/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct device; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; typedef void (*ctor_fn_t)(void); struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_36 { uid_t val ; }; typedef struct __anonstruct_kuid_t_36 kuid_t; struct __anonstruct_kgid_t_37 { gid_t val ; }; typedef struct __anonstruct_kgid_t_37 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct __anonstruct_nodemask_t_38 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_38 nodemask_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct completion { unsigned int done ; wait_queue_head_t wait ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct __anonstruct_mm_context_t_103 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_103 mm_context_t; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct vm_area_struct; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct nsproxy; struct cred; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct dentry; struct iattr; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_137 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_138 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_137 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_138 __annonCompField34 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_139 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_139 __annonCompField35 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; struct exception_table_entry; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct pnp_device_id { __u8 id[8U] ; kernel_ulong_t driver_data ; }; struct __anonstruct_devs_142 { __u8 id[8U] ; }; struct pnp_card_device_id { __u8 id[8U] ; kernel_ulong_t driver_data ; struct __anonstruct_devs_142 devs[8U] ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct input_device_id { kernel_ulong_t flags ; __u16 bustype ; __u16 vendor ; __u16 product ; __u16 version ; kernel_ulong_t evbit[1U] ; kernel_ulong_t keybit[12U] ; kernel_ulong_t relbit[1U] ; kernel_ulong_t absbit[1U] ; kernel_ulong_t mscbit[1U] ; kernel_ulong_t ledbit[1U] ; kernel_ulong_t sndbit[1U] ; kernel_ulong_t ffbit[2U] ; kernel_ulong_t swbit[1U] ; kernel_ulong_t driver_info ; }; struct pnp_protocol; struct pnp_dev; struct pnp_id; struct proc_dir_entry; struct pnp_card { struct device dev ; unsigned char number ; struct list_head global_list ; struct list_head protocol_list ; struct list_head devices ; struct pnp_protocol *protocol ; struct pnp_id *id ; char name[50U] ; unsigned char pnpver ; unsigned char productver ; unsigned int serial ; unsigned char checksum ; struct proc_dir_entry *procdir ; }; struct pnp_card_driver; struct pnp_card_link { struct pnp_card *card ; struct pnp_card_driver *driver ; void *driver_data ; pm_message_t pm_state ; }; struct pnp_driver; struct pnp_dev { struct device dev ; u64 dma_mask ; unsigned int number ; int status ; struct list_head global_list ; struct list_head protocol_list ; struct list_head card_list ; struct list_head rdev_list ; struct pnp_protocol *protocol ; struct pnp_card *card ; struct pnp_driver *driver ; struct pnp_card_link *card_link ; struct pnp_id *id ; int active ; int capabilities ; unsigned int num_dependent_sets ; struct list_head resources ; struct list_head options ; char name[50U] ; int flags ; struct proc_dir_entry *procent ; void *data ; }; struct pnp_id { char id[8U] ; struct pnp_id *next ; }; struct pnp_driver { char *name ; struct pnp_device_id const *id_table ; unsigned int flags ; int (*probe)(struct pnp_dev * , struct pnp_device_id const * ) ; void (*remove)(struct pnp_dev * ) ; void (*shutdown)(struct pnp_dev * ) ; int (*suspend)(struct pnp_dev * , pm_message_t ) ; int (*resume)(struct pnp_dev * ) ; struct device_driver driver ; }; struct pnp_card_driver { struct list_head global_list ; char *name ; struct pnp_card_device_id const *id_table ; unsigned int flags ; int (*probe)(struct pnp_card_link * , struct pnp_card_device_id const * ) ; void (*remove)(struct pnp_card_link * ) ; int (*suspend)(struct pnp_card_link * , pm_message_t ) ; int (*resume)(struct pnp_card_link * ) ; struct pnp_driver link ; }; struct pnp_protocol { struct list_head protocol_list ; char *name ; int (*get)(struct pnp_dev * ) ; int (*set)(struct pnp_dev * ) ; int (*disable)(struct pnp_dev * ) ; bool (*can_wakeup)(struct pnp_dev * ) ; int (*suspend)(struct pnp_dev * , pm_message_t ) ; int (*resume)(struct pnp_dev * ) ; unsigned char number ; struct device dev ; struct list_head cards ; struct list_head devices ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct exception_table_entry { int insn ; int fixup ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_148 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_149 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_147 { struct __anonstruct____missing_field_name_148 __annonCompField38 ; struct __anonstruct____missing_field_name_149 __annonCompField39 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_147 __annonCompField40 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_150 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_152 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_156 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_155 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_156 __annonCompField43 ; int units ; }; struct __anonstruct____missing_field_name_154 { union __anonunion____missing_field_name_155 __annonCompField44 ; atomic_t _count ; }; union __anonunion____missing_field_name_153 { unsigned long counters ; struct __anonstruct____missing_field_name_154 __annonCompField45 ; unsigned int active ; }; struct __anonstruct____missing_field_name_151 { union __anonunion____missing_field_name_152 __annonCompField42 ; union __anonunion____missing_field_name_153 __annonCompField46 ; }; struct __anonstruct____missing_field_name_158 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_157 { struct list_head lru ; struct __anonstruct____missing_field_name_158 __annonCompField48 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_159 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_150 __annonCompField41 ; struct __anonstruct____missing_field_name_151 __annonCompField47 ; union __anonunion____missing_field_name_157 __annonCompField49 ; union __anonunion____missing_field_name_159 __annonCompField50 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_161 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_160 { struct __anonstruct_linear_161 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_160 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct __anonstruct_sigset_t_162 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_162 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_164 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_165 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_166 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_167 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_168 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_169 { long _band ; int _fd ; }; struct __anonstruct__sigsys_170 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_163 { int _pad[28U] ; struct __anonstruct__kill_164 _kill ; struct __anonstruct__timer_165 _timer ; struct __anonstruct__rt_166 _rt ; struct __anonstruct__sigchld_167 _sigchld ; struct __anonstruct__sigfault_168 _sigfault ; struct __anonstruct__sigpoll_169 _sigpoll ; struct __anonstruct__sigsys_170 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_163 _sifields ; }; typedef struct siginfo siginfo_t; struct user_struct; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_173 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_174 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_176 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_175 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_176 __annonCompField53 ; }; union __anonunion_type_data_177 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_179 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_178 { union __anonunion_payload_179 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_173 __annonCompField51 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_174 __annonCompField52 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_175 __annonCompField54 ; union __anonunion_type_data_177 type_data ; union __anonunion____missing_field_name_178 __annonCompField55 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct backing_dev_info; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct io_context; struct pipe_inode_info; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct files_struct; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_182 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_183 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_181 { struct __anonstruct____missing_field_name_182 __annonCompField57 ; struct __anonstruct____missing_field_name_183 __annonCompField58 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_181 __annonCompField59 ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct input_id { __u16 bustype ; __u16 vendor ; __u16 product ; __u16 version ; }; struct input_absinfo { __s32 value ; __s32 minimum ; __s32 maximum ; __s32 fuzz ; __s32 flat ; __s32 resolution ; }; struct input_keymap_entry { __u8 flags ; __u8 len ; __u16 index ; __u32 keycode ; __u8 scancode[32U] ; }; struct ff_replay { __u16 length ; __u16 delay ; }; struct ff_trigger { __u16 button ; __u16 interval ; }; struct ff_envelope { __u16 attack_length ; __u16 attack_level ; __u16 fade_length ; __u16 fade_level ; }; struct ff_constant_effect { __s16 level ; struct ff_envelope envelope ; }; struct ff_ramp_effect { __s16 start_level ; __s16 end_level ; struct ff_envelope envelope ; }; struct ff_condition_effect { __u16 right_saturation ; __u16 left_saturation ; __s16 right_coeff ; __s16 left_coeff ; __u16 deadband ; __s16 center ; }; struct ff_periodic_effect { __u16 waveform ; __u16 period ; __s16 magnitude ; __s16 offset ; __u16 phase ; struct ff_envelope envelope ; __u32 custom_len ; __s16 *custom_data ; }; struct ff_rumble_effect { __u16 strong_magnitude ; __u16 weak_magnitude ; }; union __anonunion_u_187 { struct ff_constant_effect constant ; struct ff_ramp_effect ramp ; struct ff_periodic_effect periodic ; struct ff_condition_effect condition[2U] ; struct ff_rumble_effect rumble ; }; struct ff_effect { __u16 type ; __s16 id ; __u16 direction ; struct ff_trigger trigger ; struct ff_replay replay ; union __anonunion_u_187 u ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_189 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_188 { struct __anonstruct____missing_field_name_189 __annonCompField63 ; }; struct lockref { union __anonunion____missing_field_name_188 __annonCompField64 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_191 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_190 { struct __anonstruct____missing_field_name_191 __annonCompField65 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_190 __annonCompField66 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_192 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_192 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct export_operations; struct iovec; struct kiocb; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_193 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_193 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_194 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_194 __annonCompField67 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_196 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_195 { size_t written ; size_t count ; union __anonunion_arg_196 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_195 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_197 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_198 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_199 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_197 __annonCompField68 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_198 __annonCompField69 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_199 __annonCompField70 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_200 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_200 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_202 { struct list_head link ; int state ; }; union __anonunion_fl_u_201 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_202 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_201 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct input_value { __u16 type ; __u16 code ; __s32 value ; }; struct ff_device; struct input_mt; struct input_handle; struct input_dev { char const *name ; char const *phys ; char const *uniq ; struct input_id id ; unsigned long propbit[1U] ; unsigned long evbit[1U] ; unsigned long keybit[12U] ; unsigned long relbit[1U] ; unsigned long absbit[1U] ; unsigned long mscbit[1U] ; unsigned long ledbit[1U] ; unsigned long sndbit[1U] ; unsigned long ffbit[2U] ; unsigned long swbit[1U] ; unsigned int hint_events_per_packet ; unsigned int keycodemax ; unsigned int keycodesize ; void *keycode ; int (*setkeycode)(struct input_dev * , struct input_keymap_entry const * , unsigned int * ) ; int (*getkeycode)(struct input_dev * , struct input_keymap_entry * ) ; struct ff_device *ff ; unsigned int repeat_key ; struct timer_list timer ; int rep[2U] ; struct input_mt *mt ; struct input_absinfo *absinfo ; unsigned long key[12U] ; unsigned long led[1U] ; unsigned long snd[1U] ; unsigned long sw[1U] ; int (*open)(struct input_dev * ) ; void (*close)(struct input_dev * ) ; int (*flush)(struct input_dev * , struct file * ) ; int (*event)(struct input_dev * , unsigned int , unsigned int , int ) ; struct input_handle *grab ; spinlock_t event_lock ; struct mutex mutex ; unsigned int users ; bool going_away ; struct device dev ; struct list_head h_list ; struct list_head node ; unsigned int num_vals ; unsigned int max_vals ; struct input_value *vals ; bool devres_managed ; }; struct input_handler { void *private ; void (*event)(struct input_handle * , unsigned int , unsigned int , int ) ; void (*events)(struct input_handle * , struct input_value const * , unsigned int ) ; bool (*filter)(struct input_handle * , unsigned int , unsigned int , int ) ; bool (*match)(struct input_handler * , struct input_dev * ) ; int (*connect)(struct input_handler * , struct input_dev * , struct input_device_id const * ) ; void (*disconnect)(struct input_handle * ) ; void (*start)(struct input_handle * ) ; bool legacy_minors ; int minor ; char const *name ; struct input_device_id const *id_table ; struct list_head h_list ; struct list_head node ; }; struct input_handle { void *private ; int open ; char const *name ; struct input_dev *dev ; struct input_handler *handler ; struct list_head d_node ; struct list_head h_node ; }; struct ff_device { int (*upload)(struct input_dev * , struct ff_effect * , struct ff_effect * ) ; int (*erase)(struct input_dev * , int ) ; int (*playback)(struct input_dev * , int , int ) ; void (*set_gain)(struct input_dev * , u16 ) ; void (*set_autocenter)(struct input_dev * , u16 ) ; void (*destroy)(struct ff_device * ) ; void *private ; unsigned long ffbit[2U] ; struct mutex mutex ; int max_effects ; struct ff_effect *effects ; struct file *effect_owners[] ; }; enum rc_type { RC_TYPE_UNKNOWN = 0, RC_TYPE_OTHER = 1, RC_TYPE_LIRC = 2, RC_TYPE_RC5 = 3, RC_TYPE_RC5X = 4, RC_TYPE_RC5_SZ = 5, RC_TYPE_JVC = 6, RC_TYPE_SONY12 = 7, RC_TYPE_SONY15 = 8, RC_TYPE_SONY20 = 9, RC_TYPE_NEC = 10, RC_TYPE_SANYO = 11, RC_TYPE_MCE_KBD = 12, RC_TYPE_RC6_0 = 13, RC_TYPE_RC6_6A_20 = 14, RC_TYPE_RC6_6A_24 = 15, RC_TYPE_RC6_6A_32 = 16, RC_TYPE_RC6_MCE = 17 } ; struct rc_map_table { u32 scancode ; u32 keycode ; }; struct rc_map { struct rc_map_table *scan ; unsigned int size ; unsigned int len ; unsigned int alloc ; enum rc_type rc_type ; char const *name ; spinlock_t lock ; }; enum rc_driver_type { RC_DRIVER_SCANCODE = 0, RC_DRIVER_IR_RAW = 1 } ; struct ir_raw_event_ctrl; struct rc_dev { struct device dev ; char const *input_name ; char const *input_phys ; struct input_id input_id ; char *driver_name ; char const *map_name ; struct rc_map rc_map ; struct mutex lock ; unsigned long devno ; struct ir_raw_event_ctrl *raw ; struct input_dev *input_dev ; enum rc_driver_type driver_type ; bool idle ; u64 allowed_protos ; u64 enabled_protocols ; u32 users ; u32 scanmask ; void *priv ; spinlock_t keylock ; bool keypressed ; unsigned long keyup_jiffies ; struct timer_list timer_keyup ; u32 last_keycode ; u32 last_scancode ; u8 last_toggle ; u32 timeout ; u32 min_timeout ; u32 max_timeout ; u32 rx_resolution ; u32 tx_resolution ; int (*change_protocol)(struct rc_dev * , u64 * ) ; int (*open)(struct rc_dev * ) ; void (*close)(struct rc_dev * ) ; int (*s_tx_mask)(struct rc_dev * , u32 ) ; int (*s_tx_carrier)(struct rc_dev * , u32 ) ; int (*s_tx_duty_cycle)(struct rc_dev * , u32 ) ; int (*s_rx_carrier_range)(struct rc_dev * , u32 , u32 ) ; int (*tx_ir)(struct rc_dev * , unsigned int * , unsigned int ) ; void (*s_idle)(struct rc_dev * , bool ) ; int (*s_learning_mode)(struct rc_dev * , int ) ; int (*s_carrier_report)(struct rc_dev * , int ) ; }; struct __anonstruct____missing_field_name_204 { u32 carrier ; u8 duty_cycle ; }; union __anonunion____missing_field_name_203 { u32 duration ; struct __anonstruct____missing_field_name_204 __annonCompField71 ; }; struct ir_raw_event { union __anonunion____missing_field_name_203 __annonCompField72 ; unsigned int pulse : 1 ; unsigned int reset : 1 ; unsigned int timeout : 1 ; unsigned int carrier_report : 1 ; }; struct __anonstruct_tx_205 { spinlock_t lock ; u8 buf[256U] ; unsigned int buf_count ; unsigned int cur_buf_num ; wait_queue_head_t queue ; u8 tx_state ; }; struct nvt_dev { struct pnp_dev *pdev ; struct rc_dev *rdev ; spinlock_t nvt_lock ; u8 buf[32U] ; unsigned int pkts ; struct __anonstruct_tx_205 tx ; u32 cr_efir ; u32 cr_efdr ; unsigned long cir_addr ; unsigned long cir_wake_addr ; int cir_irq ; int cir_wake_irq ; u8 chip_major ; u8 chip_minor ; bool hw_learning_capable ; bool hw_tx_capable ; bool learning_enabled ; u8 wake_state ; u8 study_state ; u32 carrier ; }; typedef int ldv_func_ret_type; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; struct device_private { void *driver_data ; }; typedef u64 dma_addr_t; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern int printk(char const * , ...) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern char *strcpy(char * , char const * ) ; extern void __ldv_spin_lock(spinlock_t * ) ; static void ldv___ldv_spin_lock_44(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_46(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_48(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_50(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_52(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_54(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_56(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_58(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_60(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_62(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_64(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_69(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_73(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_75(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) ; void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) ; void ldv_spin_lock_nvt_lock_of_nvt_dev(void) ; void ldv_spin_unlock_nvt_lock_of_nvt_dev(void) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; void ldv_check_final_state(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; int ldv_undef_int(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void *external_allocated_data(void) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_45(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_47(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_47(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_45(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_47(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_45(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_47(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_47(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_45(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_45(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_45(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_45(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_45(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_47(spinlock_t *lock , unsigned long flags ) ; extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern long prepare_to_wait_event(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; extern struct resource ioport_resource ; __inline static resource_size_t resource_size(struct resource const *res ) { { return (((unsigned long long )res->end - (unsigned long long )res->start) + 1ULL); } } extern struct resource *__request_region(struct resource * , resource_size_t , resource_size_t , char const * , int ) ; extern void __release_region(struct resource * , resource_size_t , resource_size_t ) ; __inline static void outb(unsigned char value , int port ) { { __asm__ volatile ("outb %b0, %w1": : "a" (value), "Nd" (port)); return; } } __inline static unsigned char inb(int port ) { unsigned char value ; { __asm__ volatile ("inb %w1, %b0": "=a" (value): "Nd" (port)); return (value); } } extern int device_init_wakeup(struct device * , bool ) ; static void *ldv_dev_get_drvdata_25(struct device const *dev ) ; static int ldv_dev_set_drvdata_26(struct device *dev , void *data ) ; extern int dev_err(struct device const * , char const * , ...) ; extern struct resource *pnp_get_resource(struct pnp_dev * , unsigned long , unsigned int ) ; __inline static int pnp_resource_valid(struct resource *res ) { { if ((unsigned long )res != (unsigned long )((struct resource *)0)) { return (1); } else { } return (0); } } __inline static resource_size_t pnp_resource_len(struct resource *res ) { resource_size_t tmp ; { if (res->start == 0ULL && res->end == 0ULL) { return (0ULL); } else { } { tmp = resource_size((struct resource const *)res); } return (tmp); } } __inline static resource_size_t pnp_port_start(struct pnp_dev *dev , unsigned int bar ) { struct resource *res ; struct resource *tmp ; int tmp___0 ; { { tmp = pnp_get_resource(dev, 256UL, bar); res = tmp; tmp___0 = pnp_resource_valid(res); } if (tmp___0 != 0) { return (res->start); } else { } return (0ULL); } } __inline static int pnp_port_valid(struct pnp_dev *dev , unsigned int bar ) { struct resource *tmp ; int tmp___0 ; { { tmp = pnp_get_resource(dev, 256UL, bar); tmp___0 = pnp_resource_valid(tmp); } return (tmp___0); } } __inline static resource_size_t pnp_port_len(struct pnp_dev *dev , unsigned int bar ) { struct resource *res ; struct resource *tmp ; resource_size_t tmp___0 ; int tmp___1 ; { { tmp = pnp_get_resource(dev, 256UL, bar); res = tmp; tmp___1 = pnp_resource_valid(res); } if (tmp___1 != 0) { { tmp___0 = pnp_resource_len(res); } return (tmp___0); } else { } return (0ULL); } } __inline static resource_size_t pnp_irq(struct pnp_dev *dev , unsigned int bar ) { struct resource *res ; struct resource *tmp ; int tmp___0 ; { { tmp = pnp_get_resource(dev, 1024UL, bar); res = tmp; tmp___0 = pnp_resource_valid(res); } if (tmp___0 != 0) { return (res->start); } else { } return (0xffffffffffffffffULL); } } __inline static int pnp_irq_valid(struct pnp_dev *dev , unsigned int bar ) { struct resource *tmp ; int tmp___0 ; { { tmp = pnp_get_resource(dev, 1024UL, bar); tmp___0 = pnp_resource_valid(tmp); } return (tmp___0); } } __inline static void *pnp_get_drvdata(struct pnp_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_25((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pnp_set_drvdata(struct pnp_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_26(& pdev->dev, data); } return; } } extern int pnp_register_driver(struct pnp_driver * ) ; static int ldv_pnp_register_driver_77(struct pnp_driver *ldv_func_arg1 ) ; extern void pnp_unregister_driver(struct pnp_driver * ) ; static void ldv_pnp_unregister_driver_78(struct pnp_driver *ldv_func_arg1 ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_66(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_67(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_68(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_71(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_72(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void schedule(void) ; extern void kfree(void const * ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern struct rc_dev *rc_allocate_device(void) ; extern void rc_free_device(struct rc_dev * ) ; extern int rc_register_device(struct rc_dev * ) ; extern void rc_unregister_device(struct rc_dev * ) ; __inline static void init_ir_raw_event(struct ir_raw_event *ev ) { { { memset((void *)ev, 0, 12UL); } return; } } extern void ir_raw_event_handle(struct rc_dev * ) ; extern int ir_raw_event_store(struct rc_dev * , struct ir_raw_event * ) ; extern int ir_raw_event_store_with_filter(struct rc_dev * , struct ir_raw_event * ) ; __inline static void ir_raw_event_reset(struct rc_dev *dev ) { struct ir_raw_event ev ; { { ev.__annonCompField72.duration = 0U; ev.pulse = 0U; ev.reset = 0U; ev.timeout = 0U; ev.carrier_report = 0U; ev.reset = 1U; ir_raw_event_store(dev, & ev); ir_raw_event_handle(dev); } return; } } static int debug ; __inline static void nvt_cr_write(struct nvt_dev *nvt , u8 val , u8 reg ) { { { outb((int )reg, (int )nvt->cr_efir); outb((int )val, (int )nvt->cr_efdr); } return; } } __inline static u8 nvt_cr_read(struct nvt_dev *nvt , u8 reg ) { unsigned char tmp ; { { outb((int )reg, (int )nvt->cr_efir); tmp = inb((int )nvt->cr_efdr); } return (tmp); } } __inline static void nvt_set_reg_bit(struct nvt_dev *nvt , u8 val , u8 reg ) { u8 tmp ; u8 tmp___0 ; { { tmp___0 = nvt_cr_read(nvt, (int )reg); tmp = (u8 )((int )tmp___0 | (int )val); nvt_cr_write(nvt, (int )tmp, (int )reg); } return; } } __inline static void nvt_efm_enable(struct nvt_dev *nvt ) { { { outb(135, (int )nvt->cr_efir); outb(135, (int )nvt->cr_efir); } return; } } __inline static void nvt_efm_disable(struct nvt_dev *nvt ) { { { outb(170, (int )nvt->cr_efir); } return; } } __inline static void nvt_select_logical_dev(struct nvt_dev *nvt , u8 ldev ) { { { outb(7, (int )nvt->cr_efir); outb((int )ldev, (int )nvt->cr_efdr); } return; } } __inline static void nvt_cir_reg_write(struct nvt_dev *nvt , u8 val , u8 offset ) { { { outb((int )val, (int )((unsigned int )nvt->cir_addr + (unsigned int )offset)); } return; } } static u8 nvt_cir_reg_read(struct nvt_dev *nvt , u8 offset ) { u8 val ; { { val = inb((int )((unsigned int )nvt->cir_addr + (unsigned int )offset)); } return (val); } } __inline static void nvt_cir_wake_reg_write(struct nvt_dev *nvt , u8 val , u8 offset ) { { { outb((int )val, (int )((unsigned int )nvt->cir_wake_addr + (unsigned int )offset)); } return; } } static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt , u8 offset ) { u8 val ; { { val = inb((int )((unsigned int )nvt->cir_wake_addr + (unsigned int )offset)); } return (val); } } static void cir_dump_regs(struct nvt_dev *nvt ) { u8 tmp ; u8 tmp___0 ; u8 tmp___1 ; u8 tmp___2 ; u8 tmp___3 ; u8 tmp___4 ; u8 tmp___5 ; u8 tmp___6 ; u8 tmp___7 ; u8 tmp___8 ; u8 tmp___9 ; u8 tmp___10 ; u8 tmp___11 ; u8 tmp___12 ; u8 tmp___13 ; u8 tmp___14 ; u8 tmp___15 ; u8 tmp___16 ; u8 tmp___17 ; u8 tmp___18 ; { { nvt_efm_enable(nvt); nvt_select_logical_dev(nvt, 6); printk("\016nuvoton_cir: %s: Dump CIR logical device registers:\n", (char *)"nuvoton-cir"); tmp = nvt_cr_read(nvt, 48); printk("\016nuvoton_cir: * CR CIR ACTIVE : 0x%x\n", (int )tmp); tmp___0 = nvt_cr_read(nvt, 96); tmp___1 = nvt_cr_read(nvt, 97); printk("\016nuvoton_cir: * CR CIR BASE ADDR: 0x%x\n", ((int )tmp___0 << 8) | (int )tmp___1); tmp___2 = nvt_cr_read(nvt, 112); printk("\016nuvoton_cir: * CR CIR IRQ NUM: 0x%x\n", (int )tmp___2); nvt_efm_disable(nvt); printk("\016nuvoton_cir: %s: Dump CIR registers:\n", (char *)"nuvoton-cir"); tmp___3 = nvt_cir_reg_read(nvt, 0); printk("\016nuvoton_cir: * IRCON: 0x%x\n", (int )tmp___3); tmp___4 = nvt_cir_reg_read(nvt, 1); printk("\016nuvoton_cir: * IRSTS: 0x%x\n", (int )tmp___4); tmp___5 = nvt_cir_reg_read(nvt, 2); printk("\016nuvoton_cir: * IREN: 0x%x\n", (int )tmp___5); tmp___6 = nvt_cir_reg_read(nvt, 3); printk("\016nuvoton_cir: * RXFCONT: 0x%x\n", (int )tmp___6); tmp___7 = nvt_cir_reg_read(nvt, 4); printk("\016nuvoton_cir: * CP: 0x%x\n", (int )tmp___7); tmp___8 = nvt_cir_reg_read(nvt, 5); printk("\016nuvoton_cir: * CC: 0x%x\n", (int )tmp___8); tmp___9 = nvt_cir_reg_read(nvt, 6); printk("\016nuvoton_cir: * SLCH: 0x%x\n", (int )tmp___9); tmp___10 = nvt_cir_reg_read(nvt, 7); printk("\016nuvoton_cir: * SLCL: 0x%x\n", (int )tmp___10); tmp___11 = nvt_cir_reg_read(nvt, 8); printk("\016nuvoton_cir: * FIFOCON: 0x%x\n", (int )tmp___11); tmp___12 = nvt_cir_reg_read(nvt, 9); printk("\016nuvoton_cir: * IRFIFOSTS: 0x%x\n", (int )tmp___12); tmp___13 = nvt_cir_reg_read(nvt, 10); printk("\016nuvoton_cir: * SRXFIFO: 0x%x\n", (int )tmp___13); tmp___14 = nvt_cir_reg_read(nvt, 11); printk("\016nuvoton_cir: * TXFCONT: 0x%x\n", (int )tmp___14); tmp___15 = nvt_cir_reg_read(nvt, 12); printk("\016nuvoton_cir: * STXFIFO: 0x%x\n", (int )tmp___15); tmp___16 = nvt_cir_reg_read(nvt, 13); printk("\016nuvoton_cir: * FCCH: 0x%x\n", (int )tmp___16); tmp___17 = nvt_cir_reg_read(nvt, 14); printk("\016nuvoton_cir: * FCCL: 0x%x\n", (int )tmp___17); tmp___18 = nvt_cir_reg_read(nvt, 15); printk("\016nuvoton_cir: * IRFSM: 0x%x\n", (int )tmp___18); } return; } } static void cir_wake_dump_regs(struct nvt_dev *nvt ) { u8 i ; u8 fifo_len ; u8 tmp ; u8 tmp___0 ; u8 tmp___1 ; u8 tmp___2 ; u8 tmp___3 ; u8 tmp___4 ; u8 tmp___5 ; u8 tmp___6 ; u8 tmp___7 ; u8 tmp___8 ; u8 tmp___9 ; u8 tmp___10 ; u8 tmp___11 ; u8 tmp___12 ; u8 tmp___13 ; u8 tmp___14 ; u8 tmp___15 ; u8 tmp___16 ; u8 tmp___17 ; u8 tmp___18 ; u8 tmp___19 ; { { nvt_efm_enable(nvt); nvt_select_logical_dev(nvt, 14); printk("\016nuvoton_cir: %s: Dump CIR WAKE logical device registers:\n", (char *)"nuvoton-cir"); tmp = nvt_cr_read(nvt, 48); printk("\016nuvoton_cir: * CR CIR WAKE ACTIVE : 0x%x\n", (int )tmp); tmp___0 = nvt_cr_read(nvt, 96); tmp___1 = nvt_cr_read(nvt, 97); printk("\016nuvoton_cir: * CR CIR WAKE BASE ADDR: 0x%x\n", ((int )tmp___0 << 8) | (int )tmp___1); tmp___2 = nvt_cr_read(nvt, 112); printk("\016nuvoton_cir: * CR CIR WAKE IRQ NUM: 0x%x\n", (int )tmp___2); nvt_efm_disable(nvt); printk("\016nuvoton_cir: %s: Dump CIR WAKE registers\n", (char *)"nuvoton-cir"); tmp___3 = nvt_cir_wake_reg_read(nvt, 0); printk("\016nuvoton_cir: * IRCON: 0x%x\n", (int )tmp___3); tmp___4 = nvt_cir_wake_reg_read(nvt, 1); printk("\016nuvoton_cir: * IRSTS: 0x%x\n", (int )tmp___4); tmp___5 = nvt_cir_wake_reg_read(nvt, 2); printk("\016nuvoton_cir: * IREN: 0x%x\n", (int )tmp___5); tmp___6 = nvt_cir_wake_reg_read(nvt, 3); printk("\016nuvoton_cir: * FIFO CMP DEEP: 0x%x\n", (int )tmp___6); tmp___7 = nvt_cir_wake_reg_read(nvt, 4); printk("\016nuvoton_cir: * FIFO CMP TOL: 0x%x\n", (int )tmp___7); tmp___8 = nvt_cir_wake_reg_read(nvt, 5); printk("\016nuvoton_cir: * FIFO COUNT: 0x%x\n", (int )tmp___8); tmp___9 = nvt_cir_wake_reg_read(nvt, 6); printk("\016nuvoton_cir: * SLCH: 0x%x\n", (int )tmp___9); tmp___10 = nvt_cir_wake_reg_read(nvt, 7); printk("\016nuvoton_cir: * SLCL: 0x%x\n", (int )tmp___10); tmp___11 = nvt_cir_wake_reg_read(nvt, 8); printk("\016nuvoton_cir: * FIFOCON: 0x%x\n", (int )tmp___11); tmp___12 = nvt_cir_wake_reg_read(nvt, 9); printk("\016nuvoton_cir: * SRXFSTS: 0x%x\n", (int )tmp___12); tmp___13 = nvt_cir_wake_reg_read(nvt, 10); printk("\016nuvoton_cir: * SAMPLE RX FIFO: 0x%x\n", (int )tmp___13); tmp___14 = nvt_cir_wake_reg_read(nvt, 11); printk("\016nuvoton_cir: * WR FIFO DATA: 0x%x\n", (int )tmp___14); tmp___15 = nvt_cir_wake_reg_read(nvt, 12); printk("\016nuvoton_cir: * RD FIFO ONLY: 0x%x\n", (int )tmp___15); tmp___16 = nvt_cir_wake_reg_read(nvt, 13); printk("\016nuvoton_cir: * RD FIFO ONLY IDX: 0x%x\n", (int )tmp___16); tmp___17 = nvt_cir_wake_reg_read(nvt, 14); printk("\016nuvoton_cir: * FIFO IGNORE: 0x%x\n", (int )tmp___17); tmp___18 = nvt_cir_wake_reg_read(nvt, 15); printk("\016nuvoton_cir: * IRFSM: 0x%x\n", (int )tmp___18); fifo_len = nvt_cir_wake_reg_read(nvt, 5); printk("\016nuvoton_cir: %s: Dump CIR WAKE FIFO (len %d)\n", (char *)"nuvoton-cir", (int )fifo_len); printk("\016nuvoton_cir: * Contents ="); i = 0U; } goto ldv_29974; ldv_29973: { tmp___19 = nvt_cir_wake_reg_read(nvt, 12); printk(" %02x", (int )tmp___19); i = (u8 )((int )i + 1); } ldv_29974: ; if ((int )i < (int )fifo_len) { goto ldv_29973; } else { } { printk("\n"); } return; } } static int nvt_hw_detect(struct nvt_dev *nvt ) { unsigned long flags ; u8 chip_major ; u8 chip_minor ; int ret ; char chip_id[12U] ; bool chip_unknown ; { { ret = 0; chip_unknown = 0; nvt_efm_enable(nvt); chip_major = nvt_cr_read(nvt, 32); } if ((unsigned int )chip_major == 255U) { { nvt->cr_efir = 78U; nvt->cr_efdr = 79U; nvt_efm_enable(nvt); chip_major = nvt_cr_read(nvt, 32); } } else { } { chip_minor = nvt_cr_read(nvt, 33); } { if ((int )chip_major == 165) { goto case_165; } else { } if ((int )chip_major == 180) { goto case_180; } else { } if ((int )chip_major == 195) { goto case_195; } else { } goto switch_default; case_165: /* CIL Label */ { strcpy((char *)(& chip_id), "w83667hg"); } if ((unsigned int )chip_minor != 19U) { chip_unknown = 1; } else { } goto ldv_29986; case_180: /* CIL Label */ { strcpy((char *)(& chip_id), "w83677hg"); } if ((unsigned int )chip_minor - 114U > 1U) { chip_unknown = 1; } else { } goto ldv_29986; case_195: /* CIL Label */ { strcpy((char *)(& chip_id), "w83677hg-c"); } if ((unsigned int )chip_minor != 51U) { chip_unknown = 1; } else { } goto ldv_29986; switch_default: /* CIL Label */ { strcpy((char *)(& chip_id), "w836x7hg"); chip_unknown = 1; } goto ldv_29986; switch_break: /* CIL Label */ ; } ldv_29986: ; if ((int )chip_unknown) { { printk("\fnuvoton_cir: %s: unknown chip, id: 0x%02x 0x%02x, it may not work...", (char *)(& chip_id), (int )chip_major, (int )chip_minor); } } else if (debug != 0) { { printk("\017nuvoton_cir: %s: chip id: 0x%02x 0x%02x\n", (char *)(& chip_id), (int )chip_major, (int )chip_minor); } } else { } { nvt_efm_disable(nvt); ldv___ldv_spin_lock_44(& nvt->nvt_lock); nvt->chip_major = chip_major; nvt->chip_minor = chip_minor; ldv_spin_unlock_irqrestore_45(& nvt->nvt_lock, flags); } return (ret); } } static void nvt_cir_ldev_init(struct nvt_dev *nvt ) { u8 val ; u8 psreg ; u8 psmask ; u8 psval ; { if ((unsigned int )nvt->chip_major == 165U) { psreg = 44U; psmask = 31U; psval = 160U; } else { psreg = 39U; psmask = 188U; psval = 65U; } { val = nvt_cr_read(nvt, (int )psreg); val = (u8 )((int )val & (int )psmask); val = (u8 )((int )val | (int )psval); nvt_cr_write(nvt, (int )val, (int )psreg); nvt_select_logical_dev(nvt, 6); nvt_cr_write(nvt, 1, 48); nvt_cr_write(nvt, (int )((u8 )(nvt->cir_addr >> 8)), 96); nvt_cr_write(nvt, (int )((u8 )nvt->cir_addr), 97); nvt_cr_write(nvt, (int )((u8 )nvt->cir_irq), 112); } if (debug != 0) { { printk("\017nuvoton_cir: CIR initialized, base io port address: 0x%lx, irq: %d\n", nvt->cir_addr, nvt->cir_irq); } } else { } return; } } static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt ) { { { nvt_select_logical_dev(nvt, 10); nvt_cr_write(nvt, 1, 48); nvt_set_reg_bit(nvt, 8, 224); nvt_set_reg_bit(nvt, 128, 246); nvt_set_reg_bit(nvt, 8, 247); nvt_select_logical_dev(nvt, 14); nvt_cr_write(nvt, 1, 48); nvt_cr_write(nvt, (int )((u8 )(nvt->cir_wake_addr >> 8)), 96); nvt_cr_write(nvt, (int )((u8 )nvt->cir_wake_addr), 97); nvt_cr_write(nvt, (int )((u8 )nvt->cir_wake_irq), 112); } if (debug != 0) { { printk("\017nuvoton_cir: CIR Wake initialized, base io port address: 0x%lx, irq: %d\n", nvt->cir_wake_addr, nvt->cir_wake_irq); } } else { } return; } } static void nvt_clear_cir_fifo(struct nvt_dev *nvt ) { u8 val ; { { val = nvt_cir_reg_read(nvt, 8); nvt_cir_reg_write(nvt, (int )((unsigned int )val | 8U), 8); } return; } } static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt ) { u8 val ; { { val = nvt_cir_wake_reg_read(nvt, 8); nvt_cir_wake_reg_write(nvt, (int )((unsigned int )val | 8U), 8); } return; } } static void nvt_clear_tx_fifo(struct nvt_dev *nvt ) { u8 val ; { { val = nvt_cir_reg_read(nvt, 8); nvt_cir_reg_write(nvt, (int )((unsigned int )val | 128U), 8); } return; } } static void nvt_set_cir_iren(struct nvt_dev *nvt ) { u8 iren ; { { iren = 96U; nvt_cir_reg_write(nvt, (int )iren, 2); } return; } } static void nvt_cir_regs_init(struct nvt_dev *nvt ) { { { nvt_cir_reg_write(nvt, 7, 6); nvt_cir_reg_write(nvt, 208, 7); nvt_cir_reg_write(nvt, 35, 8); nvt_cir_reg_write(nvt, 54, 0); nvt_clear_cir_fifo(nvt); nvt_clear_tx_fifo(nvt); nvt_cir_reg_write(nvt, 255, 1); nvt_set_cir_iren(nvt); } return; } } static void nvt_cir_wake_regs_init(struct nvt_dev *nvt ) { { { nvt_cir_wake_reg_write(nvt, 65, 3); nvt_cir_wake_reg_write(nvt, 5, 4); nvt_cir_wake_reg_write(nvt, 7, 6); nvt_cir_wake_reg_write(nvt, 208, 7); nvt_cir_wake_reg_write(nvt, 0, 8); nvt_cir_wake_reg_write(nvt, 62, 0); nvt_clear_cir_wake_fifo(nvt); nvt_cir_wake_reg_write(nvt, 255, 1); } return; } } static void nvt_enable_wake(struct nvt_dev *nvt ) { { { nvt_efm_enable(nvt); nvt_select_logical_dev(nvt, 10); nvt_set_reg_bit(nvt, 8, 224); nvt_set_reg_bit(nvt, 128, 246); nvt_set_reg_bit(nvt, 8, 247); nvt_select_logical_dev(nvt, 14); nvt_cr_write(nvt, 1, 48); nvt_efm_disable(nvt); nvt_cir_wake_reg_write(nvt, 62, 0); nvt_cir_wake_reg_write(nvt, 255, 1); nvt_cir_wake_reg_write(nvt, 0, 2); } return; } } static int nvt_set_tx_carrier(struct rc_dev *dev , u32 carrier ) { struct nvt_dev *nvt ; u16 val ; u8 tmp ; u8 tmp___0 ; { nvt = (struct nvt_dev *)dev->priv; if (carrier == 0U) { return (-22); } else { } { nvt_cir_reg_write(nvt, 1, 4); val = (unsigned int )((u16 )(3000000U / carrier)) - 1U; nvt_cir_reg_write(nvt, (int )((u8 )val), 5); } if (debug != 0) { { tmp = nvt_cir_reg_read(nvt, 5); tmp___0 = nvt_cir_reg_read(nvt, 4); printk("\017nuvoton_cir: cp: 0x%x cc: 0x%x\n\n", (int )tmp___0, (int )tmp); } } else { } return (0); } } static int nvt_tx_ir(struct rc_dev *dev , unsigned int *txbuf , unsigned int n ) { struct nvt_dev *nvt ; unsigned long flags ; unsigned int i ; u8 iren ; int ret ; unsigned int _min1 ; unsigned int _min2 ; wait_queue_t __wait ; long __ret ; long __int ; long tmp ; { { nvt = (struct nvt_dev *)dev->priv; ldv___ldv_spin_lock_46(& nvt->tx.lock); _min1 = 64U; _min2 = n; ret = (int )(_min1 < _min2 ? _min1 : _min2); nvt->tx.buf_count = (unsigned int )((unsigned long )ret) * 4U; memcpy((void *)(& nvt->tx.buf), (void const *)txbuf, (size_t )nvt->tx.buf_count); nvt->tx.cur_buf_num = 0U; iren = nvt_cir_reg_read(nvt, 2); nvt_cir_reg_write(nvt, 6, 2); nvt->tx.tx_state = 4U; nvt_cir_reg_write(nvt, 56, 8); i = 0U; } goto ldv_30045; ldv_30044: { nvt_cir_reg_write(nvt, 1, 12); i = i + 1U; } ldv_30045: ; if (i <= 8U) { goto ldv_30044; } else { } { ldv_spin_unlock_irqrestore_47(& nvt->tx.lock, flags); } if ((unsigned int )nvt->tx.tx_state == 2U) { goto ldv_30047; } else { } { __ret = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_30053: { tmp = prepare_to_wait_event(& nvt->tx.queue, & __wait, 2); __int = tmp; } if ((unsigned int )nvt->tx.tx_state == 2U) { goto ldv_30052; } else { } { schedule(); } goto ldv_30053; ldv_30052: { finish_wait(& nvt->tx.queue, & __wait); } ldv_30047: { ldv___ldv_spin_lock_48(& nvt->tx.lock); nvt->tx.tx_state = 0U; ldv_spin_unlock_irqrestore_47(& nvt->tx.lock, flags); nvt_cir_reg_write(nvt, (int )iren, 2); } return (ret); } } static void nvt_dump_rx_buf(struct nvt_dev *nvt ) { int i ; { { printk("\017%s (len %d): ", "nvt_dump_rx_buf", nvt->pkts); i = 0; } goto ldv_30061; ldv_30060: { printk("0x%02x ", (int )nvt->buf[i]); i = i + 1; } ldv_30061: ; if ((unsigned int )i < nvt->pkts && i <= 31) { goto ldv_30060; } else { } { printk("\n"); } return; } } static void nvt_process_rx_ir_data(struct nvt_dev *nvt ) { struct ir_raw_event rawir ; u8 sample ; int i ; { rawir.__annonCompField72.duration = 0U; rawir.pulse = 0U; rawir.reset = 0U; rawir.timeout = 0U; rawir.carrier_report = 0U; if (debug > 1) { { printk("\017nuvoton_cir: %s firing\n", "nvt_process_rx_ir_data"); } } else { } if (debug != 0) { { nvt_dump_rx_buf(nvt); } } else { } if (debug > 1) { { printk("\017nuvoton_cir: Processing buffer of len %d\n", nvt->pkts); } } else { } { init_ir_raw_event(& rawir); i = 0; } goto ldv_30071; ldv_30070: sample = nvt->buf[i]; rawir.pulse = (int )((signed char )sample) < 0; rawir.__annonCompField72.duration = (u32 )(((int )sample & 127) * 50000); if (debug != 0) { { printk("\017nuvoton_cir: Storing %s with duration %d\n", (unsigned int )*((unsigned char *)(& rawir) + 8UL) != 0U ? (char *)"pulse" : (char *)"space", rawir.__annonCompField72.duration); } } else { } { ir_raw_event_store_with_filter(nvt->rdev, & rawir); } if ((unsigned int )sample == 128U && (unsigned int )(i + 1) < nvt->pkts) { if (debug != 0) { { printk("\017nuvoton_cir: Calling ir_raw_event_handle (signal end)\n\n"); } } else { } { ir_raw_event_handle(nvt->rdev); } } else { } i = i + 1; ldv_30071: ; if ((unsigned int )i < nvt->pkts) { goto ldv_30070; } else { } nvt->pkts = 0U; if (debug != 0) { { printk("\017nuvoton_cir: Calling ir_raw_event_handle (buffer empty)\n\n"); } } else { } { ir_raw_event_handle(nvt->rdev); } if (debug > 1) { { printk("\017nuvoton_cir: %s done\n", "nvt_process_rx_ir_data"); } } else { } return; } } static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt ) { { { printk("\fnuvoton_cir: RX FIFO overrun detected, flushing data!"); nvt->pkts = 0U; nvt_clear_cir_fifo(nvt); ir_raw_event_reset(nvt->rdev); } return; } } static void nvt_get_rx_ir_data(struct nvt_dev *nvt ) { unsigned long flags ; u8 fifocount ; u8 val ; unsigned int b_idx ; bool overrun ; int i ; { { overrun = 0; fifocount = nvt_cir_reg_read(nvt, 3); } if ((unsigned int )fifocount == 255U) { return; } else if ((unsigned int )fifocount > 32U) { overrun = 1; fifocount = 32U; } else { } if (debug != 0) { { printk("\017nuvoton_cir: attempting to fetch %u bytes from hw rx fifo\n", (int )fifocount); } } else { } { ldv___ldv_spin_lock_50(& nvt->nvt_lock); b_idx = nvt->pkts; } if (b_idx + (unsigned int )fifocount > 32U) { { nvt_process_rx_ir_data(nvt); b_idx = 0U; } } else { } i = 0; goto ldv_30086; ldv_30085: { val = nvt_cir_reg_read(nvt, 10); nvt->buf[b_idx + (unsigned int )i] = val; i = i + 1; } ldv_30086: ; if (i < (int )fifocount) { goto ldv_30085; } else { } nvt->pkts = nvt->pkts + (unsigned int )fifocount; if (debug != 0) { { printk("\017nuvoton_cir: %s: pkts now %d\n", "nvt_get_rx_ir_data", nvt->pkts); } } else { } { nvt_process_rx_ir_data(nvt); } if ((int )overrun) { { nvt_handle_rx_fifo_overrun(nvt); } } else { } { ldv_spin_unlock_irqrestore_45(& nvt->nvt_lock, flags); } return; } } static void nvt_cir_log_irqs(u8 status , u8 iren ) { { { printk("\016nuvoton_cir: IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s", (int )status, (int )iren, (int )((signed char )status) < 0 ? (char *)" RDR" : (char *)"", ((int )status & 64) != 0 ? (char *)" RTR" : (char *)"", ((int )status & 32) != 0 ? (char *)" PE" : (char *)"", ((int )status & 16) != 0 ? (char *)" RFO" : (char *)"", ((int )status & 8) != 0 ? (char *)" TE" : (char *)"", ((int )status & 4) != 0 ? (char *)" TTR" : (char *)"", ((int )status & 2) != 0 ? (char *)" TFU" : (char *)"", (int )status & 1 ? (char *)" GH" : (char *)"", ((int )status & -256) != 0 ? (char *)" ?" : (char *)""); } return; } } static bool nvt_cir_tx_inactive(struct nvt_dev *nvt ) { unsigned long flags ; bool tx_inactive ; u8 tx_state ; { { ldv___ldv_spin_lock_52(& nvt->tx.lock); tx_state = nvt->tx.tx_state; ldv_spin_unlock_irqrestore_47(& nvt->tx.lock, flags); tx_inactive = (unsigned int )tx_state == 0U; } return (tx_inactive); } } static irqreturn_t nvt_cir_isr(int irq , void *data ) { struct nvt_dev *nvt ; u8 status ; u8 iren ; u8 cur_state ; unsigned long flags ; bool tmp ; bool tmp___0 ; unsigned int pos ; unsigned int count ; u8 tmp___1 ; { nvt = (struct nvt_dev *)data; if (debug > 1) { { printk("\017nuvoton_cir: %s firing\n", "nvt_cir_isr"); } } else { } { nvt_efm_enable(nvt); nvt_select_logical_dev(nvt, 6); nvt_efm_disable(nvt); status = nvt_cir_reg_read(nvt, 1); } if ((unsigned int )status == 0U) { if (debug > 1) { { printk("\017nuvoton_cir: %s exiting, IRSTS 0x0\n", "nvt_cir_isr"); } } else { } { nvt_cir_reg_write(nvt, 255, 1); } return (0); } else { } { nvt_cir_reg_write(nvt, (int )status, 1); nvt_cir_reg_write(nvt, 0, 1); iren = nvt_cir_reg_read(nvt, 2); } if ((unsigned int )iren == 0U) { if (debug > 1) { { printk("\017nuvoton_cir: %s exiting, CIR not enabled\n", "nvt_cir_isr"); } } else { } return (0); } else { } if (debug != 0) { { nvt_cir_log_irqs((int )status, (int )iren); } } else { } if (((int )status & 64) != 0) { { tmp = nvt_cir_tx_inactive(nvt); } if ((int )tmp) { { nvt_get_rx_ir_data(nvt); } } else { } } else { } if (((int )status & 32) != 0) { { tmp___0 = nvt_cir_tx_inactive(nvt); } if ((int )tmp___0) { { nvt_get_rx_ir_data(nvt); } } else { } { ldv___ldv_spin_lock_54(& nvt->nvt_lock); cur_state = nvt->study_state; ldv_spin_unlock_irqrestore_45(& nvt->nvt_lock, flags); } if ((unsigned int )cur_state == 0U) { { nvt_clear_cir_fifo(nvt); } } else { } } else { } if (((int )status & 8) != 0) { { nvt_clear_tx_fifo(nvt); } } else { } if (((int )status & 4) != 0) { { ldv___ldv_spin_lock_56(& nvt->tx.lock); pos = nvt->tx.cur_buf_num; count = nvt->tx.buf_count; } if (pos < count) { { nvt_cir_reg_write(nvt, (int )nvt->tx.buf[pos], 12); nvt->tx.cur_buf_num = nvt->tx.cur_buf_num + 1U; } } else { { tmp___1 = nvt_cir_reg_read(nvt, 2); nvt_cir_reg_write(nvt, (int )tmp___1 & 251, 2); } } { ldv_spin_unlock_irqrestore_47(& nvt->tx.lock, flags); } } else { } if (((int )status & 2) != 0) { { ldv___ldv_spin_lock_58(& nvt->tx.lock); } if ((unsigned int )nvt->tx.tx_state == 4U) { { nvt->tx.tx_state = 2U; __wake_up(& nvt->tx.queue, 3U, 1, (void *)0); } } else { } { ldv_spin_unlock_irqrestore_47(& nvt->tx.lock, flags); } } else { } if (debug > 1) { { printk("\017nuvoton_cir: %s done\n", "nvt_cir_isr"); } } else { } return (1); } } static irqreturn_t nvt_cir_wake_isr(int irq , void *data ) { u8 status ; u8 iren ; u8 val ; struct nvt_dev *nvt ; unsigned long flags ; u8 tmp ; { nvt = (struct nvt_dev *)data; if (debug > 2) { { printk("\017nuvoton_cir: %s firing\n", "nvt_cir_wake_isr"); } } else { } { status = nvt_cir_wake_reg_read(nvt, 1); } if ((unsigned int )status == 0U) { return (0); } else { } if ((int )status & 1) { { nvt_clear_cir_wake_fifo(nvt); } } else { } { nvt_cir_wake_reg_write(nvt, (int )status, 1); nvt_cir_wake_reg_write(nvt, 0, 1); iren = nvt_cir_wake_reg_read(nvt, 2); } if ((unsigned int )iren == 0U) { if (debug > 2) { { printk("\017nuvoton_cir: %s exiting, wake not enabled\n", "nvt_cir_wake_isr"); } } else { } return (1); } else { } if (((int )status & 32) != 0 && (unsigned int )nvt->wake_state == 1U) { goto ldv_30123; ldv_30122: { val = nvt_cir_wake_reg_read(nvt, 12); } if (debug != 0) { { printk("\017nuvoton_cir: setting wake up key: 0x%x\n", (int )val); } } else { } ldv_30123: { tmp = nvt_cir_wake_reg_read(nvt, 13); } if ((unsigned int )tmp != 0U) { goto ldv_30122; } else { } { nvt_cir_wake_reg_write(nvt, 0, 2); ldv___ldv_spin_lock_60(& nvt->nvt_lock); nvt->wake_state = 2U; ldv_spin_unlock_irqrestore_45(& nvt->nvt_lock, flags); } } else { } if (debug > 2) { { printk("\017nuvoton_cir: %s done\n", "nvt_cir_wake_isr"); } } else { } return (1); } } static void nvt_enable_cir(struct nvt_dev *nvt ) { { { nvt_cir_reg_write(nvt, 54, 0); nvt_efm_enable(nvt); nvt_select_logical_dev(nvt, 6); nvt_cr_write(nvt, 1, 48); nvt_efm_disable(nvt); nvt_cir_reg_write(nvt, 255, 1); nvt_set_cir_iren(nvt); } return; } } static void nvt_disable_cir(struct nvt_dev *nvt ) { { { nvt_cir_reg_write(nvt, 0, 2); nvt_cir_reg_write(nvt, 255, 1); nvt_cir_reg_write(nvt, 0, 0); nvt_clear_cir_fifo(nvt); nvt_clear_tx_fifo(nvt); nvt_efm_enable(nvt); nvt_select_logical_dev(nvt, 6); nvt_cr_write(nvt, 0, 48); nvt_efm_disable(nvt); } return; } } static int nvt_open(struct rc_dev *dev ) { struct nvt_dev *nvt ; unsigned long flags ; { { nvt = (struct nvt_dev *)dev->priv; ldv___ldv_spin_lock_62(& nvt->nvt_lock); nvt_enable_cir(nvt); ldv_spin_unlock_irqrestore_45(& nvt->nvt_lock, flags); } return (0); } } static void nvt_close(struct rc_dev *dev ) { struct nvt_dev *nvt ; unsigned long flags ; { { nvt = (struct nvt_dev *)dev->priv; ldv___ldv_spin_lock_64(& nvt->nvt_lock); nvt_disable_cir(nvt); ldv_spin_unlock_irqrestore_45(& nvt->nvt_lock, flags); } return; } } static int nvt_probe(struct pnp_dev *pdev , struct pnp_device_id const *dev_id ) { struct nvt_dev *nvt ; struct rc_dev *rdev ; int ret ; void *tmp ; int tmp___0 ; resource_size_t tmp___1 ; int tmp___2 ; int tmp___3 ; resource_size_t tmp___4 ; resource_size_t tmp___5 ; resource_size_t tmp___6 ; resource_size_t tmp___7 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; struct resource *tmp___8 ; int tmp___9 ; struct resource *tmp___10 ; int tmp___11 ; { { ret = -12; tmp = kzalloc(608UL, 208U); nvt = (struct nvt_dev *)tmp; } if ((unsigned long )nvt == (unsigned long )((struct nvt_dev *)0)) { return (ret); } else { } { rdev = rc_allocate_device(); } if ((unsigned long )rdev == (unsigned long )((struct rc_dev *)0)) { goto exit_free_dev_rdev; } else { } { ret = -19; tmp___0 = pnp_port_valid(pdev, 0U); } if (tmp___0 == 0) { { dev_err((struct device const *)(& pdev->dev), "IR PNP Port not valid!\n"); } goto exit_free_dev_rdev; } else { { tmp___1 = pnp_port_len(pdev, 0U); } if (tmp___1 <= 14ULL) { { dev_err((struct device const *)(& pdev->dev), "IR PNP Port not valid!\n"); } goto exit_free_dev_rdev; } else { } } { tmp___2 = pnp_irq_valid(pdev, 0U); } if (tmp___2 == 0) { { dev_err((struct device const *)(& pdev->dev), "PNP IRQ not valid!\n"); } goto exit_free_dev_rdev; } else { } { tmp___3 = pnp_port_valid(pdev, 1U); } if (tmp___3 == 0) { { dev_err((struct device const *)(& pdev->dev), "Wake PNP Port not valid!\n"); } goto exit_free_dev_rdev; } else { { tmp___4 = pnp_port_len(pdev, 1U); } if (tmp___4 <= 14ULL) { { dev_err((struct device const *)(& pdev->dev), "Wake PNP Port not valid!\n"); } goto exit_free_dev_rdev; } else { } } { tmp___5 = pnp_port_start(pdev, 0U); nvt->cir_addr = (unsigned long )tmp___5; tmp___6 = pnp_irq(pdev, 0U); nvt->cir_irq = (int )tmp___6; tmp___7 = pnp_port_start(pdev, 1U); nvt->cir_wake_addr = (unsigned long )tmp___7; nvt->cir_wake_irq = nvt->cir_irq; nvt->cr_efir = 46U; nvt->cr_efdr = 47U; spinlock_check(& nvt->nvt_lock); __raw_spin_lock_init(& nvt->nvt_lock.__annonCompField19.rlock, "&(&nvt->nvt_lock)->rlock", & __key); spinlock_check(& nvt->tx.lock); __raw_spin_lock_init(& nvt->tx.lock.__annonCompField19.rlock, "&(&nvt->tx.lock)->rlock", & __key___0); pnp_set_drvdata(pdev, (void *)nvt); nvt->pdev = pdev; __init_waitqueue_head(& nvt->tx.queue, "&nvt->tx.queue", & __key___1); ret = nvt_hw_detect(nvt); } if (ret != 0) { goto exit_free_dev_rdev; } else { } { nvt_efm_enable(nvt); nvt_cir_ldev_init(nvt); nvt_cir_wake_ldev_init(nvt); nvt_efm_disable(nvt); nvt_cir_regs_init(nvt); nvt_cir_wake_regs_init(nvt); rdev->priv = (void *)nvt; rdev->driver_type = 1; rdev->allowed_protos = 262143ULL; rdev->open = & nvt_open; rdev->close = & nvt_close; rdev->tx_ir = & nvt_tx_ir; rdev->s_tx_carrier = & nvt_set_tx_carrier; rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver"; rdev->input_phys = "nuvoton/cir0"; rdev->input_id.bustype = 25U; rdev->input_id.vendor = 4176U; rdev->input_id.product = (__u16 )nvt->chip_major; rdev->input_id.version = (__u16 )nvt->chip_minor; rdev->dev.parent = & pdev->dev; rdev->driver_name = (char *)"nuvoton-cir"; rdev->map_name = "rc-rc6-mce"; rdev->timeout = 100000000U; rdev->rx_resolution = 50000U; nvt->rdev = rdev; ret = rc_register_device(rdev); } if (ret != 0) { goto exit_free_dev_rdev; } else { } { ret = -16; tmp___8 = __request_region(& ioport_resource, (resource_size_t )nvt->cir_addr, 15ULL, "nuvoton-cir", 0); } if ((unsigned long )tmp___8 == (unsigned long )((struct resource *)0)) { goto exit_unregister_device; } else { } { tmp___9 = ldv_request_irq_66((unsigned int )nvt->cir_irq, & nvt_cir_isr, 128UL, "nuvoton-cir", (void *)nvt); } if (tmp___9 != 0) { goto exit_release_cir_addr; } else { } { tmp___10 = __request_region(& ioport_resource, (resource_size_t )nvt->cir_wake_addr, 15ULL, "nuvoton-cir", 0); } if ((unsigned long )tmp___10 == (unsigned long )((struct resource *)0)) { goto exit_free_irq; } else { } { tmp___11 = ldv_request_irq_67((unsigned int )nvt->cir_wake_irq, & nvt_cir_wake_isr, 128UL, "nuvoton-cir", (void *)nvt); } if (tmp___11 != 0) { goto exit_release_cir_wake_addr; } else { } { device_init_wakeup(& pdev->dev, 1); printk("\rnuvoton_cir: driver has been successfully loaded\n"); } if (debug != 0) { { cir_dump_regs(nvt); cir_wake_dump_regs(nvt); } } else { } return (0); exit_release_cir_wake_addr: { __release_region(& ioport_resource, (resource_size_t )nvt->cir_wake_addr, 15ULL); } exit_free_irq: { ldv_free_irq_68((unsigned int )nvt->cir_irq, (void *)nvt); } exit_release_cir_addr: { __release_region(& ioport_resource, (resource_size_t )nvt->cir_addr, 15ULL); } exit_unregister_device: { rc_unregister_device(rdev); rdev = (struct rc_dev *)0; } exit_free_dev_rdev: { rc_free_device(rdev); kfree((void const *)nvt); } return (ret); } } static void nvt_remove(struct pnp_dev *pdev ) { struct nvt_dev *nvt ; void *tmp ; unsigned long flags ; { { tmp = pnp_get_drvdata(pdev); nvt = (struct nvt_dev *)tmp; ldv___ldv_spin_lock_69(& nvt->nvt_lock); nvt_cir_reg_write(nvt, 0, 2); nvt_disable_cir(nvt); nvt_enable_wake(nvt); ldv_spin_unlock_irqrestore_45(& nvt->nvt_lock, flags); ldv_free_irq_71((unsigned int )nvt->cir_irq, (void *)nvt); ldv_free_irq_72((unsigned int )nvt->cir_wake_irq, (void *)nvt); __release_region(& ioport_resource, (resource_size_t )nvt->cir_addr, 15ULL); __release_region(& ioport_resource, (resource_size_t )nvt->cir_wake_addr, 15ULL); rc_unregister_device(nvt->rdev); kfree((void const *)nvt); } return; } } static int nvt_suspend(struct pnp_dev *pdev , pm_message_t state ) { struct nvt_dev *nvt ; void *tmp ; unsigned long flags ; { { tmp = pnp_get_drvdata(pdev); nvt = (struct nvt_dev *)tmp; } if (debug != 0) { { printk("\017nuvoton_cir: %s called\n", "nvt_suspend"); } } else { } { ldv___ldv_spin_lock_73(& nvt->nvt_lock); nvt->study_state = 0U; nvt->wake_state = 0U; ldv_spin_unlock_irqrestore_45(& nvt->nvt_lock, flags); ldv___ldv_spin_lock_75(& nvt->tx.lock); nvt->tx.tx_state = 0U; ldv_spin_unlock_irqrestore_47(& nvt->tx.lock, flags); nvt_cir_reg_write(nvt, 0, 2); nvt_efm_enable(nvt); nvt_select_logical_dev(nvt, 6); nvt_cr_write(nvt, 0, 48); nvt_efm_disable(nvt); nvt_enable_wake(nvt); } return (0); } } static int nvt_resume(struct pnp_dev *pdev ) { int ret ; struct nvt_dev *nvt ; void *tmp ; { { ret = 0; tmp = pnp_get_drvdata(pdev); nvt = (struct nvt_dev *)tmp; } if (debug != 0) { { printk("\017nuvoton_cir: %s called\n", "nvt_resume"); } } else { } { nvt_set_cir_iren(nvt); nvt_efm_enable(nvt); nvt_select_logical_dev(nvt, 6); nvt_cr_write(nvt, 1, 48); nvt_efm_disable(nvt); nvt_cir_regs_init(nvt); nvt_cir_wake_regs_init(nvt); } return (ret); } } static void nvt_shutdown(struct pnp_dev *pdev ) { struct nvt_dev *nvt ; void *tmp ; { { tmp = pnp_get_drvdata(pdev); nvt = (struct nvt_dev *)tmp; nvt_enable_wake(nvt); } return; } } static struct pnp_device_id const nvt_ids[3U] = { {{'W', 'E', 'C', '0', '5', '3', '0', '\000'}, 0UL}, {{'N', 'T', 'N', '0', '5', '3', '0', '\000'}, 0UL}, {{'\000'}, 0UL}}; static struct pnp_driver nvt_driver = {(char *)"nuvoton-cir", (struct pnp_device_id const *)(& nvt_ids), 1U, & nvt_probe, & nvt_remove, & nvt_shutdown, & nvt_suspend, & nvt_resume, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}; static int nvt_init(void) { int tmp ; { { tmp = ldv_pnp_register_driver_77(& nvt_driver); } return (tmp); } } static void nvt_exit(void) { { { ldv_pnp_unregister_driver_78(& nvt_driver); } return; } } struct pnp_device_id const __mod_pnp_device_table ; void ldv_EMGentry_exit_nvt_exit_8_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_nvt_init_8_7(int (*arg0)(void) ) ; void ldv_allocate_external_0(void) ; void ldv_base_instance_callback_2_9(void (*arg0)(struct pnp_dev * ) , struct pnp_dev *arg1 ) ; int ldv_base_instance_probe_2_16(int (*arg0)(struct pnp_dev * , struct pnp_device_id * ) , struct pnp_dev *arg1 , struct pnp_device_id *arg2 ) ; void ldv_base_instance_release_2_2(void (*arg0)(struct pnp_dev * ) , struct pnp_dev *arg1 ) ; void ldv_base_instance_resume_2_5(int (*arg0)(struct pnp_dev * ) , struct pnp_dev *arg1 ) ; int ldv_base_instance_suspend_2_7(int (*arg0)(struct pnp_dev * , struct pm_message ) , struct pnp_dev *arg1 , struct pm_message arg2 ) ; void ldv_dispatch_deregister_6_1(struct pnp_driver *arg0 ) ; void ldv_dispatch_irq_deregister_3_1(int arg0 ) ; void ldv_dispatch_irq_register_4_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_5_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_7_2(struct pnp_driver *arg0 ) ; void ldv_entry_EMGentry_8(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_initialize_external_data(void) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_interrupt_interrupt_instance_1(void *arg0 ) ; int ldv_pnp_register_driver(int arg0 , struct pnp_driver *arg1 ) ; void ldv_pnp_unregister_driver(void *arg0 , struct pnp_driver *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_struct_pnp_driver_base_instance_2(void *arg0 ) ; int ldv_switch_0(void) ; void ldv_switch_automaton_state_0_1(void) ; void ldv_switch_automaton_state_0_6(void) ; void ldv_switch_automaton_state_1_1(void) ; void ldv_switch_automaton_state_1_6(void) ; void ldv_switch_automaton_state_2_10(void) ; void ldv_switch_automaton_state_2_19(void) ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; enum irqreturn (*ldv_1_callback_handler)(int , void * ) ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; void (*ldv_2_callback_remove)(struct pnp_dev * ) ; struct pnp_driver *ldv_2_container_struct_pnp_driver ; struct pm_message ldv_2_resource_struct_pm_message ; struct pnp_dev *ldv_2_resource_struct_pnp_dev_ptr ; struct pnp_device_id *ldv_2_resource_struct_pnp_device_id ; int ldv_2_ret_default ; void (*ldv_8_exit_nvt_exit_default)(void) ; int (*ldv_8_init_nvt_init_default)(void) ; int ldv_8_ret_default ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_2 ; int ldv_statevar_8 ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) = & nvt_cir_isr; enum irqreturn (*ldv_1_callback_handler)(int , void * ) = & nvt_cir_wake_isr; void (*ldv_2_callback_remove)(struct pnp_dev * ) = & nvt_remove; void (*ldv_8_exit_nvt_exit_default)(void) = & nvt_exit; int (*ldv_8_init_nvt_init_default)(void) = & nvt_init; void ldv_EMGentry_exit_nvt_exit_8_2(void (*arg0)(void) ) { { { nvt_exit(); } return; } } int ldv_EMGentry_init_nvt_init_8_7(int (*arg0)(void) ) { int tmp ; { { tmp = nvt_init(); } return (tmp); } } void ldv_allocate_external_0(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; { { ldv_0_data_data = external_allocated_data(); tmp = external_allocated_data(); ldv_0_thread_thread = (enum irqreturn (*)(int , void * ))tmp; ldv_1_data_data = external_allocated_data(); tmp___0 = external_allocated_data(); ldv_1_thread_thread = (enum irqreturn (*)(int , void * ))tmp___0; tmp___1 = external_allocated_data(); ldv_2_resource_struct_pnp_dev_ptr = (struct pnp_dev *)tmp___1; } return; } } void ldv_base_instance_callback_2_9(void (*arg0)(struct pnp_dev * ) , struct pnp_dev *arg1 ) { { { nvt_remove(arg1); } return; } } int ldv_base_instance_probe_2_16(int (*arg0)(struct pnp_dev * , struct pnp_device_id * ) , struct pnp_dev *arg1 , struct pnp_device_id *arg2 ) { int tmp ; { { tmp = nvt_probe(arg1, (struct pnp_device_id const *)arg2); } return (tmp); } } void ldv_base_instance_release_2_2(void (*arg0)(struct pnp_dev * ) , struct pnp_dev *arg1 ) { { { nvt_shutdown(arg1); } return; } } void ldv_base_instance_resume_2_5(int (*arg0)(struct pnp_dev * ) , struct pnp_dev *arg1 ) { { { nvt_resume(arg1); } return; } } int ldv_base_instance_suspend_2_7(int (*arg0)(struct pnp_dev * , struct pm_message ) , struct pnp_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = nvt_suspend(arg1, arg2); } return (tmp); } } void ldv_dispatch_deregister_6_1(struct pnp_driver *arg0 ) { { { ldv_2_container_struct_pnp_driver = arg0; ldv_switch_automaton_state_2_10(); } return; } } void ldv_dispatch_irq_deregister_3_1(int arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_0_line_line = arg0; ldv_switch_automaton_state_0_1(); } } else { { ldv_1_line_line = arg0; ldv_switch_automaton_state_1_1(); } } return; } } void ldv_dispatch_irq_register_4_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } } else { { ldv_1_line_line = arg0; ldv_1_callback_handler = arg1; ldv_1_thread_thread = arg2; ldv_1_data_data = arg3; ldv_switch_automaton_state_1_6(); } } return; } } void ldv_dispatch_irq_register_5_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } } else { { ldv_1_line_line = arg0; ldv_1_callback_handler = arg1; ldv_1_thread_thread = arg2; ldv_1_data_data = arg3; ldv_switch_automaton_state_1_6(); } } return; } } void ldv_dispatch_register_7_2(struct pnp_driver *arg0 ) { { { ldv_2_container_struct_pnp_driver = arg0; ldv_switch_automaton_state_2_19(); } return; } } void ldv_entry_EMGentry_8(void *arg0 ) { int tmp ; { { if (ldv_statevar_8 == 4) { goto case_4; } else { } if (ldv_statevar_8 == 6) { goto case_6; } else { } if (ldv_statevar_8 == 7) { goto case_7; } else { } goto switch_default; case_4: /* CIL Label */ { ldv_assume(ldv_8_ret_default == 0); ldv_assume(ldv_statevar_2 == 11); ldv_EMGentry_exit_nvt_exit_8_2(ldv_8_exit_nvt_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_8 = 7; } goto ldv_30460; case_6: /* CIL Label */ { ldv_assume(ldv_8_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_8 = 7; } goto ldv_30460; case_7: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 19); ldv_8_ret_default = ldv_EMGentry_init_nvt_init_8_7(ldv_8_init_nvt_init_default); ldv_8_ret_default = ldv_post_init(ldv_8_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_8 = 4; } else { ldv_statevar_8 = 6; } goto ldv_30460; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_30460: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_8 = 7; ldv_statevar_0 = 6; ldv_statevar_1 = 6; ldv_2_ret_default = 1; ldv_statevar_2 = 19; } ldv_30472: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_8((void *)0); } goto ldv_30467; case_1: /* CIL Label */ { ldv_interrupt_interrupt_instance_0((void *)0); } goto ldv_30467; case_2: /* CIL Label */ { ldv_interrupt_interrupt_instance_1((void *)0); } goto ldv_30467; case_3: /* CIL Label */ { ldv_struct_pnp_driver_base_instance_2((void *)0); } goto ldv_30467; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_30467: ; goto ldv_30472; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_3_line_line ; { { ldv_3_line_line = arg1; ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_1 == 2); ldv_dispatch_irq_deregister_3_1(ldv_3_line_line); } return; return; } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = nvt_cir_isr(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = nvt_cir_wake_isr(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { int tmp ; { { if (ldv_statevar_0 == 2) { goto case_2; } else { } if (ldv_statevar_0 == 4) { goto case_4; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); ldv_statevar_0 = 6; } goto ldv_30513; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } ldv_statevar_0 = 6; goto ldv_30513; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 2; } else { ldv_statevar_0 = 4; } goto ldv_30513; case_6: /* CIL Label */ ; goto ldv_30513; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_30513: ; return; } } void ldv_interrupt_interrupt_instance_1(void *arg0 ) { int tmp ; { { if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_1_ret_val_default != 2U); ldv_statevar_1 = 6; } goto ldv_30522; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_1_ret_val_default == 2U); } if ((unsigned long )ldv_1_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_1_3(ldv_1_thread_thread, ldv_1_line_line, ldv_1_data_data); } } else { } ldv_statevar_1 = 6; goto ldv_30522; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_1_ret_val_default = ldv_interrupt_instance_handler_1_5(ldv_1_callback_handler, ldv_1_line_line, ldv_1_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_1 = 2; } else { ldv_statevar_1 = 4; } goto ldv_30522; case_6: /* CIL Label */ ; goto ldv_30522; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_30522: ; return; } } int ldv_pnp_register_driver(int arg0 , struct pnp_driver *arg1 ) { struct pnp_driver *ldv_7_struct_pnp_driver_struct_pnp_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_7_struct_pnp_driver_struct_pnp_driver = arg1; ldv_assume(ldv_statevar_2 == 19); ldv_dispatch_register_7_2(ldv_7_struct_pnp_driver_struct_pnp_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_pnp_unregister_driver(void *arg0 , struct pnp_driver *arg1 ) { struct pnp_driver *ldv_6_struct_pnp_driver_struct_pnp_driver ; { { ldv_6_struct_pnp_driver_struct_pnp_driver = arg1; ldv_assume(ldv_statevar_2 == 11); ldv_dispatch_deregister_6_1(ldv_6_struct_pnp_driver_struct_pnp_driver); } return; return; } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_5_callback_handler)(int , void * ) ; void *ldv_5_data_data ; int ldv_5_line_line ; enum irqreturn (*ldv_5_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_5_line_line = (int )arg1; ldv_5_callback_handler = arg2; ldv_5_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_5_data_data = arg5; ldv_assume(ldv_statevar_0 == 6 || ldv_statevar_1 == 6); ldv_dispatch_irq_register_5_2(ldv_5_line_line, ldv_5_callback_handler, ldv_5_thread_thread, ldv_5_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_struct_pnp_driver_base_instance_2(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; void *tmp___4 ; int tmp___5 ; { { if (ldv_statevar_2 == 1) { goto case_1; } else { } if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 3) { goto case_3; } else { } if (ldv_statevar_2 == 4) { goto case_4; } else { } if (ldv_statevar_2 == 6) { goto case_6; } else { } if (ldv_statevar_2 == 7) { goto case_7; } else { } if (ldv_statevar_2 == 8) { goto case_8; } else { } if (ldv_statevar_2 == 9) { goto case_9; } else { } if (ldv_statevar_2 == 11) { goto case_11; } else { } if (ldv_statevar_2 == 13) { goto case_13; } else { } if (ldv_statevar_2 == 15) { goto case_15; } else { } if (ldv_statevar_2 == 16) { goto case_16; } else { } if (ldv_statevar_2 == 18) { goto case_18; } else { } if (ldv_statevar_2 == 19) { goto case_19; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_2 = 11; } else { ldv_statevar_2 = 16; } goto ldv_30559; case_2: /* CIL Label */ { ldv_base_instance_release_2_2(ldv_2_container_struct_pnp_driver->shutdown, ldv_2_resource_struct_pnp_dev_ptr); ldv_statevar_2 = 1; } goto ldv_30559; case_3: /* CIL Label */ { ldv_statevar_2 = ldv_switch_0(); } goto ldv_30559; case_4: /* CIL Label */ { ldv_assume(ldv_2_ret_default != 0); ldv_statevar_2 = ldv_switch_0(); } goto ldv_30559; case_6: /* CIL Label */ { ldv_assume(ldv_2_ret_default == 0); ldv_base_instance_resume_2_5(ldv_2_container_struct_pnp_driver->resume, ldv_2_resource_struct_pnp_dev_ptr); ldv_statevar_2 = 3; } goto ldv_30559; case_7: /* CIL Label */ { ldv_2_ret_default = ldv_base_instance_suspend_2_7(ldv_2_container_struct_pnp_driver->suspend, ldv_2_resource_struct_pnp_dev_ptr, ldv_2_resource_struct_pm_message); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_2 = 4; } else { ldv_statevar_2 = 6; } goto ldv_30559; case_8: /* CIL Label */ { ldv_statevar_2 = ldv_switch_0(); } goto ldv_30559; case_9: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_1 == 2); ldv_base_instance_callback_2_9(ldv_2_callback_remove, ldv_2_resource_struct_pnp_dev_ptr); ldv_statevar_2 = 8; } goto ldv_30559; case_11: /* CIL Label */ { ldv_free((void *)ldv_2_resource_struct_pnp_dev_ptr); ldv_free((void *)ldv_2_resource_struct_pnp_device_id); ldv_2_ret_default = 1; ldv_statevar_2 = 19; } goto ldv_30559; case_13: /* CIL Label */ { ldv_assume(ldv_2_ret_default != 0); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_2 = 11; } else { ldv_statevar_2 = 16; } goto ldv_30559; case_15: /* CIL Label */ { ldv_assume(ldv_2_ret_default == 0); ldv_statevar_2 = ldv_switch_0(); } goto ldv_30559; case_16: /* CIL Label */ { ldv_assume(((ldv_statevar_0 == 6 || ldv_statevar_0 == 2) || ldv_statevar_1 == 2) || ldv_statevar_1 == 6); ldv_2_ret_default = ldv_base_instance_probe_2_16((int (*)(struct pnp_dev * , struct pnp_device_id * ))ldv_2_container_struct_pnp_driver->probe, ldv_2_resource_struct_pnp_dev_ptr, ldv_2_resource_struct_pnp_device_id); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { ldv_statevar_2 = 13; } else { ldv_statevar_2 = 15; } goto ldv_30559; case_18: /* CIL Label */ { tmp___3 = ldv_xmalloc(1624UL); ldv_2_resource_struct_pnp_dev_ptr = (struct pnp_dev *)tmp___3; tmp___4 = ldv_xmalloc(16UL); ldv_2_resource_struct_pnp_device_id = (struct pnp_device_id *)tmp___4; tmp___5 = ldv_undef_int(); } if (tmp___5 != 0) { ldv_statevar_2 = 11; } else { ldv_statevar_2 = 16; } goto ldv_30559; case_19: /* CIL Label */ ; goto ldv_30559; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_30559: ; return; } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (2); case_1: /* CIL Label */ ; return (7); case_2: /* CIL Label */ ; return (9); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_0_1(void) { { ldv_statevar_0 = 6; return; } } void ldv_switch_automaton_state_0_6(void) { { ldv_statevar_0 = 5; return; } } void ldv_switch_automaton_state_1_1(void) { { ldv_statevar_1 = 6; return; } } void ldv_switch_automaton_state_1_6(void) { { ldv_statevar_1 = 5; return; } } void ldv_switch_automaton_state_2_10(void) { { ldv_2_ret_default = 1; ldv_statevar_2 = 19; return; } } void ldv_switch_automaton_state_2_19(void) { { ldv_statevar_2 = 18; return; } } static void *ldv_dev_get_drvdata_25(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_26(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static void ldv___ldv_spin_lock_44(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_nvt_lock_of_nvt_dev(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_45(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_nvt_lock_of_nvt_dev(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_spin_lock_46(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_47(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_lock_of_NOT_ARG_SIGN(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_spin_lock_48(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_50(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_nvt_lock_of_nvt_dev(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_52(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_54(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_nvt_lock_of_nvt_dev(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_56(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_58(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_60(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_nvt_lock_of_nvt_dev(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_62(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_nvt_lock_of_nvt_dev(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_64(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_nvt_lock_of_nvt_dev(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static int ldv_request_irq_66(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_67(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_68(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv___ldv_spin_lock_69(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_nvt_lock_of_nvt_dev(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv_free_irq_71(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_72(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv___ldv_spin_lock_73(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_nvt_lock_of_nvt_dev(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_75(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); } return; } } static int ldv_pnp_register_driver_77(struct pnp_driver *ldv_func_arg1 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = pnp_register_driver(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_pnp_register_driver(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_pnp_unregister_driver_78(struct pnp_driver *ldv_func_arg1 ) { { { pnp_unregister_driver(ldv_func_arg1); ldv_pnp_unregister_driver((void *)0, ldv_func_arg1); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } int ldv_post_probe(int probe_ret_val ) ; static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_check_alloc_flags(gfp_t ) ; extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } long ldv__builtin_expect(long exp , long c ) ; extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; void *ldv_malloc_unknown_size(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_nvt_lock_of_nvt_dev = 1; void ldv_spin_lock_nvt_lock_of_nvt_dev(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_nvt_lock_of_nvt_dev == 1); ldv_assume(ldv_spin_nvt_lock_of_nvt_dev == 1); ldv_spin_nvt_lock_of_nvt_dev = 2; } return; } } void ldv_spin_unlock_nvt_lock_of_nvt_dev(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_nvt_lock_of_nvt_dev == 2); ldv_assume(ldv_spin_nvt_lock_of_nvt_dev == 2); ldv_spin_nvt_lock_of_nvt_dev = 1; } return; } } int ldv_spin_trylock_nvt_lock_of_nvt_dev(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_nvt_lock_of_nvt_dev == 1); ldv_assume(ldv_spin_nvt_lock_of_nvt_dev == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_nvt_lock_of_nvt_dev = 2; return (1); } } } void ldv_spin_unlock_wait_nvt_lock_of_nvt_dev(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_nvt_lock_of_nvt_dev == 1); ldv_assume(ldv_spin_nvt_lock_of_nvt_dev == 1); } return; } } int ldv_spin_is_locked_nvt_lock_of_nvt_dev(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_nvt_lock_of_nvt_dev == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_nvt_lock_of_nvt_dev(void) { int tmp ; { { tmp = ldv_spin_is_locked_nvt_lock_of_nvt_dev(); } return (tmp == 0); } } int ldv_spin_is_contended_nvt_lock_of_nvt_dev(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_nvt_lock_of_nvt_dev(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_nvt_lock_of_nvt_dev == 1); ldv_assume(ldv_spin_nvt_lock_of_nvt_dev == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_nvt_lock_of_nvt_dev = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_nvt_lock_of_nvt_dev == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_nvt_lock_of_nvt_dev == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } return (0); } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }