name_154 { union __anonunion____missing_field_name_155 __annonCompField46 ; union __anonunion____missing_field_name_156 __annonCompField50 ; }; struct __anonstruct____missing_field_name_161 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_160 { struct list_head lru ; struct __anonstruct____missing_field_name_161 __annonCompField52 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_162 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_153 __annonCompField45 ; struct __anonstruct____missing_field_name_154 __annonCompField51 ; union __anonunion____missing_field_name_160 __annonCompField53 ; union __anonunion____missing_field_name_162 __annonCompField54 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_164 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_163 { struct __anonstruct_linear_164 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_163 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct user_struct; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct exception_table_entry { int insn ; int fixup ; }; struct proc_dir_entry; struct nsproxy; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_173 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_173 __annonCompField58 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct mem_cgroup; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_175 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_176 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_174 { struct __anonstruct____missing_field_name_175 __annonCompField59 ; struct __anonstruct____missing_field_name_176 __annonCompField60 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_174 __annonCompField61 ; }; struct sk_buff; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_181 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_180 { __wsum csum ; struct __anonstruct____missing_field_name_181 __annonCompField63 ; }; union __anonunion____missing_field_name_182 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_183 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_180 __annonCompField64 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_182 __annonCompField65 ; __u32 secmark ; union __anonunion____missing_field_name_183 __annonCompField66 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct __anonstruct_sigset_t_184 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_184 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_186 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_187 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_188 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_189 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_190 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_191 { long _band ; int _fd ; }; struct __anonstruct__sigsys_192 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_185 { int _pad[28U] ; struct __anonstruct__kill_186 _kill ; struct __anonstruct__timer_187 _timer ; struct __anonstruct__rt_188 _rt ; struct __anonstruct__sigchld_189 _sigchld ; struct __anonstruct__sigfault_190 _sigfault ; struct __anonstruct__sigpoll_191 _sigpoll ; struct __anonstruct__sigsys_192 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_185 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_195 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_196 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_198 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_197 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_198 __annonCompField69 ; }; union __anonunion_type_data_199 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_201 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_200 { union __anonunion_payload_201 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_195 __annonCompField67 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_196 __annonCompField68 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_197 __annonCompField70 ; union __anonunion_type_data_199 type_data ; union __anonunion____missing_field_name_200 __annonCompField71 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; struct snd_card; struct snd_info_entry; struct snd_shutdown_f_ops; struct snd_mixer_oss; struct snd_card { int number ; char id[16U] ; char driver[16U] ; char shortname[32U] ; char longname[80U] ; char mixername[80U] ; char components[128U] ; struct module *module ; void *private_data ; void (*private_free)(struct snd_card * ) ; struct list_head devices ; unsigned int last_numid ; struct rw_semaphore controls_rwsem ; rwlock_t ctl_files_rwlock ; int controls_count ; int user_ctl_count ; struct list_head controls ; struct list_head ctl_files ; struct snd_info_entry *proc_root ; struct snd_info_entry *proc_id ; struct proc_dir_entry *proc_root_link ; struct list_head files_list ; struct snd_shutdown_f_ops *s_f_ops ; spinlock_t files_lock ; int shutdown ; int free_on_last_close ; wait_queue_head_t shutdown_sleep ; atomic_t refcount ; struct device *dev ; struct device *card_dev ; unsigned int power_state ; struct mutex power_lock ; wait_queue_head_t power_sleep ; struct snd_mixer_oss *mixer_oss ; int mixer_oss_change_count ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; typedef struct poll_table_struct poll_table; enum v4l2_buf_type { V4L2_BUF_TYPE_VIDEO_CAPTURE = 1, V4L2_BUF_TYPE_VIDEO_OUTPUT = 2, V4L2_BUF_TYPE_VIDEO_OVERLAY = 3, V4L2_BUF_TYPE_VBI_CAPTURE = 4, V4L2_BUF_TYPE_VBI_OUTPUT = 5, V4L2_BUF_TYPE_SLICED_VBI_CAPTURE = 6, V4L2_BUF_TYPE_SLICED_VBI_OUTPUT = 7, V4L2_BUF_TYPE_VIDEO_OUTPUT_OVERLAY = 8, V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE = 9, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE = 10, V4L2_BUF_TYPE_PRIVATE = 128 } ; enum v4l2_priority { V4L2_PRIORITY_UNSET = 0, V4L2_PRIORITY_BACKGROUND = 1, V4L2_PRIORITY_INTERACTIVE = 2, V4L2_PRIORITY_RECORD = 3, V4L2_PRIORITY_DEFAULT = 2 } ; struct v4l2_rect { __s32 left ; __s32 top ; __u32 width ; __u32 height ; }; struct v4l2_fract { __u32 numerator ; __u32 denominator ; }; struct v4l2_capability { __u8 driver[16U] ; __u8 card[32U] ; __u8 bus_info[32U] ; __u32 version ; __u32 capabilities ; __u32 device_caps ; __u32 reserved[3U] ; }; struct v4l2_pix_format { __u32 width ; __u32 height ; __u32 pixelformat ; __u32 field ; __u32 bytesperline ; __u32 sizeimage ; __u32 colorspace ; __u32 priv ; }; struct v4l2_fmtdesc { __u32 index ; __u32 type ; __u32 flags ; __u8 description[32U] ; __u32 pixelformat ; __u32 reserved[4U] ; }; struct v4l2_frmsize_discrete { __u32 width ; __u32 height ; }; struct v4l2_frmsize_stepwise { __u32 min_width ; __u32 max_width ; __u32 step_width ; __u32 min_height ; __u32 max_height ; __u32 step_height ; }; union __anonunion____missing_field_name_204 { struct v4l2_frmsize_discrete discrete ; struct v4l2_frmsize_stepwise stepwise ; }; struct v4l2_frmsizeenum { __u32 index ; __u32 pixel_format ; __u32 type ; union __anonunion____missing_field_name_204 __annonCompField73 ; __u32 reserved[2U] ; }; struct v4l2_frmival_stepwise { struct v4l2_fract min ; struct v4l2_fract max ; struct v4l2_fract step ; }; union __anonunion____missing_field_name_205 { struct v4l2_fract discrete ; struct v4l2_frmival_stepwise stepwise ; }; struct v4l2_frmivalenum { __u32 index ; __u32 pixel_format ; __u32 width ; __u32 height ; __u32 type ; union __anonunion____missing_field_name_205 __annonCompField74 ; __u32 reserved[2U] ; }; struct v4l2_timecode { __u32 type ; __u32 flags ; __u8 frames ; __u8 seconds ; __u8 minutes ; __u8 hours ; __u8 userbits[4U] ; }; struct v4l2_jpegcompression { int quality ; int APPn ; int APP_len ; char APP_data[60U] ; int COM_len ; char COM_data[60U] ; __u32 jpeg_markers ; }; struct v4l2_requestbuffers { __u32 count ; __u32 type ; __u32 memory ; __u32 reserved[2U] ; }; union __anonunion_m_206 { __u32 mem_offset ; unsigned long userptr ; __s32 fd ; }; struct v4l2_plane { __u32 bytesused ; __u32 length ; union __anonunion_m_206 m ; __u32 data_offset ; __u32 reserved[11U] ; }; union __anonunion_m_207 { __u32 offset ; unsigned long userptr ; struct v4l2_plane *planes ; __s32 fd ; }; struct v4l2_buffer { __u32 index ; __u32 type ; __u32 bytesused ; __u32 flags ; __u32 field ; struct timeval timestamp ; struct v4l2_timecode timecode ; __u32 sequence ; __u32 memory ; union __anonunion_m_207 m ; __u32 length ; __u32 reserved2 ; __u32 reserved ; }; struct v4l2_exportbuffer { __u32 type ; __u32 index ; __u32 plane ; __u32 flags ; __s32 fd ; __u32 reserved[11U] ; }; struct v4l2_framebuffer { __u32 capability ; __u32 flags ; void *base ; struct v4l2_pix_format fmt ; }; struct v4l2_clip { struct v4l2_rect c ; struct v4l2_clip *next ; }; struct v4l2_window { struct v4l2_rect w ; __u32 field ; __u32 chromakey ; struct v4l2_clip *clips ; __u32 clipcount ; void *bitmap ; __u8 global_alpha ; }; struct v4l2_captureparm { __u32 capability ; __u32 capturemode ; struct v4l2_fract timeperframe ; __u32 extendedmode ; __u32 readbuffers ; __u32 reserved[4U] ; }; struct v4l2_outputparm { __u32 capability ; __u32 outputmode ; struct v4l2_fract timeperframe ; __u32 extendedmode ; __u32 writebuffers ; __u32 reserved[4U] ; }; struct v4l2_cropcap { __u32 type ; struct v4l2_rect bounds ; struct v4l2_rect defrect ; struct v4l2_fract pixelaspect ; }; struct v4l2_crop { __u32 type ; struct v4l2_rect c ; }; struct v4l2_selection { __u32 type ; __u32 target ; __u32 flags ; struct v4l2_rect r ; __u32 reserved[9U] ; }; typedef __u64 v4l2_std_id; struct v4l2_bt_timings { __u32 width ; __u32 height ; __u32 interlaced ; __u32 polarities ; __u64 pixelclock ; __u32 hfrontporch ; __u32 hsync ; __u32 hbackporch ; __u32 vfrontporch ; __u32 vsync ; __u32 vbackporch ; __u32 il_vfrontporch ; __u32 il_vsync ; __u32 il_vbackporch ; __u32 standards ; __u32 flags ; __u32 reserved[14U] ; }; union __anonunion____missing_field_name_208 { struct v4l2_bt_timings bt ; __u32 reserved[32U] ; }; struct v4l2_dv_timings { __u32 type ; union __anonunion____missing_field_name_208 __annonCompField75 ; }; struct v4l2_enum_dv_timings { __u32 index ; __u32 reserved[3U] ; struct v4l2_dv_timings timings ; }; struct v4l2_bt_timings_cap { __u32 min_width ; __u32 max_width ; __u32 min_height ; __u32 max_height ; __u64 min_pixelclock ; __u64 max_pixelclock ; __u32 standards ; __u32 capabilities ; __u32 reserved[16U] ; }; union __anonunion____missing_field_name_209 { struct v4l2_bt_timings_cap bt ; __u32 raw_data[32U] ; }; struct v4l2_dv_timings_cap { __u32 type ; __u32 reserved[3U] ; union __anonunion____missing_field_name_209 __annonCompField76 ; }; struct v4l2_input { __u32 index ; __u8 name[32U] ; __u32 type ; __u32 audioset ; __u32 tuner ; v4l2_std_id std ; __u32 status ; __u32 capabilities ; __u32 reserved[3U] ; }; struct v4l2_output { __u32 index ; __u8 name[32U] ; __u32 type ; __u32 audioset ; __u32 modulator ; v4l2_std_id std ; __u32 capabilities ; __u32 reserved[3U] ; }; struct v4l2_control { __u32 id ; __s32 value ; }; union __anonunion____missing_field_name_210 { __s32 value ; __s64 value64 ; char *string ; }; struct v4l2_ext_control { __u32 id ; __u32 size ; __u32 reserved2[1U] ; union __anonunion____missing_field_name_210 __annonCompField77 ; }; struct v4l2_ext_controls { __u32 ctrl_class ; __u32 count ; __u32 error_idx ; __u32 reserved[2U] ; struct v4l2_ext_control *controls ; }; enum v4l2_ctrl_type { V4L2_CTRL_TYPE_INTEGER = 1, V4L2_CTRL_TYPE_BOOLEAN = 2, V4L2_CTRL_TYPE_MENU = 3, V4L2_CTRL_TYPE_BUTTON = 4, V4L2_CTRL_TYPE_INTEGER64 = 5, V4L2_CTRL_TYPE_CTRL_CLASS = 6, V4L2_CTRL_TYPE_STRING = 7, V4L2_CTRL_TYPE_BITMASK = 8, V4L2_CTRL_TYPE_INTEGER_MENU = 9 } ; struct v4l2_queryctrl { __u32 id ; __u32 type ; __u8 name[32U] ; __s32 minimum ; __s32 maximum ; __s32 step ; __s32 default_value ; __u32 flags ; __u32 reserved[2U] ; }; union __anonunion____missing_field_name_211 { __u8 name[32U] ; __s64 value ; }; struct v4l2_querymenu { __u32 id ; __u32 index ; union __anonunion____missing_field_name_211 __annonCompField78 ; __u32 reserved ; }; struct v4l2_tuner { __u32 index ; __u8 name[32U] ; __u32 type ; __u32 capability ; __u32 rangelow ; __u32 rangehigh ; __u32 rxsubchans ; __u32 audmode ; __s32 signal ; __s32 afc ; __u32 reserved[4U] ; }; struct v4l2_modulator { __u32 index ; __u8 name[32U] ; __u32 capability ; __u32 rangelow ; __u32 rangehigh ; __u32 txsubchans ; __u32 reserved[4U] ; }; struct v4l2_frequency { __u32 tuner ; __u32 type ; __u32 frequency ; __u32 reserved[8U] ; }; struct v4l2_frequency_band { __u32 tuner ; __u32 type ; __u32 index ; __u32 capability ; __u32 rangelow ; __u32 rangehigh ; __u32 modulation ; __u32 reserved[9U] ; }; struct v4l2_hw_freq_seek { __u32 tuner ; __u32 type ; __u32 seek_upward ; __u32 wrap_around ; __u32 spacing ; __u32 rangelow ; __u32 rangehigh ; __u32 reserved[5U] ; }; struct v4l2_audio { __u32 index ; __u8 name[32U] ; __u32 capability ; __u32 mode ; __u32 reserved[2U] ; }; struct v4l2_audioout { __u32 index ; __u8 name[32U] ; __u32 capability ; __u32 mode ; __u32 reserved[2U] ; }; struct v4l2_enc_idx_entry { __u64 offset ; __u64 pts ; __u32 length ; __u32 flags ; __u32 reserved[2U] ; }; struct v4l2_enc_idx { __u32 entries ; __u32 entries_cap ; __u32 reserved[4U] ; struct v4l2_enc_idx_entry entry[64U] ; }; struct __anonstruct_raw_213 { __u32 data[8U] ; }; union __anonunion____missing_field_name_212 { struct __anonstruct_raw_213 raw ; }; struct v4l2_encoder_cmd { __u32 cmd ; __u32 flags ; union __anonunion____missing_field_name_212 __annonCompField79 ; }; struct __anonstruct_stop_215 { __u64 pts ; }; struct __anonstruct_start_216 { __s32 speed ; __u32 format ; }; struct __anonstruct_raw_217 { __u32 data[16U] ; }; union __anonunion____missing_field_name_214 { struct __anonstruct_stop_215 stop ; struct __anonstruct_start_216 start ; struct __anonstruct_raw_217 raw ; }; struct v4l2_decoder_cmd { __u32 cmd ; __u32 flags ; union __anonunion____missing_field_name_214 __annonCompField80 ; }; struct v4l2_vbi_format { __u32 sampling_rate ; __u32 offset ; __u32 samples_per_line ; __u32 sample_format ; __s32 start[2U] ; __u32 count[2U] ; __u32 flags ; __u32 reserved[2U] ; }; struct v4l2_sliced_vbi_format { __u16 service_set ; __u16 service_lines[2U][24U] ; __u32 io_size ; __u32 reserved[2U] ; }; struct v4l2_sliced_vbi_cap { __u16 service_set ; __u16 service_lines[2U][24U] ; __u32 type ; __u32 reserved[3U] ; }; struct v4l2_sliced_vbi_data { __u32 id ; __u32 field ; __u32 line ; __u32 reserved ; __u8 data[48U] ; }; struct v4l2_plane_pix_format { __u32 sizeimage ; __u16 bytesperline ; __u16 reserved[7U] ; }; struct v4l2_pix_format_mplane { __u32 width ; __u32 height ; __u32 pixelformat ; __u32 field ; __u32 colorspace ; struct v4l2_plane_pix_format plane_fmt[8U] ; __u8 num_planes ; __u8 reserved[11U] ; }; union __anonunion_fmt_219 { struct v4l2_pix_format pix ; struct v4l2_pix_format_mplane pix_mp ; struct v4l2_window win ; struct v4l2_vbi_format vbi ; struct v4l2_sliced_vbi_format sliced ; __u8 raw_data[200U] ; }; struct v4l2_format { __u32 type ; union __anonunion_fmt_219 fmt ; }; union __anonunion_parm_220 { struct v4l2_captureparm capture ; struct v4l2_outputparm output ; __u8 raw_data[200U] ; }; struct v4l2_streamparm { __u32 type ; union __anonunion_parm_220 parm ; }; struct v4l2_event_subscription { __u32 type ; __u32 id ; __u32 flags ; __u32 reserved[5U] ; }; union __anonunion____missing_field_name_223 { __u32 addr ; char name[32U] ; }; struct v4l2_dbg_match { __u32 type ; union __anonunion____missing_field_name_223 __annonCompField83 ; }; struct v4l2_dbg_register { struct v4l2_dbg_match match ; __u32 size ; __u64 reg ; __u64 val ; }; struct v4l2_dbg_chip_info { struct v4l2_dbg_match match ; char name[32U] ; __u32 flags ; __u32 reserved[32U] ; }; struct v4l2_create_buffers { __u32 index ; __u32 count ; __u32 memory ; struct v4l2_format format ; __u32 reserved[8U] ; }; struct v4l2_fh; struct v4l2_ioctl_ops { int (*vidioc_querycap)(struct file * , void * , struct v4l2_capability * ) ; int (*vidioc_g_priority)(struct file * , void * , enum v4l2_priority * ) ; int (*vidioc_s_priority)(struct file * , void * , enum v4l2_priority ) ; int (*vidioc_enum_fmt_vid_cap)(struct file * , void * , struct v4l2_fmtdesc * ) ; int (*vidioc_enum_fmt_vid_overlay)(struct file * , void * , struct v4l2_fmtdesc * ) ; int (*vidioc_enum_fmt_vid_out)(struct file * , void * , struct v4l2_fmtdesc * ) ; int (*vidioc_enum_fmt_vid_cap_mplane)(struct file * , void * , struct v4l2_fmtdesc * ) ; int (*vidioc_enum_fmt_vid_out_mplane)(struct file * , void * , struct v4l2_fmtdesc * ) ; int (*vidioc_g_fmt_vid_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_g_fmt_vid_overlay)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_g_fmt_vid_out)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_g_fmt_vid_out_overlay)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_g_fmt_vbi_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_g_fmt_vbi_out)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_g_fmt_sliced_vbi_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_g_fmt_sliced_vbi_out)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_g_fmt_vid_cap_mplane)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_g_fmt_vid_out_mplane)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_vid_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_vid_overlay)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_vid_out)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_vid_out_overlay)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_vbi_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_vbi_out)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_sliced_vbi_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_sliced_vbi_out)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_vid_cap_mplane)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_s_fmt_vid_out_mplane)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_vid_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_vid_overlay)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_vid_out)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_vid_out_overlay)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_vbi_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_vbi_out)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_sliced_vbi_cap)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_sliced_vbi_out)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_vid_cap_mplane)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_try_fmt_vid_out_mplane)(struct file * , void * , struct v4l2_format * ) ; int (*vidioc_reqbufs)(struct file * , void * , struct v4l2_requestbuffers * ) ; int (*vidioc_querybuf)(struct file * , void * , struct v4l2_buffer * ) ; int (*vidioc_qbuf)(struct file * , void * , struct v4l2_buffer * ) ; int (*vidioc_expbuf)(struct file * , void * , struct v4l2_exportbuffer * ) ; int (*vidioc_dqbuf)(struct file * , void * , struct v4l2_buffer * ) ; int (*vidioc_create_bufs)(struct file * , void * , struct v4l2_create_buffers * ) ; int (*vidioc_prepare_buf)(struct file * , void * , struct v4l2_buffer * ) ; int (*vidioc_overlay)(struct file * , void * , unsigned int ) ; int (*vidioc_g_fbuf)(struct file * , void * , struct v4l2_framebuffer * ) ; int (*vidioc_s_fbuf)(struct file * , void * , struct v4l2_framebuffer const * ) ; int (*vidioc_streamon)(struct file * , void * , enum v4l2_buf_type ) ; int (*vidioc_streamoff)(struct file * , void * , enum v4l2_buf_type ) ; int (*vidioc_g_std)(struct file * , void * , v4l2_std_id * ) ; int (*vidioc_s_std)(struct file * , void * , v4l2_std_id ) ; int (*vidioc_querystd)(struct file * , void * , v4l2_std_id * ) ; int (*vidioc_enum_input)(struct file * , void * , struct v4l2_input * ) ; int (*vidioc_g_input)(struct file * , void * , unsigned int * ) ; int (*vidioc_s_input)(struct file * , void * , unsigned int ) ; int (*vidioc_enum_output)(struct file * , void * , struct v4l2_output * ) ; int (*vidioc_g_output)(struct file * , void * , unsigned int * ) ; int (*vidioc_s_output)(struct file * , void * , unsigned int ) ; int (*vidioc_queryctrl)(struct file * , void * , struct v4l2_queryctrl * ) ; int (*vidioc_g_ctrl)(struct file * , void * , struct v4l2_control * ) ; int (*vidioc_s_ctrl)(struct file * , void * , struct v4l2_control * ) ; int (*vidioc_g_ext_ctrls)(struct file * , void * , struct v4l2_ext_controls * ) ; int (*vidioc_s_ext_ctrls)(struct file * , void * , struct v4l2_ext_controls * ) ; int (*vidioc_try_ext_ctrls)(struct file * , void * , struct v4l2_ext_controls * ) ; int (*vidioc_querymenu)(struct file * , void * , struct v4l2_querymenu * ) ; int (*vidioc_enumaudio)(struct file * , void * , struct v4l2_audio * ) ; int (*vidioc_g_audio)(struct file * , void * , struct v4l2_audio * ) ; int (*vidioc_s_audio)(struct file * , void * , struct v4l2_audio const * ) ; int (*vidioc_enumaudout)(struct file * , void * , struct v4l2_audioout * ) ; int (*vidioc_g_audout)(struct file * , void * , struct v4l2_audioout * ) ; int (*vidioc_s_audout)(struct file * , void * , struct v4l2_audioout const * ) ; int (*vidioc_g_modulator)(struct file * , void * , struct v4l2_modulator * ) ; int (*vidioc_s_modulator)(struct file * , void * , struct v4l2_modulator const * ) ; int (*vidioc_cropcap)(struct file * , void * , struct v4l2_cropcap * ) ; int (*vidioc_g_crop)(struct file * , void * , struct v4l2_crop * ) ; int (*vidioc_s_crop)(struct file * , void * , struct v4l2_crop const * ) ; int (*vidioc_g_selection)(struct file * , void * , struct v4l2_selection * ) ; int (*vidioc_s_selection)(struct file * , void * , struct v4l2_selection * ) ; int (*vidioc_g_jpegcomp)(struct file * , void * , struct v4l2_jpegcompression * ) ; int (*vidioc_s_jpegcomp)(struct file * , void * , struct v4l2_jpegcompression const * ) ; int (*vidioc_g_enc_index)(struct file * , void * , struct v4l2_enc_idx * ) ; int (*vidioc_encoder_cmd)(struct file * , void * , struct v4l2_encoder_cmd * ) ; int (*vidioc_try_encoder_cmd)(struct file * , void * , struct v4l2_encoder_cmd * ) ; int (*vidioc_decoder_cmd)(struct file * , void * , struct v4l2_decoder_cmd * ) ; int (*vidioc_try_decoder_cmd)(struct file * , void * , struct v4l2_decoder_cmd * ) ; int (*vidioc_g_parm)(struct file * , void * , struct v4l2_streamparm * ) ; int (*vidioc_s_parm)(struct file * , void * , struct v4l2_streamparm * ) ; int (*vidioc_g_tuner)(struct file * , void * , struct v4l2_tuner * ) ; int (*vidioc_s_tuner)(struct file * , void * , struct v4l2_tuner const * ) ; int (*vidioc_g_frequency)(struct file * , void * , struct v4l2_frequency * ) ; int (*vidioc_s_frequency)(struct file * , void * , struct v4l2_frequency const * ) ; int (*vidioc_enum_freq_bands)(struct file * , void * , struct v4l2_frequency_band * ) ; int (*vidioc_g_sliced_vbi_cap)(struct file * , void * , struct v4l2_sliced_vbi_cap * ) ; int (*vidioc_log_status)(struct file * , void * ) ; int (*vidioc_s_hw_freq_seek)(struct file * , void * , struct v4l2_hw_freq_seek const * ) ; int (*vidioc_g_register)(struct file * , void * , struct v4l2_dbg_register * ) ; int (*vidioc_s_register)(struct file * , void * , struct v4l2_dbg_register const * ) ; int (*vidioc_g_chip_info)(struct file * , void * , struct v4l2_dbg_chip_info * ) ; int (*vidioc_enum_framesizes)(struct file * , void * , struct v4l2_frmsizeenum * ) ; int (*vidioc_enum_frameintervals)(struct file * , void * , struct v4l2_frmivalenum * ) ; int (*vidioc_s_dv_timings)(struct file * , void * , struct v4l2_dv_timings * ) ; int (*vidioc_g_dv_timings)(struct file * , void * , struct v4l2_dv_timings * ) ; int (*vidioc_query_dv_timings)(struct file * , void * , struct v4l2_dv_timings * ) ; int (*vidioc_enum_dv_timings)(struct file * , void * , struct v4l2_enum_dv_timings * ) ; int (*vidioc_dv_timings_cap)(struct file * , void * , struct v4l2_dv_timings_cap * ) ; int (*vidioc_subscribe_event)(struct v4l2_fh * , struct v4l2_event_subscription const * ) ; int (*vidioc_unsubscribe_event)(struct v4l2_fh * , struct v4l2_event_subscription const * ) ; long (*vidioc_default)(struct file * , void * , bool , unsigned int , void * ) ; }; struct video_device; struct media_pipeline { }; struct media_pad; struct media_link { struct media_pad *source ; struct media_pad *sink ; struct media_link *reverse ; unsigned long flags ; }; struct media_entity; struct media_pad { struct media_entity *entity ; u16 index ; unsigned long flags ; }; struct media_entity_operations { int (*link_setup)(struct media_entity * , struct media_pad const * , struct media_pad const * , u32 ) ; int (*link_validate)(struct media_link * ) ; }; struct media_device; struct __anonstruct_v4l_229 { u32 major ; u32 minor ; }; struct __anonstruct_fb_230 { u32 major ; u32 minor ; }; struct __anonstruct_alsa_231 { u32 card ; u32 device ; u32 subdevice ; }; union __anonunion_info_228 { struct __anonstruct_v4l_229 v4l ; struct __anonstruct_fb_230 fb ; struct __anonstruct_alsa_231 alsa ; int dvb ; }; struct media_entity { struct list_head list ; struct media_device *parent ; u32 id ; char const *name ; u32 type ; u32 revision ; unsigned long flags ; u32 group_id ; u16 num_pads ; u16 num_links ; u16 num_backlinks ; u16 max_links ; struct media_pad *pads ; struct media_link *links ; struct media_entity_operations const *ops ; int stream_count ; int use_count ; struct media_pipeline *pipe ; union __anonunion_info_228 info ; }; struct v4l2_device; struct v4l2_ctrl_handler; struct v4l2_prio_state { atomic_t prios[4U] ; }; struct v4l2_file_operations { struct module *owner ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*ioctl)(struct file * , unsigned int , unsigned long ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl32)(struct file * , unsigned int , unsigned long ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct file * ) ; int (*release)(struct file * ) ; }; struct vb2_queue; struct video_device { struct media_entity entity ; struct v4l2_file_operations const *fops ; struct device dev ; struct cdev *cdev ; struct v4l2_device *v4l2_dev ; struct device *dev_parent ; struct v4l2_ctrl_handler *ctrl_handler ; struct vb2_queue *queue ; struct v4l2_prio_state *prio ; char name[32U] ; int vfl_type ; int vfl_dir ; int minor ; u16 num ; unsigned long flags ; int index ; spinlock_t fh_lock ; struct list_head fh_list ; int debug ; v4l2_std_id tvnorms ; void (*release)(struct video_device * ) ; struct v4l2_ioctl_ops const *ioctl_ops ; unsigned long valid_ioctls[3U] ; unsigned long disable_locking[3U] ; struct mutex *lock ; }; struct v4l2_subdev; struct v4l2_subdev_ops; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct v4l2_priv_tun_config { int tuner ; void *priv ; }; struct media_file_operations { struct module *owner ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*open)(struct file * ) ; int (*release)(struct file * ) ; }; struct media_devnode { struct media_file_operations const *fops ; struct device dev ; struct cdev cdev ; struct device *parent ; int minor ; unsigned long flags ; void (*release)(struct media_devnode * ) ; }; struct media_device { struct device *dev ; struct media_devnode devnode ; char model[32U] ; char serial[40U] ; char bus_info[32U] ; u32 hw_revision ; u32 driver_version ; u32 entity_id ; struct list_head entities ; spinlock_t lock ; struct mutex graph_mutex ; int (*link_notify)(struct media_link * , u32 , unsigned int ) ; }; enum v4l2_mbus_pixelcode { V4L2_MBUS_FMT_FIXED = 1, V4L2_MBUS_FMT_RGB444_2X8_PADHI_BE = 4097, V4L2_MBUS_FMT_RGB444_2X8_PADHI_LE = 4098, V4L2_MBUS_FMT_RGB555_2X8_PADHI_BE = 4099, V4L2_MBUS_FMT_RGB555_2X8_PADHI_LE = 4100, V4L2_MBUS_FMT_BGR565_2X8_BE = 4101, V4L2_MBUS_FMT_BGR565_2X8_LE = 4102, V4L2_MBUS_FMT_RGB565_2X8_BE = 4103, V4L2_MBUS_FMT_RGB565_2X8_LE = 4104, V4L2_MBUS_FMT_RGB666_1X18 = 4105, V4L2_MBUS_FMT_RGB888_1X24 = 4106, V4L2_MBUS_FMT_RGB888_2X12_BE = 4107, V4L2_MBUS_FMT_RGB888_2X12_LE = 4108, V4L2_MBUS_FMT_ARGB8888_1X32 = 4109, V4L2_MBUS_FMT_Y8_1X8 = 8193, V4L2_MBUS_FMT_UV8_1X8 = 8213, V4L2_MBUS_FMT_UYVY8_1_5X8 = 8194, V4L2_MBUS_FMT_VYUY8_1_5X8 = 8195, V4L2_MBUS_FMT_YUYV8_1_5X8 = 8196, V4L2_MBUS_FMT_YVYU8_1_5X8 = 8197, V4L2_MBUS_FMT_UYVY8_2X8 = 8198, V4L2_MBUS_FMT_VYUY8_2X8 = 8199, V4L2_MBUS_FMT_YUYV8_2X8 = 8200, V4L2_MBUS_FMT_YVYU8_2X8 = 8201, V4L2_MBUS_FMT_Y10_1X10 = 8202, V4L2_MBUS_FMT_YUYV10_2X10 = 8203, V4L2_MBUS_FMT_YVYU10_2X10 = 8204, V4L2_MBUS_FMT_Y12_1X12 = 8211, V4L2_MBUS_FMT_UYVY8_1X16 = 8207, V4L2_MBUS_FMT_VYUY8_1X16 = 8208, V4L2_MBUS_FMT_YUYV8_1X16 = 8209, V4L2_MBUS_FMT_YVYU8_1X16 = 8210, V4L2_MBUS_FMT_YDYUYDYV8_1X16 = 8212, V4L2_MBUS_FMT_YUYV10_1X20 = 8205, V4L2_MBUS_FMT_YVYU10_1X20 = 8206, V4L2_MBUS_FMT_YUV10_1X30 = 8214, V4L2_MBUS_FMT_AYUV8_1X32 = 8215, V4L2_MBUS_FMT_SBGGR8_1X8 = 12289, V4L2_MBUS_FMT_SGBRG8_1X8 = 12307, V4L2_MBUS_FMT_SGRBG8_1X8 = 12290, V4L2_MBUS_FMT_SRGGB8_1X8 = 12308, V4L2_MBUS_FMT_SBGGR10_ALAW8_1X8 = 12309, V4L2_MBUS_FMT_SGBRG10_ALAW8_1X8 = 12310, V4L2_MBUS_FMT_SGRBG10_ALAW8_1X8 = 12311, V4L2_MBUS_FMT_SRGGB10_ALAW8_1X8 = 12312, V4L2_MBUS_FMT_SBGGR10_DPCM8_1X8 = 12299, V4L2_MBUS_FMT_SGBRG10_DPCM8_1X8 = 12300, V4L2_MBUS_FMT_SGRBG10_DPCM8_1X8 = 12297, V4L2_MBUS_FMT_SRGGB10_DPCM8_1X8 = 12301, V4L2_MBUS_FMT_SBGGR10_2X8_PADHI_BE = 12291, V4L2_MBUS_FMT_SBGGR10_2X8_PADHI_LE = 12292, V4L2_MBUS_FMT_SBGGR10_2X8_PADLO_BE = 12293, V4L2_MBUS_FMT_SBGGR10_2X8_PADLO_LE = 12294, V4L2_MBUS_FMT_SBGGR10_1X10 = 12295, V4L2_MBUS_FMT_SGBRG10_1X10 = 12302, V4L2_MBUS_FMT_SGRBG10_1X10 = 12298, V4L2_MBUS_FMT_SRGGB10_1X10 = 12303, V4L2_MBUS_FMT_SBGGR12_1X12 = 12296, V4L2_MBUS_FMT_SGBRG12_1X12 = 12304, V4L2_MBUS_FMT_SGRBG12_1X12 = 12305, V4L2_MBUS_FMT_SRGGB12_1X12 = 12306, V4L2_MBUS_FMT_JPEG_1X8 = 16385, V4L2_MBUS_FMT_S5C_UYVY_JPEG_1X8 = 20481, V4L2_MBUS_FMT_AHSV8888_1X32 = 24577 } ; struct v4l2_mbus_framefmt { __u32 width ; __u32 height ; __u32 code ; __u32 field ; __u32 colorspace ; __u32 reserved[7U] ; }; struct v4l2_subdev_format { __u32 which ; __u32 pad ; struct v4l2_mbus_framefmt format ; __u32 reserved[8U] ; }; struct v4l2_subdev_crop { __u32 which ; __u32 pad ; struct v4l2_rect rect ; __u32 reserved[8U] ; }; struct v4l2_subdev_mbus_code_enum { __u32 pad ; __u32 index ; __u32 code ; __u32 reserved[9U] ; }; struct v4l2_subdev_frame_size_enum { __u32 index ; __u32 pad ; __u32 code ; __u32 min_width ; __u32 max_width ; __u32 min_height ; __u32 max_height ; __u32 reserved[9U] ; }; struct v4l2_subdev_frame_interval { __u32 pad ; struct v4l2_fract interval ; __u32 reserved[9U] ; }; struct v4l2_subdev_frame_interval_enum { __u32 index ; __u32 pad ; __u32 code ; __u32 width ; __u32 height ; struct v4l2_fract interval ; __u32 reserved[9U] ; }; struct v4l2_subdev_selection { __u32 which ; __u32 pad ; __u32 target ; __u32 flags ; struct v4l2_rect r ; __u32 reserved[8U] ; }; struct v4l2_subdev_edid { __u32 pad ; __u32 start_block ; __u32 blocks ; __u32 reserved[5U] ; __u8 *edid ; }; struct v4l2_async_notifier; enum v4l2_async_match_type { V4L2_ASYNC_MATCH_CUSTOM = 0, V4L2_ASYNC_MATCH_DEVNAME = 1, V4L2_ASYNC_MATCH_I2C = 2, V4L2_ASYNC_MATCH_OF = 3 } ; struct __anonstruct_of_237 { struct device_node const *node ; }; struct __anonstruct_device_name_238 { char const *name ; }; struct __anonstruct_i2c_239 { int adapter_id ; unsigned short address ; }; struct __anonstruct_custom_240 { bool (*match)(struct device * , struct v4l2_async_subdev * ) ; void *priv ; }; union __anonunion_match_236 { struct __anonstruct_of_237 of ; struct __anonstruct_device_name_238 device_name ; struct __anonstruct_i2c_239 i2c ; struct __anonstruct_custom_240 custom ; }; struct v4l2_async_subdev { enum v4l2_async_match_type match_type ; union __anonunion_match_236 match ; struct list_head list ; }; struct v4l2_async_notifier { unsigned int num_subdevs ; struct v4l2_async_subdev **subdevs ; struct v4l2_device *v4l2_dev ; struct list_head waiting ; struct list_head done ; struct list_head list ; int (*bound)(struct v4l2_async_notifier * , struct v4l2_subdev * , struct v4l2_async_subdev * ) ; int (*complete)(struct v4l2_async_notifier * ) ; void (*unbind)(struct v4l2_async_notifier * , struct v4l2_subdev * , struct v4l2_async_subdev * ) ; }; struct v4l2_m2m_ctx; struct v4l2_fh { struct list_head list ; struct video_device *vdev ; struct v4l2_ctrl_handler *ctrl_handler ; enum v4l2_priority prio ; wait_queue_head_t wait ; struct list_head subscribed ; struct list_head available ; unsigned int navailable ; u32 sequence ; struct v4l2_m2m_ctx *m2m_ctx ; }; enum v4l2_mbus_type { V4L2_MBUS_PARALLEL = 0, V4L2_MBUS_BT656 = 1, V4L2_MBUS_CSI2 = 2 } ; struct v4l2_mbus_config { enum v4l2_mbus_type type ; unsigned int flags ; }; struct v4l2_subdev_fh; struct tuner_setup; struct v4l2_mbus_frame_desc; struct v4l2_decode_vbi_line { u32 is_second_field ; u8 *p ; u32 line ; u32 type ; }; struct v4l2_subdev_io_pin_config { u32 flags ; u8 pin ; u8 function ; u8 value ; u8 strength ; }; struct v4l2_subdev_core_ops { int (*log_status)(struct v4l2_subdev * ) ; int (*s_io_pin_config)(struct v4l2_subdev * , size_t , struct v4l2_subdev_io_pin_config * ) ; int (*init)(struct v4l2_subdev * , u32 ) ; int (*load_fw)(struct v4l2_subdev * ) ; int (*reset)(struct v4l2_subdev * , u32 ) ; int (*s_gpio)(struct v4l2_subdev * , u32 ) ; int (*queryctrl)(struct v4l2_subdev * , struct v4l2_queryctrl * ) ; int (*g_ctrl)(struct v4l2_subdev * , struct v4l2_control * ) ; int (*s_ctrl)(struct v4l2_subdev * , struct v4l2_control * ) ; int (*g_ext_ctrls)(struct v4l2_subdev * , struct v4l2_ext_controls * ) ; int (*s_ext_ctrls)(struct v4l2_subdev * , struct v4l2_ext_controls * ) ; int (*try_ext_ctrls)(struct v4l2_subdev * , struct v4l2_ext_controls * ) ; int (*querymenu)(struct v4l2_subdev * , struct v4l2_querymenu * ) ; int (*g_std)(struct v4l2_subdev * , v4l2_std_id * ) ; int (*s_std)(struct v4l2_subdev * , v4l2_std_id ) ; long (*ioctl)(struct v4l2_subdev * , unsigned int , void * ) ; int (*g_register)(struct v4l2_subdev * , struct v4l2_dbg_register * ) ; int (*s_register)(struct v4l2_subdev * , struct v4l2_dbg_register const * ) ; int (*s_power)(struct v4l2_subdev * , int ) ; int (*interrupt_service_routine)(struct v4l2_subdev * , u32 , bool * ) ; int (*subscribe_event)(struct v4l2_subdev * , struct v4l2_fh * , struct v4l2_event_subscription * ) ; int (*unsubscribe_event)(struct v4l2_subdev * , struct v4l2_fh * , struct v4l2_event_subscription * ) ; }; struct v4l2_subdev_tuner_ops { int (*s_radio)(struct v4l2_subdev * ) ; int (*s_frequency)(struct v4l2_subdev * , struct v4l2_frequency const * ) ; int (*g_frequency)(struct v4l2_subdev * , struct v4l2_frequency * ) ; int (*g_tuner)(struct v4l2_subdev * , struct v4l2_tuner * ) ; int (*s_tuner)(struct v4l2_subdev * , struct v4l2_tuner const * ) ; int (*g_modulator)(struct v4l2_subdev * , struct v4l2_modulator * ) ; int (*s_modulator)(struct v4l2_subdev * , struct v4l2_modulator const * ) ; int (*s_type_addr)(struct v4l2_subdev * , struct tuner_setup * ) ; int (*s_config)(struct v4l2_subdev * , struct v4l2_priv_tun_config const * ) ; }; struct v4l2_subdev_audio_ops { int (*s_clock_freq)(struct v4l2_subdev * , u32 ) ; int (*s_i2s_clock_freq)(struct v4l2_subdev * , u32 ) ; int (*s_routing)(struct v4l2_subdev * , u32 , u32 , u32 ) ; int (*s_stream)(struct v4l2_subdev * , int ) ; }; struct v4l2_mbus_frame_desc_entry { u16 flags ; u32 pixelcode ; u32 length ; }; struct v4l2_mbus_frame_desc { struct v4l2_mbus_frame_desc_entry entry[4U] ; unsigned short num_entries ; }; struct v4l2_subdev_video_ops { int (*s_routing)(struct v4l2_subdev * , u32 , u32 , u32 ) ; int (*s_crystal_freq)(struct v4l2_subdev * , u32 , u32 ) ; int (*s_std_output)(struct v4l2_subdev * , v4l2_std_id ) ; int (*g_std_output)(struct v4l2_subdev * , v4l2_std_id * ) ; int (*querystd)(struct v4l2_subdev * , v4l2_std_id * ) ; int (*g_tvnorms_output)(struct v4l2_subdev * , v4l2_std_id * ) ; int (*g_input_status)(struct v4l2_subdev * , u32 * ) ; int (*s_stream)(struct v4l2_subdev * , int ) ; int (*cropcap)(struct v4l2_subdev * , struct v4l2_cropcap * ) ; int (*g_crop)(struct v4l2_subdev * , struct v4l2_crop * ) ; int (*s_crop)(struct v4l2_subdev * , struct v4l2_crop const * ) ; int (*g_parm)(struct v4l2_subdev * , struct v4l2_streamparm * ) ; int (*s_parm)(struct v4l2_subdev * , struct v4l2_streamparm * ) ; int (*g_frame_interval)(struct v4l2_subdev * , struct v4l2_subdev_frame_interval * ) ; int (*s_frame_interval)(struct v4l2_subdev * , struct v4l2_subdev_frame_interval * ) ; int (*enum_framesizes)(struct v4l2_subdev * , struct v4l2_frmsizeenum * ) ; int (*enum_frameintervals)(struct v4l2_subdev * , struct v4l2_frmivalenum * ) ; int (*s_dv_timings)(struct v4l2_subdev * , struct v4l2_dv_timings * ) ; int (*g_dv_timings)(struct v4l2_subdev * , struct v4l2_dv_timings * ) ; int (*enum_dv_timings)(struct v4l2_subdev * , struct v4l2_enum_dv_timings * ) ; int (*query_dv_timings)(struct v4l2_subdev * , struct v4l2_dv_timings * ) ; int (*dv_timings_cap)(struct v4l2_subdev * , struct v4l2_dv_timings_cap * ) ; int (*enum_mbus_fmt)(struct v4l2_subdev * , unsigned int , enum v4l2_mbus_pixelcode * ) ; int (*enum_mbus_fsizes)(struct v4l2_subdev * , struct v4l2_frmsizeenum * ) ; int (*g_mbus_fmt)(struct v4l2_subdev * , struct v4l2_mbus_framefmt * ) ; int (*try_mbus_fmt)(struct v4l2_subdev * , struct v4l2_mbus_framefmt * ) ; int (*s_mbus_fmt)(struct v4l2_subdev * , struct v4l2_mbus_framefmt * ) ; int (*g_mbus_config)(struct v4l2_subdev * , struct v4l2_mbus_config * ) ; int (*s_mbus_config)(struct v4l2_subdev * , struct v4l2_mbus_config const * ) ; int (*s_rx_buffer)(struct v4l2_subdev * , void * , unsigned int * ) ; }; struct v4l2_subdev_vbi_ops { int (*decode_vbi_line)(struct v4l2_subdev * , struct v4l2_decode_vbi_line * ) ; int (*s_vbi_data)(struct v4l2_subdev * , struct v4l2_sliced_vbi_data const * ) ; int (*g_vbi_data)(struct v4l2_subdev * , struct v4l2_sliced_vbi_data * ) ; int (*g_sliced_vbi_cap)(struct v4l2_subdev * , struct v4l2_sliced_vbi_cap * ) ; int (*s_raw_fmt)(struct v4l2_subdev * , struct v4l2_vbi_format * ) ; int (*g_sliced_fmt)(struct v4l2_subdev * , struct v4l2_sliced_vbi_format * ) ; int (*s_sliced_fmt)(struct v4l2_subdev * , struct v4l2_sliced_vbi_format * ) ; }; struct v4l2_subdev_sensor_ops { int (*g_skip_top_lines)(struct v4l2_subdev * , u32 * ) ; int (*g_skip_frames)(struct v4l2_subdev * , u32 * ) ; }; enum v4l2_subdev_ir_mode { V4L2_SUBDEV_IR_MODE_PULSE_WIDTH = 0 } ; struct v4l2_subdev_ir_parameters { unsigned int bytes_per_data_element ; enum v4l2_subdev_ir_mode mode ; bool enable ; bool interrupt_enable ; bool shutdown ; bool modulation ; u32 max_pulse_width ; unsigned int carrier_freq ; unsigned int duty_cycle ; bool invert_level ; bool invert_carrier_sense ; u32 noise_filter_min_width ; unsigned int carrier_range_lower ; unsigned int carrier_range_upper ; u32 resolution ; }; struct v4l2_subdev_ir_ops { int (*rx_read)(struct v4l2_subdev * , u8 * , size_t , ssize_t * ) ; int (*rx_g_parameters)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) ; int (*rx_s_parameters)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) ; int (*tx_write)(struct v4l2_subdev * , u8 * , size_t , ssize_t * ) ; int (*tx_g_parameters)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) ; int (*tx_s_parameters)(struct v4l2_subdev * , struct v4l2_subdev_ir_parameters * ) ; }; struct v4l2_subdev_pad_ops { int (*enum_mbus_code)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_mbus_code_enum * ) ; int (*enum_frame_size)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_frame_size_enum * ) ; int (*enum_frame_interval)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_frame_interval_enum * ) ; int (*get_fmt)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_format * ) ; int (*set_fmt)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_format * ) ; int (*set_crop)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_crop * ) ; int (*get_crop)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_crop * ) ; int (*get_selection)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_selection * ) ; int (*set_selection)(struct v4l2_subdev * , struct v4l2_subdev_fh * , struct v4l2_subdev_selection * ) ; int (*get_edid)(struct v4l2_subdev * , struct v4l2_subdev_edid * ) ; int (*set_edid)(struct v4l2_subdev * , struct v4l2_subdev_edid * ) ; int (*link_validate)(struct v4l2_subdev * , struct media_link * , struct v4l2_subdev_format * , struct v4l2_subdev_format * ) ; int (*get_frame_desc)(struct v4l2_subdev * , unsigned int , struct v4l2_mbus_frame_desc * ) ; int (*set_frame_desc)(struct v4l2_subdev * , unsigned int , struct v4l2_mbus_frame_desc * ) ; }; struct v4l2_subdev_ops { struct v4l2_subdev_core_ops const *core ; struct v4l2_subdev_tuner_ops const *tuner ; struct v4l2_subdev_audio_ops const *audio ; struct v4l2_subdev_video_ops const *video ; struct v4l2_subdev_vbi_ops const *vbi ; struct v4l2_subdev_ir_ops const *ir ; struct v4l2_subdev_sensor_ops const *sensor ; struct v4l2_subdev_pad_ops const *pad ; }; struct v4l2_subdev_internal_ops { int (*registered)(struct v4l2_subdev * ) ; void (*unregistered)(struct v4l2_subdev * ) ; int (*open)(struct v4l2_subdev * , struct v4l2_subdev_fh * ) ; int (*close)(struct v4l2_subdev * , struct v4l2_subdev_fh * ) ; }; struct regulator_bulk_data; struct v4l2_subdev_platform_data { struct regulator_bulk_data *regulators ; int num_regulators ; void *host_priv ; }; struct v4l2_subdev { struct media_entity entity ; struct list_head list ; struct module *owner ; u32 flags ; struct v4l2_device *v4l2_dev ; struct v4l2_subdev_ops const *ops ; struct v4l2_subdev_internal_ops const *internal_ops ; struct v4l2_ctrl_handler *ctrl_handler ; char name[32U] ; u32 grp_id ; void *dev_priv ; void *host_priv ; struct video_device *devnode ; struct device *dev ; struct list_head async_list ; struct v4l2_async_subdev *asd ; struct v4l2_async_notifier *notifier ; struct v4l2_subdev_platform_data *pdata ; }; struct __anonstruct_pad_241 { struct v4l2_mbus_framefmt try_fmt ; struct v4l2_rect try_crop ; struct v4l2_rect try_compose ; }; struct v4l2_subdev_fh { struct v4l2_fh vfh ; struct __anonstruct_pad_241 *pad ; }; struct v4l2_device { struct device *dev ; struct media_device *mdev ; struct list_head subdevs ; spinlock_t lock ; char name[36U] ; void (*notify)(struct v4l2_subdev * , unsigned int , void * ) ; struct v4l2_ctrl_handler *ctrl_handler ; struct v4l2_prio_state prio ; struct mutex ioctl_lock ; struct kref ref ; void (*release)(struct v4l2_device * ) ; }; struct v4l2_ctrl_helper; struct v4l2_ctrl; struct v4l2_ctrl_ops { int (*g_volatile_ctrl)(struct v4l2_ctrl * ) ; int (*try_ctrl)(struct v4l2_ctrl * ) ; int (*s_ctrl)(struct v4l2_ctrl * ) ; }; union __anonunion____missing_field_name_242 { u32 step ; u32 menu_skip_mask ; }; union __anonunion____missing_field_name_243 { char const * const *qmenu ; s64 const *qmenu_int ; }; union __anonunion_cur_244 { s32 val ; s64 val64 ; char *string ; }; union __anonunion____missing_field_name_245 { s32 val ; s64 val64 ; char *string ; }; struct v4l2_ctrl { struct list_head node ; struct list_head ev_subs ; struct v4l2_ctrl_handler *handler ; struct v4l2_ctrl **cluster ; unsigned int ncontrols ; unsigned int done : 1 ; unsigned int is_new : 1 ; unsigned int is_private : 1 ; unsigned int is_auto : 1 ; unsigned int has_volatiles : 1 ; unsigned int call_notify : 1 ; unsigned int manual_mode_value : 8 ; struct v4l2_ctrl_ops const *ops ; u32 id ; char const *name ; enum v4l2_ctrl_type type ; s32 minimum ; s32 maximum ; s32 default_value ; union __anonunion____missing_field_name_242 __annonCompField85 ; union __anonunion____missing_field_name_243 __annonCompField86 ; unsigned long flags ; union __anonunion_cur_244 cur ; union __anonunion____missing_field_name_245 __annonCompField87 ; void *priv ; }; struct v4l2_ctrl_ref { struct list_head node ; struct v4l2_ctrl_ref *next ; struct v4l2_ctrl *ctrl ; struct v4l2_ctrl_helper *helper ; }; struct v4l2_ctrl_handler { struct mutex _lock ; struct mutex *lock ; struct list_head ctrls ; struct list_head ctrl_refs ; struct v4l2_ctrl_ref *cached ; struct v4l2_ctrl_ref **buckets ; void (*notify)(struct v4l2_ctrl * , void * ) ; void *notify_priv ; u16 nr_of_buckets ; int error ; }; struct __anonstruct_groupdatabuff_247 { u8 buff[8U] ; }; struct __anonstruct_groupgeneral_248 { u16 pidata ; u8 blk_b[2U] ; u8 blk_c[2U] ; u8 blk_d[2U] ; }; struct __anonstruct_group0A_249 { u16 pidata ; u8 blk_b[2U] ; u8 af[2U] ; u8 ps[2U] ; }; struct __anonstruct_group0B_250 { u16 pi[2U] ; u8 blk_b[2U] ; u8 ps[2U] ; }; union __anonunion_data_246 { struct __anonstruct_groupdatabuff_247 groupdatabuff ; struct __anonstruct_groupgeneral_248 groupgeneral ; struct __anonstruct_group0A_249 group0A ; struct __anonstruct_group0B_250 group0B ; }; struct fm_rdsdata_format { union __anonunion_data_246 data ; }; struct region_info { u32 chanl_space ; u32 bot_freq ; u32 top_freq ; u8 fm_band ; }; struct fmdev; typedef void (*int_handler_prototype)(struct fmdev * ); struct fm_irq { u8 stage ; u16 flag ; u16 mask ; struct timer_list timer ; u8 retry ; int_handler_prototype (**handlers)(struct fmdev * ) ; }; struct fm_rds { u8 flag ; u8 last_blk_idx ; wait_queue_head_t read_queue ; u32 buf_size ; u32 wr_idx ; u32 rd_idx ; u8 *buff ; }; struct tuned_station_info { u16 picode ; u32 af_cache[25U] ; u8 afcache_size ; u8 af_list_max ; }; struct fm_rx { struct region_info region ; u32 freq ; u8 mute_mode ; u8 deemphasis_mode ; u8 rf_depend_mute ; u16 volume ; u16 rssi_threshold ; u8 afjump_idx ; u32 freq_before_jump ; u8 rds_mode ; u8 af_mode ; struct tuned_station_info stat_info ; struct fm_rds rds ; }; struct tx_rds { u8 text_type ; u8 text[25U] ; u8 flag ; u32 af_freq ; }; struct fmtx_data { u8 pwr_lvl ; u8 xmit_state ; u8 audio_io ; u8 region ; u16 aud_mode ; u32 preemph ; u32 tx_frq ; struct tx_rds rds ; }; struct fmdev { struct video_device *radio_dev ; struct v4l2_device v4l2_dev ; struct snd_card *card ; u16 asci_id ; spinlock_t rds_buff_lock ; spinlock_t resp_skb_lock ; long flag ; u8 streg_cbdata ; struct sk_buff_head rx_q ; struct tasklet_struct rx_task ; struct sk_buff_head tx_q ; struct tasklet_struct tx_task ; unsigned long last_tx_jiffies ; atomic_t tx_cnt ; struct sk_buff *resp_skb ; struct completion maintask_comp ; u8 pre_op ; struct completion *resp_comp ; struct fm_irq irq_info ; u8 curr_fmmode ; struct fm_rx rx ; struct fmtx_data tx_data ; struct v4l2_ctrl_handler ctrl_handler ; struct mutex mutex ; }; struct fm_skb_cb { __u8 fm_op ; struct completion *completion ; }; struct fm_cmd_msg_hdr { __u8 hdr ; __u8 len ; __u8 op ; __u8 rd_wr ; __u8 dlen ; }; struct fm_event_msg_hdr { __u8 header ; __u8 len ; __u8 status ; __u8 num_fm_hci_cmds ; __u8 op ; __u8 rd_wr ; __u8 dlen ; }; enum proto_type { ST_BT = 0, ST_FM = 1, ST_GPS = 2, ST_MAX_CHANNELS = 16 } ; struct st_proto_s { enum proto_type type ; long (*recv)(void * , struct sk_buff * ) ; unsigned char (*match_packet)(unsigned char const * ) ; void (*reg_complete_cb)(void * , char ) ; long (*write)(struct sk_buff * ) ; void *priv_data ; unsigned char chnl_id ; unsigned short max_frame_size ; unsigned char hdr_len ; unsigned char offset_len_in_hdr ; unsigned char len_size ; unsigned char reserve ; }; struct bts_header { u32 magic ; u32 version ; u8 future[24U] ; u8 actions[0U] ; }; struct bts_action { u16 type ; u16 size ; u8 data[0U] ; }; struct bts_action_delay { u32 msec ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; enum hrtimer_restart; enum hrtimer_restart; enum hrtimer_restart; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; typedef _Bool ldv_set; long ldv__builtin_expect(long exp , long c ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; void ldv_check_final_state(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; int ldv_undef_int(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void *external_allocated_data(void) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } extern int printk(char const * , ...) ; extern void might_fault(void) ; extern int sprintf(char * , char const * , ...) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_dec(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; decl %0": "+m" (v->counter)); return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern unsigned long _raw_spin_lock_irqsave(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern long prepare_to_wait_event(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; __inline static void init_completion(struct completion *x ) { struct lock_class_key __key ; { { x->done = 0U; __init_waitqueue_head(& x->wait, "&x->wait", & __key); } return; } } extern unsigned long wait_for_completion_timeout(struct completion * , unsigned long ) ; extern void complete(struct completion * ) ; extern unsigned long volatile jiffies ; extern unsigned int jiffies_to_msecs(unsigned long const ) ; extern unsigned long msecs_to_jiffies(unsigned int const ) ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern int del_timer(struct timer_list * ) ; static int ldv_del_timer_25(struct timer_list *ldv_func_arg1 ) ; extern int mod_timer(struct timer_list * , unsigned long ) ; static int ldv_mod_timer_24(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_26(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern unsigned long _copy_to_user(void * , void const * , unsigned int ) ; extern void __copy_to_user_overflow(void) ; __inline static unsigned long copy_to_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { __copy_to_user_overflow(); } } } return (n); } } extern int request_firmware(struct firmware const ** , char const * , struct device * ) ; extern void release_firmware(struct firmware const * ) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; extern void kfree(void const * ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern void kfree_skb(struct sk_buff * ) ; extern struct sk_buff *__alloc_skb(unsigned int , gfp_t , int , int ) ; __inline static struct sk_buff *alloc_skb(unsigned int size , gfp_t priority ) { struct sk_buff *tmp ; { { tmp = __alloc_skb(size, priority, 0, -1); } return (tmp); } } __inline static int skb_queue_empty(struct sk_buff_head const *list ) { { return ((unsigned long )((struct sk_buff const *)list->next) == (unsigned long )((struct sk_buff const *)list)); } } __inline static void __skb_queue_head_init(struct sk_buff_head *list ) { struct sk_buff *tmp ; { tmp = (struct sk_buff *)list; list->next = tmp; list->prev = tmp; list->qlen = 0U; return; } } __inline static void skb_queue_head_init(struct sk_buff_head *list ) { struct lock_class_key __key ; { { spinlock_check(& list->lock); __raw_spin_lock_init(& list->lock.__annonCompField19.rlock, "&(&list->lock)->rlock", & __key); __skb_queue_head_init(list); } return; } } extern void skb_queue_tail(struct sk_buff_head * , struct sk_buff * ) ; extern struct sk_buff *skb_dequeue(struct sk_buff_head * ) ; extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_push(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_pull(struct sk_buff * , unsigned int ) ; extern void skb_queue_purge(struct sk_buff_head * ) ; extern void __tasklet_schedule(struct tasklet_struct * ) ; __inline static void tasklet_schedule(struct tasklet_struct *t ) { int tmp ; { { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& t->state)); } if (tmp == 0) { { __tasklet_schedule(t); } } else { } return; } } extern void tasklet_kill(struct tasklet_struct * ) ; extern void tasklet_init(struct tasklet_struct * , void (*)(unsigned long ) , unsigned long ) ; extern void schedule(void) ; __inline static void poll_wait(struct file *filp , wait_queue_head_t *wait_address , poll_table *p ) { { if ((unsigned long )p != (unsigned long )((poll_table *)0) && ((unsigned long )p->_qproc != (unsigned long )((void (*)(struct file * , wait_queue_head_t * , struct poll_table_struct * ))0) && (unsigned long )wait_address != (unsigned long )((wait_queue_head_t *)0))) { { (*(p->_qproc))(filp, wait_address, p); } } else { } return; } } int fm_v4l2_init_video_device(struct fmdev *fmdev , int radio_nr___0 ) ; void *fm_v4l2_deinit_video_device(void) ; int fmc_prepare(struct fmdev *fmdev ) ; int fmc_release(struct fmdev *fmdev ) ; void fmc_update_region_info(struct fmdev *fmdev , u8 region_to_set ) ; int fmc_send_cmd(struct fmdev *fmdev , u8 fm_op , u16 type , void *payload , unsigned int payload_len , void *response , int *response_len ) ; int fmc_is_rds_data_available(struct fmdev *fmdev , struct file *file , struct poll_table_struct *pts ) ; int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev , struct file *file , u8 *buf , size_t count ) ; int fmc_set_freq(struct fmdev *fmdev , u32 freq_to_set ) ; int fmc_set_mode(struct fmdev *fmdev , u8 fm_mode ) ; int fmc_set_region(struct fmdev *fmdev , u8 region_to_set ) ; int fmc_set_mute_mode(struct fmdev *fmdev , u8 mute_mode_toset ) ; int fmc_set_stereo_mono(struct fmdev *fmdev , u16 mode ) ; int fmc_set_rds_mode(struct fmdev *fmdev , u8 rds_en_dis ) ; int fmc_get_freq(struct fmdev *fmdev , u32 *cur_tuned_frq ) ; int fmc_get_mode(struct fmdev *fmdev , u8 *fmmode ) ; extern long st_register(struct st_proto_s * ) ; extern long st_unregister(struct st_proto_s * ) ; int fm_rx_set_freq(struct fmdev *fmdev , u32 freq ) ; int fm_rx_set_mute_mode(struct fmdev *fmdev , u8 mute_mode_toset ) ; int fm_rx_set_stereo_mono(struct fmdev *fmdev , u16 mode ) ; int fm_rx_set_rds_mode(struct fmdev *fmdev , u8 rds_en_dis ) ; int fm_rx_set_volume(struct fmdev *fmdev , u16 vol_to_set ) ; int fm_rx_set_rssi_threshold(struct fmdev *fmdev , short rssi_lvl_toset ) ; int fm_rx_set_region(struct fmdev *fmdev , u8 region_to_set ) ; void fm_rx_reset_rds_cache(struct fmdev *fmdev ) ; void fm_rx_reset_station_info(struct fmdev *fmdev ) ; int fm_tx_set_freq(struct fmdev *fmdev , u32 freq_to_set ) ; int fm_tx_set_region(struct fmdev *fmdev , u8 region ) ; int fm_tx_set_mute_mode(struct fmdev *fmdev , u8 mute_mode_toset ) ; int fm_tx_set_stereo_mono(struct fmdev *fmdev , u16 mode ) ; int fm_tx_set_rds_mode(struct fmdev *fmdev , u8 rds_en_dis ) ; static struct region_info region_configs[2U] = { {200U, 87500U, 108000U, 0U}, {200U, 76000U, 90000U, 1U}}; static u8 default_radio_region ; static u32 default_rds_buf = 300U; static u32 radio_nr = 4294967295U; static void fm_irq_send_flag_getcmd(struct fmdev *fmdev ) ; static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev ) ; static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev ) ; static void fm_irq_handle_rds_start(struct fmdev *fmdev ) ; static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev ) ; static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev ) ; static void fm_irq_handle_rds_finish(struct fmdev *fmdev ) ; static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev ) ; static void fm_irq_handle_power_enb(struct fmdev *fmdev ) ; static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev ) ; static void fm_irq_afjump_set_pi(struct fmdev *fmdev ) ; static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev ) ; static void fm_irq_afjump_set_pimask(struct fmdev *fmdev ) ; static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev ) ; static void fm_irq_afjump_setfreq(struct fmdev *fmdev ) ; static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev ) ; static void fm_irq_afjump_enableint(struct fmdev *fmdev ) ; static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev ) ; static void fm_irq_start_afjump(struct fmdev *fmdev ) ; static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev ) ; static void fm_irq_afjump_rd_freq(struct fmdev *fmdev ) ; static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev ) ; static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev ) ; static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev ) ; static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev ) ; static int_handler_prototype int_handler_table[25U] = { & fm_irq_send_flag_getcmd, & fm_irq_handle_flag_getcmd_resp, & fm_irq_handle_hw_malfunction, & fm_irq_handle_rds_start, & fm_irq_send_rdsdata_getcmd, & fm_irq_handle_rdsdata_getcmd_resp, & fm_irq_handle_rds_finish, & fm_irq_handle_tune_op_ended, & fm_irq_handle_power_enb, & fm_irq_handle_low_rssi_start, & fm_irq_afjump_set_pi, & fm_irq_handle_set_pi_resp, & fm_irq_afjump_set_pimask, & fm_irq_handle_set_pimask_resp, & fm_irq_afjump_setfreq, & fm_irq_handle_setfreq_resp, & fm_irq_afjump_enableint, & fm_irq_afjump_enableint_resp, & fm_irq_start_afjump, & fm_irq_handle_start_afjump_resp, & fm_irq_afjump_rd_freq, & fm_irq_afjump_rd_freq_resp, & fm_irq_handle_low_rssi_finish, & fm_irq_send_intmsk_cmd, & fm_irq_handle_intmsk_cmd_resp}; static long (*g_st_write)(struct sk_buff * ) ; static struct completion wait_for_fmdrv_reg_comp ; __inline static void fm_irq_call(struct fmdev *fmdev ) { { { (*(*(fmdev->irq_info.handlers + (unsigned long )fmdev->irq_info.stage)))(fmdev); } return; } } __inline static void fm_irq_call_stage(struct fmdev *fmdev , u8 stage ) { { { fmdev->irq_info.stage = stage; fm_irq_call(fmdev); } return; } } __inline static void fm_irq_timeout_stage(struct fmdev *fmdev , u8 stage ) { { { fmdev->irq_info.stage = stage; ldv_mod_timer_24(& fmdev->irq_info.timer, (unsigned long )jiffies + 1250UL); } return; } } void fmc_update_region_info(struct fmdev *fmdev , u8 region_to_set ) { { fmdev->rx.region = region_configs[(int )region_to_set]; return; } } static void recv_tasklet(unsigned long arg ) { struct fmdev *fmdev ; struct fm_irq *irq_info ; struct fm_event_msg_hdr *evt_hdr ; struct sk_buff *skb ; u8 num_fm_hci_cmds ; unsigned long flags ; int tmp ; raw_spinlock_t *tmp___0 ; raw_spinlock_t *tmp___1 ; int tmp___2 ; int tmp___3 ; { fmdev = (struct fmdev *)arg; irq_info = & fmdev->irq_info; goto ldv_36507; ldv_36514: ; if (skb->len <= 6U) { { printk("\vfmdrv: skb(%p) has only %d bytes, at least need %zu bytes to decode\n", skb, skb->len, 7UL); kfree_skb(skb); } goto ldv_36507; } else { } evt_hdr = (struct fm_event_msg_hdr *)skb->data; num_fm_hci_cmds = evt_hdr->num_fm_hci_cmds; if ((unsigned int )evt_hdr->op == 255U) { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& fmdev->flag)); } if (tmp == 0) { { set_bit(0L, (unsigned long volatile *)(& fmdev->flag)); } if ((unsigned int )irq_info->stage != 0U) { { printk("\vfmdrv: Inval stage resetting to zero\n"); irq_info->stage = 0U; } } else { } { (*(*(irq_info->handlers + (unsigned long )irq_info->stage)))(fmdev); } } else { { set_bit(1L, (unsigned long volatile *)(& fmdev->flag)); } } { kfree_skb(skb); } } else if ((int )evt_hdr->op == (int )fmdev->pre_op && (unsigned long )fmdev->resp_comp != (unsigned long )((struct completion *)0)) { { tmp___0 = spinlock_check(& fmdev->resp_skb_lock); flags = _raw_spin_lock_irqsave(tmp___0); fmdev->resp_skb = skb; spin_unlock_irqrestore(& fmdev->resp_skb_lock, flags); complete(fmdev->resp_comp); fmdev->resp_comp = (struct completion *)0; atomic_set(& fmdev->tx_cnt, 1); } } else if ((int )evt_hdr->op == (int )fmdev->pre_op && (unsigned long )fmdev->resp_comp == (unsigned long )((struct completion *)0)) { if ((unsigned long )fmdev->resp_skb != (unsigned long )((struct sk_buff *)0)) { { printk("\vfmdrv: Response SKB ptr not NULL\n"); } } else { } { tmp___1 = spinlock_check(& fmdev->resp_skb_lock); flags = _raw_spin_lock_irqsave(tmp___1); fmdev->resp_skb = skb; spin_unlock_irqrestore(& fmdev->resp_skb_lock, flags); (*(*(irq_info->handlers + (unsigned long )irq_info->stage)))(fmdev); kfree_skb(skb); atomic_set(& fmdev->tx_cnt, 1); } } else { { printk("\vfmdrv: Nobody claimed SKB(%p),purging\n", skb); } } if ((unsigned int )num_fm_hci_cmds != 0U) { { tmp___3 = atomic_read((atomic_t const *)(& fmdev->tx_cnt)); } if (tmp___3 != 0) { { tmp___2 = skb_queue_empty((struct sk_buff_head const *)(& fmdev->tx_q)); } if (tmp___2 == 0) { { tasklet_schedule(& fmdev->tx_task); } } else { } } else { } } else { } ldv_36507: { skb = skb_dequeue(& fmdev->rx_q); } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { goto ldv_36514; } else { } return; } } static void send_tasklet(unsigned long arg ) { struct fmdev *fmdev ; struct sk_buff *skb ; int len ; int tmp ; long tmp___0 ; { { fmdev = (struct fmdev *)arg; tmp = atomic_read((atomic_t const *)(& fmdev->tx_cnt)); } if (tmp == 0) { return; } else { } if ((unsigned long )jiffies - fmdev->last_tx_jiffies > 1250UL) { { printk("\vfmdrv: TX timeout occurred\n"); atomic_set(& fmdev->tx_cnt, 1); } } else { } { skb = skb_dequeue(& fmdev->tx_q); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return; } else { } { atomic_dec(& fmdev->tx_cnt); fmdev->pre_op = ((struct fm_skb_cb *)(& skb->cb))->fm_op; } if ((unsigned long )fmdev->resp_comp != (unsigned long )((struct completion *)0)) { { printk("\vfmdrv: Response completion handler is not NULL\n"); } } else { } { fmdev->resp_comp = ((struct fm_skb_cb *)(& skb->cb))->completion; tmp___0 = (*g_st_write)(skb); len = (int )tmp___0; } if (len < 0) { { kfree_skb(skb); fmdev->resp_comp = (struct completion *)0; printk("\vfmdrv: TX tasklet failed to send skb(%p)\n", skb); atomic_set(& fmdev->tx_cnt, 1); } } else { fmdev->last_tx_jiffies = jiffies; } return; } } static int fm_send_cmd(struct fmdev *fmdev , u8 fm_op , u16 type , void *payload , int payload_len , struct completion *wait_completion ) { struct sk_buff *skb ; struct fm_cmd_msg_hdr *hdr ; int size ; int tmp ; int tmp___0 ; unsigned char *tmp___1 ; __u16 tmp___2 ; int tmp___3 ; int tmp___4 ; unsigned char *tmp___5 ; { if ((unsigned int )fm_op == 255U) { { printk("\vfmdrv: Invalid fm opcode - %d\n", (int )fm_op); } return (-22); } else { } { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& fmdev->flag)); } if (tmp != 0 && (unsigned long )payload == (unsigned long )((void *)0)) { { printk("\vfmdrv: Payload data is NULL during fw download\n"); } return (-22); } else { } { tmp___0 = constant_test_bit(2L, (unsigned long const volatile *)(& fmdev->flag)); } if (tmp___0 == 0) { size = (unsigned long )payload != (unsigned long )((void *)0) ? payload_len + 5 : 5; } else { size = payload_len; } { skb = alloc_skb((unsigned int )size, 32U); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { printk("\vfmdrv: No memory to create new SKB\n"); } return (-12); } else { } { tmp___3 = constant_test_bit(2L, (unsigned long const volatile *)(& fmdev->flag)); } if (tmp___3 == 0) { goto _L; } else { { tmp___4 = constant_test_bit(0L, (unsigned long const volatile *)(& fmdev->flag)); } if (tmp___4 != 0) { _L: /* CIL Label */ { tmp___1 = skb_put(skb, 5U); hdr = (struct fm_cmd_msg_hdr *)tmp___1; hdr->hdr = 8U; hdr->len = (unsigned long )payload != (unsigned long )((void *)0) ? (unsigned int )((__u8 )payload_len) + 3U : 3U; hdr->op = fm_op; hdr->rd_wr = (__u8 )type; hdr->dlen = (__u8 )payload_len; ((struct fm_skb_cb *)(& skb->cb))->fm_op = fm_op; } if ((unsigned long )payload != (unsigned long )((void *)0)) { { tmp___2 = __fswab16((int )*((u16 *)payload)); *((u16 *)payload) = tmp___2; } } else { } } else if ((unsigned long )payload != (unsigned long )((void *)0)) { ((struct fm_skb_cb *)(& skb->cb))->fm_op = *((u8 *)payload + 2UL); } else { } } if ((unsigned long )payload != (unsigned long )((void *)0)) { { tmp___5 = skb_put(skb, (unsigned int )payload_len); memcpy((void *)tmp___5, (void const *)payload, (size_t )payload_len); } } else { } { ((struct fm_skb_cb *)(& skb->cb))->completion = wait_completion; skb_queue_tail(& fmdev->tx_q, skb); tasklet_schedule(& fmdev->tx_task); } return (0); } } int fmc_send_cmd(struct fmdev *fmdev , u8 fm_op , u16 type , void *payload , unsigned int payload_len , void *response , int *response_len ) { struct sk_buff *skb ; struct fm_event_msg_hdr *evt_hdr ; unsigned long flags ; int ret ; unsigned int tmp ; unsigned long tmp___0 ; raw_spinlock_t *tmp___1 ; { { init_completion(& fmdev->maintask_comp); ret = fm_send_cmd(fmdev, (int )fm_op, (int )type, payload, (int )payload_len, & fmdev->maintask_comp); } if (ret != 0) { return (ret); } else { } { tmp___0 = wait_for_completion_timeout(& fmdev->maintask_comp, 1250UL); } if (tmp___0 == 0UL) { { tmp = jiffies_to_msecs(1250UL); printk("\vfmdrv: Timeout(%d sec),didn\'t get regcompletion signal from RX tasklet\n", tmp / 1000U); } return (-110); } else { } if ((unsigned long )fmdev->resp_skb == (unsigned long )((struct sk_buff *)0)) { { printk("\vfmdrv: Response SKB is missing\n"); } return (-14); } else { } { tmp___1 = spinlock_check(& fmdev->resp_skb_lock); flags = _raw_spin_lock_irqsave(tmp___1); skb = fmdev->resp_skb; fmdev->resp_skb = (struct sk_buff *)0; spin_unlock_irqrestore(& fmdev->resp_skb_lock, flags); evt_hdr = (struct fm_event_msg_hdr *)skb->data; } if ((unsigned int )evt_hdr->status != 0U) { { printk("\vfmdrv: Received event pkt status(%d) is not zero\n", (int )evt_hdr->status); kfree_skb(skb); } return (-5); } else { } if (((unsigned long )response != (unsigned long )((void *)0) && (unsigned long )response_len != (unsigned long )((int *)0)) && (unsigned int )evt_hdr->dlen != 0U) { { skb_pull(skb, 7U); memcpy(response, (void const *)skb->data, (size_t )evt_hdr->dlen); *response_len = (int )evt_hdr->dlen; } } else if ((unsigned long )response_len != (unsigned long )((int *)0) && (unsigned int )evt_hdr->dlen == 0U) { *response_len = 0; } else { } { kfree_skb(skb); } return (0); } } __inline static int check_cmdresp_status(struct fmdev *fmdev , struct sk_buff **skb ) { struct fm_event_msg_hdr *fm_evt_hdr ; unsigned long flags ; raw_spinlock_t *tmp ; { { ldv_del_timer_25(& fmdev->irq_info.timer); tmp = spinlock_check(& fmdev->resp_skb_lock); flags = _raw_spin_lock_irqsave(tmp); *skb = fmdev->resp_skb; fmdev->resp_skb = (struct sk_buff *)0; spin_unlock_irqrestore(& fmdev->resp_skb_lock, flags); fm_evt_hdr = (struct fm_event_msg_hdr *)(*skb)->data; } if ((unsigned int )fm_evt_hdr->status != 0U) { { printk("\vfmdrv: irq: opcode %x response status is not zero Initiating irq recovery process\n", (int )fm_evt_hdr->op); ldv_mod_timer_26(& fmdev->irq_info.timer, (unsigned long )jiffies + 1250UL); } return (-1); } else { } return (0); } } __inline static void fm_irq_common_cmd_resp_helper(struct fmdev *fmdev , u8 stage ) { struct sk_buff *skb ; int tmp ; { { tmp = check_cmdresp_status(fmdev, & skb); } if (tmp == 0) { { fm_irq_call_stage(fmdev, (int )stage); } } else { } return; } } static void int_timeout_handler(unsigned long data ) { struct fmdev *fmdev ; struct fm_irq *fmirq ; { fmdev = (struct fmdev *)data; fmirq = & fmdev->irq_info; fmirq->retry = (u8 )((int )fmirq->retry + 1); if ((unsigned int )fmirq->retry > 5U) { { fmirq->stage = 0U; fmirq->retry = 0U; printk("\vfmdrv: Recovery action failed duringirq processing, max retry reached\n"); } return; } else { } { fm_irq_call_stage(fmdev, 23); } return; } } static void fm_irq_send_flag_getcmd(struct fmdev *fmdev ) { int tmp ; { { tmp = fm_send_cmd(fmdev, 3, 1, (void *)0, 2, (struct completion *)0); } if (tmp == 0) { { fm_irq_timeout_stage(fmdev, 1); } } else { } return; } } static void fm_irq_handle_flag_getcmd_resp(struct fmdev *fmdev ) { struct sk_buff *skb ; struct fm_event_msg_hdr *fm_evt_hdr ; int tmp ; __u16 tmp___0 ; { { tmp = check_cmdresp_status(fmdev, & skb); } if (tmp != 0) { return; } else { } { fm_evt_hdr = (struct fm_event_msg_hdr *)skb->data; skb_pull(skb, 7U); memcpy((void *)(& fmdev->irq_info.flag), (void const *)skb->data, (size_t )fm_evt_hdr->dlen); tmp___0 = __fswab16((int )fmdev->irq_info.flag); fmdev->irq_info.flag = tmp___0; fm_irq_call_stage(fmdev, 2); } return; } } static void fm_irq_handle_hw_malfunction(struct fmdev *fmdev ) { { if ((((int )fmdev->irq_info.flag & 1024) & (int )fmdev->irq_info.mask) != 0) { { printk("\vfmdrv: irq: HW MAL int received - do nothing\n"); } } else { } { fm_irq_call_stage(fmdev, 3); } return; } } static void fm_irq_handle_rds_start(struct fmdev *fmdev ) { { if ((((int )fmdev->irq_info.flag & 4) & (int )fmdev->irq_info.mask) != 0) { fmdev->irq_info.stage = 4U; } else { fmdev->irq_info.stage = 7U; } { fm_irq_call(fmdev); } return; } } static void fm_irq_send_rdsdata_getcmd(struct fmdev *fmdev ) { int tmp ; { { tmp = fm_send_cmd(fmdev, 5, 1, (void *)0, 192, (struct completion *)0); } if (tmp == 0) { { fm_irq_timeout_stage(fmdev, 5); } } else { } return; } } static void fm_rx_update_af_cache(struct fmdev *fmdev , u8 af ) { struct tuned_station_info *stat_info ; u8 reg_idx ; u8 index ; u32 freq ; { stat_info = & fmdev->rx.stat_info; reg_idx = fmdev->rx.region.fm_band; if ((unsigned int )af - 225U <= 24U) { fmdev->rx.stat_info.af_list_max = (unsigned int )af + 32U; fmdev->rx.stat_info.afcache_size = 0U; return; } else { } if ((unsigned int )af == 0U) { return; } else { } if ((unsigned int )reg_idx == 0U && (unsigned int )af > 204U) { return; } else { } if ((unsigned int )reg_idx == 1U && (unsigned int )af > 140U) { return; } else { } freq = fmdev->rx.region.bot_freq + (u32 )((int )af * 100); if (freq == fmdev->rx.freq) { return; } else { } index = 0U; goto ldv_36596; ldv_36595: ; if (stat_info->af_cache[(int )index] == freq) { goto ldv_36594; } else { } index = (u8 )((int )index + 1); ldv_36596: ; if ((int )index < (int )stat_info->afcache_size) { goto ldv_36595; } else { } ldv_36594: ; if ((int )index == (int )stat_info->af_list_max) { return; } else { } if ((int )index == (int )stat_info->afcache_size) { stat_info->af_cache[(int )index] = freq; stat_info->afcache_size = (u8 )((int )stat_info->afcache_size + 1); } else { } return; } } static void fm_rdsparse_swapbytes(struct fmdev *fmdev , struct fm_rdsdata_format *rds_format ) { u8 byte1 ; u8 index ; u8 *rds_buff ; { index = 0U; if ((unsigned int )fmdev->asci_id != 25424U) { rds_buff = (u8 *)(& rds_format->data.groupdatabuff.buff); goto ldv_36605; ldv_36604: byte1 = *(rds_buff + (unsigned long )index); *(rds_buff + (unsigned long )index) = *(rds_buff + ((unsigned long )index + 1UL)); *(rds_buff + ((unsigned long )index + 1UL)) = byte1; index = (unsigned int )index + 2U; ldv_36605: ; if ((int )index + 1 <= 7) { goto ldv_36604; } else { } } else { } return; } } static void fm_irq_handle_rdsdata_getcmd_resp(struct fmdev *fmdev ) { struct sk_buff *skb ; struct fm_rdsdata_format rds_fmt ; struct fm_rds *rds ; unsigned long group_idx ; unsigned long flags ; u8 *rds_data ; u8 meta_data ; u8 tmpbuf[3U] ; u8 type ; u8 blk_idx ; u16 cur_picode ; u32 rds_len ; int tmp ; __u16 tmp___0 ; raw_spinlock_t *tmp___1 ; { { rds = & fmdev->rx.rds; tmp = check_cmdresp_status(fmdev, & skb); } if (tmp != 0) { return; } else { } { skb_pull(skb, 7U); rds_data = skb->data; rds_len = skb->len; } goto ldv_36624; ldv_36623: meta_data = *(rds_data + 2UL); type = (unsigned int )meta_data & 7U; blk_idx = (unsigned int )type <= 2U ? type : (unsigned int )type + 255U; if (((int )meta_data & 24) != 0) { goto ldv_36622; } else { } if ((unsigned int )blk_idx > 3U) { rds->last_blk_idx = 255U; goto ldv_36622; } else { } { memcpy((void *)(& rds_fmt.data.groupdatabuff.buff) + (unsigned long )((int )blk_idx * 2), (void const *)rds_data, 2UL); rds->last_blk_idx = blk_idx; } if ((unsigned int )blk_idx == 3U) { { fm_rdsparse_swapbytes(fmdev, & rds_fmt); tmp___0 = __fswab16((int )rds_fmt.data.groupgeneral.pidata); cur_picode = tmp___0; } if ((int )fmdev->rx.stat_info.picode != (int )cur_picode) { fmdev->rx.stat_info.picode = cur_picode; } else { } group_idx = (unsigned long )((int )rds_fmt.data.groupgeneral.blk_b[0] >> 3); group_idx = (unsigned long )(1 << ((int )rds_fmt.data.groupgeneral.blk_b[0] >> 3)); if (group_idx == 1UL) { { fm_rx_update_af_cache(fmdev, (int )rds_fmt.data.group0A.af[0]); fm_rx_update_af_cache(fmdev, (int )rds_fmt.data.group0A.af[1]); } } else { } } else { } rds_len = rds_len - 3U; rds_data = rds_data + 3UL; ldv_36624: ; if (rds_len > 2U) { goto ldv_36623; } else { } ldv_36622: { rds_data = skb->data; rds_len = skb->len; tmp___1 = spinlock_check(& fmdev->rds_buff_lock); flags = _raw_spin_lock_irqsave(tmp___1); } goto ldv_36630; ldv_36629: { type = (unsigned int )*(rds_data + 2UL) & 7U; blk_idx = (unsigned int )type <= 2U ? type : (unsigned int )type + 255U; tmpbuf[2] = blk_idx; tmpbuf[2] = (u8 )((int )((signed char )tmpbuf[2]) | (int )((signed char )((int )blk_idx << 3))); tmpbuf[0] = *rds_data; tmpbuf[1] = *(rds_data + 1UL); memcpy((void *)rds->buff + (unsigned long )rds->wr_idx, (void const *)(& tmpbuf), 3UL); rds->wr_idx = (rds->wr_idx + 3U) % rds->buf_size; } if (rds->wr_idx == rds->rd_idx) { rds->wr_idx = 0U; rds->rd_idx = 0U; goto ldv_36628; } else { } rds_len = rds_len - 3U; rds_data = rds_data + 3UL; ldv_36630: ; if (rds_len != 0U) { goto ldv_36629; } else { } ldv_36628: { spin_unlock_irqrestore(& fmdev->rds_buff_lock, flags); } if (rds->wr_idx != rds->rd_idx) { { __wake_up(& rds->read_queue, 1U, 1, (void *)0); } } else { } { fm_irq_call_stage(fmdev, 6); } return; } } static void fm_irq_handle_rds_finish(struct fmdev *fmdev ) { { { fm_irq_call_stage(fmdev, 7); } return; } } static void fm_irq_handle_tune_op_ended(struct fmdev *fmdev ) { int tmp ; { if ((((int )fmdev->irq_info.flag & 3) & (int )fmdev->irq_info.mask) != 0) { { tmp = test_and_set_bit(5L, (unsigned long volatile *)(& fmdev->flag)); } if (tmp != 0) { fmdev->irq_info.stage = 20U; } else { { complete(& fmdev->maintask_comp); fmdev->irq_info.stage = 8U; } } } else { fmdev->irq_info.stage = 8U; } { fm_irq_call(fmdev); } return; } } static void fm_irq_handle_power_enb(struct fmdev *fmdev ) { { if (((int )fmdev->irq_info.flag & 2048) != 0) { { complete(& fmdev->maintask_comp); } } else { } { fm_irq_call_stage(fmdev, 9); } return; } } static void fm_irq_handle_low_rssi_start(struct fmdev *fmdev ) { { if ((((unsigned int )fmdev->rx.af_mode == 1U && (((int )fmdev->irq_info.flag & 32) & (int )fmdev->irq_info.mask) != 0) && fmdev->rx.freq != 4294967295U) && (unsigned int )fmdev->rx.stat_info.afcache_size != 0U) { fmdev->irq_info.mask = (unsigned int )fmdev->irq_info.mask & 65503U; fmdev->rx.afjump_idx = 0U; fmdev->rx.freq_before_jump = fmdev->rx.freq; fmdev->irq_info.stage = 10U; } else { fmdev->irq_info.stage = 23U; } { fm_irq_call(fmdev); } return; } } static void fm_irq_afjump_set_pi(struct fmdev *fmdev ) { u16 payload ; int tmp ; { { payload = fmdev->rx.stat_info.picode; tmp = fm_send_cmd(fmdev, 24, 0, (void *)(& payload), 2, (struct completion *)0); } if (tmp == 0) { { fm_irq_timeout_stage(fmdev, 11); } } else { } return; } } static void fm_irq_handle_set_pi_resp(struct fmdev *fmdev ) { { { fm_irq_common_cmd_resp_helper(fmdev, 12); } return; } } static void fm_irq_afjump_set_pimask(struct fmdev *fmdev ) { u16 payload ; int tmp ; { { payload = 0U; tmp = fm_send_cmd(fmdev, 23, 0, (void *)(& payload), 2, (struct completion *)0); } if (tmp == 0) { { fm_irq_timeout_stage(fmdev, 13); } } else { } return; } } static void fm_irq_handle_set_pimask_resp(struct fmdev *fmdev ) { { { fm_irq_common_cmd_resp_helper(fmdev, 14); } return; } } static void fm_irq_afjump_setfreq(struct fmdev *fmdev ) { u16 frq_index ; u16 payload ; int tmp ; { { frq_index = (u16 )((fmdev->rx.stat_info.af_cache[(int )fmdev->rx.afjump_idx] - fmdev->rx.region.bot_freq) / 50U); payload = frq_index; tmp = fm_send_cmd(fmdev, 11, 0, (void *)(& payload), 2, (struct completion *)0); } if (tmp == 0) { { fm_irq_timeout_stage(fmdev, 15); } } else { } return; } } static void fm_irq_handle_setfreq_resp(struct fmdev *fmdev ) { { { fm_irq_common_cmd_resp_helper(fmdev, 16); } return; } } static void fm_irq_afjump_enableint(struct fmdev *fmdev ) { u16 payload ; int tmp ; { { payload = 1U; tmp = fm_send_cmd(fmdev, 26, 0, (void *)(& payload), 2, (struct completion *)0); } if (tmp == 0) { { fm_irq_timeout_stage(fmdev, 17); } } else { } return; } } static void fm_irq_afjump_enableint_resp(struct fmdev *fmdev ) { { { fm_irq_common_cmd_resp_helper(fmdev, 18); } return; } } static void fm_irq_start_afjump(struct fmdev *fmdev ) { u16 payload ; int tmp ; { { payload = 3U; tmp = fm_send_cmd(fmdev, 45, 0, (void *)(& payload), 2, (struct completion *)0); } if (tmp == 0) { { fm_irq_timeout_stage(fmdev, 19); } } else { } return; } } static void fm_irq_handle_start_afjump_resp(struct fmdev *fmdev ) { struct sk_buff *skb ; int tmp ; { { tmp = check_cmdresp_status(fmdev, & skb); } if (tmp != 0) { return; } else { } { fmdev->irq_info.stage = 0U; set_bit(5L, (unsigned long volatile *)(& fmdev->flag)); clear_bit(0L, (unsigned long volatile *)(& fmdev->flag)); } return; } } static void fm_irq_afjump_rd_freq(struct fmdev *fmdev ) { int tmp ; { { tmp = fm_send_cmd(fmdev, 10, 1, (void *)0, 2, (struct completion *)0); } if (tmp == 0) { { fm_irq_timeout_stage(fmdev, 21); } } else { } return; } } static void fm_irq_afjump_rd_freq_resp(struct fmdev *fmdev ) { struct sk_buff *skb ; u16 read_freq ; u32 curr_freq ; u32 jumped_freq ; int tmp ; __u16 tmp___0 ; { { tmp = check_cmdresp_status(fmdev, & skb); } if (tmp != 0) { return; } else { } { skb_pull(skb, 7U); memcpy((void *)(& read_freq), (void const *)skb->data, 2UL); tmp___0 = __fswab16((int )read_freq); read_freq = tmp___0; curr_freq = fmdev->rx.region.bot_freq + (unsigned int )read_freq * 50U; jumped_freq = fmdev->rx.stat_info.af_cache[(int )fmdev->rx.afjump_idx]; } if (curr_freq != fmdev->rx.freq_before_jump && curr_freq == jumped_freq) { { fmdev->rx.freq = curr_freq; fm_rx_reset_rds_cache(fmdev); } if ((unsigned int )fmdev->rx.af_mode == 1U) { fmdev->irq_info.mask = (u16 )((unsigned int )fmdev->irq_info.mask | 32U); } else { } fmdev->irq_info.stage = 22U; } else { fmdev->rx.afjump_idx = (u8 )((int )fmdev->rx.afjump_idx + 1); if ((int )fmdev->rx.afjump_idx >= (int )fmdev->rx.stat_info.afcache_size) { fmdev->irq_info.stage = 22U; } else { fmdev->irq_info.stage = 10U; } } { fm_irq_call(fmdev); } return; } } static void fm_irq_handle_low_rssi_finish(struct fmdev *fmdev ) { { { fm_irq_call_stage(fmdev, 23); } return; } } static void fm_irq_send_intmsk_cmd(struct fmdev *fmdev ) { u16 payload ; int tmp ; { { payload = fmdev->irq_info.mask; tmp = fm_send_cmd(fmdev, 26, 0, (void *)(& payload), 2, (struct completion *)0); } if (tmp == 0) { { fm_irq_timeout_stage(fmdev, 24); } } else { } return; } } static void fm_irq_handle_intmsk_cmd_resp(struct fmdev *fmdev ) { struct sk_buff *skb ; int tmp ; int tmp___0 ; { { tmp = check_cmdresp_status(fmdev, & skb); } if (tmp != 0) { return; } else { } { fmdev->irq_info.stage = 0U; tmp___0 = test_and_set_bit(1L, (unsigned long volatile *)(& fmdev->flag)); } if (tmp___0 != 0) { { (*(*(fmdev->irq_info.handlers + (unsigned long )fmdev->irq_info.stage)))(fmdev); } } else { { clear_bit(0L, (unsigned long volatile *)(& fmdev->flag)); } } return; } } int fmc_is_rds_data_available(struct fmdev *fmdev , struct file *file , struct poll_table_struct *pts ) { { { poll_wait(file, & fmdev->rx.rds.read_queue, pts); } if (fmdev->rx.rds.rd_idx != fmdev->rx.rds.wr_idx) { return (0); } else { } return (-11); } } int fmc_transfer_rds_from_internal_buff(struct fmdev *fmdev , struct file *file , u8 *buf , size_t count ) { u32 block_count ; u8 tmpbuf[3U] ; unsigned long flags ; int ret ; int __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp ; raw_spinlock_t *tmp___0 ; unsigned long tmp___1 ; { if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) { if ((file->f_flags & 2048U) != 0U) { return (-11); } else { } __ret = 0; if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) { { __ret___0 = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_36723: { tmp = prepare_to_wait_event(& fmdev->rx.rds.read_queue, & __wait, 1); __int = tmp; } if (fmdev->rx.rds.wr_idx != fmdev->rx.rds.rd_idx) { goto ldv_36722; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_36722; } else { } { schedule(); } goto ldv_36723; ldv_36722: { finish_wait(& fmdev->rx.rds.read_queue, & __wait); } __ret = (int )__ret___0; } else { } ret = __ret; if (ret != 0) { return (-4); } else { } } else { } count = count / 3UL; block_count = 0U; ret = 0; goto ldv_36731; ldv_36730: { tmp___0 = spinlock_check(& fmdev->rds_buff_lock); flags = _raw_spin_lock_irqsave(tmp___0); } if (fmdev->rx.rds.wr_idx == fmdev->rx.rds.rd_idx) { { spin_unlock_irqrestore(& fmdev->rds_buff_lock, flags); } goto ldv_36729; } else { } { memcpy((void *)(& tmpbuf), (void const *)fmdev->rx.rds.buff + (unsigned long )fmdev->rx.rds.rd_idx, 3UL); fmdev->rx.rds.rd_idx = fmdev->rx.rds.rd_idx + 3U; } if (fmdev->rx.rds.rd_idx >= fmdev->rx.rds.buf_size) { fmdev->rx.rds.rd_idx = 0U; } else { } { spin_unlock_irqrestore(& fmdev->rds_buff_lock, flags); tmp___1 = copy_to_user((void *)buf, (void const *)(& tmpbuf), 3UL); } if (tmp___1 != 0UL) { goto ldv_36729; } else { } block_count = block_count + 1U; buf = buf + 3UL; ret = ret + 3; ldv_36731: ; if ((size_t )block_count < count) { goto ldv_36730; } else { } ldv_36729: ; return (ret); } } int fmc_set_freq(struct fmdev *fmdev , u32 freq_to_set ) { int tmp ; int tmp___0 ; { { if ((int )fmdev->curr_fmmode == 2) { goto case_2; } else { } if ((int )fmdev->curr_fmmode == 1) { goto case_1; } else { } goto switch_default; case_2: /* CIL Label */ { tmp = fm_rx_set_freq(fmdev, freq_to_set); } return (tmp); case_1: /* CIL Label */ { tmp___0 = fm_tx_set_freq(fmdev, freq_to_set); } return (tmp___0); switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } } } int fmc_get_freq(struct fmdev *fmdev , u32 *cur_tuned_frq ) { { if (fmdev->rx.freq == 4294967295U) { { printk("\vfmdrv: RX frequency is not set\n"); } return (-1); } else { } if ((unsigned long )cur_tuned_frq == (unsigned long )((u32 *)0U)) { { printk("\vfmdrv: Invalid memory\n"); } return (-12); } else { } { if ((int )fmdev->curr_fmmode == 2) { goto case_2; } else { } if ((int )fmdev->curr_fmmode == 1) { goto case_1; } else { } goto switch_default; case_2: /* CIL Label */ *cur_tuned_frq = fmdev->rx.freq; return (0); case_1: /* CIL Label */ *cur_tuned_frq = 0U; return (0); switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } } } int fmc_set_region(struct fmdev *fmdev , u8 region_to_set ) { int tmp ; int tmp___0 ; { { if ((int )fmdev->curr_fmmode == 2) { goto case_2; } else { } if ((int )fmdev->curr_fmmode == 1) { goto case_1; } else { } goto switch_default; case_2: /* CIL Label */ { tmp = fm_rx_set_region(fmdev, (int )region_to_set); } return (tmp); case_1: /* CIL Label */ { tmp___0 = fm_tx_set_region(fmdev, (int )region_to_set); } return (tmp___0); switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } } } int fmc_set_mute_mode(struct fmdev *fmdev , u8 mute_mode_toset ) { int tmp ; int tmp___0 ; { { if ((int )fmdev->curr_fmmode == 2) { goto case_2; } else { } if ((int )fmdev->curr_fmmode == 1) { goto case_1; } else { } goto switch_default; case_2: /* CIL Label */ { tmp = fm_rx_set_mute_mode(fmdev, (int )mute_mode_toset); } return (tmp); case_1: /* CIL Label */ { tmp___0 = fm_tx_set_mute_mode(fmdev, (int )mute_mode_toset); } return (tmp___0); switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } } } int fmc_set_stereo_mono(struct fmdev *fmdev , u16 mode ) { int tmp ; int tmp___0 ; { { if ((int )fmdev->curr_fmmode == 2) { goto case_2; } else { } if ((int )fmdev->curr_fmmode == 1) { goto case_1; } else { } goto switch_default; case_2: /* CIL Label */ { tmp = fm_rx_set_stereo_mono(fmdev, (int )mode); } return (tmp); case_1: /* CIL Label */ { tmp___0 = fm_tx_set_stereo_mono(fmdev, (int )mode); } return (tmp___0); switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } } } int fmc_set_rds_mode(struct fmdev *fmdev , u8 rds_en_dis ) { int tmp ; int tmp___0 ; { { if ((int )fmdev->curr_fmmode == 2) { goto case_2; } else { } if ((int )fmdev->curr_fmmode == 1) { goto case_1; } else { } goto switch_default; case_2: /* CIL Label */ { tmp = fm_rx_set_rds_mode(fmdev, (int )rds_en_dis); } return (tmp); case_1: /* CIL Label */ { tmp___0 = fm_tx_set_rds_mode(fmdev, (int )rds_en_dis); } return (tmp___0); switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } } } static int fm_power_down(struct fmdev *fmdev ) { u16 payload ; int ret ; int tmp ; int tmp___0 ; { { tmp = constant_test_bit(3L, (unsigned long const volatile *)(& fmdev->flag)); } if (tmp == 0) { { printk("\vfmdrv: FM core is not ready\n"); } return (-1); } else { } if ((unsigned int )fmdev->curr_fmmode == 0U) { return (0); } else { } { payload = 0U; ret = fmc_send_cmd(fmdev, 254, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { tmp___0 = fmc_release(fmdev); } return (tmp___0); } } static int fm_download_firmware(struct fmdev *fmdev , u8 const *fw_name ) { struct firmware const *fw_entry ; struct bts_header *fw_header ; struct bts_action *action ; struct bts_action_delay *delay ; u8 *fw_data ; int ret ; int fw_len ; int cmd_cnt ; int tmp ; unsigned long __ms ; unsigned long tmp___0 ; { { cmd_cnt = 0; set_bit(2L, (unsigned long volatile *)(& fmdev->flag)); ret = request_firmware(& fw_entry, (char const *)fw_name, & (fmdev->radio_dev)->dev); } if (ret < 0) { { printk("\vfmdrv: Unable to read firmware(%s) content\n", fw_name); } return (ret); } else { } fw_data = (u8 *)fw_entry->data; fw_len = (int )fw_entry->size; fw_header = (struct bts_header *)fw_data; if (fw_header->magic != 1112757314U) { { printk("\vfmdrv: %s not a legal TI firmware file\n", fw_name); ret = -22; } goto rel_fw; } else { } fw_data = fw_data + 32UL; fw_len = (int )((unsigned int )fw_len - 32U); goto ldv_36800; ldv_36799: action = (struct bts_action *)fw_data; { if ((int )action->type == 1) { goto case_1; } else { } if ((int )action->type == 4) { goto case_4; } else { } goto switch_break; case_1: /* CIL Label */ { tmp = fmc_send_cmd(fmdev, 0, 0, (void *)(& action->data), (unsigned int )action->size, (void *)0, (int *)0); } if (tmp != 0) { goto rel_fw; } else { } cmd_cnt = cmd_cnt + 1; goto ldv_36793; case_4: /* CIL Label */ delay = (struct bts_action_delay *)(& action->data); __ms = (unsigned long )delay->msec; goto ldv_36797; ldv_36796: { __const_udelay(4295000UL); } ldv_36797: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_36796; } else { } goto ldv_36793; switch_break: /* CIL Label */ ; } ldv_36793: fw_data = fw_data + ((unsigned long )action->size + 4UL); fw_len = (int )(((unsigned int )fw_len - (unsigned int )action->size) - 4U); ldv_36800: ; if ((unsigned long )fw_data != (unsigned long )((u8 *)0U) && fw_len > 0) { goto ldv_36799; } else { } rel_fw: { release_firmware(fw_entry); clear_bit(2L, (unsigned long volatile *)(& fmdev->flag)); } return (ret); } } static int load_default_rx_configuration(struct fmdev *fmdev ) { int ret ; int tmp ; { { ret = fm_rx_set_volume(fmdev, 10); } if (ret < 0) { return (ret); } else { } { tmp = fm_rx_set_rssi_threshold(fmdev, 3); } return (tmp); } } static int fm_power_up(struct fmdev *fmdev , u8 mode ) { u16 payload ; u16 asic_id ; u16 asic_ver ; int resp_len ; int ret ; u8 fw_name[50U] ; int tmp ; int tmp___0 ; int tmp___1 ; __u16 tmp___2 ; __u16 tmp___3 ; __u16 tmp___4 ; __u16 tmp___5 ; int tmp___6 ; { if ((unsigned int )mode > 2U) { { printk("\vfmdrv: Invalid firmware download option\n"); } return (-22); } else { } { ret = fmc_prepare(fmdev); } if (ret < 0) { { printk("\vfmdrv: Unable to prepare FM Common\n"); } return (ret); } else { } { payload = 1U; tmp = fmc_send_cmd(fmdev, 254, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (tmp != 0) { goto rel; } else { } { msleep(20U); tmp___0 = fmc_send_cmd(fmdev, 43, 1, (void *)0, 2U, (void *)(& asic_id), & resp_len); } if (tmp___0 != 0) { goto rel; } else { } { tmp___1 = fmc_send_cmd(fmdev, 42, 1, (void *)0, 2U, (void *)(& asic_ver), & resp_len); } if (tmp___1 != 0) { goto rel; } else { } { tmp___2 = __fswab16((int )asic_ver); tmp___3 = __fswab16((int )asic_id); sprintf((char *)(& fw_name), "%s_%x.%d.bts", (char *)"fmc_ch8", (int )tmp___3, (int )tmp___2); ret = fm_download_firmware(fmdev, (u8 const *)(& fw_name)); } if (ret < 0) { goto rel; } else { } { tmp___4 = __fswab16((int )asic_ver); tmp___5 = __fswab16((int )asic_id); sprintf((char *)(& fw_name), "%s_%x.%d.bts", (unsigned int )mode == 2U ? (char *)"fm_rx_ch8" : (char *)"fm_tx_ch8", (int )tmp___5, (int )tmp___4); ret = fm_download_firmware(fmdev, (u8 const *)(& fw_name)); } if (ret < 0) { } else { return (ret); } rel: { tmp___6 = fmc_release(fmdev); } return (tmp___6); } } int fmc_set_mode(struct fmdev *fmdev , u8 fm_mode ) { int ret ; { ret = 0; if ((unsigned int )fm_mode > 2U) { { printk("\vfmdrv: Invalid FM mode\n"); } return (-22); } else { } if ((int )fmdev->curr_fmmode == (int )fm_mode) { return (ret); } else { } { if ((int )fm_mode == 0) { goto case_0; } else { } if ((int )fm_mode == 1) { goto case_1; } else { } if ((int )fm_mode == 2) { goto case_2; } else { } goto switch_break; case_0: /* CIL Label */ { ret = fm_power_down(fmdev); } if (ret < 0) { { printk("\vfmdrv: Failed to set OFF mode\n"); } return (ret); } else { } goto ldv_36823; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; if ((unsigned int )fmdev->curr_fmmode != 0U) { { ret = fm_power_down(fmdev); } if (ret < 0) { { printk("\vfmdrv: Failed to set OFF mode\n"); } return (ret); } else { } { msleep(30U); } } else { } { ret = fm_power_up(fmdev, (int )fm_mode); } if (ret < 0) { { printk("\vfmdrv: Failed to load firmware\n"); } return (ret); } else { } switch_break: /* CIL Label */ ; } ldv_36823: fmdev->curr_fmmode = fm_mode; if ((unsigned int )fmdev->curr_fmmode == 2U) { { ret = load_default_rx_configuration(fmdev); } if (ret < 0) { { printk("\vfmdrv: Failed to load default values\n"); } } else { } } else { } return (ret); } } int fmc_get_mode(struct fmdev *fmdev , u8 *fmmode ) { int tmp ; { { tmp = constant_test_bit(3L, (unsigned long const volatile *)(& fmdev->flag)); } if (tmp == 0) { { printk("\vfmdrv: FM core is not ready\n"); } return (-1); } else { } if ((unsigned long )fmmode == (unsigned long )((u8 *)0U)) { { printk("\vfmdrv: Invalid memory\n"); } return (-12); } else { } *fmmode = fmdev->curr_fmmode; return (0); } } static long fm_st_receive(void *arg , struct sk_buff *skb ) { struct fmdev *fmdev ; unsigned char *tmp ; { fmdev = (struct fmdev *)arg; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { printk("\vfmdrv: Invalid SKB received from ST\n"); } return (-14L); } else { } if ((int )((signed char )skb->cb[0]) != 8) { { printk("\vfmdrv: Received SKB (%p) is not FM Channel 8 pkt\n", skb); } return (-22L); } else { } { tmp = skb_push(skb, 1U); memcpy((void *)tmp, (void const *)(& skb->cb), 1UL); skb_queue_tail(& fmdev->rx_q, skb); tasklet_schedule(& fmdev->rx_task); } return (0L); } } static void fm_st_reg_comp_cb(void *arg , char data ) { struct fmdev *fmdev ; { { fmdev = (struct fmdev *)arg; fmdev->streg_cbdata = (u8 )data; complete(& wait_for_fmdrv_reg_comp); } return; } } int fmc_prepare(struct fmdev *fmdev ) { struct st_proto_s fm_st_proto ; int ret ; int tmp ; long tmp___0 ; unsigned long tmp___1 ; unsigned int tmp___2 ; unsigned long tmp___3 ; unsigned long tmp___4 ; long tmp___5 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; struct lock_class_key __key___2 ; { { tmp = constant_test_bit(3L, (unsigned long const volatile *)(& fmdev->flag)); } if (tmp != 0) { return (0); } else { } { memset((void *)(& fm_st_proto), 0, 56UL); fm_st_proto.recv = & fm_st_receive; fm_st_proto.match_packet = (unsigned char (*)(unsigned char const * ))0; fm_st_proto.reg_complete_cb = & fm_st_reg_comp_cb; fm_st_proto.write = (long (*)(struct sk_buff * ))0; fm_st_proto.priv_data = (void *)fmdev; fm_st_proto.chnl_id = 8U; fm_st_proto.max_frame_size = 255U; fm_st_proto.hdr_len = 1U; fm_st_proto.offset_len_in_hdr = 0U; fm_st_proto.len_size = 1U; fm_st_proto.reserve = 1U; tmp___0 = st_register(& fm_st_proto); ret = (int )tmp___0; } if (ret == -115) { { init_completion(& wait_for_fmdrv_reg_comp); fmdev->streg_cbdata = 141U; tmp___3 = msecs_to_jiffies(6000U); tmp___4 = wait_for_completion_timeout(& wait_for_fmdrv_reg_comp, tmp___3); } if (tmp___4 == 0UL) { { tmp___1 = msecs_to_jiffies(6000U); tmp___2 = jiffies_to_msecs(tmp___1); printk("\vfmdrv: Timeout(%d sec), didn\'t get reg completion signal from ST\n", tmp___2 / 1000U); } return (-110); } else { } if ((unsigned int )fmdev->streg_cbdata != 0U) { { printk("\vfmdrv: ST reg comp CB called with error status %d\n", (int )fmdev->streg_cbdata); } return (-11); } else { } ret = 0; } else if (ret == -1) { { printk("\vfmdrv: st_register failed %d\n", ret); } return (-11); } else { } if ((unsigned long )fm_st_proto.write != (unsigned long )((long (*)(struct sk_buff * ))0)) { g_st_write = fm_st_proto.write; } else { { printk("\vfmdrv: Failed to get ST write func pointer\n"); tmp___5 = st_unregister(& fm_st_proto); ret = (int )tmp___5; } if (ret < 0) { { printk("\vfmdrv: st_unregister failed %d\n", ret); } } else { } return (-11); } { spinlock_check(& fmdev->rds_buff_lock); __raw_spin_lock_init(& fmdev->rds_buff_lock.__annonCompField19.rlock, "&(&fmdev->rds_buff_lock)->rlock", & __key); spinlock_check(& fmdev->resp_skb_lock); __raw_spin_lock_init(& fmdev->resp_skb_lock.__annonCompField19.rlock, "&(&fmdev->resp_skb_lock)->rlock", & __key___0); skb_queue_head_init(& fmdev->tx_q); tasklet_init(& fmdev->tx_task, & send_tasklet, (unsigned long )fmdev); skb_queue_head_init(& fmdev->rx_q); tasklet_init(& fmdev->rx_task, & recv_tasklet, (unsigned long )fmdev); fmdev->irq_info.stage = 0U; atomic_set(& fmdev->tx_cnt, 1); fmdev->resp_comp = (struct completion *)0; init_timer_key(& fmdev->irq_info.timer, 0U, "(&fmdev->irq_info.timer)", & __key___1); fmdev->irq_info.timer.function = & int_timeout_handler; fmdev->irq_info.timer.data = (unsigned long )fmdev; fmdev->irq_info.mask = 1024U; fmdev->rx.region = region_configs[(int )default_radio_region]; fmdev->rx.mute_mode = 1U; fmdev->rx.rf_depend_mute = 0U; fmdev->rx.rds.flag = 0U; fmdev->rx.freq = 4294967295U; fmdev->rx.rds_mode = 0U; fmdev->rx.af_mode = 0U; fmdev->irq_info.retry = 0U; fm_rx_reset_rds_cache(fmdev); __init_waitqueue_head(& fmdev->rx.rds.read_queue, "&fmdev->rx.rds.read_queue", & __key___2); fm_rx_reset_station_info(fmdev); set_bit(3L, (unsigned long volatile *)(& fmdev->flag)); } return (ret); } } int fmc_release(struct fmdev *fmdev ) { struct st_proto_s fm_st_proto ; int ret ; int tmp ; long tmp___0 ; { { tmp = constant_test_bit(3L, (unsigned long const volatile *)(& fmdev->flag)); } if (tmp == 0) { return (0); } else { } { __wake_up(& fmdev->rx.rds.read_queue, 1U, 1, (void *)0); tasklet_kill(& fmdev->tx_task); tasklet_kill(& fmdev->rx_task); skb_queue_purge(& fmdev->tx_q); skb_queue_purge(& fmdev->rx_q); fmdev->resp_comp = (struct completion *)0; fmdev->rx.freq = 0U; memset((void *)(& fm_st_proto), 0, 56UL); fm_st_proto.chnl_id = 8U; tmp___0 = st_unregister(& fm_st_proto); ret = (int )tmp___0; } if (ret < 0) { { printk("\vfmdrv: Failed to de-register FM from ST %d\n", ret); } } else { } { clear_bit(3L, (unsigned long volatile *)(& fmdev->flag)); } return (ret); } } static int fm_drv_init(void) { struct fmdev *fmdev ; int ret ; void *tmp ; void *tmp___0 ; { { fmdev = (struct fmdev *)0; ret = -12; tmp = kzalloc(1848UL, 208U); fmdev = (struct fmdev *)tmp; } if ((unsigned long )fmdev == (unsigned long )((struct fmdev *)0)) { { printk("\vfmdrv: Can\'t allocate operation structure memory\n"); } return (ret); } else { } { fmdev->rx.rds.buf_size = default_rds_buf * 3U; tmp___0 = kzalloc((size_t )fmdev->rx.rds.buf_size, 208U); fmdev->rx.rds.buff = (u8 *)tmp___0; } if ((unsigned long )fmdev->rx.rds.buff == (unsigned long )((u8 *)0U)) { { printk("\vfmdrv: Can\'t allocate rds ring buffer\n"); } goto rel_dev; } else { } { ret = fm_v4l2_init_video_device(fmdev, (int )radio_nr); } if (ret < 0) { goto rel_rdsbuf; } else { } fmdev->irq_info.handlers = (int_handler_prototype (**)(struct fmdev * ))(& int_handler_table); fmdev->curr_fmmode = 0U; fmdev->tx_data.pwr_lvl = 4U; fmdev->tx_data.preemph = 0U; return (ret); rel_rdsbuf: { kfree((void const *)fmdev->rx.rds.buff); } rel_dev: { kfree((void const *)fmdev); } return (ret); } } static void fm_drv_exit(void) { struct fmdev *fmdev ; void *tmp ; { { fmdev = (struct fmdev *)0; tmp = fm_v4l2_deinit_video_device(); fmdev = (struct fmdev *)tmp; } if ((unsigned long )fmdev != (unsigned long )((struct fmdev *)0)) { { kfree((void const *)fmdev->rx.rds.buff); kfree((void const *)fmdev); } } else { } return; } } void ldv_EMGentry_exit_fm_drv_exit_6_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_fm_drv_init_6_13(int (*arg0)(void) ) ; void ldv_allocate_external_0(void) ; int ldv_del_timer(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_deregister_dummy_resourceless_instance_4_6_4(void) ; void ldv_dispatch_deregister_file_operations_instance_3_6_5(void) ; void ldv_dispatch_deregister_io_instance_6_6_6(void) ; void ldv_dispatch_instance_deregister_4_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_5_2(struct timer_list *arg0 ) ; void ldv_dispatch_register_dummy_resourceless_instance_4_6_7(void) ; void ldv_dispatch_register_file_operations_instance_3_6_8(void) ; void ldv_dispatch_register_io_instance_6_6_9(void) ; void ldv_dummy_resourceless_instance_callback_1_3(int (*arg0)(struct v4l2_ctrl * ) , struct v4l2_ctrl *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_7(int (*arg0)(struct v4l2_ctrl * ) , struct v4l2_ctrl *arg1 ) ; void ldv_entry_EMGentry_6(void *arg0 ) ; int main(void) ; void ldv_file_operations_file_operations_instance_0(void *arg0 ) ; int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_initialize_external_data(void) ; int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) ; void ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_1(void *arg0 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; int ldv_switch_2(void) ; void ldv_switch_automaton_state_0_15(void) ; void ldv_switch_automaton_state_0_6(void) ; void ldv_switch_automaton_state_1_1(void) ; void ldv_switch_automaton_state_1_5(void) ; void ldv_switch_automaton_state_2_1(void) ; void ldv_switch_automaton_state_2_3(void) ; void ldv_switch_automaton_state_3_14(void) ; void ldv_switch_automaton_state_3_5(void) ; void ldv_timer_instance_callback_2_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_2(void *arg0 ) ; void ldv_v4l2_file_operations_io_instance_3(void *arg0 ) ; struct file_operations *ldv_0_container_file_operations ; char *ldv_0_ldv_param_4_1_default ; long long *ldv_0_ldv_param_4_3_default ; struct file *ldv_0_resource_file ; struct inode *ldv_0_resource_inode ; int ldv_0_ret_default ; unsigned long ldv_0_size_cnt_write_size ; int (*ldv_1_callback_g_volatile_ctrl)(struct v4l2_ctrl * ) ; int (*ldv_1_callback_s_ctrl)(struct v4l2_ctrl * ) ; struct v4l2_ctrl *ldv_1_container_struct_v4l2_ctrl_ptr ; struct timer_list *ldv_2_container_timer_list ; char *ldv_3_ldv_param_18_1_default ; unsigned long ldv_3_ldv_param_18_2_default ; long long *ldv_3_ldv_param_18_3_default ; unsigned int ldv_3_ldv_param_21_1_default ; unsigned long ldv_3_ldv_param_21_2_default ; char *ldv_3_ldv_param_34_1_default ; unsigned long ldv_3_ldv_param_34_2_default ; long long *ldv_3_ldv_param_34_3_default ; struct file *ldv_3_resource_file ; struct poll_table_struct *ldv_3_resource_struct_poll_table_struct_ptr ; struct v4l2_audio *ldv_3_resource_struct_v4l2_audio_ptr ; struct v4l2_capability *ldv_3_resource_struct_v4l2_capability_ptr ; struct v4l2_frequency *ldv_3_resource_struct_v4l2_frequency_ptr ; struct v4l2_hw_freq_seek *ldv_3_resource_struct_v4l2_hw_freq_seek_ptr ; struct v4l2_modulator *ldv_3_resource_struct_v4l2_modulator_ptr ; struct v4l2_tuner *ldv_3_resource_struct_v4l2_tuner_ptr ; int ldv_3_ret_default ; void (*ldv_6_exit_fm_drv_exit_default)(void) ; int (*ldv_6_init_fm_drv_init_default)(void) ; int ldv_6_ret_default ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_2 ; int ldv_statevar_3 ; int ldv_statevar_6 ; void (*ldv_6_exit_fm_drv_exit_default)(void) = & fm_drv_exit; int (*ldv_6_init_fm_drv_init_default)(void) = & fm_drv_init; void ldv_EMGentry_exit_fm_drv_exit_6_2(void (*arg0)(void) ) { { { fm_drv_exit(); } return; } } int ldv_EMGentry_init_fm_drv_init_6_13(int (*arg0)(void) ) { int tmp ; { { tmp = fm_drv_init(); } return (tmp); } } void ldv_allocate_external_0(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; void *tmp___13 ; void *tmp___14 ; void *tmp___15 ; void *tmp___16 ; void *tmp___17 ; { { tmp = external_allocated_data(); ldv_0_container_file_operations = (struct file_operations *)tmp; tmp___0 = external_allocated_data(); ldv_0_ldv_param_4_1_default = (char *)tmp___0; tmp___1 = external_allocated_data(); ldv_0_ldv_param_4_3_default = (long long *)tmp___1; tmp___2 = external_allocated_data(); ldv_0_resource_file = (struct file *)tmp___2; tmp___3 = external_allocated_data(); ldv_0_resource_inode = (struct inode *)tmp___3; tmp___4 = external_allocated_data(); ldv_1_container_struct_v4l2_ctrl_ptr = (struct v4l2_ctrl *)tmp___4; tmp___5 = external_allocated_data(); ldv_2_container_timer_list = (struct timer_list *)tmp___5; tmp___6 = external_allocated_data(); ldv_3_ldv_param_18_1_default = (char *)tmp___6; tmp___7 = external_allocated_data(); ldv_3_ldv_param_18_3_default = (long long *)tmp___7; tmp___8 = external_allocated_data(); ldv_3_ldv_param_34_1_default = (char *)tmp___8; tmp___9 = external_allocated_data(); ldv_3_ldv_param_34_3_default = (long long *)tmp___9; tmp___10 = external_allocated_data(); ldv_3_resource_file = (struct file *)tmp___10; tmp___11 = external_allocated_data(); ldv_3_resource_struct_poll_table_struct_ptr = (struct poll_table_struct *)tmp___11; tmp___12 = external_allocated_data(); ldv_3_resource_struct_v4l2_audio_ptr = (struct v4l2_audio *)tmp___12; tmp___13 = external_allocated_data(); ldv_3_resource_struct_v4l2_capability_ptr = (struct v4l2_capability *)tmp___13; tmp___14 = external_allocated_data(); ldv_3_resource_struct_v4l2_frequency_ptr = (struct v4l2_frequency *)tmp___14; tmp___15 = external_allocated_data(); ldv_3_resource_struct_v4l2_hw_freq_seek_ptr = (struct v4l2_hw_freq_seek *)tmp___15; tmp___16 = external_allocated_data(); ldv_3_resource_struct_v4l2_modulator_ptr = (struct v4l2_modulator *)tmp___16; tmp___17 = external_allocated_data(); ldv_3_resource_struct_v4l2_tuner_ptr = (struct v4l2_tuner *)tmp___17; } return; } } int ldv_del_timer(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_4_timer_list_timer_list ; { { ldv_4_timer_list_timer_list = arg1; ldv_assume(ldv_statevar_2 == 2); ldv_dispatch_instance_deregister_4_1(ldv_4_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_deregister_dummy_resourceless_instance_4_6_4(void) { { { ldv_switch_automaton_state_1_1(); } return; } } void ldv_dispatch_deregister_file_operations_instance_3_6_5(void) { { { ldv_switch_automaton_state_0_6(); } return; } } void ldv_dispatch_deregister_io_instance_6_6_6(void) { { { ldv_switch_automaton_state_3_5(); } return; } } void ldv_dispatch_instance_deregister_4_1(struct timer_list *arg0 ) { { { ldv_2_container_timer_list = arg0; ldv_switch_automaton_state_2_1(); } return; } } void ldv_dispatch_instance_register_5_2(struct timer_list *arg0 ) { { { ldv_2_container_timer_list = arg0; ldv_switch_automaton_state_2_3(); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_4_6_7(void) { { { ldv_switch_automaton_state_1_5(); } return; } } void ldv_dispatch_register_file_operations_instance_3_6_8(void) { { { ldv_switch_automaton_state_0_15(); } return; } } void ldv_dispatch_register_io_instance_6_6_9(void) { { { ldv_switch_automaton_state_3_14(); } return; } } void ldv_entry_EMGentry_6(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_6 == 2) { goto case_2; } else { } if (ldv_statevar_6 == 3) { goto case_3; } else { } if (ldv_statevar_6 == 4) { goto case_4; } else { } if (ldv_statevar_6 == 5) { goto case_5; } else { } if (ldv_statevar_6 == 6) { goto case_6; } else { } if (ldv_statevar_6 == 7) { goto case_7; } else { } if (ldv_statevar_6 == 8) { goto case_8; } else { } if (ldv_statevar_6 == 9) { goto case_9; } else { } if (ldv_statevar_6 == 10) { goto case_10; } else { } if (ldv_statevar_6 == 12) { goto case_12; } else { } if (ldv_statevar_6 == 13) { goto case_13; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_EMGentry_exit_fm_drv_exit_6_2(ldv_6_exit_fm_drv_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_6 = 13; } goto ldv_37124; case_3: /* CIL Label */ { ldv_EMGentry_exit_fm_drv_exit_6_2(ldv_6_exit_fm_drv_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_6 = 13; } goto ldv_37124; case_4: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 1); ldv_dispatch_deregister_dummy_resourceless_instance_4_6_4(); ldv_statevar_6 = 2; } goto ldv_37124; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 7); ldv_dispatch_deregister_file_operations_instance_3_6_5(); ldv_statevar_6 = 4; } goto ldv_37124; case_6: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 6); ldv_dispatch_deregister_io_instance_6_6_6(); ldv_statevar_6 = 5; } goto ldv_37124; case_7: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 5); ldv_dispatch_register_dummy_resourceless_instance_4_6_7(); ldv_statevar_6 = 6; } goto ldv_37124; case_8: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 15); ldv_dispatch_register_file_operations_instance_3_6_8(); ldv_statevar_6 = 7; } goto ldv_37124; case_9: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 14); ldv_dispatch_register_io_instance_6_6_9(); ldv_statevar_6 = 8; } goto ldv_37124; case_10: /* CIL Label */ { ldv_assume(ldv_6_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_6 = 3; } else { ldv_statevar_6 = 9; } goto ldv_37124; case_12: /* CIL Label */ { ldv_assume(ldv_6_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_6 = 13; } goto ldv_37124; case_13: /* CIL Label */ { ldv_6_ret_default = ldv_EMGentry_init_fm_drv_init_6_13(ldv_6_init_fm_drv_init_default); ldv_6_ret_default = ldv_post_init(ldv_6_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_6 = 10; } else { ldv_statevar_6 = 12; } goto ldv_37124; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_37124: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_6 = 13; ldv_0_ret_default = 1; ldv_statevar_0 = 15; ldv_statevar_1 = 5; ldv_statevar_2 = 3; ldv_3_ret_default = 1; ldv_statevar_3 = 14; } ldv_37145: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_6((void *)0); } goto ldv_37139; case_1: /* CIL Label */ { ldv_file_operations_file_operations_instance_0((void *)0); } goto ldv_37139; case_2: /* CIL Label */ { ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_1((void *)0); } goto ldv_37139; case_3: /* CIL Label */ { ldv_timer_timer_instance_2((void *)0); } goto ldv_37139; case_4: /* CIL Label */ { ldv_v4l2_file_operations_io_instance_3((void *)0); } goto ldv_37139; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_37139: ; goto ldv_37145; } } void ldv_file_operations_file_operations_instance_0(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; int tmp___5 ; void *tmp___6 ; void *tmp___7 ; { { if (ldv_statevar_0 == 1) { goto case_1; } else { } if (ldv_statevar_0 == 2) { goto case_2; } else { } if (ldv_statevar_0 == 3) { goto case_3; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 7) { goto case_7; } else { } if (ldv_statevar_0 == 9) { goto case_9; } else { } if (ldv_statevar_0 == 11) { goto case_11; } else { } if (ldv_statevar_0 == 12) { goto case_12; } else { } if (ldv_statevar_0 == 14) { goto case_14; } else { } if (ldv_statevar_0 == 15) { goto case_15; } else { } if (ldv_statevar_0 == 18) { goto case_18; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 7; } else { ldv_statevar_0 = 12; } goto ldv_37150; case_2: /* CIL Label */ ldv_statevar_0 = 1; goto ldv_37150; case_3: /* CIL Label */ { ldv_statevar_0 = ldv_switch_0(); } goto ldv_37150; case_5: /* CIL Label */ ldv_statevar_0 = 3; goto ldv_37150; case_7: /* CIL Label */ { ldv_free((void *)ldv_0_resource_file); ldv_free((void *)ldv_0_resource_inode); ldv_0_ret_default = 1; ldv_statevar_0 = 15; } goto ldv_37150; case_9: /* CIL Label */ { ldv_assume(ldv_0_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_0 = 7; } else { ldv_statevar_0 = 12; } goto ldv_37150; case_11: /* CIL Label */ { ldv_assume(ldv_0_ret_default == 0); ldv_statevar_0 = ldv_switch_0(); } goto ldv_37150; case_12: /* CIL Label */ ; if ((unsigned long )ldv_0_container_file_operations->open != (unsigned long )((int (*)(struct inode * , struct file * ))0)) { { ldv_0_ret_default = ldv_file_operations_instance_probe_0_12(ldv_0_container_file_operations->open, ldv_0_resource_inode, ldv_0_resource_file); } } else { } { ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_0 = 9; } else { ldv_statevar_0 = 11; } goto ldv_37150; case_14: /* CIL Label */ { tmp___2 = ldv_xmalloc(520UL); ldv_0_resource_file = (struct file *)tmp___2; tmp___3 = ldv_xmalloc(1032UL); ldv_0_resource_inode = (struct inode *)tmp___3; tmp___4 = ldv_undef_int(); ldv_0_size_cnt_write_size = (unsigned long )tmp___4; tmp___5 = ldv_undef_int(); } if (tmp___5 != 0) { ldv_statevar_0 = 7; } else { ldv_statevar_0 = 12; } goto ldv_37150; case_15: /* CIL Label */ ; goto ldv_37150; case_18: /* CIL Label */ { tmp___6 = ldv_xmalloc(1UL); ldv_0_ldv_param_4_1_default = (char *)tmp___6; tmp___7 = ldv_xmalloc(8UL); ldv_0_ldv_param_4_3_default = (long long *)tmp___7; ldv_assume(ldv_0_size_cnt_write_size <= 2147479552UL); ldv_file_operations_instance_write_0_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_0_container_file_operations->write, ldv_0_resource_file, ldv_0_ldv_param_4_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_4_3_default); ldv_free((void *)ldv_0_ldv_param_4_1_default); ldv_free((void *)ldv_0_ldv_param_4_3_default); ldv_statevar_0 = 3; } goto ldv_37150; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_37150: ; return; } } int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) { struct timer_list *ldv_5_timer_list_timer_list ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_5_timer_list_timer_list = arg1; ldv_assume(ldv_statevar_2 == 3); ldv_dispatch_instance_register_5_2(ldv_5_timer_list_timer_list); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_struct_v4l2_ctrl_ops_dummy_resourceless_instance_1(void *arg0 ) { { { if (ldv_statevar_1 == 1) { goto case_1; } else { } if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 3) { goto case_3; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 7) { goto case_7; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_37181; case_2: /* CIL Label */ { ldv_statevar_1 = ldv_switch_1(); } goto ldv_37181; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_3(ldv_1_callback_g_volatile_ctrl, ldv_1_container_struct_v4l2_ctrl_ptr); ldv_statevar_1 = 2; } goto ldv_37181; case_4: /* CIL Label */ { ldv_statevar_1 = ldv_switch_1(); } goto ldv_37181; case_5: /* CIL Label */ ; goto ldv_37181; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_7(ldv_1_callback_s_ctrl, ldv_1_container_struct_v4l2_ctrl_ptr); ldv_statevar_1 = 2; } goto ldv_37181; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_37181: ; return; } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (2); case_1: /* CIL Label */ ; return (5); case_2: /* CIL Label */ ; return (18); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (3); case_2: /* CIL Label */ ; return (7); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_2(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } goto switch_default; case_0: /* CIL Label */ ; return (2); case_1: /* CIL Label */ ; return (4); case_2: /* CIL Label */ ; return (17); case_3: /* CIL Label */ ; return (19); case_4: /* CIL Label */ ; return (22); case_5: /* CIL Label */ ; return (24); case_6: /* CIL Label */ ; return (25); case_7: /* CIL Label */ ; return (26); case_8: /* CIL Label */ ; return (27); case_9: /* CIL Label */ ; return (28); case_10: /* CIL Label */ ; return (29); case_11: /* CIL Label */ ; return (30); case_12: /* CIL Label */ ; return (31); case_13: /* CIL Label */ ; return (32); case_14: /* CIL Label */ ; return (33); case_15: /* CIL Label */ ; return (35); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_0_15(void) { { ldv_statevar_0 = 14; return; } } void ldv_switch_automaton_state_0_6(void) { { ldv_0_ret_default = 1; ldv_statevar_0 = 15; return; } } void ldv_switch_automaton_state_1_1(void) { { ldv_statevar_1 = 5; return; } } void ldv_switch_automaton_state_1_5(void) { { ldv_statevar_1 = 4; return; } } void ldv_switch_automaton_state_2_1(void) { { ldv_statevar_2 = 3; return; } } void ldv_switch_automaton_state_2_3(void) { { ldv_statevar_2 = 2; return; } } void ldv_timer_instance_callback_2_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_2(void *arg0 ) { { { if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 3) { goto case_3; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_2_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_2_2(ldv_2_container_timer_list->function, ldv_2_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); ldv_statevar_2 = 3; } goto ldv_37240; case_3: /* CIL Label */ ; goto ldv_37240; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_37240: ; return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static int ldv_mod_timer_24(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_25(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_26(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } int fm_rx_set_rds_system(struct fmdev *fmdev , u8 rds_mode ) ; int fm_rx_set_rfdepend_softmute(struct fmdev *fmdev , u8 rfdepend_mute ) ; int fm_rx_set_deemphasis_mode(struct fmdev *fmdev , u16 mode ) ; int fm_rx_set_af_switch(struct fmdev *fmdev , u8 af_mode ) ; int fm_rx_seek(struct fmdev *fmdev , u32 seek_upward , u32 wrap_around , u32 spacing ) ; int fm_rx_get_rds_mode(struct fmdev *fmdev , u8 *curr_rds_en_dis ) ; int fm_rx_get_rds_system(struct fmdev *fmdev , u8 *rds_mode ) ; int fm_rx_get_mute_mode(struct fmdev *fmdev , u8 *curr_mute_mode ) ; int fm_rx_get_volume(struct fmdev *fmdev , u16 *curr_vol ) ; int fm_rx_get_band_freq_range(struct fmdev *fmdev , u32 *bot_freq , u32 *top_freq ) ; int fm_rx_get_stereo_mono(struct fmdev *fmdev , u16 *mode ) ; int fm_rx_get_rssi_level(struct fmdev *fmdev , u16 *rssilvl ) ; int fm_rx_get_rssi_threshold(struct fmdev *fmdev , short *curr_rssi_lvl ) ; int fm_rx_get_rfdepend_softmute(struct fmdev *fmdev , u8 *curr_mute_mode ) ; int fm_rx_get_deemph_mode(struct fmdev *fmdev , u16 *curr_deemphasis_mode ) ; int fm_rx_get_af_switch(struct fmdev *fmdev , u8 *af_mode ) ; void fm_rx_get_region(struct fmdev *fmdev , u8 *region ) ; void fm_rx_reset_rds_cache(struct fmdev *fmdev ) { { fmdev->rx.rds.flag = 0U; fmdev->rx.rds.last_blk_idx = 0U; fmdev->rx.rds.wr_idx = 0U; fmdev->rx.rds.rd_idx = 0U; if ((unsigned int )fmdev->rx.af_mode == 1U) { fmdev->irq_info.mask = (u16 )((unsigned int )fmdev->irq_info.mask | 32U); } else { } return; } } void fm_rx_reset_station_info(struct fmdev *fmdev ) { { fmdev->rx.stat_info.picode = 0U; fmdev->rx.stat_info.afcache_size = 0U; fmdev->rx.stat_info.af_list_max = 0U; return; } } int fm_rx_set_freq(struct fmdev *fmdev , u32 freq ) { unsigned long timeleft ; u16 payload ; u16 curr_frq ; u16 intr_flag ; u32 curr_frq_in_khz ; u32 resp_len ; int ret ; unsigned int tmp ; __u16 tmp___0 ; { if (freq < fmdev->rx.region.bot_freq || freq > fmdev->rx.region.top_freq) { { printk("\vfmdrv: Invalid frequency %d\n", freq); } return (-22); } else { } { payload = 3U; ret = fmc_send_cmd(fmdev, 29, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { payload = 2U; ret = fmc_send_cmd(fmdev, 35, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { payload = (u16 )((freq - fmdev->rx.region.bot_freq) / 50U); ret = fmc_send_cmd(fmdev, 10, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { ret = fmc_send_cmd(fmdev, 3, 1, (void *)0, 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { intr_flag = fmdev->irq_info.mask; fmdev->irq_info.mask = 3U; payload = fmdev->irq_info.mask; ret = fmc_send_cmd(fmdev, 26, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { payload = 1U; ret = fmc_send_cmd(fmdev, 45, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { goto exit; } else { } { init_completion(& fmdev->maintask_comp); timeleft = wait_for_completion_timeout(& fmdev->maintask_comp, 1250UL); } if (timeleft == 0UL) { { tmp = jiffies_to_msecs(1250UL); printk("\vfmdrv: Timeout(%d sec),didn\'t get tune ended int\n", tmp / 1000U); ret = -110; } goto exit; } else { } { ret = fmc_send_cmd(fmdev, 10, 1, (void *)0, 2U, (void *)(& curr_frq), (int *)(& resp_len)); } if (ret < 0) { goto exit; } else { } { tmp___0 = __fswab16((int )curr_frq); curr_frq = tmp___0; curr_frq_in_khz = fmdev->rx.region.bot_freq + (unsigned int )curr_frq * 50U; } if (curr_frq_in_khz != freq) { { printk("\016Frequency is set to (%d) but requested freq is (%d)\n", curr_frq_in_khz, freq); } } else { } fmdev->rx.freq = curr_frq_in_khz; exit: { fmdev->irq_info.mask = intr_flag; payload = fmdev->irq_info.mask; ret = fmc_send_cmd(fmdev, 26, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { fm_rx_reset_rds_cache(fmdev); fm_rx_reset_station_info(fmdev); } return (ret); } } static int fm_rx_set_channel_spacing(struct fmdev *fmdev , u32 spacing ) { u16 payload ; int ret ; { if (spacing - 1U <= 49999U) { spacing = 1U; } else if (spacing - 50001U <= 49999U) { spacing = 2U; } else { spacing = 4U; } { payload = (u16 )spacing; ret = fmc_send_cmd(fmdev, 56, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } fmdev->rx.region.chanl_space = spacing * 50U; return (ret); } } int fm_rx_seek(struct fmdev *fmdev , u32 seek_upward , u32 wrap_around , u32 spacing ) { u32 resp_len ; u16 curr_frq ; u16 next_frq ; u16 last_frq ; u16 payload ; u16 int_reason ; u16 intr_flag ; u16 offset ; u16 space_idx ; unsigned long timeleft ; int ret ; __u16 tmp ; unsigned int tmp___0 ; __u16 tmp___1 ; { { ret = fm_rx_set_channel_spacing(fmdev, spacing); } if (ret < 0) { { printk("\vfmdrv: Failed to set channel spacing\n"); } return (ret); } else { } { ret = fmc_send_cmd(fmdev, 10, 1, (void *)0, 2U, (void *)(& curr_frq), (int *)(& resp_len)); } if (ret < 0) { return (ret); } else { } { tmp = __fswab16((int )curr_frq); curr_frq = tmp; last_frq = (u16 )((fmdev->rx.region.top_freq - fmdev->rx.region.bot_freq) / 50U); space_idx = (u16 )(fmdev->rx.region.chanl_space / 50U); offset = (u16 )((int )curr_frq % (int )space_idx); next_frq = seek_upward != 0U ? (int )curr_frq + (int )space_idx : (int )curr_frq - (int )space_idx; } if ((int )((short )next_frq) < 0) { next_frq = (int )last_frq - (int )offset; } else if ((int )next_frq > (int )last_frq) { next_frq = offset; } else { } again: { payload = next_frq; ret = fmc_send_cmd(fmdev, 10, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { payload = seek_upward != 0U; ret = fmc_send_cmd(fmdev, 27, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { ret = fmc_send_cmd(fmdev, 3, 1, (void *)0, 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { intr_flag = fmdev->irq_info.mask; fmdev->irq_info.mask = 3U; payload = fmdev->irq_info.mask; ret = fmc_send_cmd(fmdev, 26, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { payload = 2U; ret = fmc_send_cmd(fmdev, 45, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { init_completion(& fmdev->maintask_comp); timeleft = wait_for_completion_timeout(& fmdev->maintask_comp, 5000UL); } if (timeleft == 0UL) { { tmp___0 = jiffies_to_msecs(5000UL); printk("\vfmdrv: Timeout(%d sec),didn\'t get tune ended int\n", tmp___0 / 1000U); } return (-61); } else { } { int_reason = (unsigned int )fmdev->irq_info.flag & 3U; fmdev->irq_info.mask = intr_flag; payload = fmdev->irq_info.mask; ret = fmc_send_cmd(fmdev, 26, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } if (((int )int_reason & 2) != 0) { if (wrap_around == 0U) { fmdev->rx.freq = seek_upward != 0U ? fmdev->rx.region.top_freq : fmdev->rx.region.bot_freq; } else { fmdev->rx.freq = seek_upward != 0U ? fmdev->rx.region.bot_freq : fmdev->rx.region.top_freq; next_frq = (u16 )((fmdev->rx.freq - fmdev->rx.region.bot_freq) / 50U); goto again; } } else { { ret = fmc_send_cmd(fmdev, 10, 1, (void *)0, 2U, (void *)(& curr_frq), (int *)(& resp_len)); } if (ret < 0) { return (ret); } else { } { tmp___1 = __fswab16((int )curr_frq); curr_frq = tmp___1; fmdev->rx.freq = fmdev->rx.region.bot_freq + (unsigned int )curr_frq * 50U; } } { fm_rx_reset_rds_cache(fmdev); fm_rx_reset_station_info(fmdev); } return (ret); } } int fm_rx_set_volume(struct fmdev *fmdev , u16 vol_to_set ) { u16 payload ; int ret ; { if ((unsigned int )fmdev->curr_fmmode != 2U) { return (-1); } else { } if ((unsigned int )vol_to_set > 70U) { { printk("\vfmdrv: Volume is not within(%d-%d) range\n", 0, 70); } return (-22); } else { } { vol_to_set = (unsigned int )vol_to_set * 880U; payload = vol_to_set; ret = fmc_send_cmd(fmdev, 28, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } fmdev->rx.volume = vol_to_set; return (ret); } } int fm_rx_get_volume(struct fmdev *fmdev , u16 *curr_vol ) { { if ((unsigned int )fmdev->curr_fmmode != 2U) { return (-1); } else { } if ((unsigned long )curr_vol == (unsigned long )((u16 *)0U)) { { printk("\vfmdrv: Invalid memory\n"); } return (-12); } else { } *curr_vol = (u16 )((unsigned int )fmdev->rx.volume / 880U); return (0); } } int fm_rx_get_band_freq_range(struct fmdev *fmdev , u32 *bot_freq , u32 *top_freq ) { { if ((unsigned long )bot_freq != (unsigned long )((u32 *)0U)) { *bot_freq = fmdev->rx.region.bot_freq; } else { } if ((unsigned long )top_freq != (unsigned long )((u32 *)0U)) { *top_freq = fmdev->rx.region.top_freq; } else { } return (0); } } void fm_rx_get_region(struct fmdev *fmdev , u8 *region ) { { *region = fmdev->rx.region.fm_band; return; } } int fm_rx_set_region(struct fmdev *fmdev , u8 region_to_set ) { u16 payload ; u32 new_frq ; int ret ; { new_frq = 0U; if ((unsigned int )region_to_set > 1U) { { printk("\vfmdrv: Invalid band\n"); } return (-22); } else { } if ((int )fmdev->rx.region.fm_band == (int )region_to_set) { { printk("\vfmdrv: Requested band is already configured\n"); } return (0); } else { } { payload = (unsigned short )region_to_set; ret = fmc_send_cmd(fmdev, 16, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { fmc_update_region_info(fmdev, (int )region_to_set); } if (fmdev->rx.freq < fmdev->rx.region.bot_freq) { new_frq = fmdev->rx.region.bot_freq; } else if (fmdev->rx.freq > fmdev->rx.region.top_freq) { new_frq = fmdev->rx.region.top_freq; } else { } if (new_frq != 0U) { { ret = fm_rx_set_freq(fmdev, new_frq); } } else { } return (ret); } } int fm_rx_get_mute_mode(struct fmdev *fmdev , u8 *curr_mute_mode ) { { if ((unsigned int )fmdev->curr_fmmode != 2U) { return (-1); } else { } if ((unsigned long )curr_mute_mode == (unsigned long )((u8 *)0U)) { { printk("\vfmdrv: Invalid memory\n"); } return (-12); } else { } *curr_mute_mode = fmdev->rx.mute_mode; return (0); } } static int fm_config_rx_mute_reg(struct fmdev *fmdev ) { u16 payload ; u16 muteval ; int ret ; { muteval = 0U; { if ((int )fmdev->rx.mute_mode == 0) { goto case_0; } else { } if ((int )fmdev->rx.mute_mode == 1) { goto case_1; } else { } if ((int )fmdev->rx.mute_mode == 2) { goto case_2; } else { } goto switch_break; case_0: /* CIL Label */ muteval = 2U; goto ldv_35365; case_1: /* CIL Label */ muteval = 0U; goto ldv_35365; case_2: /* CIL Label */ muteval = 16U; goto ldv_35365; switch_break: /* CIL Label */ ; } ldv_35365: ; if ((unsigned int )fmdev->rx.rf_depend_mute == 1U) { muteval = (u16 )((unsigned int )muteval | 1U); } else { muteval = (unsigned int )muteval & 65534U; } { payload = muteval; ret = fmc_send_cmd(fmdev, 17, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } return (0); } } int fm_rx_set_mute_mode(struct fmdev *fmdev , u8 mute_mode_toset ) { u8 org_state ; int ret ; { if ((int )fmdev->rx.mute_mode == (int )mute_mode_toset) { return (0); } else { } { org_state = fmdev->rx.mute_mode; fmdev->rx.mute_mode = mute_mode_toset; ret = fm_config_rx_mute_reg(fmdev); } if (ret < 0) { fmdev->rx.mute_mode = org_state; return (ret); } else { } return (0); } } int fm_rx_get_rfdepend_softmute(struct fmdev *fmdev , u8 *curr_mute_mode ) { { if ((unsigned int )fmdev->curr_fmmode != 2U) { return (-1); } else { } if ((unsigned long )curr_mute_mode == (unsigned long )((u8 *)0U)) { { printk("\vfmdrv: Invalid memory\n"); } return (-12); } else { } *curr_mute_mode = fmdev->rx.rf_depend_mute; return (0); } } int fm_rx_set_rfdepend_softmute(struct fmdev *fmdev , u8 rfdepend_mute ) { u8 org_state ; int ret ; { if ((unsigned int )fmdev->curr_fmmode != 2U) { return (-1); } else { } if ((unsigned int )rfdepend_mute > 1U) { { printk("\vfmdrv: Invalid RF dependent soft mute\n"); } return (-22); } else { } if ((int )fmdev->rx.rf_depend_mute == (int )rfdepend_mute) { return (0); } else { } { org_state = fmdev->rx.rf_depend_mute; fmdev->rx.rf_depend_mute = rfdepend_mute; ret = fm_config_rx_mute_reg(fmdev); } if (ret < 0) { fmdev->rx.rf_depend_mute = org_state; return (ret); } else { } return (0); } } int fm_rx_get_rssi_level(struct fmdev *fmdev , u16 *rssilvl ) { u16 curr_rssi_lel ; u32 resp_len ; int ret ; __u16 tmp ; { if ((unsigned long )rssilvl == (unsigned long )((u16 *)0U)) { { printk("\vfmdrv: Invalid memory\n"); } return (-12); } else { } { ret = fmc_send_cmd(fmdev, 1, 1, (void *)0, 2U, (void *)(& curr_rssi_lel), (int *)(& resp_len)); } if (ret < 0) { return (ret); } else { } { tmp = __fswab16((int )curr_rssi_lel); *rssilvl = tmp; } return (0); } } int fm_rx_set_rssi_threshold(struct fmdev *fmdev , short rssi_lvl_toset ) { u16 payload ; int ret ; { if ((unsigned int )((unsigned short )rssi_lvl_toset) - 65408U > 255U) { { printk("\vfmdrv: Invalid RSSI threshold level\n"); } return (-22); } else { } { payload = (unsigned short )rssi_lvl_toset; ret = fmc_send_cmd(fmdev, 15, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } fmdev->rx.rssi_threshold = (u16 )rssi_lvl_toset; return (0); } } int fm_rx_get_rssi_threshold(struct fmdev *fmdev , short *curr_rssi_lvl ) { { if ((unsigned int )fmdev->curr_fmmode != 2U) { return (-1); } else { } if ((unsigned long )curr_rssi_lvl == (unsigned long )((short *)0)) { { printk("\vfmdrv: Invalid memory\n"); } return (-12); } else { } *curr_rssi_lvl = (short )fmdev->rx.rssi_threshold; return (0); } } int fm_rx_set_stereo_mono(struct fmdev *fmdev , u16 mode ) { u16 payload ; int ret ; { if ((unsigned int )mode > 1U) { { printk("\vfmdrv: Invalid mode\n"); } return (-22); } else { } { payload = mode; ret = fmc_send_cmd(fmdev, 12, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { payload = 1U; ret = fmc_send_cmd(fmdev, 13, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } return (0); } } int fm_rx_get_stereo_mono(struct fmdev *fmdev , u16 *mode ) { u16 curr_mode ; u32 resp_len ; int ret ; __u16 tmp ; { if ((unsigned long )mode == (unsigned long )((u16 *)0U)) { { printk("\vfmdrv: Invalid memory\n"); } return (-12); } else { } { ret = fmc_send_cmd(fmdev, 12, 1, (void *)0, 2U, (void *)(& curr_mode), (int *)(& resp_len)); } if (ret < 0) { return (ret); } else { } { tmp = __fswab16((int )curr_mode); *mode = tmp; } return (0); } } int fm_rx_set_deemphasis_mode(struct fmdev *fmdev , u16 mode ) { u16 payload ; int ret ; { if ((unsigned int )fmdev->curr_fmmode != 2U) { return (-1); } else { } if ((unsigned int )mode > 1U) { { printk("\vfmdrv: Invalid rx de-emphasis mode (%d)\n", (int )mode); } return (-22); } else { } { payload = mode; ret = fmc_send_cmd(fmdev, 14, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } fmdev->rx.deemphasis_mode = (u8 )mode; return (0); } } int fm_rx_get_deemph_mode(struct fmdev *fmdev , u16 *curr_deemphasis_mode ) { { if ((unsigned int )fmdev->curr_fmmode != 2U) { return (-1); } else { } if ((unsigned long )curr_deemphasis_mode == (unsigned long )((u16 *)0U)) { { printk("\vfmdrv: Invalid memory\n"); } return (-12); } else { } *curr_deemphasis_mode = (u16 )fmdev->rx.deemphasis_mode; return (0); } } int fm_rx_set_rds_mode(struct fmdev *fmdev , u8 rds_en_dis ) { u16 payload ; int ret ; { if ((unsigned int )rds_en_dis > 1U) { { printk("\vfmdrv: Invalid rds option\n"); } return (-22); } else { } if ((unsigned int )rds_en_dis == 1U && (unsigned int )fmdev->rx.rds.flag == 0U) { { payload = 3U; ret = fmc_send_cmd(fmdev, 32, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { payload = 1U; ret = fmc_send_cmd(fmdev, 47, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { ret = fmc_send_cmd(fmdev, 3, 1, (void *)0, 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { payload = 64U; ret = fmc_send_cmd(fmdev, 20, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { fmdev->irq_info.mask = (u16 )((unsigned int )fmdev->irq_info.mask | 4U); payload = fmdev->irq_info.mask; ret = fmc_send_cmd(fmdev, 26, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { fmdev->irq_info.mask = (unsigned int )fmdev->irq_info.mask & 65531U; return (ret); } else { } fmdev->rx.rds.flag = 1U; } else if ((unsigned int )rds_en_dis == 0U && (unsigned int )fmdev->rx.rds.flag == 1U) { { payload = 1U; ret = fmc_send_cmd(fmdev, 32, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { fmdev->rx.rds.last_blk_idx = 0U; fmdev->rx.rds.wr_idx = 0U; fmdev->rx.rds.rd_idx = 0U; fm_rx_reset_station_info(fmdev); fmdev->irq_info.mask = (unsigned int )fmdev->irq_info.mask & 65531U; fmdev->rx.rds.flag = 0U; } } else { } return (0); } } int fm_rx_get_rds_mode(struct fmdev *fmdev , u8 *curr_rds_en_dis ) { { if ((unsigned int )fmdev->curr_fmmode != 2U) { return (-1); } else { } if ((unsigned long )curr_rds_en_dis == (unsigned long )((u8 *)0U)) { { printk("\vfmdrv: Invalid memory\n"); } return (-12); } else { } *curr_rds_en_dis = fmdev->rx.rds.flag; return (0); } } int fm_rx_set_rds_system(struct fmdev *fmdev , u8 rds_mode ) { u16 payload ; int ret ; { if ((unsigned int )fmdev->curr_fmmode != 2U) { return (-1); } else { } if ((unsigned int )rds_mode > 1U) { { printk("\vfmdrv: Invalid rds mode\n"); } return (-22); } else { } { payload = (unsigned short )rds_mode; ret = fmc_send_cmd(fmdev, 25, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } fmdev->rx.rds_mode = rds_mode; return (0); } } int fm_rx_get_rds_system(struct fmdev *fmdev , u8 *rds_mode ) { { if ((unsigned int )fmdev->curr_fmmode != 2U) { return (-1); } else { } if ((unsigned long )rds_mode == (unsigned long )((u8 *)0U)) { { printk("\vfmdrv: Invalid memory\n"); } return (-12); } else { } *rds_mode = fmdev->rx.rds_mode; return (0); } } int fm_rx_set_af_switch(struct fmdev *fmdev , u8 af_mode ) { u16 payload ; int ret ; { if ((unsigned int )fmdev->curr_fmmode != 2U) { return (-1); } else { } if ((unsigned int )af_mode > 1U) { { printk("\vfmdrv: Invalid af mode\n"); } return (-22); } else { } if ((unsigned int )af_mode == 1U) { fmdev->irq_info.mask = (u16 )((unsigned int )fmdev->irq_info.mask | 32U); } else { fmdev->irq_info.mask = (unsigned int )fmdev->irq_info.mask & 65503U; } { payload = fmdev->irq_info.mask; ret = fmc_send_cmd(fmdev, 26, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } fmdev->rx.af_mode = af_mode; return (0); } } int fm_rx_get_af_switch(struct fmdev *fmdev , u8 *af_mode ) { { if ((unsigned int )fmdev->curr_fmmode != 2U) { return (-1); } else { } if ((unsigned long )af_mode == (unsigned long )((u8 *)0U)) { { printk("\vfmdrv: Invalid memory\n"); } return (-12); } else { } *af_mode = fmdev->rx.af_mode; return (0); } } extern size_t strlen(char const * ) ; int fm_tx_set_pwr_lvl(struct fmdev *fmdev , u8 new_pwr_lvl ) ; int fm_tx_set_radio_text(struct fmdev *fmdev , u8 *rds_text , u8 rds_type ) ; int fm_tx_set_af(struct fmdev *fmdev , u32 af ) ; int fm_tx_set_preemph_filter(struct fmdev *fmdev , u32 preemphasis ) ; int fm_tx_get_tune_cap_val(struct fmdev *fmdev ) ; int fm_tx_set_stereo_mono(struct fmdev *fmdev , u16 mode ) { u16 payload ; int ret ; { if ((int )fmdev->tx_data.aud_mode == (int )mode) { return (0); } else { } { payload = 1U - (unsigned int )mode; ret = fmc_send_cmd(fmdev, 66, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } fmdev->tx_data.aud_mode = mode; return (ret); } } static int set_rds_text(struct fmdev *fmdev , u8 *rds_text ) { u16 payload ; int ret ; size_t tmp ; { { tmp = strlen((char const *)rds_text); ret = fmc_send_cmd(fmdev, 99, 0, (void *)rds_text, (unsigned int )tmp, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { payload = 1U; ret = fmc_send_cmd(fmdev, 74, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } return (0); } } static int set_rds_data_mode(struct fmdev *fmdev , u8 mode ) { u16 payload ; int ret ; { { payload = 51966U; ret = fmc_send_cmd(fmdev, 93, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { payload = 10U; ret = fmc_send_cmd(fmdev, 80, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } return (0); } } static int set_rds_len(struct fmdev *fmdev , u8 type , u16 len ) { u16 payload ; int ret ; { { len = (u16 )((int )((short )len) | (int )((short )((int )type << 8))); payload = len; ret = fmc_send_cmd(fmdev, 98, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } return (0); } } int fm_tx_set_rds_mode(struct fmdev *fmdev , u8 rds_en_dis ) { u16 payload ; int ret ; u8 rds_text[7U] ; size_t tmp ; size_t tmp___0 ; { rds_text[0] = 'Z'; rds_text[1] = 'o'; rds_text[2] = 'o'; rds_text[3] = 'm'; rds_text[4] = '2'; rds_text[5] = '\n'; rds_text[6] = '\000'; if ((unsigned int )rds_en_dis == 1U) { { tmp = strlen((char const *)(& rds_text)); set_rds_len(fmdev, 0, (int )((u16 )tmp)); set_rds_text(fmdev, (u8 *)(& rds_text)); set_rds_data_mode(fmdev, 0); } } else { } if ((unsigned int )rds_en_dis == 1U) { payload = 1U; } else { payload = 0U; } { ret = fmc_send_cmd(fmdev, 94, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } if ((unsigned int )rds_en_dis == 1U) { { tmp___0 = strlen((char const *)(& rds_text)); set_rds_len(fmdev, 0, (int )((u16 )tmp___0)); set_rds_text(fmdev, (u8 *)(& rds_text)); } } else { } fmdev->tx_data.rds.flag = rds_en_dis; return (0); } } int fm_tx_set_radio_text(struct fmdev *fmdev , u8 *rds_text , u8 rds_type ) { u16 payload ; int ret ; size_t tmp ; { if ((unsigned int )fmdev->curr_fmmode != 1U) { return (-1); } else { } { fm_tx_set_rds_mode(fmdev, 0); tmp = strlen((char const *)rds_text); set_rds_len(fmdev, (int )rds_type, (int )((u16 )tmp)); set_rds_text(fmdev, rds_text); set_rds_data_mode(fmdev, 0); payload = 1U; ret = fmc_send_cmd(fmdev, 94, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } return (0); } } int fm_tx_set_af(struct fmdev *fmdev , u32 af ) { u16 payload ; int ret ; { if ((unsigned int )fmdev->curr_fmmode != 1U) { return (-1); } else { } { af = (af - 87500U) / 100U; payload = (unsigned short )af; ret = fmc_send_cmd(fmdev, 78, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } return (0); } } int fm_tx_set_region(struct fmdev *fmdev , u8 region ) { u16 payload ; int ret ; { if ((unsigned int )region > 1U) { { printk("\vfmdrv: Invalid band\n"); } return (-22); } else { } { payload = (unsigned short )region; ret = fmc_send_cmd(fmdev, 65, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } return (0); } } int fm_tx_set_mute_mode(struct fmdev *fmdev , u8 mute_mode_toset ) { u16 payload ; int ret ; { { payload = (u16 )mute_mode_toset; ret = fmc_send_cmd(fmdev, 92, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } return (0); } } static int set_audio_io(struct fmdev *fmdev ) { struct fmtx_data *tx ; u16 payload ; int ret ; { { tx = & fmdev->tx_data; payload = (u16 )tx->audio_io; ret = fmc_send_cmd(fmdev, 63, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } return (0); } } static int enable_xmit(struct fmdev *fmdev , u8 new_xmit_state ) { struct fmtx_data *tx ; unsigned long timeleft ; u16 payload ; int ret ; unsigned int tmp ; { { tx = & fmdev->tx_data; payload = 2048U; ret = fmc_send_cmd(fmdev, 26, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { payload = (u16 )new_xmit_state; ret = fmc_send_cmd(fmdev, 90, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { init_completion(& fmdev->maintask_comp); timeleft = wait_for_completion_timeout(& fmdev->maintask_comp, 1250UL); } if (timeleft == 0UL) { { tmp = jiffies_to_msecs(1250UL); printk("\vfmdrv: Timeout(%d sec),didn\'t get tune ended interrupt\n", tmp / 1000U); } return (-110); } else { } { set_bit(6L, (unsigned long volatile *)(& fmdev->flag)); tx->xmit_state = new_xmit_state; } return (0); } } int fm_tx_set_pwr_lvl(struct fmdev *fmdev , u8 new_pwr_lvl ) { u16 payload ; struct fmtx_data *tx ; int ret ; int tmp ; { tx = & fmdev->tx_data; if ((unsigned int )fmdev->curr_fmmode != 1U) { return (-1); } else { } { tmp = constant_test_bit(3L, (unsigned long const volatile *)(& fmdev->flag)); } if (tmp == 0) { tx->pwr_lvl = new_pwr_lvl; return (0); } else { } { payload = 122U - (unsigned int )((u16 )new_pwr_lvl); ret = fmc_send_cmd(fmdev, 59, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } tx->pwr_lvl = new_pwr_lvl; return (0); } } int fm_tx_set_preemph_filter(struct fmdev *fmdev , u32 preemphasis ) { struct fmtx_data *tx ; u16 payload ; int ret ; { tx = & fmdev->tx_data; if ((unsigned int )fmdev->curr_fmmode != 1U) { return (-1); } else { } { if (preemphasis == 0U) { goto case_0; } else { } if (preemphasis == 1U) { goto case_1; } else { } if (preemphasis == 2U) { goto case_2; } else { } goto switch_break; case_0: /* CIL Label */ payload = 1U; goto ldv_35345; case_1: /* CIL Label */ payload = 0U; goto ldv_35345; case_2: /* CIL Label */ payload = 2U; goto ldv_35345; switch_break: /* CIL Label */ ; } ldv_35345: { ret = fmc_send_cmd(fmdev, 64, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } tx->preemph = (u32 )payload; return (ret); } } int fm_tx_get_tune_cap_val(struct fmdev *fmdev ) { u16 curr_val ; u32 resp_len ; int ret ; __u16 tmp ; { if ((unsigned int )fmdev->curr_fmmode != 1U) { return (-1); } else { } { ret = fmc_send_cmd(fmdev, 104, 1, (void *)0, 2U, (void *)(& curr_val), (int *)(& resp_len)); } if (ret < 0) { return (ret); } else { } { tmp = __fswab16((int )curr_val); curr_val = tmp; } return ((int )curr_val); } } int fm_tx_set_freq(struct fmdev *fmdev , u32 freq_to_set ) { struct fmtx_data *tx ; u16 payload ; u16 chanl_index ; int ret ; int tmp ; { { tx = & fmdev->tx_data; tmp = constant_test_bit(6L, (unsigned long const volatile *)(& fmdev->flag)); } if (tmp != 0) { { enable_xmit(fmdev, 0); clear_bit(6L, (unsigned long volatile *)(& fmdev->flag)); } } else { } { payload = 3U; ret = fmc_send_cmd(fmdev, 26, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { tx->tx_frq = freq_to_set; chanl_index = (u16 )(freq_to_set / 10U); payload = chanl_index; ret = fmc_send_cmd(fmdev, 55, 0, (void *)(& payload), 2U, (void *)0, (int *)0); } if (ret < 0) { return (ret); } else { } { fm_tx_set_pwr_lvl(fmdev, (int )tx->pwr_lvl); fm_tx_set_preemph_filter(fmdev, tx->preemph); tx->audio_io = 1U; set_audio_io(fmdev); enable_xmit(fmdev, 1); tx->aud_mode = 0U; tx->rds.flag = 0U; } return (0); } } void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; static void ldv_mutex_lock_28(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_lock_32(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_24(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_26(struct mutex *ldv_func_arg1 ) ; static int ldv_mutex_lock_interruptible_30(struct mutex *ldv_func_arg1 ) ; int ldv_mutex_lock_interruptible_or_killable_mutex_of_fmdev(struct mutex *lock ) ; void ldv_mutex_lock_mutex_of_fmdev(struct mutex *lock ) ; void ldv_mutex_unlock_mutex_of_fmdev(struct mutex *lock ) ; extern struct module __this_module ; extern char *strcpy(char * , char const * ) ; extern size_t strlcpy(char * , char const * , size_t ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; static void ldv_mutex_unlock_25(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_27(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_29(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_31(struct mutex *ldv_func_arg1 ) ; static void ldv_mutex_unlock_33(struct mutex *ldv_func_arg1 ) ; extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; extern void __copy_from_user_overflow(void) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { __copy_from_user_overflow(); } } } return (n); } } static void *ldv_dev_get_drvdata_16(struct device const *dev ) ; static int ldv_dev_set_drvdata_17(struct device *dev , void *data ) ; extern long video_ioctl2(struct file * , unsigned int , unsigned long ) ; extern int __video_register_device(struct video_device * , int , int , int , struct module * ) ; __inline static int video_register_device(struct video_device *vdev , int type , int nr ) { int tmp ; { { tmp = __video_register_device(vdev, type, nr, 1, (vdev->fops)->owner); } return (tmp); } } extern void video_unregister_device(struct video_device * ) ; extern struct video_device *video_device_alloc(void) ; extern void video_device_release(struct video_device * ) ; __inline static void *video_get_drvdata(struct video_device *vdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_16((struct device const *)(& vdev->dev)); } return (tmp); } } __inline static void video_set_drvdata(struct video_device *vdev , void *data ) { { { ldv_dev_set_drvdata_17(& vdev->dev, data); } return; } } extern struct video_device *video_devdata(struct file * ) ; __inline static void *video_drvdata(struct file *file ) { struct video_device *tmp ; void *tmp___0 ; { { tmp = video_devdata(file); tmp___0 = video_get_drvdata(tmp); } return (tmp___0); } } extern int v4l2_device_register(struct device * , struct v4l2_device * ) ; extern void v4l2_device_unregister(struct v4l2_device * ) ; extern int v4l2_ctrl_handler_init_class(struct v4l2_ctrl_handler * , unsigned int , struct lock_class_key * , char const * ) ; extern void v4l2_ctrl_handler_free(struct v4l2_ctrl_handler * ) ; extern struct v4l2_ctrl *v4l2_ctrl_new_std(struct v4l2_ctrl_handler * , struct v4l2_ctrl_ops const * , u32 , s32 , s32 , u32 , s32 ) ; extern struct v4l2_ctrl *v4l2_ctrl_new_std_menu(struct v4l2_ctrl_handler * , struct v4l2_ctrl_ops const * , u32 , s32 , s32 , s32 ) ; static struct video_device *gradio_dev ; static u8 radio_disconnected ; static ssize_t fm_v4l2_fops_read(struct file *file , char *buf , size_t count , loff_t *ppos ) { u8 rds_mode ; int ret ; struct fmdev *fmdev ; void *tmp ; int tmp___0 ; { { tmp = video_drvdata(file); fmdev = (struct fmdev *)tmp; } if ((unsigned int )radio_disconnected == 0U) { { printk("\vfmdrv: FM device is already disconnected\n"); } return (-5L); } else { } { tmp___0 = ldv_mutex_lock_interruptible_24(& fmdev->mutex); } if (tmp___0 != 0) { return (-512L); } else { } { ret = fm_rx_get_rds_mode(fmdev, & rds_mode); } if (ret < 0) { { printk("\vfmdrv: Unable to read current rds mode\n"); } goto read_unlock; } else { } if ((unsigned int )rds_mode == 0U) { { ret = fmc_set_rds_mode(fmdev, 1); } if (ret < 0) { { printk("\vfmdrv: Failed to enable rds mode\n"); } goto read_unlock; } else { } } else { } { ret = fmc_transfer_rds_from_internal_buff(fmdev, file, (u8 *)buf, count); } read_unlock: { ldv_mutex_unlock_25(& fmdev->mutex); } return ((ssize_t )ret); } } static ssize_t fm_v4l2_fops_write(struct file *file , char const *buf , size_t count , loff_t *ppos ) { struct tx_rds rds ; int ret ; struct fmdev *fmdev ; unsigned long tmp ; void *tmp___0 ; int tmp___1 ; { { tmp = copy_from_user((void *)(& rds), (void const *)buf, 32UL); ret = (int )tmp; rds.text[24UL] = 0U; } if (ret != 0) { return (-14L); } else { } { tmp___0 = video_drvdata(file); fmdev = (struct fmdev *)tmp___0; tmp___1 = ldv_mutex_lock_interruptible_26(& fmdev->mutex); } if (tmp___1 != 0) { return (-512L); } else { } { fm_tx_set_radio_text(fmdev, (u8 *)(& rds.text), (int )rds.text_type); fm_tx_set_af(fmdev, rds.af_freq); ldv_mutex_unlock_27(& fmdev->mutex); } return (32L); } } static u32 fm_v4l2_fops_poll(struct file *file , struct poll_table_struct *pts ) { int ret ; struct fmdev *fmdev ; void *tmp ; { { tmp = video_drvdata(file); fmdev = (struct fmdev *)tmp; ldv_mutex_lock_28(& fmdev->mutex); ret = fmc_is_rds_data_available(fmdev, file, pts); ldv_mutex_unlock_29(& fmdev->mutex); } if (ret < 0) { return (65U); } else { } return (0U); } } static int fm_v4l2_fops_open(struct file *file ) { int ret ; struct fmdev *fmdev ; void *tmp ; int tmp___0 ; { fmdev = (struct fmdev *)0; if ((unsigned int )radio_disconnected != 0U) { { printk("\vfmdrv: FM device is already opened\n"); } return (-16); } else { } { tmp = video_drvdata(file); fmdev = (struct fmdev *)tmp; tmp___0 = ldv_mutex_lock_interruptible_30(& fmdev->mutex); } if (tmp___0 != 0) { return (-512); } else { } { ret = fmc_prepare(fmdev); } if (ret < 0) { { printk("\vfmdrv: Unable to prepare FM CORE\n"); } goto open_unlock; } else { } { ret = fmc_set_mode(fmdev, 2); } if (ret < 0) { { printk("\vfmdrv: Unable to load FM RX firmware\n"); } goto open_unlock; } else { } radio_disconnected = 1U; open_unlock: { ldv_mutex_unlock_31(& fmdev->mutex); } return (ret); } } static int fm_v4l2_fops_release(struct file *file ) { int ret ; struct fmdev *fmdev ; void *tmp ; { { tmp = video_drvdata(file); fmdev = (struct fmdev *)tmp; } if ((unsigned int )radio_disconnected == 0U) { return (0); } else { } { ldv_mutex_lock_32(& fmdev->mutex); ret = fmc_set_mode(fmdev, 0); } if (ret < 0) { { printk("\vfmdrv: Unable to turn off the chip\n"); } goto release_unlock; } else { } { ret = fmc_release(fmdev); } if (ret < 0) { { printk("\vfmdrv: FM CORE release failed\n"); } goto release_unlock; } else { } radio_disconnected = 0U; release_unlock: { ldv_mutex_unlock_33(& fmdev->mutex); } return (ret); } } static int fm_v4l2_vidioc_querycap(struct file *file , void *priv , struct v4l2_capability *capability ) { { { strlcpy((char *)(& capability->driver), "ti_fmdrv", 16UL); strlcpy((char *)(& capability->card), "TI FM Radio", 32UL); sprintf((char *)(& capability->bus_info), "UART"); capability->capabilities = 17761536U; } return (0); } } static int fm_g_volatile_ctrl(struct v4l2_ctrl *ctrl ) { struct fmdev *fmdev ; struct v4l2_ctrl_handler const *__mptr ; { __mptr = (struct v4l2_ctrl_handler const *)ctrl->handler; fmdev = (struct fmdev *)__mptr + 0xfffffffffffffa68UL; { if (ctrl->id == 10160498U) { goto case_10160498; } else { } goto switch_default; case_10160498: /* CIL Label */ { ctrl->__annonCompField87.val = fm_tx_get_tune_cap_val(fmdev); } goto ldv_35412; switch_default: /* CIL Label */ { printk("\ffmdrv: %s: Unknown IOCTL: %d\n", "fm_g_volatile_ctrl", ctrl->id); } goto ldv_35412; switch_break: /* CIL Label */ ; } ldv_35412: ; return (0); } } static int fm_v4l2_s_ctrl(struct v4l2_ctrl *ctrl ) { struct fmdev *fmdev ; struct v4l2_ctrl_handler const *__mptr ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { __mptr = (struct v4l2_ctrl_handler const *)ctrl->handler; fmdev = (struct fmdev *)__mptr + 0xfffffffffffffa68UL; { if (ctrl->id == 9963781U) { goto case_9963781; } else { } if (ctrl->id == 9963785U) { goto case_9963785; } else { } if (ctrl->id == 10160497U) { goto case_10160497; } else { } if (ctrl->id == 10160496U) { goto case_10160496; } else { } goto switch_default; case_9963781: /* CIL Label */ { tmp = fm_rx_set_volume(fmdev, (int )((unsigned short )ctrl->__annonCompField87.val)); } return (tmp); case_9963785: /* CIL Label */ { tmp___0 = fmc_set_mute_mode(fmdev, (int )((unsigned char )ctrl->__annonCompField87.val)); } return (tmp___0); case_10160497: /* CIL Label */ { tmp___1 = fm_tx_set_pwr_lvl(fmdev, (int )((unsigned char )ctrl->__annonCompField87.val)); } return (tmp___1); case_10160496: /* CIL Label */ { tmp___2 = fm_tx_set_preemph_filter(fmdev, (u32 )((unsigned char )ctrl->__annonCompField87.val)); } return (tmp___2); switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } } } static int fm_v4l2_vidioc_g_audio(struct file *file , void *priv , struct v4l2_audio *audio ) { { { memset((void *)audio, 0, 52UL); strcpy((char *)(& audio->name), "Radio"); audio->capability = 1U; } return (0); } } static int fm_v4l2_vidioc_s_audio(struct file *file , void *priv , struct v4l2_audio const *audio ) { { if ((unsigned int )audio->index != 0U) { return (-22); } else { } return (0); } } static int fm_v4l2_vidioc_g_tuner(struct file *file , void *priv , struct v4l2_tuner *tuner ) { struct fmdev *fmdev ; void *tmp ; u32 bottom_freq ; u32 top_freq ; u16 stereo_mono_mode ; u16 rssilvl ; int ret ; { { tmp = video_drvdata(file); fmdev = (struct fmdev *)tmp; } if (tuner->index != 0U) { return (-22); } else { } if ((unsigned int )fmdev->curr_fmmode != 2U) { return (-1); } else { } { ret = fm_rx_get_band_freq_range(fmdev, & bottom_freq, & top_freq); } if (ret != 0) { return (ret); } else { } { ret = fm_rx_get_stereo_mono(fmdev, & stereo_mono_mode); } if (ret != 0) { return (ret); } else { } { ret = fm_rx_get_rssi_level(fmdev, & rssilvl); } if (ret != 0) { return (ret); } else { } { strcpy((char *)(& tuner->name), "FM"); tuner->type = 1U; tuner->rangelow = bottom_freq * 16U; tuner->rangehigh = top_freq * 16U; tuner->rxsubchans = (unsigned int )fmdev->rx.rds.flag == 1U ? 19U : 3U; tuner->capability = 157U; tuner->audmode = (unsigned int )stereo_mono_mode == 0U; rssilvl = (unsigned int )rssilvl + 128U; tuner->signal = (int )rssilvl * 257; tuner->afc = 0; } return (ret); } } static int fm_v4l2_vidioc_s_tuner(struct file *file , void *priv , struct v4l2_tuner const *tuner ) { struct fmdev *fmdev ; void *tmp ; u16 aud_mode ; u8 rds_mode ; int ret ; { { tmp = video_drvdata(file); fmdev = (struct fmdev *)tmp; } if ((unsigned int )tuner->index != 0U) { return (-22); } else { } aud_mode = (unsigned int )tuner->audmode != 1U; rds_mode = ((unsigned int )tuner->rxsubchans & 16U) != 0U; if ((unsigned int )fmdev->curr_fmmode != 2U) { { ret = fmc_set_mode(fmdev, 2); } if (ret < 0) { { printk("\vfmdrv: Failed to set RX mode\n"); } return (ret); } else { } } else { } { ret = fmc_set_stereo_mono(fmdev, (int )aud_mode); } if (ret < 0) { { printk("\vfmdrv: Failed to set RX stereo/mono mode\n"); } return (ret); } else { } { ret = fmc_set_rds_mode(fmdev, (int )rds_mode); } if (ret < 0) { { printk("\vfmdrv: Failed to set RX RDS mode\n"); } } else { } return (ret); } } static int fm_v4l2_vidioc_g_freq(struct file *file , void *priv , struct v4l2_frequency *freq ) { struct fmdev *fmdev ; void *tmp ; int ret ; { { tmp = video_drvdata(file); fmdev = (struct fmdev *)tmp; ret = fmc_get_freq(fmdev, & freq->frequency); } if (ret < 0) { { printk("\vfmdrv: Failed to get frequency\n"); } return (ret); } else { } freq->frequency = freq->frequency * 16U; return (0); } } static int fm_v4l2_vidioc_s_freq(struct file *file , void *priv , struct v4l2_frequency const *freq ) { struct fmdev *fmdev ; void *tmp ; int tmp___0 ; { { tmp = video_drvdata(file); fmdev = (struct fmdev *)tmp; tmp___0 = fmc_set_freq(fmdev, (unsigned int )freq->frequency / 16U); } return (tmp___0); } } static int fm_v4l2_vidioc_s_hw_freq_seek(struct file *file , void *priv , struct v4l2_hw_freq_seek const *seek ) { struct fmdev *fmdev ; void *tmp ; int ret ; { { tmp = video_drvdata(file); fmdev = (struct fmdev *)tmp; } if ((file->f_flags & 2048U) != 0U) { return (-11); } else { } if ((unsigned int )fmdev->curr_fmmode != 2U) { { ret = fmc_set_mode(fmdev, 2); } if (ret != 0) { { printk("\vfmdrv: Failed to set RX mode\n"); } return (ret); } else { } } else { } { ret = fm_rx_seek(fmdev, seek->seek_upward, seek->wrap_around, seek->spacing); } if (ret < 0) { { printk("\vfmdrv: RX seek failed - %d\n", ret); } } else { } return (ret); } } static int fm_v4l2_vidioc_g_modulator(struct file *file , void *priv , struct v4l2_modulator *mod ) { struct fmdev *fmdev ; void *tmp ; { { tmp = video_drvdata(file); fmdev = (struct fmdev *)tmp; } if (mod->index != 0U) { return (-22); } else { } if ((unsigned int )fmdev->curr_fmmode != 1U) { return (-1); } else { } mod->txsubchans = (__u32 )(((unsigned int )fmdev->tx_data.aud_mode == 0U ? 2 : 1) | ((unsigned int )fmdev->tx_data.rds.flag == 1U ? 16 : 0)); mod->capability = 145U; return (0); } } static int fm_v4l2_vidioc_s_modulator(struct file *file , void *priv , struct v4l2_modulator const *mod ) { struct fmdev *fmdev ; void *tmp ; u8 rds_mode ; u16 aud_mode ; int ret ; { { tmp = video_drvdata(file); fmdev = (struct fmdev *)tmp; } if ((unsigned int )mod->index != 0U) { return (-22); } else { } if ((unsigned int )fmdev->curr_fmmode != 1U) { { ret = fmc_set_mode(fmdev, 1); } if (ret != 0) { { printk("\vfmdrv: Failed to set TX mode\n"); } return (ret); } else { } } else { } { aud_mode = ((unsigned int )mod->txsubchans & 2U) == 0U; rds_mode = ((unsigned int )mod->txsubchans & 16U) != 0U; ret = fm_tx_set_stereo_mono(fmdev, (int )aud_mode); } if (ret < 0) { { printk("\vfmdrv: Failed to set mono/stereo mode for TX\n"); } return (ret); } else { } { ret = fm_tx_set_rds_mode(fmdev, (int )rds_mode); } if (ret < 0) { { printk("\vfmdrv: Failed to set rds mode for TX\n"); } } else { } return (ret); } } static struct v4l2_file_operations const fm_drv_fops = {& __this_module, & fm_v4l2_fops_read, & fm_v4l2_fops_write, & fm_v4l2_fops_poll, 0, & video_ioctl2, 0, 0, 0, & fm_v4l2_fops_open, & fm_v4l2_fops_release}; static struct v4l2_ctrl_ops const fm_ctrl_ops = {& fm_g_volatile_ctrl, 0, & fm_v4l2_s_ctrl}; static struct v4l2_ioctl_ops const fm_drv_ioctl_ops = {& fm_v4l2_vidioc_querycap, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & fm_v4l2_vidioc_g_audio, & fm_v4l2_vidioc_s_audio, 0, 0, 0, & fm_v4l2_vidioc_g_modulator, & fm_v4l2_vidioc_s_modulator, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & fm_v4l2_vidioc_g_tuner, & fm_v4l2_vidioc_s_tuner, & fm_v4l2_vidioc_g_freq, & fm_v4l2_vidioc_s_freq, 0, 0, 0, & fm_v4l2_vidioc_s_hw_freq_seek, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct video_device fm_viddev_template = {{{0, 0}, 0, 0U, 0, 0U, 0U, 0UL, 0U, (unsigned short)0, (unsigned short)0, (unsigned short)0, (unsigned short)0, 0, 0, 0, 0, 0, 0, {.alsa = {0U, 0U, 0U}}}, & fm_drv_fops, {0, 0, {0, {0, 0}, 0, 0, 0, 0, {{0}}, {{{0L}, {0, 0}, 0, {0, {0, 0}, 0, 0, 0UL}}, {{0, 0}, 0UL, 0, 0, 0UL, 0, 0, 0, {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, {0, {0, 0}, 0, 0, 0UL}}, 0, 0}, 0U, 0U, 0U, 0U, 0U}, 0, 0, {{0}, {{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}, 0, 0, 0, {0, {0, 0}, 0, 0, 0UL}}, 0, 0, 0, {{0}, 0U, 0U, (_Bool)0, (_Bool)0, (_Bool)0, (_Bool)0, {{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}, {0U, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}, 0, (_Bool)0, (_Bool)0, {{0, 0}, 0UL, 0, 0, 0UL, 0, 0, 0, {(char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0, (char)0}, {0, {0, 0}, 0, 0, 0UL}}, 0UL, {{0L}, {0, 0}, 0, {0, {0, 0}, 0, 0, 0UL}}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}, {0}, {0}, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0, 0, 0, 0, 0UL, 0UL, 0UL, 0UL, 0, 0}, 0, 0, 0, 0, 0ULL, 0, {0, 0}, 0, {0, 0}, 0, {0}, 0U, 0U, {{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}, {0, {0, 0}, {{0}}}, 0, 0, 0, 0, (_Bool)0, (_Bool)0}, 0, 0, 0, 0, 0, 0, {'t', 'i', '_', 'f', 'm', 'd', 'r', 'v', '\000'}, 0, 2, 0, (unsigned short)0, 0UL, 0, {{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}, 0, 0ULL, & video_device_release, & fm_drv_ioctl_ops, {0UL, 0UL, 0UL}, {0UL, 0UL, 0UL}, 0}; int fm_v4l2_init_video_device(struct fmdev *fmdev , int radio_nr___0 ) { struct v4l2_ctrl *ctrl ; int ret ; struct lock_class_key __key ; int tmp ; struct lock_class_key _key ; int tmp___0 ; { { strlcpy((char *)(& fmdev->v4l2_dev.name), "ti_fmdrv", 36UL); ret = v4l2_device_register((struct device *)0, & fmdev->v4l2_dev); } if (ret < 0) { return (ret); } else { } { __mutex_init(& fmdev->mutex, "&fmdev->mutex", & __key); gradio_dev = video_device_alloc(); } if ((unsigned long )gradio_dev == (unsigned long )((struct video_device *)0)) { { printk("\vfmdrv: Can\'t allocate video device\n"); } return (-12); } else { } { memcpy((void *)gradio_dev, (void const *)(& fm_viddev_template), 1808UL); video_set_drvdata(gradio_dev, (void *)fmdev); gradio_dev->lock = & fmdev->mutex; gradio_dev->v4l2_dev = & fmdev->v4l2_dev; tmp = video_register_device(gradio_dev, 2, radio_nr___0); } if (tmp != 0) { { video_device_release(gradio_dev); printk("\vfmdrv: Could not register video device\n"); } return (-12); } else { } { fmdev->radio_dev = gradio_dev; (fmdev->radio_dev)->ctrl_handler = & fmdev->ctrl_handler; tmp___0 = v4l2_ctrl_handler_init_class(& fmdev->ctrl_handler, 5U, & _key, "fmdrv_v4l2:571:(&fmdev->ctrl_handler)->_lock"); ret = tmp___0; } if (ret < 0) { { printk("\vfmdrv: (fmdev): Can\'t init ctrl handler\n"); v4l2_ctrl_handler_free(& fmdev->ctrl_handler); } return (-16); } else { } { v4l2_ctrl_new_std(& fmdev->ctrl_handler, & fm_ctrl_ops, 9963781U, 0, 70, 1U, 70); v4l2_ctrl_new_std(& fmdev->ctrl_handler, & fm_ctrl_ops, 9963785U, 0, 1, 1U, 1); v4l2_ctrl_new_std_menu(& fmdev->ctrl_handler, & fm_ctrl_ops, 10160496U, 2, 0, 2); v4l2_ctrl_new_std(& fmdev->ctrl_handler, & fm_ctrl_ops, 10160497U, 91, 122, 1U, 122); ctrl = v4l2_ctrl_new_std(& fmdev->ctrl_handler, & fm_ctrl_ops, 10160498U, 0, 255, 1U, 255); } if ((unsigned long )ctrl != (unsigned long )((struct v4l2_ctrl *)0)) { ctrl->flags = ctrl->flags | 128UL; } else { } return (0); } } void *fm_v4l2_deinit_video_device(void) { struct fmdev *fmdev ; void *tmp ; { { tmp = video_get_drvdata(gradio_dev); fmdev = (struct fmdev *)tmp; v4l2_ctrl_handler_free(& fmdev->ctrl_handler); video_unregister_device(gradio_dev); v4l2_device_unregister(& fmdev->v4l2_dev); } return ((void *)fmdev); } } void ldv_io_instance_callback_3_17(unsigned int (*arg0)(struct file * , struct poll_table_struct * ) , struct file *arg1 , struct poll_table_struct *arg2 ) ; void ldv_io_instance_callback_3_18(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_io_instance_callback_3_21(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_io_instance_callback_3_24(int (*arg0)(struct file * , void * , struct v4l2_audio * ) , struct file *arg1 , void *arg2 , struct v4l2_audio *arg3 ) ; void ldv_io_instance_callback_3_25(int (*arg0)(struct file * , void * , struct v4l2_frequency * ) , struct file *arg1 , void *arg2 , struct v4l2_frequency *arg3 ) ; void ldv_io_instance_callback_3_26(int (*arg0)(struct file * , void * , struct v4l2_modulator * ) , struct file *arg1 , void *arg2 , struct v4l2_modulator *arg3 ) ; void ldv_io_instance_callback_3_27(int (*arg0)(struct file * , void * , struct v4l2_tuner * ) , struct file *arg1 , void *arg2 , struct v4l2_tuner *arg3 ) ; void ldv_io_instance_callback_3_28(int (*arg0)(struct file * , void * , struct v4l2_capability * ) , struct file *arg1 , void *arg2 , struct v4l2_capability *arg3 ) ; void ldv_io_instance_callback_3_29(int (*arg0)(struct file * , void * , struct v4l2_audio * ) , struct file *arg1 , void *arg2 , struct v4l2_audio *arg3 ) ; void ldv_io_instance_callback_3_30(int (*arg0)(struct file * , void * , struct v4l2_frequency * ) , struct file *arg1 , void *arg2 , struct v4l2_frequency *arg3 ) ; void ldv_io_instance_callback_3_31(int (*arg0)(struct file * , void * , struct v4l2_hw_freq_seek * ) , struct file *arg1 , void *arg2 , struct v4l2_hw_freq_seek *arg3 ) ; void ldv_io_instance_callback_3_32(int (*arg0)(struct file * , void * , struct v4l2_modulator * ) , struct file *arg1 , void *arg2 , struct v4l2_modulator *arg3 ) ; void ldv_io_instance_callback_3_33(int (*arg0)(struct file * , void * , struct v4l2_tuner * ) , struct file *arg1 , void *arg2 , struct v4l2_tuner *arg3 ) ; void ldv_io_instance_callback_3_34(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_io_instance_callback_3_4(void (*arg0)(struct video_device * ) , struct video_device *arg1 ) ; int ldv_io_instance_probe_3_11(int (*arg0)(struct file * ) , struct file *arg1 ) ; void ldv_io_instance_release_3_2(int (*arg0)(struct file * ) , struct file *arg1 ) ; void (*ldv_3_callback_func_1_ptr)(struct video_device * ) ; unsigned int (*ldv_3_callback_poll)(struct file * , struct poll_table_struct * ) ; long (*ldv_3_callback_read)(struct file * , char * , unsigned long , long long * ) ; long (*ldv_3_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*ldv_3_callback_vidioc_g_audio)(struct file * , void * , struct v4l2_audio * ) ; int (*ldv_3_callback_vidioc_g_frequency)(struct file * , void * , struct v4l2_frequency * ) ; int (*ldv_3_callback_vidioc_g_modulator)(struct file * , void * , struct v4l2_modulator * ) ; int (*ldv_3_callback_vidioc_g_tuner)(struct file * , void * , struct v4l2_tuner * ) ; int (*ldv_3_callback_vidioc_querycap)(struct file * , void * , struct v4l2_capability * ) ; int (*ldv_3_callback_vidioc_s_audio)(struct file * , void * , struct v4l2_audio * ) ; int (*ldv_3_callback_vidioc_s_frequency)(struct file * , void * , struct v4l2_frequency * ) ; int (*ldv_3_callback_vidioc_s_hw_freq_seek)(struct file * , void * , struct v4l2_hw_freq_seek * ) ; int (*ldv_3_callback_vidioc_s_modulator)(struct file * , void * , struct v4l2_modulator * ) ; int (*ldv_3_callback_vidioc_s_tuner)(struct file * , void * , struct v4l2_tuner * ) ; long (*ldv_3_callback_write)(struct file * , char * , unsigned long , long long * ) ; struct v4l2_file_operations *ldv_3_container_v4l2_file_operations ; struct video_device *ldv_3_resource_struct_video_device ; int ldv_statevar_3 ; int (*ldv_1_callback_g_volatile_ctrl)(struct v4l2_ctrl * ) = & fm_g_volatile_ctrl; int (*ldv_1_callback_s_ctrl)(struct v4l2_ctrl * ) = & fm_v4l2_s_ctrl; void (*ldv_3_callback_func_1_ptr)(struct video_device * ) = & video_device_release; unsigned int (*ldv_3_callback_poll)(struct file * , struct poll_table_struct * ) = & fm_v4l2_fops_poll; long (*ldv_3_callback_read)(struct file * , char * , unsigned long , long long * ) = & fm_v4l2_fops_read; long (*ldv_3_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) = & video_ioctl2; int (*ldv_3_callback_vidioc_g_audio)(struct file * , void * , struct v4l2_audio * ) = & fm_v4l2_vidioc_g_audio; int (*ldv_3_callback_vidioc_g_frequency)(struct file * , void * , struct v4l2_frequency * ) = & fm_v4l2_vidioc_g_freq; int (*ldv_3_callback_vidioc_g_modulator)(struct file * , void * , struct v4l2_modulator * ) = & fm_v4l2_vidioc_g_modulator; int (*ldv_3_callback_vidioc_g_tuner)(struct file * , void * , struct v4l2_tuner * ) = & fm_v4l2_vidioc_g_tuner; int (*ldv_3_callback_vidioc_querycap)(struct file * , void * , struct v4l2_capability * ) = & fm_v4l2_vidioc_querycap; int (*ldv_3_callback_vidioc_s_audio)(struct file * , void * , struct v4l2_audio * ) = (int (*)(struct file * , void * , struct v4l2_audio * ))(& fm_v4l2_vidioc_s_audio); int (*ldv_3_callback_vidioc_s_frequency)(struct file * , void * , struct v4l2_frequency * ) = (int (*)(struct file * , void * , struct v4l2_frequency * ))(& fm_v4l2_vidioc_s_freq); int (*ldv_3_callback_vidioc_s_hw_freq_seek)(struct file * , void * , struct v4l2_hw_freq_seek * ) = (int (*)(struct file * , void * , struct v4l2_hw_freq_seek * ))(& fm_v4l2_vidioc_s_hw_freq_seek); int (*ldv_3_callback_vidioc_s_modulator)(struct file * , void * , struct v4l2_modulator * ) = (int (*)(struct file * , void * , struct v4l2_modulator * ))(& fm_v4l2_vidioc_s_modulator); int (*ldv_3_callback_vidioc_s_tuner)(struct file * , void * , struct v4l2_tuner * ) = (int (*)(struct file * , void * , struct v4l2_tuner * ))(& fm_v4l2_vidioc_s_tuner); long (*ldv_3_callback_write)(struct file * , char * , unsigned long , long long * ) = (long (*)(struct file * , char * , unsigned long , long long * ))(& fm_v4l2_fops_write); void ldv_dummy_resourceless_instance_callback_1_3(int (*arg0)(struct v4l2_ctrl * ) , struct v4l2_ctrl *arg1 ) { { { fm_g_volatile_ctrl(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_7(int (*arg0)(struct v4l2_ctrl * ) , struct v4l2_ctrl *arg1 ) { { { fm_v4l2_s_ctrl(arg1); } return; } } void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { fm_v4l2_fops_write(arg1, (char const *)arg2, arg3, arg4); } return; } } void ldv_io_instance_callback_3_17(unsigned int (*arg0)(struct file * , struct poll_table_struct * ) , struct file *arg1 , struct poll_table_struct *arg2 ) { { { fm_v4l2_fops_poll(arg1, arg2); } return; } } void ldv_io_instance_callback_3_18(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { fm_v4l2_fops_read(arg1, arg2, arg3, arg4); } return; } } void ldv_io_instance_callback_3_21(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { video_ioctl2(arg1, arg2, arg3); } return; } } void ldv_io_instance_callback_3_24(int (*arg0)(struct file * , void * , struct v4l2_audio * ) , struct file *arg1 , void *arg2 , struct v4l2_audio *arg3 ) { { { fm_v4l2_vidioc_g_audio(arg1, arg2, arg3); } return; } } void ldv_io_instance_callback_3_25(int (*arg0)(struct file * , void * , struct v4l2_frequency * ) , struct file *arg1 , void *arg2 , struct v4l2_frequency *arg3 ) { { { fm_v4l2_vidioc_g_freq(arg1, arg2, arg3); } return; } } void ldv_io_instance_callback_3_26(int (*arg0)(struct file * , void * , struct v4l2_modulator * ) , struct file *arg1 , void *arg2 , struct v4l2_modulator *arg3 ) { { { fm_v4l2_vidioc_g_modulator(arg1, arg2, arg3); } return; } } void ldv_io_instance_callback_3_27(int (*arg0)(struct file * , void * , struct v4l2_tuner * ) , struct file *arg1 , void *arg2 , struct v4l2_tuner *arg3 ) { { { fm_v4l2_vidioc_g_tuner(arg1, arg2, arg3); } return; } } void ldv_io_instance_callback_3_28(int (*arg0)(struct file * , void * , struct v4l2_capability * ) , struct file *arg1 , void *arg2 , struct v4l2_capability *arg3 ) { { { fm_v4l2_vidioc_querycap(arg1, arg2, arg3); } return; } } void ldv_io_instance_callback_3_29(int (*arg0)(struct file * , void * , struct v4l2_audio * ) , struct file *arg1 , void *arg2 , struct v4l2_audio *arg3 ) { { { fm_v4l2_vidioc_s_audio(arg1, arg2, (struct v4l2_audio const *)arg3); } return; } } void ldv_io_instance_callback_3_30(int (*arg0)(struct file * , void * , struct v4l2_frequency * ) , struct file *arg1 , void *arg2 , struct v4l2_frequency *arg3 ) { { { fm_v4l2_vidioc_s_freq(arg1, arg2, (struct v4l2_frequency const *)arg3); } return; } } void ldv_io_instance_callback_3_31(int (*arg0)(struct file * , void * , struct v4l2_hw_freq_seek * ) , struct file *arg1 , void *arg2 , struct v4l2_hw_freq_seek *arg3 ) { { { fm_v4l2_vidioc_s_hw_freq_seek(arg1, arg2, (struct v4l2_hw_freq_seek const *)arg3); } return; } } void ldv_io_instance_callback_3_32(int (*arg0)(struct file * , void * , struct v4l2_modulator * ) , struct file *arg1 , void *arg2 , struct v4l2_modulator *arg3 ) { { { fm_v4l2_vidioc_s_modulator(arg1, arg2, (struct v4l2_modulator const *)arg3); } return; } } void ldv_io_instance_callback_3_33(int (*arg0)(struct file * , void * , struct v4l2_tuner * ) , struct file *arg1 , void *arg2 , struct v4l2_tuner *arg3 ) { { { fm_v4l2_vidioc_s_tuner(arg1, arg2, (struct v4l2_tuner const *)arg3); } return; } } void ldv_io_instance_callback_3_34(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { fm_v4l2_fops_write(arg1, (char const *)arg2, arg3, arg4); } return; } } void ldv_io_instance_callback_3_4(void (*arg0)(struct video_device * ) , struct video_device *arg1 ) { { { video_device_release(arg1); } return; } } int ldv_io_instance_probe_3_11(int (*arg0)(struct file * ) , struct file *arg1 ) { int tmp ; { { tmp = fm_v4l2_fops_open(arg1); } return (tmp); } } void ldv_io_instance_release_3_2(int (*arg0)(struct file * ) , struct file *arg1 ) { { { fm_v4l2_fops_release(arg1); } return; } } void ldv_switch_automaton_state_3_14(void) { { ldv_statevar_3 = 13; return; } } void ldv_switch_automaton_state_3_5(void) { { ldv_3_ret_default = 1; ldv_statevar_3 = 14; return; } } void ldv_v4l2_file_operations_io_instance_3(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; int tmp___11 ; void *tmp___12 ; void *tmp___13 ; void *tmp___14 ; void *tmp___15 ; { { if (ldv_statevar_3 == 1) { goto case_1; } else { } if (ldv_statevar_3 == 2) { goto case_2; } else { } if (ldv_statevar_3 == 3) { goto case_3; } else { } if (ldv_statevar_3 == 4) { goto case_4; } else { } if (ldv_statevar_3 == 6) { goto case_6; } else { } if (ldv_statevar_3 == 8) { goto case_8; } else { } if (ldv_statevar_3 == 10) { goto case_10; } else { } if (ldv_statevar_3 == 11) { goto case_11; } else { } if (ldv_statevar_3 == 13) { goto case_13; } else { } if (ldv_statevar_3 == 14) { goto case_14; } else { } if (ldv_statevar_3 == 17) { goto case_17; } else { } if (ldv_statevar_3 == 19) { goto case_19; } else { } if (ldv_statevar_3 == 22) { goto case_22; } else { } if (ldv_statevar_3 == 24) { goto case_24; } else { } if (ldv_statevar_3 == 25) { goto case_25; } else { } if (ldv_statevar_3 == 26) { goto case_26; } else { } if (ldv_statevar_3 == 27) { goto case_27; } else { } if (ldv_statevar_3 == 28) { goto case_28; } else { } if (ldv_statevar_3 == 29) { goto case_29; } else { } if (ldv_statevar_3 == 30) { goto case_30; } else { } if (ldv_statevar_3 == 31) { goto case_31; } else { } if (ldv_statevar_3 == 32) { goto case_32; } else { } if (ldv_statevar_3 == 33) { goto case_33; } else { } if (ldv_statevar_3 == 35) { goto case_35; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_3 = 6; } else { ldv_statevar_3 = 11; } goto ldv_35987; case_2: /* CIL Label */ { ldv_io_instance_release_3_2(ldv_3_container_v4l2_file_operations->release, ldv_3_resource_file); ldv_statevar_3 = 1; } goto ldv_35987; case_3: /* CIL Label */ { ldv_statevar_3 = ldv_switch_2(); } goto ldv_35987; case_4: /* CIL Label */ { ldv_io_instance_callback_3_4(ldv_3_callback_func_1_ptr, ldv_3_resource_struct_video_device); ldv_statevar_3 = 3; } goto ldv_35987; case_6: /* CIL Label */ { ldv_free((void *)ldv_3_resource_file); ldv_free((void *)ldv_3_resource_struct_poll_table_struct_ptr); ldv_free((void *)ldv_3_resource_struct_v4l2_audio_ptr); ldv_free((void *)ldv_3_resource_struct_v4l2_capability_ptr); ldv_free((void *)ldv_3_resource_struct_v4l2_frequency_ptr); ldv_free((void *)ldv_3_resource_struct_v4l2_hw_freq_seek_ptr); ldv_free((void *)ldv_3_resource_struct_v4l2_modulator_ptr); ldv_free((void *)ldv_3_resource_struct_v4l2_tuner_ptr); ldv_free((void *)ldv_3_resource_struct_video_device); ldv_3_ret_default = 1; ldv_statevar_3 = 14; } goto ldv_35987; case_8: /* CIL Label */ { ldv_assume(ldv_3_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_3 = 6; } else { ldv_statevar_3 = 11; } goto ldv_35987; case_10: /* CIL Label */ { ldv_assume(ldv_3_ret_default == 0); ldv_statevar_3 = ldv_switch_2(); } goto ldv_35987; case_11: /* CIL Label */ { ldv_3_ret_default = ldv_io_instance_probe_3_11(ldv_3_container_v4l2_file_operations->open, ldv_3_resource_file); ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_3 = 8; } else { ldv_statevar_3 = 10; } goto ldv_35987; case_13: /* CIL Label */ { tmp___2 = ldv_xmalloc(520UL); ldv_3_resource_file = (struct file *)tmp___2; tmp___3 = ldv_xmalloc(16UL); ldv_3_resource_struct_poll_table_struct_ptr = (struct poll_table_struct *)tmp___3; tmp___4 = ldv_xmalloc(52UL); ldv_3_resource_struct_v4l2_audio_ptr = (struct v4l2_audio *)tmp___4; tmp___5 = ldv_xmalloc(104UL); ldv_3_resource_struct_v4l2_capability_ptr = (struct v4l2_capability *)tmp___5; tmp___6 = ldv_xmalloc(44UL); ldv_3_resource_struct_v4l2_frequency_ptr = (struct v4l2_frequency *)tmp___6; tmp___7 = ldv_xmalloc(48UL); ldv_3_resource_struct_v4l2_hw_freq_seek_ptr = (struct v4l2_hw_freq_seek *)tmp___7; tmp___8 = ldv_xmalloc(68UL); ldv_3_resource_struct_v4l2_modulator_ptr = (struct v4l2_modulator *)tmp___8; tmp___9 = ldv_xmalloc(84UL); ldv_3_resource_struct_v4l2_tuner_ptr = (struct v4l2_tuner *)tmp___9; tmp___10 = ldv_xmalloc(1808UL); ldv_3_resource_struct_video_device = (struct video_device *)tmp___10; tmp___11 = ldv_undef_int(); } if (tmp___11 != 0) { ldv_statevar_3 = 6; } else { ldv_statevar_3 = 11; } goto ldv_35987; case_14: /* CIL Label */ ; goto ldv_35987; case_17: /* CIL Label */ { ldv_io_instance_callback_3_17(ldv_3_callback_poll, ldv_3_resource_file, ldv_3_resource_struct_poll_table_struct_ptr); ldv_statevar_3 = 3; } goto ldv_35987; case_19: /* CIL Label */ { tmp___12 = ldv_xmalloc(1UL); ldv_3_ldv_param_18_1_default = (char *)tmp___12; tmp___13 = ldv_xmalloc(8UL); ldv_3_ldv_param_18_3_default = (long long *)tmp___13; ldv_io_instance_callback_3_18(ldv_3_callback_read, ldv_3_resource_file, ldv_3_ldv_param_18_1_default, ldv_3_ldv_param_18_2_default, ldv_3_ldv_param_18_3_default); ldv_free((void *)ldv_3_ldv_param_18_1_default); ldv_free((void *)ldv_3_ldv_param_18_3_default); ldv_statevar_3 = 3; } goto ldv_35987; case_22: /* CIL Label */ { ldv_io_instance_callback_3_21(ldv_3_callback_unlocked_ioctl, ldv_3_resource_file, ldv_3_ldv_param_21_1_default, ldv_3_ldv_param_21_2_default); ldv_statevar_3 = 3; } goto ldv_35987; case_24: /* CIL Label */ { ldv_io_instance_callback_3_24(ldv_3_callback_vidioc_g_audio, ldv_3_resource_file, (void *)ldv_3_resource_struct_poll_table_struct_ptr, ldv_3_resource_struct_v4l2_audio_ptr); ldv_statevar_3 = 3; } goto ldv_35987; case_25: /* CIL Label */ { ldv_io_instance_callback_3_25(ldv_3_callback_vidioc_g_frequency, ldv_3_resource_file, (void *)ldv_3_resource_struct_poll_table_struct_ptr, ldv_3_resource_struct_v4l2_frequency_ptr); ldv_statevar_3 = 3; } goto ldv_35987; case_26: /* CIL Label */ { ldv_io_instance_callback_3_26(ldv_3_callback_vidioc_g_modulator, ldv_3_resource_file, (void *)ldv_3_resource_struct_poll_table_struct_ptr, ldv_3_resource_struct_v4l2_modulator_ptr); ldv_statevar_3 = 3; } goto ldv_35987; case_27: /* CIL Label */ { ldv_io_instance_callback_3_27(ldv_3_callback_vidioc_g_tuner, ldv_3_resource_file, (void *)ldv_3_resource_struct_poll_table_struct_ptr, ldv_3_resource_struct_v4l2_tuner_ptr); ldv_statevar_3 = 3; } goto ldv_35987; case_28: /* CIL Label */ { ldv_io_instance_callback_3_28(ldv_3_callback_vidioc_querycap, ldv_3_resource_file, (void *)ldv_3_resource_struct_poll_table_struct_ptr, ldv_3_resource_struct_v4l2_capability_ptr); ldv_statevar_3 = 3; } goto ldv_35987; case_29: /* CIL Label */ { ldv_io_instance_callback_3_29(ldv_3_callback_vidioc_s_audio, ldv_3_resource_file, (void *)ldv_3_resource_struct_poll_table_struct_ptr, ldv_3_resource_struct_v4l2_audio_ptr); ldv_statevar_3 = 3; } goto ldv_35987; case_30: /* CIL Label */ { ldv_io_instance_callback_3_30(ldv_3_callback_vidioc_s_frequency, ldv_3_resource_file, (void *)ldv_3_resource_struct_poll_table_struct_ptr, ldv_3_resource_struct_v4l2_frequency_ptr); ldv_statevar_3 = 3; } goto ldv_35987; case_31: /* CIL Label */ { ldv_io_instance_callback_3_31(ldv_3_callback_vidioc_s_hw_freq_seek, ldv_3_resource_file, (void *)ldv_3_resource_struct_poll_table_struct_ptr, ldv_3_resource_struct_v4l2_hw_freq_seek_ptr); ldv_statevar_3 = 3; } goto ldv_35987; case_32: /* CIL Label */ { ldv_io_instance_callback_3_32(ldv_3_callback_vidioc_s_modulator, ldv_3_resource_file, (void *)ldv_3_resource_struct_poll_table_struct_ptr, ldv_3_resource_struct_v4l2_modulator_ptr); ldv_statevar_3 = 3; } goto ldv_35987; case_33: /* CIL Label */ { ldv_io_instance_callback_3_33(ldv_3_callback_vidioc_s_tuner, ldv_3_resource_file, (void *)ldv_3_resource_struct_poll_table_struct_ptr, ldv_3_resource_struct_v4l2_tuner_ptr); ldv_statevar_3 = 3; } goto ldv_35987; case_35: /* CIL Label */ { tmp___14 = ldv_xmalloc(1UL); ldv_3_ldv_param_34_1_default = (char *)tmp___14; tmp___15 = ldv_xmalloc(8UL); ldv_3_ldv_param_34_3_default = (long long *)tmp___15; ldv_io_instance_callback_3_34(ldv_3_callback_write, ldv_3_resource_file, ldv_3_ldv_param_34_1_default, ldv_3_ldv_param_34_2_default, ldv_3_ldv_param_34_3_default); ldv_free((void *)ldv_3_ldv_param_34_1_default); ldv_free((void *)ldv_3_ldv_param_34_3_default); ldv_statevar_3 = 3; } goto ldv_35987; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_35987: ; return; } } static void *ldv_dev_get_drvdata_16(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_17(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } static int ldv_mutex_lock_interruptible_24(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_mutex_lock_interruptible_or_killable_mutex_of_fmdev(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_25(struct mutex *ldv_func_arg1 ) { { { ldv_mutex_unlock_mutex_of_fmdev(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_26(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_mutex_lock_interruptible_or_killable_mutex_of_fmdev(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_27(struct mutex *ldv_func_arg1 ) { { { ldv_mutex_unlock_mutex_of_fmdev(ldv_func_arg1); } return; } } static void ldv_mutex_lock_28(struct mutex *ldv_func_arg1 ) { { { ldv_mutex_lock_mutex_of_fmdev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_29(struct mutex *ldv_func_arg1 ) { { { ldv_mutex_unlock_mutex_of_fmdev(ldv_func_arg1); } return; } } static int ldv_mutex_lock_interruptible_30(struct mutex *ldv_func_arg1 ) { int tmp ; { { tmp = ldv_mutex_lock_interruptible_or_killable_mutex_of_fmdev(ldv_func_arg1); } return (tmp); } } static void ldv_mutex_unlock_31(struct mutex *ldv_func_arg1 ) { { { ldv_mutex_unlock_mutex_of_fmdev(ldv_func_arg1); } return; } } static void ldv_mutex_lock_32(struct mutex *ldv_func_arg1 ) { { { ldv_mutex_lock_mutex_of_fmdev(ldv_func_arg1); } return; } } static void ldv_mutex_unlock_33(struct mutex *ldv_func_arg1 ) { { { ldv_mutex_unlock_mutex_of_fmdev(ldv_func_arg1); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } int ldv_post_probe(int probe_ret_val ) ; static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_check_alloc_flags(gfp_t ) ; extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; void *ldv_malloc_unknown_size(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) ; ldv_set LDV_MUTEXES_i_mutex_of_inode ; void ldv_mutex_lock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_i_mutex_of_inode); LDV_MUTEXES_i_mutex_of_inode = 1; } return; } } int ldv_mutex_lock_interruptible_or_killable_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_i_mutex_of_inode); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_MUTEXES_i_mutex_of_inode = 1; return (0); } else { return (-4); } } } int ldv_mutex_is_locked_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { if ((int )LDV_MUTEXES_i_mutex_of_inode) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_mutex_trylock_i_mutex_of_inode(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_MUTEXES_i_mutex_of_inode); tmp = ldv_mutex_is_locked_i_mutex_of_inode(lock); } if (tmp != 0) { return (0); } else { LDV_MUTEXES_i_mutex_of_inode = 1; return (1); } } } int ldv_atomic_dec_and_mutex_lock_i_mutex_of_inode(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_mutex_lock_i_mutex_of_inode(lock); } return (1); } } } void ldv_mutex_unlock_i_mutex_of_inode(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_MUTEXES_i_mutex_of_inode); LDV_MUTEXES_i_mutex_of_inode = 0; } return; } } ldv_set LDV_MUTEXES_lock ; void ldv_mutex_lock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_lock); LDV_MUTEXES_lock = 1; } return; } } int ldv_mutex_lock_interruptible_or_killable_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_lock); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_MUTEXES_lock = 1; return (0); } else { return (-4); } } } int ldv_mutex_is_locked_lock(struct mutex *lock ) { int tmp ; { if ((int )LDV_MUTEXES_lock) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_mutex_trylock_lock(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_MUTEXES_lock); tmp = ldv_mutex_is_locked_lock(lock); } if (tmp != 0) { return (0); } else { LDV_MUTEXES_lock = 1; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_mutex_lock_lock(lock); } return (1); } } } void ldv_mutex_unlock_lock(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_MUTEXES_lock); LDV_MUTEXES_lock = 0; } return; } } ldv_set LDV_MUTEXES_lock_of_v4l2_ctrl_handler ; void ldv_mutex_lock_lock_of_v4l2_ctrl_handler(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_lock_of_v4l2_ctrl_handler); LDV_MUTEXES_lock_of_v4l2_ctrl_handler = 1; } return; } } int ldv_mutex_lock_interruptible_or_killable_lock_of_v4l2_ctrl_handler(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_lock_of_v4l2_ctrl_handler); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_MUTEXES_lock_of_v4l2_ctrl_handler = 1; return (0); } else { return (-4); } } } int ldv_mutex_is_locked_lock_of_v4l2_ctrl_handler(struct mutex *lock ) { int tmp ; { if ((int )LDV_MUTEXES_lock_of_v4l2_ctrl_handler) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_mutex_trylock_lock_of_v4l2_ctrl_handler(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_MUTEXES_lock_of_v4l2_ctrl_handler); tmp = ldv_mutex_is_locked_lock_of_v4l2_ctrl_handler(lock); } if (tmp != 0) { return (0); } else { LDV_MUTEXES_lock_of_v4l2_ctrl_handler = 1; return (1); } } } int ldv_atomic_dec_and_mutex_lock_lock_of_v4l2_ctrl_handler(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_mutex_lock_lock_of_v4l2_ctrl_handler(lock); } return (1); } } } void ldv_mutex_unlock_lock_of_v4l2_ctrl_handler(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_MUTEXES_lock_of_v4l2_ctrl_handler); LDV_MUTEXES_lock_of_v4l2_ctrl_handler = 0; } return; } } ldv_set LDV_MUTEXES_mutex_of_device ; void ldv_mutex_lock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_mutex_of_device); LDV_MUTEXES_mutex_of_device = 1; } return; } } int ldv_mutex_lock_interruptible_or_killable_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_mutex_of_device); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_MUTEXES_mutex_of_device = 1; return (0); } else { return (-4); } } } int ldv_mutex_is_locked_mutex_of_device(struct mutex *lock ) { int tmp ; { if ((int )LDV_MUTEXES_mutex_of_device) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_mutex_trylock_mutex_of_device(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_MUTEXES_mutex_of_device); tmp = ldv_mutex_is_locked_mutex_of_device(lock); } if (tmp != 0) { return (0); } else { LDV_MUTEXES_mutex_of_device = 1; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_device(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_mutex_lock_mutex_of_device(lock); } return (1); } } } void ldv_mutex_unlock_mutex_of_device(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_MUTEXES_mutex_of_device); LDV_MUTEXES_mutex_of_device = 0; } return; } } ldv_set LDV_MUTEXES_mutex_of_fmdev ; void ldv_mutex_lock_mutex_of_fmdev(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_mutex_of_fmdev); LDV_MUTEXES_mutex_of_fmdev = 1; } return; } } int ldv_mutex_lock_interruptible_or_killable_mutex_of_fmdev(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_mutex_of_fmdev); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_MUTEXES_mutex_of_fmdev = 1; return (0); } else { return (-4); } } } int ldv_mutex_is_locked_mutex_of_fmdev(struct mutex *lock ) { int tmp ; { if ((int )LDV_MUTEXES_mutex_of_fmdev) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_mutex_trylock_mutex_of_fmdev(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_MUTEXES_mutex_of_fmdev); tmp = ldv_mutex_is_locked_mutex_of_fmdev(lock); } if (tmp != 0) { return (0); } else { LDV_MUTEXES_mutex_of_fmdev = 1; return (1); } } } int ldv_atomic_dec_and_mutex_lock_mutex_of_fmdev(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_mutex_lock_mutex_of_fmdev(lock); } return (1); } } } void ldv_mutex_unlock_mutex_of_fmdev(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_MUTEXES_mutex_of_fmdev); LDV_MUTEXES_mutex_of_fmdev = 0; } return; } } ldv_set LDV_MUTEXES_power_lock_of_snd_card ; void ldv_mutex_lock_power_lock_of_snd_card(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_power_lock_of_snd_card); LDV_MUTEXES_power_lock_of_snd_card = 1; } return; } } int ldv_mutex_lock_interruptible_or_killable_power_lock_of_snd_card(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(! LDV_MUTEXES_power_lock_of_snd_card); tmp = ldv_undef_int(); } if (tmp != 0) { LDV_MUTEXES_power_lock_of_snd_card = 1; return (0); } else { return (-4); } } } int ldv_mutex_is_locked_power_lock_of_snd_card(struct mutex *lock ) { int tmp ; { if ((int )LDV_MUTEXES_power_lock_of_snd_card) { return (1); } else { { tmp = ldv_undef_int(); } if (tmp != 0) { return (1); } else { return (0); } } } } int ldv_mutex_trylock_power_lock_of_snd_card(struct mutex *lock ) { int tmp ; { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(! LDV_MUTEXES_power_lock_of_snd_card); tmp = ldv_mutex_is_locked_power_lock_of_snd_card(lock); } if (tmp != 0) { return (0); } else { LDV_MUTEXES_power_lock_of_snd_card = 1; return (1); } } } int ldv_atomic_dec_and_mutex_lock_power_lock_of_snd_card(atomic_t *cnt , struct mutex *lock ) { { cnt->counter = cnt->counter - 1; if (cnt->counter != 0) { return (0); } else { { ldv_mutex_lock_power_lock_of_snd_card(lock); } return (1); } } } void ldv_mutex_unlock_power_lock_of_snd_card(struct mutex *lock ) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock((int )LDV_MUTEXES_power_lock_of_snd_card); LDV_MUTEXES_power_lock_of_snd_card = 0; } return; } } void ldv_initialize(void) { { LDV_MUTEXES_i_mutex_of_inode = 0; LDV_MUTEXES_lock = 0; LDV_MUTEXES_lock_of_v4l2_ctrl_handler = 0; LDV_MUTEXES_mutex_of_device = 0; LDV_MUTEXES_mutex_of_fmdev = 0; LDV_MUTEXES_power_lock_of_snd_card = 0; return; } } void ldv_check_final_state(void) { { { ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_MUTEXES_i_mutex_of_inode); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_MUTEXES_lock); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_MUTEXES_lock_of_v4l2_ctrl_handler); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_MUTEXES_mutex_of_device); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_MUTEXES_mutex_of_fmdev); ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(! LDV_MUTEXES_power_lock_of_snd_card); } return; } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_mutex__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }