/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct device; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef long long __s64; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __be16; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct inode; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct backing_dev_info; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_43 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_43 nodemask_t; struct path; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_108 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_108 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion____missing_field_name_136 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_136 __annonCompField33 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_139 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_140 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_138 { struct __anonstruct____missing_field_name_139 __annonCompField35 ; struct __anonstruct____missing_field_name_140 __annonCompField36 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_141 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_143 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_147 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_146 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_147 __annonCompField40 ; int units ; }; struct __anonstruct____missing_field_name_145 { union __anonunion____missing_field_name_146 __annonCompField41 ; atomic_t _count ; }; union __anonunion____missing_field_name_144 { unsigned long counters ; struct __anonstruct____missing_field_name_145 __annonCompField42 ; unsigned int active ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField39 ; union __anonunion____missing_field_name_144 __annonCompField43 ; }; struct __anonstruct____missing_field_name_149 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_148 { struct list_head lru ; struct __anonstruct____missing_field_name_149 __annonCompField45 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_150 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_141 __annonCompField38 ; struct __anonstruct____missing_field_name_142 __annonCompField44 ; union __anonunion____missing_field_name_148 __annonCompField46 ; union __anonunion____missing_field_name_150 __annonCompField47 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_152 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_151 { struct __anonstruct_linear_152 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_151 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct mem_cgroup; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_154 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_155 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_153 { struct __anonstruct____missing_field_name_154 __annonCompField48 ; struct __anonstruct____missing_field_name_155 __annonCompField49 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_153 __annonCompField50 ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_157 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_156 { struct __anonstruct____missing_field_name_157 __annonCompField51 ; }; struct lockref { union __anonunion____missing_field_name_156 __annonCompField52 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_159 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_158 { struct __anonstruct____missing_field_name_159 __annonCompField53 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_158 __annonCompField54 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_160 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_160 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct semaphore { raw_spinlock_t lock ; unsigned int count ; struct list_head wait_list ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct iovec; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct cred; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_162 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_162 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_163 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_163 __annonCompField55 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_165 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_164 { size_t written ; size_t count ; union __anonunion_arg_165 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_164 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_166 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_167 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; union __anonunion____missing_field_name_168 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_166 __annonCompField56 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_167 __annonCompField57 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_168 __annonCompField58 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_169 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_169 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_171 { struct list_head link ; int state ; }; union __anonunion_fl_u_170 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_171 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_170 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct exception_table_entry { int insn ; int fixup ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_175 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_174 { struct __anonstruct____missing_field_name_175 __annonCompField60 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_174 __annonCompField61 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_180 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_180 __annonCompField62 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct __anonstruct_sigset_t_182 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_182 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_184 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_185 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_186 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_187 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_188 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_189 { long _band ; int _fd ; }; struct __anonstruct__sigsys_190 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_183 { int _pad[28U] ; struct __anonstruct__kill_184 _kill ; struct __anonstruct__timer_185 _timer ; struct __anonstruct__rt_186 _rt ; struct __anonstruct__sigchld_187 _sigchld ; struct __anonstruct__sigfault_188 _sigfault ; struct __anonstruct__sigpoll_189 _sigpoll ; struct __anonstruct__sigsys_190 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_183 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex { raw_spinlock_t wait_lock ; struct rb_root waiters ; struct rb_node *waiters_leftmost ; struct task_struct *owner ; int save_state ; char const *name ; char const *file ; int line ; void *magic ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_193 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_194 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_196 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_195 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_196 __annonCompField65 ; }; union __anonunion_type_data_197 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_199 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_198 { union __anonunion_payload_199 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_193 __annonCompField63 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_194 __annonCompField64 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_195 __annonCompField66 ; union __anonunion_type_data_197 type_data ; union __anonunion____missing_field_name_198 __annonCompField67 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; struct tasklet_struct { struct tasklet_struct *next ; unsigned long state ; atomic_t count ; void (*func)(unsigned long ) ; unsigned long data ; }; typedef u32 phandle; struct property { char *name ; int length ; void *value ; struct property *next ; unsigned long _flags ; unsigned int unique_id ; }; struct device_node { char const *name ; char const *type ; phandle phandle ; char const *full_name ; struct property *properties ; struct property *deadprops ; struct device_node *parent ; struct device_node *child ; struct device_node *sibling ; struct device_node *next ; struct device_node *allnext ; struct proc_dir_entry *pde ; struct kref kref ; unsigned long _flags ; void *data ; }; struct i2c_msg { __u16 addr ; __u16 flags ; __u16 len ; __u8 *buf ; }; union i2c_smbus_data { __u8 byte ; __u16 word ; __u8 block[34U] ; }; struct i2c_algorithm; struct i2c_adapter; struct i2c_algorithm { int (*master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) ; int (*smbus_xfer)(struct i2c_adapter * , u16 , unsigned short , char , u8 , int , union i2c_smbus_data * ) ; u32 (*functionality)(struct i2c_adapter * ) ; }; struct i2c_bus_recovery_info { int (*recover_bus)(struct i2c_adapter * ) ; int (*get_scl)(struct i2c_adapter * ) ; void (*set_scl)(struct i2c_adapter * , int ) ; int (*get_sda)(struct i2c_adapter * ) ; void (*prepare_recovery)(struct i2c_bus_recovery_info * ) ; void (*unprepare_recovery)(struct i2c_bus_recovery_info * ) ; int scl_gpio ; int sda_gpio ; }; struct i2c_adapter { struct module *owner ; unsigned int class ; struct i2c_algorithm const *algo ; void *algo_data ; struct rt_mutex bus_lock ; int timeout ; int retries ; struct device dev ; int nr ; char name[48U] ; struct completion dev_released ; struct mutex userspace_clients_lock ; struct list_head userspace_clients ; struct i2c_bus_recovery_info *bus_recovery_info ; }; enum fe_type { FE_QPSK = 0, FE_QAM = 1, FE_OFDM = 2, FE_ATSC = 3 } ; typedef enum fe_type fe_type_t; enum fe_caps { FE_IS_STUPID = 0, FE_CAN_INVERSION_AUTO = 1, FE_CAN_FEC_1_2 = 2, FE_CAN_FEC_2_3 = 4, FE_CAN_FEC_3_4 = 8, FE_CAN_FEC_4_5 = 16, FE_CAN_FEC_5_6 = 32, FE_CAN_FEC_6_7 = 64, FE_CAN_FEC_7_8 = 128, FE_CAN_FEC_8_9 = 256, FE_CAN_FEC_AUTO = 512, FE_CAN_QPSK = 1024, FE_CAN_QAM_16 = 2048, FE_CAN_QAM_32 = 4096, FE_CAN_QAM_64 = 8192, FE_CAN_QAM_128 = 16384, FE_CAN_QAM_256 = 32768, FE_CAN_QAM_AUTO = 65536, FE_CAN_TRANSMISSION_MODE_AUTO = 131072, FE_CAN_BANDWIDTH_AUTO = 262144, FE_CAN_GUARD_INTERVAL_AUTO = 524288, FE_CAN_HIERARCHY_AUTO = 1048576, FE_CAN_8VSB = 2097152, FE_CAN_16VSB = 4194304, FE_HAS_EXTENDED_CAPS = 8388608, FE_CAN_MULTISTREAM = 67108864, FE_CAN_TURBO_FEC = 134217728, FE_CAN_2G_MODULATION = 268435456, FE_NEEDS_BENDING = 536870912, FE_CAN_RECOVER = 1073741824, FE_CAN_MUTE_TS = 2147483648U } ; typedef enum fe_caps fe_caps_t; struct dvb_frontend_info { char name[128U] ; fe_type_t type ; __u32 frequency_min ; __u32 frequency_max ; __u32 frequency_stepsize ; __u32 frequency_tolerance ; __u32 symbol_rate_min ; __u32 symbol_rate_max ; __u32 symbol_rate_tolerance ; __u32 notifier_delay ; fe_caps_t caps ; }; struct dvb_diseqc_master_cmd { __u8 msg[6U] ; __u8 msg_len ; }; struct dvb_diseqc_slave_reply { __u8 msg[4U] ; __u8 msg_len ; int timeout ; }; enum fe_sec_voltage { SEC_VOLTAGE_13 = 0, SEC_VOLTAGE_18 = 1, SEC_VOLTAGE_OFF = 2 } ; typedef enum fe_sec_voltage fe_sec_voltage_t; enum fe_sec_tone_mode { SEC_TONE_ON = 0, SEC_TONE_OFF = 1 } ; typedef enum fe_sec_tone_mode fe_sec_tone_mode_t; enum fe_sec_mini_cmd { SEC_MINI_A = 0, SEC_MINI_B = 1 } ; typedef enum fe_sec_mini_cmd fe_sec_mini_cmd_t; enum fe_status { FE_HAS_SIGNAL = 1, FE_HAS_CARRIER = 2, FE_HAS_VITERBI = 4, FE_HAS_SYNC = 8, FE_HAS_LOCK = 16, FE_TIMEDOUT = 32, FE_REINIT = 64 } ; typedef enum fe_status fe_status_t; enum fe_spectral_inversion { INVERSION_OFF = 0, INVERSION_ON = 1, INVERSION_AUTO = 2 } ; typedef enum fe_spectral_inversion fe_spectral_inversion_t; enum fe_code_rate { FEC_NONE = 0, FEC_1_2 = 1, FEC_2_3 = 2, FEC_3_4 = 3, FEC_4_5 = 4, FEC_5_6 = 5, FEC_6_7 = 6, FEC_7_8 = 7, FEC_8_9 = 8, FEC_AUTO = 9, FEC_3_5 = 10, FEC_9_10 = 11, FEC_2_5 = 12 } ; typedef enum fe_code_rate fe_code_rate_t; enum fe_modulation { QPSK = 0, QAM_16 = 1, QAM_32 = 2, QAM_64 = 3, QAM_128 = 4, QAM_256 = 5, QAM_AUTO = 6, VSB_8 = 7, VSB_16 = 8, PSK_8 = 9, APSK_16 = 10, APSK_32 = 11, DQPSK = 12, QAM_4_NR = 13 } ; typedef enum fe_modulation fe_modulation_t; enum fe_transmit_mode { TRANSMISSION_MODE_2K = 0, TRANSMISSION_MODE_8K = 1, TRANSMISSION_MODE_AUTO = 2, TRANSMISSION_MODE_4K = 3, TRANSMISSION_MODE_1K = 4, TRANSMISSION_MODE_16K = 5, TRANSMISSION_MODE_32K = 6, TRANSMISSION_MODE_C1 = 7, TRANSMISSION_MODE_C3780 = 8 } ; typedef enum fe_transmit_mode fe_transmit_mode_t; enum fe_guard_interval { GUARD_INTERVAL_1_32 = 0, GUARD_INTERVAL_1_16 = 1, GUARD_INTERVAL_1_8 = 2, GUARD_INTERVAL_1_4 = 3, GUARD_INTERVAL_AUTO = 4, GUARD_INTERVAL_1_128 = 5, GUARD_INTERVAL_19_128 = 6, GUARD_INTERVAL_19_256 = 7, GUARD_INTERVAL_PN420 = 8, GUARD_INTERVAL_PN595 = 9, GUARD_INTERVAL_PN945 = 10 } ; typedef enum fe_guard_interval fe_guard_interval_t; enum fe_hierarchy { HIERARCHY_NONE = 0, HIERARCHY_1 = 1, HIERARCHY_2 = 2, HIERARCHY_4 = 3, HIERARCHY_AUTO = 4 } ; typedef enum fe_hierarchy fe_hierarchy_t; enum fe_interleaving { INTERLEAVING_NONE = 0, INTERLEAVING_AUTO = 1, INTERLEAVING_240 = 2, INTERLEAVING_720 = 3 } ; enum fe_pilot { PILOT_ON = 0, PILOT_OFF = 1, PILOT_AUTO = 2 } ; typedef enum fe_pilot fe_pilot_t; enum fe_rolloff { ROLLOFF_35 = 0, ROLLOFF_20 = 1, ROLLOFF_25 = 2, ROLLOFF_AUTO = 3 } ; typedef enum fe_rolloff fe_rolloff_t; enum fe_delivery_system { SYS_UNDEFINED = 0, SYS_DVBC_ANNEX_A = 1, SYS_DVBC_ANNEX_B = 2, SYS_DVBT = 3, SYS_DSS = 4, SYS_DVBS = 5, SYS_DVBS2 = 6, SYS_DVBH = 7, SYS_ISDBT = 8, SYS_ISDBS = 9, SYS_ISDBC = 10, SYS_ATSC = 11, SYS_ATSCMH = 12, SYS_DTMB = 13, SYS_CMMB = 14, SYS_DAB = 15, SYS_DVBT2 = 16, SYS_TURBO = 17, SYS_DVBC_ANNEX_C = 18 } ; typedef enum fe_delivery_system fe_delivery_system_t; union __anonunion____missing_field_name_201 { __u64 uvalue ; __s64 svalue ; }; struct dtv_stats { __u8 scale ; union __anonunion____missing_field_name_201 __annonCompField69 ; }; struct dtv_fe_stats { __u8 len ; struct dtv_stats stat[4U] ; }; struct __anonstruct_buffer_203 { __u8 data[32U] ; __u32 len ; __u32 reserved1[3U] ; void *reserved2 ; }; union __anonunion_u_202 { __u32 data ; struct dtv_fe_stats st ; struct __anonstruct_buffer_203 buffer ; }; struct dtv_property { __u32 cmd ; __u32 reserved[3U] ; union __anonunion_u_202 u ; int result ; }; enum ldv_25350 { DMX_OUT_DECODER = 0, DMX_OUT_TAP = 1, DMX_OUT_TS_TAP = 2, DMX_OUT_TSDEMUX_TAP = 3 } ; typedef enum ldv_25350 dmx_output_t; enum ldv_25352 { DMX_IN_FRONTEND = 0, DMX_IN_DVR = 1 } ; typedef enum ldv_25352 dmx_input_t; enum dmx_ts_pes { DMX_PES_AUDIO0 = 0, DMX_PES_VIDEO0 = 1, DMX_PES_TELETEXT0 = 2, DMX_PES_SUBTITLE0 = 3, DMX_PES_PCR0 = 4, DMX_PES_AUDIO1 = 5, DMX_PES_VIDEO1 = 6, DMX_PES_TELETEXT1 = 7, DMX_PES_SUBTITLE1 = 8, DMX_PES_PCR1 = 9, DMX_PES_AUDIO2 = 10, DMX_PES_VIDEO2 = 11, DMX_PES_TELETEXT2 = 12, DMX_PES_SUBTITLE2 = 13, DMX_PES_PCR2 = 14, DMX_PES_AUDIO3 = 15, DMX_PES_VIDEO3 = 16, DMX_PES_TELETEXT3 = 17, DMX_PES_SUBTITLE3 = 18, DMX_PES_PCR3 = 19, DMX_PES_OTHER = 20 } ; typedef enum dmx_ts_pes dmx_pes_type_t; struct dmx_filter { __u8 filter[16U] ; __u8 mask[16U] ; __u8 mode[16U] ; }; typedef struct dmx_filter dmx_filter_t; struct dmx_sct_filter_params { __u16 pid ; dmx_filter_t filter ; __u32 timeout ; __u32 flags ; }; struct dmx_pes_filter_params { __u16 pid ; dmx_input_t input ; dmx_output_t output ; dmx_pes_type_t pes_type ; __u32 flags ; }; struct dmx_caps { __u32 caps ; int num_decoders ; }; enum ldv_25368 { DMX_SOURCE_FRONT0 = 0, DMX_SOURCE_FRONT1 = 1, DMX_SOURCE_FRONT2 = 2, DMX_SOURCE_FRONT3 = 3, DMX_SOURCE_DVR0 = 16, DMX_SOURCE_DVR1 = 17, DMX_SOURCE_DVR2 = 18, DMX_SOURCE_DVR3 = 19 } ; typedef enum ldv_25368 dmx_source_t; struct dvb_frontend; struct dvb_device; struct dvb_adapter { int num ; struct list_head list_head ; struct list_head device_list ; char const *name ; u8 proposed_mac[6U] ; void *priv ; struct device *device ; struct module *module ; int mfe_shared ; struct dvb_device *mfe_dvbdev ; struct mutex mfe_lock ; }; struct dvb_device { struct list_head list_head ; struct file_operations const *fops ; struct dvb_adapter *adapter ; int type ; int minor ; u32 id ; int readers ; int writers ; int users ; wait_queue_head_t wait_queue ; int (*kernel_ioctl)(struct file * , unsigned int , void * ) ; void *priv ; }; enum dmx_success { DMX_OK = 0, DMX_LENGTH_ERROR = 1, DMX_OVERRUN_ERROR = 2, DMX_CRC_ERROR = 3, DMX_FRAME_ERROR = 4, DMX_FIFO_ERROR = 5, DMX_MISSED_ERROR = 6 } ; struct dmx_demux; struct dmx_ts_feed { int is_filtering ; struct dmx_demux *parent ; void *priv ; int (*set)(struct dmx_ts_feed * , u16 , int , enum dmx_ts_pes , size_t , struct timespec ) ; int (*start_filtering)(struct dmx_ts_feed * ) ; int (*stop_filtering)(struct dmx_ts_feed * ) ; }; struct dmx_section_feed; struct dmx_section_filter { u8 filter_value[18U] ; u8 filter_mask[18U] ; u8 filter_mode[18U] ; struct dmx_section_feed *parent ; void *priv ; }; struct dmx_section_feed { int is_filtering ; struct dmx_demux *parent ; void *priv ; int check_crc ; u32 crc_val ; u8 *secbuf ; u8 secbuf_base[4284U] ; u16 secbufp ; u16 seclen ; u16 tsfeedp ; int (*set)(struct dmx_section_feed * , u16 , size_t , int ) ; int (*allocate_filter)(struct dmx_section_feed * , struct dmx_section_filter ** ) ; int (*release_filter)(struct dmx_section_feed * , struct dmx_section_filter * ) ; int (*start_filtering)(struct dmx_section_feed * ) ; int (*stop_filtering)(struct dmx_section_feed * ) ; }; enum dmx_frontend_source { DMX_MEMORY_FE = 0, DMX_FRONTEND_0 = 1, DMX_FRONTEND_1 = 2, DMX_FRONTEND_2 = 3, DMX_FRONTEND_3 = 4, DMX_STREAM_0 = 5, DMX_STREAM_1 = 6, DMX_STREAM_2 = 7, DMX_STREAM_3 = 8 } ; struct dmx_frontend { struct list_head connectivity_list ; enum dmx_frontend_source source ; }; struct dmx_demux { u32 capabilities ; struct dmx_frontend *frontend ; void *priv ; int (*open)(struct dmx_demux * ) ; int (*close)(struct dmx_demux * ) ; int (*write)(struct dmx_demux * , char const * , size_t ) ; int (*allocate_ts_feed)(struct dmx_demux * , struct dmx_ts_feed ** , int (*)(u8 const * , size_t , u8 const * , size_t , struct dmx_ts_feed * , enum dmx_success ) ) ; int (*release_ts_feed)(struct dmx_demux * , struct dmx_ts_feed * ) ; int (*allocate_section_feed)(struct dmx_demux * , struct dmx_section_feed ** , int (*)(u8 const * , size_t , u8 const * , size_t , struct dmx_section_filter * , enum dmx_success ) ) ; int (*release_section_feed)(struct dmx_demux * , struct dmx_section_feed * ) ; int (*add_frontend)(struct dmx_demux * , struct dmx_frontend * ) ; int (*remove_frontend)(struct dmx_demux * , struct dmx_frontend * ) ; struct list_head *(*get_frontends)(struct dmx_demux * ) ; int (*connect_frontend)(struct dmx_demux * , struct dmx_frontend * ) ; int (*disconnect_frontend)(struct dmx_demux * ) ; int (*get_pes_pids)(struct dmx_demux * , u16 * ) ; int (*get_caps)(struct dmx_demux * , struct dmx_caps * ) ; int (*set_source)(struct dmx_demux * , dmx_source_t const * ) ; int (*get_stc)(struct dmx_demux * , unsigned int , u64 * , unsigned int * ) ; }; struct dvb_ringbuffer { u8 *data ; ssize_t size ; ssize_t pread ; ssize_t pwrite ; int error ; wait_queue_head_t queue ; spinlock_t lock ; }; enum dmxdev_type { DMXDEV_TYPE_NONE = 0, DMXDEV_TYPE_SEC = 1, DMXDEV_TYPE_PES = 2 } ; enum dmxdev_state { DMXDEV_STATE_FREE = 0, DMXDEV_STATE_ALLOCATED = 1, DMXDEV_STATE_SET = 2, DMXDEV_STATE_GO = 3, DMXDEV_STATE_DONE = 4, DMXDEV_STATE_TIMEDOUT = 5 } ; union __anonunion_filter_204 { struct dmx_section_filter *sec ; }; union __anonunion_feed_205 { struct list_head ts ; struct dmx_section_feed *sec ; }; union __anonunion_params_206 { struct dmx_sct_filter_params sec ; struct dmx_pes_filter_params pes ; }; struct dmxdev; struct dmxdev_filter { union __anonunion_filter_204 filter ; union __anonunion_feed_205 feed ; union __anonunion_params_206 params ; enum dmxdev_type type ; enum dmxdev_state state ; struct dmxdev *dev ; struct dvb_ringbuffer buffer ; struct mutex mutex ; struct timer_list timer ; int todo ; u8 secheader[3U] ; }; struct dmxdev { struct dvb_device *dvbdev ; struct dvb_device *dvr_dvbdev ; struct dmxdev_filter *filter ; struct dmx_demux *demux ; int filternum ; int capabilities ; unsigned int exit : 1 ; struct dmx_frontend *dvr_orig_fe ; struct dvb_ringbuffer dvr_buffer ; struct mutex mutex ; spinlock_t lock ; }; struct dvb_demux_feed; struct dvb_demux_filter { struct dmx_section_filter filter ; u8 maskandmode[18U] ; u8 maskandnotmode[18U] ; int doneq ; struct dvb_demux_filter *next ; struct dvb_demux_feed *feed ; int index ; int state ; int type ; u16 hw_handle ; struct timer_list timer ; }; union __anonunion_feed_207 { struct dmx_ts_feed ts ; struct dmx_section_feed sec ; }; union __anonunion_cb_208 { int (*ts)(u8 const * , size_t , u8 const * , size_t , struct dmx_ts_feed * , enum dmx_success ) ; int (*sec)(u8 const * , size_t , u8 const * , size_t , struct dmx_section_filter * , enum dmx_success ) ; }; struct dvb_demux; struct dvb_demux_feed { union __anonunion_feed_207 feed ; union __anonunion_cb_208 cb ; struct dvb_demux *demux ; void *priv ; int type ; int state ; u16 pid ; u8 *buffer ; int buffer_size ; struct timespec timeout ; struct dvb_demux_filter *filter ; int ts_type ; enum dmx_ts_pes pes_type ; int cc ; int pusi_seen ; u16 peslen ; struct list_head list_head ; unsigned int index ; }; struct dvb_demux { struct dmx_demux dmx ; void *priv ; int filternum ; int feednum ; int (*start_feed)(struct dvb_demux_feed * ) ; int (*stop_feed)(struct dvb_demux_feed * ) ; int (*write_to_decoder)(struct dvb_demux_feed * , u8 const * , size_t ) ; u32 (*check_crc32)(struct dvb_demux_feed * , u8 const * , size_t ) ; void (*memcopy)(struct dvb_demux_feed * , u8 * , u8 const * , size_t ) ; int users ; struct dvb_demux_filter *filter ; struct dvb_demux_feed *feed ; struct list_head frontend_list ; struct dvb_demux_feed *pesfilter[20U] ; u16 pids[20U] ; int playing ; int recording ; struct list_head feed_list ; u8 tsbuf[204U] ; int tsbufp ; struct mutex mutex ; spinlock_t lock ; uint8_t *cnt_storage ; struct timespec speed_last_time ; uint32_t speed_pkts_cnt ; }; struct dvb_ca_en50221 { struct module *owner ; int (*read_attribute_mem)(struct dvb_ca_en50221 * , int , int ) ; int (*write_attribute_mem)(struct dvb_ca_en50221 * , int , int , u8 ) ; int (*read_cam_control)(struct dvb_ca_en50221 * , int , u8 ) ; int (*write_cam_control)(struct dvb_ca_en50221 * , int , u8 , u8 ) ; int (*slot_reset)(struct dvb_ca_en50221 * , int ) ; int (*slot_shutdown)(struct dvb_ca_en50221 * , int ) ; int (*slot_ts_enable)(struct dvb_ca_en50221 * , int ) ; int (*poll_slot_status)(struct dvb_ca_en50221 * , int , int ) ; void *data ; void *private ; }; struct dvb_frontend_tune_settings { int min_delay_ms ; int step_size ; int max_drift ; }; struct dvb_tuner_info { char name[128U] ; u32 frequency_min ; u32 frequency_max ; u32 frequency_step ; u32 bandwidth_min ; u32 bandwidth_max ; u32 bandwidth_step ; }; struct analog_parameters { unsigned int frequency ; unsigned int mode ; unsigned int audmode ; u64 std ; }; enum tuner_param { DVBFE_TUNER_FREQUENCY = 1, DVBFE_TUNER_TUNERSTEP = 2, DVBFE_TUNER_IFFREQ = 4, DVBFE_TUNER_BANDWIDTH = 8, DVBFE_TUNER_REFCLOCK = 16, DVBFE_TUNER_IQSENSE = 32, DVBFE_TUNER_DUMMY = (-0x7FFFFFFF-1) } ; enum dvbfe_algo { DVBFE_ALGO_HW = 1, DVBFE_ALGO_SW = 2, DVBFE_ALGO_CUSTOM = 4, DVBFE_ALGO_RECOVERY = (-0x7FFFFFFF-1) } ; struct tuner_state { u32 frequency ; u32 tunerstep ; u32 ifreq ; u32 bandwidth ; u32 iqsense ; u32 refclock ; }; enum dvbfe_search { DVBFE_ALGO_SEARCH_SUCCESS = 1, DVBFE_ALGO_SEARCH_ASLEEP = 2, DVBFE_ALGO_SEARCH_FAILED = 4, DVBFE_ALGO_SEARCH_INVALID = 8, DVBFE_ALGO_SEARCH_AGAIN = 16, DVBFE_ALGO_SEARCH_ERROR = (-0x7FFFFFFF-1) } ; struct dvb_tuner_ops { struct dvb_tuner_info info ; int (*release)(struct dvb_frontend * ) ; int (*init)(struct dvb_frontend * ) ; int (*sleep)(struct dvb_frontend * ) ; int (*set_params)(struct dvb_frontend * ) ; int (*set_analog_params)(struct dvb_frontend * , struct analog_parameters * ) ; int (*calc_regs)(struct dvb_frontend * , u8 * , int ) ; int (*set_config)(struct dvb_frontend * , void * ) ; int (*get_frequency)(struct dvb_frontend * , u32 * ) ; int (*get_bandwidth)(struct dvb_frontend * , u32 * ) ; int (*get_if_frequency)(struct dvb_frontend * , u32 * ) ; int (*get_status)(struct dvb_frontend * , u32 * ) ; int (*get_rf_strength)(struct dvb_frontend * , u16 * ) ; int (*get_afc)(struct dvb_frontend * , s32 * ) ; int (*set_frequency)(struct dvb_frontend * , u32 ) ; int (*set_bandwidth)(struct dvb_frontend * , u32 ) ; int (*set_state)(struct dvb_frontend * , enum tuner_param , struct tuner_state * ) ; int (*get_state)(struct dvb_frontend * , enum tuner_param , struct tuner_state * ) ; }; struct analog_demod_info { char *name ; }; struct analog_demod_ops { struct analog_demod_info info ; void (*set_params)(struct dvb_frontend * , struct analog_parameters * ) ; int (*has_signal)(struct dvb_frontend * , u16 * ) ; int (*get_afc)(struct dvb_frontend * , s32 * ) ; void (*tuner_status)(struct dvb_frontend * ) ; void (*standby)(struct dvb_frontend * ) ; void (*release)(struct dvb_frontend * ) ; int (*i2c_gate_ctrl)(struct dvb_frontend * , int ) ; int (*set_config)(struct dvb_frontend * , void * ) ; }; struct dtv_frontend_properties; struct dvb_frontend_ops { struct dvb_frontend_info info ; u8 delsys[8U] ; void (*release)(struct dvb_frontend * ) ; void (*release_sec)(struct dvb_frontend * ) ; int (*init)(struct dvb_frontend * ) ; int (*sleep)(struct dvb_frontend * ) ; int (*write)(struct dvb_frontend * , u8 const * , int ) ; int (*tune)(struct dvb_frontend * , bool , unsigned int , unsigned int * , fe_status_t * ) ; enum dvbfe_algo (*get_frontend_algo)(struct dvb_frontend * ) ; int (*set_frontend)(struct dvb_frontend * ) ; int (*get_tune_settings)(struct dvb_frontend * , struct dvb_frontend_tune_settings * ) ; int (*get_frontend)(struct dvb_frontend * ) ; int (*read_status)(struct dvb_frontend * , fe_status_t * ) ; int (*read_ber)(struct dvb_frontend * , u32 * ) ; int (*read_signal_strength)(struct dvb_frontend * , u16 * ) ; int (*read_snr)(struct dvb_frontend * , u16 * ) ; int (*read_ucblocks)(struct dvb_frontend * , u32 * ) ; int (*diseqc_reset_overload)(struct dvb_frontend * ) ; int (*diseqc_send_master_cmd)(struct dvb_frontend * , struct dvb_diseqc_master_cmd * ) ; int (*diseqc_recv_slave_reply)(struct dvb_frontend * , struct dvb_diseqc_slave_reply * ) ; int (*diseqc_send_burst)(struct dvb_frontend * , fe_sec_mini_cmd_t ) ; int (*set_tone)(struct dvb_frontend * , fe_sec_tone_mode_t ) ; int (*set_voltage)(struct dvb_frontend * , fe_sec_voltage_t ) ; int (*enable_high_lnb_voltage)(struct dvb_frontend * , long ) ; int (*dishnetwork_send_legacy_command)(struct dvb_frontend * , unsigned long ) ; int (*i2c_gate_ctrl)(struct dvb_frontend * , int ) ; int (*ts_bus_ctrl)(struct dvb_frontend * , int ) ; int (*set_lna)(struct dvb_frontend * ) ; enum dvbfe_search (*search)(struct dvb_frontend * ) ; struct dvb_tuner_ops tuner_ops ; struct analog_demod_ops analog_ops ; int (*set_property)(struct dvb_frontend * , struct dtv_property * ) ; int (*get_property)(struct dvb_frontend * , struct dtv_property * ) ; }; struct __anonstruct_layer_209 { u8 segment_count ; fe_code_rate_t fec ; fe_modulation_t modulation ; u8 interleaving ; }; struct dtv_frontend_properties { u32 state ; u32 frequency ; fe_modulation_t modulation ; fe_sec_voltage_t voltage ; fe_sec_tone_mode_t sectone ; fe_spectral_inversion_t inversion ; fe_code_rate_t fec_inner ; fe_transmit_mode_t transmission_mode ; u32 bandwidth_hz ; fe_guard_interval_t guard_interval ; fe_hierarchy_t hierarchy ; u32 symbol_rate ; fe_code_rate_t code_rate_HP ; fe_code_rate_t code_rate_LP ; fe_pilot_t pilot ; fe_rolloff_t rolloff ; fe_delivery_system_t delivery_system ; enum fe_interleaving interleaving ; u8 isdbt_partial_reception ; u8 isdbt_sb_mode ; u8 isdbt_sb_subchannel ; u32 isdbt_sb_segment_idx ; u32 isdbt_sb_segment_count ; u8 isdbt_layer_enabled ; struct __anonstruct_layer_209 layer[3U] ; u32 stream_id ; u8 atscmh_fic_ver ; u8 atscmh_parade_id ; u8 atscmh_nog ; u8 atscmh_tnog ; u8 atscmh_sgn ; u8 atscmh_prc ; u8 atscmh_rs_frame_mode ; u8 atscmh_rs_frame_ensemble ; u8 atscmh_rs_code_mode_pri ; u8 atscmh_rs_code_mode_sec ; u8 atscmh_sccc_block_mode ; u8 atscmh_sccc_code_mode_a ; u8 atscmh_sccc_code_mode_b ; u8 atscmh_sccc_code_mode_c ; u8 atscmh_sccc_code_mode_d ; u32 lna ; struct dtv_fe_stats strength ; struct dtv_fe_stats cnr ; struct dtv_fe_stats pre_bit_error ; struct dtv_fe_stats pre_bit_count ; struct dtv_fe_stats post_bit_error ; struct dtv_fe_stats post_bit_count ; struct dtv_fe_stats block_error ; struct dtv_fe_stats block_count ; }; struct dvb_frontend { struct dvb_frontend_ops ops ; struct dvb_adapter *dvb ; void *demodulator_priv ; void *tuner_priv ; void *frontend_priv ; void *sec_priv ; void *analog_demod_priv ; struct dtv_frontend_properties dtv_property_cache ; int (*callback)(void * , int , int , int ) ; int id ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_210 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_210 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; typedef unsigned short __kernel_sa_family_t; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct __anonstruct_sync_serial_settings_212 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_212 sync_serial_settings; struct __anonstruct_te1_settings_213 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_213 te1_settings; struct __anonstruct_raw_hdlc_proto_214 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_214 raw_hdlc_proto; struct __anonstruct_fr_proto_215 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_215 fr_proto; struct __anonstruct_fr_proto_pvc_216 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_216 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_217 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_217 fr_proto_pvc_info; struct __anonstruct_cisco_proto_218 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_218 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_219 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_219 ifs_ifsu ; }; union __anonunion_ifr_ifrn_220 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_221 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_220 ifr_ifrn ; union __anonunion_ifr_ifru_221 ifr_ifru ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct sk_buff; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_240 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_239 { __wsum csum ; struct __anonstruct____missing_field_name_240 __annonCompField71 ; }; union __anonunion____missing_field_name_241 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_242 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_239 __annonCompField72 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_241 __annonCompField73 ; __u32 secmark ; union __anonunion____missing_field_name_242 __annonCompField74 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_31324 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_31325 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_254 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_255 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_256 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_254 adj_list ; struct __anonstruct_all_adj_list_255 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_31324 reg_state : 8 ; bool dismantle ; enum ldv_31325 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_256 __annonCompField77 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; struct ipv4_devconf { void *sysctl ; int data[28U] ; unsigned long state[1U] ; }; struct in_ifaddr; struct ip_mc_list; struct in_device { struct net_device *dev ; atomic_t refcnt ; int dead ; struct in_ifaddr *ifa_list ; struct ip_mc_list *mc_list ; struct ip_mc_list **mc_hash ; int mc_count ; spinlock_t mc_tomb_lock ; struct ip_mc_list *mc_tomb ; unsigned long mr_v1_seen ; unsigned long mr_v2_seen ; unsigned long mr_maxdelay ; unsigned char mr_qrv ; unsigned char mr_gq_running ; unsigned char mr_ifc_count ; struct timer_list mr_gq_timer ; struct timer_list mr_ifc_timer ; struct neigh_parms *arp_parms ; struct ipv4_devconf cnf ; struct callback_head callback_head ; }; struct in_ifaddr { struct hlist_node hash ; struct in_ifaddr *ifa_next ; struct in_device *ifa_dev ; struct callback_head callback_head ; __be32 ifa_local ; __be32 ifa_address ; __be32 ifa_mask ; __be32 ifa_broadcast ; unsigned char ifa_scope ; unsigned char ifa_prefixlen ; __u32 ifa_flags ; char ifa_label[16U] ; __u32 ifa_valid_lft ; __u32 ifa_preferred_lft ; unsigned long ifa_cstamp ; unsigned long ifa_tstamp ; }; struct dvb_net { struct dvb_device *dvbdev ; struct net_device *device[10U] ; int state[10U] ; unsigned int exit : 1 ; struct dmx_demux *demux ; struct mutex ioctl_mutex ; }; struct cxd2099_cfg { u32 bitrate ; u8 adr ; u8 polarity : 1 ; u8 clock_mode : 1 ; }; struct BUFFER_STREAM_RESULTS { u32 Clock ; u16 RemainingLines ; u8 FieldCount ; u8 Flags ; u16 BlockCount ; u8 Reserved[2U] ; u32 DTOUpdate ; }; struct HW_SCATTER_GATHER_ELEMENT { u64 Address ; u32 Length ; u32 Reserved ; }; struct BUFFER_HEADER { u64 Next ; struct BUFFER_STREAM_RESULTS SR ; u32 Number_of_entries_1 ; u32 Reserved5 ; u64 Address_of_first_entry_1 ; u32 Number_of_entries_2 ; u32 Reserved7 ; u64 Address_of_first_entry_2 ; }; struct EVENT_BUFFER { u32 TimeStamp ; u8 GPIOStatus ; u8 UARTStatus ; u8 RXCharacter ; u8 EventStatus ; u32 Reserved[2U] ; }; struct FW_HEADER { u8 Opcode ; u8 Length ; }; struct FW_I2C_WRITE { struct FW_HEADER hdr ; u8 Device ; u8 Data[250U] ; }; struct FW_I2C_CONTINUE_WRITE { struct FW_HEADER hdr ; u8 Data[250U] ; }; struct FW_I2C_READ { struct FW_HEADER hdr ; u8 Device ; u8 Data[252U] ; }; struct FW_SPI_WRITE { struct FW_HEADER hdr ; u8 ModeSelect ; u8 Data[250U] ; }; struct FW_SPI_READ { struct FW_HEADER hdr ; u8 ModeSelect ; u8 Data[252U] ; }; struct FW_FWLOAD_PREPARE { struct FW_HEADER hdr ; }; struct FW_FWLOAD_FINISH { struct FW_HEADER hdr ; u16 Address ; u16 Length ; }; struct FW_STREAM_CONTROL { struct FW_HEADER hdr ; u8 Stream ; u8 Control ; u8 Mode ; u8 SetupDataLen ; u16 CaptureBlockCount ; u64 Buffer_Address ; u16 BytesPerVideoLine ; u16 MaxLinesPerField ; u16 MinLinesPerField ; u16 Reserved_1 ; u16 BytesPerVBILine ; u16 MaxVBILinesPerField ; u16 MinVBILinesPerField ; u16 SetupDataAddr ; u8 SetupData[32U] ; }; struct FW_MEM_READ { struct FW_HEADER hdr ; u16 address ; }; struct FW_MEM_WRITE { struct FW_HEADER hdr ; u16 address ; u8 data ; }; struct FW_SFR_IRAM_READ { struct FW_HEADER hdr ; u8 address ; }; struct FW_SFR_IRAM_WRITE { struct FW_HEADER hdr ; u8 address ; u8 data ; }; struct FW_SET_GPIO_PIN { struct FW_HEADER hdr ; u8 select ; }; struct FW_SET_GPIO_INT { struct FW_HEADER hdr ; u8 select ; }; struct FW_SET_DEBUGMODE { struct FW_HEADER hdr ; u8 debug_flags ; }; struct FW_CONFIGURE_BUFFERS { struct FW_HEADER hdr ; u8 config ; }; struct FW_CONFIGURE_FREE_BUFFERS { struct FW_HEADER hdr ; u8 UVI1_BufferLength ; u8 UVI2_BufferLength ; u8 TVO_BufferLength ; u8 AUD1_BufferLength ; u8 AUD2_BufferLength ; u8 TVA_BufferLength ; }; struct FW_CONFIGURE_UART { struct FW_HEADER hdr ; u8 UartControl ; }; struct FW_WRITE_UART { struct FW_HEADER hdr ; u8 Data[252U] ; }; union __anonunion_cmd_260 { u32 raw[64U] ; u8 raw8[256U] ; struct FW_HEADER hdr ; struct FW_I2C_WRITE I2CWrite ; struct FW_I2C_CONTINUE_WRITE I2CContinueWrite ; struct FW_I2C_READ I2CRead ; struct FW_STREAM_CONTROL StreamControl ; struct FW_FWLOAD_PREPARE FWLoadPrepare ; struct FW_FWLOAD_FINISH FWLoadFinish ; struct FW_MEM_READ MemoryRead ; struct FW_MEM_WRITE MemoryWrite ; struct FW_SFR_IRAM_READ SfrIramRead ; struct FW_SFR_IRAM_WRITE SfrIramWrite ; struct FW_SPI_WRITE SPIWrite ; struct FW_SPI_READ SPIRead ; struct FW_SET_GPIO_PIN SetGpioPin ; struct FW_SET_GPIO_INT SetGpioInt ; struct FW_SET_DEBUGMODE SetDebugMode ; struct FW_CONFIGURE_BUFFERS ConfigureBuffers ; struct FW_CONFIGURE_FREE_BUFFERS ConfigureFreeBuffers ; struct FW_CONFIGURE_UART ConfigureUart ; struct FW_WRITE_UART WriteUart ; }; struct ngene_command { u32 in_len ; u32 out_len ; union __anonunion_cmd_260 cmd ; }; struct SBufferHeader { struct BUFFER_HEADER ngeneBuffer ; struct SBufferHeader *Next ; void *Buffer1 ; struct HW_SCATTER_GATHER_ELEMENT *scList1 ; void *Buffer2 ; struct HW_SCATTER_GATHER_ELEMENT *scList2 ; }; enum HWSTATE { HWSTATE_STOP = 0, HWSTATE_STARTUP = 1, HWSTATE_RUN = 2, HWSTATE_PAUSE = 3 } ; enum KSSTATE { KSSTATE_STOP = 0, KSSTATE_ACQUIRE = 1, KSSTATE_PAUSE = 2, KSSTATE_RUN = 3 } ; struct SRingBufferDescriptor { struct SBufferHeader *Head ; u64 PAHead ; u32 MemSize ; u32 NumBuffers ; u32 Buffer1Length ; u32 Buffer2Length ; void *SCListMem ; u64 PASCListMem ; u32 SCListMemSize ; }; typedef void *IBufferExchange(void * , void * , u32 , u32 , u32 ); struct ngene_channel; struct snd_card; struct snd_pcm_substream; struct snd_pcm; struct mychip { struct ngene_channel *chan ; struct snd_card *card ; struct pci_dev *pci ; struct snd_pcm_substream *substream ; struct snd_pcm *pcm ; unsigned long port ; int irq ; spinlock_t mixer_lock ; spinlock_t lock ; int mixer_volume[1U][2U] ; int capture_source[1U][2U] ; }; struct ngene; struct video_device; struct ngene_tvnorm; struct ngene_channel { struct device device ; struct i2c_adapter i2c_adapter ; struct ngene *dev ; int number ; int type ; int mode ; bool has_adapter ; bool has_demux ; int demod_type ; int (*gate_ctrl)(struct dvb_frontend * , int ) ; struct dvb_frontend *fe ; struct dvb_frontend *fe2 ; struct dmxdev dmxdev ; struct dvb_demux demux ; struct dvb_net dvbnet ; struct dmx_frontend hw_frontend ; struct dmx_frontend mem_frontend ; int users ; struct video_device *v4l_dev ; struct dvb_device *ci_dev ; struct tasklet_struct demux_tasklet ; struct SBufferHeader *nextBuffer ; enum KSSTATE State ; enum HWSTATE HWState ; u8 Stream ; u8 Flags ; u8 Mode ; IBufferExchange *pBufferExchange ; IBufferExchange *pBufferExchange2 ; spinlock_t state_lock ; u16 nLines ; u16 nBytesPerLine ; u16 nVBILines ; u16 nBytesPerVBILine ; u16 itumode ; u32 Capture1Length ; u32 Capture2Length ; struct SRingBufferDescriptor RingBuffer ; struct SRingBufferDescriptor TSRingBuffer ; struct SRingBufferDescriptor TSIdleBuffer ; u32 DataFormatFlags ; int AudioDTOUpdated ; u32 AudioDTOValue ; int (*set_tone)(struct dvb_frontend * , fe_sec_tone_mode_t ) ; u8 lnbh ; int minor ; struct mychip *mychip ; struct snd_card *soundcard ; u8 *evenbuffer ; u8 dma_on ; int soundstreamon ; int audiomute ; int soundbuffisallocated ; int sndbuffflag ; int tun_rdy ; int dec_rdy ; int tun_dec_rdy ; int lastbufferflag ; struct ngene_tvnorm *tvnorms ; int tvnorm_num ; int tvnorm ; int running ; }; struct ngene_ci { struct device device ; struct i2c_adapter i2c_adapter ; struct ngene *dev ; struct dvb_ca_en50221 *en ; }; typedef void rx_cb_t(struct ngene * , u32 , u8 ); typedef void tx_cb_t(struct ngene * , u32 ); struct ngene_info; struct ngene { int nr ; struct pci_dev *pci_dev ; unsigned char *iomem ; u32 device_version ; u32 fw_interface_version ; u32 icounts ; bool msi_enabled ; bool cmd_timeout_workaround ; u8 *CmdDoneByte ; int BootFirmware ; void *OverflowBuffer ; dma_addr_t PAOverflowBuffer ; void *FWInterfaceBuffer ; dma_addr_t PAFWInterfaceBuffer ; u8 *ngenetohost ; u8 *hosttongene ; struct EVENT_BUFFER EventQueue[16U] ; int EventQueueOverflowCount ; int EventQueueOverflowFlag ; struct tasklet_struct event_tasklet ; struct EVENT_BUFFER *EventBuffer ; int EventQueueWriteIndex ; int EventQueueReadIndex ; wait_queue_head_t cmd_wq ; int cmd_done ; struct semaphore cmd_mutex ; struct semaphore stream_mutex ; struct semaphore pll_mutex ; struct semaphore i2c_switch_mutex ; int i2c_current_channel ; int i2c_current_bus ; spinlock_t cmd_lock ; struct dvb_adapter adapter[5U] ; struct dvb_adapter *first_adapter ; struct ngene_channel channel[5U] ; struct ngene_info *card_info ; tx_cb_t *TxEventNotify ; rx_cb_t *RxEventNotify ; int tx_busy ; wait_queue_head_t tx_wq ; wait_queue_head_t rx_wq ; u8 uart_rbuf[4096U] ; int uart_rp ; int uart_wp ; u8 *tsout_buf ; struct dvb_ringbuffer tsout_rbuf ; u8 *tsin_buf ; struct dvb_ringbuffer tsin_rbuf ; u8 *ain_buf ; struct dvb_ringbuffer ain_rbuf ; u8 *vin_buf ; struct dvb_ringbuffer vin_rbuf ; unsigned long exp_val ; int prev_cmd ; struct ngene_ci ci ; }; struct ngene_info { int type ; int fw_version ; bool msi_supported ; char *name ; int io_type[5U] ; void *fe_config[4U] ; void *tuner_config[4U] ; int (*demod_attach[4U])(struct ngene_channel * ) ; int (*tuner_attach[4U])(struct ngene_channel * ) ; u8 avf[4U] ; u8 msp[4U] ; u8 demoda[4U] ; u8 lnb[4U] ; int i2c_access ; u8 ntsc ; u8 tsf[4U] ; u8 i2s[4U] ; int (*gate_ctrl)(struct dvb_frontend * , int ) ; int (*switch_ctrl)(struct ngene_channel * , int , int ) ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; enum hrtimer_restart; enum hrtimer_restart; struct stv6110x_config { u8 addr ; u32 refclk ; u8 clk_div ; }; enum tuner_mode { TUNER_SLEEP = 1, TUNER_WAKE = 2 } ; struct stv6110x_devctl { int (*tuner_init)(struct dvb_frontend * ) ; int (*tuner_sleep)(struct dvb_frontend * ) ; int (*tuner_set_mode)(struct dvb_frontend * , enum tuner_mode ) ; int (*tuner_set_frequency)(struct dvb_frontend * , u32 ) ; int (*tuner_get_frequency)(struct dvb_frontend * , u32 * ) ; int (*tuner_set_bandwidth)(struct dvb_frontend * , u32 ) ; int (*tuner_get_bandwidth)(struct dvb_frontend * , u32 * ) ; int (*tuner_set_bbgain)(struct dvb_frontend * , u32 ) ; int (*tuner_get_bbgain)(struct dvb_frontend * , u32 * ) ; int (*tuner_set_refclk)(struct dvb_frontend * , u32 ) ; int (*tuner_get_status)(struct dvb_frontend * , u32 * ) ; }; enum stv090x_demodulator { STV090x_DEMODULATOR_0 = 1, STV090x_DEMODULATOR_1 = 2 } ; enum stv090x_device { STV0903 = 0, STV0900 = 1 } ; enum stv090x_mode { STV090x_DUAL = 0, STV090x_SINGLE = 1 } ; enum stv090x_clkmode { STV090x_CLK_INT = 0, STV090x_CLK_EXT = 2 } ; enum stv090x_i2crpt { STV090x_RPTLEVEL_256 = 0, STV090x_RPTLEVEL_128 = 1, STV090x_RPTLEVEL_64 = 2, STV090x_RPTLEVEL_32 = 3, STV090x_RPTLEVEL_16 = 4, STV090x_RPTLEVEL_8 = 5, STV090x_RPTLEVEL_4 = 6, STV090x_RPTLEVEL_2 = 7 } ; enum stv090x_adc_range { STV090x_ADC_2Vpp = 0, STV090x_ADC_1Vpp = 1 } ; struct stv090x_config { enum stv090x_device device ; enum stv090x_mode demod_mode ; enum stv090x_clkmode clk_mode ; u32 xtal ; u8 address ; u8 ts1_mode ; u8 ts2_mode ; u32 ts1_clk ; u32 ts2_clk ; u8 ts1_tei : 1 ; u8 ts2_tei : 1 ; enum stv090x_i2crpt repeater_level ; u8 tuner_bbgain ; enum stv090x_adc_range adc1_range ; enum stv090x_adc_range adc2_range ; bool diseqc_envelope_mode ; int (*tuner_init)(struct dvb_frontend * ) ; int (*tuner_sleep)(struct dvb_frontend * ) ; int (*tuner_set_mode)(struct dvb_frontend * , enum tuner_mode ) ; int (*tuner_set_frequency)(struct dvb_frontend * , u32 ) ; int (*tuner_get_frequency)(struct dvb_frontend * , u32 * ) ; int (*tuner_set_bandwidth)(struct dvb_frontend * , u32 ) ; int (*tuner_get_bandwidth)(struct dvb_frontend * , u32 * ) ; int (*tuner_set_bbgain)(struct dvb_frontend * , u32 ) ; int (*tuner_get_bbgain)(struct dvb_frontend * , u32 * ) ; int (*tuner_set_refclk)(struct dvb_frontend * , u32 ) ; int (*tuner_get_status)(struct dvb_frontend * , u32 * ) ; void (*tuner_i2c_lock)(struct dvb_frontend * , int ) ; }; enum lg_chip_t { UNDEFINED = 0, LGDT3302 = 1, LGDT3303 = 2 } ; typedef enum lg_chip_t lg_chip_type; struct lgdt330x_config { u8 demod_address ; lg_chip_type demod_chip ; int serial_mpeg ; int (*pll_rf_set)(struct dvb_frontend * , int ) ; int (*set_ts_params)(struct dvb_frontend * , int ) ; int clock_polarity_flip ; }; struct mt2131_config { u8 i2c_address ; u8 clock_out ; }; struct drxk_config { u8 adr ; bool single_master ; bool no_i2c_bridge ; bool parallel_ts ; bool dynamic_clk ; bool enable_merr_cfg ; bool antenna_dvbt ; u16 antenna_gpio ; u8 mpeg_out_clk_strength ; int chunk_size ; char const *microcode_name ; int qam_demod_parameter_count ; }; struct drxd_config { u8 index ; u8 pll_address ; u8 pll_type ; u32 clock ; u8 insert_rs_byte ; u8 demod_address ; u8 demoda_address ; u8 demod_revision ; u8 disable_i2c_gate_ctrl ; u32 IF ; s16 (*osc_deviation)(void * , s16 , int ) ; }; enum hrtimer_restart; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; long ldv__builtin_expect(long exp , long c ) ; void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; extern struct module __this_module ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern struct pv_irq_ops pv_irq_ops ; __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } extern int printk(char const * , ...) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/f860c18/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; void ldv_spin_lock_cmd_lock_of_ngene(void) ; void ldv_spin_unlock_cmd_lock_of_ngene(void) ; void ldv_spin_lock_state_lock_of_ngene_channel(void) ; void ldv_spin_unlock_state_lock_of_ngene_channel(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; void ldv_assume(int expression ) ; int ldv_undef_int(void) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_irq(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irq(raw_spinlock_t * ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_70(spinlock_t *lock ) ; __inline static void ldv_spin_lock_72(spinlock_t *lock ) ; __inline static void spin_lock_irq(spinlock_t *lock ) { { { _raw_spin_lock_irq(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_irq_66(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_66(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_74(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_66(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_66(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_66(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_66(spinlock_t *lock ) ; __inline static void ldv_spin_lock_irq_66(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_71(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_73(spinlock_t *lock ) ; __inline static void spin_unlock_irq(spinlock_t *lock ) { { { _raw_spin_unlock_irq(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_irq_67(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_67(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_75(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_67(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_67(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_67(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_67(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_67(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_irq_67(spinlock_t *lock ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern long prepare_to_wait_event(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void *ioremap_nocache(resource_size_t , unsigned long ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { { tmp = ioremap_nocache(offset, size); } return (tmp); } } extern void iounmap(void volatile * ) ; extern void *vmalloc(unsigned long ) ; extern void *vzalloc(unsigned long ) ; extern void vfree(void const * ) ; __inline static void memset_io(void volatile *addr , unsigned char val , size_t count ) { { { memset((void *)addr, (int )val, count); } return; } } __inline static void memcpy_fromio(void *dst , void const volatile *src , size_t count ) { { { memcpy(dst, (void const *)src, count); } return; } } __inline static void memcpy_toio(void volatile *dst , void const *src , size_t count ) { { { memcpy((void *)dst, src, count); } return; } } static void *ldv_dev_get_drvdata_27(struct device const *dev ) ; static int ldv_dev_set_drvdata_28(struct device *dev , void *data ) ; extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_enable_msi_block(struct pci_dev * , int ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern int pci_msi_enabled(void) ; extern void kfree(void const * ) ; __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/f860c18/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); } return; } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_27((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_28(& pdev->dev, data); } return; } } __inline static void sema_init(struct semaphore *sem , int val ) { struct lock_class_key __key ; struct semaphore __constr_expr_0 ; { { __constr_expr_0.lock.raw_lock.__annonCompField4.head_tail = 0U; __constr_expr_0.lock.magic = 3735899821U; __constr_expr_0.lock.owner_cpu = 4294967295U; __constr_expr_0.lock.owner = (void *)-1; __constr_expr_0.lock.dep_map.key = 0; __constr_expr_0.lock.dep_map.class_cache[0] = 0; __constr_expr_0.lock.dep_map.class_cache[1] = 0; __constr_expr_0.lock.dep_map.name = "(*sem).lock"; __constr_expr_0.lock.dep_map.cpu = 0; __constr_expr_0.lock.dep_map.ip = 0UL; __constr_expr_0.count = (unsigned int )val; __constr_expr_0.wait_list.next = & sem->wait_list; __constr_expr_0.wait_list.prev = & sem->wait_list; *sem = __constr_expr_0; lockdep_init_map(& sem->lock.dep_map, "semaphore->lock", & __key, 0); } return; } } extern void down(struct semaphore * ) ; extern void up(struct semaphore * ) ; extern void msleep(unsigned int ) ; extern int request_firmware(struct firmware const ** , char const * , struct device * ) ; extern void release_firmware(struct firmware const * ) ; extern long schedule_timeout(long ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_88(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_90(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_87(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_89(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_91(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void __tasklet_schedule(struct tasklet_struct * ) ; __inline static void tasklet_schedule(struct tasklet_struct *t ) { int tmp ; { { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& t->state)); } if (tmp == 0) { { __tasklet_schedule(t); } } else { } return; } } extern void tasklet_kill(struct tasklet_struct * ) ; extern void tasklet_init(struct tasklet_struct * , void (*)(unsigned long ) , unsigned long ) ; extern void i2c_del_adapter(struct i2c_adapter * ) ; extern int dvb_register_adapter(struct dvb_adapter * , char const * , struct module * , struct device * , short * ) ; extern int dvb_unregister_adapter(struct dvb_adapter * ) ; extern int dvb_register_device(struct dvb_adapter * , struct dvb_device ** , struct dvb_device const * , void * , int ) ; extern void dvb_unregister_device(struct dvb_device * ) ; extern void dvb_ringbuffer_init(struct dvb_ringbuffer * , void * , size_t ) ; extern void dvb_ringbuffer_flush(struct dvb_ringbuffer * ) ; extern void dvb_dmxdev_release(struct dmxdev * ) ; extern void dvb_dmx_release(struct dvb_demux * ) ; extern int dvb_ca_en50221_init(struct dvb_adapter * , struct dvb_ca_en50221 * , int , int ) ; extern void dvb_ca_en50221_release(struct dvb_ca_en50221 * ) ; extern int dvb_register_frontend(struct dvb_adapter * , struct dvb_frontend * ) ; static int ldv_dvb_register_frontend_94(struct dvb_adapter *ldv_func_arg1 , struct dvb_frontend *ldv_func_arg2 ) ; static int ldv_dvb_register_frontend_95(struct dvb_adapter *ldv_func_arg1 , struct dvb_frontend *ldv_func_arg2 ) ; extern int dvb_unregister_frontend(struct dvb_frontend * ) ; static int ldv_dvb_unregister_frontend_92(struct dvb_frontend *ldv_func_arg1 ) ; static int ldv_dvb_unregister_frontend_93(struct dvb_frontend *ldv_func_arg1 ) ; extern void dvb_frontend_detach(struct dvb_frontend * ) ; extern void dvb_net_release(struct dvb_net * ) ; extern int dvb_net_init(struct dvb_adapter * , struct dvb_net * , struct dmx_demux * ) ; extern struct dvb_ca_en50221 *cxd2099_attach(struct cxd2099_cfg * , void * , struct i2c_adapter * ) ; int ngene_probe(struct pci_dev *pci_dev , struct pci_device_id const *id ) ; void ngene_remove(struct pci_dev *pdev ) ; void ngene_shutdown(struct pci_dev *pdev ) ; int ngene_command(struct ngene *dev , struct ngene_command *com ) ; int ngene_command_gpio_set(struct ngene *dev , u8 select , u8 level ) ; void set_transfer(struct ngene_channel *chan , int state ) ; void FillTSBuffer(void *Buffer , int Length , u32 Flags ) ; int ngene_i2c_init(struct ngene *dev , int dev_nr ) ; struct dvb_device ngene_dvbdev_ci ; void *tsout_exchange(void *priv , void *buf , u32 len , u32 clock , u32 flags ) ; void *tsin_exchange(void *priv , void *buf , u32 len , u32 clock , u32 flags ) ; int ngene_start_feed(struct dvb_demux_feed *dvbdmxfeed ) ; int ngene_stop_feed(struct dvb_demux_feed *dvbdmxfeed ) ; int my_dvb_dmx_ts_card_init(struct dvb_demux *dvbdemux , char *id , int (*start_feed)(struct dvb_demux_feed * ) , int (*stop_feed)(struct dvb_demux_feed * ) , void *priv ) ; int my_dvb_dmxdev_ts_card_init(struct dmxdev *dmxdev , struct dvb_demux *dvbdemux , struct dmx_frontend *hw_frontend , struct dmx_frontend *mem_frontend , struct dvb_adapter *dvb_adapter ) ; static int one_adapter ; static int shutdown_workaround ; static int debug ; static short adapter_nr[8U] = { -1, -1, -1, -1, -1, -1, -1, -1}; static void event_tasklet(unsigned long data ) { struct ngene *dev ; struct EVENT_BUFFER Event ; { dev = (struct ngene *)data; goto ldv_46794; ldv_46793: Event = dev->EventQueue[dev->EventQueueReadIndex]; dev->EventQueueReadIndex = (dev->EventQueueReadIndex + 1) & 15; if ((int )Event.UARTStatus & 1 && (unsigned long )dev->TxEventNotify != (unsigned long )((tx_cb_t *)0)) { { (*(dev->TxEventNotify))(dev, Event.TimeStamp); } } else { } if (((int )Event.UARTStatus & 2) != 0 && (unsigned long )dev->RxEventNotify != (unsigned long )((rx_cb_t *)0)) { { (*(dev->RxEventNotify))(dev, Event.TimeStamp, (int )Event.RXCharacter); } } else { } ldv_46794: ; if (dev->EventQueueReadIndex != dev->EventQueueWriteIndex) { goto ldv_46793; } else { } return; } } static void demux_tasklet(unsigned long data ) { struct ngene_channel *chan ; struct SBufferHeader *Cur ; u32 Flags ; void *tmp ; u32 Flags___0 ; IBufferExchange *exch1 ; IBufferExchange *exch2 ; { { chan = (struct ngene_channel *)data; Cur = chan->nextBuffer; ldv_spin_lock_irq_66(& chan->state_lock); } goto ldv_46807; ldv_46806: ; if ((chan->mode & 8) != 0) { Flags = chan->DataFormatFlags; if (((int )Cur->ngeneBuffer.SR.Flags & 32) != 0) { Flags = Flags | 8U; } else { } if ((unsigned long )chan->pBufferExchange != (unsigned long )((IBufferExchange *)0)) { { tmp = (*(chan->pBufferExchange))((void *)chan, Cur->Buffer1, chan->Capture1Length, Cur->ngeneBuffer.SR.Clock, Flags); } if ((unsigned long )tmp == (unsigned long )((void *)0)) { if ((unsigned int )chan->HWState == 2U) { Cur->ngeneBuffer.SR.Flags = (unsigned int )Cur->ngeneBuffer.SR.Flags & 191U; goto ldv_46802; } else { } } else { chan->HWState = 2; } } else { { printk("\vngene: OOPS\n"); } if ((unsigned int )chan->HWState == 2U) { Cur->ngeneBuffer.SR.Flags = (unsigned int )Cur->ngeneBuffer.SR.Flags & 191U; goto ldv_46802; } else { } } if (chan->AudioDTOUpdated != 0) { { printk("\016ngene: Update AudioDTO = %d\n", chan->AudioDTOValue); Cur->ngeneBuffer.SR.DTOUpdate = chan->AudioDTOValue; chan->AudioDTOUpdated = 0; } } else { } } else if ((unsigned int )chan->HWState == 2U) { Flags___0 = chan->DataFormatFlags; exch1 = chan->pBufferExchange; exch2 = chan->pBufferExchange2; if ((int )Cur->ngeneBuffer.SR.Flags & 1) { Flags___0 = Flags___0 | 1U; } else { } if (((int )Cur->ngeneBuffer.SR.Flags & 32) != 0) { Flags___0 = Flags___0 | 8U; } else { } { ldv_spin_unlock_irq_67(& chan->state_lock); } if ((unsigned long )exch1 != (unsigned long )((IBufferExchange *)0)) { { (*exch1)((void *)chan, Cur->Buffer1, chan->Capture1Length, Cur->ngeneBuffer.SR.Clock, Flags___0); } } else { } if ((unsigned long )exch2 != (unsigned long )((IBufferExchange *)0)) { { (*exch2)((void *)chan, Cur->Buffer2, chan->Capture2Length, Cur->ngeneBuffer.SR.Clock, Flags___0); } } else { } { ldv_spin_lock_irq_66(& chan->state_lock); } } else if ((unsigned int )chan->HWState != 0U) { chan->HWState = 2; } else { } Cur->ngeneBuffer.SR.Flags = 0U; Cur = Cur->Next; ldv_46807: ; if ((int )((signed char )Cur->ngeneBuffer.SR.Flags) < 0) { goto ldv_46806; } else { } ldv_46802: { chan->nextBuffer = Cur; ldv_spin_unlock_irq_67(& chan->state_lock); } return; } } static irqreturn_t irq_handler(int irq , void *dev_id ) { struct ngene *dev ; u32 icounts ; irqreturn_t rc ; u32 i ; u8 *tmpCmdDoneByte ; u8 nextWriteIndex ; { dev = (struct ngene *)dev_id; icounts = 0U; rc = 0; i = 5U; if (dev->BootFirmware != 0) { { icounts = readl((void const volatile *)dev->iomem + 49760U); } if (icounts != dev->icounts) { { writel(0U, (void volatile *)dev->iomem + 41104U); dev->cmd_done = 1; __wake_up(& dev->cmd_wq, 3U, 1, (void *)0); dev->icounts = icounts; rc = 1; } } else { } return (rc); } else { } { writel(0U, (void volatile *)dev->iomem + 41104U); ldv_spin_lock_70(& dev->cmd_lock); tmpCmdDoneByte = dev->CmdDoneByte; } if ((unsigned long )tmpCmdDoneByte != (unsigned long )((u8 *)0U) && ((unsigned int )*tmpCmdDoneByte != 0U || ((unsigned int )*(dev->ngenetohost) == 1U && (unsigned int )*(dev->ngenetohost + 1UL) != 0U))) { { dev->CmdDoneByte = (u8 *)0U; dev->cmd_done = 1; __wake_up(& dev->cmd_wq, 3U, 1, (void *)0); rc = 1; } } else { } { ldv_spin_unlock_71(& dev->cmd_lock); } if ((int )((signed char )(dev->EventBuffer)->EventStatus) < 0) { nextWriteIndex = (unsigned int )((u8 )((unsigned int )((unsigned char )dev->EventQueueWriteIndex) + 1U)) & 15U; if ((int )nextWriteIndex != dev->EventQueueReadIndex) { dev->EventQueue[dev->EventQueueWriteIndex] = *(dev->EventBuffer); dev->EventQueueWriteIndex = (int )nextWriteIndex; } else { { printk("\vngene: event overflow\n"); dev->EventQueueOverflowCount = dev->EventQueueOverflowCount + 1; dev->EventQueueOverflowFlag = 1; } } { (dev->EventBuffer)->EventStatus = (unsigned int )(dev->EventBuffer)->EventStatus & 127U; tasklet_schedule(& dev->event_tasklet); rc = 1; } } else { } goto ldv_46819; ldv_46818: { i = i - 1U; ldv_spin_lock_72(& dev->channel[i].state_lock); } if ((unsigned long )dev->channel[i].nextBuffer != (unsigned long )((struct SBufferHeader *)0)) { if (((int )(dev->channel[i].nextBuffer)->ngeneBuffer.SR.Flags & 192) == 128) { { (dev->channel[i].nextBuffer)->ngeneBuffer.SR.Flags = (u8 )((unsigned int )(dev->channel[i].nextBuffer)->ngeneBuffer.SR.Flags | 64U); tasklet_schedule(& dev->channel[i].demux_tasklet); rc = 1; } } else { } } else { } { ldv_spin_unlock_73(& dev->channel[i].state_lock); } ldv_46819: ; if (i != 0U) { goto ldv_46818; } else { } return (1); } } static void dump_command_io(struct ngene *dev ) { u8 buf[8U] ; u8 *b ; { { memcpy_fromio((void *)(& buf), (void const volatile *)dev->iomem + 49152U, 8UL); printk("\vhost_to_ngene (%04x): %*ph\n", 49152, 8, (u8 *)(& buf)); memcpy_fromio((void *)(& buf), (void const volatile *)dev->iomem + 49408U, 8UL); printk("\vngene_to_host (%04x): %*ph\n", 49408, 8, (u8 *)(& buf)); b = dev->hosttongene; printk("\vdev->hosttongene (%p): %*ph\n", b, 8, b); b = dev->ngenetohost; printk("\vdev->ngenetohost (%p): %*ph\n", b, 8, b); } return; } } static int ngene_command_mutex(struct ngene *dev , struct ngene_command *com ) { int ret ; u8 *tmpCmdDoneByte ; u64 fwio ; long __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp ; bool __cond ; bool __cond___0 ; { dev->cmd_done = 0; if ((unsigned int )com->cmd.hdr.Opcode == 1U) { { dev->BootFirmware = 1; dev->icounts = readl((void const volatile *)dev->iomem + 49760U); writel(0U, (void volatile *)dev->iomem + 49664U); writel(0U, (void volatile *)dev->iomem + 49668U); writel(0U, (void volatile *)dev->iomem + 49672U); writel(0U, (void volatile *)dev->iomem + 49676U); writel(0U, (void volatile *)dev->iomem + 49680U); writel(0U, (void volatile *)dev->iomem + 49684U); } } else if ((unsigned int )com->cmd.hdr.Opcode == 2U) { { fwio = dev->PAFWInterfaceBuffer; writel((unsigned int )fwio, (void volatile *)dev->iomem + 49664U); writel((unsigned int )(fwio >> 32), (void volatile *)dev->iomem + 49668U); writel((unsigned int )fwio + 256U, (void volatile *)dev->iomem + 49672U); writel((unsigned int )((fwio + 256ULL) >> 32), (void volatile *)dev->iomem + 49676U); writel((unsigned int )fwio + 512U, (void volatile *)dev->iomem + 49680U); writel((unsigned int )((fwio + 512ULL) >> 32), (void volatile *)dev->iomem + 49684U); } } else { } { memcpy(dev->FWInterfaceBuffer, (void const *)(& com->cmd.raw8), (size_t )(com->in_len + 2U)); } if (dev->BootFirmware != 0) { { memcpy_toio((void volatile *)dev->iomem + 49152U, (void const *)(& com->cmd.raw8), (size_t )(com->in_len + 2U)); } } else { } { ldv_spin_lock_irq_74(& dev->cmd_lock); tmpCmdDoneByte = dev->ngenetohost + (unsigned long )com->out_len; } if (com->out_len == 0U) { tmpCmdDoneByte = tmpCmdDoneByte + 1; } else { } { *tmpCmdDoneByte = 0U; *(dev->ngenetohost) = 0U; *(dev->ngenetohost + 1UL) = 0U; dev->CmdDoneByte = tmpCmdDoneByte; ldv_spin_unlock_irq_75(& dev->cmd_lock); writel(1U, (void volatile *)dev->iomem + 41096U); __ret = 500L; __cond___0 = dev->cmd_done == 1; } if ((int )__cond___0 && __ret == 0L) { __ret = 1L; } else { } if (((int )__cond___0 || __ret == 0L) == 0) { { __ret___0 = 500L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_46843: { tmp = prepare_to_wait_event(& dev->cmd_wq, & __wait, 2); __int = tmp; __cond = dev->cmd_done == 1; } if ((int )__cond && __ret___0 == 0L) { __ret___0 = 1L; } else { } if (((int )__cond || __ret___0 == 0L) != 0) { goto ldv_46842; } else { } { __ret___0 = schedule_timeout(__ret___0); } goto ldv_46843; ldv_46842: { finish_wait(& dev->cmd_wq, & __wait); } __ret = __ret___0; } else { } ret = (int )__ret; if (ret == 0) { { printk("\vngene: Command timeout cmd=%02x prev=%02x\n", (int )com->cmd.hdr.Opcode, dev->prev_cmd); dump_command_io(dev); } return (-1); } else { } if ((unsigned int )com->cmd.hdr.Opcode == 2U) { dev->BootFirmware = 0; } else { } dev->prev_cmd = (int )com->cmd.hdr.Opcode; if (com->out_len == 0U) { return (0); } else { } { memcpy((void *)(& com->cmd.raw8), (void const *)dev->ngenetohost, (size_t )com->out_len); } return (0); } } int ngene_command(struct ngene *dev , struct ngene_command *com ) { int result ; { { down(& dev->cmd_mutex); result = ngene_command_mutex(dev, com); up(& dev->cmd_mutex); } return (result); } } static int ngene_command_load_firmware(struct ngene *dev , u8 *ngene_fw , u32 size ) { u32 cleft ; struct ngene_command com ; int tmp ; { { com.cmd.hdr.Opcode = 1U; com.cmd.hdr.Length = 0U; com.in_len = 0U; com.out_len = 0U; ngene_command(dev, & com); cleft = (size + 3U) & 4294967292U; } if (cleft > 1024U) { { memcpy_toio((void volatile *)dev->iomem + 5120U, (void const *)ngene_fw + 1024U, (size_t )(cleft - 1024U)); cleft = 1024U; } } else { } { memcpy_toio((void volatile *)dev->iomem + 53248U, (void const *)ngene_fw, (size_t )cleft); memset((void *)(& com), 0, 264UL); com.cmd.hdr.Opcode = 2U; com.cmd.hdr.Length = 4U; com.cmd.FWLoadFinish.Address = 53248U; com.cmd.FWLoadFinish.Length = (unsigned short )cleft; com.in_len = 4U; com.out_len = 0U; tmp = ngene_command(dev, & com); } return (tmp); } } static int ngene_command_config_buf(struct ngene *dev , u8 config ) { struct ngene_command com ; int tmp ; { { com.cmd.hdr.Opcode = 17U; com.cmd.hdr.Length = 1U; com.cmd.ConfigureBuffers.config = config; com.in_len = 1U; com.out_len = 0U; tmp = ngene_command(dev, & com); } if (tmp < 0) { return (-5); } else { } return (0); } } static int ngene_command_config_free_buf(struct ngene *dev , u8 *config ) { struct ngene_command com ; int tmp ; { { com.cmd.hdr.Opcode = 18U; com.cmd.hdr.Length = 6U; memcpy((void *)(& com.cmd.ConfigureBuffers.config), (void const *)config, 6UL); com.in_len = 6U; com.out_len = 0U; tmp = ngene_command(dev, & com); } if (tmp < 0) { return (-5); } else { } return (0); } } int ngene_command_gpio_set(struct ngene *dev , u8 select , u8 level ) { struct ngene_command com ; int tmp ; { { com.cmd.hdr.Opcode = 38U; com.cmd.hdr.Length = 1U; com.cmd.SetGpioPin.select = (u8 )((int )((signed char )select) | (int )((signed char )((int )level << 7))); com.in_len = 1U; com.out_len = 0U; tmp = ngene_command(dev, & com); } return (tmp); } } static u8 TSFeatureDecoderSetup[40U] = { 66U, 0U, 0U, 2U, 2U, 188U, 0U, 0U, 64U, 6U, 0U, 2U, 2U, 188U, 0U, 0U, 113U, 7U, 0U, 2U, 2U, 188U, 0U, 0U, 114U, 0U, 0U, 2U, 2U, 188U, 0U, 0U, 64U, 7U, 0U, 2U, 2U, 188U, 0U, 0U}; static u8 I2SConfiguration[8U] = { 0U, 16U, 0U, 0U, 128U, 16U, 0U, 0U}; static u8 SPDIFConfiguration[10U] = { 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U}; static u8 TS_I2SConfiguration[4U] = { 62U, 24U, 0U, 0U}; static u8 TS_I2SOutConfiguration[4U] = { 128U, 4U, 0U, 0U}; static u8 ITUDecoderSetup[4U][16U] = { { 28U, 19U, 1U, 104U, 61U, 144U, 20U, 32U, 0U, 0U, 1U, 176U, 156U, 0U, 0U, 0U}, { 156U, 3U, 35U, 192U, 96U, 14U, 19U, 0U, 0U, 0U, 0U, 1U, 176U, 0U, 0U, 0U}, { 159U, 0U, 35U, 192U, 96U, 15U, 19U, 0U, 0U, 0U, 0U, 1U, 176U, 0U, 0U, 0U}, { 156U, 1U, 35U, 192U, 96U, 14U, 19U, 0U, 0U, 0U, 0U, 1U, 176U, 0U, 0U, 0U}}; static u8 ITUFeatureDecoderSetup[8U] = { 0U, 0U, 0U, 0U, 0U, 120U, 4U, 0U}; void FillTSBuffer(void *Buffer , int Length , u32 Flags ) { u32 *ptr ; { { ptr = (u32 *)Buffer; memset(Buffer, 111, (size_t )Length); } goto ldv_46888; ldv_46887: ; if ((Flags & 65536U) != 0U) { *ptr = 1193279248U; } else { *ptr = 285155143U; } ptr = ptr + 47UL; Length = Length + -188; ldv_46888: ; if (Length > 0) { goto ldv_46887; } else { } return; } } static void flush_buffers(struct ngene_channel *chan ) { u8 val ; { ldv_46894: { msleep(1U); ldv_spin_lock_irq_66(& chan->state_lock); val = (unsigned int )(chan->nextBuffer)->ngeneBuffer.SR.Flags & 128U; ldv_spin_unlock_irq_67(& chan->state_lock); } if ((unsigned int )val != 0U) { goto ldv_46894; } else { } return; } } static void clear_buffers(struct ngene_channel *chan ) { struct SBufferHeader *Cur ; { Cur = chan->nextBuffer; ldv_46900: { memset((void *)(& Cur->ngeneBuffer.SR), 0, 16UL); } if ((chan->mode & 8) != 0) { { FillTSBuffer(Cur->Buffer1, (int )chan->Capture1Length, chan->DataFormatFlags); } } else { } Cur = Cur->Next; if ((unsigned long )Cur != (unsigned long )chan->nextBuffer) { goto ldv_46900; } else { } if ((chan->mode & 8) != 0) { (chan->nextBuffer)->ngeneBuffer.SR.DTOUpdate = chan->AudioDTOValue; chan->AudioDTOUpdated = 0; Cur = chan->TSIdleBuffer.Head; ldv_46902: { memset((void *)(& Cur->ngeneBuffer.SR), 0, 16UL); FillTSBuffer(Cur->Buffer1, (int )chan->Capture1Length, chan->DataFormatFlags); Cur = Cur->Next; } if ((unsigned long )Cur != (unsigned long )chan->TSIdleBuffer.Head) { goto ldv_46902; } else { } } else { } return; } } static int ngene_command_stream_control(struct ngene *dev , u8 stream , u8 control , u8 mode , u8 flags ) { struct ngene_channel *chan ; struct ngene_command com ; u16 BsUVI ; u16 BsSDI ; u16 BsSPI ; u16 BsSDO ; int tmp ; int tmp___0 ; { { chan = (struct ngene_channel *)(& dev->channel) + (unsigned long )stream; BsUVI = (int )stream & 1 ? 37888U : 37632U; BsSDI = (int )stream & 1 ? 38400U : 38144U; BsSPI = (int )stream & 1 ? 38912U : 38656U; BsSDO = 39680U; down(& dev->stream_mutex); memset((void *)(& com), 0, 264UL); com.cmd.hdr.Opcode = 16U; com.cmd.hdr.Length = 62U; com.cmd.StreamControl.Stream = (u8 )((int )((signed char )stream) | ((unsigned int )control != 0U ? 8 : 0)); } if ((chan->mode & 8) != 0) { com.cmd.StreamControl.Stream = (u8 )((unsigned int )com.cmd.StreamControl.Stream | 7U); } else { } com.cmd.StreamControl.Control = (u8 )((int )((signed char )control) | ((int )((signed char )flags) & 2)); com.cmd.StreamControl.Mode = mode; com.in_len = 64U; com.out_len = 0U; if (debug != 0) { { printk("\016ngene: Stream=%02x, Control=%02x, Mode=%02x\n", (int )com.cmd.StreamControl.Stream, (int )com.cmd.StreamControl.Control, (int )com.cmd.StreamControl.Mode); } } else { } chan->Mode = mode; if ((int )((signed char )control) >= 0) { { ldv_spin_lock_irq_66(& chan->state_lock); } if ((unsigned int )chan->State == 3U) { { chan->State = 1; chan->HWState = 0; ldv_spin_unlock_irq_67(& chan->state_lock); tmp = ngene_command(dev, & com); } if (tmp < 0) { { up(& dev->stream_mutex); } return (-1); } else { } { flush_buffers(chan); up(& dev->stream_mutex); } return (0); } else { } { ldv_spin_unlock_irq_67(& chan->state_lock); up(& dev->stream_mutex); } return (0); } else { } if (((int )mode & 4) != 0) { com.cmd.StreamControl.CaptureBlockCount = (u16 )(chan->Capture1Length / 256U); com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead; } else if (((int )mode & 8) != 0) { com.cmd.StreamControl.CaptureBlockCount = (u16 )(chan->Capture1Length / 256U); com.cmd.StreamControl.MaxLinesPerField = (u16 )(chan->Capture1Length / 256U); com.cmd.StreamControl.Buffer_Address = chan->TSRingBuffer.PAHead; if ((chan->mode & 8) != 0) { com.cmd.StreamControl.BytesPerVBILine = (u16 )(chan->Capture1Length / 256U); com.cmd.StreamControl.Stream = (u8 )((unsigned int )com.cmd.StreamControl.Stream | 7U); } else { } } else { com.cmd.StreamControl.BytesPerVideoLine = chan->nBytesPerLine; com.cmd.StreamControl.MaxLinesPerField = chan->nLines; com.cmd.StreamControl.MinLinesPerField = 100U; com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead; if (((int )mode & 2) != 0) { com.cmd.StreamControl.MaxVBILinesPerField = chan->nVBILines; com.cmd.StreamControl.MinVBILinesPerField = 0U; com.cmd.StreamControl.BytesPerVBILine = chan->nBytesPerVBILine; } else { } if (((int )flags & 4) != 0) { com.cmd.StreamControl.Stream = (u8 )((unsigned int )com.cmd.StreamControl.Stream | 4U); } else { } } { ldv_spin_lock_irq_66(& chan->state_lock); } if (((int )mode & 4) != 0) { chan->nextBuffer = chan->RingBuffer.Head; if (((int )mode & 32) != 0) { { com.cmd.StreamControl.SetupDataLen = 10U; com.cmd.StreamControl.SetupDataAddr = BsSPI; memcpy((void *)(& com.cmd.StreamControl.SetupData), (void const *)(& SPDIFConfiguration), 10UL); } } else { { com.cmd.StreamControl.SetupDataLen = 4U; com.cmd.StreamControl.SetupDataAddr = BsSDI; memcpy((void *)(& com.cmd.StreamControl.SetupData), (void const *)(& I2SConfiguration) + (unsigned long )((int )(dev->card_info)->i2s[(int )stream] * 4), 4UL); } } } else if (((int )mode & 8) != 0) { chan->nextBuffer = chan->TSRingBuffer.Head; if ((unsigned int )stream > 1U) { if ((chan->mode & 8) != 0) { { com.cmd.StreamControl.SetupDataLen = 4U; com.cmd.StreamControl.SetupDataAddr = BsSDO; memcpy((void *)(& com.cmd.StreamControl.SetupData), (void const *)(& TS_I2SOutConfiguration), 4UL); } } else { { com.cmd.StreamControl.SetupDataLen = 4U; com.cmd.StreamControl.SetupDataAddr = BsSDI; memcpy((void *)(& com.cmd.StreamControl.SetupData), (void const *)(& TS_I2SConfiguration), 4UL); } } } else { { com.cmd.StreamControl.SetupDataLen = 8U; com.cmd.StreamControl.SetupDataAddr = (unsigned int )BsUVI + 16U; memcpy((void *)(& com.cmd.StreamControl.SetupData), (void const *)(& TSFeatureDecoderSetup) + (unsigned long )((int )(dev->card_info)->tsf[(int )stream] * 8), 8UL); } } } else { { chan->nextBuffer = chan->RingBuffer.Head; com.cmd.StreamControl.SetupDataLen = 24U; com.cmd.StreamControl.SetupDataAddr = BsUVI; memcpy((void *)(& com.cmd.StreamControl.SetupData), (void const *)(& ITUDecoderSetup) + (unsigned long )chan->itumode, 16UL); memcpy((void *)(& com.cmd.StreamControl.SetupData) + 16U, (void const *)(& ITUFeatureDecoderSetup), 8UL); } } { clear_buffers(chan); chan->State = 3; } if (((int )mode & 8) != 0) { chan->HWState = 2; } else { chan->HWState = 1; } { ldv_spin_unlock_irq_67(& chan->state_lock); tmp___0 = ngene_command(dev, & com); } if (tmp___0 < 0) { { up(& dev->stream_mutex); } return (-1); } else { } { up(& dev->stream_mutex); } return (0); } } void set_transfer(struct ngene_channel *chan , int state ) { u8 control ; u8 mode ; u8 flags ; struct ngene *dev ; int ret ; { control = 0U; mode = 0U; flags = 0U; dev = chan->dev; if (state != 0) { if (chan->running != 0) { { printk("\016ngene: already running\n"); } return; } else { } } else if (chan->running == 0) { { printk("\016ngene: already stopped\n"); } return; } else { } if ((unsigned long )(dev->card_info)->switch_ctrl != (unsigned long )((int (*)(struct ngene_channel * , int , int ))0)) { { (*((dev->card_info)->switch_ctrl))(chan, 1, state ^ 1); } } else { } if (state != 0) { { ldv_spin_lock_irq_66(& chan->state_lock); dvb_ringbuffer_flush(& dev->tsout_rbuf); control = 128U; } if ((chan->mode & 12) != 0) { chan->Capture1Length = 96256U; mode = 8U; } else { } if ((chan->mode & 8) != 0) { chan->pBufferExchange = & tsout_exchange; chan->AudioDTOValue = 2147483648U; chan->AudioDTOUpdated = 1; } else { } if ((chan->mode & 4) != 0) { chan->pBufferExchange = & tsin_exchange; } else { } { ldv_spin_unlock_irq_67(& chan->state_lock); } } else { } { ret = ngene_command_stream_control(dev, (int )((u8 )chan->number), (int )control, (int )mode, (int )flags); } if (ret == 0) { chan->running = state; } else { { printk("\vngene: set_transfer %d failed\n", state); } } if (state == 0) { { ldv_spin_lock_irq_66(& chan->state_lock); chan->pBufferExchange = (IBufferExchange *)0; dvb_ringbuffer_flush(& dev->tsout_rbuf); ldv_spin_unlock_irq_67(& chan->state_lock); } } else { } return; } } static void free_ringbuffer(struct ngene *dev , struct SRingBufferDescriptor *rb ) { struct SBufferHeader *Cur ; u32 j ; { Cur = rb->Head; if ((unsigned long )Cur == (unsigned long )((struct SBufferHeader *)0)) { return; } else { } j = 0U; goto ldv_46933; ldv_46932: ; if ((unsigned long )Cur->Buffer1 != (unsigned long )((void *)0)) { { pci_free_consistent(dev->pci_dev, (size_t )rb->Buffer1Length, Cur->Buffer1, (Cur->scList1)->Address); } } else { } if ((unsigned long )Cur->Buffer2 != (unsigned long )((void *)0)) { { pci_free_consistent(dev->pci_dev, (size_t )rb->Buffer2Length, Cur->Buffer2, (Cur->scList2)->Address); } } else { } j = j + 1U; Cur = Cur->Next; ldv_46933: ; if (j < rb->NumBuffers) { goto ldv_46932; } else { } if ((unsigned long )rb->SCListMem != (unsigned long )((void *)0)) { { pci_free_consistent(dev->pci_dev, (size_t )rb->SCListMemSize, rb->SCListMem, rb->PASCListMem); } } else { } { pci_free_consistent(dev->pci_dev, (size_t )rb->MemSize, (void *)rb->Head, rb->PAHead); } return; } } static void free_idlebuffer(struct ngene *dev , struct SRingBufferDescriptor *rb , struct SRingBufferDescriptor *tb ) { int j ; struct SBufferHeader *Cur ; { Cur = tb->Head; if ((unsigned long )rb->Head == (unsigned long )((struct SBufferHeader *)0)) { return; } else { } { free_ringbuffer(dev, rb); j = 0; } goto ldv_46943; ldv_46942: Cur->Buffer2 = (void *)0; Cur->scList2 = (struct HW_SCATTER_GATHER_ELEMENT *)0; Cur->ngeneBuffer.Address_of_first_entry_2 = 0ULL; Cur->ngeneBuffer.Number_of_entries_2 = 0U; j = j + 1; Cur = Cur->Next; ldv_46943: ; if ((u32 )j < tb->NumBuffers) { goto ldv_46942; } else { } return; } } static void free_common_buffers(struct ngene *dev ) { u32 i ; struct ngene_channel *chan ; { i = 0U; goto ldv_46951; ldv_46950: { chan = (struct ngene_channel *)(& dev->channel) + (unsigned long )i; free_idlebuffer(dev, & chan->TSIdleBuffer, & chan->TSRingBuffer); free_ringbuffer(dev, & chan->RingBuffer); free_ringbuffer(dev, & chan->TSRingBuffer); i = i + 1U; } ldv_46951: ; if (i <= 4U) { goto ldv_46950; } else { } if ((unsigned long )dev->OverflowBuffer != (unsigned long )((void *)0)) { { pci_free_consistent(dev->pci_dev, 8192UL, dev->OverflowBuffer, dev->PAOverflowBuffer); } } else { } if ((unsigned long )dev->FWInterfaceBuffer != (unsigned long )((void *)0)) { { pci_free_consistent(dev->pci_dev, 4096UL, dev->FWInterfaceBuffer, dev->PAFWInterfaceBuffer); } } else { } return; } } static int create_ring_buffer(struct pci_dev *pci_dev , struct SRingBufferDescriptor *descr , u32 NumBuffers ) { dma_addr_t tmp ; struct SBufferHeader *Head ; u32 i ; u32 MemSize ; u64 PARingBufferHead ; u64 PARingBufferCur ; u64 PARingBufferNext ; struct SBufferHeader *Cur ; struct SBufferHeader *Next ; void *tmp___0 ; { MemSize = NumBuffers * 128U; descr->Head = (struct SBufferHeader *)0; descr->MemSize = 0U; descr->PAHead = 0ULL; descr->NumBuffers = 0U; if (MemSize <= 4095U) { MemSize = 4096U; } else { } { tmp___0 = pci_alloc_consistent(pci_dev, (size_t )MemSize, & tmp); Head = (struct SBufferHeader *)tmp___0; PARingBufferHead = tmp; } if ((unsigned long )Head == (unsigned long )((struct SBufferHeader *)0)) { return (-12); } else { } { memset((void *)Head, 0, (size_t )MemSize); PARingBufferCur = PARingBufferHead; Cur = Head; i = 0U; } goto ldv_46968; ldv_46967: Next = Cur + 128U; PARingBufferNext = PARingBufferCur + 128ULL; Cur->Next = Next; Cur->ngeneBuffer.Next = PARingBufferNext; Cur = Next; PARingBufferCur = PARingBufferNext; i = i + 1U; ldv_46968: ; if (i < NumBuffers - 1U) { goto ldv_46967; } else { } Cur->Next = Head; Cur->ngeneBuffer.Next = PARingBufferHead; descr->Head = Head; descr->MemSize = MemSize; descr->PAHead = PARingBufferHead; descr->NumBuffers = NumBuffers; return (0); } } static int AllocateRingBuffers(struct pci_dev *pci_dev , dma_addr_t of , struct SRingBufferDescriptor *pRingBuffer , u32 Buffer1Length , u32 Buffer2Length ) { dma_addr_t tmp ; u32 i ; u32 j ; int status ; u32 SCListMemSize ; u64 PASCListMem ; struct HW_SCATTER_GATHER_ELEMENT *SCListEntry ; u64 PASCListEntry ; struct SBufferHeader *Cur ; void *SCListMem ; u64 PABuffer ; void *Buffer ; void *tmp___0 ; { status = 0; SCListMemSize = (pRingBuffer->NumBuffers * (Buffer2Length != 0U ? 16U : 8U)) * 16U; if (SCListMemSize <= 4095U) { SCListMemSize = 4096U; } else { } { SCListMem = pci_alloc_consistent(pci_dev, (size_t )SCListMemSize, & tmp); PASCListMem = tmp; } if ((unsigned long )SCListMem == (unsigned long )((void *)0)) { return (-12); } else { } { memset(SCListMem, 0, (size_t )SCListMemSize); pRingBuffer->SCListMem = SCListMem; pRingBuffer->PASCListMem = PASCListMem; pRingBuffer->SCListMemSize = SCListMemSize; pRingBuffer->Buffer1Length = Buffer1Length; pRingBuffer->Buffer2Length = Buffer2Length; SCListEntry = (struct HW_SCATTER_GATHER_ELEMENT *)SCListMem; PASCListEntry = PASCListMem; Cur = pRingBuffer->Head; i = 0U; } goto ldv_46997; ldv_46996: { tmp___0 = pci_alloc_consistent(pci_dev, (size_t )Buffer1Length, & tmp); Buffer = tmp___0; PABuffer = tmp; } if ((unsigned long )Buffer == (unsigned long )((void *)0)) { return (-12); } else { } Cur->Buffer1 = Buffer; SCListEntry->Address = PABuffer; SCListEntry->Length = Buffer1Length; Cur->scList1 = SCListEntry; Cur->ngeneBuffer.Address_of_first_entry_1 = PASCListEntry; Cur->ngeneBuffer.Number_of_entries_1 = 8U; SCListEntry = SCListEntry + 1UL; PASCListEntry = PASCListEntry + 16ULL; j = 0U; goto ldv_46990; ldv_46989: SCListEntry->Address = of; SCListEntry->Length = 8192U; SCListEntry = SCListEntry + 1UL; PASCListEntry = PASCListEntry + 16ULL; j = j + 1U; ldv_46990: ; if (j <= 6U) { goto ldv_46989; } else { } if (Buffer2Length == 0U) { goto ldv_46992; } else { } { Buffer = pci_alloc_consistent(pci_dev, (size_t )Buffer2Length, & tmp); PABuffer = tmp; } if ((unsigned long )Buffer == (unsigned long )((void *)0)) { return (-12); } else { } Cur->Buffer2 = Buffer; SCListEntry->Address = PABuffer; SCListEntry->Length = Buffer2Length; Cur->scList2 = SCListEntry; Cur->ngeneBuffer.Address_of_first_entry_2 = PASCListEntry; Cur->ngeneBuffer.Number_of_entries_2 = 8U; SCListEntry = SCListEntry + 1UL; PASCListEntry = PASCListEntry + 16ULL; j = 0U; goto ldv_46994; ldv_46993: SCListEntry->Address = of; SCListEntry->Length = 8192U; SCListEntry = SCListEntry + 1UL; PASCListEntry = PASCListEntry + 16ULL; j = j + 1U; ldv_46994: ; if (j <= 6U) { goto ldv_46993; } else { } ldv_46992: i = i + 1U; Cur = Cur->Next; ldv_46997: ; if (i < pRingBuffer->NumBuffers) { goto ldv_46996; } else { } return (status); } } static int FillTSIdleBuffer(struct SRingBufferDescriptor *pIdleBuffer , struct SRingBufferDescriptor *pRingBuffer ) { int status ; u32 n ; struct SBufferHeader *Cur ; int i ; { status = 0; n = pRingBuffer->NumBuffers; Cur = pRingBuffer->Head; i = 0; goto ldv_47008; ldv_47007: Cur->Buffer2 = (pIdleBuffer->Head)->Buffer1; Cur->scList2 = (pIdleBuffer->Head)->scList1; Cur->ngeneBuffer.Address_of_first_entry_2 = (pIdleBuffer->Head)->ngeneBuffer.Address_of_first_entry_1; Cur->ngeneBuffer.Number_of_entries_2 = (pIdleBuffer->Head)->ngeneBuffer.Number_of_entries_1; Cur = Cur->Next; i = i + 1; ldv_47008: ; if ((u32 )i < n) { goto ldv_47007; } else { } return (status); } } static u32 RingBufferSizes[5U] = { 4U, 4U, 8U, 8U, 8U}; static u32 Buffer1Sizes[5U] = { 417792U, 417792U, 8192U, 8192U, 8192U}; static u32 Buffer2Sizes[5U] = { 28672U, 28672U, 0U, 0U, 0U}; static int AllocCommonBuffers(struct ngene *dev ) { int status ; int i ; int type ; { { status = 0; dev->FWInterfaceBuffer = pci_alloc_consistent(dev->pci_dev, 4096UL, & dev->PAFWInterfaceBuffer); } if ((unsigned long )dev->FWInterfaceBuffer == (unsigned long )((void *)0)) { return (-12); } else { } { dev->hosttongene = (u8 *)dev->FWInterfaceBuffer; dev->ngenetohost = (u8 *)dev->FWInterfaceBuffer + 256U; dev->EventBuffer = (struct EVENT_BUFFER *)dev->FWInterfaceBuffer + 512U; dev->OverflowBuffer = pci_alloc_consistent(dev->pci_dev, 8192UL, & dev->PAOverflowBuffer); } if ((unsigned long )dev->OverflowBuffer == (unsigned long )((void *)0)) { return (-12); } else { } { memset(dev->OverflowBuffer, 0, 8192UL); i = 0; } goto ldv_47021; ldv_47020: type = (dev->card_info)->io_type[i]; dev->channel[i].State = 0; if ((type & 19) != 0) { { status = create_ring_buffer(dev->pci_dev, & dev->channel[i].RingBuffer, RingBufferSizes[i]); } if (status < 0) { goto ldv_47019; } else { } if ((type & 17) != 0) { { status = AllocateRingBuffers(dev->pci_dev, dev->PAOverflowBuffer, & dev->channel[i].RingBuffer, Buffer1Sizes[i], Buffer2Sizes[i]); } if (status < 0) { goto ldv_47019; } else { } } else if ((type & 2) != 0) { { status = AllocateRingBuffers(dev->pci_dev, dev->PAOverflowBuffer, & dev->channel[i].RingBuffer, 2080768U, 0U); } if (status < 0) { goto ldv_47019; } else { } } else { } } else { } if ((type & 12) != 0) { { status = create_ring_buffer(dev->pci_dev, & dev->channel[i].TSRingBuffer, 8U); } if (status < 0) { goto ldv_47019; } else { } { status = AllocateRingBuffers(dev->pci_dev, dev->PAOverflowBuffer, & dev->channel[i].TSRingBuffer, 98304U, 0U); } if (status != 0) { goto ldv_47019; } else { } } else { } if ((type & 8) != 0) { { status = create_ring_buffer(dev->pci_dev, & dev->channel[i].TSIdleBuffer, 1U); } if (status < 0) { goto ldv_47019; } else { } { status = AllocateRingBuffers(dev->pci_dev, dev->PAOverflowBuffer, & dev->channel[i].TSIdleBuffer, 98304U, 0U); } if (status != 0) { goto ldv_47019; } else { } { FillTSIdleBuffer(& dev->channel[i].TSIdleBuffer, & dev->channel[i].TSRingBuffer); } } else { } i = i + 1; ldv_47021: ; if (i <= 4) { goto ldv_47020; } else { } ldv_47019: ; return (status); } } static void ngene_release_buffers(struct ngene *dev ) { { if ((unsigned long )dev->iomem != (unsigned long )((unsigned char *)0U)) { { iounmap((void volatile *)dev->iomem); } } else { } { free_common_buffers(dev); vfree((void const *)dev->tsout_buf); vfree((void const *)dev->tsin_buf); vfree((void const *)dev->ain_buf); vfree((void const *)dev->vin_buf); vfree((void const *)dev); } return; } } static int ngene_get_buffers(struct ngene *dev ) { int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; { { tmp = AllocCommonBuffers(dev); } if (tmp != 0) { return (-12); } else { } if (((dev->card_info)->io_type[4] & 8) != 0) { { tmp___0 = vmalloc(770048UL); dev->tsout_buf = (u8 *)tmp___0; } if ((unsigned long )dev->tsout_buf == (unsigned long )((u8 *)0U)) { return (-12); } else { } { dvb_ringbuffer_init(& dev->tsout_rbuf, (void *)dev->tsout_buf, 770048UL); } } else { } if (((dev->card_info)->io_type[2] & 4) != 0) { { tmp___1 = vmalloc(770048UL); dev->tsin_buf = (u8 *)tmp___1; } if ((unsigned long )dev->tsin_buf == (unsigned long )((u8 *)0U)) { return (-12); } else { } { dvb_ringbuffer_init(& dev->tsin_rbuf, (void *)dev->tsin_buf, 770048UL); } } else { } if (((dev->card_info)->io_type[2] & 16) != 0) { { tmp___2 = vmalloc(131072UL); dev->ain_buf = (u8 *)tmp___2; } if ((unsigned long )dev->ain_buf == (unsigned long )((u8 *)0U)) { return (-12); } else { } { dvb_ringbuffer_init(& dev->ain_rbuf, (void *)dev->ain_buf, 131072UL); } } else { } if (((dev->card_info)->io_type[0] & 2) != 0) { { tmp___3 = vmalloc(8294400UL); dev->vin_buf = (u8 *)tmp___3; } if ((unsigned long )dev->vin_buf == (unsigned long )((u8 *)0U)) { return (-12); } else { } { dvb_ringbuffer_init(& dev->vin_rbuf, (void *)dev->vin_buf, 8294400UL); } } else { } { tmp___4 = ioremap((dev->pci_dev)->resource[0].start, (dev->pci_dev)->resource[0].start != 0ULL || (dev->pci_dev)->resource[0].end != (dev->pci_dev)->resource[0].start ? (unsigned long )(((dev->pci_dev)->resource[0].end - (dev->pci_dev)->resource[0].start) + 1ULL) : 0UL); dev->iomem = (unsigned char *)tmp___4; } if ((unsigned long )dev->iomem == (unsigned long )((unsigned char *)0U)) { return (-12); } else { } return (0); } } static void ngene_init(struct ngene *dev ) { int i ; unsigned int tmp ; { { tasklet_init(& dev->event_tasklet, & event_tasklet, (unsigned long )dev); memset_io((void volatile *)dev->iomem + 49152U, 0, 544UL); memset_io((void volatile *)dev->iomem + 50176U, 0, 256UL); i = 0; } goto ldv_47033; ldv_47032: dev->channel[i].dev = dev; dev->channel[i].number = i; i = i + 1; ldv_47033: ; if (i <= 4) { goto ldv_47032; } else { } { dev->fw_interface_version = 0U; writel(0U, (void volatile *)dev->iomem + 49764U); dev->icounts = readl((void const volatile *)dev->iomem + 49760U); tmp = readl((void const volatile *)dev->iomem + 36868U); dev->device_version = tmp & 15U; printk("\016ngene: Device version %d\n", dev->device_version); } return; } } static int ngene_load_firm(struct ngene *dev ) { u32 size ; struct firmware const *fw ; u8 *ngene_fw ; char *fw_name ; int err ; int version ; int tmp ; { fw = (struct firmware const *)0; version = (dev->card_info)->fw_version; { if (version == 15) { goto case_15; } else { } if (version == 16) { goto case_16; } else { } if (version == 17) { goto case_17; } else { } if (version == 18) { goto case_18; } else { } goto switch_default; switch_default: /* CIL Label */ ; case_15: /* CIL Label */ version = 15; size = 23466U; fw_name = (char *)"ngene_15.fw"; dev->cmd_timeout_workaround = 1; goto ldv_47046; case_16: /* CIL Label */ size = 23498U; fw_name = (char *)"ngene_16.fw"; dev->cmd_timeout_workaround = 1; goto ldv_47046; case_17: /* CIL Label */ size = 24446U; fw_name = (char *)"ngene_17.fw"; dev->cmd_timeout_workaround = 1; goto ldv_47046; case_18: /* CIL Label */ size = 0U; fw_name = (char *)"ngene_18.fw"; goto ldv_47046; switch_break: /* CIL Label */ ; } ldv_47046: { tmp = request_firmware(& fw, (char const *)fw_name, & (dev->pci_dev)->dev); } if (tmp < 0) { { printk("\vngene: Could not load firmware file %s.\n", fw_name); printk("\016ngene: Copy %s to your hotplug directory!\n", fw_name); } return (-1); } else { } if (size == 0U) { size = (u32 )fw->size; } else { } if ((unsigned long )size != (unsigned long )fw->size) { { printk("\vngene: Firmware %s has invalid size!", fw_name); err = -1; } } else { { printk("\016ngene: Loading firmware file %s.\n", fw_name); ngene_fw = (u8 *)fw->data; err = ngene_command_load_firmware(dev, ngene_fw, size); } } { release_firmware(fw); } return (err); } } static void ngene_stop(struct ngene *dev ) { { { down(& dev->cmd_mutex); i2c_del_adapter(& dev->channel[0].i2c_adapter); i2c_del_adapter(& dev->channel[1].i2c_adapter); writel(0U, (void volatile *)dev->iomem + 49764U); writel(0U, (void volatile *)dev->iomem + 49664U); writel(0U, (void volatile *)dev->iomem + 49668U); writel(0U, (void volatile *)dev->iomem + 49672U); writel(0U, (void volatile *)dev->iomem + 49676U); writel(0U, (void volatile *)dev->iomem + 49680U); writel(0U, (void volatile *)dev->iomem + 49684U); ldv_free_irq_87((dev->pci_dev)->irq, (void *)dev); } if ((int )dev->msi_enabled) { { pci_disable_msi(dev->pci_dev); } } else { } return; } } static int ngene_buffer_config(struct ngene *dev ) { int stat ; u8 tsin12_config[6U] ; u8 tsin1234_config[6U] ; u8 tsio1235_config[6U] ; u8 *bconf ; int bconf___0 ; { if ((dev->card_info)->fw_version > 16) { tsin12_config[0] = 96U; tsin12_config[1] = 96U; tsin12_config[2] = 0U; tsin12_config[3] = 0U; tsin12_config[4] = 0U; tsin12_config[5] = 0U; tsin1234_config[0] = 48U; tsin1234_config[1] = 48U; tsin1234_config[2] = 0U; tsin1234_config[3] = 48U; tsin1234_config[4] = 48U; tsin1234_config[5] = 0U; tsio1235_config[0] = 48U; tsio1235_config[1] = 48U; tsio1235_config[2] = 0U; tsio1235_config[3] = 40U; tsio1235_config[4] = 0U; tsio1235_config[5] = 56U; bconf = (u8 *)(& tsin12_config); if (*((unsigned long *)dev->card_info + 4UL) == 17179869188UL) { bconf = (u8 *)(& tsin1234_config); if (((dev->card_info)->io_type[4] & 8) != 0 && (unsigned long )dev->ci.en != (unsigned long )((struct dvb_ca_en50221 *)0)) { bconf = (u8 *)(& tsio1235_config); } else { } } else { } { stat = ngene_command_config_free_buf(dev, bconf); } } else { bconf___0 = 0; if ((dev->card_info)->io_type[3] == 4) { bconf___0 = 1; } else { } { stat = ngene_command_config_buf(dev, (int )((u8 )bconf___0)); } } return (stat); } } static int ngene_start(struct ngene *dev ) { int stat ; int i ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; struct lock_class_key __key___2 ; struct lock_class_key __key___3 ; unsigned long flags ; int tmp ; { { pci_set_master(dev->pci_dev); ngene_init(dev); stat = ldv_request_irq_88((dev->pci_dev)->irq, & irq_handler, 128UL, "nGene", (void *)dev); } if (stat < 0) { return (stat); } else { } { __init_waitqueue_head(& dev->cmd_wq, "&dev->cmd_wq", & __key); __init_waitqueue_head(& dev->tx_wq, "&dev->tx_wq", & __key___0); __init_waitqueue_head(& dev->rx_wq, "&dev->rx_wq", & __key___1); sema_init(& dev->cmd_mutex, 1); sema_init(& dev->stream_mutex, 1); sema_init(& dev->pll_mutex, 1); sema_init(& dev->i2c_switch_mutex, 1); spinlock_check(& dev->cmd_lock); __raw_spin_lock_init(& dev->cmd_lock.__annonCompField19.rlock, "&(&dev->cmd_lock)->rlock", & __key___2); i = 0; } goto ldv_47073; ldv_47072: { spinlock_check(& dev->channel[i].state_lock); __raw_spin_lock_init(& dev->channel[i].state_lock.__annonCompField19.rlock, "&(&dev->channel[i].state_lock)->rlock", & __key___3); i = i + 1; } ldv_47073: ; if (i <= 4) { goto ldv_47072; } else { } { writel(1U, (void volatile *)dev->iomem + 40960U); writel(1U, (void volatile *)dev->iomem + 49764U); stat = ngene_load_firm(dev); } if (stat < 0) { goto fail; } else { } { tmp = pci_msi_enabled(); } if (tmp != 0 && (int )(dev->card_info)->msi_supported) { { writel(0U, (void volatile *)dev->iomem + 49764U); ldv_free_irq_89((dev->pci_dev)->irq, (void *)dev); stat = pci_enable_msi_block(dev->pci_dev, 1); } if (stat != 0) { { printk("\016ngene: MSI not available\n"); flags = 128UL; } } else { flags = 0UL; dev->msi_enabled = 1; } { stat = ldv_request_irq_90((dev->pci_dev)->irq, & irq_handler, flags, "nGene", (void *)dev); } if (stat < 0) { goto fail2; } else { } { writel(1U, (void volatile *)dev->iomem + 49764U); } } else { } { stat = ngene_i2c_init(dev, 0); } if (stat < 0) { goto fail; } else { } { stat = ngene_i2c_init(dev, 1); } if (stat < 0) { goto fail; } else { } return (0); fail: { writel(0U, (void volatile *)dev->iomem + 49764U); ldv_free_irq_91((dev->pci_dev)->irq, (void *)dev); } fail2: ; if ((int )dev->msi_enabled) { { pci_disable_msi(dev->pci_dev); } } else { } return (stat); } } static void release_channel(struct ngene_channel *chan ) { struct dvb_demux *dvbdemux ; struct ngene *dev ; { dvbdemux = & chan->demux; dev = chan->dev; if (chan->running != 0) { { set_transfer(chan, 0); } } else { } { tasklet_kill(& chan->demux_tasklet); } if ((unsigned long )chan->ci_dev != (unsigned long )((struct dvb_device *)0)) { { dvb_unregister_device(chan->ci_dev); chan->ci_dev = (struct dvb_device *)0; } } else { } if ((unsigned long )chan->fe2 != (unsigned long )((struct dvb_frontend *)0)) { { ldv_dvb_unregister_frontend_92(chan->fe2); } } else { } if ((unsigned long )chan->fe != (unsigned long )((struct dvb_frontend *)0)) { { ldv_dvb_unregister_frontend_93(chan->fe); dvb_frontend_detach(chan->fe); chan->fe = (struct dvb_frontend *)0; } } else { } if ((int )chan->has_demux) { { dvb_net_release(& chan->dvbnet); (*(dvbdemux->dmx.close))(& dvbdemux->dmx); (*(dvbdemux->dmx.remove_frontend))(& dvbdemux->dmx, & chan->hw_frontend); (*(dvbdemux->dmx.remove_frontend))(& dvbdemux->dmx, & chan->mem_frontend); dvb_dmxdev_release(& chan->dmxdev); dvb_dmx_release(& chan->demux); chan->has_demux = 0; } } else { } if ((int )chan->has_adapter) { { dvb_unregister_adapter((struct dvb_adapter *)(& dev->adapter) + (unsigned long )chan->number); chan->has_adapter = 0; } } else { } return; } } static int init_channel(struct ngene_channel *chan ) { int ret ; int nr ; struct dvb_adapter *adapter ; struct dvb_demux *dvbdemux ; struct ngene *dev ; struct ngene_info *ni ; int io ; int tmp ; int tmp___0 ; { { ret = 0; nr = chan->number; adapter = (struct dvb_adapter *)0; dvbdemux = & chan->demux; dev = chan->dev; ni = dev->card_info; io = ni->io_type[nr]; tasklet_init(& chan->demux_tasklet, & demux_tasklet, (unsigned long )chan); chan->users = 0; chan->type = io; chan->mode = chan->type; } if ((io & 4) != 0) { chan->fe = (struct dvb_frontend *)0; if ((unsigned long )ni->demod_attach[nr] != (unsigned long )((int (*)(struct ngene_channel * ))0)) { { ret = (*(ni->demod_attach[nr]))(chan); } if (ret < 0) { goto err; } else { } } else { } if ((unsigned long )chan->fe != (unsigned long )((struct dvb_frontend *)0) && (unsigned long )ni->tuner_attach[nr] != (unsigned long )((int (*)(struct ngene_channel * ))0)) { { ret = (*(ni->tuner_attach[nr]))(chan); } if (ret < 0) { goto err; } else { } } else { } } else { } if ((unsigned long )dev->ci.en == (unsigned long )((struct dvb_ca_en50221 *)0) && (io & 8) != 0) { return (0); } else { } if ((io & 12) != 0) { if (nr > 1) { chan->DataFormatFlags = 65536U; } else { } if ((nr == 0 || one_adapter == 0) || (unsigned long )dev->first_adapter == (unsigned long )((struct dvb_adapter *)0)) { { adapter = (struct dvb_adapter *)(& dev->adapter) + (unsigned long )nr; ret = dvb_register_adapter(adapter, "nGene", & __this_module, & ((chan->dev)->pci_dev)->dev, (short *)(& adapter_nr)); } if (ret < 0) { goto err; } else { } if ((unsigned long )dev->first_adapter == (unsigned long )((struct dvb_adapter *)0)) { dev->first_adapter = adapter; } else { } chan->has_adapter = 1; } else { adapter = dev->first_adapter; } } else { } if ((unsigned long )dev->ci.en != (unsigned long )((struct dvb_ca_en50221 *)0) && (io & 8) != 0) { { dvb_ca_en50221_init(adapter, dev->ci.en, 0, 1); set_transfer(chan, 1); (chan->dev)->channel[2].DataFormatFlags = 65536U; set_transfer((struct ngene_channel *)(& (chan->dev)->channel) + 2UL, 1); dvb_register_device(adapter, & chan->ci_dev, (struct dvb_device const *)(& ngene_dvbdev_ci), (void *)chan, 2); } if ((unsigned long )chan->ci_dev == (unsigned long )((struct dvb_device *)0)) { goto err; } else { } } else { } if ((unsigned long )chan->fe != (unsigned long )((struct dvb_frontend *)0)) { { tmp = ldv_dvb_register_frontend_94(adapter, chan->fe); } if (tmp < 0) { goto err; } else { } chan->has_demux = 1; } else { } if ((unsigned long )chan->fe2 != (unsigned long )((struct dvb_frontend *)0)) { { tmp___0 = ldv_dvb_register_frontend_95(adapter, chan->fe2); } if (tmp___0 < 0) { goto err; } else { } { (chan->fe2)->tuner_priv = (chan->fe)->tuner_priv; memcpy((void *)(& (chan->fe2)->ops.tuner_ops), (void const *)(& (chan->fe)->ops.tuner_ops), 288UL); } } else { } if ((int )chan->has_demux) { { ret = my_dvb_dmx_ts_card_init(dvbdemux, (char *)"SW demux", & ngene_start_feed, & ngene_stop_feed, (void *)chan); ret = my_dvb_dmxdev_ts_card_init(& chan->dmxdev, & chan->demux, & chan->hw_frontend, & chan->mem_frontend, adapter); ret = dvb_net_init(adapter, & chan->dvbnet, & chan->demux.dmx); } } else { } return (ret); err: ; if ((unsigned long )chan->fe != (unsigned long )((struct dvb_frontend *)0)) { { dvb_frontend_detach(chan->fe); chan->fe = (struct dvb_frontend *)0; } } else { } { release_channel(chan); } return (0); } } static int init_channels(struct ngene *dev ) { int i ; int j ; int tmp ; { i = 0; goto ldv_47103; ldv_47102: { dev->channel[i].number = i; tmp = init_channel((struct ngene_channel *)(& dev->channel) + (unsigned long )i); } if (tmp < 0) { j = i + -1; goto ldv_47100; ldv_47099: { release_channel((struct ngene_channel *)(& dev->channel) + (unsigned long )j); j = j - 1; } ldv_47100: ; if (j >= 0) { goto ldv_47099; } else { } return (-1); } else { } i = i + 1; ldv_47103: ; if (i <= 4) { goto ldv_47102; } else { } return (0); } } static struct cxd2099_cfg cxd_cfg = {62000U, 64U, 0U, 0U}; static void cxd_attach(struct ngene *dev ) { struct ngene_ci *ci ; { { ci = & dev->ci; ci->en = cxd2099_attach(& cxd_cfg, (void *)dev, & dev->channel[0].i2c_adapter); ci->dev = dev; } return; } } static void cxd_detach(struct ngene *dev ) { struct ngene_ci *ci ; { { ci = & dev->ci; dvb_ca_en50221_release(ci->en); kfree((void const *)ci->en); ci->en = (struct dvb_ca_en50221 *)0; } return; } } static void ngene_unlink(struct ngene *dev ) { struct ngene_command com ; { { com.cmd.hdr.Opcode = 33U; com.cmd.hdr.Length = 3U; com.cmd.MemoryWrite.address = 37132U; com.cmd.MemoryWrite.data = 255U; com.in_len = 3U; com.out_len = 1U; down(& dev->cmd_mutex); writel(0U, (void volatile *)dev->iomem + 49764U); ngene_command_mutex(dev, & com); up(& dev->cmd_mutex); } return; } } void ngene_shutdown(struct pci_dev *pdev ) { struct ngene *dev ; void *tmp ; { { tmp = pci_get_drvdata(pdev); dev = (struct ngene *)tmp; } if ((unsigned long )dev == (unsigned long )((struct ngene *)0) || shutdown_workaround == 0) { return; } else { } { printk("\016ngene: shutdown workaround...\n"); ngene_unlink(dev); pci_disable_device(pdev); } return; } } void ngene_remove(struct pci_dev *pdev ) { struct ngene *dev ; void *tmp ; int i ; { { tmp = pci_get_drvdata(pdev); dev = (struct ngene *)tmp; tasklet_kill(& dev->event_tasklet); i = 4; } goto ldv_47128; ldv_47127: { release_channel((struct ngene_channel *)(& dev->channel) + (unsigned long )i); i = i - 1; } ldv_47128: ; if (i >= 0) { goto ldv_47127; } else { } if ((unsigned long )dev->ci.en != (unsigned long )((struct dvb_ca_en50221 *)0)) { { cxd_detach(dev); } } else { } { ngene_stop(dev); ngene_release_buffers(dev); pci_disable_device(pdev); } return; } } int ngene_probe(struct pci_dev *pci_dev , struct pci_device_id const *id ) { struct ngene *dev ; int stat ; int tmp ; void *tmp___0 ; { { stat = 0; tmp = pci_enable_device(pci_dev); } if (tmp < 0) { return (-19); } else { } { tmp___0 = vzalloc(38976UL); dev = (struct ngene *)tmp___0; } if ((unsigned long )dev == (unsigned long )((struct ngene *)0)) { stat = -12; goto fail0; } else { } { dev->pci_dev = pci_dev; dev->card_info = (struct ngene_info *)id->driver_data; printk("\016ngene: Found %s\n", (dev->card_info)->name); pci_set_drvdata(pci_dev, (void *)dev); stat = ngene_get_buffers(dev); } if (stat < 0) { goto fail1; } else { } { stat = ngene_start(dev); } if (stat < 0) { goto fail1; } else { } { cxd_attach(dev); stat = ngene_buffer_config(dev); } if (stat < 0) { goto fail1; } else { } { dev->i2c_current_bus = -1; stat = init_channels(dev); } if (stat < 0) { goto fail2; } else { } return (0); fail2: { ngene_stop(dev); } fail1: { ngene_release_buffers(dev); } fail0: { pci_disable_device(pci_dev); } return (stat); } } void ldv_dispatch_deregister_10_1(struct dvb_frontend *arg0 ) ; void ldv_dispatch_irq_deregister_6_1(int arg0 ) ; void ldv_dispatch_irq_register_7_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_11_2(struct dvb_frontend *arg0 ) ; int ldv_dvb_register_frontend(int arg0 , struct dvb_adapter *arg1 , struct dvb_frontend *arg2 ) ; int ldv_dvb_unregister_frontend(int arg0 , struct dvb_frontend *arg1 ) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_1(void *arg0 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_switch_automaton_state_1_1(void) ; void ldv_switch_automaton_state_1_6(void) ; void ldv_switch_automaton_state_5_1(void) ; void ldv_switch_automaton_state_5_5(void) ; enum irqreturn (*ldv_1_callback_handler)(int , void * ) ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; struct dvb_frontend *ldv_5_container_struct_dvb_frontend_ptr ; int ldv_statevar_1 ; int ldv_statevar_5 ; enum irqreturn (*ldv_1_callback_handler)(int , void * ) = & irq_handler; void ldv_dispatch_deregister_10_1(struct dvb_frontend *arg0 ) { { { ldv_5_container_struct_dvb_frontend_ptr = arg0; ldv_switch_automaton_state_5_1(); } return; } } void ldv_dispatch_irq_deregister_6_1(int arg0 ) { { { ldv_1_line_line = arg0; ldv_switch_automaton_state_1_1(); } return; } } void ldv_dispatch_irq_register_7_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { { { ldv_1_line_line = arg0; ldv_1_callback_handler = arg1; ldv_1_thread_thread = arg2; ldv_1_data_data = arg3; ldv_switch_automaton_state_1_6(); } return; } } void ldv_dispatch_register_11_2(struct dvb_frontend *arg0 ) { { { ldv_5_container_struct_dvb_frontend_ptr = arg0; ldv_switch_automaton_state_5_5(); } return; } } int ldv_dvb_register_frontend(int arg0 , struct dvb_adapter *arg1 , struct dvb_frontend *arg2 ) { struct dvb_frontend *ldv_11_struct_dvb_frontend_ptr_struct_dvb_frontend_ptr ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_11_struct_dvb_frontend_ptr_struct_dvb_frontend_ptr = arg2; ldv_assume(ldv_statevar_5 == 5); ldv_dispatch_register_11_2(ldv_11_struct_dvb_frontend_ptr_struct_dvb_frontend_ptr); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_dvb_unregister_frontend(int arg0 , struct dvb_frontend *arg1 ) { struct dvb_frontend *ldv_10_struct_dvb_frontend_ptr_struct_dvb_frontend_ptr ; { { ldv_10_struct_dvb_frontend_ptr_struct_dvb_frontend_ptr = arg1; ldv_assume(ldv_statevar_5 == 1); ldv_dispatch_deregister_10_1(ldv_10_struct_dvb_frontend_ptr_struct_dvb_frontend_ptr); } return (arg0); return (arg0); } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_6_line_line ; { { ldv_6_line_line = arg1; ldv_assume(ldv_statevar_1 == 2); ldv_dispatch_irq_deregister_6_1(ldv_6_line_line); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = irq_handler(arg1, arg2); } return (tmp); } } void ldv_interrupt_interrupt_instance_1(void *arg0 ) { int tmp ; { { if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_1_ret_val_default != 2U); ldv_statevar_1 = 6; } goto ldv_47267; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_1_ret_val_default == 2U); } if ((unsigned long )ldv_1_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_1_3(ldv_1_thread_thread, ldv_1_line_line, ldv_1_data_data); } } else { } ldv_statevar_1 = 6; goto ldv_47267; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_1_ret_val_default = ldv_interrupt_instance_handler_1_5(ldv_1_callback_handler, ldv_1_line_line, ldv_1_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_1 = 2; } else { ldv_statevar_1 = 4; } goto ldv_47267; case_6: /* CIL Label */ ; goto ldv_47267; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_47267: ; return; } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_7_callback_handler)(int , void * ) ; void *ldv_7_data_data ; int ldv_7_line_line ; enum irqreturn (*ldv_7_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_7_line_line = (int )arg1; ldv_7_callback_handler = arg2; ldv_7_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_7_data_data = arg5; ldv_assume(ldv_statevar_1 == 6); ldv_dispatch_irq_register_7_2(ldv_7_line_line, ldv_7_callback_handler, ldv_7_thread_thread, ldv_7_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_switch_automaton_state_1_1(void) { { ldv_statevar_1 = 6; return; } } void ldv_switch_automaton_state_1_6(void) { { ldv_statevar_1 = 5; return; } } static void *ldv_dev_get_drvdata_27(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_28(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } __inline static void ldv_spin_lock_irq_66(spinlock_t *lock ) { { { ldv_spin_lock_state_lock_of_ngene_channel(); spin_lock_irq(lock); } return; } } __inline static void ldv_spin_unlock_irq_67(spinlock_t *lock ) { { { ldv_spin_unlock_state_lock_of_ngene_channel(); spin_unlock_irq(lock); } return; } } __inline static void ldv_spin_lock_70(spinlock_t *lock ) { { { ldv_spin_lock_cmd_lock_of_ngene(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_71(spinlock_t *lock ) { { { ldv_spin_unlock_cmd_lock_of_ngene(); spin_unlock(lock); } return; } } __inline static void ldv_spin_lock_72(spinlock_t *lock ) { { { ldv_spin_lock_state_lock_of_ngene_channel(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_73(spinlock_t *lock ) { { { ldv_spin_unlock_state_lock_of_ngene_channel(); spin_unlock(lock); } return; } } __inline static void ldv_spin_lock_irq_74(spinlock_t *lock ) { { { ldv_spin_lock_cmd_lock_of_ngene(); spin_lock_irq(lock); } return; } } __inline static void ldv_spin_unlock_irq_75(spinlock_t *lock ) { { { ldv_spin_unlock_cmd_lock_of_ngene(); spin_unlock_irq(lock); } return; } } static void ldv_free_irq_87(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static int ldv_request_irq_88(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_89(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static int ldv_request_irq_90(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_91(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static int ldv_dvb_unregister_frontend_92(struct dvb_frontend *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = dvb_unregister_frontend(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_dvb_unregister_frontend(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_dvb_unregister_frontend_93(struct dvb_frontend *ldv_func_arg1 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = dvb_unregister_frontend(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_dvb_unregister_frontend(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_dvb_register_frontend_94(struct dvb_adapter *ldv_func_arg1 , struct dvb_frontend *ldv_func_arg2 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = dvb_register_frontend(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_dvb_register_frontend(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_dvb_register_frontend_95(struct dvb_adapter *ldv_func_arg1 , struct dvb_frontend *ldv_func_arg2 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = dvb_register_frontend(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_dvb_register_frontend(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } extern char *strcpy(char * , char const * ) ; static void *ldv_dev_get_drvdata_44(struct device const *dev ) ; static int ldv_dev_set_drvdata_45(struct device *dev , void *data ) ; __inline static void *i2c_get_adapdata(struct i2c_adapter const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_44(& dev->dev); } return (tmp); } } __inline static void i2c_set_adapdata(struct i2c_adapter *dev , void *data ) { { { ldv_dev_set_drvdata_45(& dev->dev, data); } return; } } extern int i2c_add_adapter(struct i2c_adapter * ) ; static int ngene_command_i2c_read(struct ngene *dev , u8 adr , u8 *out , u8 outlen , u8 *in , u8 inlen , int flag ) { struct ngene_command com ; int tmp ; { { com.cmd.hdr.Opcode = 3U; com.cmd.hdr.Length = (unsigned int )outlen + 3U; com.cmd.I2CRead.Device = (int )adr << 1U; memcpy((void *)(& com.cmd.I2CRead.Data), (void const *)out, (size_t )outlen); com.cmd.I2CRead.Data[(int )outlen] = inlen; com.cmd.I2CRead.Data[(int )outlen + 1] = 0U; com.in_len = (u32 )((int )outlen + 3); com.out_len = (u32 )((int )inlen + 1); tmp = ngene_command(dev, & com); } if (tmp < 0) { return (-5); } else { } if ((int )com.cmd.raw8[0] >> 1 != (int )adr) { return (-5); } else { } if (flag != 0) { { memcpy((void *)in, (void const *)(& com.cmd.raw8), (size_t )((int )inlen + 1)); } } else { { memcpy((void *)in, (void const *)(& com.cmd.raw8) + 1U, (size_t )inlen); } } return (0); } } static int ngene_command_i2c_write(struct ngene *dev , u8 adr , u8 *out , u8 outlen ) { struct ngene_command com ; int tmp ; { { com.cmd.hdr.Opcode = 4U; com.cmd.hdr.Length = (unsigned int )outlen + 1U; com.cmd.I2CRead.Device = (int )adr << 1U; memcpy((void *)(& com.cmd.I2CRead.Data), (void const *)out, (size_t )outlen); com.in_len = (u32 )((int )outlen + 1); com.out_len = 1U; tmp = ngene_command(dev, & com); } if (tmp < 0) { return (-5); } else { } if ((unsigned int )com.cmd.raw8[0] == 1U) { return (-5); } else { } return (0); } } static void ngene_i2c_set_bus(struct ngene *dev , int bus ) { { if (((dev->card_info)->i2c_access & 2) == 0) { return; } else { } if (dev->i2c_current_bus == bus) { return; } else { } { if (bus == 0) { goto case_0; } else { } if (bus == 1) { goto case_1; } else { } goto switch_break; case_0: /* CIL Label */ { ngene_command_gpio_set(dev, 3, 0); ngene_command_gpio_set(dev, 2, 1); } goto ldv_46570; case_1: /* CIL Label */ { ngene_command_gpio_set(dev, 2, 0); ngene_command_gpio_set(dev, 3, 1); } goto ldv_46570; switch_break: /* CIL Label */ ; } ldv_46570: dev->i2c_current_bus = bus; return; } } static int ngene_i2c_master_xfer(struct i2c_adapter *adapter , struct i2c_msg *msg , int num ) { struct ngene_channel *chan ; void *tmp ; struct ngene *dev ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = i2c_get_adapdata((struct i2c_adapter const *)adapter); chan = (struct ngene_channel *)tmp; dev = chan->dev; down(& dev->i2c_switch_mutex); ngene_i2c_set_bus(dev, chan->number); } if ((num == 2 && (int )(msg + 1UL)->flags & 1) && ((int )msg->flags & 1) == 0) { { tmp___0 = ngene_command_i2c_read(dev, (int )((u8 )msg->addr), msg->buf, (int )((u8 )msg->len), (msg + 1UL)->buf, (int )((u8 )(msg + 1UL)->len), 0); } if (tmp___0 == 0) { goto done; } else { } } else { } if (num == 1 && ((int )msg->flags & 1) == 0) { { tmp___1 = ngene_command_i2c_write(dev, (int )((u8 )msg->addr), msg->buf, (int )((u8 )msg->len)); } if (tmp___1 == 0) { goto done; } else { } } else { } if (num == 1 && (int )msg->flags & 1) { { tmp___2 = ngene_command_i2c_read(dev, (int )((u8 )msg->addr), (u8 *)0U, 0, msg->buf, (int )((u8 )msg->len), 0); } if (tmp___2 == 0) { goto done; } else { } } else { } { up(& dev->i2c_switch_mutex); } return (-5); done: { up(& dev->i2c_switch_mutex); } return (num); } } static u32 ngene_i2c_functionality(struct i2c_adapter *adap ) { { return (251592712U); } } static struct i2c_algorithm ngene_i2c_algo = {& ngene_i2c_master_xfer, 0, & ngene_i2c_functionality}; int ngene_i2c_init(struct ngene *dev , int dev_nr ) { struct i2c_adapter *adap ; int tmp ; { { adap = & dev->channel[dev_nr].i2c_adapter; i2c_set_adapdata(adap, (void *)(& dev->channel) + (unsigned long )dev_nr); strcpy((char *)(& adap->name), "nGene"); adap->algo = (struct i2c_algorithm const *)(& ngene_i2c_algo); adap->algo_data = (void *)(& dev->channel) + (unsigned long )dev_nr; adap->dev.parent = & (dev->pci_dev)->dev; tmp = i2c_add_adapter(adap); } return (tmp); } } void ldv_dummy_resourceless_instance_callback_4_3(unsigned int (*arg0)(struct i2c_adapter * ) , struct i2c_adapter *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_7(int (*arg0)(struct i2c_adapter * , struct i2c_msg * , int ) , struct i2c_adapter *arg1 , struct i2c_msg *arg2 , int arg3 ) ; unsigned int (*ldv_4_callback_functionality)(struct i2c_adapter * ) ; int (*ldv_4_callback_master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) ; unsigned int (*ldv_4_callback_functionality)(struct i2c_adapter * ) = & ngene_i2c_functionality; int (*ldv_4_callback_master_xfer)(struct i2c_adapter * , struct i2c_msg * , int ) = & ngene_i2c_master_xfer; void ldv_dummy_resourceless_instance_callback_4_3(unsigned int (*arg0)(struct i2c_adapter * ) , struct i2c_adapter *arg1 ) { { { ngene_i2c_functionality(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_7(int (*arg0)(struct i2c_adapter * , struct i2c_msg * , int ) , struct i2c_adapter *arg1 , struct i2c_msg *arg2 , int arg3 ) { { { ngene_i2c_master_xfer(arg1, arg2, arg3); } return; } } static void *ldv_dev_get_drvdata_44(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_45(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; void ldv_check_final_state(void) ; void ldv_stop(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void *external_allocated_data(void) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_66(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_67(struct pci_driver *ldv_func_arg1 ) ; extern int __request_module(bool , char const * , ...) ; extern void *__symbol_get(char const * ) ; extern void __symbol_put(char const * ) ; extern int i2c_transfer(struct i2c_adapter * , struct i2c_msg * , int ) ; static int tuner_attach_stv6110(struct ngene_channel *chan ) { struct i2c_adapter *i2c ; struct stv090x_config *feconf ; struct stv6110x_config *tunerconf ; struct stv6110x_devctl *ctl ; void *__r ; struct stv6110x_devctl *(*__a)(struct dvb_frontend * , struct stv6110x_config const * , struct i2c_adapter * ) ; void *tmp___0 ; struct stv6110x_devctl *(*tmp___1)(struct dvb_frontend * , struct stv6110x_config const * , struct i2c_adapter * ) ; void *tmp___2 ; struct stv6110x_devctl *tmp___3 ; { feconf = (struct stv090x_config *)((chan->dev)->card_info)->fe_config[chan->number]; tunerconf = (struct stv6110x_config *)((chan->dev)->card_info)->tuner_config[chan->number]; if (chan->number <= 1) { i2c = & (chan->dev)->channel[0].i2c_adapter; } else { i2c = & (chan->dev)->channel[1].i2c_adapter; } { __r = (void *)0; tmp___2 = __symbol_get("stv6110x_attach"); tmp___1 = (unsigned long )((struct stv6110x_devctl *(*)(struct dvb_frontend * , struct stv6110x_config const * , struct i2c_adapter * ))tmp___2) != (unsigned long )((struct stv6110x_devctl *(*)(struct dvb_frontend * , struct stv6110x_config const * , struct i2c_adapter * ))0); } if (tmp___1) { } else { { __request_module(1, "symbol:stv6110x_attach"); tmp___0 = __symbol_get("stv6110x_attach"); tmp___1 = (struct stv6110x_devctl *(*)(struct dvb_frontend * , struct stv6110x_config const * , struct i2c_adapter * ))tmp___0; } } __a = tmp___1; if ((unsigned long )__a != (unsigned long )((struct stv6110x_devctl *(*)(struct dvb_frontend * , struct stv6110x_config const * , struct i2c_adapter * ))0)) { { tmp___3 = (*__a)(chan->fe, (struct stv6110x_config const *)tunerconf, i2c); __r = (void *)tmp___3; } if ((unsigned long )__r == (unsigned long )((void *)0)) { { __symbol_put("stv6110x_attach"); } } else { } } else { { printk("\vDVB: Unable to find symbol stv6110x_attach()\n"); } } ctl = (struct stv6110x_devctl *)__r; if ((unsigned long )ctl == (unsigned long )((struct stv6110x_devctl *)0)) { { printk("\vngene: No STV6110X found!\n"); } return (-19); } else { } feconf->tuner_init = ctl->tuner_init; feconf->tuner_sleep = ctl->tuner_sleep; feconf->tuner_set_mode = ctl->tuner_set_mode; feconf->tuner_set_frequency = ctl->tuner_set_frequency; feconf->tuner_get_frequency = ctl->tuner_get_frequency; feconf->tuner_set_bandwidth = ctl->tuner_set_bandwidth; feconf->tuner_get_bandwidth = ctl->tuner_get_bandwidth; feconf->tuner_set_bbgain = ctl->tuner_set_bbgain; feconf->tuner_get_bbgain = ctl->tuner_get_bbgain; feconf->tuner_set_refclk = ctl->tuner_set_refclk; feconf->tuner_get_status = ctl->tuner_get_status; return (0); } } static int drxk_gate_ctrl(struct dvb_frontend *fe , int enable ) { struct ngene_channel *chan ; int status ; { chan = (struct ngene_channel *)fe->sec_priv; if (enable != 0) { { down(& (chan->dev)->pll_mutex); status = (*(chan->gate_ctrl))(fe, 1); } } else { { status = (*(chan->gate_ctrl))(fe, 0); up(& (chan->dev)->pll_mutex); } } return (status); } } static int tuner_attach_tda18271(struct ngene_channel *chan ) { struct i2c_adapter *i2c ; struct dvb_frontend *fe ; void *__r ; struct dvb_frontend *(*__a)(struct dvb_frontend * , struct i2c_adapter * , u8 ) ; void *tmp___0 ; struct dvb_frontend *(*tmp___1)(struct dvb_frontend * , struct i2c_adapter * , u8 ) ; void *tmp___2 ; struct dvb_frontend *tmp___3 ; { i2c = & (chan->dev)->channel[0].i2c_adapter; if ((unsigned long )(chan->fe)->ops.i2c_gate_ctrl != (unsigned long )((int (*)(struct dvb_frontend * , int ))0)) { { (*((chan->fe)->ops.i2c_gate_ctrl))(chan->fe, 1); } } else { } { __r = (void *)0; tmp___2 = __symbol_get("tda18271c2dd_attach"); tmp___1 = (unsigned long )((struct dvb_frontend *(*)(struct dvb_frontend * , struct i2c_adapter * , u8 ))tmp___2) != (unsigned long )((struct dvb_frontend *(*)(struct dvb_frontend * , struct i2c_adapter * , u8 ))0); } if (tmp___1) { } else { { __request_module(1, "symbol:tda18271c2dd_attach"); tmp___0 = __symbol_get("tda18271c2dd_attach"); tmp___1 = (struct dvb_frontend *(*)(struct dvb_frontend * , struct i2c_adapter * , u8 ))tmp___0; } } __a = tmp___1; if ((unsigned long )__a != (unsigned long )((struct dvb_frontend *(*)(struct dvb_frontend * , struct i2c_adapter * , u8 ))0)) { { tmp___3 = (*__a)(chan->fe, i2c, 96); __r = (void *)tmp___3; } if ((unsigned long )__r == (unsigned long )((void *)0)) { { __symbol_put("tda18271c2dd_attach"); } } else { } } else { { printk("\vDVB: Unable to find symbol tda18271c2dd_attach()\n"); } } fe = (struct dvb_frontend *)__r; if ((unsigned long )(chan->fe)->ops.i2c_gate_ctrl != (unsigned long )((int (*)(struct dvb_frontend * , int ))0)) { { (*((chan->fe)->ops.i2c_gate_ctrl))(chan->fe, 0); } } else { } if ((unsigned long )fe == (unsigned long )((struct dvb_frontend *)0)) { { printk("\vNo TDA18271 found!\n"); } return (-19); } else { } return (0); } } static int tuner_attach_probe(struct ngene_channel *chan ) { int tmp ; int tmp___0 ; { if (chan->demod_type == 0) { { tmp = tuner_attach_stv6110(chan); } return (tmp); } else { } if (chan->demod_type == 1) { { tmp___0 = tuner_attach_tda18271(chan); } return (tmp___0); } else { } return (-22); } } static int demod_attach_stv0900(struct ngene_channel *chan ) { struct i2c_adapter *i2c ; struct stv090x_config *feconf ; void *__r ; struct dvb_frontend *(*__a)(struct stv090x_config const * , struct i2c_adapter * , enum stv090x_demodulator ) ; void *tmp___0 ; struct dvb_frontend *(*tmp___1)(struct stv090x_config const * , struct i2c_adapter * , enum stv090x_demodulator ) ; void *tmp___2 ; struct dvb_frontend *tmp___3 ; void *__r___0 ; struct dvb_frontend *(*__a___0)(struct dvb_frontend * , struct i2c_adapter * , u8 , u8 , u8 ) ; void *tmp___5 ; struct dvb_frontend *(*tmp___6)(struct dvb_frontend * , struct i2c_adapter * , u8 , u8 , u8 ) ; void *tmp___7 ; struct dvb_frontend *tmp___8 ; { feconf = (struct stv090x_config *)((chan->dev)->card_info)->fe_config[chan->number]; if (chan->number <= 1) { i2c = & (chan->dev)->channel[0].i2c_adapter; } else { i2c = & (chan->dev)->channel[1].i2c_adapter; } { __r = (void *)0; tmp___2 = __symbol_get("stv090x_attach"); tmp___1 = (unsigned long )((struct dvb_frontend *(*)(struct stv090x_config const * , struct i2c_adapter * , enum stv090x_demodulator ))tmp___2) != (unsigned long )((struct dvb_frontend *(*)(struct stv090x_config const * , struct i2c_adapter * , enum stv090x_demodulator ))0); } if (tmp___1) { } else { { __request_module(1, "symbol:stv090x_attach"); tmp___0 = __symbol_get("stv090x_attach"); tmp___1 = (struct dvb_frontend *(*)(struct stv090x_config const * , struct i2c_adapter * , enum stv090x_demodulator ))tmp___0; } } __a = tmp___1; if ((unsigned long )__a != (unsigned long )((struct dvb_frontend *(*)(struct stv090x_config const * , struct i2c_adapter * , enum stv090x_demodulator ))0)) { { tmp___3 = (*__a)((struct stv090x_config const *)feconf, i2c, (chan->number & 1) == 0 ? 1 : 2); __r = (void *)tmp___3; } if ((unsigned long )__r == (unsigned long )((void *)0)) { { __symbol_put("stv090x_attach"); } } else { } } else { { printk("\vDVB: Unable to find symbol stv090x_attach()\n"); } } chan->fe = (struct dvb_frontend *)__r; if ((unsigned long )chan->fe == (unsigned long )((struct dvb_frontend *)0)) { { printk("\vngene: No STV0900 found!\n"); } return (-19); } else { } if ((unsigned long )feconf->tuner_i2c_lock != (unsigned long )((void (*)(struct dvb_frontend * , int ))0)) { (chan->fe)->analog_demod_priv = (void *)chan; } else { } { __r___0 = (void *)0; tmp___7 = __symbol_get("lnbh24_attach"); tmp___6 = (unsigned long )((struct dvb_frontend *(*)(struct dvb_frontend * , struct i2c_adapter * , u8 , u8 , u8 ))tmp___7) != (unsigned long )((struct dvb_frontend *(*)(struct dvb_frontend * , struct i2c_adapter * , u8 , u8 , u8 ))0); } if (tmp___6) { } else { { __request_module(1, "symbol:lnbh24_attach"); tmp___5 = __symbol_get("lnbh24_attach"); tmp___6 = (struct dvb_frontend *(*)(struct dvb_frontend * , struct i2c_adapter * , u8 , u8 , u8 ))tmp___5; } } __a___0 = tmp___6; if ((unsigned long )__a___0 != (unsigned long )((struct dvb_frontend *(*)(struct dvb_frontend * , struct i2c_adapter * , u8 , u8 , u8 ))0)) { { tmp___8 = (*__a___0)(chan->fe, i2c, 0, 0, (int )((chan->dev)->card_info)->lnb[chan->number]); __r___0 = (void *)tmp___8; } if ((unsigned long )__r___0 == (unsigned long )((void *)0)) { { __symbol_put("lnbh24_attach"); } } else { } } else { { printk("\vDVB: Unable to find symbol lnbh24_attach()\n"); } } if ((unsigned long )__r___0 == (unsigned long )((void *)0)) { { printk("\vngene: No LNBH24 found!\n"); dvb_frontend_detach(chan->fe); chan->fe = (struct dvb_frontend *)0; } return (-19); } else { } return (0); } } static void cineS2_tuner_i2c_lock(struct dvb_frontend *fe , int lock ) { struct ngene_channel *chan ; { chan = (struct ngene_channel *)fe->analog_demod_priv; if (lock != 0) { { down(& (chan->dev)->pll_mutex); } } else { { up(& (chan->dev)->pll_mutex); } } return; } } static int i2c_read(struct i2c_adapter *adapter , u8 adr , u8 *val ) { struct i2c_msg msgs[1U] ; int tmp ; { { msgs[0].addr = (unsigned short )adr; msgs[0].flags = 1U; msgs[0].len = 1U; msgs[0].buf = val; tmp = i2c_transfer(adapter, (struct i2c_msg *)(& msgs), 1); } return (tmp == 1 ? 0 : -1); } } static int i2c_read_reg16(struct i2c_adapter *adapter , u8 adr , u16 reg , u8 *val ) { u8 msg[2U] ; struct i2c_msg msgs[2U] ; int tmp ; { { msg[0] = (unsigned char )((int )reg >> 8); msg[1] = (unsigned char )reg; msgs[0].addr = (unsigned short )adr; msgs[0].flags = 0U; msgs[0].len = 2U; msgs[0].buf = (__u8 *)(& msg); msgs[1].addr = (unsigned short )adr; msgs[1].flags = 1U; msgs[1].len = 1U; msgs[1].buf = val; tmp = i2c_transfer(adapter, (struct i2c_msg *)(& msgs), 2); } return (tmp == 2 ? 0 : -1); } } static int port_has_stv0900(struct i2c_adapter *i2c , int port ) { u8 val ; int tmp ; { { tmp = i2c_read_reg16(i2c, (int )((unsigned int )((u8 )(port / 2)) + 104U), 61696, & val); } if (tmp < 0) { return (0); } else { } return (1); } } static int port_has_drxk(struct i2c_adapter *i2c , int port ) { u8 val ; int tmp ; { { tmp = i2c_read(i2c, (int )((unsigned int )((u8 )port) + 41U), & val); } if (tmp < 0) { return (0); } else { } return (1); } } static int demod_attach_drxk(struct ngene_channel *chan , struct i2c_adapter *i2c ) { struct drxk_config config ; void *__r ; struct dvb_frontend *(*__a)(struct drxk_config const * , struct i2c_adapter * ) ; void *tmp___0 ; struct dvb_frontend *(*tmp___1)(struct drxk_config const * , struct i2c_adapter * ) ; void *tmp___2 ; struct dvb_frontend *tmp___3 ; { { memset((void *)(& config), 0, 32UL); config.microcode_name = "drxk_a3.mc"; config.qam_demod_parameter_count = 4; config.adr = (unsigned int )((u8 )((int )((signed char )chan->number) ^ 2)) + 41U; __r = (void *)0; tmp___2 = __symbol_get("drxk_attach"); tmp___1 = (unsigned long )((struct dvb_frontend *(*)(struct drxk_config const * , struct i2c_adapter * ))tmp___2) != (unsigned long )((struct dvb_frontend *(*)(struct drxk_config const * , struct i2c_adapter * ))0); } if (tmp___1) { } else { { __request_module(1, "symbol:drxk_attach"); tmp___0 = __symbol_get("drxk_attach"); tmp___1 = (struct dvb_frontend *(*)(struct drxk_config const * , struct i2c_adapter * ))tmp___0; } } __a = tmp___1; if ((unsigned long )__a != (unsigned long )((struct dvb_frontend *(*)(struct drxk_config const * , struct i2c_adapter * ))0)) { { tmp___3 = (*__a)((struct drxk_config const *)(& config), i2c); __r = (void *)tmp___3; } if ((unsigned long )__r == (unsigned long )((void *)0)) { { __symbol_put("drxk_attach"); } } else { } } else { { printk("\vDVB: Unable to find symbol drxk_attach()\n"); } } chan->fe = (struct dvb_frontend *)__r; if ((unsigned long )chan->fe == (unsigned long )((struct dvb_frontend *)0)) { { printk("\vNo DRXK found!\n"); } return (-19); } else { } (chan->fe)->sec_priv = (void *)chan; chan->gate_ctrl = (chan->fe)->ops.i2c_gate_ctrl; (chan->fe)->ops.i2c_gate_ctrl = & drxk_gate_ctrl; return (0); } } static int cineS2_probe(struct ngene_channel *chan ) { struct i2c_adapter *i2c ; struct stv090x_config *fe_conf ; u8 buf[3U] ; struct i2c_msg i2c_msg ; int rc ; int tmp ; int tmp___0 ; { i2c_msg.addr = (unsigned short)0; i2c_msg.flags = 0U; i2c_msg.len = (unsigned short)0; i2c_msg.buf = (__u8 *)(& buf); if (chan->number <= 1) { i2c = & (chan->dev)->channel[0].i2c_adapter; } else { i2c = & (chan->dev)->channel[1].i2c_adapter; } { tmp___0 = port_has_stv0900(i2c, chan->number); } if (tmp___0 != 0) { { chan->demod_type = 0; fe_conf = (struct stv090x_config *)((chan->dev)->card_info)->fe_config[chan->number]; rc = demod_attach_stv0900(chan); } if (rc < 0 || chan->number <= 1) { return (rc); } else { } i2c_msg.addr = (__u16 )fe_conf->address; i2c_msg.len = 3U; buf[0] = 241U; { if (chan->number == 2) { goto case_2; } else { } if (chan->number == 3) { goto case_3; } else { } goto switch_default; case_2: /* CIL Label */ buf[1] = 92U; buf[2] = 194U; goto ldv_46831; case_3: /* CIL Label */ buf[1] = 97U; buf[2] = 204U; goto ldv_46831; switch_default: /* CIL Label */ ; return (-19); switch_break: /* CIL Label */ ; } ldv_46831: { rc = i2c_transfer(i2c, & i2c_msg, 1); } if (rc != 1) { { printk("\vngene: could not setup DPNx\n"); } return (-5); } else { } } else { { tmp = port_has_drxk(i2c, chan->number ^ 2); } if (tmp != 0) { { chan->demod_type = 1; demod_attach_drxk(chan, i2c); } } else { { printk("\vNo demod found on chan %d\n", chan->number); } return (-19); } } return (0); } } static struct lgdt330x_config aver_m780 = {89U, 2, 0, 0, 0, 1}; static struct mt2131_config m780_tunerconfig = {96U, (unsigned char)0}; static int demod_attach_lg330x(struct ngene_channel *chan ) { void *__r ; struct dvb_frontend *(*__a)(struct lgdt330x_config const * , struct i2c_adapter * ) ; void *tmp___0 ; struct dvb_frontend *(*tmp___1)(struct lgdt330x_config const * , struct i2c_adapter * ) ; void *tmp___2 ; struct dvb_frontend *tmp___3 ; void *__r___0 ; struct dvb_frontend *(*__a___0)(struct dvb_frontend * , struct i2c_adapter * , struct mt2131_config * , u16 ) ; void *tmp___5 ; struct dvb_frontend *(*tmp___6)(struct dvb_frontend * , struct i2c_adapter * , struct mt2131_config * , u16 ) ; void *tmp___7 ; struct dvb_frontend *tmp___8 ; { { __r = (void *)0; tmp___2 = __symbol_get("lgdt330x_attach"); tmp___1 = (unsigned long )((struct dvb_frontend *(*)(struct lgdt330x_config const * , struct i2c_adapter * ))tmp___2) != (unsigned long )((struct dvb_frontend *(*)(struct lgdt330x_config const * , struct i2c_adapter * ))0); } if (tmp___1) { } else { { __request_module(1, "symbol:lgdt330x_attach"); tmp___0 = __symbol_get("lgdt330x_attach"); tmp___1 = (struct dvb_frontend *(*)(struct lgdt330x_config const * , struct i2c_adapter * ))tmp___0; } } __a = tmp___1; if ((unsigned long )__a != (unsigned long )((struct dvb_frontend *(*)(struct lgdt330x_config const * , struct i2c_adapter * ))0)) { { tmp___3 = (*__a)((struct lgdt330x_config const *)(& aver_m780), & chan->i2c_adapter); __r = (void *)tmp___3; } if ((unsigned long )__r == (unsigned long )((void *)0)) { { __symbol_put("lgdt330x_attach"); } } else { } } else { { printk("\vDVB: Unable to find symbol lgdt330x_attach()\n"); } } chan->fe = (struct dvb_frontend *)__r; if ((unsigned long )chan->fe == (unsigned long )((struct dvb_frontend *)0)) { { printk("\vngene: No LGDT330x found!\n"); } return (-19); } else { } { __r___0 = (void *)0; tmp___7 = __symbol_get("mt2131_attach"); tmp___6 = (unsigned long )((struct dvb_frontend *(*)(struct dvb_frontend * , struct i2c_adapter * , struct mt2131_config * , u16 ))tmp___7) != (unsigned long )((struct dvb_frontend *(*)(struct dvb_frontend * , struct i2c_adapter * , struct mt2131_config * , u16 ))0); } if (tmp___6) { } else { { __request_module(1, "symbol:mt2131_attach"); tmp___5 = __symbol_get("mt2131_attach"); tmp___6 = (struct dvb_frontend *(*)(struct dvb_frontend * , struct i2c_adapter * , struct mt2131_config * , u16 ))tmp___5; } } __a___0 = tmp___6; if ((unsigned long )__a___0 != (unsigned long )((struct dvb_frontend *(*)(struct dvb_frontend * , struct i2c_adapter * , struct mt2131_config * , u16 ))0)) { { tmp___8 = (*__a___0)(chan->fe, & chan->i2c_adapter, & m780_tunerconfig, 0); __r___0 = (void *)tmp___8; } if ((unsigned long )__r___0 == (unsigned long )((void *)0)) { { __symbol_put("mt2131_attach"); } } else { } } else { { printk("\vDVB: Unable to find symbol mt2131_attach()\n"); } } return ((unsigned long )chan->fe != (unsigned long )((struct dvb_frontend *)0) ? 0 : -19); } } static int demod_attach_drxd(struct ngene_channel *chan ) { struct drxd_config *feconf ; void *__r ; struct dvb_frontend *(*__a)(struct drxd_config const * , void * , struct i2c_adapter * , struct device * ) ; void *tmp___0 ; struct dvb_frontend *(*tmp___1)(struct drxd_config const * , void * , struct i2c_adapter * , struct device * ) ; void *tmp___2 ; struct dvb_frontend *tmp___3 ; { { feconf = (struct drxd_config *)((chan->dev)->card_info)->fe_config[chan->number]; __r = (void *)0; tmp___2 = __symbol_get("drxd_attach"); tmp___1 = (unsigned long )((struct dvb_frontend *(*)(struct drxd_config const * , void * , struct i2c_adapter * , struct device * ))tmp___2) != (unsigned long )((struct dvb_frontend *(*)(struct drxd_config const * , void * , struct i2c_adapter * , struct device * ))0); } if (tmp___1) { } else { { __request_module(1, "symbol:drxd_attach"); tmp___0 = __symbol_get("drxd_attach"); tmp___1 = (struct dvb_frontend *(*)(struct drxd_config const * , void * , struct i2c_adapter * , struct device * ))tmp___0; } } __a = tmp___1; if ((unsigned long )__a != (unsigned long )((struct dvb_frontend *(*)(struct drxd_config const * , void * , struct i2c_adapter * , struct device * ))0)) { { tmp___3 = (*__a)((struct drxd_config const *)feconf, (void *)chan, & chan->i2c_adapter, & ((chan->dev)->pci_dev)->dev); __r = (void *)tmp___3; } if ((unsigned long )__r == (unsigned long )((void *)0)) { { __symbol_put("drxd_attach"); } } else { } } else { { printk("\vDVB: Unable to find symbol drxd_attach()\n"); } } chan->fe = (struct dvb_frontend *)__r; if ((unsigned long )chan->fe == (unsigned long )((struct dvb_frontend *)0)) { { printk("\vNo DRXD found!\n"); } return (-19); } else { } return (0); } } static int tuner_attach_dtt7520x(struct ngene_channel *chan ) { struct drxd_config *feconf ; void *__r ; struct dvb_frontend *(*__a)(struct dvb_frontend * , int , struct i2c_adapter * , unsigned int ) ; void *tmp___0 ; struct dvb_frontend *(*tmp___1)(struct dvb_frontend * , int , struct i2c_adapter * , unsigned int ) ; void *tmp___2 ; struct dvb_frontend *tmp___3 ; { { feconf = (struct drxd_config *)((chan->dev)->card_info)->fe_config[chan->number]; __r = (void *)0; tmp___2 = __symbol_get("dvb_pll_attach"); tmp___1 = (unsigned long )((struct dvb_frontend *(*)(struct dvb_frontend * , int , struct i2c_adapter * , unsigned int ))tmp___2) != (unsigned long )((struct dvb_frontend *(*)(struct dvb_frontend * , int , struct i2c_adapter * , unsigned int ))0); } if (tmp___1) { } else { { __request_module(1, "symbol:dvb_pll_attach"); tmp___0 = __symbol_get("dvb_pll_attach"); tmp___1 = (struct dvb_frontend *(*)(struct dvb_frontend * , int , struct i2c_adapter * , unsigned int ))tmp___0; } } __a = tmp___1; if ((unsigned long )__a != (unsigned long )((struct dvb_frontend *(*)(struct dvb_frontend * , int , struct i2c_adapter * , unsigned int ))0)) { { tmp___3 = (*__a)(chan->fe, (int )feconf->pll_address, & chan->i2c_adapter, (unsigned int )feconf->pll_type); __r = (void *)tmp___3; } if ((unsigned long )__r == (unsigned long )((void *)0)) { { __symbol_put("dvb_pll_attach"); } } else { } } else { { printk("\vDVB: Unable to find symbol dvb_pll_attach()\n"); } } if ((unsigned long )__r == (unsigned long )((void *)0)) { { printk("\vNo pll(%d) found!\n", (int )feconf->pll_type); } return (-19); } else { } return (0); } } static int i2c_write_eeprom(struct i2c_adapter *adapter , u8 adr , u16 reg , u8 data ) { u8 m[3U] ; struct i2c_msg msg ; int tmp ; { { m[0] = (unsigned char )((int )reg >> 8); m[1] = (unsigned char )reg; m[2] = data; msg.addr = (unsigned short )adr; msg.flags = 0U; msg.len = 3U; msg.buf = (__u8 *)(& m); tmp = i2c_transfer(adapter, & msg, 1); } if (tmp != 1) { { printk("\vngene: Error writing EEPROM!\n"); } return (-5); } else { } return (0); } } static int i2c_read_eeprom(struct i2c_adapter *adapter , u8 adr , u16 reg , u8 *data , int len ) { u8 msg[2U] ; struct i2c_msg msgs[2U] ; int tmp ; { { msg[0] = (unsigned char )((int )reg >> 8); msg[1] = (unsigned char )reg; msgs[0].addr = (unsigned short )adr; msgs[0].flags = 0U; msgs[0].len = 2U; msgs[0].buf = (__u8 *)(& msg); msgs[1].addr = (unsigned short )adr; msgs[1].flags = 1U; msgs[1].len = (unsigned short )len; msgs[1].buf = data; tmp = i2c_transfer(adapter, (struct i2c_msg *)(& msgs), 2); } if (tmp != 2) { { printk("\vngene: Error reading EEPROM\n"); } return (-5); } else { } return (0); } } static int ReadEEProm(struct i2c_adapter *adapter , u16 Tag , u32 MaxLen , u8 *data , u32 *pLength ) { int status ; u16 Addr ; u16 Length ; u16 tag ; u8 EETag[3U] ; int tmp ; { status = 0; Addr = 256U; tag = 0U; goto ldv_46890; ldv_46889: { tmp = i2c_read_eeprom(adapter, 80, (int )Addr, (u8 *)(& EETag), 3); } if (tmp != 0) { return (-1); } else { } tag = (u16 )((int )((short )((int )EETag[0] << 8)) | (int )((short )EETag[1])); if ((unsigned int )tag - 1U > 65533U) { return (-1); } else { } if ((int )tag == (int )Tag) { goto ldv_46888; } else { } Addr = (unsigned int )((int )Addr + (int )((u16 )EETag[2])) + 3U; ldv_46890: ; if ((unsigned long )Addr + 3UL <= 4079UL) { goto ldv_46889; } else { } ldv_46888: ; if (((unsigned long )Addr + (unsigned long )EETag[2]) + 3UL > 4080UL) { { printk("\vngene: Reached EOEE @ Tag = %04x Length = %3d\n", (int )tag, (int )EETag[2]); } return (-1); } else { } Length = (u16 )EETag[2]; if ((u32 )Length > MaxLen) { Length = (unsigned short )MaxLen; } else { } if ((unsigned int )Length != 0U) { { Addr = (unsigned int )Addr + 3U; status = i2c_read_eeprom(adapter, 80, (int )Addr, data, (int )Length); } if (status == 0) { *pLength = (u32 )EETag[2]; } else { } } else { } return (status); } } static int WriteEEProm(struct i2c_adapter *adapter , u16 Tag , u32 Length , u8 *data ) { int status ; u16 Addr ; u8 EETag[3U] ; u16 tag ; int retry ; int i ; int tmp ; u8 Tmp ; { status = 0; Addr = 256U; tag = 0U; goto ldv_46905; ldv_46904: { tmp = i2c_read_eeprom(adapter, 80, (int )Addr, (u8 *)(& EETag), 3); } if (tmp != 0) { return (-1); } else { } tag = (u16 )((int )((short )((int )EETag[0] << 8)) | (int )((short )EETag[1])); if ((unsigned int )tag - 1U > 65533U) { return (-1); } else { } if ((int )tag == (int )Tag) { goto ldv_46903; } else { } Addr = (unsigned int )((int )Addr + (int )((u16 )EETag[2])) + 3U; ldv_46905: ; if ((unsigned long )Addr + 3UL <= 4079UL) { goto ldv_46904; } else { } ldv_46903: ; if (((unsigned long )Addr + (unsigned long )EETag[2]) + 3UL > 4080UL) { { printk("\vngene: Reached EOEE @ Tag = %04x Length = %3d\n", (int )tag, (int )EETag[2]); } return (-1); } else { } if (Length > (u32 )EETag[2]) { return (-22); } else { } Addr = (unsigned int )Addr + 3U; i = 0; goto ldv_46912; ldv_46911: { status = i2c_write_eeprom(adapter, 80, (int )Addr, (int )*(data + (unsigned long )i)); } if (status != 0) { goto ldv_46906; } else { } retry = 10; goto ldv_46910; ldv_46909: { msleep(50U); status = i2c_read_eeprom(adapter, 80, (int )Addr, & Tmp, 1); } if (status != 0) { goto ldv_46908; } else { } if ((int )Tmp != (int )*(data + (unsigned long )i)) { { printk("\vngeneeeprom write error\n"); } } else { } retry = retry + -1; ldv_46910: ; if (retry != 0) { goto ldv_46909; } else { } ldv_46908: ; if (status != 0) { { printk("\vngene: Timeout polling eeprom\n"); } goto ldv_46906; } else { } i = i + 1; Addr = (u16 )((int )Addr + 1); ldv_46912: ; if ((u32 )i < Length) { goto ldv_46911; } else { } ldv_46906: ; return (status); } } static int eeprom_read_ushort(struct i2c_adapter *adapter , u16 tag , u16 *data ) { int stat ; u8 buf[2U] ; u32 len ; { { len = 0U; stat = ReadEEProm(adapter, (int )tag, 2U, (u8 *)(& buf), & len); } if (stat != 0) { return (stat); } else { } if (len != 2U) { return (-22); } else { } *data = (u16 )((int )((short )((int )buf[0] << 8)) | (int )((short )buf[1])); return (0); } } static int eeprom_write_ushort(struct i2c_adapter *adapter , u16 tag , u16 data ) { int stat ; u8 buf[2U] ; { { buf[0] = (u8 )((int )data >> 8); buf[1] = (u8 )data; stat = WriteEEProm(adapter, (int )tag, 2U, (u8 *)(& buf)); } if (stat != 0) { return (stat); } else { } return (0); } } static s16 osc_deviation(void *priv , s16 deviation , int flag ) { struct ngene_channel *chan ; struct i2c_adapter *adap ; u16 data ; int tmp ; { chan = (struct ngene_channel *)priv; adap = & chan->i2c_adapter; data = 0U; if (flag != 0) { { data = (unsigned short )deviation; printk("\016ngene: write deviation %d\n", (int )deviation); eeprom_write_ushort(adap, (int )((unsigned int )((u16 )chan->number) + 4096U), (int )data); } } else { { tmp = eeprom_read_ushort(adap, (int )((unsigned int )((u16 )chan->number) + 4096U), & data); } if (tmp != 0) { data = 0U; } else { } { printk("\016ngene: read deviation %d\n", (int )((short )data)); } } return ((s16 )data); } } static struct stv090x_config fe_cineS2 = {1, 0, 2, 27000000U, 104U, 1U, 1U, 0U, 0U, (unsigned char)0, (unsigned char)0, 4, (unsigned char)0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & cineS2_tuner_i2c_lock}; static struct stv090x_config fe_cineS2_2 = {1, 0, 2, 27000000U, 105U, 1U, 1U, 0U, 0U, (unsigned char)0, (unsigned char)0, 4, (unsigned char)0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & cineS2_tuner_i2c_lock}; static struct stv6110x_config tuner_cineS2_0 = {96U, 27000000U, 1U}; static struct stv6110x_config tuner_cineS2_1 = {99U, 27000000U, 1U}; static struct ngene_info ngene_info_cineS2 = {2, 18, 1, (char *)"Linux4Media cineS2 DVB-S2 Twin Tuner", {4, 4}, {(void *)(& fe_cineS2), (void *)(& fe_cineS2)}, {(void *)(& tuner_cineS2_0), (void *)(& tuner_cineS2_1)}, {& demod_attach_stv0900, & demod_attach_stv0900}, {& tuner_attach_stv6110, & tuner_attach_stv6110}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {11U, 8U}, 0, (unsigned char)0, {3U, 3U}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, 0, 0}; static struct ngene_info ngene_info_satixS2 = {2, 18, 1, (char *)"Mystique SaTiX-S2 Dual", {4, 4}, {(void *)(& fe_cineS2), (void *)(& fe_cineS2)}, {(void *)(& tuner_cineS2_0), (void *)(& tuner_cineS2_1)}, {& demod_attach_stv0900, & demod_attach_stv0900}, {& tuner_attach_stv6110, & tuner_attach_stv6110}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {11U, 8U}, 0, (unsigned char)0, {3U, 3U}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, 0, 0}; static struct ngene_info ngene_info_satixS2v2 = {2, 18, 1, (char *)"Mystique SaTiX-S2 Dual (v2)", {4, 4, 4, 4, 8}, {(void *)(& fe_cineS2), (void *)(& fe_cineS2), (void *)(& fe_cineS2_2), (void *)(& fe_cineS2_2)}, {(void *)(& tuner_cineS2_0), (void *)(& tuner_cineS2_1), (void *)(& tuner_cineS2_0), (void *)(& tuner_cineS2_1)}, {& demod_attach_stv0900, & demod_attach_stv0900, & cineS2_probe, & cineS2_probe}, {& tuner_attach_stv6110, & tuner_attach_stv6110, & tuner_attach_probe, & tuner_attach_probe}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {10U, 8U, 11U, 9U}, 0, (unsigned char)0, {3U, 3U}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, 0, 0}; static struct ngene_info ngene_info_cineS2v5 = {2, 18, 1, (char *)"Linux4Media cineS2 DVB-S2 Twin Tuner (v5)", {4, 4, 4, 4, 8}, {(void *)(& fe_cineS2), (void *)(& fe_cineS2), (void *)(& fe_cineS2_2), (void *)(& fe_cineS2_2)}, {(void *)(& tuner_cineS2_0), (void *)(& tuner_cineS2_1), (void *)(& tuner_cineS2_0), (void *)(& tuner_cineS2_1)}, {& demod_attach_stv0900, & demod_attach_stv0900, & cineS2_probe, & cineS2_probe}, {& tuner_attach_stv6110, & tuner_attach_stv6110, & tuner_attach_probe, & tuner_attach_probe}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {10U, 8U, 11U, 9U}, 0, (unsigned char)0, {3U, 3U}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, 0, 0}; static struct ngene_info ngene_info_duoFlex = {2, 18, 1, (char *)"Digital Devices DuoFlex PCIe or miniPCIe", {4, 4, 4, 4, 8}, {(void *)(& fe_cineS2), (void *)(& fe_cineS2), (void *)(& fe_cineS2_2), (void *)(& fe_cineS2_2)}, {(void *)(& tuner_cineS2_0), (void *)(& tuner_cineS2_1), (void *)(& tuner_cineS2_0), (void *)(& tuner_cineS2_1)}, {& cineS2_probe, & cineS2_probe, & cineS2_probe, & cineS2_probe}, {& tuner_attach_probe, & tuner_attach_probe, & tuner_attach_probe, & tuner_attach_probe}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {10U, 8U, 11U, 9U}, 0, (unsigned char)0, {3U, 3U}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, 0, 0}; static struct ngene_info ngene_info_m780 = {0, 15, (_Bool)0, (char *)"Aver M780 ATSC/QAM-B", {0, 4}, {(void *)0, (void *)(& aver_m780)}, {0, 0, 0, 0}, {(int (*)(struct ngene_channel * ))0, & demod_attach_lg330x}, {(int (*)(struct ngene_channel * ))0, (int (*)(struct ngene_channel * ))0, (int (*)(struct ngene_channel * ))0, (int (*)(struct ngene_channel * ))0}, {0U}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, 0, (unsigned char)0, {4U, 4U}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, 0, 0}; static struct drxd_config fe_terratec_dvbt_0 = {0U, 96U, 19U, 20000U, (unsigned char)0, 112U, 0U, 162U, (unsigned char)0, 0U, & osc_deviation}; static struct drxd_config fe_terratec_dvbt_1 = {1U, 96U, 19U, 20000U, (unsigned char)0, 113U, 0U, 162U, (unsigned char)0, 0U, & osc_deviation}; static struct ngene_info ngene_info_terratec = {1, 0, (_Bool)0, (char *)"Terratec Integra/Cinergy2400i Dual DVB-T", {4, 4}, {(void *)(& fe_terratec_dvbt_0), (void *)(& fe_terratec_dvbt_1)}, {0, 0, 0, 0}, {& demod_attach_drxd, & demod_attach_drxd}, {& tuner_attach_dtt7520x, & tuner_attach_dtt7520x}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, 1, (unsigned char)0, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, {(unsigned char)0, (unsigned char)0, (unsigned char)0, (unsigned char)0}, 0, 0}; static struct pci_device_id const ngene_id_tbl[10U] = { {6339U, 1824U, 6339U, 43971U, 0U, 0U, (unsigned long )(& ngene_info_cineS2)}, {6339U, 1824U, 6339U, 43972U, 0U, 0U, (unsigned long )(& ngene_info_cineS2)}, {6339U, 1824U, 6339U, 56065U, 0U, 0U, (unsigned long )(& ngene_info_satixS2)}, {6339U, 1824U, 6339U, 56066U, 0U, 0U, (unsigned long )(& ngene_info_satixS2v2)}, {6339U, 1824U, 6339U, 56576U, 0U, 0U, (unsigned long )(& ngene_info_cineS2v5)}, {6339U, 1824U, 6339U, 56592U, 0U, 0U, (unsigned long )(& ngene_info_duoFlex)}, {6339U, 1824U, 6339U, 56608U, 0U, 0U, (unsigned long )(& ngene_info_duoFlex)}, {6339U, 1824U, 5217U, 1582U, 0U, 0U, (unsigned long )(& ngene_info_m780)}, {6339U, 1824U, 5435U, 4455U, 0U, 0U, (unsigned long )(& ngene_info_terratec)}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; static pci_ers_result_t ngene_error_detected(struct pci_dev *dev , enum pci_channel_state state ) { { { printk("\vngene: PCI error\n"); } if ((unsigned int )state == 3U) { return (4U); } else { } if ((unsigned int )state == 2U) { return (3U); } else { } return (2U); } } static pci_ers_result_t ngene_link_reset(struct pci_dev *dev ) { { { printk("\016ngene: link reset\n"); } return (0U); } } static pci_ers_result_t ngene_slot_reset(struct pci_dev *dev ) { { { printk("\016ngene: slot reset\n"); } return (0U); } } static void ngene_resume(struct pci_dev *dev ) { { { printk("\016ngene: resume\n"); } return; } } static struct pci_error_handlers const ngene_errors = {& ngene_error_detected, 0, & ngene_link_reset, & ngene_slot_reset, & ngene_resume}; static struct pci_driver ngene_pci_driver = {{0, 0}, "ngene", (struct pci_device_id const *)(& ngene_id_tbl), & ngene_probe, & ngene_remove, 0, 0, 0, 0, & ngene_shutdown, 0, & ngene_errors, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int module_init_ngene(void) { int tmp ; { { printk("\016nGene PCIE bridge driver, Copyright (C) 2005-2007 Micronas\n"); tmp = ldv___pci_register_driver_66(& ngene_pci_driver, & __this_module, "ngene"); } return (tmp); } } static void module_exit_ngene(void) { { { ldv_pci_unregister_driver_67(& ngene_pci_driver); } return; } } void ldv_EMGentry_exit_module_exit_ngene_12_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_module_init_ngene_12_13(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_allocate_external_0(void) ; void ldv_base_instance_callback_3_9(short (*arg0)(void * , short , int ) , void *arg1 , short arg2 , int arg3 ) ; void ldv_dispatch_deregister_8_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_base_instance_8_12_4(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_9_12_5(void) ; void ldv_dispatch_deregister_file_operations_instance_3_12_6(void) ; void ldv_dispatch_register_9_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_base_instance_8_12_7(void) ; void ldv_dispatch_register_dummy_resourceless_instance_9_12_8(void) ; void ldv_dispatch_register_file_operations_instance_3_12_9(void) ; void ldv_dummy_resourceless_instance_callback_5_3(void (*arg0)(struct dvb_frontend * , int ) , struct dvb_frontend *arg1 , int arg2 ) ; void ldv_entry_EMGentry_12(void *arg0 ) ; int main(void) ; void ldv_file_operations_file_operations_instance_0(void *arg0 ) ; void ldv_initialize_external_data(void) ; void ldv_pci_instance_callback_2_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) ; void ldv_pci_instance_callback_2_23(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_callback_2_24(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_callback_2_25(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_2(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; void ldv_struct_drxd_config_base_instance_3(void *arg0 ) ; void ldv_struct_i2c_algorithm_dummy_resourceless_instance_4(void *arg0 ) ; void ldv_struct_stv090x_config_dummy_resourceless_instance_5(void *arg0 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; int ldv_switch_2(void) ; int ldv_switch_3(void) ; void ldv_switch_automaton_state_0_15(void) ; void ldv_switch_automaton_state_0_6(void) ; void ldv_switch_automaton_state_2_11(void) ; void ldv_switch_automaton_state_2_20(void) ; void ldv_switch_automaton_state_3_10(void) ; void ldv_switch_automaton_state_3_19(void) ; void ldv_switch_automaton_state_4_1(void) ; void ldv_switch_automaton_state_4_5(void) ; char *ldv_0_ldv_param_4_1_default ; long long *ldv_0_ldv_param_4_3_default ; char *ldv_0_ldv_param_5_1_default ; long long *ldv_0_ldv_param_5_3_default ; struct file *ldv_0_resource_file ; struct inode *ldv_0_resource_inode ; int ldv_0_ret_default ; unsigned long ldv_0_size_cnt_write_size ; void (*ldv_12_exit_module_exit_ngene_default)(void) ; int (*ldv_12_init_module_init_ngene_default)(void) ; int ldv_12_ret_default ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; unsigned int (*ldv_2_callback_error_detected)(struct pci_dev * , enum pci_channel_state ) ; void (*ldv_2_callback_func_1_ptr)(struct pci_dev * ) ; unsigned int (*ldv_2_callback_link_reset)(struct pci_dev * ) ; unsigned int (*ldv_2_callback_slot_reset)(struct pci_dev * ) ; struct pci_driver *ldv_2_container_pci_driver ; struct pci_dev *ldv_2_resource_dev ; enum pci_channel_state ldv_2_resource_enum_pci_channel_state ; struct pm_message ldv_2_resource_pm_message ; struct pci_device_id *ldv_2_resource_struct_pci_device_id_ptr ; int ldv_2_ret_default ; short (*ldv_3_callback_osc_deviation)(void * , short , int ) ; void *ldv_3_ldv_param_9_0_default ; short ldv_3_ldv_param_9_1_default ; int ldv_3_ldv_param_9_2_default ; int ldv_3_ret_default ; struct i2c_adapter *ldv_4_container_struct_i2c_adapter_ptr ; struct i2c_msg *ldv_4_container_struct_i2c_msg_ptr ; int ldv_4_ldv_param_7_2_default ; void (*ldv_5_callback_tuner_i2c_lock)(struct dvb_frontend * , int ) ; struct dvb_frontend *ldv_5_container_struct_dvb_frontend_ptr ; int ldv_5_ldv_param_3_1_default ; int ldv_statevar_0 ; int ldv_statevar_12 ; int ldv_statevar_2 ; int ldv_statevar_3 ; int ldv_statevar_4 ; int ldv_statevar_5 ; void (*ldv_12_exit_module_exit_ngene_default)(void) = & module_exit_ngene; int (*ldv_12_init_module_init_ngene_default)(void) = & module_init_ngene; unsigned int (*ldv_2_callback_error_detected)(struct pci_dev * , enum pci_channel_state ) = & ngene_error_detected; void (*ldv_2_callback_func_1_ptr)(struct pci_dev * ) = & ngene_resume; unsigned int (*ldv_2_callback_link_reset)(struct pci_dev * ) = & ngene_link_reset; unsigned int (*ldv_2_callback_slot_reset)(struct pci_dev * ) = & ngene_slot_reset; short (*ldv_3_callback_osc_deviation)(void * , short , int ) = & osc_deviation; void (*ldv_5_callback_tuner_i2c_lock)(struct dvb_frontend * , int ) = & cineS2_tuner_i2c_lock; void ldv_EMGentry_exit_module_exit_ngene_12_2(void (*arg0)(void) ) { { { module_exit_ngene(); } return; } } int ldv_EMGentry_init_module_init_ngene_12_13(int (*arg0)(void) ) { int tmp ; { { tmp = module_init_ngene(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_9_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_9_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 20); ldv_dispatch_register_9_2(ldv_9_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_allocate_external_0(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; { { tmp = external_allocated_data(); ldv_0_ldv_param_4_1_default = (char *)tmp; tmp___0 = external_allocated_data(); ldv_0_ldv_param_4_3_default = (long long *)tmp___0; tmp___1 = external_allocated_data(); ldv_0_ldv_param_5_1_default = (char *)tmp___1; tmp___2 = external_allocated_data(); ldv_0_ldv_param_5_3_default = (long long *)tmp___2; tmp___3 = external_allocated_data(); ldv_0_resource_file = (struct file *)tmp___3; tmp___4 = external_allocated_data(); ldv_0_resource_inode = (struct inode *)tmp___4; ldv_1_data_data = external_allocated_data(); tmp___5 = external_allocated_data(); ldv_1_thread_thread = (enum irqreturn (*)(int , void * ))tmp___5; tmp___6 = external_allocated_data(); ldv_2_resource_dev = (struct pci_dev *)tmp___6; ldv_3_ldv_param_9_0_default = external_allocated_data(); tmp___7 = external_allocated_data(); ldv_4_container_struct_i2c_adapter_ptr = (struct i2c_adapter *)tmp___7; tmp___8 = external_allocated_data(); ldv_4_container_struct_i2c_msg_ptr = (struct i2c_msg *)tmp___8; tmp___9 = external_allocated_data(); ldv_5_container_struct_dvb_frontend_ptr = (struct dvb_frontend *)tmp___9; } return; } } void ldv_base_instance_callback_3_9(short (*arg0)(void * , short , int ) , void *arg1 , short arg2 , int arg3 ) { { { osc_deviation(arg1, (int )arg2, arg3); } return; } } void ldv_dispatch_deregister_8_1(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_11(); } return; } } void ldv_dispatch_deregister_base_instance_8_12_4(void) { { { ldv_switch_automaton_state_3_10(); } return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_9_12_5(void) { { { ldv_switch_automaton_state_4_1(); } return; } } void ldv_dispatch_deregister_file_operations_instance_3_12_6(void) { { { ldv_switch_automaton_state_0_6(); } return; } } void ldv_dispatch_register_9_2(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_20(); } return; } } void ldv_dispatch_register_base_instance_8_12_7(void) { { { ldv_switch_automaton_state_3_19(); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_9_12_8(void) { { { ldv_switch_automaton_state_4_5(); } return; } } void ldv_dispatch_register_file_operations_instance_3_12_9(void) { { { ldv_switch_automaton_state_0_15(); } return; } } void ldv_dummy_resourceless_instance_callback_5_3(void (*arg0)(struct dvb_frontend * , int ) , struct dvb_frontend *arg1 , int arg2 ) { { { cineS2_tuner_i2c_lock(arg1, arg2); } return; } } void ldv_entry_EMGentry_12(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_12 == 2) { goto case_2; } else { } if (ldv_statevar_12 == 3) { goto case_3; } else { } if (ldv_statevar_12 == 4) { goto case_4; } else { } if (ldv_statevar_12 == 5) { goto case_5; } else { } if (ldv_statevar_12 == 6) { goto case_6; } else { } if (ldv_statevar_12 == 7) { goto case_7; } else { } if (ldv_statevar_12 == 8) { goto case_8; } else { } if (ldv_statevar_12 == 9) { goto case_9; } else { } if (ldv_statevar_12 == 10) { goto case_10; } else { } if (ldv_statevar_12 == 12) { goto case_12; } else { } if (ldv_statevar_12 == 13) { goto case_13; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 12); ldv_EMGentry_exit_module_exit_ngene_12_2(ldv_12_exit_module_exit_ngene_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_12 = 13; } goto ldv_47322; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 12); ldv_EMGentry_exit_module_exit_ngene_12_2(ldv_12_exit_module_exit_ngene_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_12 = 13; } goto ldv_47322; case_4: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 11); ldv_dispatch_deregister_base_instance_8_12_4(); ldv_statevar_12 = 2; } goto ldv_47322; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 1); ldv_dispatch_deregister_dummy_resourceless_instance_9_12_5(); ldv_statevar_12 = 4; } goto ldv_47322; case_6: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 7); ldv_dispatch_deregister_file_operations_instance_3_12_6(); ldv_statevar_12 = 5; } goto ldv_47322; case_7: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 19); ldv_dispatch_register_base_instance_8_12_7(); ldv_statevar_12 = 6; } goto ldv_47322; case_8: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 5); ldv_dispatch_register_dummy_resourceless_instance_9_12_8(); ldv_statevar_12 = 7; } goto ldv_47322; case_9: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 15); ldv_dispatch_register_file_operations_instance_3_12_9(); ldv_statevar_12 = 8; } goto ldv_47322; case_10: /* CIL Label */ { ldv_assume(ldv_12_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_12 = 3; } else { ldv_statevar_12 = 9; } goto ldv_47322; case_12: /* CIL Label */ { ldv_assume(ldv_12_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_12 = 13; } goto ldv_47322; case_13: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 20); ldv_12_ret_default = ldv_EMGentry_init_module_init_ngene_12_13(ldv_12_init_module_init_ngene_default); ldv_12_ret_default = ldv_post_init(ldv_12_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_12 = 10; } else { ldv_statevar_12 = 12; } goto ldv_47322; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_47322: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_12 = 13; ldv_0_ret_default = 1; ldv_statevar_0 = 15; ldv_statevar_1 = 6; ldv_2_ret_default = 1; ldv_statevar_2 = 20; ldv_3_ret_default = 1; ldv_statevar_3 = 19; ldv_statevar_4 = 5; ldv_statevar_5 = 5; } ldv_47345: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_12((void *)0); } goto ldv_47337; case_1: /* CIL Label */ { ldv_file_operations_file_operations_instance_0((void *)0); } goto ldv_47337; case_2: /* CIL Label */ { ldv_interrupt_interrupt_instance_1((void *)0); } goto ldv_47337; case_3: /* CIL Label */ { ldv_pci_pci_instance_2((void *)0); } goto ldv_47337; case_4: /* CIL Label */ { ldv_struct_drxd_config_base_instance_3((void *)0); } goto ldv_47337; case_5: /* CIL Label */ { ldv_struct_i2c_algorithm_dummy_resourceless_instance_4((void *)0); } goto ldv_47337; case_6: /* CIL Label */ { ldv_struct_stv090x_config_dummy_resourceless_instance_5((void *)0); } goto ldv_47337; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_47337: ; goto ldv_47345; } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_pci_instance_callback_2_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) { { { ngene_error_detected(arg1, arg2); } return; } } void ldv_pci_instance_callback_2_23(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { ngene_resume(arg1); } return; } } void ldv_pci_instance_callback_2_24(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { ngene_link_reset(arg1); } return; } } void ldv_pci_instance_callback_2_25(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { ngene_slot_reset(arg1); } return; } } int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = ngene_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { ngene_remove(arg1); } return; } } void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { ngene_shutdown(arg1); } return; } } int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_2(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_2 == 1) { goto case_1; } else { } if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 3) { goto case_3; } else { } if (ldv_statevar_2 == 4) { goto case_4; } else { } if (ldv_statevar_2 == 5) { goto case_5; } else { } if (ldv_statevar_2 == 6) { goto case_6; } else { } if (ldv_statevar_2 == 7) { goto case_7; } else { } if (ldv_statevar_2 == 8) { goto case_8; } else { } if (ldv_statevar_2 == 9) { goto case_9; } else { } if (ldv_statevar_2 == 10) { goto case_10; } else { } if (ldv_statevar_2 == 12) { goto case_12; } else { } if (ldv_statevar_2 == 14) { goto case_14; } else { } if (ldv_statevar_2 == 16) { goto case_16; } else { } if (ldv_statevar_2 == 17) { goto case_17; } else { } if (ldv_statevar_2 == 19) { goto case_19; } else { } if (ldv_statevar_2 == 20) { goto case_20; } else { } if (ldv_statevar_2 == 23) { goto case_23; } else { } if (ldv_statevar_2 == 24) { goto case_24; } else { } if (ldv_statevar_2 == 25) { goto case_25; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_47422; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 2 || ldv_statevar_5 == 1); ldv_pci_instance_release_2_2(ldv_2_container_pci_driver->remove, ldv_2_resource_dev); ldv_statevar_2 = 1; } goto ldv_47422; case_3: /* CIL Label */ { ldv_pci_instance_shutdown_2_3(ldv_2_container_pci_driver->shutdown, ldv_2_resource_dev); ldv_statevar_2 = 2; } goto ldv_47422; case_4: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_47422; case_5: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_2_5(ldv_2_container_pci_driver->resume, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 4; goto ldv_47422; case_6: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_2_6(ldv_2_container_pci_driver->resume_early, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 5; goto ldv_47422; case_7: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_late_2_7(ldv_2_container_pci_driver->suspend_late, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 6; } goto ldv_47422; case_8: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_2_8(ldv_2_container_pci_driver->suspend, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 7; } goto ldv_47422; case_9: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_47422; case_10: /* CIL Label */ { ldv_pci_instance_callback_2_10(ldv_2_callback_error_detected, ldv_2_resource_dev, ldv_2_resource_enum_pci_channel_state); ldv_statevar_2 = 9; } goto ldv_47422; case_12: /* CIL Label */ { ldv_free((void *)ldv_2_resource_dev); ldv_free((void *)ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = 1; ldv_statevar_2 = 20; } goto ldv_47422; case_14: /* CIL Label */ { ldv_assume(ldv_2_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_47422; case_16: /* CIL Label */ { ldv_assume(ldv_2_ret_default == 0); ldv_statevar_2 = ldv_switch_1(); } goto ldv_47422; case_17: /* CIL Label */ { ldv_assume(((ldv_statevar_1 == 6 || ldv_statevar_1 == 2) || ldv_statevar_5 == 5) || ldv_statevar_5 == 1); ldv_pre_probe(); ldv_2_ret_default = ldv_pci_instance_probe_2_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_2_container_pci_driver->probe, ldv_2_resource_dev, ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = ldv_post_probe(ldv_2_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_2 = 14; } else { ldv_statevar_2 = 16; } goto ldv_47422; case_19: /* CIL Label */ { tmp___2 = ldv_xmalloc(2936UL); ldv_2_resource_dev = (struct pci_dev *)tmp___2; tmp___3 = ldv_xmalloc(32UL); ldv_2_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___3; tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_47422; case_20: /* CIL Label */ ; goto ldv_47422; case_23: /* CIL Label */ { ldv_pci_instance_callback_2_23(ldv_2_callback_func_1_ptr, ldv_2_resource_dev); ldv_statevar_2 = 9; } goto ldv_47422; case_24: /* CIL Label */ { ldv_pci_instance_callback_2_24(ldv_2_callback_link_reset, ldv_2_resource_dev); ldv_statevar_2 = 9; } goto ldv_47422; case_25: /* CIL Label */ { ldv_pci_instance_callback_2_25(ldv_2_callback_slot_reset, ldv_2_resource_dev); ldv_statevar_2 = 9; } goto ldv_47422; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_47422: ; return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_8_pci_driver_pci_driver ; { { ldv_8_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 12); ldv_dispatch_deregister_8_1(ldv_8_pci_driver_pci_driver); } return; return; } } void ldv_struct_drxd_config_base_instance_3(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { if (ldv_statevar_3 == 1) { goto case_1; } else { } if (ldv_statevar_3 == 2) { goto case_2; } else { } if (ldv_statevar_3 == 3) { goto case_3; } else { } if (ldv_statevar_3 == 4) { goto case_4; } else { } if (ldv_statevar_3 == 6) { goto case_6; } else { } if (ldv_statevar_3 == 7) { goto case_7; } else { } if (ldv_statevar_3 == 8) { goto case_8; } else { } if (ldv_statevar_3 == 11) { goto case_11; } else { } if (ldv_statevar_3 == 13) { goto case_13; } else { } if (ldv_statevar_3 == 15) { goto case_15; } else { } if (ldv_statevar_3 == 16) { goto case_16; } else { } if (ldv_statevar_3 == 18) { goto case_18; } else { } if (ldv_statevar_3 == 19) { goto case_19; } else { } if (ldv_statevar_3 == 22) { goto case_22; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_3 = 11; } else { ldv_statevar_3 = 16; } goto ldv_47451; case_2: /* CIL Label */ ldv_statevar_3 = 1; goto ldv_47451; case_3: /* CIL Label */ { ldv_statevar_3 = ldv_switch_2(); } goto ldv_47451; case_4: /* CIL Label */ { ldv_assume(ldv_3_ret_default != 0); ldv_statevar_3 = ldv_switch_2(); } goto ldv_47451; case_6: /* CIL Label */ { ldv_assume(ldv_3_ret_default == 0); ldv_statevar_3 = 3; } goto ldv_47451; case_7: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_3 = 4; } else { ldv_statevar_3 = 6; } goto ldv_47451; case_8: /* CIL Label */ { ldv_statevar_3 = ldv_switch_2(); } goto ldv_47451; case_11: /* CIL Label */ ldv_3_ret_default = 1; ldv_statevar_3 = 19; goto ldv_47451; case_13: /* CIL Label */ { ldv_assume(ldv_3_ret_default != 0); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_3 = 11; } else { ldv_statevar_3 = 16; } goto ldv_47451; case_15: /* CIL Label */ { ldv_assume(ldv_3_ret_default == 0); ldv_statevar_3 = ldv_switch_2(); } goto ldv_47451; case_16: /* CIL Label */ { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { ldv_statevar_3 = 13; } else { ldv_statevar_3 = 15; } goto ldv_47451; case_18: /* CIL Label */ { tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { ldv_statevar_3 = 11; } else { ldv_statevar_3 = 16; } goto ldv_47451; case_19: /* CIL Label */ ; goto ldv_47451; case_22: /* CIL Label */ { ldv_3_ldv_param_9_0_default = ldv_xmalloc(1UL); ldv_base_instance_callback_3_9(ldv_3_callback_osc_deviation, ldv_3_ldv_param_9_0_default, (int )ldv_3_ldv_param_9_1_default, ldv_3_ldv_param_9_2_default); ldv_free(ldv_3_ldv_param_9_0_default); ldv_statevar_3 = 8; } goto ldv_47451; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_47451: ; return; } } void ldv_struct_i2c_algorithm_dummy_resourceless_instance_4(void *arg0 ) { { { if (ldv_statevar_4 == 1) { goto case_1; } else { } if (ldv_statevar_4 == 2) { goto case_2; } else { } if (ldv_statevar_4 == 3) { goto case_3; } else { } if (ldv_statevar_4 == 4) { goto case_4; } else { } if (ldv_statevar_4 == 5) { goto case_5; } else { } if (ldv_statevar_4 == 8) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_47470; case_2: /* CIL Label */ { ldv_statevar_4 = ldv_switch_3(); } goto ldv_47470; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_3(ldv_4_callback_functionality, ldv_4_container_struct_i2c_adapter_ptr); ldv_statevar_4 = 2; } goto ldv_47470; case_4: /* CIL Label */ { ldv_statevar_4 = ldv_switch_3(); } goto ldv_47470; case_5: /* CIL Label */ ; goto ldv_47470; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_7(ldv_4_callback_master_xfer, ldv_4_container_struct_i2c_adapter_ptr, ldv_4_container_struct_i2c_msg_ptr, ldv_4_ldv_param_7_2_default); ldv_statevar_4 = 2; } goto ldv_47470; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_47470: ; return; } } void ldv_struct_stv090x_config_dummy_resourceless_instance_5(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_5 == 1) { goto case_1; } else { } if (ldv_statevar_5 == 2) { goto case_2; } else { } if (ldv_statevar_5 == 3) { goto case_3; } else { } if (ldv_statevar_5 == 4) { goto case_4; } else { } if (ldv_statevar_5 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_47481; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_5 = 1; } else { ldv_statevar_5 = 7; } goto ldv_47481; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_3(ldv_5_callback_tuner_i2c_lock, ldv_5_container_struct_dvb_frontend_ptr, ldv_5_ldv_param_3_1_default); ldv_statevar_5 = 8; } goto ldv_47481; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_5 = 1; } else { ldv_statevar_5 = 7; } goto ldv_47481; case_5: /* CIL Label */ ; goto ldv_47481; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_47481: ; return; } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (2); case_1: /* CIL Label */ ; return (18); case_2: /* CIL Label */ ; return (20); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (8); case_2: /* CIL Label */ ; return (10); case_3: /* CIL Label */ ; return (23); case_4: /* CIL Label */ ; return (24); case_5: /* CIL Label */ ; return (25); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_2(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (2); case_1: /* CIL Label */ ; return (7); case_2: /* CIL Label */ ; return (22); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_3(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (3); case_2: /* CIL Label */ ; return (8); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_2_11(void) { { ldv_2_ret_default = 1; ldv_statevar_2 = 20; return; } } void ldv_switch_automaton_state_2_20(void) { { ldv_statevar_2 = 19; return; } } void ldv_switch_automaton_state_3_10(void) { { ldv_3_ret_default = 1; ldv_statevar_3 = 19; return; } } void ldv_switch_automaton_state_3_19(void) { { ldv_statevar_3 = 18; return; } } void ldv_switch_automaton_state_4_1(void) { { ldv_statevar_4 = 5; return; } } void ldv_switch_automaton_state_4_5(void) { { ldv_statevar_4 = 4; return; } } void ldv_switch_automaton_state_5_1(void) { { ldv_statevar_5 = 5; return; } } void ldv_switch_automaton_state_5_5(void) { { ldv_statevar_5 = 4; return; } } static int ldv___pci_register_driver_66(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_67(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } __inline static __u32 __fswab32(__u32 val ) { int tmp ; { { tmp = __builtin_bswap32(val); } return ((__u32 )tmp); } } extern int memcmp(void const * , void const * , size_t ) ; extern void schedule(void) ; extern int dvb_generic_open(struct inode * , struct file * ) ; extern int dvb_generic_release(struct inode * , struct file * ) ; extern ssize_t dvb_ringbuffer_free(struct dvb_ringbuffer * ) ; extern ssize_t dvb_ringbuffer_avail(struct dvb_ringbuffer * ) ; extern ssize_t dvb_ringbuffer_read_user(struct dvb_ringbuffer * , u8 * , size_t ) ; extern void dvb_ringbuffer_read(struct dvb_ringbuffer * , u8 * , size_t ) ; extern ssize_t dvb_ringbuffer_write(struct dvb_ringbuffer * , u8 const * , size_t ) ; extern int dvb_dmxdev_init(struct dmxdev * , struct dvb_adapter * ) ; extern int dvb_dmx_init(struct dvb_demux * ) ; extern void dvb_dmx_swfilter(struct dvb_demux * , u8 const * , size_t ) ; static ssize_t ts_write(struct file *file , char const *buf , size_t count , loff_t *ppos ) { struct dvb_device *dvbdev ; struct ngene_channel *chan ; struct ngene *dev ; int __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp ; ssize_t tmp___0 ; ssize_t tmp___1 ; { { dvbdev = (struct dvb_device *)file->private_data; chan = (struct ngene_channel *)dvbdev->priv; dev = chan->dev; __ret = 0; tmp___1 = dvb_ringbuffer_free(& dev->tsout_rbuf); } if ((unsigned long )tmp___1 < count) { { __ret___0 = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_46563: { tmp = prepare_to_wait_event(& dev->tsout_rbuf.queue, & __wait, 1); __int = tmp; tmp___0 = dvb_ringbuffer_free(& dev->tsout_rbuf); } if ((unsigned long )tmp___0 >= count) { goto ldv_46562; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_46562; } else { } { schedule(); } goto ldv_46563; ldv_46562: { finish_wait(& dev->tsout_rbuf.queue, & __wait); } __ret = (int )__ret___0; } else { } if (__ret < 0) { return (0L); } else { } { dvb_ringbuffer_write(& dev->tsout_rbuf, (u8 const *)buf, count); } return ((ssize_t )count); } } static ssize_t ts_read(struct file *file , char *buf , size_t count , loff_t *ppos ) { struct dvb_device *dvbdev ; struct ngene_channel *chan ; struct ngene *dev ; int left ; int avail ; int __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp ; ssize_t tmp___0 ; ssize_t tmp___1 ; ssize_t tmp___2 ; { dvbdev = (struct dvb_device *)file->private_data; chan = (struct ngene_channel *)dvbdev->priv; dev = chan->dev; left = (int )count; goto ldv_46587; ldv_46586: { __ret = 0; tmp___1 = dvb_ringbuffer_avail(& dev->tsin_rbuf); } if (tmp___1 <= 0L) { { __ret___0 = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_46583: { tmp = prepare_to_wait_event(& dev->tsin_rbuf.queue, & __wait, 1); __int = tmp; tmp___0 = dvb_ringbuffer_avail(& dev->tsin_rbuf); } if (tmp___0 > 0L) { goto ldv_46582; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_46582; } else { } { schedule(); } goto ldv_46583; ldv_46582: { finish_wait(& dev->tsin_rbuf.queue, & __wait); } __ret = (int )__ret___0; } else { } if (__ret < 0) { return (-11L); } else { } { tmp___2 = dvb_ringbuffer_avail(& dev->tsin_rbuf); avail = (int )tmp___2; } if (avail > left) { avail = left; } else { } { dvb_ringbuffer_read_user(& dev->tsin_rbuf, (u8 *)buf, (size_t )avail); left = left - avail; buf = buf + (unsigned long )avail; } ldv_46587: ; if (left != 0) { goto ldv_46586; } else { } return ((ssize_t )count); } } static struct file_operations const ci_fops = {& __this_module, 0, & ts_read, & ts_write, 0, 0, 0, 0, 0, 0, 0, & dvb_generic_open, 0, & dvb_generic_release, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; struct dvb_device ngene_dvbdev_ci = {{0, 0}, & ci_fops, 0, 0, 0, 0U, -1, -1, -1, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}, 0, (void *)0}; static void swap_buffer(u32 *p , u32 len ) { __u32 tmp ; { goto ldv_46596; ldv_46595: { tmp = __fswab32(*p); *p = tmp; p = p + 1; len = len - 4U; } ldv_46596: ; if (len != 0U) { goto ldv_46595; } else { } return; } } static u8 fill_ts[5U] = { 71U, 31U, 255U, 16U, 111U}; void *tsin_exchange(void *priv , void *buf , u32 len , u32 clock , u32 flags ) { struct ngene_channel *chan ; struct ngene *dev ; ssize_t tmp ; int tmp___0 ; { chan = (struct ngene_channel *)priv; dev = chan->dev; if ((flags & 65536U) != 0U) { { swap_buffer((u32 *)buf, len); } } else { } if ((unsigned long )dev->ci.en != (unsigned long )((struct dvb_ca_en50221 *)0) && chan->number == 2) { goto ldv_46609; ldv_46608: { tmp___0 = memcmp((void const *)buf, (void const *)(& fill_ts), 5UL); } if (tmp___0 != 0) { { tmp = dvb_ringbuffer_free(& dev->tsin_rbuf); } if (tmp > 187L) { { dvb_ringbuffer_write(& dev->tsin_rbuf, (u8 const *)buf, 188UL); __wake_up(& dev->tsin_rbuf.queue, 3U, 1, (void *)0); } } else { } } else { } buf = buf + 188UL; len = len - 188U; ldv_46609: ; if (len > 187U) { goto ldv_46608; } else { } return ((void *)0); } else { } if (chan->users > 0) { { dvb_dmx_swfilter(& chan->demux, (u8 const *)buf, (size_t )len); } } else { } return ((void *)0); } } void *tsout_exchange(void *priv , void *buf , u32 len , u32 clock , u32 flags ) { struct ngene_channel *chan ; struct ngene *dev ; u32 alen ; ssize_t tmp ; { { chan = (struct ngene_channel *)priv; dev = chan->dev; tmp = dvb_ringbuffer_avail(& dev->tsout_rbuf); alen = (u32 )tmp; alen = alen - alen % 188U; } if (alen < len) { { FillTSBuffer(buf + (unsigned long )alen, (int )(len - alen), flags); } } else { alen = len; } { dvb_ringbuffer_read(& dev->tsout_rbuf, (u8 *)buf, (size_t )alen); } if ((flags & 65536U) != 0U) { { swap_buffer((u32 *)buf, alen); } } else { } { __wake_up(& dev->tsout_rbuf.queue, 1U, 1, (void *)0); } return (buf); } } int ngene_start_feed(struct dvb_demux_feed *dvbdmxfeed ) { struct dvb_demux *dvbdmx ; struct ngene_channel *chan ; { dvbdmx = dvbdmxfeed->demux; chan = (struct ngene_channel *)dvbdmx->priv; if (chan->users == 0) { if (! (chan->dev)->cmd_timeout_workaround || chan->running == 0) { { set_transfer(chan, 1); } } else { } } else { } chan->users = chan->users + 1; return (chan->users); } } int ngene_stop_feed(struct dvb_demux_feed *dvbdmxfeed ) { struct dvb_demux *dvbdmx ; struct ngene_channel *chan ; { dvbdmx = dvbdmxfeed->demux; chan = (struct ngene_channel *)dvbdmx->priv; chan->users = chan->users - 1; if (chan->users != 0) { return (chan->users); } else { } if (! (chan->dev)->cmd_timeout_workaround) { { set_transfer(chan, 0); } } else { } return (0); } } int my_dvb_dmx_ts_card_init(struct dvb_demux *dvbdemux , char *id , int (*start_feed)(struct dvb_demux_feed * ) , int (*stop_feed)(struct dvb_demux_feed * ) , void *priv ) { int tmp ; { { dvbdemux->priv = priv; dvbdemux->filternum = 256; dvbdemux->feednum = 256; dvbdemux->start_feed = start_feed; dvbdemux->stop_feed = stop_feed; dvbdemux->write_to_decoder = (int (*)(struct dvb_demux_feed * , u8 const * , size_t ))0; dvbdemux->dmx.capabilities = 13U; tmp = dvb_dmx_init(dvbdemux); } return (tmp); } } int my_dvb_dmxdev_ts_card_init(struct dmxdev *dmxdev , struct dvb_demux *dvbdemux , struct dmx_frontend *hw_frontend , struct dmx_frontend *mem_frontend , struct dvb_adapter *dvb_adapter ) { int ret ; int tmp ; { { dmxdev->filternum = 256; dmxdev->demux = & dvbdemux->dmx; dmxdev->capabilities = 0; ret = dvb_dmxdev_init(dmxdev, dvb_adapter); } if (ret < 0) { return (ret); } else { } { hw_frontend->source = 1; (*(dvbdemux->dmx.add_frontend))(& dvbdemux->dmx, hw_frontend); mem_frontend->source = 0; (*(dvbdemux->dmx.add_frontend))(& dvbdemux->dmx, mem_frontend); tmp = (*(dvbdemux->dmx.connect_frontend))(& dvbdemux->dmx, hw_frontend); } return (tmp); } } void ldv_file_operations_instance_callback_0_5(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; long (*ldv_0_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct file_operations *ldv_0_container_file_operations ; int ldv_statevar_0 ; long (*ldv_0_callback_read)(struct file * , char * , unsigned long , long long * ) = & ts_read; void ldv_file_operations_file_operations_instance_0(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; int tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; { { if (ldv_statevar_0 == 1) { goto case_1; } else { } if (ldv_statevar_0 == 2) { goto case_2; } else { } if (ldv_statevar_0 == 3) { goto case_3; } else { } if (ldv_statevar_0 == 7) { goto case_7; } else { } if (ldv_statevar_0 == 9) { goto case_9; } else { } if (ldv_statevar_0 == 11) { goto case_11; } else { } if (ldv_statevar_0 == 12) { goto case_12; } else { } if (ldv_statevar_0 == 14) { goto case_14; } else { } if (ldv_statevar_0 == 15) { goto case_15; } else { } if (ldv_statevar_0 == 18) { goto case_18; } else { } if (ldv_statevar_0 == 20) { goto case_20; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 7; } else { ldv_statevar_0 = 12; } goto ldv_46718; case_2: /* CIL Label */ { ldv_file_operations_instance_release_0_2(ldv_0_container_file_operations->release, ldv_0_resource_inode, ldv_0_resource_file); ldv_statevar_0 = 1; } goto ldv_46718; case_3: /* CIL Label */ { ldv_statevar_0 = ldv_switch_0(); } goto ldv_46718; case_7: /* CIL Label */ { ldv_free((void *)ldv_0_resource_file); ldv_free((void *)ldv_0_resource_inode); ldv_0_ret_default = 1; ldv_statevar_0 = 15; } goto ldv_46718; case_9: /* CIL Label */ { ldv_assume(ldv_0_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_0 = 7; } else { ldv_statevar_0 = 12; } goto ldv_46718; case_11: /* CIL Label */ { ldv_assume(ldv_0_ret_default == 0); ldv_statevar_0 = ldv_switch_0(); } goto ldv_46718; case_12: /* CIL Label */ { ldv_0_ret_default = ldv_file_operations_instance_probe_0_12(ldv_0_container_file_operations->open, ldv_0_resource_inode, ldv_0_resource_file); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_0 = 9; } else { ldv_statevar_0 = 11; } goto ldv_46718; case_14: /* CIL Label */ { tmp___2 = ldv_xmalloc(520UL); ldv_0_resource_file = (struct file *)tmp___2; tmp___3 = ldv_xmalloc(1032UL); ldv_0_resource_inode = (struct inode *)tmp___3; tmp___4 = ldv_undef_int(); ldv_0_size_cnt_write_size = (unsigned long )tmp___4; tmp___5 = ldv_undef_int(); } if (tmp___5 != 0) { ldv_statevar_0 = 7; } else { ldv_statevar_0 = 12; } goto ldv_46718; case_15: /* CIL Label */ ; goto ldv_46718; case_18: /* CIL Label */ { tmp___6 = ldv_xmalloc(1UL); ldv_0_ldv_param_4_1_default = (char *)tmp___6; tmp___7 = ldv_xmalloc(8UL); ldv_0_ldv_param_4_3_default = (long long *)tmp___7; ldv_assume(ldv_0_size_cnt_write_size <= 2147479552UL); ldv_file_operations_instance_write_0_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_0_container_file_operations->write, ldv_0_resource_file, ldv_0_ldv_param_4_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_4_3_default); ldv_free((void *)ldv_0_ldv_param_4_1_default); ldv_free((void *)ldv_0_ldv_param_4_3_default); ldv_statevar_0 = 3; } goto ldv_46718; case_20: /* CIL Label */ { tmp___8 = ldv_xmalloc(1UL); ldv_0_ldv_param_5_1_default = (char *)tmp___8; tmp___9 = ldv_xmalloc(8UL); ldv_0_ldv_param_5_3_default = (long long *)tmp___9; ldv_file_operations_instance_callback_0_5(ldv_0_callback_read, ldv_0_resource_file, ldv_0_ldv_param_5_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_5_3_default); ldv_free((void *)ldv_0_ldv_param_5_1_default); ldv_free((void *)ldv_0_ldv_param_5_3_default); ldv_statevar_0 = 3; } goto ldv_46718; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_46718: ; return; } } void ldv_file_operations_instance_callback_0_5(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { ts_read(arg1, arg2, arg3, arg4); } return; } } int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = dvb_generic_open(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { dvb_generic_release(arg1, arg2); } return; } } void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { ts_write(arg1, (char const *)arg2, arg3, arg4); } return; } } void ldv_switch_automaton_state_0_15(void) { { ldv_statevar_0 = 14; return; } } void ldv_switch_automaton_state_0_6(void) { { ldv_0_ret_default = 1; ldv_statevar_0 = 15; return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_check_alloc_flags(gfp_t ) ; extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; void *ldv_malloc_unknown_size(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_cmd_lock_of_ngene = 1; void ldv_spin_lock_cmd_lock_of_ngene(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_cmd_lock_of_ngene == 1); ldv_assume(ldv_spin_cmd_lock_of_ngene == 1); ldv_spin_cmd_lock_of_ngene = 2; } return; } } void ldv_spin_unlock_cmd_lock_of_ngene(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_cmd_lock_of_ngene == 2); ldv_assume(ldv_spin_cmd_lock_of_ngene == 2); ldv_spin_cmd_lock_of_ngene = 1; } return; } } int ldv_spin_trylock_cmd_lock_of_ngene(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_cmd_lock_of_ngene == 1); ldv_assume(ldv_spin_cmd_lock_of_ngene == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_cmd_lock_of_ngene = 2; return (1); } } } void ldv_spin_unlock_wait_cmd_lock_of_ngene(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_cmd_lock_of_ngene == 1); ldv_assume(ldv_spin_cmd_lock_of_ngene == 1); } return; } } int ldv_spin_is_locked_cmd_lock_of_ngene(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_cmd_lock_of_ngene == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_cmd_lock_of_ngene(void) { int tmp ; { { tmp = ldv_spin_is_locked_cmd_lock_of_ngene(); } return (tmp == 0); } } int ldv_spin_is_contended_cmd_lock_of_ngene(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_cmd_lock_of_ngene(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_cmd_lock_of_ngene == 1); ldv_assume(ldv_spin_cmd_lock_of_ngene == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_cmd_lock_of_ngene = 2; return (1); } else { } return (0); } } static int ldv_spin_dma_spin_lock = 1; void ldv_spin_lock_dma_spin_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_dma_spin_lock == 1); ldv_assume(ldv_spin_dma_spin_lock == 1); ldv_spin_dma_spin_lock = 2; } return; } } void ldv_spin_unlock_dma_spin_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_dma_spin_lock == 2); ldv_assume(ldv_spin_dma_spin_lock == 2); ldv_spin_dma_spin_lock = 1; } return; } } int ldv_spin_trylock_dma_spin_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_dma_spin_lock == 1); ldv_assume(ldv_spin_dma_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_dma_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_dma_spin_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_dma_spin_lock == 1); ldv_assume(ldv_spin_dma_spin_lock == 1); } return; } } int ldv_spin_is_locked_dma_spin_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_dma_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_dma_spin_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_dma_spin_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_dma_spin_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_dma_spin_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_dma_spin_lock == 1); ldv_assume(ldv_spin_dma_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_dma_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_state_lock_of_ngene_channel = 1; void ldv_spin_lock_state_lock_of_ngene_channel(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_state_lock_of_ngene_channel == 1); ldv_assume(ldv_spin_state_lock_of_ngene_channel == 1); ldv_spin_state_lock_of_ngene_channel = 2; } return; } } void ldv_spin_unlock_state_lock_of_ngene_channel(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_state_lock_of_ngene_channel == 2); ldv_assume(ldv_spin_state_lock_of_ngene_channel == 2); ldv_spin_state_lock_of_ngene_channel = 1; } return; } } int ldv_spin_trylock_state_lock_of_ngene_channel(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_state_lock_of_ngene_channel == 1); ldv_assume(ldv_spin_state_lock_of_ngene_channel == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_state_lock_of_ngene_channel = 2; return (1); } } } void ldv_spin_unlock_wait_state_lock_of_ngene_channel(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_state_lock_of_ngene_channel == 1); ldv_assume(ldv_spin_state_lock_of_ngene_channel == 1); } return; } } int ldv_spin_is_locked_state_lock_of_ngene_channel(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_state_lock_of_ngene_channel == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_state_lock_of_ngene_channel(void) { int tmp ; { { tmp = ldv_spin_is_locked_state_lock_of_ngene_channel(); } return (tmp == 0); } } int ldv_spin_is_contended_state_lock_of_ngene_channel(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_state_lock_of_ngene_channel(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_state_lock_of_ngene_channel == 1); ldv_assume(ldv_spin_state_lock_of_ngene_channel == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_state_lock_of_ngene_channel = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_cmd_lock_of_ngene == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_dma_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_state_lock_of_ngene_channel == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_cmd_lock_of_ngene == 2) { return (1); } else { } if (ldv_spin_dma_spin_lock == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_state_lock_of_ngene_channel == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }