/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct device; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __be16; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct ctl_table; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_133 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_133 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_136 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_137 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_135 { struct __anonstruct____missing_field_name_136 __annonCompField34 ; struct __anonstruct____missing_field_name_137 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_135 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_138 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_144 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_143 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_144 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_141 { unsigned long counters ; struct __anonstruct____missing_field_name_142 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_139 { union __anonunion____missing_field_name_140 __annonCompField38 ; union __anonunion____missing_field_name_141 __annonCompField42 ; }; struct __anonstruct____missing_field_name_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_145 { struct list_head lru ; struct __anonstruct____missing_field_name_146 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_147 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct __anonstruct____missing_field_name_139 __annonCompField43 ; union __anonunion____missing_field_name_145 __annonCompField45 ; union __anonunion____missing_field_name_147 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_151 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_151 sync_serial_settings; struct __anonstruct_te1_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_152 te1_settings; struct __anonstruct_raw_hdlc_proto_153 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_153 raw_hdlc_proto; struct __anonstruct_fr_proto_154 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_154 fr_proto; struct __anonstruct_fr_proto_pvc_155 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_155 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_156 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_156 fr_proto_pvc_info; struct __anonstruct_cisco_proto_157 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_157 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_158 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_158 ifs_ifsu ; }; union __anonunion_ifr_ifrn_159 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_160 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_159 ifr_ifrn ; union __anonunion_ifr_ifru_160 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_163 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_162 { struct __anonstruct____missing_field_name_163 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_162 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_165 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_164 { struct __anonstruct____missing_field_name_165 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_164 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_166 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_168 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_168 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_169 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_169 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_171 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_170 { size_t written ; size_t count ; union __anonunion_arg_171 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_170 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_172 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_173 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_174 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_172 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_173 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_174 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_175 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_175 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_177 { struct list_head link ; int state ; }; union __anonunion_fl_u_176 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_177 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_176 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_178 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_178 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_180 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_181 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_184 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_185 { long _band ; int _fd ; }; struct __anonstruct__sigsys_186 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_179 { int _pad[28U] ; struct __anonstruct__kill_180 _kill ; struct __anonstruct__timer_181 _timer ; struct __anonstruct__rt_182 _rt ; struct __anonstruct__sigchld_183 _sigchld ; struct __anonstruct__sigfault_184 _sigfault ; struct __anonstruct__sigpoll_185 _sigpoll ; struct __anonstruct__sigsys_186 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_179 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_190 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_189 { struct __anonstruct____missing_field_name_190 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_189 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_191 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_192 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_194 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_193 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; union __anonunion_type_data_195 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_197 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_196 { union __anonunion_payload_197 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_191 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_192 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_193 __annonCompField60 ; union __anonunion_type_data_195 type_data ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_22018 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_22018 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_214 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_215 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField63 ; struct __anonstruct____missing_field_name_215 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_213 __annonCompField65 ; }; struct in6_addr; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_219 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_218 { __wsum csum ; struct __anonstruct____missing_field_name_219 __annonCompField67 ; }; union __anonunion____missing_field_name_220 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_221 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_218 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_221 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6_mib_device { atomic_long_t mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6msg_mib_device { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; union __anonunion_in6_u_224 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_224 in6_u ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28376 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28377 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28376 reg_state : 8 ; bool dismantle ; enum ldv_28377 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; typedef u32 ixgbe_link_speed; struct ixgbe_hw; enum ixgbe_media_type; struct ixgbe_mac_operations { s32 (*init_hw)(struct ixgbe_hw * ) ; s32 (*reset_hw)(struct ixgbe_hw * ) ; s32 (*start_hw)(struct ixgbe_hw * ) ; s32 (*clear_hw_cntrs)(struct ixgbe_hw * ) ; enum ixgbe_media_type (*get_media_type)(struct ixgbe_hw * ) ; u32 (*get_supported_physical_layer)(struct ixgbe_hw * ) ; s32 (*get_mac_addr)(struct ixgbe_hw * , u8 * ) ; s32 (*stop_adapter)(struct ixgbe_hw * ) ; s32 (*get_bus_info)(struct ixgbe_hw * ) ; s32 (*setup_link)(struct ixgbe_hw * , ixgbe_link_speed , bool , bool ) ; s32 (*check_link)(struct ixgbe_hw * , ixgbe_link_speed * , bool * , bool ) ; s32 (*get_link_capabilities)(struct ixgbe_hw * , ixgbe_link_speed * , bool * ) ; s32 (*set_rar)(struct ixgbe_hw * , u32 , u8 * , u32 ) ; s32 (*set_uc_addr)(struct ixgbe_hw * , u32 , u8 * ) ; s32 (*init_rx_addrs)(struct ixgbe_hw * ) ; s32 (*update_mc_addr_list)(struct ixgbe_hw * , struct net_device * ) ; s32 (*enable_mc)(struct ixgbe_hw * ) ; s32 (*disable_mc)(struct ixgbe_hw * ) ; s32 (*clear_vfta)(struct ixgbe_hw * ) ; s32 (*set_vfta)(struct ixgbe_hw * , u32 , u32 , bool ) ; }; enum ixgbe_mac_type { ixgbe_mac_unknown = 0, ixgbe_mac_82599_vf = 1, ixgbe_mac_X540_vf = 2, ixgbe_num_macs = 3 } ; struct ixgbe_mac_info { struct ixgbe_mac_operations ops ; u8 addr[6U] ; u8 perm_addr[6U] ; enum ixgbe_mac_type type ; s32 mc_filter_type ; bool get_link_status ; u32 max_tx_queues ; u32 max_rx_queues ; u32 max_msix_vectors ; }; struct ixgbe_mbx_operations { s32 (*init_params)(struct ixgbe_hw * ) ; s32 (*read)(struct ixgbe_hw * , u32 * , u16 ) ; s32 (*write)(struct ixgbe_hw * , u32 * , u16 ) ; s32 (*read_posted)(struct ixgbe_hw * , u32 * , u16 ) ; s32 (*write_posted)(struct ixgbe_hw * , u32 * , u16 ) ; s32 (*check_for_msg)(struct ixgbe_hw * ) ; s32 (*check_for_ack)(struct ixgbe_hw * ) ; s32 (*check_for_rst)(struct ixgbe_hw * ) ; }; struct ixgbe_mbx_stats { u32 msgs_tx ; u32 msgs_rx ; u32 acks ; u32 reqs ; u32 rsts ; }; struct ixgbe_mbx_info { struct ixgbe_mbx_operations ops ; struct ixgbe_mbx_stats stats ; u32 timeout ; u32 udelay ; u32 v2p_mailbox ; u16 size ; }; struct ixgbe_hw { void *back ; u8 *hw_addr ; struct ixgbe_mac_info mac ; struct ixgbe_mbx_info mbx ; u16 device_id ; u16 subsystem_vendor_id ; u16 subsystem_device_id ; u16 vendor_id ; u8 revision_id ; bool adapter_stopped ; int api_version ; }; struct ixgbevf_info { enum ixgbe_mac_type mac ; struct ixgbe_mac_operations const *mac_ops ; }; struct res_counter { unsigned long long usage ; unsigned long long max_usage ; unsigned long long limit ; unsigned long long soft_limit ; unsigned long long failcnt ; spinlock_t lock ; struct res_counter *parent ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * ); union __anonunion_ki_obj_256 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void *private ; union __anonunion_ki_obj_256 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; size_t ki_nbytes ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; union __anonunion____missing_field_name_257 { struct sock_filter insns[0U] ; struct work_struct work ; }; struct sk_filter { atomic_t refcnt ; unsigned int len ; struct callback_head rcu ; unsigned int (*bpf_func)(struct sk_buff const * , struct sock_filter const * ) ; union __anonunion____missing_field_name_257 __annonCompField76 ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct neigh_parms *next ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { struct neigh_table *next ; int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_259 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_259 __annonCompField77 ; }; struct __anonstruct_socket_lock_t_260 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_260 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_262 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_261 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_262 __annonCompField78 ; }; union __anonunion____missing_field_name_263 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_265 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_264 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_265 __annonCompField81 ; }; union __anonunion____missing_field_name_266 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_267 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_261 __annonCompField79 ; union __anonunion____missing_field_name_263 __annonCompField80 ; union __anonunion____missing_field_name_264 __annonCompField82 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 4 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_266 __annonCompField83 ; struct proto *skc_prot ; struct net *skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_267 __annonCompField84 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_268 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_268 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned int sk_shutdown : 2 ; unsigned int sk_no_check : 2 ; unsigned int sk_userlocks : 4 ; unsigned int sk_protocol : 8 ; unsigned int sk_type : 16 ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * , int ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_269 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*mtu_reduced)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_269 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct res_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct sock_common __req_common ; struct request_sock *dl_next ; u16 mss ; u8 num_retrans ; u8 cookie_ts : 1 ; u8 num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct ipv6_devconf { __s32 forwarding ; __s32 hop_limit ; __s32 mtu6 ; __s32 accept_ra ; __s32 accept_redirects ; __s32 autoconf ; __s32 dad_transmits ; __s32 rtr_solicits ; __s32 rtr_solicit_interval ; __s32 rtr_solicit_delay ; __s32 force_mld_version ; __s32 mldv1_unsolicited_report_interval ; __s32 mldv2_unsolicited_report_interval ; __s32 use_tempaddr ; __s32 temp_valid_lft ; __s32 temp_prefered_lft ; __s32 regen_max_retry ; __s32 max_desync_factor ; __s32 max_addresses ; __s32 accept_ra_defrtr ; __s32 accept_ra_pinfo ; __s32 accept_ra_rtr_pref ; __s32 rtr_probe_interval ; __s32 accept_ra_rt_info_max_plen ; __s32 proxy_ndp ; __s32 accept_source_route ; __s32 optimistic_dad ; __s32 mc_forwarding ; __s32 disable_ipv6 ; __s32 accept_dad ; __s32 force_tllao ; __s32 ndisc_notify ; __s32 suppress_frag_ndisc ; void *sysctl ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; struct ip6_sf_list { struct ip6_sf_list *sf_next ; struct in6_addr sf_addr ; unsigned long sf_count[2U] ; unsigned char sf_gsresp ; unsigned char sf_oldin ; unsigned char sf_crcount ; }; struct ifmcaddr6 { struct in6_addr mca_addr ; struct inet6_dev *idev ; struct ifmcaddr6 *next ; struct ip6_sf_list *mca_sources ; struct ip6_sf_list *mca_tomb ; unsigned int mca_sfmode ; unsigned char mca_crcount ; unsigned long mca_sfcount[2U] ; struct timer_list mca_timer ; unsigned int mca_flags ; int mca_users ; atomic_t mca_refcnt ; spinlock_t mca_lock ; unsigned long mca_cstamp ; unsigned long mca_tstamp ; }; struct ifacaddr6 { struct in6_addr aca_addr ; struct inet6_dev *aca_idev ; struct rt6_info *aca_rt ; struct ifacaddr6 *aca_next ; int aca_users ; atomic_t aca_refcnt ; spinlock_t aca_lock ; unsigned long aca_cstamp ; unsigned long aca_tstamp ; }; struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry ; struct ipstats_mib *ipv6[1U] ; struct icmpv6_mib_device *icmpv6dev ; struct icmpv6msg_mib_device *icmpv6msgdev ; }; struct inet6_dev { struct net_device *dev ; struct list_head addr_list ; struct ifmcaddr6 *mc_list ; struct ifmcaddr6 *mc_tomb ; spinlock_t mc_lock ; unsigned char mc_qrv ; unsigned char mc_gq_running ; unsigned char mc_ifc_count ; unsigned char mc_dad_count ; unsigned long mc_v1_seen ; unsigned long mc_qi ; unsigned long mc_qri ; unsigned long mc_maxdelay ; struct timer_list mc_gq_timer ; struct timer_list mc_ifc_timer ; struct timer_list mc_dad_timer ; struct ifacaddr6 *ac_list ; rwlock_t lock ; atomic_t refcnt ; __u32 if_flags ; int dead ; u8 rndid[8U] ; struct timer_list regen_timer ; struct list_head tempaddr_list ; struct in6_addr token ; struct neigh_parms *nd_parms ; struct ipv6_devconf cnf ; struct ipv6_devstat stats ; struct timer_list rs_timer ; __u8 rs_probes ; unsigned long tstamp ; struct callback_head rcu ; }; union __anonunion____missing_field_name_281 { __be32 a4 ; __be32 a6[4U] ; }; struct inetpeer_addr_base { union __anonunion____missing_field_name_281 __annonCompField85 ; }; struct inetpeer_addr { struct inetpeer_addr_base addr ; __u16 family ; }; union __anonunion____missing_field_name_282 { struct list_head gc_list ; struct callback_head gc_rcu ; }; struct __anonstruct____missing_field_name_284 { atomic_t rid ; atomic_t ip_id_count ; }; union __anonunion____missing_field_name_283 { struct __anonstruct____missing_field_name_284 __annonCompField87 ; struct callback_head rcu ; struct inet_peer *gc_next ; }; struct inet_peer { struct inet_peer *avl_left ; struct inet_peer *avl_right ; struct inetpeer_addr daddr ; __u32 avl_height ; u32 metrics[15U] ; u32 rate_tokens ; unsigned long rate_last ; union __anonunion____missing_field_name_282 __annonCompField86 ; union __anonunion____missing_field_name_283 __annonCompField88 ; __u32 dtime ; atomic_t refcnt ; }; struct inet_peer_base { struct inet_peer *root ; seqlock_t lock ; u32 flush_seq ; int total ; }; struct rtable { struct dst_entry dst ; int rt_genid ; unsigned int rt_flags ; __u16 rt_type ; __u8 rt_is_input ; __u8 rt_uses_gateway ; int rt_iif ; __be32 rt_gateway ; u32 rt_pmtu ; struct list_head rt_uncached ; }; enum hrtimer_restart; enum ixgbe_media_type; typedef short s16; typedef __u32 __le32; typedef __u64 __le64; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct kernel_symbol { unsigned long value ; char const *name ; }; typedef void (*ctor_fn_t)(void); struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct static_key; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; enum hrtimer_restart; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct pci_dev; struct pci_bus; struct exception_table_entry { int insn ; int fixup ; }; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct msix_entry { u32 vector ; u16 entry ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_246 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_246 __annonCompField76 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct __anonstruct_read_251 { __le64 buffer_addr ; __le32 cmd_type_len ; __le32 olinfo_status ; }; struct __anonstruct_wb_252 { __le64 rsvd ; __le32 nxtseq_seed ; __le32 status ; }; union ixgbe_adv_tx_desc { struct __anonstruct_read_251 read ; struct __anonstruct_wb_252 wb ; }; enum ixgbe_media_type; struct ixgbevf_hw_stats { u64 base_vfgprc ; u64 base_vfgptc ; u64 base_vfgorc ; u64 base_vfgotc ; u64 base_vfmprc ; u64 last_vfgprc ; u64 last_vfgptc ; u64 last_vfgorc ; u64 last_vfgotc ; u64 last_vfmprc ; u64 vfgprc ; u64 vfgptc ; u64 vfgorc ; u64 vfgotc ; u64 vfmprc ; u64 saved_reset_vfgprc ; u64 saved_reset_vfgptc ; u64 saved_reset_vfgorc ; u64 saved_reset_vfgotc ; u64 saved_reset_vfmprc ; }; struct ixgbevf_tx_buffer { union ixgbe_adv_tx_desc *next_to_watch ; unsigned long time_stamp ; struct sk_buff *skb ; unsigned int bytecount ; unsigned short gso_segs ; __be16 protocol ; dma_addr_t dma ; __u32 len ; u32 tx_flags ; }; struct ixgbevf_rx_buffer { struct sk_buff *skb ; dma_addr_t dma ; }; struct ixgbevf_stats { u64 packets ; u64 bytes ; u64 yields ; u64 misses ; u64 cleaned ; }; struct ixgbevf_tx_queue_stats { u64 restart_queue ; u64 tx_busy ; u64 tx_done_old ; }; struct ixgbevf_rx_queue_stats { u64 non_eop_descs ; u64 alloc_rx_page_failed ; u64 alloc_rx_buff_failed ; u64 csum_err ; }; union __anonunion____missing_field_name_291 { struct ixgbevf_tx_buffer *tx_buffer_info ; struct ixgbevf_rx_buffer *rx_buffer_info ; }; union __anonunion____missing_field_name_292 { struct ixgbevf_tx_queue_stats tx_stats ; struct ixgbevf_rx_queue_stats rx_stats ; }; struct ixgbevf_ring { struct ixgbevf_ring *next ; struct net_device *netdev ; struct device *dev ; void *desc ; dma_addr_t dma ; unsigned int size ; unsigned int count ; unsigned int next_to_use ; unsigned int next_to_clean ; union __anonunion____missing_field_name_291 __annonCompField91 ; struct ixgbevf_stats stats ; struct u64_stats_sync syncp ; union __anonunion____missing_field_name_292 __annonCompField92 ; u64 hw_csum_rx_error ; u8 *tail ; u16 reg_idx ; u16 rx_buf_len ; int queue_index ; }; struct ixgbevf_ring_container { struct ixgbevf_ring *ring ; unsigned int total_bytes ; unsigned int total_packets ; u8 count ; u8 itr ; }; struct ixgbevf_adapter; struct ixgbevf_q_vector { struct ixgbevf_adapter *adapter ; u16 v_idx ; u16 itr ; struct napi_struct napi ; struct ixgbevf_ring_container rx ; struct ixgbevf_ring_container tx ; char name[25U] ; unsigned int state ; spinlock_t lock ; }; struct ixgbevf_adapter { struct timer_list watchdog_timer ; unsigned long active_vlans[64U] ; struct work_struct reset_task ; struct ixgbevf_q_vector *q_vector[2U] ; u16 rx_itr_setting ; u16 tx_itr_setting ; u32 eims_enable_mask ; u32 eims_other ; int num_tx_queues ; struct ixgbevf_ring *tx_ring[8U] ; u64 restart_queue ; u32 tx_timeout_count ; int num_rx_queues ; struct ixgbevf_ring *rx_ring[8U] ; u64 hw_csum_rx_error ; u64 hw_rx_no_dma_resources ; u64 non_eop_descs ; int num_msix_vectors ; u32 alloc_rx_page_failed ; u32 alloc_rx_buff_failed ; u32 flags ; struct msix_entry *msix_entries ; struct net_device *netdev ; struct pci_dev *pdev ; struct ixgbe_hw hw ; u16 msg_enable ; u16 bd_number ; u32 eitr_param ; struct ixgbevf_hw_stats stats ; unsigned long state ; u64 tx_busy ; unsigned int tx_ring_count ; unsigned int rx_ring_count ; u64 bp_rx_yields ; u64 bp_rx_cleaned ; u64 bp_rx_missed ; u64 bp_tx_yields ; u64 bp_tx_cleaned ; u64 bp_tx_missed ; u32 link_speed ; bool link_up ; spinlock_t mbx_lock ; struct work_struct watchdog_task ; }; struct __anonstruct____missing_field_name_293 { int sizeof_stat ; int stat_offset ; int base_stat_offset ; int saved_reset_offset ; }; struct ixgbe_stats { char stat_string[32U] ; struct __anonstruct____missing_field_name_293 __annonCompField93 ; }; struct ixgbevf_reg_test { u16 reg ; u8 array_len ; u8 test_type ; u32 mask ; u32 write ; }; typedef __u16 __le16; typedef __u16 __sum16; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; enum hrtimer_restart; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_217 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_217 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; enum gro_result { GRO_MERGED = 0, GRO_MERGED_FREE = 1, GRO_HELD = 2, GRO_NORMAL = 3, GRO_DROP = 4 } ; typedef enum gro_result gro_result_t; enum skb_free_reason { SKB_REASON_CONSUMED = 0, SKB_REASON_DROPPED = 1 } ; struct iphdr { __u8 ihl : 4 ; __u8 version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct tcphdr { __be16 source ; __be16 dest ; __be32 seq ; __be32 ack_seq ; __u16 res1 : 4 ; __u16 doff : 4 ; __u16 fin : 1 ; __u16 syn : 1 ; __u16 rst : 1 ; __u16 psh : 1 ; __u16 ack : 1 ; __u16 urg : 1 ; __u16 ece : 1 ; __u16 cwr : 1 ; __be16 window ; __sum16 check ; __be16 urg_ptr ; }; struct ipv6hdr { __u8 priority : 4 ; __u8 version : 4 ; __u8 flow_lbl[3U] ; __be16 payload_len ; __u8 nexthdr ; __u8 hop_limit ; struct in6_addr saddr ; struct in6_addr daddr ; }; struct __anonstruct_read_287 { __le64 pkt_addr ; __le64 hdr_addr ; }; struct __anonstruct_hs_rss_291 { __le16 pkt_info ; __le16 hdr_info ; }; union __anonunion_lo_dword_290 { __le32 data ; struct __anonstruct_hs_rss_291 hs_rss ; }; struct __anonstruct_csum_ip_293 { __le16 ip_id ; __le16 csum ; }; union __anonunion_hi_dword_292 { __le32 rss ; struct __anonstruct_csum_ip_293 csum_ip ; }; struct __anonstruct_lower_289 { union __anonunion_lo_dword_290 lo_dword ; union __anonunion_hi_dword_292 hi_dword ; }; struct __anonstruct_upper_294 { __le32 status_error ; __le16 length ; __le16 vlan ; }; struct __anonstruct_wb_288 { struct __anonstruct_lower_289 lower ; struct __anonstruct_upper_294 upper ; }; union ixgbe_adv_rx_desc { struct __anonstruct_read_287 read ; struct __anonstruct_wb_288 wb ; }; struct ixgbe_adv_tx_context_desc { __le32 vlan_macip_lens ; __le32 seqnum_seed ; __le32 type_tucmd_mlhl ; __le32 mss_l4len_idx ; }; enum ixgbe_media_type; struct ixgbevf_cb { struct sk_buff *prev ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; typedef struct net_device *ldv_func_ret_type___6; typedef int ldv_func_ret_type___7; typedef int ldv_func_ret_type___8; typedef int ldv_func_ret_type___9; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void __const_udelay(unsigned long ) ; void ixgbevf_rlpml_set_vf(struct ixgbe_hw *hw , u16 max_size ) ; int ixgbevf_negotiate_api_version(struct ixgbe_hw *hw , int api ) ; int ixgbevf_get_queues(struct ixgbe_hw *hw , unsigned int *num_tcs , unsigned int *default_tc ) ; static u8 const eth_reserved_addr_base[6U] = { 1U, 128U, 194U, 0U, 0U, 0U}; __inline static bool is_link_local_ether_addr(u8 const *addr ) { __be16 *a ; __be16 const *b ; __be16 m ; { a = (__be16 *)addr; b = (__be16 const *)(& eth_reserved_addr_base); m = 61695U; return ((((unsigned int )*((u32 const *)addr) ^ (unsigned int )*((u32 const *)b)) | ((unsigned int )((int )*(a + 2UL) ^ (int )((unsigned short )*(b + 2UL))) & 61695U)) == 0U); } } struct ixgbevf_info const ixgbevf_82599_vf_info ; struct ixgbevf_info const ixgbevf_X540_vf_info ; static s32 ixgbevf_start_hw_vf(struct ixgbe_hw *hw ) { { hw->adapter_stopped = 0; return (0); } } static s32 ixgbevf_init_hw_vf(struct ixgbe_hw *hw ) { s32 status ; s32 tmp ; { { tmp = (*(hw->mac.ops.start_hw))(hw); status = tmp; (*(hw->mac.ops.get_mac_addr))(hw, (u8 *)(& hw->mac.addr)); } return (status); } } static s32 ixgbevf_reset_hw_vf(struct ixgbe_hw *hw ) { struct ixgbe_mbx_info *mbx ; u32 timeout ; s32 ret_val ; u32 msgbuf[4U] ; u8 *addr ; s32 tmp ; unsigned long __ms ; unsigned long tmp___0 ; { { mbx = & hw->mbx; timeout = 200U; ret_val = -1; addr = (u8 *)(& msgbuf) + 1U; (*(hw->mac.ops.stop_adapter))(hw); hw->api_version = 0; writel(67108864U, (void volatile *)hw->hw_addr); readl((void const volatile *)hw->hw_addr + 8U); } goto ldv_49404; ldv_49403: { timeout = timeout - 1U; __const_udelay(21475UL); } ldv_49404: { tmp = (*(mbx->ops.check_for_rst))(hw); } if (tmp == 0 && timeout != 0U) { goto ldv_49403; } else { } if (timeout == 0U) { return (-2); } else { } { mbx->timeout = 2000U; msgbuf[0] = 1U; (*(mbx->ops.write_posted))(hw, (u32 *)(& msgbuf), 1); __ms = 10UL; } goto ldv_49408; ldv_49407: { __const_udelay(4295000UL); } ldv_49408: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_49407; } else { } { ret_val = (*(mbx->ops.read_posted))(hw, (u32 *)(& msgbuf), 4); } if (ret_val != 0) { return (ret_val); } else { } if (msgbuf[0] != 2147483649U && msgbuf[0] != 1073741825U) { return (-1); } else { } { memcpy((void *)(& hw->mac.perm_addr), (void const *)addr, 6UL); hw->mac.mc_filter_type = (s32 )msgbuf[3]; } return (0); } } static s32 ixgbevf_stop_hw_vf(struct ixgbe_hw *hw ) { u32 number_of_queues ; u32 reg_val ; u16 i ; { hw->adapter_stopped = 1; number_of_queues = hw->mac.max_rx_queues; i = 0U; goto ldv_49417; ldv_49416: { reg_val = readl((void const volatile *)hw->hw_addr + (unsigned long )((int )i * 64 + 4136)); } if ((reg_val & 33554432U) != 0U) { { reg_val = reg_val & 4261412863U; writel(reg_val, (void volatile *)hw->hw_addr + (unsigned long )((int )i * 64 + 4136)); } } else { } i = (u16 )((int )i + 1); ldv_49417: ; if ((u32 )i < number_of_queues) { goto ldv_49416; } else { } { readl((void const volatile *)hw->hw_addr + 8U); writel(7U, (void volatile *)hw->hw_addr + 268U); readl((void const volatile *)hw->hw_addr + 256U); number_of_queues = hw->mac.max_tx_queues; i = 0U; } goto ldv_49420; ldv_49419: { reg_val = readl((void const volatile *)hw->hw_addr + (unsigned long )((int )i * 64 + 8232)); } if ((reg_val & 33554432U) != 0U) { { reg_val = reg_val & 4261412863U; writel(reg_val, (void volatile *)hw->hw_addr + (unsigned long )((int )i * 64 + 8232)); } } else { } i = (u16 )((int )i + 1); ldv_49420: ; if ((u32 )i < number_of_queues) { goto ldv_49419; } else { } return (0); } } static s32 ixgbevf_mta_vector(struct ixgbe_hw *hw , u8 *mc_addr ) { u32 vector ; { vector = 0U; { if (hw->mac.mc_filter_type == 0) { goto case_0; } else { } if (hw->mac.mc_filter_type == 1) { goto case_1; } else { } if (hw->mac.mc_filter_type == 2) { goto case_2; } else { } if (hw->mac.mc_filter_type == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ vector = (u32 )(((int )*(mc_addr + 4UL) >> 4) | ((int )*(mc_addr + 5UL) << 4)); goto ldv_49428; case_1: /* CIL Label */ vector = (u32 )(((int )*(mc_addr + 4UL) >> 3) | ((int )*(mc_addr + 5UL) << 5)); goto ldv_49428; case_2: /* CIL Label */ vector = (u32 )(((int )*(mc_addr + 4UL) >> 2) | ((int )*(mc_addr + 5UL) << 6)); goto ldv_49428; case_3: /* CIL Label */ vector = (u32 )((int )*(mc_addr + 4UL) | ((int )*(mc_addr + 5UL) << 8)); goto ldv_49428; switch_default: /* CIL Label */ ; goto ldv_49428; switch_break: /* CIL Label */ ; } ldv_49428: vector = vector & 4095U; return ((s32 )vector); } } static s32 ixgbevf_get_mac_addr_vf(struct ixgbe_hw *hw , u8 *mac_addr ) { { { memcpy((void *)mac_addr, (void const *)(& hw->mac.perm_addr), 6UL); } return (0); } } static s32 ixgbevf_set_uc_addr_vf(struct ixgbe_hw *hw , u32 index , u8 *addr ) { struct ixgbe_mbx_info *mbx ; u32 msgbuf[3U] ; u8 *msg_addr ; s32 ret_val ; { { mbx = & hw->mbx; msg_addr = (u8 *)(& msgbuf) + 1U; memset((void *)(& msgbuf), 0, 12UL); msgbuf[0] = msgbuf[0] | (index << 16); msgbuf[0] = msgbuf[0] | 6U; } if ((unsigned long )addr != (unsigned long )((u8 *)0U)) { { memcpy((void *)msg_addr, (void const *)addr, 6UL); } } else { } { ret_val = (*(mbx->ops.write_posted))(hw, (u32 *)(& msgbuf), 3); } if (ret_val == 0) { { ret_val = (*(mbx->ops.read_posted))(hw, (u32 *)(& msgbuf), 3); } } else { } msgbuf[0] = msgbuf[0] & 3758096383U; if (ret_val == 0) { if (msgbuf[0] == 1073741830U) { ret_val = -12; } else { } } else { } return (ret_val); } } static s32 ixgbevf_set_rar_vf(struct ixgbe_hw *hw , u32 index , u8 *addr , u32 vmdq ) { struct ixgbe_mbx_info *mbx ; u32 msgbuf[3U] ; u8 *msg_addr ; s32 ret_val ; { { mbx = & hw->mbx; msg_addr = (u8 *)(& msgbuf) + 1U; memset((void *)(& msgbuf), 0, 12UL); msgbuf[0] = 2U; memcpy((void *)msg_addr, (void const *)addr, 6UL); ret_val = (*(mbx->ops.write_posted))(hw, (u32 *)(& msgbuf), 3); } if (ret_val == 0) { { ret_val = (*(mbx->ops.read_posted))(hw, (u32 *)(& msgbuf), 3); } } else { } msgbuf[0] = msgbuf[0] & 3758096383U; if (ret_val == 0 && msgbuf[0] == 1073741826U) { { ixgbevf_get_mac_addr_vf(hw, (u8 *)(& hw->mac.addr)); } } else { } return (ret_val); } } static void ixgbevf_write_msg_read_ack(struct ixgbe_hw *hw , u32 *msg , u16 size ) { struct ixgbe_mbx_info *mbx ; u32 retmsg[16U] ; s32 retval ; s32 tmp ; { { mbx = & hw->mbx; tmp = (*(mbx->ops.write_posted))(hw, msg, (int )size); retval = tmp; } if (retval == 0) { { (*(mbx->ops.read_posted))(hw, (u32 *)(& retmsg), (int )size); } } else { } return; } } static s32 ixgbevf_update_mc_addr_list_vf(struct ixgbe_hw *hw , struct net_device *netdev ) { struct netdev_hw_addr *ha ; u32 msgbuf[16U] ; u16 *vector_list ; u32 cnt ; u32 i ; struct list_head const *__mptr ; bool tmp ; u32 tmp___0 ; s32 tmp___1 ; struct list_head const *__mptr___0 ; { vector_list = (u16 *)(& msgbuf) + 1U; cnt = (u32 )netdev->mc.count; if (cnt > 30U) { cnt = 30U; } else { } msgbuf[0] = 3U; msgbuf[0] = msgbuf[0] | (cnt << 16); i = 0U; __mptr = (struct list_head const *)netdev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_49480; ldv_49479: ; if (i == cnt) { goto ldv_49477; } else { } { tmp = is_link_local_ether_addr((u8 const *)(& ha->addr)); } if ((int )tmp) { goto ldv_49478; } else { } { tmp___0 = i; i = i + 1U; tmp___1 = ixgbevf_mta_vector(hw, (u8 *)(& ha->addr)); *(vector_list + (unsigned long )tmp___0) = (u16 )tmp___1; } ldv_49478: __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; ldv_49480: ; if ((unsigned long )(& ha->list) != (unsigned long )(& netdev->mc.list)) { goto ldv_49479; } else { } ldv_49477: { ixgbevf_write_msg_read_ack(hw, (u32 *)(& msgbuf), 16); } return (0); } } static s32 ixgbevf_set_vfta_vf(struct ixgbe_hw *hw , u32 vlan , u32 vind , bool vlan_on ) { struct ixgbe_mbx_info *mbx ; u32 msgbuf[2U] ; s32 err ; { { mbx = & hw->mbx; msgbuf[0] = 4U; msgbuf[1] = vlan; msgbuf[0] = msgbuf[0] | (u32 )((int )vlan_on << 16); err = (*(mbx->ops.write_posted))(hw, (u32 *)(& msgbuf), 2); } if (err != 0) { goto mbx_err; } else { } { err = (*(mbx->ops.read_posted))(hw, (u32 *)(& msgbuf), 2); } if (err != 0) { goto mbx_err; } else { } msgbuf[0] = msgbuf[0] & 3758096383U; msgbuf[0] = msgbuf[0] & 4278255615U; if (msgbuf[0] != 2147483652U) { err = -3; } else { } mbx_err: ; return (err); } } static s32 ixgbevf_setup_mac_link_vf(struct ixgbe_hw *hw , ixgbe_link_speed speed , bool autoneg , bool autoneg_wait_to_complete ) { { return (0); } } static s32 ixgbevf_check_mac_link_vf(struct ixgbe_hw *hw , ixgbe_link_speed *speed , bool *link_up , bool autoneg_wait_to_complete ) { struct ixgbe_mbx_info *mbx ; struct ixgbe_mac_info *mac ; s32 ret_val ; u32 links_reg ; u32 in_msg ; s32 tmp ; s32 tmp___0 ; { { mbx = & hw->mbx; mac = & hw->mac; ret_val = 0; in_msg = 0U; tmp = (*(mbx->ops.check_for_rst))(hw); } if (tmp == 0 || mbx->timeout == 0U) { mac->get_link_status = 1; } else { } if (! mac->get_link_status) { goto out; } else { } { links_reg = readl((void const volatile *)hw->hw_addr + 16U); } if ((links_reg & 1073741824U) == 0U) { goto out; } else { } { if ((links_reg & 805306368U) == 805306368U) { goto case_805306368; } else { } if ((links_reg & 805306368U) == 536870912U) { goto case_536870912; } else { } if ((links_reg & 805306368U) == 268435456U) { goto case_268435456; } else { } goto switch_break; case_805306368: /* CIL Label */ *speed = 128U; goto ldv_49510; case_536870912: /* CIL Label */ *speed = 32U; goto ldv_49510; case_268435456: /* CIL Label */ *speed = 8U; goto ldv_49510; switch_break: /* CIL Label */ ; } ldv_49510: { tmp___0 = (*(mbx->ops.read))(hw, & in_msg, 1); } if (tmp___0 != 0) { goto out; } else { } if ((in_msg & 536870912U) == 0U) { if ((in_msg & 1073741824U) != 0U) { ret_val = -1; } else { } goto out; } else { } if (mbx->timeout == 0U) { ret_val = -1; goto out; } else { } mac->get_link_status = 0; out: *link_up = (bool )(! ((int )mac->get_link_status != 0)); return (ret_val); } } void ixgbevf_rlpml_set_vf(struct ixgbe_hw *hw , u16 max_size ) { u32 msgbuf[2U] ; { { msgbuf[0] = 5U; msgbuf[1] = (u32 )max_size; ixgbevf_write_msg_read_ack(hw, (u32 *)(& msgbuf), 2); } return; } } int ixgbevf_negotiate_api_version(struct ixgbe_hw *hw , int api ) { int err ; u32 msg[3U] ; { { msg[0] = 8U; msg[1] = (u32 )api; msg[2] = 0U; err = (*(hw->mbx.ops.write_posted))(hw, (u32 *)(& msg), 3); } if (err == 0) { { err = (*(hw->mbx.ops.read_posted))(hw, (u32 *)(& msg), 3); } } else { } if (err == 0) { msg[0] = msg[0] & 3758096383U; if (msg[0] == 2147483656U) { hw->api_version = api; return (0); } else { } err = -3; } else { } return (err); } } int ixgbevf_get_queues(struct ixgbe_hw *hw , unsigned int *num_tcs , unsigned int *default_tc ) { int err ; u32 msg[5U] ; { { if (hw->api_version == 2) { goto case_2; } else { } goto switch_default; case_2: /* CIL Label */ ; goto ldv_49532; switch_default: /* CIL Label */ ; return (0); switch_break: /* CIL Label */ ; } ldv_49532: { msg[0] = 9U; msg[4] = 0U; msg[3] = msg[4]; msg[2] = msg[3]; msg[1] = msg[2]; err = (*(hw->mbx.ops.write_posted))(hw, (u32 *)(& msg), 5); } if (err == 0) { { err = (*(hw->mbx.ops.read_posted))(hw, (u32 *)(& msg), 5); } } else { } if (err == 0) { msg[0] = msg[0] & 3758096383U; if (msg[0] != 2147483657U) { return (-100); } else { } hw->mac.max_tx_queues = msg[1]; if (hw->mac.max_tx_queues - 1U > 7U) { hw->mac.max_tx_queues = 8U; } else { } hw->mac.max_rx_queues = msg[2]; if (hw->mac.max_rx_queues - 1U > 7U) { hw->mac.max_rx_queues = 8U; } else { } *num_tcs = msg[3]; if (*num_tcs > hw->mac.max_rx_queues) { *num_tcs = 1U; } else { } *default_tc = msg[4]; if (*default_tc >= hw->mac.max_tx_queues) { *default_tc = 0U; } else { } } else { } return (err); } } static struct ixgbe_mac_operations const ixgbevf_mac_ops = {& ixgbevf_init_hw_vf, & ixgbevf_reset_hw_vf, & ixgbevf_start_hw_vf, 0, 0, 0, & ixgbevf_get_mac_addr_vf, & ixgbevf_stop_hw_vf, 0, & ixgbevf_setup_mac_link_vf, & ixgbevf_check_mac_link_vf, 0, & ixgbevf_set_rar_vf, & ixgbevf_set_uc_addr_vf, 0, & ixgbevf_update_mc_addr_list_vf, 0, 0, 0, & ixgbevf_set_vfta_vf}; struct ixgbevf_info const ixgbevf_82599_vf_info = {1, & ixgbevf_mac_ops}; struct ixgbevf_info const ixgbevf_X540_vf_info = {2, & ixgbevf_mac_ops}; void ldv_dummy_resourceless_instance_callback_4_12(int (*arg0)(struct ixgbe_hw * , unsigned char * ) , struct ixgbe_hw *arg1 , unsigned char *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_15(int (*arg0)(struct ixgbe_hw * ) , struct ixgbe_hw *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_23(int (*arg0)(struct ixgbe_hw * ) , struct ixgbe_hw *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_24(int (*arg0)(struct ixgbe_hw * , unsigned int , unsigned char * , unsigned int ) , struct ixgbe_hw *arg1 , unsigned int arg2 , unsigned char *arg3 , unsigned int arg4 ) ; void ldv_dummy_resourceless_instance_callback_4_27(int (*arg0)(struct ixgbe_hw * , unsigned int , unsigned char * ) , struct ixgbe_hw *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_30(int (*arg0)(struct ixgbe_hw * , unsigned int , unsigned int , _Bool ) , struct ixgbe_hw *arg1 , unsigned int arg2 , unsigned int arg3 , _Bool arg4 ) ; void ldv_dummy_resourceless_instance_callback_4_33(int (*arg0)(struct ixgbe_hw * , unsigned int , _Bool , _Bool ) , struct ixgbe_hw *arg1 , unsigned int arg2 , _Bool arg3 , _Bool arg4 ) ; void ldv_dummy_resourceless_instance_callback_4_36(int (*arg0)(struct ixgbe_hw * ) , struct ixgbe_hw *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_37(int (*arg0)(struct ixgbe_hw * ) , struct ixgbe_hw *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_38(int (*arg0)(struct ixgbe_hw * , struct net_device * ) , struct ixgbe_hw *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_9(int (*arg0)(struct ixgbe_hw * , unsigned int * , _Bool * , _Bool ) , struct ixgbe_hw *arg1 , unsigned int *arg2 , _Bool *arg3 , _Bool arg4 ) ; int (*ldv_4_callback_check_link)(struct ixgbe_hw * , unsigned int * , _Bool * , _Bool ) ; int (*ldv_4_callback_get_mac_addr)(struct ixgbe_hw * , unsigned char * ) ; int (*ldv_4_callback_init_hw)(struct ixgbe_hw * ) ; int (*ldv_4_callback_reset_hw)(struct ixgbe_hw * ) ; int (*ldv_4_callback_set_rar)(struct ixgbe_hw * , unsigned int , unsigned char * , unsigned int ) ; int (*ldv_4_callback_set_uc_addr)(struct ixgbe_hw * , unsigned int , unsigned char * ) ; int (*ldv_4_callback_set_vfta)(struct ixgbe_hw * , unsigned int , unsigned int , _Bool ) ; int (*ldv_4_callback_setup_link)(struct ixgbe_hw * , unsigned int , _Bool , _Bool ) ; int (*ldv_4_callback_start_hw)(struct ixgbe_hw * ) ; int (*ldv_4_callback_stop_adapter)(struct ixgbe_hw * ) ; int (*ldv_4_callback_update_mc_addr_list)(struct ixgbe_hw * , struct net_device * ) ; int (*ldv_4_callback_check_link)(struct ixgbe_hw * , unsigned int * , _Bool * , _Bool ) = & ixgbevf_check_mac_link_vf; int (*ldv_4_callback_get_mac_addr)(struct ixgbe_hw * , unsigned char * ) = & ixgbevf_get_mac_addr_vf; int (*ldv_4_callback_init_hw)(struct ixgbe_hw * ) = & ixgbevf_init_hw_vf; int (*ldv_4_callback_reset_hw)(struct ixgbe_hw * ) = & ixgbevf_reset_hw_vf; int (*ldv_4_callback_set_rar)(struct ixgbe_hw * , unsigned int , unsigned char * , unsigned int ) = & ixgbevf_set_rar_vf; int (*ldv_4_callback_set_uc_addr)(struct ixgbe_hw * , unsigned int , unsigned char * ) = & ixgbevf_set_uc_addr_vf; int (*ldv_4_callback_set_vfta)(struct ixgbe_hw * , unsigned int , unsigned int , _Bool ) = & ixgbevf_set_vfta_vf; int (*ldv_4_callback_setup_link)(struct ixgbe_hw * , unsigned int , _Bool , _Bool ) = & ixgbevf_setup_mac_link_vf; int (*ldv_4_callback_start_hw)(struct ixgbe_hw * ) = & ixgbevf_start_hw_vf; int (*ldv_4_callback_stop_adapter)(struct ixgbe_hw * ) = & ixgbevf_stop_hw_vf; int (*ldv_4_callback_update_mc_addr_list)(struct ixgbe_hw * , struct net_device * ) = & ixgbevf_update_mc_addr_list_vf; void ldv_dummy_resourceless_instance_callback_4_12(int (*arg0)(struct ixgbe_hw * , unsigned char * ) , struct ixgbe_hw *arg1 , unsigned char *arg2 ) { { { ixgbevf_get_mac_addr_vf(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_15(int (*arg0)(struct ixgbe_hw * ) , struct ixgbe_hw *arg1 ) { { { ixgbevf_init_hw_vf(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_23(int (*arg0)(struct ixgbe_hw * ) , struct ixgbe_hw *arg1 ) { { { ixgbevf_reset_hw_vf(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_24(int (*arg0)(struct ixgbe_hw * , unsigned int , unsigned char * , unsigned int ) , struct ixgbe_hw *arg1 , unsigned int arg2 , unsigned char *arg3 , unsigned int arg4 ) { { { ixgbevf_set_rar_vf(arg1, arg2, arg3, arg4); } return; } } void ldv_dummy_resourceless_instance_callback_4_27(int (*arg0)(struct ixgbe_hw * , unsigned int , unsigned char * ) , struct ixgbe_hw *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { ixgbevf_set_uc_addr_vf(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_30(int (*arg0)(struct ixgbe_hw * , unsigned int , unsigned int , _Bool ) , struct ixgbe_hw *arg1 , unsigned int arg2 , unsigned int arg3 , _Bool arg4 ) { { { ixgbevf_set_vfta_vf(arg1, arg2, arg3, (int )arg4); } return; } } void ldv_dummy_resourceless_instance_callback_4_33(int (*arg0)(struct ixgbe_hw * , unsigned int , _Bool , _Bool ) , struct ixgbe_hw *arg1 , unsigned int arg2 , _Bool arg3 , _Bool arg4 ) { { { ixgbevf_setup_mac_link_vf(arg1, arg2, (int )arg3, (int )arg4); } return; } } void ldv_dummy_resourceless_instance_callback_4_36(int (*arg0)(struct ixgbe_hw * ) , struct ixgbe_hw *arg1 ) { { { ixgbevf_start_hw_vf(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_37(int (*arg0)(struct ixgbe_hw * ) , struct ixgbe_hw *arg1 ) { { { ixgbevf_stop_hw_vf(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_38(int (*arg0)(struct ixgbe_hw * , struct net_device * ) , struct ixgbe_hw *arg1 , struct net_device *arg2 ) { { { ixgbevf_update_mc_addr_list_vf(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_9(int (*arg0)(struct ixgbe_hw * , unsigned int * , _Bool * , _Bool ) , struct ixgbe_hw *arg1 , unsigned int *arg2 , _Bool *arg3 , _Bool arg4 ) { { { ixgbevf_check_mac_link_vf(arg1, arg2, arg3, (int )arg4); } return; } } extern void __udelay(unsigned long ) ; struct ixgbe_mbx_operations const ixgbevf_mbx_ops ; static s32 ixgbevf_poll_for_msg(struct ixgbe_hw *hw ) { struct ixgbe_mbx_info *mbx ; int countdown ; s32 tmp ; { mbx = & hw->mbx; countdown = (int )mbx->timeout; goto ldv_49394; ldv_49393: { countdown = countdown - 1; __udelay((unsigned long )mbx->udelay); } ldv_49394: ; if (countdown != 0) { { tmp = (*(mbx->ops.check_for_msg))(hw); } if (tmp != 0) { goto ldv_49393; } else { goto ldv_49395; } } else { } ldv_49395: ; if (countdown == 0) { mbx->timeout = 0U; } else { } return (countdown != 0 ? 0 : -100); } } static s32 ixgbevf_poll_for_ack(struct ixgbe_hw *hw ) { struct ixgbe_mbx_info *mbx ; int countdown ; s32 tmp ; { mbx = & hw->mbx; countdown = (int )mbx->timeout; goto ldv_49402; ldv_49401: { countdown = countdown - 1; __udelay((unsigned long )mbx->udelay); } ldv_49402: ; if (countdown != 0) { { tmp = (*(mbx->ops.check_for_ack))(hw); } if (tmp != 0) { goto ldv_49401; } else { goto ldv_49403; } } else { } ldv_49403: ; if (countdown == 0) { mbx->timeout = 0U; } else { } return (countdown != 0 ? 0 : -100); } } static s32 ixgbevf_read_posted_mbx(struct ixgbe_hw *hw , u32 *msg , u16 size ) { struct ixgbe_mbx_info *mbx ; s32 ret_val ; { mbx = & hw->mbx; ret_val = 100; if ((unsigned long )mbx->ops.read == (unsigned long )((s32 (*)(struct ixgbe_hw * , u32 * , u16 ))0)) { goto out; } else { } { ret_val = ixgbevf_poll_for_msg(hw); } if (ret_val == 0) { { ret_val = (*(mbx->ops.read))(hw, msg, (int )size); } } else { } out: ; return (ret_val); } } static s32 ixgbevf_write_posted_mbx(struct ixgbe_hw *hw , u32 *msg , u16 size ) { struct ixgbe_mbx_info *mbx ; s32 ret_val ; { mbx = & hw->mbx; ret_val = 100; if ((unsigned long )mbx->ops.write == (unsigned long )((s32 (*)(struct ixgbe_hw * , u32 * , u16 ))0) || mbx->timeout == 0U) { goto out; } else { } { ret_val = (*(mbx->ops.write))(hw, msg, (int )size); } if (ret_val == 0) { { ret_val = ixgbevf_poll_for_ack(hw); } } else { } out: ; return (ret_val); } } static u32 ixgbevf_read_v2p_mailbox(struct ixgbe_hw *hw ) { u32 v2p_mailbox ; unsigned int tmp ; { { tmp = readl((void const volatile *)hw->hw_addr + 764U); v2p_mailbox = tmp; v2p_mailbox = v2p_mailbox | hw->mbx.v2p_mailbox; hw->mbx.v2p_mailbox = hw->mbx.v2p_mailbox | (v2p_mailbox & 176U); } return (v2p_mailbox); } } static s32 ixgbevf_check_for_bit_vf(struct ixgbe_hw *hw , u32 mask ) { u32 v2p_mailbox ; u32 tmp ; s32 ret_val ; { { tmp = ixgbevf_read_v2p_mailbox(hw); v2p_mailbox = tmp; ret_val = -100; } if ((v2p_mailbox & mask) != 0U) { ret_val = 0; } else { } hw->mbx.v2p_mailbox = hw->mbx.v2p_mailbox & ~ mask; return (ret_val); } } static s32 ixgbevf_check_for_msg_vf(struct ixgbe_hw *hw ) { s32 ret_val ; s32 tmp ; { { ret_val = -100; tmp = ixgbevf_check_for_bit_vf(hw, 16U); } if (tmp == 0) { ret_val = 0; hw->mbx.stats.reqs = hw->mbx.stats.reqs + 1U; } else { } return (ret_val); } } static s32 ixgbevf_check_for_ack_vf(struct ixgbe_hw *hw ) { s32 ret_val ; s32 tmp ; { { ret_val = -100; tmp = ixgbevf_check_for_bit_vf(hw, 32U); } if (tmp == 0) { ret_val = 0; hw->mbx.stats.acks = hw->mbx.stats.acks + 1U; } else { } return (ret_val); } } static s32 ixgbevf_check_for_rst_vf(struct ixgbe_hw *hw ) { s32 ret_val ; s32 tmp ; { { ret_val = -100; tmp = ixgbevf_check_for_bit_vf(hw, 192U); } if (tmp == 0) { ret_val = 0; hw->mbx.stats.rsts = hw->mbx.stats.rsts + 1U; } else { } return (ret_val); } } static s32 ixgbevf_obtain_mbx_lock_vf(struct ixgbe_hw *hw ) { s32 ret_val ; u32 tmp ; { { ret_val = -100; writel(4U, (void volatile *)hw->hw_addr + 764U); tmp = ixgbevf_read_v2p_mailbox(hw); } if ((tmp & 4U) != 0U) { ret_val = 0; } else { } return (ret_val); } } static s32 ixgbevf_write_mbx_vf(struct ixgbe_hw *hw , u32 *msg , u16 size ) { s32 ret_val ; u16 i ; { { ret_val = ixgbevf_obtain_mbx_lock_vf(hw); } if (ret_val != 0) { goto out_no_write; } else { } { ixgbevf_check_for_msg_vf(hw); ixgbevf_check_for_ack_vf(hw); i = 0U; } goto ldv_49455; ldv_49454: { writel(*(msg + (unsigned long )i), (void volatile *)(hw->hw_addr + ((unsigned long )((int )i << 2) + 512UL))); i = (u16 )((int )i + 1); } ldv_49455: ; if ((int )i < (int )size) { goto ldv_49454; } else { } { hw->mbx.stats.msgs_tx = hw->mbx.stats.msgs_tx + 1U; writel(1U, (void volatile *)hw->hw_addr + 764U); } out_no_write: ; return (ret_val); } } static s32 ixgbevf_read_mbx_vf(struct ixgbe_hw *hw , u32 *msg , u16 size ) { s32 ret_val ; u16 i ; { { ret_val = 0; ret_val = ixgbevf_obtain_mbx_lock_vf(hw); } if (ret_val != 0) { goto out_no_read; } else { } i = 0U; goto ldv_49466; ldv_49465: { *(msg + (unsigned long )i) = readl((void const volatile *)(hw->hw_addr + ((unsigned long )((int )i << 2) + 512UL))); i = (u16 )((int )i + 1); } ldv_49466: ; if ((int )i < (int )size) { goto ldv_49465; } else { } { writel(2U, (void volatile *)hw->hw_addr + 764U); hw->mbx.stats.msgs_rx = hw->mbx.stats.msgs_rx + 1U; } out_no_read: ; return (ret_val); } } static s32 ixgbevf_init_mbx_params_vf(struct ixgbe_hw *hw ) { struct ixgbe_mbx_info *mbx ; { mbx = & hw->mbx; mbx->timeout = 0U; mbx->udelay = 500U; mbx->size = 16U; mbx->stats.msgs_tx = 0U; mbx->stats.msgs_rx = 0U; mbx->stats.reqs = 0U; mbx->stats.acks = 0U; mbx->stats.rsts = 0U; return (0); } } struct ixgbe_mbx_operations const ixgbevf_mbx_ops = {& ixgbevf_init_mbx_params_vf, & ixgbevf_read_mbx_vf, & ixgbevf_write_mbx_vf, & ixgbevf_read_posted_mbx, & ixgbevf_write_posted_mbx, & ixgbevf_check_for_msg_vf, & ixgbevf_check_for_ack_vf, & ixgbevf_check_for_rst_vf}; void ldv_dummy_resourceless_instance_callback_4_16(int (*arg0)(struct ixgbe_hw * ) , struct ixgbe_hw *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_17(int (*arg0)(struct ixgbe_hw * , unsigned int * , unsigned short ) , struct ixgbe_hw *arg1 , unsigned int *arg2 , unsigned short arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_20(int (*arg0)(struct ixgbe_hw * , unsigned int * , unsigned short ) , struct ixgbe_hw *arg1 , unsigned int *arg2 , unsigned short arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_3(int (*arg0)(struct ixgbe_hw * ) , struct ixgbe_hw *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_39(int (*arg0)(struct ixgbe_hw * , unsigned int * , unsigned short ) , struct ixgbe_hw *arg1 , unsigned int *arg2 , unsigned short arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_42(int (*arg0)(struct ixgbe_hw * , unsigned int * , unsigned short ) , struct ixgbe_hw *arg1 , unsigned int *arg2 , unsigned short arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_7(int (*arg0)(struct ixgbe_hw * ) , struct ixgbe_hw *arg1 ) ; void ldv_dummy_resourceless_instance_callback_4_8(int (*arg0)(struct ixgbe_hw * ) , struct ixgbe_hw *arg1 ) ; int (*ldv_4_callback_check_for_ack)(struct ixgbe_hw * ) ; int (*ldv_4_callback_check_for_msg)(struct ixgbe_hw * ) ; int (*ldv_4_callback_check_for_rst)(struct ixgbe_hw * ) ; int (*ldv_4_callback_init_params)(struct ixgbe_hw * ) ; int (*ldv_4_callback_read)(struct ixgbe_hw * , unsigned int * , unsigned short ) ; int (*ldv_4_callback_read_posted)(struct ixgbe_hw * , unsigned int * , unsigned short ) ; int (*ldv_4_callback_write)(struct ixgbe_hw * , unsigned int * , unsigned short ) ; int (*ldv_4_callback_write_posted)(struct ixgbe_hw * , unsigned int * , unsigned short ) ; int (*ldv_4_callback_check_for_ack)(struct ixgbe_hw * ) = & ixgbevf_check_for_ack_vf; int (*ldv_4_callback_check_for_msg)(struct ixgbe_hw * ) = & ixgbevf_check_for_msg_vf; int (*ldv_4_callback_check_for_rst)(struct ixgbe_hw * ) = & ixgbevf_check_for_rst_vf; int (*ldv_4_callback_init_params)(struct ixgbe_hw * ) = & ixgbevf_init_mbx_params_vf; int (*ldv_4_callback_read)(struct ixgbe_hw * , unsigned int * , unsigned short ) = & ixgbevf_read_mbx_vf; int (*ldv_4_callback_read_posted)(struct ixgbe_hw * , unsigned int * , unsigned short ) = & ixgbevf_read_posted_mbx; int (*ldv_4_callback_write)(struct ixgbe_hw * , unsigned int * , unsigned short ) = & ixgbevf_write_mbx_vf; int (*ldv_4_callback_write_posted)(struct ixgbe_hw * , unsigned int * , unsigned short ) = & ixgbevf_write_posted_mbx; void ldv_dummy_resourceless_instance_callback_4_16(int (*arg0)(struct ixgbe_hw * ) , struct ixgbe_hw *arg1 ) { { { ixgbevf_init_mbx_params_vf(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_17(int (*arg0)(struct ixgbe_hw * , unsigned int * , unsigned short ) , struct ixgbe_hw *arg1 , unsigned int *arg2 , unsigned short arg3 ) { { { ixgbevf_read_mbx_vf(arg1, arg2, (int )arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_20(int (*arg0)(struct ixgbe_hw * , unsigned int * , unsigned short ) , struct ixgbe_hw *arg1 , unsigned int *arg2 , unsigned short arg3 ) { { { ixgbevf_read_posted_mbx(arg1, arg2, (int )arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_3(int (*arg0)(struct ixgbe_hw * ) , struct ixgbe_hw *arg1 ) { { { ixgbevf_check_for_ack_vf(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_39(int (*arg0)(struct ixgbe_hw * , unsigned int * , unsigned short ) , struct ixgbe_hw *arg1 , unsigned int *arg2 , unsigned short arg3 ) { { { ixgbevf_write_mbx_vf(arg1, arg2, (int )arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_42(int (*arg0)(struct ixgbe_hw * , unsigned int * , unsigned short ) , struct ixgbe_hw *arg1 , unsigned int *arg2 , unsigned short arg3 ) { { { ixgbevf_write_posted_mbx(arg1, arg2, (int )arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_7(int (*arg0)(struct ixgbe_hw * ) , struct ixgbe_hw *arg1 ) { { { ixgbevf_check_for_msg_vf(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_4_8(int (*arg0)(struct ixgbe_hw * ) , struct ixgbe_hw *arg1 ) { { { ixgbevf_check_for_rst_vf(arg1); } return; } } __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } extern int printk(char const * , ...) ; extern size_t strlcpy(char * , char const * , size_t ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } extern void *vmalloc(unsigned long ) ; extern void vfree(void const * ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } extern unsigned long msleep_interruptible(unsigned int ) ; extern void usleep_range(unsigned long , unsigned long ) ; __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } extern u32 ethtool_op_get_link(struct net_device * ) ; __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern int dev_open(struct net_device * ) ; extern int dev_close(struct net_device * ) ; __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } char const ixgbevf_driver_name[8U] ; char const ixgbevf_driver_version[9U] ; void ixgbevf_up(struct ixgbevf_adapter *adapter ) ; void ixgbevf_down(struct ixgbevf_adapter *adapter ) ; void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter ) ; void ixgbevf_reset(struct ixgbevf_adapter *adapter ) ; void ixgbevf_set_ethtool_ops(struct net_device *netdev ) ; int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring ) ; int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring ) ; void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring ) ; void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring ) ; void ixgbevf_update_stats(struct ixgbevf_adapter *adapter ) ; void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector ) ; static struct ixgbe_stats const ixgbe_gstrings_stats[15U] = { {{'r', 'x', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, {8, 1384, 1304, 1424}}, {{'t', 'x', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, {8, 1392, 1312, 1432}}, {{'r', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, {8, 1400, 1320, 1440}}, {{'t', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}, {8, 1408, 1328, 1448}}, {{'t', 'x', '_', 'b', 'u', 's', 'y', '\000'}, {8, 1472, -1, -1}}, {{'t', 'x', '_', 'r', 'e', 's', 't', 'a', 'r', 't', '_', 'q', 'u', 'e', 'u', 'e', '\000'}, {8, 816, -1, -1}}, {{'t', 'x', '_', 't', 'i', 'm', 'e', 'o', 'u', 't', '_', 'c', 'o', 'u', 'n', 't', '\000'}, {4, 824, -1, -1}}, {{'m', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '\000'}, {8, 1416, 1336, 1456}}, {{'r', 'x', '_', 'c', 's', 'u', 'm', '_', 'o', 'f', 'f', 'l', 'o', 'a', 'd', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, {8, 896, -1, -1}}, {{'r', 'x', '_', 'b', 'p', '_', 'p', 'o', 'l', 'l', '_', 'y', 'i', 'e', 'l', 'd', '\000'}, {8, 1488, -1, -1}}, {{'r', 'x', '_', 'b', 'p', '_', 'c', 'l', 'e', 'a', 'n', 'e', 'd', '\000'}, {8, 1496, -1, -1}}, {{'r', 'x', '_', 'b', 'p', '_', 'm', 'i', 's', 's', 'e', 's', '\000'}, {8, 1504, -1, -1}}, {{'t', 'x', '_', 'b', 'p', '_', 'n', 'a', 'p', 'i', '_', 'y', 'i', 'e', 'l', 'd', '\000'}, {8, 1512, -1, -1}}, {{'t', 'x', '_', 'b', 'p', '_', 'c', 'l', 'e', 'a', 'n', 'e', 'd', '\000'}, {8, 1520, -1, -1}}, {{'t', 'x', '_', 'b', 'p', '_', 'm', 'i', 's', 's', 'e', 's', '\000'}, {8, 1528, -1, -1}}}; static char const ixgbe_gstrings_test[2U][32U] = { { 'R', 'e', 'g', 'i', 's', 't', 'e', 'r', ' ', 't', 'e', 's', 't', ' ', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}, { 'L', 'i', 'n', 'k', ' ', 't', 'e', 's', 't', ' ', ' ', ' ', '(', 'o', 'n', '/', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}}; static int ixgbevf_get_settings(struct net_device *netdev , struct ethtool_cmd *ecmd ) { struct ixgbevf_adapter *adapter ; void *tmp ; struct ixgbe_hw *hw ; u32 link_speed ; bool link_up ; __u32 speed ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; hw = & adapter->hw; link_speed = 0U; ecmd->supported = 4096U; ecmd->autoneg = 0U; ecmd->transceiver = 2U; ecmd->port = 255U; hw->mac.get_link_status = 1; (*(hw->mac.ops.check_link))(hw, & link_speed, & link_up, 0); } if ((int )link_up) { speed = 10000U; { if (link_speed == 128U) { goto case_128; } else { } if (link_speed == 32U) { goto case_32; } else { } if (link_speed == 8U) { goto case_8; } else { } goto switch_break; case_128: /* CIL Label */ speed = 10000U; goto ldv_50206; case_32: /* CIL Label */ speed = 1000U; goto ldv_50206; case_8: /* CIL Label */ speed = 100U; goto ldv_50206; switch_break: /* CIL Label */ ; } ldv_50206: { ethtool_cmd_speed_set(ecmd, speed); ecmd->duplex = 1U; } } else { { ethtool_cmd_speed_set(ecmd, 4294967295U); ecmd->duplex = 255U; } } return (0); } } static u32 ixgbevf_get_msglevel(struct net_device *netdev ) { struct ixgbevf_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; } return ((u32 )adapter->msg_enable); } } static void ixgbevf_set_msglevel(struct net_device *netdev , u32 data ) { struct ixgbevf_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; adapter->msg_enable = (u16 )data; } return; } } static int ixgbevf_get_regs_len(struct net_device *netdev ) { { return (180); } } static void ixgbevf_get_regs(struct net_device *netdev , struct ethtool_regs *regs , void *p ) { struct ixgbevf_adapter *adapter ; void *tmp ; struct ixgbe_hw *hw ; u32 *regs_buff ; u32 regs_len ; int tmp___0 ; u8 i ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; hw = & adapter->hw; regs_buff = (u32 *)p; tmp___0 = ixgbevf_get_regs_len(netdev); regs_len = (u32 )tmp___0; memset(p, 0, (size_t )regs_len); regs->version = (__u32 )((((int )hw->revision_id << 16) | 16777216) | (int )hw->device_id); *regs_buff = readl((void const volatile *)hw->hw_addr); *(regs_buff + 1UL) = readl((void const volatile *)hw->hw_addr + 8U); *(regs_buff + 2UL) = readl((void const volatile *)hw->hw_addr + 16U); *(regs_buff + 3UL) = readl((void const volatile *)hw->hw_addr + 12688U); *(regs_buff + 4UL) = readl((void const volatile *)hw->hw_addr + 72U); *(regs_buff + 5UL) = readl((void const volatile *)hw->hw_addr + 260U); *(regs_buff + 6UL) = readl((void const volatile *)hw->hw_addr + 260U); *(regs_buff + 7UL) = readl((void const volatile *)hw->hw_addr + 264U); *(regs_buff + 8UL) = readl((void const volatile *)hw->hw_addr + 268U); *(regs_buff + 9UL) = readl((void const volatile *)hw->hw_addr + 272U); *(regs_buff + 10UL) = readl((void const volatile *)hw->hw_addr + 276U); *(regs_buff + 11UL) = readl((void const volatile *)hw->hw_addr + 2080U); *(regs_buff + 12UL) = readl((void const volatile *)hw->hw_addr + 288U); *(regs_buff + 13UL) = readl((void const volatile *)hw->hw_addr + 320U); i = 0U; } goto ldv_50232; ldv_50231: { *(regs_buff + (unsigned long )((int )i + 14)) = readl((void const volatile *)hw->hw_addr + (unsigned long )(((int )i + 64) * 64)); i = (u8 )((int )i + 1); } ldv_50232: ; if ((unsigned int )i <= 1U) { goto ldv_50231; } else { } i = 0U; goto ldv_50235; ldv_50234: { *(regs_buff + (unsigned long )((int )i + 16)) = readl((void const volatile *)hw->hw_addr + (unsigned long )((int )i * 64 + 4100)); i = (u8 )((int )i + 1); } ldv_50235: ; if ((unsigned int )i <= 1U) { goto ldv_50234; } else { } i = 0U; goto ldv_50238; ldv_50237: { *(regs_buff + (unsigned long )((int )i + 18)) = readl((void const volatile *)hw->hw_addr + (unsigned long )((int )i * 64 + 4104)); i = (u8 )((int )i + 1); } ldv_50238: ; if ((unsigned int )i <= 1U) { goto ldv_50237; } else { } i = 0U; goto ldv_50241; ldv_50240: { *(regs_buff + (unsigned long )((int )i + 20)) = readl((void const volatile *)hw->hw_addr + (unsigned long )((int )i * 64 + 4112)); i = (u8 )((int )i + 1); } ldv_50241: ; if ((unsigned int )i <= 1U) { goto ldv_50240; } else { } i = 0U; goto ldv_50244; ldv_50243: { *(regs_buff + (unsigned long )((int )i + 22)) = readl((void const volatile *)hw->hw_addr + (unsigned long )((int )i * 64 + 4120)); i = (u8 )((int )i + 1); } ldv_50244: ; if ((unsigned int )i <= 1U) { goto ldv_50243; } else { } i = 0U; goto ldv_50247; ldv_50246: { *(regs_buff + (unsigned long )((int )i + 24)) = readl((void const volatile *)hw->hw_addr + (unsigned long )((int )i * 64 + 4136)); i = (u8 )((int )i + 1); } ldv_50247: ; if ((unsigned int )i <= 1U) { goto ldv_50246; } else { } i = 0U; goto ldv_50250; ldv_50249: { *(regs_buff + (unsigned long )((int )i + 26)) = readl((void const volatile *)hw->hw_addr + (unsigned long )((int )i * 64 + 4116)); i = (u8 )((int )i + 1); } ldv_50250: ; if ((unsigned int )i <= 1U) { goto ldv_50249; } else { } { *(regs_buff + 28UL) = readl((void const volatile *)hw->hw_addr + 768U); i = 0U; } goto ldv_50253; ldv_50252: { *(regs_buff + (unsigned long )((int )i + 29)) = readl((void const volatile *)hw->hw_addr + (unsigned long )(((int )i + 128) * 64)); i = (u8 )((int )i + 1); } ldv_50253: ; if ((unsigned int )i <= 1U) { goto ldv_50252; } else { } i = 0U; goto ldv_50256; ldv_50255: { *(regs_buff + (unsigned long )((int )i + 31)) = readl((void const volatile *)hw->hw_addr + (unsigned long )((int )i * 64 + 8196)); i = (u8 )((int )i + 1); } ldv_50256: ; if ((unsigned int )i <= 1U) { goto ldv_50255; } else { } i = 0U; goto ldv_50259; ldv_50258: { *(regs_buff + (unsigned long )((int )i + 33)) = readl((void const volatile *)hw->hw_addr + (unsigned long )((int )i * 64 + 8200)); i = (u8 )((int )i + 1); } ldv_50259: ; if ((unsigned int )i <= 1U) { goto ldv_50258; } else { } i = 0U; goto ldv_50262; ldv_50261: { *(regs_buff + (unsigned long )((int )i + 35)) = readl((void const volatile *)hw->hw_addr + (unsigned long )((int )i * 64 + 8208)); i = (u8 )((int )i + 1); } ldv_50262: ; if ((unsigned int )i <= 1U) { goto ldv_50261; } else { } i = 0U; goto ldv_50265; ldv_50264: { *(regs_buff + (unsigned long )((int )i + 37)) = readl((void const volatile *)hw->hw_addr + (unsigned long )((int )i * 64 + 8216)); i = (u8 )((int )i + 1); } ldv_50265: ; if ((unsigned int )i <= 1U) { goto ldv_50264; } else { } i = 0U; goto ldv_50268; ldv_50267: { *(regs_buff + (unsigned long )((int )i + 39)) = readl((void const volatile *)hw->hw_addr + (unsigned long )((int )i * 64 + 8232)); i = (u8 )((int )i + 1); } ldv_50268: ; if ((unsigned int )i <= 1U) { goto ldv_50267; } else { } i = 0U; goto ldv_50271; ldv_50270: { *(regs_buff + (unsigned long )((int )i + 41)) = readl((void const volatile *)hw->hw_addr + (unsigned long )((int )i * 64 + 8248)); i = (u8 )((int )i + 1); } ldv_50271: ; if ((unsigned int )i <= 1U) { goto ldv_50270; } else { } i = 0U; goto ldv_50274; ldv_50273: { *(regs_buff + (unsigned long )((int )i + 43)) = readl((void const volatile *)hw->hw_addr + (unsigned long )((int )i * 64 + 8252)); i = (u8 )((int )i + 1); } ldv_50274: ; if ((unsigned int )i <= 1U) { goto ldv_50273; } else { } return; } } static void ixgbevf_get_drvinfo(struct net_device *netdev , struct ethtool_drvinfo *drvinfo ) { struct ixgbevf_adapter *adapter ; void *tmp ; char const *tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; strlcpy((char *)(& drvinfo->driver), (char const *)(& ixgbevf_driver_name), 32UL); strlcpy((char *)(& drvinfo->version), (char const *)(& ixgbevf_driver_version), 32UL); tmp___0 = pci_name((struct pci_dev const *)adapter->pdev); strlcpy((char *)(& drvinfo->bus_info), tmp___0, 32UL); } return; } } static void ixgbevf_get_ringparam(struct net_device *netdev , struct ethtool_ringparam *ring ) { struct ixgbevf_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; ring->rx_max_pending = 4096U; ring->tx_max_pending = 4096U; ring->rx_pending = adapter->rx_ring_count; ring->tx_pending = adapter->tx_ring_count; } return; } } static int ixgbevf_set_ringparam(struct net_device *netdev , struct ethtool_ringparam *ring ) { struct ixgbevf_adapter *adapter ; void *tmp ; struct ixgbevf_ring *tx_ring ; struct ixgbevf_ring *rx_ring ; u32 new_rx_count ; u32 new_tx_count ; int i ; int err ; u32 __max1 ; u32 __max2 ; u32 __min1 ; u32 __min2 ; u32 __max1___0 ; u32 __max2___0 ; u32 __min1___0 ; u32 __min2___0 ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; void *tmp___3 ; void *tmp___4 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; tx_ring = (struct ixgbevf_ring *)0; rx_ring = (struct ixgbevf_ring *)0; err = 0; } if (ring->rx_mini_pending != 0U || ring->rx_jumbo_pending != 0U) { return (-22); } else { } __max1 = ring->tx_pending; __max2 = 64U; new_tx_count = __max1 > __max2 ? __max1 : __max2; __min1 = new_tx_count; __min2 = 4096U; new_tx_count = __min1 < __min2 ? __min1 : __min2; new_tx_count = (new_tx_count + 7U) & 4294967288U; __max1___0 = ring->rx_pending; __max2___0 = 64U; new_rx_count = __max1___0 > __max2___0 ? __max1___0 : __max2___0; __min1___0 = new_rx_count; __min2___0 = 4096U; new_rx_count = __min1___0 < __min2___0 ? __min1___0 : __min2___0; new_rx_count = (new_rx_count + 7U) & 4294967288U; if (new_tx_count == adapter->tx_ring_count && new_rx_count == adapter->rx_ring_count) { return (0); } else { } goto ldv_50310; ldv_50309: { usleep_range(1000UL, 2000UL); } ldv_50310: { tmp___0 = test_and_set_bit(1L, (unsigned long volatile *)(& adapter->state)); } if (tmp___0 != 0) { goto ldv_50309; } else { } { tmp___1 = netif_running((struct net_device const *)adapter->netdev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { i = 0; goto ldv_50313; ldv_50312: (adapter->tx_ring[i])->count = new_tx_count; i = i + 1; ldv_50313: ; if (i < adapter->num_tx_queues) { goto ldv_50312; } else { } i = 0; goto ldv_50316; ldv_50315: (adapter->rx_ring[i])->count = new_rx_count; i = i + 1; ldv_50316: ; if (i < adapter->num_rx_queues) { goto ldv_50315; } else { } adapter->tx_ring_count = new_tx_count; adapter->rx_ring_count = new_rx_count; goto clear_reset; } else { } if (new_tx_count != adapter->tx_ring_count) { { tmp___3 = vmalloc((unsigned long )adapter->num_tx_queues * 160UL); tx_ring = (struct ixgbevf_ring *)tmp___3; } if ((unsigned long )tx_ring == (unsigned long )((struct ixgbevf_ring *)0)) { err = -12; goto clear_reset; } else { } i = 0; goto ldv_50323; ldv_50322: { *(tx_ring + (unsigned long )i) = *(adapter->tx_ring[i]); (tx_ring + (unsigned long )i)->count = new_tx_count; err = ixgbevf_setup_tx_resources(tx_ring + (unsigned long )i); } if (err != 0) { goto ldv_50320; ldv_50319: { i = i - 1; ixgbevf_free_tx_resources(tx_ring + (unsigned long )i); } ldv_50320: ; if (i != 0) { goto ldv_50319; } else { } { vfree((void const *)tx_ring); tx_ring = (struct ixgbevf_ring *)0; } goto clear_reset; } else { } i = i + 1; ldv_50323: ; if (i < adapter->num_tx_queues) { goto ldv_50322; } else { } } else { } if (new_rx_count != adapter->rx_ring_count) { { tmp___4 = vmalloc((unsigned long )adapter->num_rx_queues * 160UL); rx_ring = (struct ixgbevf_ring *)tmp___4; } if ((unsigned long )rx_ring == (unsigned long )((struct ixgbevf_ring *)0)) { err = -12; goto clear_reset; } else { } i = 0; goto ldv_50329; ldv_50328: { *(rx_ring + (unsigned long )i) = *(adapter->rx_ring[i]); (rx_ring + (unsigned long )i)->count = new_rx_count; err = ixgbevf_setup_rx_resources(rx_ring + (unsigned long )i); } if (err != 0) { goto ldv_50326; ldv_50325: { i = i - 1; ixgbevf_free_rx_resources(rx_ring + (unsigned long )i); } ldv_50326: ; if (i != 0) { goto ldv_50325; } else { } { vfree((void const *)rx_ring); rx_ring = (struct ixgbevf_ring *)0; } goto clear_reset; } else { } i = i + 1; ldv_50329: ; if (i < adapter->num_rx_queues) { goto ldv_50328; } else { } } else { } { ixgbevf_down(adapter); } if ((unsigned long )tx_ring != (unsigned long )((struct ixgbevf_ring *)0)) { i = 0; goto ldv_50332; ldv_50331: { ixgbevf_free_tx_resources(adapter->tx_ring[i]); *(adapter->tx_ring[i]) = *(tx_ring + (unsigned long )i); i = i + 1; } ldv_50332: ; if (i < adapter->num_tx_queues) { goto ldv_50331; } else { } { adapter->tx_ring_count = new_tx_count; vfree((void const *)tx_ring); tx_ring = (struct ixgbevf_ring *)0; } } else { } if ((unsigned long )rx_ring != (unsigned long )((struct ixgbevf_ring *)0)) { i = 0; goto ldv_50335; ldv_50334: { ixgbevf_free_rx_resources(adapter->rx_ring[i]); *(adapter->rx_ring[i]) = *(rx_ring + (unsigned long )i); i = i + 1; } ldv_50335: ; if (i < adapter->num_rx_queues) { goto ldv_50334; } else { } { adapter->rx_ring_count = new_rx_count; vfree((void const *)rx_ring); rx_ring = (struct ixgbevf_ring *)0; } } else { } { ixgbevf_up(adapter); } clear_reset: ; if ((unsigned long )tx_ring != (unsigned long )((struct ixgbevf_ring *)0)) { i = 0; goto ldv_50338; ldv_50337: { ixgbevf_free_tx_resources(tx_ring + (unsigned long )i); i = i + 1; } ldv_50338: ; if (i < adapter->num_tx_queues) { goto ldv_50337; } else { } { vfree((void const *)tx_ring); } } else { } { clear_bit(1L, (unsigned long volatile *)(& adapter->state)); } return (err); } } static int ixgbevf_get_sset_count(struct net_device *dev , int stringset ) { { { if (stringset == 0) { goto case_0; } else { } if (stringset == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ ; return (2); case_1: /* CIL Label */ ; return (15); switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } } } static void ixgbevf_get_ethtool_stats(struct net_device *netdev , struct ethtool_stats *stats , u64 *data ) { struct ixgbevf_adapter *adapter ; void *tmp ; char *base ; int i ; u64 rx_yields ; u64 rx_cleaned ; u64 rx_missed ; u64 tx_yields ; u64 tx_cleaned ; u64 tx_missed ; char *p ; char *b ; char *r ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; base = (char *)adapter; rx_yields = 0ULL; rx_cleaned = 0ULL; rx_missed = 0ULL; tx_yields = 0ULL; tx_cleaned = 0ULL; tx_missed = 0ULL; i = 0; } goto ldv_50364; ldv_50363: rx_yields = rx_yields + (adapter->rx_ring[i])->stats.yields; rx_cleaned = rx_cleaned + (adapter->rx_ring[i])->stats.cleaned; rx_yields = rx_yields + (adapter->rx_ring[i])->stats.yields; i = i + 1; ldv_50364: ; if (i < adapter->num_rx_queues) { goto ldv_50363; } else { } i = 0; goto ldv_50367; ldv_50366: tx_yields = tx_yields + (adapter->tx_ring[i])->stats.yields; tx_cleaned = tx_cleaned + (adapter->tx_ring[i])->stats.cleaned; tx_yields = tx_yields + (adapter->tx_ring[i])->stats.yields; i = i + 1; ldv_50367: ; if (i < adapter->num_tx_queues) { goto ldv_50366; } else { } { adapter->bp_rx_yields = rx_yields; adapter->bp_rx_cleaned = rx_cleaned; adapter->bp_rx_missed = rx_missed; adapter->bp_tx_yields = tx_yields; adapter->bp_tx_cleaned = tx_cleaned; adapter->bp_tx_missed = tx_missed; ixgbevf_update_stats(adapter); i = 0; } goto ldv_50375; ldv_50374: p = base + (unsigned long )ixgbe_gstrings_stats[i].__annonCompField93.stat_offset; b = base + (unsigned long )ixgbe_gstrings_stats[i].__annonCompField93.base_stat_offset; r = base + (unsigned long )ixgbe_gstrings_stats[i].__annonCompField93.saved_reset_offset; if (ixgbe_gstrings_stats[i].__annonCompField93.sizeof_stat == 8) { if ((int )ixgbe_gstrings_stats[i].__annonCompField93.base_stat_offset >= 0) { *(data + (unsigned long )i) = (*((u64 *)p) - *((u64 *)b)) + *((u64 *)r); } else { *(data + (unsigned long )i) = *((u64 *)p); } } else if ((int )ixgbe_gstrings_stats[i].__annonCompField93.base_stat_offset >= 0) { *(data + (unsigned long )i) = (u64 )((*((u32 *)p) - *((u32 *)b)) + *((u32 *)r)); } else { *(data + (unsigned long )i) = (u64 )*((u32 *)p); } i = i + 1; ldv_50375: ; if ((unsigned int )i <= 14U) { goto ldv_50374; } else { } return; } } static void ixgbevf_get_strings(struct net_device *netdev , u32 stringset , u8 *data ) { char *p ; int i ; { p = (char *)data; { if (stringset == 0U) { goto case_0; } else { } if (stringset == 1U) { goto case_1; } else { } goto switch_break; case_0: /* CIL Label */ { memcpy((void *)data, (void const *)(& ixgbe_gstrings_test), 64UL); } goto ldv_50385; case_1: /* CIL Label */ i = 0; goto ldv_50390; ldv_50389: { memcpy((void *)p, (void const *)(& ixgbe_gstrings_stats[i].stat_string), 32UL); p = p + 32UL; i = i + 1; } ldv_50390: ; if ((unsigned int )i <= 14U) { goto ldv_50389; } else { } goto ldv_50385; switch_break: /* CIL Label */ ; } ldv_50385: ; return; } } static int ixgbevf_link_test(struct ixgbevf_adapter *adapter , u64 *data ) { struct ixgbe_hw *hw ; bool link_up ; u32 link_speed ; { { hw = & adapter->hw; link_speed = 0U; *data = 0ULL; (*(hw->mac.ops.check_link))(hw, & link_speed, & link_up, 1); } if (! link_up) { *data = 1ULL; } else { } return ((int )*data); } } static struct ixgbevf_reg_test const reg_test_vf[10U] = { {4096U, 2U, 1U, 4294967168U, 4294967168U}, {4100U, 2U, 1U, 4294967295U, 4294967295U}, {4104U, 2U, 1U, 1048448U, 1048575U}, {4136U, 2U, 3U, 0U, 33554432U}, {4120U, 2U, 1U, 65535U, 65535U}, {4136U, 2U, 3U, 0U, 0U}, {8192U, 2U, 1U, 4294967168U, 4294967295U}, {8196U, 2U, 1U, 4294967295U, 4294967295U}, {8200U, 2U, 1U, 1048448U, 1048448U}, {0U, 0U, 0U, 0U, 0U}}; static u32 const register_test_patterns[4U] = { 1515870810U, 2779096485U, 0U, 4294967295U}; static int ixgbevf_reg_test(struct ixgbevf_adapter *adapter , u64 *data ) { struct ixgbevf_reg_test const *test ; u32 i ; u32 pat ; u32 val ; u32 before ; u32 val___0 ; u32 before___0 ; u32 pat___0 ; u32 val___1 ; u32 before___1 ; u32 pat___1 ; u32 val___2 ; u32 before___2 ; u32 pat___2 ; u32 val___3 ; u32 before___3 ; { test = (struct ixgbevf_reg_test const *)(& reg_test_vf); goto ldv_50458; ldv_50457: i = 0U; goto ldv_50455; ldv_50454: ; { if ((int )test->test_type == 1) { goto case_1; } else { } if ((int )test->test_type == 2) { goto case_2; } else { } if ((int )test->test_type == 3) { goto case_3; } else { } if ((int )test->test_type == 4) { goto case_4; } else { } if ((int )test->test_type == 5) { goto case_5; } else { } if ((int )test->test_type == 6) { goto case_6; } else { } goto switch_break; case_1: /* CIL Label */ pat = 0U; goto ldv_50420; ldv_50419: { before = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 64U)))); writel((unsigned int )register_test_patterns[pat] & (unsigned int )test->write, (void volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 64U)))); val = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 64U)))); } if (val != (((unsigned int )register_test_patterns[pat] & (unsigned int )test->write) & (unsigned int )test->mask)) { { *data = (u64 )((u32 )test->reg + i * 64U); writel(before, (void volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 64U)))); } return (1); } else { } { writel(before, (void volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 64U)))); pat = pat + 1U; } ldv_50420: ; if (pat <= 3U) { goto ldv_50419; } else { } goto ldv_50422; case_2: /* CIL Label */ { before___0 = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 64U)))); writel((unsigned int )test->write & (unsigned int )test->mask, (void volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 64U)))); val___0 = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 64U)))); } if ((((unsigned int )test->write ^ val___0) & (unsigned int )test->mask) != 0U) { { printk("\vixgbevf: set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", (u32 )test->reg + i * 64U, val___0 & (u32 )test->mask, (unsigned int )test->write & (unsigned int )test->mask); *data = (u64 )((u32 )test->reg + i * 64U); writel(before___0, (void volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 64U)))); } return (1); } else { } { writel(before___0, (void volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 64U)))); } goto ldv_50422; case_3: /* CIL Label */ { writel(test->write, (void volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 64U)))); } goto ldv_50422; case_4: /* CIL Label */ pat___0 = 0U; goto ldv_50434; ldv_50433: { before___1 = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 4U)))); writel((unsigned int )register_test_patterns[pat___0] & (unsigned int )test->write, (void volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 4U)))); val___1 = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 4U)))); } if (val___1 != (((unsigned int )register_test_patterns[pat___0] & (unsigned int )test->write) & (unsigned int )test->mask)) { { *data = (u64 )((u32 )test->reg + i * 4U); writel(before___1, (void volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 4U)))); } return (1); } else { } { writel(before___1, (void volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 4U)))); pat___0 = pat___0 + 1U; } ldv_50434: ; if (pat___0 <= 3U) { goto ldv_50433; } else { } goto ldv_50422; case_5: /* CIL Label */ pat___1 = 0U; goto ldv_50443; ldv_50442: { before___2 = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 8U)))); writel((unsigned int )register_test_patterns[pat___1] & (unsigned int )test->write, (void volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 8U)))); val___2 = readl((void const volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 8U)))); } if (val___2 != (((unsigned int )register_test_patterns[pat___1] & (unsigned int )test->write) & (unsigned int )test->mask)) { { *data = (u64 )((u32 )test->reg + i * 8U); writel(before___2, (void volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 8U)))); } return (1); } else { } { writel(before___2, (void volatile *)(adapter->hw.hw_addr + ((unsigned long )test->reg + (unsigned long )(i * 8U)))); pat___1 = pat___1 + 1U; } ldv_50443: ; if (pat___1 <= 3U) { goto ldv_50442; } else { } goto ldv_50422; case_6: /* CIL Label */ pat___2 = 0U; goto ldv_50452; ldv_50451: { before___3 = readl((void const volatile *)(adapter->hw.hw_addr + (((unsigned long )test->reg + (unsigned long )(i * 8U)) + 4UL))); writel((unsigned int )register_test_patterns[pat___2] & (unsigned int )test->write, (void volatile *)(adapter->hw.hw_addr + (((unsigned long )test->reg + (unsigned long )(i * 8U)) + 4UL))); val___3 = readl((void const volatile *)(adapter->hw.hw_addr + (((unsigned long )test->reg + (unsigned long )(i * 8U)) + 4UL))); } if (val___3 != (((unsigned int )register_test_patterns[pat___2] & (unsigned int )test->write) & (unsigned int )test->mask)) { { *data = (u64 )(((u32 )test->reg + i * 8U) + 4U); writel(before___3, (void volatile *)(adapter->hw.hw_addr + (((unsigned long )test->reg + (unsigned long )(i * 8U)) + 4UL))); } return (1); } else { } { writel(before___3, (void volatile *)(adapter->hw.hw_addr + (((unsigned long )test->reg + (unsigned long )(i * 8U)) + 4UL))); pat___2 = pat___2 + 1U; } ldv_50452: ; if (pat___2 <= 3U) { goto ldv_50451; } else { } goto ldv_50422; switch_break: /* CIL Label */ ; } ldv_50422: i = i + 1U; ldv_50455: ; if (i < (u32 )test->array_len) { goto ldv_50454; } else { } test = test + 1; ldv_50458: ; if ((unsigned int )((unsigned short )test->reg) != 0U) { goto ldv_50457; } else { } *data = 0ULL; return ((int )*data); } } static void ixgbevf_diag_test(struct net_device *netdev , struct ethtool_test *eth_test , u64 *data ) { struct ixgbevf_adapter *adapter ; void *tmp ; bool if_running ; bool tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; tmp___0 = netif_running((struct net_device const *)netdev); if_running = tmp___0; set_bit(0L, (unsigned long volatile *)(& adapter->state)); } if (eth_test->flags == 1U) { { tmp___1 = ixgbevf_link_test(adapter, data + 1UL); } if (tmp___1 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } if ((int )if_running) { { dev_close(netdev); } } else { { ixgbevf_reset(adapter); } } { tmp___2 = ixgbevf_reg_test(adapter, data); } if (tmp___2 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } { ixgbevf_reset(adapter); clear_bit(0L, (unsigned long volatile *)(& adapter->state)); } if ((int )if_running) { { dev_open(netdev); } } else { } } else { { tmp___3 = ixgbevf_link_test(adapter, data + 1UL); } if (tmp___3 != 0) { eth_test->flags = eth_test->flags | 2U; } else { } { *data = 0ULL; clear_bit(0L, (unsigned long volatile *)(& adapter->state)); } } { msleep_interruptible(4000U); } return; } } static int ixgbevf_nway_reset(struct net_device *netdev ) { struct ixgbevf_adapter *adapter ; void *tmp ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; tmp___0 = netif_running((struct net_device const *)netdev); } if ((int )tmp___0) { { ixgbevf_reinit_locked(adapter); } } else { } return (0); } } static int ixgbevf_get_coalesce(struct net_device *netdev , struct ethtool_coalesce *ec ) { struct ixgbevf_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; } if ((unsigned int )adapter->rx_itr_setting <= 1U) { ec->rx_coalesce_usecs = (__u32 )adapter->rx_itr_setting; } else { ec->rx_coalesce_usecs = (__u32 )((int )adapter->rx_itr_setting >> 2); } if ((unsigned int )(adapter->q_vector[0])->tx.count != 0U && (unsigned int )(adapter->q_vector[0])->rx.count != 0U) { return (0); } else { } if ((unsigned int )adapter->tx_itr_setting <= 1U) { ec->tx_coalesce_usecs = (__u32 )adapter->tx_itr_setting; } else { ec->tx_coalesce_usecs = (__u32 )((int )adapter->tx_itr_setting >> 2); } return (0); } } static int ixgbevf_set_coalesce(struct net_device *netdev , struct ethtool_coalesce *ec ) { struct ixgbevf_adapter *adapter ; void *tmp ; struct ixgbevf_q_vector *q_vector ; int num_vectors ; int i ; u16 tx_itr_param ; u16 rx_itr_param ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; } if (((unsigned int )(adapter->q_vector[0])->tx.count != 0U && (unsigned int )(adapter->q_vector[0])->rx.count != 0U) && ec->tx_coalesce_usecs != 0U) { return (-22); } else { } if (ec->rx_coalesce_usecs > 1022U || ec->tx_coalesce_usecs > 1022U) { return (-22); } else { } if (ec->rx_coalesce_usecs > 1U) { adapter->rx_itr_setting = (int )((u16 )ec->rx_coalesce_usecs) << 2U; } else { adapter->rx_itr_setting = (u16 )ec->rx_coalesce_usecs; } if ((unsigned int )adapter->rx_itr_setting == 1U) { rx_itr_param = 200U; } else { rx_itr_param = adapter->rx_itr_setting; } if (ec->tx_coalesce_usecs > 1U) { adapter->tx_itr_setting = (int )((u16 )ec->tx_coalesce_usecs) << 2U; } else { adapter->tx_itr_setting = (u16 )ec->tx_coalesce_usecs; } if ((unsigned int )adapter->tx_itr_setting == 1U) { tx_itr_param = 400U; } else { tx_itr_param = adapter->tx_itr_setting; } num_vectors = adapter->num_msix_vectors + -1; i = 0; goto ldv_50487; ldv_50486: q_vector = adapter->q_vector[i]; if ((unsigned int )q_vector->tx.count != 0U && (unsigned int )q_vector->rx.count == 0U) { q_vector->itr = tx_itr_param; } else { q_vector->itr = rx_itr_param; } { ixgbevf_write_eitr(q_vector); i = i + 1; } ldv_50487: ; if (i < num_vectors) { goto ldv_50486; } else { } return (0); } } static struct ethtool_ops const ixgbevf_ethtool_ops = {& ixgbevf_get_settings, 0, & ixgbevf_get_drvinfo, & ixgbevf_get_regs_len, & ixgbevf_get_regs, 0, 0, & ixgbevf_get_msglevel, & ixgbevf_set_msglevel, & ixgbevf_nway_reset, & ethtool_op_get_link, 0, 0, 0, & ixgbevf_get_coalesce, & ixgbevf_set_coalesce, & ixgbevf_get_ringparam, & ixgbevf_set_ringparam, 0, 0, & ixgbevf_diag_test, & ixgbevf_get_strings, 0, & ixgbevf_get_ethtool_stats, 0, 0, 0, 0, & ixgbevf_get_sset_count, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; void ixgbevf_set_ethtool_ops(struct net_device *netdev ) { { netdev->ethtool_ops = & ixgbevf_ethtool_ops; return; } } void ldv_dummy_resourceless_instance_callback_2_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_12(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_13(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_14(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_15(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_16(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_17(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_20(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_3(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_39(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_40(void (*arg0)(struct net_device * , struct ethtool_test * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_test *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_43(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_44(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_47(int (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_7(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_8(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; int (*ldv_2_callback_get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*ldv_2_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; void (*ldv_2_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_2_callback_get_link)(struct net_device * ) ; unsigned int (*ldv_2_callback_get_msglevel)(struct net_device * ) ; void (*ldv_2_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; int (*ldv_2_callback_get_regs_len)(struct net_device * ) ; void (*ldv_2_callback_get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_2_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_2_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_2_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; int (*ldv_2_callback_nway_reset)(struct net_device * ) ; void (*ldv_2_callback_self_test)(struct net_device * , struct ethtool_test * , unsigned long long * ) ; int (*ldv_2_callback_set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*ldv_2_callback_set_msglevel)(struct net_device * , unsigned int ) ; int (*ldv_2_callback_set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_2_callback_get_coalesce)(struct net_device * , struct ethtool_coalesce * ) = & ixgbevf_get_coalesce; void (*ldv_2_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) = & ixgbevf_get_drvinfo; void (*ldv_2_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) = & ixgbevf_get_ethtool_stats; unsigned int (*ldv_2_callback_get_link)(struct net_device * ) = & ethtool_op_get_link; unsigned int (*ldv_2_callback_get_msglevel)(struct net_device * ) = & ixgbevf_get_msglevel; void (*ldv_2_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) = & ixgbevf_get_regs; int (*ldv_2_callback_get_regs_len)(struct net_device * ) = & ixgbevf_get_regs_len; void (*ldv_2_callback_get_ringparam)(struct net_device * , struct ethtool_ringparam * ) = & ixgbevf_get_ringparam; int (*ldv_2_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) = & ixgbevf_get_settings; int (*ldv_2_callback_get_sset_count)(struct net_device * , int ) = & ixgbevf_get_sset_count; void (*ldv_2_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) = & ixgbevf_get_strings; int (*ldv_2_callback_nway_reset)(struct net_device * ) = & ixgbevf_nway_reset; void (*ldv_2_callback_self_test)(struct net_device * , struct ethtool_test * , unsigned long long * ) = & ixgbevf_diag_test; int (*ldv_2_callback_set_coalesce)(struct net_device * , struct ethtool_coalesce * ) = & ixgbevf_set_coalesce; void (*ldv_2_callback_set_msglevel)(struct net_device * , unsigned int ) = & ixgbevf_set_msglevel; int (*ldv_2_callback_set_ringparam)(struct net_device * , struct ethtool_ringparam * ) = & ixgbevf_set_ringparam; void ldv_dummy_resourceless_instance_callback_2_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ethtool_op_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_12(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ixgbevf_get_msglevel(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_13(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) { { { ixgbevf_get_regs(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_14(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ixgbevf_get_regs_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_15(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { ixgbevf_get_ringparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_16(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { ixgbevf_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_17(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { ixgbevf_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_20(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { ixgbevf_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_3(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { ixgbevf_get_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_39(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ixgbevf_nway_reset(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_40(void (*arg0)(struct net_device * , struct ethtool_test * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_test *arg2 , unsigned long long *arg3 ) { { { ixgbevf_diag_test(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_43(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { ixgbevf_set_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_44(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) { { { ixgbevf_set_msglevel(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_47(int (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { ixgbevf_set_ringparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_7(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { ixgbevf_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_8(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { ixgbevf_get_ethtool_stats(arg1, arg2, arg3); } return; } } void __builtin_prefetch(void const * , ...) ; long ldv__builtin_expect(long exp , long c ) ; void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; extern struct module __this_module ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern struct pv_irq_ops pv_irq_ops ; __inline static int variable_test_bit(long nr , unsigned long const volatile *addr ) { int oldbit ; { __asm__ volatile ("bt %2,%1\n\tsbb %0,%0": "=r" (oldbit): "m" (*((unsigned long *)addr)), "Ir" (nr)); return (oldbit); } } extern unsigned long find_next_bit(unsigned long const * , unsigned long , unsigned long ) ; extern unsigned long find_first_bit(unsigned long const * , unsigned long ) ; extern void __might_sleep(char const * , int , int ) ; extern int snprintf(char * , size_t , char const * , ...) ; extern void __bad_percpu_size(void) ; extern unsigned long __phys_addr(unsigned long ) ; extern char *strcpy(char * , char const * ) ; extern int __bitmap_weight(unsigned long const * , int ) ; __inline static int bitmap_weight(unsigned long const *src , int nbits ) { int tmp___0 ; { { tmp___0 = __bitmap_weight(src, nbits); } return (tmp___0); } } extern void warn_slowpath_null(char const * , int const ) ; extern int nr_cpu_ids ; extern struct cpumask const * const cpu_online_mask ; __inline static unsigned int cpumask_weight(struct cpumask const *srcp ) { int tmp ; { { tmp = bitmap_weight((unsigned long const *)(& srcp->bits), nr_cpu_ids); } return ((unsigned int )tmp); } } __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/f860c18/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_lock_lock_of_ixgbevf_q_vector(void) ; void ldv_spin_unlock_lock_of_ixgbevf_q_vector(void) ; void ldv_spin_lock_mbx_lock_of_ixgbevf_adapter(void) ; void ldv_spin_unlock_mbx_lock_of_ixgbevf_adapter(void) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; int ldv_undef_int(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void *external_allocated_data(void) ; extern int __preempt_count ; __inline static int preempt_count(void) { int pfo_ret__ ; { { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (__preempt_count)); goto ldv_6556; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6556; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6556; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (__preempt_count)); goto ldv_6556; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6556: ; return (pfo_ret__ & 2147483647); } } extern void __local_bh_disable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_disable(void) { { { __local_bh_disable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __local_bh_enable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_enable(void) { { { __local_bh_enable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_bh(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_bh(raw_spinlock_t * ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_46(spinlock_t *lock ) ; __inline static void spin_lock_bh(spinlock_t *lock ) { { { _raw_spin_lock_bh(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_bh_77(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_77(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_77(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_77(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_77(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_93(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_93(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_93(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_93(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_93(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_93(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_93(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_93(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_93(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void spin_unlock_bh(spinlock_t *lock ) { { { _raw_spin_unlock_bh(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_bh_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_94(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_94(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_94(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_94(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_94(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_94(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_94(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_94(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_94(spinlock_t *lock ) ; extern unsigned long volatile jiffies ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern int mod_timer(struct timer_list * , unsigned long ) ; static int ldv_mod_timer_87(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_105(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_111(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_106(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_117(struct timer_list *ldv_func_arg1 ) ; extern unsigned long round_jiffies(unsigned long ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool cancel_work_sync(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } extern void *ioremap_nocache(resource_size_t , unsigned long ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { { tmp = ioremap_nocache(offset, size); } return (tmp); } } extern void iounmap(void volatile * ) ; extern void *vzalloc(unsigned long ) ; extern int cpu_number ; extern void __bad_size_call_parameter(void) ; static void *ldv_dev_get_drvdata_58(struct device const *dev ) ; static int ldv_dev_set_drvdata_59(struct device *dev , void *data ) ; extern int dev_err(struct device const * , char const * , ...) ; extern int dev_warn(struct device const * , char const * , ...) ; extern int _dev_info(struct device const * , char const * , ...) ; extern void msleep(unsigned int ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void get_random_bytes(void * , int ) ; extern int net_ratelimit(void) ; extern void kfree(void const * ) ; extern void *__kmalloc(size_t , gfp_t ) ; __inline static void *kmalloc_array(size_t n , size_t size , gfp_t flags ) { void *tmp ; { if (size != 0UL && n > 0xffffffffffffffffUL / size) { return ((void *)0); } else { } { tmp = __kmalloc(n * size, flags); } return (tmp); } } __inline static void *kcalloc(size_t n , size_t size , gfp_t flags ) { void *tmp ; { { tmp = kmalloc_array(n, size, flags | 32768U); } return (tmp); } } __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static __sum16 csum_fold(__wsum sum ) { { __asm__ (" addl %1,%0\n adcl $0xffff,%0": "=r" (sum): "r" (sum << 16), "0" (sum & 4294901760U)); return ((__sum16 )(~ sum >> 16)); } } __inline static __wsum csum_tcpudp_nofold(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { { __asm__ (" addl %1, %0\n adcl %2, %0\n adcl %3, %0\n adcl $0, %0\n": "=r" (sum): "g" (daddr), "g" (saddr), "g" (((int )len + (int )proto) << 8), "0" (sum)); return (sum); } } __inline static __sum16 csum_tcpudp_magic(__be32 saddr , __be32 daddr , unsigned short len , unsigned short proto , __wsum sum ) { __wsum tmp ; __sum16 tmp___0 ; { { tmp = csum_tcpudp_nofold(saddr, daddr, (int )len, (int )proto, sum); tmp___0 = csum_fold(tmp); } return (tmp___0); } } extern __sum16 csum_ipv6_magic(struct in6_addr const * , struct in6_addr const * , __u32 , unsigned short , __wsum ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (79), "i" (12UL)); __builtin_unreachable(); } } else { } { addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); } return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (91), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 0); } return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/f860c18/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static int dma_set_mask_and_coherent(struct device *dev , u64 mask ) { int rc ; int tmp ; { { tmp = dma_set_mask(dev, mask); rc = tmp; } if (rc == 0) { { dma_set_coherent_mask(dev, mask); } } else { } return (rc); } } __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } extern void consume_skb(struct sk_buff * ) ; extern int pskb_expand_head(struct sk_buff * , int , int , gfp_t ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static int skb_header_cloned(struct sk_buff const *skb ) { int dataref ; unsigned char *tmp ; { if ((unsigned int )*((unsigned char *)skb + 124UL) == 0U) { return (0); } else { } { tmp = skb_end_pointer(skb); dataref = atomic_read((atomic_t const *)(& ((struct skb_shared_info *)tmp)->dataref)); dataref = (dataref & 65535) - (dataref >> 16); } return (dataref != 1); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static unsigned char *skb_transport_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->transport_header); } } __inline static unsigned char *skb_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->network_header); } } __inline static unsigned char *skb_mac_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->mac_header); } } __inline static int skb_transport_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } __inline static u32 skb_network_header_len(struct sk_buff const *skb ) { { return ((u32 )((int )skb->transport_header - (int )skb->network_header)); } } __inline static int skb_network_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } extern struct sk_buff *__netdev_alloc_skb(struct net_device * , unsigned int , gfp_t ) ; __inline static struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev , unsigned int length , gfp_t gfp ) { struct sk_buff *skb ; struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb(dev, length, gfp); skb = tmp; } return (skb); } } __inline static struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb_ip_align(dev, length, 32U); } return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); } return (tmp___0); } } extern int skb_copy_bits(struct sk_buff const * , int , void * , int ) ; __inline static void *skb_header_pointer(struct sk_buff const *skb , int offset , int len , void *buffer ) { int hlen ; unsigned int tmp ; int tmp___0 ; { { tmp = skb_headlen(skb); hlen = (int )tmp; } if (hlen - offset >= len) { return ((void *)skb->data + (unsigned long )offset); } else { } { tmp___0 = skb_copy_bits(skb, offset, buffer, len); } if (tmp___0 < 0) { return ((void *)0); } else { } return (buffer); } } __inline static bool skb_is_gso(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_end_pointer(skb); } return ((unsigned int )((struct skb_shared_info *)tmp)->gso_size != 0U); } } __inline static bool skb_is_gso_v6(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_end_pointer(skb); } return (((int )((struct skb_shared_info *)tmp)->gso_type & 16) != 0); } } __inline static void skb_checksum_none_assert(struct sk_buff const *skb ) { { return; } } __inline static struct ethhdr *eth_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_mac_header(skb); } return ((struct ethhdr *)tmp); } } __inline static void u64_stats_update_begin(struct u64_stats_sync *syncp ) { { return; } } __inline static unsigned int u64_stats_fetch_begin_bh(struct u64_stats_sync const *syncp ) { { return (0U); } } __inline static bool u64_stats_fetch_retry_bh(struct u64_stats_sync const *syncp , unsigned int start ) { { return (0); } } extern void synchronize_irq(unsigned int ) ; extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); } return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = napi_disable_pending(n); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } __inline static void napi_schedule(struct napi_struct *n ) { bool tmp ; { { tmp = napi_schedule_prep(n); } if ((int )tmp) { { __napi_schedule(n); } } else { } return; } } extern void napi_complete(struct napi_struct * ) ; extern void napi_hash_add(struct napi_struct * ) ; extern void napi_hash_del(struct napi_struct * ) ; __inline static void napi_disable(struct napi_struct *n ) { int tmp ; { { __might_sleep("include/linux/netdevice.h", 486, 0); set_bit(1L, (unsigned long volatile *)(& n->state)); } goto ldv_38395; ldv_38394: { msleep(1U); } ldv_38395: { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp != 0) { goto ldv_38394; } else { } { clear_bit(1L, (unsigned long volatile *)(& n->state)); } return; } } __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (502), "i" (12UL)); __builtin_unreachable(); } } else { } { __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void netif_napi_del(struct napi_struct * ) ; extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_116(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_119(struct net_device *ldv_func_arg1 ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_tx_start_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_39290; ldv_39289: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_start_queue(txq); i = i + 1U; } ldv_39290: ; if (i < dev->num_tx_queues) { goto ldv_39289; } else { } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_tx_wake_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_39304; ldv_39303: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_wake_queue(txq); i = i + 1U; } ldv_39304: ; if (i < dev->num_tx_queues) { goto ldv_39303; } else { } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_tx_stop_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_39320; ldv_39319: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_stop_queue(txq); i = i + 1U; } ldv_39320: ; if (i < dev->num_tx_queues) { goto ldv_39319; } else { } return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); } return (tmp != 0); } } __inline static void netif_start_subqueue(struct net_device *dev , u16 queue_index ) { struct netdev_queue *txq ; struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, (unsigned int )queue_index); txq = tmp; netif_tx_start_queue(txq); } return; } } __inline static void netif_stop_subqueue(struct net_device *dev , u16 queue_index ) { struct netdev_queue *txq ; struct netdev_queue *tmp ; int tmp___0 ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, (unsigned int )queue_index); txq = tmp; tmp___0 = netpoll_trap(); } if (tmp___0 != 0) { return; } else { } { netif_tx_stop_queue(txq); } return; } } __inline static bool __netif_subqueue_stopped(struct net_device const *dev , u16 queue_index ) { struct netdev_queue *txq ; struct netdev_queue *tmp ; bool tmp___0 ; { { tmp = netdev_get_tx_queue(dev, (unsigned int )queue_index); txq = tmp; tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)txq); } return (tmp___0); } } __inline static void netif_wake_subqueue(struct net_device *dev , u16 queue_index ) { struct netdev_queue *txq ; struct netdev_queue *tmp ; int tmp___0 ; int tmp___1 ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, (unsigned int )queue_index); txq = tmp; tmp___0 = netpoll_trap(); } if (tmp___0 != 0) { return; } else { } { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& txq->state)); } if (tmp___1 != 0) { { __netif_schedule(txq->qdisc); } } else { } return; } } extern int netif_set_real_num_tx_queues(struct net_device * , unsigned int ) ; extern int netif_set_real_num_rx_queues(struct net_device * , unsigned int ) ; extern void __dev_kfree_skb_irq(struct sk_buff * , enum skb_free_reason ) ; extern void __dev_kfree_skb_any(struct sk_buff * , enum skb_free_reason ) ; __inline static void dev_kfree_skb_irq(struct sk_buff *skb ) { { { __dev_kfree_skb_irq(skb, 1); } return; } } __inline static void dev_kfree_skb_any(struct sk_buff *skb ) { { { __dev_kfree_skb_any(skb, 1); } return; } } extern int netif_rx(struct sk_buff * ) ; extern int netif_receive_skb(struct sk_buff * ) ; extern gro_result_t napi_gro_receive(struct napi_struct * , struct sk_buff * ) ; __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& dev->state)); } return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; __inline static u32 netif_msg_init(int debug_value , int default_msg_enable_bits ) { { if ((unsigned int )debug_value > 31U) { return ((u32 )default_msg_enable_bits); } else { } if (debug_value == 0) { return (0U); } else { } return ((u32 )((1 << debug_value) + -1)); } } __inline static void __netif_tx_lock(struct netdev_queue *txq , int cpu ) { { { ldv_spin_lock_46(& txq->_xmit_lock); txq->xmit_lock_owner = cpu; } return; } } __inline static void __netif_tx_unlock(struct netdev_queue *txq ) { { { txq->xmit_lock_owner = -1; ldv_spin_unlock_49(& txq->_xmit_lock); } return; } } __inline static void netif_tx_disable(struct net_device *dev ) { unsigned int i ; int cpu ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { { local_bh_disable(); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_39849; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39849; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39849; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_39849; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_39849: pscr_ret__ = pfo_ret__; goto ldv_39855; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39859; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39859; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39859; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_39859; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_39859: pscr_ret__ = pfo_ret_____0; goto ldv_39855; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39868; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39868; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39868; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_39868; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_39868: pscr_ret__ = pfo_ret_____1; goto ldv_39855; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39877; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39877; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39877; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_39877; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_39877: pscr_ret__ = pfo_ret_____2; goto ldv_39855; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_39855; switch_break: /* CIL Label */ ; } ldv_39855: cpu = pscr_ret__; i = 0U; goto ldv_39887; ldv_39886: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; __netif_tx_lock(txq, cpu); netif_tx_stop_queue(txq); __netif_tx_unlock(txq); i = i + 1U; } ldv_39887: ; if (i < dev->num_tx_queues) { goto ldv_39886; } else { } { local_bh_enable(); } return; } } extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_115(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_118(struct net_device *ldv_func_arg1 ) ; __inline static int pci_channel_offline(struct pci_dev *pdev ) { { return (pdev->error_state != 1U); } } extern int pci_enable_device(struct pci_dev * ) ; extern int pci_enable_device_mem(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_120(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_121(struct pci_driver *ldv_func_arg1 ) ; extern int pci_enable_msix(struct pci_dev * , struct msix_entry * , int ) ; extern void pci_disable_msix(struct pci_dev * ) ; __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_58((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_59(& pdev->dev, data); } return; } } __inline static struct iphdr *ip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct iphdr *)tmp); } } extern void rtnl_lock(void) ; extern void rtnl_unlock(void) ; __inline static struct tcphdr *tcp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((struct tcphdr *)tmp); } } __inline static unsigned int tcp_hdrlen(struct sk_buff const *skb ) { struct tcphdr *tmp ; { { tmp = tcp_hdr(skb); } return ((unsigned int )((int )tmp->doff * 4)); } } __inline static struct ipv6hdr *ipv6_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct ipv6hdr *)tmp); } } extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_114(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; static u8 const eth_reserved_addr_base___0[6U] = { 1U, 128U, 194U, 0U, 0U, 0U}; __inline static bool is_link_local_ether_addr___0(u8 const *addr ) { __be16 *a ; __be16 const *b ; __be16 m ; { a = (__be16 *)addr; b = (__be16 const *)(& eth_reserved_addr_base___0); m = 61695U; return ((((unsigned int )*((u32 const *)addr) ^ (unsigned int )*((u32 const *)b)) | ((unsigned int )((int )*(a + 2UL) ^ (int )((unsigned short )*(b + 2UL))) & 61695U)) == 0U); } } __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static void eth_random_addr(u8 *addr ) { { { get_random_bytes((void *)addr, 6); *addr = (unsigned int )*addr & 254U; *addr = (u8 )((unsigned int )*addr | 2U); } return; } } __inline static void eth_hw_addr_random(struct net_device *dev ) { { { dev->addr_assign_type = 1U; eth_random_addr(dev->dev_addr); } return; } } __inline static bool ether_addr_equal(u8 const *addr1 , u8 const *addr2 ) { u32 fold ; { fold = ((unsigned int )*((u32 const *)addr1) ^ (unsigned int )*((u32 const *)addr2)) | (unsigned int )((int )((unsigned short )*((u16 const *)addr1 + 4U)) ^ (int )((unsigned short )*((u16 const *)addr2 + 4U))); return (fold == 0U); } } __inline static struct sk_buff *__vlan_hwaccel_put_tag(struct sk_buff *skb , __be16 vlan_proto , u16 vlan_tci ) { { skb->vlan_proto = vlan_proto; skb->vlan_tci = (__u16 )((unsigned int )vlan_tci | 4096U); return (skb); } } __inline static __be16 vlan_get_protocol(struct sk_buff const *skb ) { __be16 protocol ; __be16 proto ; __be16 *protop ; void *tmp ; long tmp___0 ; { protocol = 0U; if (((int )skb->vlan_tci & 4096) != 0 || (unsigned int )((unsigned short )skb->protocol) != 129U) { protocol = skb->protocol; } else { { tmp = skb_header_pointer(skb, 16, 2, (void *)(& proto)); protop = (__be16 *)tmp; tmp___0 = ldv__builtin_expect((unsigned long )protop != (unsigned long )((__be16 *)0U), 1L); } if (tmp___0 != 0L) { protocol = *protop; } else { } } return (protocol); } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_88(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; __inline static int ldv_request_irq_89(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_90(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_91(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; static void ldv_free_irq_92(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; __inline static void skb_mark_napi_id(struct sk_buff *skb , struct napi_struct *napi ) { { skb->__annonCompField69.napi_id = napi->napi_id; return; } } __inline static void ixgbevf_qv_init_lock(struct ixgbevf_q_vector *q_vector ) { struct lock_class_key __key ; { { spinlock_check(& q_vector->lock); __raw_spin_lock_init(& q_vector->lock.__annonCompField19.rlock, "&(&q_vector->lock)->rlock", & __key); q_vector->state = 0U; } return; } } __inline static bool ixgbevf_qv_lock_napi(struct ixgbevf_q_vector *q_vector ) { int rc ; int __ret_warn_on ; long tmp ; { { rc = 1; ldv_spin_lock_bh_77(& q_vector->lock); } if ((q_vector->state & 7U) != 0U) { { __ret_warn_on = (int )q_vector->state & 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/ethernet/intel/ixgbevf/ixgbevf.h", 207); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); q_vector->state = q_vector->state | 8U; rc = 0; (q_vector->tx.ring)->stats.yields = (q_vector->tx.ring)->stats.yields + 1ULL; } } else { q_vector->state = 1U; } { ldv_spin_unlock_bh_78(& q_vector->lock); } return (rc != 0); } } __inline static bool ixgbevf_qv_unlock_napi(struct ixgbevf_q_vector *q_vector ) { int rc ; int __ret_warn_on ; long tmp ; { { rc = 0; ldv_spin_lock_bh_77(& q_vector->lock); __ret_warn_on = (q_vector->state & 10U) != 0U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/ethernet/intel/ixgbevf/ixgbevf.h", 227); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if ((q_vector->state & 16U) != 0U) { rc = 1; } else { } { q_vector->state = q_vector->state & 4U; ldv_spin_unlock_bh_78(& q_vector->lock); } return (rc != 0); } } __inline static bool ixgbevf_qv_lock_poll(struct ixgbevf_q_vector *q_vector ) { int rc ; { { rc = 1; ldv_spin_lock_bh_77(& q_vector->lock); } if ((q_vector->state & 7U) != 0U) { q_vector->state = q_vector->state | 16U; rc = 0; (q_vector->rx.ring)->stats.yields = (q_vector->rx.ring)->stats.yields + 1ULL; } else { q_vector->state = q_vector->state | 2U; } { ldv_spin_unlock_bh_78(& q_vector->lock); } return (rc != 0); } } __inline static bool ixgbevf_qv_unlock_poll(struct ixgbevf_q_vector *q_vector ) { int rc ; int __ret_warn_on ; long tmp ; { { rc = 0; ldv_spin_lock_bh_77(& q_vector->lock); __ret_warn_on = (int )q_vector->state & 1; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/ethernet/intel/ixgbevf/ixgbevf.h", 261); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } if ((q_vector->state & 16U) != 0U) { rc = 1; } else { } { q_vector->state = q_vector->state & 4U; ldv_spin_unlock_bh_78(& q_vector->lock); } return (rc != 0); } } __inline static bool ixgbevf_qv_busy_polling(struct ixgbevf_q_vector *q_vector ) { int __ret_warn_on ; long tmp ; { { __ret_warn_on = (q_vector->state & 3U) == 0U; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("drivers/net/ethernet/intel/ixgbevf/ixgbevf.h", 274); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } return ((q_vector->state & 18U) != 0U); } } __inline static bool ixgbevf_qv_disable(struct ixgbevf_q_vector *q_vector ) { int rc ; { { rc = 1; ldv_spin_lock_bh_77(& q_vector->lock); } if ((q_vector->state & 3U) != 0U) { rc = 0; } else { } { q_vector->state = q_vector->state | 4U; ldv_spin_unlock_bh_78(& q_vector->lock); } return (rc != 0); } } __inline static u16 ixgbevf_desc_unused(struct ixgbevf_ring *ring ) { u16 ntc ; u16 ntu ; { ntc = (u16 )ring->next_to_clean; ntu = (u16 )ring->next_to_use; return (((((int )ntc <= (int )ntu ? (u16 )ring->count : 0U) + (unsigned int )ntc) - (unsigned int )ntu) - 1U); } } char const ixgbevf_driver_name[8U] = { 'i', 'x', 'g', 'b', 'e', 'v', 'f', '\000'}; static char const ixgbevf_driver_string[64U] = { 'I', 'n', 't', 'e', 'l', '(', 'R', ')', ' ', '1', '0', ' ', 'G', 'i', 'g', 'a', 'b', 'i', 't', ' ', 'P', 'C', 'I', ' ', 'E', 'x', 'p', 'r', 'e', 's', 's', ' ', 'V', 'i', 'r', 't', 'u', 'a', 'l', ' ', 'F', 'u', 'n', 'c', 't', 'i', 'o', 'n', ' ', 'N', 'e', 't', 'w', 'o', 'r', 'k', ' ', 'D', 'r', 'i', 'v', 'e', 'r', '\000'}; char const ixgbevf_driver_version[9U] = { '2', '.', '1', '2', '.', '1', '-', 'k', '\000'}; static char ixgbevf_copyright[45U] = { 'C', 'o', 'p', 'y', 'r', 'i', 'g', 'h', 't', ' ', '(', 'c', ')', ' ', '2', '0', '0', '9', ' ', '-', ' ', '2', '0', '1', '2', ' ', 'I', 'n', 't', 'e', 'l', ' ', 'C', 'o', 'r', 'p', 'o', 'r', 'a', 't', 'i', 'o', 'n', '.', '\000'}; static struct ixgbevf_info const *ixgbevf_info_tbl[2U] = { & ixgbevf_82599_vf_info, & ixgbevf_X540_vf_info}; static struct pci_device_id const ixgbevf_pci_tbl[3U] = { {32902U, 4333U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {32902U, 5397U, 4294967295U, 4294967295U, 0U, 0U, 1UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; static int debug = -1; static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter ) ; static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector ) ; static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter ) ; __inline static void ixgbevf_release_rx_desc(struct ixgbevf_ring *rx_ring , u32 val ) { { { rx_ring->next_to_use = val; __asm__ volatile ("sfence": : : "memory"); writel(val, (void volatile *)rx_ring->tail); } return; } } static void ixgbevf_set_ivar(struct ixgbevf_adapter *adapter , s8 direction , u8 queue , u8 msix_vector ) { u32 ivar ; u32 index ; struct ixgbe_hw *hw ; { hw = & adapter->hw; if ((int )direction == -1) { { msix_vector = (u8 )((unsigned int )msix_vector | 128U); ivar = readl((void const volatile *)hw->hw_addr + 320U); ivar = ivar & 4294967040U; ivar = ivar | (u32 )msix_vector; writel(ivar, (void volatile *)hw->hw_addr + 320U); } } else { { msix_vector = (u8 )((unsigned int )msix_vector | 128U); index = (u32 )((((int )queue & 1) * 2 + (int )direction) * 8); ivar = readl((void const volatile *)hw->hw_addr + (unsigned long )((((int )queue >> 1) + 72) * 4)); ivar = ivar & (u32 )(~ (255 << (int )index)); ivar = ivar | (u32 )((int )msix_vector << (int )index); writel(ivar, (void volatile *)hw->hw_addr + (unsigned long )((((int )queue >> 1) + 72) * 4)); } } return; } } static void ixgbevf_unmap_and_free_tx_resource(struct ixgbevf_ring *tx_ring , struct ixgbevf_tx_buffer *tx_buffer ) { { if ((unsigned long )tx_buffer->skb != (unsigned long )((struct sk_buff *)0)) { { dev_kfree_skb_any(tx_buffer->skb); } if (tx_buffer->len != 0U) { { dma_unmap_single_attrs(tx_ring->dev, tx_buffer->dma, (size_t )tx_buffer->len, 1, (struct dma_attrs *)0); } } else { } } else if (tx_buffer->len != 0U) { { dma_unmap_page(tx_ring->dev, tx_buffer->dma, (size_t )tx_buffer->len, 1); } } else { } tx_buffer->next_to_watch = (union ixgbe_adv_tx_desc *)0; tx_buffer->skb = (struct sk_buff *)0; tx_buffer->len = 0U; return; } } static void ixgbevf_tx_timeout(struct net_device *netdev ) ; static bool ixgbevf_clean_tx_irq(struct ixgbevf_q_vector *q_vector , struct ixgbevf_ring *tx_ring ) { struct ixgbevf_adapter *adapter ; struct ixgbevf_tx_buffer *tx_buffer ; union ixgbe_adv_tx_desc *tx_desc ; unsigned int total_bytes ; unsigned int total_packets ; unsigned int budget ; unsigned int i ; int tmp ; union ixgbe_adv_tx_desc *eop_desc ; long tmp___0 ; long tmp___1 ; long tmp___2 ; bool tmp___3 ; int tmp___4 ; long tmp___5 ; bool tmp___6 ; long tmp___7 ; int tmp___8 ; u16 tmp___9 ; long tmp___10 ; { { adapter = q_vector->adapter; total_bytes = 0U; total_packets = 0U; budget = tx_ring->count / 2U; i = tx_ring->next_to_clean; tmp = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->state)); } if (tmp != 0) { return (1); } else { } tx_buffer = tx_ring->__annonCompField91.tx_buffer_info + (unsigned long )i; tx_desc = (union ixgbe_adv_tx_desc *)tx_ring->desc + (unsigned long )i; i = i - tx_ring->count; ldv_51060: eop_desc = tx_buffer->next_to_watch; if ((unsigned long )eop_desc == (unsigned long )((union ixgbe_adv_tx_desc *)0)) { goto ldv_51056; } else { } if ((eop_desc->wb.status & 1U) == 0U) { goto ldv_51056; } else { } { tx_buffer->next_to_watch = (union ixgbe_adv_tx_desc *)0; total_bytes = total_bytes + tx_buffer->bytecount; total_packets = total_packets + (unsigned int )tx_buffer->gso_segs; dev_kfree_skb_any(tx_buffer->skb); dma_unmap_single_attrs(tx_ring->dev, tx_buffer->dma, (size_t )tx_buffer->len, 1, (struct dma_attrs *)0); tx_buffer->skb = (struct sk_buff *)0; tx_buffer->len = 0U; } goto ldv_51058; ldv_51057: { tx_buffer = tx_buffer + 1; tx_desc = tx_desc + 1; i = i + 1U; tmp___0 = ldv__builtin_expect(i == 0U, 0L); } if (tmp___0 != 0L) { i = i - tx_ring->count; tx_buffer = tx_ring->__annonCompField91.tx_buffer_info; tx_desc = (union ixgbe_adv_tx_desc *)tx_ring->desc; } else { } if (tx_buffer->len != 0U) { { dma_unmap_page(tx_ring->dev, tx_buffer->dma, (size_t )tx_buffer->len, 1); tx_buffer->len = 0U; } } else { } ldv_51058: ; if ((unsigned long )tx_desc != (unsigned long )eop_desc) { goto ldv_51057; } else { } { tx_buffer = tx_buffer + 1; tx_desc = tx_desc + 1; i = i + 1U; tmp___1 = ldv__builtin_expect(i == 0U, 0L); } if (tmp___1 != 0L) { i = i - tx_ring->count; tx_buffer = tx_ring->__annonCompField91.tx_buffer_info; tx_desc = (union ixgbe_adv_tx_desc *)tx_ring->desc; } else { } { __builtin_prefetch((void const *)tx_desc); budget = budget - 1U; tmp___2 = ldv__builtin_expect(budget != 0U, 1L); } if (tmp___2 != 0L) { goto ldv_51060; } else { } ldv_51056: { i = i + tx_ring->count; tx_ring->next_to_clean = i; u64_stats_update_begin(& tx_ring->syncp); tx_ring->stats.bytes = tx_ring->stats.bytes + (u64 )total_bytes; tx_ring->stats.packets = tx_ring->stats.packets + (u64 )total_packets; u64_stats_update_begin(& tx_ring->syncp); q_vector->tx.total_bytes = q_vector->tx.total_bytes + total_bytes; q_vector->tx.total_packets = q_vector->tx.total_packets + total_packets; tmp___5 = ldv__builtin_expect(total_packets != 0U, 0L); } if (tmp___5 != 0L) { { tmp___6 = netif_carrier_ok((struct net_device const *)tx_ring->netdev); tmp___7 = ldv__builtin_expect((long )tmp___6, 0L); } if (tmp___7 != 0L) { tmp___8 = 1; } else { tmp___8 = 0; } } else { tmp___8 = 0; } if (tmp___8 != 0) { { tmp___9 = ixgbevf_desc_unused(tx_ring); tmp___10 = ldv__builtin_expect((unsigned int )tmp___9 > 41U, 0L); } if (tmp___10 != 0L) { { __asm__ volatile ("mfence": : : "memory"); tmp___3 = __netif_subqueue_stopped((struct net_device const *)tx_ring->netdev, (int )((u16 )tx_ring->queue_index)); } if ((int )tmp___3) { { tmp___4 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->state)); } if (tmp___4 == 0) { { netif_wake_subqueue(tx_ring->netdev, (int )((u16 )tx_ring->queue_index)); tx_ring->__annonCompField92.tx_stats.restart_queue = tx_ring->__annonCompField92.tx_stats.restart_queue + 1ULL; } } else { } } else { } } else { } } else { } return (budget != 0U); } } static void ixgbevf_receive_skb(struct ixgbevf_q_vector *q_vector , struct sk_buff *skb , u8 status , union ixgbe_adv_rx_desc *rx_desc ) { struct ixgbevf_adapter *adapter ; bool is_vlan ; u16 tag ; int tmp___0 ; { adapter = q_vector->adapter; is_vlan = ((int )status & 8) != 0; tag = rx_desc->wb.upper.vlan; if ((int )is_vlan) { { tmp___0 = variable_test_bit((long )tag & 4095L, (unsigned long const volatile *)(& adapter->active_vlans)); } if (tmp___0 != 0) { { __vlan_hwaccel_put_tag(skb, 129, (int )tag); } } else { } } else { } if ((adapter->flags & 2U) == 0U) { { napi_gro_receive(& q_vector->napi, skb); } } else { { netif_rx(skb); } } return; } } static void ixgbevf_rx_skb(struct ixgbevf_q_vector *q_vector , struct sk_buff *skb , u8 status , union ixgbe_adv_rx_desc *rx_desc ) { bool tmp ; { { skb_mark_napi_id(skb, & q_vector->napi); tmp = ixgbevf_qv_busy_polling(q_vector); } if ((int )tmp) { { netif_receive_skb(skb); } return; } else { } { ixgbevf_receive_skb(q_vector, skb, (int )status, rx_desc); } return; } } __inline static void ixgbevf_rx_checksum(struct ixgbevf_ring *ring , u32 status_err , struct sk_buff *skb ) { { { skb_checksum_none_assert((struct sk_buff const *)skb); } if (((ring->netdev)->features & 4294967296ULL) == 0ULL) { return; } else { } if ((status_err & 64U) != 0U && (int )status_err < 0) { ring->__annonCompField92.rx_stats.csum_err = ring->__annonCompField92.rx_stats.csum_err + 1ULL; return; } else { } if ((status_err & 32U) == 0U) { return; } else { } if ((status_err & 1073741824U) != 0U) { ring->__annonCompField92.rx_stats.csum_err = ring->__annonCompField92.rx_stats.csum_err + 1ULL; return; } else { } skb->ip_summed = 1U; return; } } static void ixgbevf_alloc_rx_buffers(struct ixgbevf_ring *rx_ring , int cleaned_count ) { union ixgbe_adv_rx_desc *rx_desc ; struct ixgbevf_rx_buffer *bi ; unsigned int i ; struct sk_buff *skb ; int tmp ; int tmp___0 ; { i = rx_ring->next_to_use; goto ldv_51092; ldv_51091: rx_desc = (union ixgbe_adv_rx_desc *)rx_ring->desc + (unsigned long )i; bi = rx_ring->__annonCompField91.rx_buffer_info + (unsigned long )i; if ((unsigned long )bi->skb == (unsigned long )((struct sk_buff *)0)) { { skb = netdev_alloc_skb_ip_align(rx_ring->netdev, (unsigned int )rx_ring->rx_buf_len); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto no_buffers; } else { } { bi->skb = skb; bi->dma = dma_map_single_attrs(rx_ring->dev, (void *)skb->data, (size_t )rx_ring->rx_buf_len, 2, (struct dma_attrs *)0); tmp = dma_mapping_error(rx_ring->dev, bi->dma); } if (tmp != 0) { { consume_skb(skb); bi->skb = (struct sk_buff *)0; dev_err((struct device const *)rx_ring->dev, "Rx DMA map failed\n"); } goto ldv_51090; } else { } } else { } rx_desc->read.pkt_addr = bi->dma; i = i + 1U; if (i == rx_ring->count) { i = 0U; } else { } ldv_51092: tmp___0 = cleaned_count; cleaned_count = cleaned_count - 1; if (tmp___0 != 0) { goto ldv_51091; } else { } ldv_51090: ; no_buffers: rx_ring->__annonCompField92.rx_stats.alloc_rx_buff_failed = rx_ring->__annonCompField92.rx_stats.alloc_rx_buff_failed + 1ULL; if (rx_ring->next_to_use != i) { { ixgbevf_release_rx_desc(rx_ring, i); } } else { } return; } } __inline static void ixgbevf_irq_enable_queues(struct ixgbevf_adapter *adapter , u32 qmask ) { struct ixgbe_hw *hw ; { { hw = & adapter->hw; writel(qmask, (void volatile *)hw->hw_addr + 264U); } return; } } static int ixgbevf_clean_rx_irq(struct ixgbevf_q_vector *q_vector , struct ixgbevf_ring *rx_ring , int budget ) { union ixgbe_adv_rx_desc *rx_desc ; union ixgbe_adv_rx_desc *next_rxd ; struct ixgbevf_rx_buffer *rx_buffer_info ; struct ixgbevf_rx_buffer *next_buffer ; struct sk_buff *skb ; unsigned int i ; u32 len ; u32 staterr ; int cleaned_count ; unsigned int total_rx_bytes ; unsigned int total_rx_packets ; struct sk_buff *this ; long tmp ; struct ethhdr *tmp___0 ; bool tmp___1 ; u16 tmp___2 ; { cleaned_count = 0; total_rx_bytes = 0U; total_rx_packets = 0U; i = rx_ring->next_to_clean; rx_desc = (union ixgbe_adv_rx_desc *)rx_ring->desc + (unsigned long )i; staterr = rx_desc->wb.upper.status_error; rx_buffer_info = rx_ring->__annonCompField91.rx_buffer_info + (unsigned long )i; goto ldv_51120; ldv_51119: ; if (budget == 0) { goto ldv_51114; } else { } { budget = budget - 1; __asm__ volatile ("lfence": : : "memory"); len = (u32 )rx_desc->wb.upper.length; skb = rx_buffer_info->skb; __builtin_prefetch((void const *)skb->data); rx_buffer_info->skb = (struct sk_buff *)0; } if (rx_buffer_info->dma != 0ULL) { { dma_unmap_single_attrs(rx_ring->dev, rx_buffer_info->dma, (size_t )rx_ring->rx_buf_len, 2, (struct dma_attrs *)0); rx_buffer_info->dma = 0ULL; skb_put(skb, len); } } else { } i = i + 1U; if (i == rx_ring->count) { i = 0U; } else { } { next_rxd = (union ixgbe_adv_rx_desc *)rx_ring->desc + (unsigned long )i; __builtin_prefetch((void const *)next_rxd); cleaned_count = cleaned_count + 1; next_buffer = rx_ring->__annonCompField91.rx_buffer_info + (unsigned long )i; } if ((staterr & 2U) == 0U) { skb->next = next_buffer->skb; ((struct ixgbevf_cb *)(& (skb->next)->cb))->prev = skb; rx_ring->__annonCompField92.rx_stats.non_eop_descs = rx_ring->__annonCompField92.rx_stats.non_eop_descs + 1ULL; goto next_desc; } else { } if ((unsigned long )((struct ixgbevf_cb *)(& skb->cb))->prev != (unsigned long )((struct sk_buff *)0)) { ldv_51117: { this = skb; skb = ((struct ixgbevf_cb *)(& skb->cb))->prev; consume_skb(this); } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { goto ldv_51117; } else { } goto next_desc; } else { } { tmp = ldv__builtin_expect((staterr & 989855744U) != 0U, 0L); } if (tmp != 0L) { { dev_kfree_skb_irq(skb); } goto next_desc; } else { } { ixgbevf_rx_checksum(rx_ring, staterr, skb); total_rx_bytes = total_rx_bytes + skb->len; total_rx_packets = total_rx_packets + 1U; skb->protocol = eth_type_trans(skb, rx_ring->netdev); } if (((int )skb->pkt_type & 3) != 0) { { tmp___0 = eth_hdr((struct sk_buff const *)skb); tmp___1 = ether_addr_equal((u8 const *)(rx_ring->netdev)->dev_addr, (u8 const *)(& tmp___0->h_source)); } if ((int )tmp___1) { { dev_kfree_skb_irq(skb); } goto next_desc; } else { } } else { } { ixgbevf_rx_skb(q_vector, skb, (int )((u8 )staterr), rx_desc); } next_desc: rx_desc->wb.upper.status_error = 0U; if (cleaned_count > 15) { { ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); cleaned_count = 0; } } else { } rx_desc = next_rxd; rx_buffer_info = rx_ring->__annonCompField91.rx_buffer_info + (unsigned long )i; staterr = rx_desc->wb.upper.status_error; ldv_51120: ; if ((int )staterr & 1) { goto ldv_51119; } else { } ldv_51114: { rx_ring->next_to_clean = i; tmp___2 = ixgbevf_desc_unused(rx_ring); cleaned_count = (int )tmp___2; } if (cleaned_count != 0) { { ixgbevf_alloc_rx_buffers(rx_ring, cleaned_count); } } else { } { u64_stats_update_begin(& rx_ring->syncp); rx_ring->stats.packets = rx_ring->stats.packets + (u64 )total_rx_packets; rx_ring->stats.bytes = rx_ring->stats.bytes + (u64 )total_rx_bytes; u64_stats_update_begin(& rx_ring->syncp); q_vector->rx.total_packets = q_vector->rx.total_packets + total_rx_packets; q_vector->rx.total_bytes = q_vector->rx.total_bytes + total_rx_bytes; } return ((int )total_rx_packets); } } static int ixgbevf_poll(struct napi_struct *napi , int budget ) { struct ixgbevf_q_vector *q_vector ; struct napi_struct const *__mptr ; struct ixgbevf_adapter *adapter ; struct ixgbevf_ring *ring ; int per_ring_budget ; bool clean_complete ; bool tmp ; bool tmp___0 ; int tmp___1 ; int _max1 ; int _max2 ; int tmp___2 ; int tmp___3 ; { __mptr = (struct napi_struct const *)napi; q_vector = (struct ixgbevf_q_vector *)__mptr + 0xfffffffffffffff0UL; adapter = q_vector->adapter; clean_complete = 1; ring = q_vector->tx.ring; goto ldv_51133; ldv_51132: { tmp = ixgbevf_clean_tx_irq(q_vector, ring); clean_complete = ((int )clean_complete & (int )tmp) != 0; ring = ring->next; } ldv_51133: ; if ((unsigned long )ring != (unsigned long )((struct ixgbevf_ring *)0)) { goto ldv_51132; } else { } { tmp___0 = ixgbevf_qv_lock_napi(q_vector); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (budget); } else { } if ((unsigned int )q_vector->rx.count > 1U) { _max1 = budget / (int )q_vector->rx.count; _max2 = 1; per_ring_budget = _max1 > _max2 ? _max1 : _max2; } else { per_ring_budget = budget; } adapter->flags = adapter->flags | 2U; ring = q_vector->rx.ring; goto ldv_51139; ldv_51138: { tmp___2 = ixgbevf_clean_rx_irq(q_vector, ring, per_ring_budget); clean_complete = ((int )clean_complete & (tmp___2 < per_ring_budget)) != 0; ring = ring->next; } ldv_51139: ; if ((unsigned long )ring != (unsigned long )((struct ixgbevf_ring *)0)) { goto ldv_51138; } else { } { adapter->flags = adapter->flags & 4294967293U; ixgbevf_qv_unlock_napi(q_vector); } if (! clean_complete) { return (budget); } else { } { napi_complete(napi); } if ((int )adapter->rx_itr_setting & 1) { { ixgbevf_set_itr(q_vector); } } else { } { tmp___3 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->state)); } if (tmp___3 == 0) { { ixgbevf_irq_enable_queues(adapter, (u32 )(1 << (int )q_vector->v_idx)); } } else { } return (0); } } void ixgbevf_write_eitr(struct ixgbevf_q_vector *q_vector ) { struct ixgbevf_adapter *adapter ; struct ixgbe_hw *hw ; int v_idx ; u32 itr_reg ; { { adapter = q_vector->adapter; hw = & adapter->hw; v_idx = (int )q_vector->v_idx; itr_reg = (u32 )q_vector->itr & 4088U; itr_reg = itr_reg | 2147483648U; writel(itr_reg, (void volatile *)hw->hw_addr + (unsigned long )((v_idx + 520) * 4)); } return; } } static int ixgbevf_busy_poll_recv(struct napi_struct *napi ) { struct ixgbevf_q_vector *q_vector ; struct napi_struct const *__mptr ; struct ixgbevf_adapter *adapter ; struct ixgbevf_ring *ring ; int found ; int tmp ; bool tmp___0 ; int tmp___1 ; { { __mptr = (struct napi_struct const *)napi; q_vector = (struct ixgbevf_q_vector *)__mptr + 0xfffffffffffffff0UL; adapter = q_vector->adapter; found = 0; tmp = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->state)); } if (tmp != 0) { return (-1); } else { } { tmp___0 = ixgbevf_qv_lock_poll(q_vector); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-2); } else { } ring = q_vector->rx.ring; goto ldv_51159; ldv_51158: { found = ixgbevf_clean_rx_irq(q_vector, ring, 4); } if (found != 0) { ring->stats.cleaned = ring->stats.cleaned + (u64 )found; } else { ring->stats.misses = ring->stats.misses + 1ULL; } if (found != 0) { goto ldv_51157; } else { } ring = ring->next; ldv_51159: ; if ((unsigned long )ring != (unsigned long )((struct ixgbevf_ring *)0)) { goto ldv_51158; } else { } ldv_51157: { ixgbevf_qv_unlock_poll(q_vector); } return (found); } } static void ixgbevf_configure_msix(struct ixgbevf_adapter *adapter ) { struct ixgbevf_q_vector *q_vector ; int q_vectors ; int v_idx ; struct ixgbevf_ring *ring ; { q_vectors = adapter->num_msix_vectors + -1; adapter->eims_enable_mask = 0U; v_idx = 0; goto ldv_51174; ldv_51173: q_vector = adapter->q_vector[v_idx]; ring = q_vector->rx.ring; goto ldv_51168; ldv_51167: { ixgbevf_set_ivar(adapter, 0, (int )((u8 )ring->reg_idx), (int )((u8 )v_idx)); ring = ring->next; } ldv_51168: ; if ((unsigned long )ring != (unsigned long )((struct ixgbevf_ring *)0)) { goto ldv_51167; } else { } ring = q_vector->tx.ring; goto ldv_51171; ldv_51170: { ixgbevf_set_ivar(adapter, 1, (int )((u8 )ring->reg_idx), (int )((u8 )v_idx)); ring = ring->next; } ldv_51171: ; if ((unsigned long )ring != (unsigned long )((struct ixgbevf_ring *)0)) { goto ldv_51170; } else { } if ((unsigned long )q_vector->tx.ring != (unsigned long )((struct ixgbevf_ring *)0) && (unsigned long )q_vector->rx.ring == (unsigned long )((struct ixgbevf_ring *)0)) { if ((unsigned int )adapter->tx_itr_setting == 1U) { q_vector->itr = 400U; } else { q_vector->itr = adapter->tx_itr_setting; } } else if ((unsigned int )adapter->rx_itr_setting == 1U) { q_vector->itr = 200U; } else { q_vector->itr = adapter->rx_itr_setting; } { adapter->eims_enable_mask = adapter->eims_enable_mask | (u32 )(1 << v_idx); ixgbevf_write_eitr(q_vector); v_idx = v_idx + 1; } ldv_51174: ; if (v_idx < q_vectors) { goto ldv_51173; } else { } { ixgbevf_set_ivar(adapter, -1, 1, (int )((u8 )v_idx)); adapter->eims_other = (u32 )(1 << v_idx); adapter->eims_enable_mask = adapter->eims_enable_mask | adapter->eims_other; } return; } } static void ixgbevf_update_itr(struct ixgbevf_q_vector *q_vector , struct ixgbevf_ring_container *ring_container ) { int bytes ; int packets ; u32 timepassed_us ; u64 bytes_perint ; u8 itr_setting ; { bytes = (int )ring_container->total_bytes; packets = (int )ring_container->total_packets; itr_setting = ring_container->itr; if (packets == 0) { return; } else { } timepassed_us = (u32 )((int )q_vector->itr >> 2); bytes_perint = (u64 )((u32 )bytes / timepassed_us); { if ((int )itr_setting == 0) { goto case_0; } else { } if ((int )itr_setting == 1) { goto case_1; } else { } if ((int )itr_setting == 2) { goto case_2; } else { } goto switch_break; case_0: /* CIL Label */ ; if (bytes_perint > 10ULL) { itr_setting = 1U; } else { } goto ldv_51191; case_1: /* CIL Label */ ; if (bytes_perint > 20ULL) { itr_setting = 2U; } else if (bytes_perint <= 10ULL) { itr_setting = 0U; } else { } goto ldv_51191; case_2: /* CIL Label */ ; if (bytes_perint <= 20ULL) { itr_setting = 1U; } else { } goto ldv_51191; switch_break: /* CIL Label */ ; } ldv_51191: ring_container->total_bytes = 0U; ring_container->total_packets = 0U; ring_container->itr = itr_setting; return; } } static void ixgbevf_set_itr(struct ixgbevf_q_vector *q_vector ) { u32 new_itr ; u8 current_itr ; u8 _max1 ; u8 _max2 ; { { new_itr = (u32 )q_vector->itr; ixgbevf_update_itr(q_vector, & q_vector->tx); ixgbevf_update_itr(q_vector, & q_vector->rx); _max1 = q_vector->rx.itr; _max2 = q_vector->tx.itr; current_itr = (u8 )((int )_max1 > (int )_max2 ? _max1 : _max2); } { if ((int )current_itr == 0) { goto case_0; } else { } if ((int )current_itr == 1) { goto case_1; } else { } if ((int )current_itr == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ new_itr = 40U; goto ldv_51203; case_1: /* CIL Label */ new_itr = 200U; goto ldv_51203; case_2: /* CIL Label */ ; switch_default: /* CIL Label */ new_itr = 500U; goto ldv_51203; switch_break: /* CIL Label */ ; } ldv_51203: ; if (new_itr != (u32 )q_vector->itr) { { new_itr = ((new_itr * (u32 )q_vector->itr) * 10U) / (new_itr * 9U + (u32 )q_vector->itr); q_vector->itr = (u16 )new_itr; ixgbevf_write_eitr(q_vector); } } else { } return; } } static irqreturn_t ixgbevf_msix_other(int irq , void *data ) { struct ixgbevf_adapter *adapter ; struct ixgbe_hw *hw ; int tmp ; { { adapter = (struct ixgbevf_adapter *)data; hw = & adapter->hw; hw->mac.get_link_status = 1; tmp = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->state)); } if (tmp == 0) { { ldv_mod_timer_87(& adapter->watchdog_timer, jiffies); } } else { } { writel(adapter->eims_other, (void volatile *)hw->hw_addr + 264U); } return (1); } } static irqreturn_t ixgbevf_msix_clean_rings(int irq , void *data ) { struct ixgbevf_q_vector *q_vector ; { q_vector = (struct ixgbevf_q_vector *)data; if ((unsigned long )q_vector->rx.ring != (unsigned long )((struct ixgbevf_ring *)0) || (unsigned long )q_vector->tx.ring != (unsigned long )((struct ixgbevf_ring *)0)) { { napi_schedule(& q_vector->napi); } } else { } return (1); } } __inline static void map_vector_to_rxq(struct ixgbevf_adapter *a , int v_idx , int r_idx ) { struct ixgbevf_q_vector *q_vector ; { q_vector = a->q_vector[v_idx]; (a->rx_ring[r_idx])->next = q_vector->rx.ring; q_vector->rx.ring = a->rx_ring[r_idx]; q_vector->rx.count = (u8 )((int )q_vector->rx.count + 1); return; } } __inline static void map_vector_to_txq(struct ixgbevf_adapter *a , int v_idx , int t_idx ) { struct ixgbevf_q_vector *q_vector ; { q_vector = a->q_vector[v_idx]; (a->tx_ring[t_idx])->next = q_vector->tx.ring; q_vector->tx.ring = a->tx_ring[t_idx]; q_vector->tx.count = (u8 )((int )q_vector->tx.count + 1); return; } } static int ixgbevf_map_rings_to_vectors(struct ixgbevf_adapter *adapter ) { int q_vectors ; int v_start ; int rxr_idx ; int txr_idx ; int rxr_remaining ; int txr_remaining ; int i ; int j ; int rqpv ; int tqpv ; int err ; { v_start = 0; rxr_idx = 0; txr_idx = 0; rxr_remaining = adapter->num_rx_queues; txr_remaining = adapter->num_tx_queues; err = 0; q_vectors = adapter->num_msix_vectors + -1; if (q_vectors == adapter->num_rx_queues + adapter->num_tx_queues) { goto ldv_51245; ldv_51244: { map_vector_to_rxq(adapter, v_start, rxr_idx); v_start = v_start + 1; rxr_idx = rxr_idx + 1; } ldv_51245: ; if (rxr_idx < rxr_remaining) { goto ldv_51244; } else { } goto ldv_51248; ldv_51247: { map_vector_to_txq(adapter, v_start, txr_idx); v_start = v_start + 1; txr_idx = txr_idx + 1; } ldv_51248: ; if (txr_idx < txr_remaining) { goto ldv_51247; } else { } goto out; } else { } i = v_start; goto ldv_51255; ldv_51254: rqpv = ((rxr_remaining + (q_vectors - i)) + -1) / (q_vectors - i); j = 0; goto ldv_51252; ldv_51251: { map_vector_to_rxq(adapter, i, rxr_idx); rxr_idx = rxr_idx + 1; rxr_remaining = rxr_remaining - 1; j = j + 1; } ldv_51252: ; if (j < rqpv) { goto ldv_51251; } else { } i = i + 1; ldv_51255: ; if (i < q_vectors) { goto ldv_51254; } else { } i = v_start; goto ldv_51261; ldv_51260: tqpv = ((txr_remaining + (q_vectors - i)) + -1) / (q_vectors - i); j = 0; goto ldv_51258; ldv_51257: { map_vector_to_txq(adapter, i, txr_idx); txr_idx = txr_idx + 1; txr_remaining = txr_remaining - 1; j = j + 1; } ldv_51258: ; if (j < tqpv) { goto ldv_51257; } else { } i = i + 1; ldv_51261: ; if (i < q_vectors) { goto ldv_51260; } else { } out: ; return (err); } } static int ixgbevf_request_msix_irqs(struct ixgbevf_adapter *adapter ) { struct net_device *netdev ; int q_vectors ; int vector ; int err ; int ri ; int ti ; struct ixgbevf_q_vector *q_vector ; struct msix_entry *entry ; int tmp ; int tmp___0 ; int tmp___1 ; { netdev = adapter->netdev; q_vectors = adapter->num_msix_vectors + -1; ri = 0; ti = 0; vector = 0; goto ldv_51277; ldv_51276: q_vector = adapter->q_vector[vector]; entry = adapter->msix_entries + (unsigned long )vector; if ((unsigned long )q_vector->tx.ring != (unsigned long )((struct ixgbevf_ring *)0) && (unsigned long )q_vector->rx.ring != (unsigned long )((struct ixgbevf_ring *)0)) { { tmp = ri; ri = ri + 1; snprintf((char *)(& q_vector->name), 24UL, "%s-%s-%d", (char *)(& netdev->name), (char *)"TxRx", tmp); ti = ti + 1; } } else if ((unsigned long )q_vector->rx.ring != (unsigned long )((struct ixgbevf_ring *)0)) { { tmp___0 = ri; ri = ri + 1; snprintf((char *)(& q_vector->name), 24UL, "%s-%s-%d", (char *)(& netdev->name), (char *)"rx", tmp___0); } } else if ((unsigned long )q_vector->tx.ring != (unsigned long )((struct ixgbevf_ring *)0)) { { tmp___1 = ti; ti = ti + 1; snprintf((char *)(& q_vector->name), 24UL, "%s-%s-%d", (char *)(& netdev->name), (char *)"tx", tmp___1); } } else { goto ldv_51274; } { err = ldv_request_irq_88(entry->vector, & ixgbevf_msix_clean_rings, 0UL, (char const *)(& q_vector->name), (void *)q_vector); } if (err != 0) { goto free_queue_irqs; } else { } ldv_51274: vector = vector + 1; ldv_51277: ; if (vector < q_vectors) { goto ldv_51276; } else { } { err = ldv_request_irq_89((adapter->msix_entries + (unsigned long )vector)->vector, & ixgbevf_msix_other, 0UL, (char const *)(& netdev->name), (void *)adapter); } if (err != 0) { goto free_queue_irqs; } else { } return (0); free_queue_irqs: ; goto ldv_51280; ldv_51279: { vector = vector - 1; ldv_free_irq_90((adapter->msix_entries + (unsigned long )vector)->vector, (void *)adapter->q_vector[vector]); } ldv_51280: ; if (vector != 0) { goto ldv_51279; } else { } adapter->num_msix_vectors = 0; return (err); } } __inline static void ixgbevf_reset_q_vectors(struct ixgbevf_adapter *adapter ) { int i ; int q_vectors ; struct ixgbevf_q_vector *q_vector ; { q_vectors = adapter->num_msix_vectors + -1; i = 0; goto ldv_51289; ldv_51288: q_vector = adapter->q_vector[i]; q_vector->rx.ring = (struct ixgbevf_ring *)0; q_vector->tx.ring = (struct ixgbevf_ring *)0; q_vector->rx.count = 0U; q_vector->tx.count = 0U; i = i + 1; ldv_51289: ; if (i < q_vectors) { goto ldv_51288; } else { } return; } } static int ixgbevf_request_irq(struct ixgbevf_adapter *adapter ) { int err ; { { err = 0; err = ixgbevf_request_msix_irqs(adapter); } return (err); } } static void ixgbevf_free_irq(struct ixgbevf_adapter *adapter ) { int i ; int q_vectors ; { { q_vectors = adapter->num_msix_vectors; i = q_vectors + -1; ldv_free_irq_91((adapter->msix_entries + (unsigned long )i)->vector, (void *)adapter); i = i - 1; } goto ldv_51302; ldv_51301: ; if ((unsigned long )(adapter->q_vector[i])->rx.ring == (unsigned long )((struct ixgbevf_ring *)0) && (unsigned long )(adapter->q_vector[i])->tx.ring == (unsigned long )((struct ixgbevf_ring *)0)) { goto ldv_51300; } else { } { ldv_free_irq_92((adapter->msix_entries + (unsigned long )i)->vector, (void *)adapter->q_vector[i]); } ldv_51300: i = i - 1; ldv_51302: ; if (i >= 0) { goto ldv_51301; } else { } { ixgbevf_reset_q_vectors(adapter); } return; } } __inline static void ixgbevf_irq_disable(struct ixgbevf_adapter *adapter ) { struct ixgbe_hw *hw ; int i ; { { hw = & adapter->hw; writel(0U, (void volatile *)hw->hw_addr + 276U); writel(4294967295U, (void volatile *)hw->hw_addr + 268U); writel(0U, (void volatile *)hw->hw_addr + 272U); readl((void const volatile *)hw->hw_addr + 8U); i = 0; } goto ldv_51310; ldv_51309: { synchronize_irq((adapter->msix_entries + (unsigned long )i)->vector); i = i + 1; } ldv_51310: ; if (i < adapter->num_msix_vectors) { goto ldv_51309; } else { } return; } } __inline static void ixgbevf_irq_enable(struct ixgbevf_adapter *adapter ) { struct ixgbe_hw *hw ; { { hw = & adapter->hw; writel(adapter->eims_enable_mask, (void volatile *)hw->hw_addr + 276U); writel(adapter->eims_enable_mask, (void volatile *)hw->hw_addr + 272U); writel(adapter->eims_enable_mask, (void volatile *)hw->hw_addr + 264U); } return; } } static void ixgbevf_configure_tx_ring(struct ixgbevf_adapter *adapter , struct ixgbevf_ring *ring ) { struct ixgbe_hw *hw ; u64 tdba ; int wait_loop ; u32 txdctl ; u8 reg_idx ; { { hw = & adapter->hw; tdba = ring->dma; wait_loop = 10; txdctl = 33554432U; reg_idx = (u8 )ring->reg_idx; writel(67108864U, (void volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 8232)); readl((void const volatile *)hw->hw_addr + 8U); writel((unsigned int )tdba, (void volatile *)hw->hw_addr + (unsigned long )(((int )reg_idx + 128) * 64)); writel((unsigned int )(tdba >> 32), (void volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 8196)); writel(ring->count * 16U, (void volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 8200)); writel(0U, (void volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 8252)); writel(0U, (void volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 8248)); writel(8704U, (void volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 8204)); writel(0U, (void volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 8208)); writel(0U, (void volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 8216)); ring->tail = hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 8216); ring->next_to_clean = 0U; ring->next_to_use = 0U; txdctl = txdctl | 524288U; txdctl = txdctl | 288U; writel(txdctl, (void volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 8232)); } ldv_51325: { usleep_range(1000UL, 2000UL); txdctl = readl((void const volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 8232)); wait_loop = wait_loop - 1; } if (wait_loop != 0 && (txdctl & 33554432U) == 0U) { goto ldv_51325; } else { } if (wait_loop == 0) { { printk("\vixgbevf: Could not enable Tx Queue %d\n", (int )reg_idx); } } else { } return; } } static void ixgbevf_configure_tx(struct ixgbevf_adapter *adapter ) { u32 i ; { i = 0U; goto ldv_51332; ldv_51331: { ixgbevf_configure_tx_ring(adapter, adapter->tx_ring[i]); i = i + 1U; } ldv_51332: ; if (i < (u32 )adapter->num_tx_queues) { goto ldv_51331; } else { } return; } } static void ixgbevf_configure_srrctl(struct ixgbevf_adapter *adapter , int index ) { struct ixgbevf_ring *rx_ring ; struct ixgbe_hw *hw ; u32 srrctl ; { { hw = & adapter->hw; rx_ring = adapter->rx_ring[index]; srrctl = 268435456U; srrctl = srrctl | 33554432U; srrctl = srrctl | (u32 )(((int )rx_ring->rx_buf_len + 1023) >> 10); writel(srrctl, (void volatile *)hw->hw_addr + (unsigned long )(index * 64 + 4116)); } return; } } static void ixgbevf_setup_psrtype(struct ixgbevf_adapter *adapter ) { struct ixgbe_hw *hw ; u32 psrtype ; { hw = & adapter->hw; psrtype = 4912U; if (adapter->num_rx_queues > 1) { psrtype = psrtype | 536870912U; } else { } { writel(psrtype, (void volatile *)hw->hw_addr + 768U); } return; } } static void ixgbevf_set_rx_buffer_len(struct ixgbevf_adapter *adapter ) { struct ixgbe_hw *hw ; struct net_device *netdev ; int max_frame ; int i ; u16 rx_buf_len ; { { hw = & adapter->hw; netdev = adapter->netdev; max_frame = (int )(netdev->mtu + 18U); ixgbevf_rlpml_set_vf(hw, (int )((u16 )max_frame)); max_frame = max_frame + 4; } if ((unsigned int )hw->mac.type == 2U && max_frame <= 1522) { rx_buf_len = 1522U; } else if (max_frame <= 2048) { rx_buf_len = 2048U; } else if (max_frame <= 4096) { rx_buf_len = 4096U; } else if (max_frame <= 8192) { rx_buf_len = 8192U; } else { rx_buf_len = 10240U; } i = 0; goto ldv_51355; ldv_51354: (adapter->rx_ring[i])->rx_buf_len = rx_buf_len; i = i + 1; ldv_51355: ; if (i < adapter->num_rx_queues) { goto ldv_51354; } else { } return; } } static void ixgbevf_disable_rx_queue(struct ixgbevf_adapter *adapter , struct ixgbevf_ring *ring ) { struct ixgbe_hw *hw ; int wait_loop ; u32 rxdctl ; u8 reg_idx ; { { hw = & adapter->hw; wait_loop = 10; reg_idx = (u8 )ring->reg_idx; rxdctl = readl((void const volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 4136)); rxdctl = rxdctl & 4261412863U; writel(rxdctl, (void volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 4136)); } ldv_51365: { __const_udelay(42950UL); rxdctl = readl((void const volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 4136)); wait_loop = wait_loop - 1; } if (wait_loop != 0 && (rxdctl & 33554432U) != 0U) { goto ldv_51365; } else { } if (wait_loop == 0) { { printk("\vixgbevf: RXDCTL.ENABLE queue %d not cleared while polling\n", (int )reg_idx); } } else { } return; } } static void ixgbevf_rx_desc_queue_enable(struct ixgbevf_adapter *adapter , struct ixgbevf_ring *ring ) { struct ixgbe_hw *hw ; int wait_loop ; u32 rxdctl ; u8 reg_idx ; { hw = & adapter->hw; wait_loop = 10; reg_idx = (u8 )ring->reg_idx; ldv_51375: { usleep_range(1000UL, 2000UL); rxdctl = readl((void const volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 4136)); wait_loop = wait_loop - 1; } if (wait_loop != 0 && (rxdctl & 33554432U) == 0U) { goto ldv_51375; } else { } if (wait_loop == 0) { { printk("\vixgbevf: RXDCTL.ENABLE queue %d not set while polling\n", (int )reg_idx); } } else { } return; } } static void ixgbevf_configure_rx_ring(struct ixgbevf_adapter *adapter , struct ixgbevf_ring *ring ) { struct ixgbe_hw *hw ; u64 rdba ; u32 rxdctl ; u8 reg_idx ; u16 tmp ; { { hw = & adapter->hw; rdba = ring->dma; reg_idx = (u8 )ring->reg_idx; rxdctl = readl((void const volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 4136)); ixgbevf_disable_rx_queue(adapter, ring); writel((unsigned int )rdba, (void volatile *)hw->hw_addr + (unsigned long )(((int )reg_idx + 64) * 64)); writel((unsigned int )(rdba >> 32), (void volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 4100)); writel(ring->count * 16U, (void volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 4104)); writel(512U, (void volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 4108)); writel(0U, (void volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 4112)); writel(0U, (void volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 4120)); ring->tail = hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 4120); ring->next_to_clean = 0U; ring->next_to_use = 0U; ixgbevf_configure_srrctl(adapter, (int )reg_idx); rxdctl = rxdctl & 4294950912U; rxdctl = rxdctl | ((unsigned int )ring->rx_buf_len | 32768U); rxdctl = rxdctl | 1107296256U; writel(rxdctl, (void volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 4136)); ixgbevf_rx_desc_queue_enable(adapter, ring); tmp = ixgbevf_desc_unused(ring); ixgbevf_alloc_rx_buffers(ring, (int )tmp); } return; } } static void ixgbevf_configure_rx(struct ixgbevf_adapter *adapter ) { int i ; { { ixgbevf_setup_psrtype(adapter); ixgbevf_set_rx_buffer_len(adapter); i = 0; } goto ldv_51390; ldv_51389: { ixgbevf_configure_rx_ring(adapter, adapter->rx_ring[i]); i = i + 1; } ldv_51390: ; if (i < adapter->num_rx_queues) { goto ldv_51389; } else { } return; } } static int ixgbevf_vlan_rx_add_vid(struct net_device *netdev , __be16 proto , u16 vid ) { struct ixgbevf_adapter *adapter ; void *tmp ; struct ixgbe_hw *hw ; int err ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; hw = & adapter->hw; ldv_spin_lock_bh_93(& adapter->mbx_lock); err = (*(hw->mac.ops.set_vfta))(hw, (u32 )vid, 0U, 1); ldv_spin_unlock_bh_94(& adapter->mbx_lock); } if (err == -100) { return (-5); } else { } if (err == -3) { return (-13); } else { } { set_bit((long )vid, (unsigned long volatile *)(& adapter->active_vlans)); } return (err); } } static int ixgbevf_vlan_rx_kill_vid(struct net_device *netdev , __be16 proto , u16 vid ) { struct ixgbevf_adapter *adapter ; void *tmp ; struct ixgbe_hw *hw ; int err ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; hw = & adapter->hw; err = -95; ldv_spin_lock_bh_93(& adapter->mbx_lock); err = (*(hw->mac.ops.set_vfta))(hw, (u32 )vid, 0U, 0); ldv_spin_unlock_bh_94(& adapter->mbx_lock); clear_bit((long )vid, (unsigned long volatile *)(& adapter->active_vlans)); } return (err); } } static void ixgbevf_restore_vlan(struct ixgbevf_adapter *adapter ) { u16 vid ; unsigned long tmp ; unsigned long tmp___0 ; { { tmp = find_first_bit((unsigned long const *)(& adapter->active_vlans), 4096UL); vid = (u16 )tmp; } goto ldv_51413; ldv_51412: { ixgbevf_vlan_rx_add_vid(adapter->netdev, 129, (int )vid); tmp___0 = find_next_bit((unsigned long const *)(& adapter->active_vlans), 4096UL, (unsigned long )((int )vid + 1)); vid = (u16 )tmp___0; } ldv_51413: ; if ((unsigned int )vid <= 4095U) { goto ldv_51412; } else { } return; } } static int ixgbevf_write_uc_addr_list(struct net_device *netdev ) { struct ixgbevf_adapter *adapter ; void *tmp ; struct ixgbe_hw *hw ; int count ; struct netdev_hw_addr *ha ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; hw = & adapter->hw; count = 0; } if (netdev->uc.count > 10) { { printk("\vixgbevf: Too many unicast filters - No Space\n"); } return (-28); } else { } if (netdev->uc.count != 0) { __mptr = (struct list_head const *)netdev->uc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_51427; ldv_51426: { count = count + 1; (*(hw->mac.ops.set_uc_addr))(hw, (u32 )count, (u8 *)(& ha->addr)); __const_udelay(859000UL); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; } ldv_51427: ; if ((unsigned long )(& ha->list) != (unsigned long )(& netdev->uc.list)) { goto ldv_51426; } else { } } else { { (*(hw->mac.ops.set_uc_addr))(hw, 0U, (u8 *)0U); } } return (count); } } static void ixgbevf_set_rx_mode(struct net_device *netdev ) { struct ixgbevf_adapter *adapter ; void *tmp ; struct ixgbe_hw *hw ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; hw = & adapter->hw; ldv_spin_lock_bh_93(& adapter->mbx_lock); (*(hw->mac.ops.update_mc_addr_list))(hw, netdev); ixgbevf_write_uc_addr_list(netdev); ldv_spin_unlock_bh_94(& adapter->mbx_lock); } return; } } static void ixgbevf_napi_enable_all(struct ixgbevf_adapter *adapter ) { int q_idx ; struct ixgbevf_q_vector *q_vector ; int q_vectors ; { q_vectors = adapter->num_msix_vectors + -1; q_idx = 0; goto ldv_51441; ldv_51440: { q_vector = adapter->q_vector[q_idx]; ixgbevf_qv_init_lock(adapter->q_vector[q_idx]); napi_enable(& q_vector->napi); q_idx = q_idx + 1; } ldv_51441: ; if (q_idx < q_vectors) { goto ldv_51440; } else { } return; } } static void ixgbevf_napi_disable_all(struct ixgbevf_adapter *adapter ) { int q_idx ; struct ixgbevf_q_vector *q_vector ; int q_vectors ; bool tmp ; int tmp___0 ; { q_vectors = adapter->num_msix_vectors + -1; q_idx = 0; goto ldv_51453; ldv_51452: { q_vector = adapter->q_vector[q_idx]; napi_disable(& q_vector->napi); } goto ldv_51450; ldv_51449: { printk("\016ixgbevf: QV %d locked\n", q_idx); usleep_range(1000UL, 20000UL); } ldv_51450: { tmp = ixgbevf_qv_disable(adapter->q_vector[q_idx]); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { goto ldv_51449; } else { } q_idx = q_idx + 1; ldv_51453: ; if (q_idx < q_vectors) { goto ldv_51452; } else { } return; } } static int ixgbevf_configure_dcb(struct ixgbevf_adapter *adapter ) { struct ixgbe_hw *hw ; unsigned int def_q ; unsigned int num_tcs ; unsigned int num_rx_queues ; int err ; { { hw = & adapter->hw; def_q = 0U; num_tcs = 0U; num_rx_queues = 1U; ldv_spin_lock_bh_93(& adapter->mbx_lock); err = ixgbevf_get_queues(hw, & num_tcs, & def_q); ldv_spin_unlock_bh_94(& adapter->mbx_lock); } if (err != 0) { return (err); } else { } if (num_tcs > 1U) { (adapter->tx_ring[0])->reg_idx = (u16 )def_q; num_rx_queues = num_tcs; } else { } if ((unsigned int )adapter->num_rx_queues != num_rx_queues) { hw->mbx.timeout = 0U; adapter->flags = adapter->flags | 4U; } else { } return (0); } } static void ixgbevf_configure(struct ixgbevf_adapter *adapter ) { { { ixgbevf_configure_dcb(adapter); ixgbevf_set_rx_mode(adapter->netdev); ixgbevf_restore_vlan(adapter); ixgbevf_configure_tx(adapter); ixgbevf_configure_rx(adapter); } return; } } static void ixgbevf_save_reset_stats(struct ixgbevf_adapter *adapter ) { { if (adapter->stats.vfgprc != 0ULL || adapter->stats.vfgptc != 0ULL) { adapter->stats.saved_reset_vfgprc = adapter->stats.saved_reset_vfgprc + (adapter->stats.vfgprc - adapter->stats.base_vfgprc); adapter->stats.saved_reset_vfgptc = adapter->stats.saved_reset_vfgptc + (adapter->stats.vfgptc - adapter->stats.base_vfgptc); adapter->stats.saved_reset_vfgorc = adapter->stats.saved_reset_vfgorc + (adapter->stats.vfgorc - adapter->stats.base_vfgorc); adapter->stats.saved_reset_vfgotc = adapter->stats.saved_reset_vfgotc + (adapter->stats.vfgotc - adapter->stats.base_vfgotc); adapter->stats.saved_reset_vfmprc = adapter->stats.saved_reset_vfmprc + (adapter->stats.vfmprc - adapter->stats.base_vfmprc); } else { } return; } } static void ixgbevf_init_last_counter_stats(struct ixgbevf_adapter *adapter ) { struct ixgbe_hw *hw ; unsigned int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; unsigned int tmp___5 ; { { hw = & adapter->hw; tmp = readl((void const volatile *)hw->hw_addr + 4124U); adapter->stats.last_vfgprc = (u64 )tmp; tmp___0 = readl((void const volatile *)hw->hw_addr + 4128U); adapter->stats.last_vfgorc = (u64 )tmp___0; tmp___1 = readl((void const volatile *)hw->hw_addr + 4132U); adapter->stats.last_vfgorc = adapter->stats.last_vfgorc | ((unsigned long long )tmp___1 << 32); tmp___2 = readl((void const volatile *)hw->hw_addr + 8220U); adapter->stats.last_vfgptc = (u64 )tmp___2; tmp___3 = readl((void const volatile *)hw->hw_addr + 8224U); adapter->stats.last_vfgotc = (u64 )tmp___3; tmp___4 = readl((void const volatile *)hw->hw_addr + 8228U); adapter->stats.last_vfgotc = adapter->stats.last_vfgotc | ((unsigned long long )tmp___4 << 32); tmp___5 = readl((void const volatile *)hw->hw_addr + 4148U); adapter->stats.last_vfmprc = (u64 )tmp___5; adapter->stats.base_vfgprc = adapter->stats.last_vfgprc; adapter->stats.base_vfgorc = adapter->stats.last_vfgorc; adapter->stats.base_vfgptc = adapter->stats.last_vfgptc; adapter->stats.base_vfgotc = adapter->stats.last_vfgotc; adapter->stats.base_vfmprc = adapter->stats.last_vfmprc; } return; } } static void ixgbevf_negotiate_api(struct ixgbevf_adapter *adapter ) { struct ixgbe_hw *hw ; int api[3U] ; int err ; int idx ; { { hw = & adapter->hw; api[0] = 2; api[1] = 0; api[2] = 3; err = 0; idx = 0; ldv_spin_lock_bh_93(& adapter->mbx_lock); } goto ldv_51482; ldv_51481: { err = ixgbevf_negotiate_api_version(hw, api[idx]); } if (err == 0) { goto ldv_51480; } else { } idx = idx + 1; ldv_51482: ; if (api[idx] != 3) { goto ldv_51481; } else { } ldv_51480: { ldv_spin_unlock_bh_94(& adapter->mbx_lock); } return; } } static void ixgbevf_up_complete(struct ixgbevf_adapter *adapter ) { struct net_device *netdev ; struct ixgbe_hw *hw ; bool tmp ; { { netdev = adapter->netdev; hw = & adapter->hw; ixgbevf_configure_msix(adapter); ldv_spin_lock_bh_93(& adapter->mbx_lock); tmp = is_valid_ether_addr((u8 const *)(& hw->mac.addr)); } if ((int )tmp) { { (*(hw->mac.ops.set_rar))(hw, 0U, (u8 *)(& hw->mac.addr), 0U); } } else { { (*(hw->mac.ops.set_rar))(hw, 0U, (u8 *)(& hw->mac.perm_addr), 0U); } } { ldv_spin_unlock_bh_94(& adapter->mbx_lock); clear_bit(2L, (unsigned long volatile *)(& adapter->state)); ixgbevf_napi_enable_all(adapter); netif_tx_start_all_queues(netdev); ixgbevf_save_reset_stats(adapter); ixgbevf_init_last_counter_stats(adapter); hw->mac.get_link_status = 1; ldv_mod_timer_105(& adapter->watchdog_timer, jiffies); } return; } } void ixgbevf_up(struct ixgbevf_adapter *adapter ) { struct ixgbe_hw *hw ; { { hw = & adapter->hw; ixgbevf_configure(adapter); ixgbevf_up_complete(adapter); readl((void const volatile *)hw->hw_addr + 256U); ixgbevf_irq_enable(adapter); } return; } } static void ixgbevf_clean_rx_ring(struct ixgbevf_ring *rx_ring ) { unsigned long size ; unsigned int i ; struct ixgbevf_rx_buffer *rx_buffer_info ; struct sk_buff *skb ; struct sk_buff *this ; { if ((unsigned long )rx_ring->__annonCompField91.rx_buffer_info == (unsigned long )((struct ixgbevf_rx_buffer *)0)) { return; } else { } i = 0U; goto ldv_51503; ldv_51502: rx_buffer_info = rx_ring->__annonCompField91.rx_buffer_info + (unsigned long )i; if (rx_buffer_info->dma != 0ULL) { { dma_unmap_single_attrs(rx_ring->dev, rx_buffer_info->dma, (size_t )rx_ring->rx_buf_len, 2, (struct dma_attrs *)0); rx_buffer_info->dma = 0ULL; } } else { } if ((unsigned long )rx_buffer_info->skb != (unsigned long )((struct sk_buff *)0)) { skb = rx_buffer_info->skb; rx_buffer_info->skb = (struct sk_buff *)0; ldv_51500: { this = skb; skb = ((struct ixgbevf_cb *)(& skb->cb))->prev; consume_skb(this); } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { goto ldv_51500; } else { } } else { } i = i + 1U; ldv_51503: ; if (i < rx_ring->count) { goto ldv_51502; } else { } { size = (unsigned long )rx_ring->count * 16UL; memset((void *)rx_ring->__annonCompField91.rx_buffer_info, 0, size); memset(rx_ring->desc, 0, (size_t )rx_ring->size); } return; } } static void ixgbevf_clean_tx_ring(struct ixgbevf_ring *tx_ring ) { struct ixgbevf_tx_buffer *tx_buffer_info ; unsigned long size ; unsigned int i ; { if ((unsigned long )tx_ring->__annonCompField91.tx_buffer_info == (unsigned long )((struct ixgbevf_tx_buffer *)0)) { return; } else { } i = 0U; goto ldv_51512; ldv_51511: { tx_buffer_info = tx_ring->__annonCompField91.tx_buffer_info + (unsigned long )i; ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer_info); i = i + 1U; } ldv_51512: ; if (i < tx_ring->count) { goto ldv_51511; } else { } { size = (unsigned long )tx_ring->count * 48UL; memset((void *)tx_ring->__annonCompField91.tx_buffer_info, 0, size); memset(tx_ring->desc, 0, (size_t )tx_ring->size); } return; } } static void ixgbevf_clean_all_rx_rings(struct ixgbevf_adapter *adapter ) { int i ; { i = 0; goto ldv_51519; ldv_51518: { ixgbevf_clean_rx_ring(adapter->rx_ring[i]); i = i + 1; } ldv_51519: ; if (i < adapter->num_rx_queues) { goto ldv_51518; } else { } return; } } static void ixgbevf_clean_all_tx_rings(struct ixgbevf_adapter *adapter ) { int i ; { i = 0; goto ldv_51526; ldv_51525: { ixgbevf_clean_tx_ring(adapter->tx_ring[i]); i = i + 1; } ldv_51526: ; if (i < adapter->num_tx_queues) { goto ldv_51525; } else { } return; } } void ixgbevf_down(struct ixgbevf_adapter *adapter ) { struct net_device *netdev ; struct ixgbe_hw *hw ; int i ; u8 reg_idx ; int tmp ; { { netdev = adapter->netdev; hw = & adapter->hw; set_bit(2L, (unsigned long volatile *)(& adapter->state)); i = 0; } goto ldv_51535; ldv_51534: { ixgbevf_disable_rx_queue(adapter, adapter->rx_ring[i]); i = i + 1; } ldv_51535: ; if (i < adapter->num_rx_queues) { goto ldv_51534; } else { } { netif_tx_disable(netdev); msleep(10U); netif_tx_stop_all_queues(netdev); ixgbevf_irq_disable(adapter); ixgbevf_napi_disable_all(adapter); ldv_del_timer_sync_106(& adapter->watchdog_timer); } goto ldv_51538; ldv_51537: { msleep(1U); } ldv_51538: ; if ((int )adapter->flags & 1) { goto ldv_51537; } else { } i = 0; goto ldv_51542; ldv_51541: { reg_idx = (u8 )(adapter->tx_ring[i])->reg_idx; writel(67108864U, (void volatile *)hw->hw_addr + (unsigned long )((int )reg_idx * 64 + 8232)); i = i + 1; } ldv_51542: ; if (i < adapter->num_tx_queues) { goto ldv_51541; } else { } { netif_carrier_off(netdev); tmp = pci_channel_offline(adapter->pdev); } if (tmp == 0) { { ixgbevf_reset(adapter); } } else { } { ixgbevf_clean_all_tx_rings(adapter); ixgbevf_clean_all_rx_rings(adapter); } return; } } void ixgbevf_reinit_locked(struct ixgbevf_adapter *adapter ) { int __ret_warn_on ; int tmp ; long tmp___0 ; int tmp___1 ; { { tmp = preempt_count(); __ret_warn_on = ((unsigned long )tmp & 2096896UL) != 0UL; tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { warn_slowpath_null("drivers/net/ethernet/intel/ixgbevf/ixgbevf_main.c", 1786); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); } goto ldv_51550; ldv_51549: { msleep(1U); } ldv_51550: { tmp___1 = test_and_set_bit(1L, (unsigned long volatile *)(& adapter->state)); } if (tmp___1 != 0) { goto ldv_51549; } else { } { ixgbevf_down(adapter); ixgbevf_up(adapter); clear_bit(1L, (unsigned long volatile *)(& adapter->state)); } return; } } void ixgbevf_reset(struct ixgbevf_adapter *adapter ) { struct ixgbe_hw *hw ; struct net_device *netdev ; s32 tmp ; bool tmp___0 ; { { hw = & adapter->hw; netdev = adapter->netdev; tmp = (*(hw->mac.ops.reset_hw))(hw); } if (tmp != 0) { } else { { (*(hw->mac.ops.init_hw))(hw); ixgbevf_negotiate_api(adapter); } } { tmp___0 = is_valid_ether_addr((u8 const *)(& adapter->hw.mac.addr)); } if ((int )tmp___0) { { memcpy((void *)netdev->dev_addr, (void const *)(& adapter->hw.mac.addr), (size_t )netdev->addr_len); memcpy((void *)(& netdev->perm_addr), (void const *)(& adapter->hw.mac.addr), (size_t )netdev->addr_len); } } else { } return; } } static int ixgbevf_acquire_msix_vectors(struct ixgbevf_adapter *adapter , int vectors ) { int err ; int vector_threshold ; { err = 0; vector_threshold = 2; goto ldv_51565; ldv_51564: { err = pci_enable_msix(adapter->pdev, adapter->msix_entries, vectors); } if (err <= 0) { goto ldv_51563; } else { vectors = err; } ldv_51565: ; if (vectors >= vector_threshold) { goto ldv_51564; } else { } ldv_51563: ; if (vectors < vector_threshold) { err = -12; } else { } if (err != 0) { { dev_err((struct device const *)(& (adapter->pdev)->dev), "Unable to allocate MSI-X interrupts\n"); kfree((void const *)adapter->msix_entries); adapter->msix_entries = (struct msix_entry *)0; } } else { adapter->num_msix_vectors = vectors; } return (err); } } static void ixgbevf_set_num_queues(struct ixgbevf_adapter *adapter ) { struct ixgbe_hw *hw ; unsigned int def_q ; unsigned int num_tcs ; int err ; { { hw = & adapter->hw; def_q = 0U; num_tcs = 0U; adapter->num_rx_queues = 1; adapter->num_tx_queues = 1; ldv_spin_lock_bh_93(& adapter->mbx_lock); err = ixgbevf_get_queues(hw, & num_tcs, & def_q); ldv_spin_unlock_bh_94(& adapter->mbx_lock); } if (err != 0) { return; } else { } if (num_tcs > 1U) { adapter->num_rx_queues = (int )num_tcs; } else { } return; } } static int ixgbevf_alloc_queues(struct ixgbevf_adapter *adapter ) { struct ixgbevf_ring *ring ; int rx ; int tx ; void *tmp ; void *tmp___0 ; { rx = 0; tx = 0; goto ldv_51581; ldv_51580: { tmp = kzalloc(160UL, 208U); ring = (struct ixgbevf_ring *)tmp; } if ((unsigned long )ring == (unsigned long )((struct ixgbevf_ring *)0)) { goto err_allocation; } else { } ring->dev = & (adapter->pdev)->dev; ring->netdev = adapter->netdev; ring->count = adapter->tx_ring_count; ring->queue_index = tx; ring->reg_idx = (u16 )tx; adapter->tx_ring[tx] = ring; tx = tx + 1; ldv_51581: ; if (tx < adapter->num_tx_queues) { goto ldv_51580; } else { } goto ldv_51584; ldv_51583: { tmp___0 = kzalloc(160UL, 208U); ring = (struct ixgbevf_ring *)tmp___0; } if ((unsigned long )ring == (unsigned long )((struct ixgbevf_ring *)0)) { goto err_allocation; } else { } ring->dev = & (adapter->pdev)->dev; ring->netdev = adapter->netdev; ring->count = adapter->rx_ring_count; ring->queue_index = rx; ring->reg_idx = (u16 )rx; adapter->rx_ring[rx] = ring; rx = rx + 1; ldv_51584: ; if (rx < adapter->num_rx_queues) { goto ldv_51583; } else { } return (0); err_allocation: ; goto ldv_51587; ldv_51586: { tx = tx - 1; kfree((void const *)adapter->tx_ring[tx]); adapter->tx_ring[tx] = (struct ixgbevf_ring *)0; } ldv_51587: ; if (tx != 0) { goto ldv_51586; } else { } goto ldv_51590; ldv_51589: { rx = rx - 1; kfree((void const *)adapter->rx_ring[rx]); adapter->rx_ring[rx] = (struct ixgbevf_ring *)0; } ldv_51590: ; if (rx != 0) { goto ldv_51589; } else { } return (-12); } } static int ixgbevf_set_interrupt_capability(struct ixgbevf_adapter *adapter ) { struct net_device *netdev ; int err ; int vector ; int v_budget ; int _max1 ; int _max2 ; int __min1 ; int __min2 ; unsigned int tmp ; void *tmp___0 ; { { netdev = adapter->netdev; err = 0; _max1 = adapter->num_rx_queues; _max2 = adapter->num_tx_queues; v_budget = _max1 > _max2 ? _max1 : _max2; __min1 = v_budget; tmp = cpumask_weight(cpu_online_mask); __min2 = (int )tmp; v_budget = __min1 < __min2 ? __min1 : __min2; v_budget = v_budget + 1; tmp___0 = kcalloc((size_t )v_budget, 8UL, 208U); adapter->msix_entries = (struct msix_entry *)tmp___0; } if ((unsigned long )adapter->msix_entries == (unsigned long )((struct msix_entry *)0)) { err = -12; goto out; } else { } vector = 0; goto ldv_51607; ldv_51606: (adapter->msix_entries + (unsigned long )vector)->entry = (u16 )vector; vector = vector + 1; ldv_51607: ; if (vector < v_budget) { goto ldv_51606; } else { } { err = ixgbevf_acquire_msix_vectors(adapter, v_budget); } if (err != 0) { goto out; } else { } { err = netif_set_real_num_tx_queues(netdev, (unsigned int )adapter->num_tx_queues); } if (err != 0) { goto out; } else { } { err = netif_set_real_num_rx_queues(netdev, (unsigned int )adapter->num_rx_queues); } out: ; return (err); } } static int ixgbevf_alloc_q_vectors(struct ixgbevf_adapter *adapter ) { int q_idx ; int num_q_vectors ; struct ixgbevf_q_vector *q_vector ; void *tmp ; { num_q_vectors = adapter->num_msix_vectors + -1; q_idx = 0; goto ldv_51617; ldv_51616: { tmp = kzalloc(352UL, 208U); q_vector = (struct ixgbevf_q_vector *)tmp; } if ((unsigned long )q_vector == (unsigned long )((struct ixgbevf_q_vector *)0)) { goto err_out; } else { } { q_vector->adapter = adapter; q_vector->v_idx = (u16 )q_idx; netif_napi_add(adapter->netdev, & q_vector->napi, & ixgbevf_poll, 64); napi_hash_add(& q_vector->napi); adapter->q_vector[q_idx] = q_vector; q_idx = q_idx + 1; } ldv_51617: ; if (q_idx < num_q_vectors) { goto ldv_51616; } else { } return (0); err_out: ; goto ldv_51620; ldv_51619: { q_idx = q_idx - 1; q_vector = adapter->q_vector[q_idx]; napi_hash_del(& q_vector->napi); netif_napi_del(& q_vector->napi); kfree((void const *)q_vector); adapter->q_vector[q_idx] = (struct ixgbevf_q_vector *)0; } ldv_51620: ; if (q_idx != 0) { goto ldv_51619; } else { } return (-12); } } static void ixgbevf_free_q_vectors(struct ixgbevf_adapter *adapter ) { int q_idx ; int num_q_vectors ; struct ixgbevf_q_vector *q_vector ; { num_q_vectors = adapter->num_msix_vectors + -1; q_idx = 0; goto ldv_51629; ldv_51628: { q_vector = adapter->q_vector[q_idx]; adapter->q_vector[q_idx] = (struct ixgbevf_q_vector *)0; napi_hash_del(& q_vector->napi); netif_napi_del(& q_vector->napi); kfree((void const *)q_vector); q_idx = q_idx + 1; } ldv_51629: ; if (q_idx < num_q_vectors) { goto ldv_51628; } else { } return; } } static void ixgbevf_reset_interrupt_capability(struct ixgbevf_adapter *adapter ) { { { pci_disable_msix(adapter->pdev); kfree((void const *)adapter->msix_entries); adapter->msix_entries = (struct msix_entry *)0; } return; } } static int ixgbevf_init_interrupt_scheme(struct ixgbevf_adapter *adapter ) { int err ; { { ixgbevf_set_num_queues(adapter); err = ixgbevf_set_interrupt_capability(adapter); } if (err != 0) { goto err_set_interrupt; } else { } { err = ixgbevf_alloc_q_vectors(adapter); } if (err != 0) { goto err_alloc_q_vectors; } else { } { err = ixgbevf_alloc_queues(adapter); } if (err != 0) { { printk("\vixgbevf: Unable to allocate memory for queues\n"); } goto err_alloc_queues; } else { } { set_bit(2L, (unsigned long volatile *)(& adapter->state)); } return (0); err_alloc_queues: { ixgbevf_free_q_vectors(adapter); } err_alloc_q_vectors: { ixgbevf_reset_interrupt_capability(adapter); } err_set_interrupt: ; return (err); } } static void ixgbevf_clear_interrupt_scheme(struct ixgbevf_adapter *adapter ) { int i ; { i = 0; goto ldv_51646; ldv_51645: { kfree((void const *)adapter->tx_ring[i]); adapter->tx_ring[i] = (struct ixgbevf_ring *)0; i = i + 1; } ldv_51646: ; if (i < adapter->num_tx_queues) { goto ldv_51645; } else { } i = 0; goto ldv_51649; ldv_51648: { kfree((void const *)adapter->rx_ring[i]); adapter->rx_ring[i] = (struct ixgbevf_ring *)0; i = i + 1; } ldv_51649: ; if (i < adapter->num_rx_queues) { goto ldv_51648; } else { } { adapter->num_tx_queues = 0; adapter->num_rx_queues = 0; ixgbevf_free_q_vectors(adapter); ixgbevf_reset_interrupt_capability(adapter); } return; } } static int ixgbevf_sw_init(struct ixgbevf_adapter *adapter ) { struct ixgbe_hw *hw ; struct pci_dev *pdev ; struct net_device *netdev ; int err ; struct lock_class_key __key ; bool tmp ; bool tmp___0 ; int tmp___1 ; { { hw = & adapter->hw; pdev = adapter->pdev; netdev = adapter->netdev; hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; hw->revision_id = pdev->revision; hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_device_id = pdev->subsystem_device; (*(hw->mbx.ops.init_params))(hw); hw->mac.max_tx_queues = 2U; hw->mac.max_rx_queues = 2U; spinlock_check(& adapter->mbx_lock); __raw_spin_lock_init(& adapter->mbx_lock.__annonCompField19.rlock, "&(&adapter->mbx_lock)->rlock", & __key); err = (*(hw->mac.ops.reset_hw))(hw); } if (err != 0) { { _dev_info((struct device const *)(& pdev->dev), "PF still in reset state. Is the PF interface up?\n"); } } else { { err = (*(hw->mac.ops.init_hw))(hw); } if (err != 0) { { printk("\vixgbevf: init_shared_code failed: %d\n", err); } goto out; } else { } { ixgbevf_negotiate_api(adapter); err = (*(hw->mac.ops.get_mac_addr))(hw, (u8 *)(& hw->mac.addr)); } if (err != 0) { { _dev_info((struct device const *)(& pdev->dev), "Error reading MAC address\n"); } } else { { tmp = is_zero_ether_addr((u8 const *)(& adapter->hw.mac.addr)); } if ((int )tmp) { { _dev_info((struct device const *)(& pdev->dev), "MAC address not assigned by administrator.\n"); } } else { } } { memcpy((void *)netdev->dev_addr, (void const *)(& hw->mac.addr), (size_t )netdev->addr_len); } } { tmp___0 = is_valid_ether_addr((u8 const *)netdev->dev_addr); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { _dev_info((struct device const *)(& pdev->dev), "Assigning random MAC address\n"); eth_hw_addr_random(netdev); memcpy((void *)(& hw->mac.addr), (void const *)netdev->dev_addr, (size_t )netdev->addr_len); } } else { } { adapter->rx_itr_setting = 1U; adapter->tx_itr_setting = 1U; adapter->tx_ring_count = 1024U; adapter->rx_ring_count = 512U; set_bit(2L, (unsigned long volatile *)(& adapter->state)); } return (0); out: ; return (err); } } void ixgbevf_update_stats(struct ixgbevf_adapter *adapter ) { struct ixgbe_hw *hw ; int i ; u32 current_counter ; unsigned int tmp ; u32 current_counter___0 ; unsigned int tmp___0 ; u64 current_counter_lsb ; unsigned int tmp___1 ; u64 current_counter_msb ; unsigned int tmp___2 ; u64 current_counter___1 ; u64 current_counter_lsb___0 ; unsigned int tmp___3 ; u64 current_counter_msb___0 ; unsigned int tmp___4 ; u64 current_counter___2 ; u32 current_counter___3 ; unsigned int tmp___5 ; { hw = & adapter->hw; if (! adapter->link_up) { return; } else { } { tmp = readl((void const volatile *)hw->hw_addr + 4124U); current_counter = tmp; } if ((u64 )current_counter < adapter->stats.last_vfgprc) { adapter->stats.vfgprc = adapter->stats.vfgprc + 4294967296ULL; } else { } { adapter->stats.last_vfgprc = (u64 )current_counter; adapter->stats.vfgprc = adapter->stats.vfgprc & 0xffffffff00000000ULL; adapter->stats.vfgprc = adapter->stats.vfgprc | (u64 )current_counter; tmp___0 = readl((void const volatile *)hw->hw_addr + 8220U); current_counter___0 = tmp___0; } if ((u64 )current_counter___0 < adapter->stats.last_vfgptc) { adapter->stats.vfgptc = adapter->stats.vfgptc + 4294967296ULL; } else { } { adapter->stats.last_vfgptc = (u64 )current_counter___0; adapter->stats.vfgptc = adapter->stats.vfgptc & 0xffffffff00000000ULL; adapter->stats.vfgptc = adapter->stats.vfgptc | (u64 )current_counter___0; tmp___1 = readl((void const volatile *)hw->hw_addr + 4128U); current_counter_lsb = (u64 )tmp___1; tmp___2 = readl((void const volatile *)hw->hw_addr + 4132U); current_counter_msb = (u64 )tmp___2; current_counter___1 = (current_counter_msb << 32) | current_counter_lsb; } if (current_counter___1 < adapter->stats.last_vfgorc) { adapter->stats.vfgorc = adapter->stats.vfgorc + 68719476736ULL; } else { } { adapter->stats.last_vfgorc = current_counter___1; adapter->stats.vfgorc = adapter->stats.vfgorc & 0xfffffff000000000ULL; adapter->stats.vfgorc = adapter->stats.vfgorc | current_counter___1; tmp___3 = readl((void const volatile *)hw->hw_addr + 8224U); current_counter_lsb___0 = (u64 )tmp___3; tmp___4 = readl((void const volatile *)hw->hw_addr + 8228U); current_counter_msb___0 = (u64 )tmp___4; current_counter___2 = (current_counter_msb___0 << 32) | current_counter_lsb___0; } if (current_counter___2 < adapter->stats.last_vfgotc) { adapter->stats.vfgotc = adapter->stats.vfgotc + 68719476736ULL; } else { } { adapter->stats.last_vfgotc = current_counter___2; adapter->stats.vfgotc = adapter->stats.vfgotc & 0xfffffff000000000ULL; adapter->stats.vfgotc = adapter->stats.vfgotc | current_counter___2; tmp___5 = readl((void const volatile *)hw->hw_addr + 4148U); current_counter___3 = tmp___5; } if ((u64 )current_counter___3 < adapter->stats.last_vfmprc) { adapter->stats.vfmprc = adapter->stats.vfmprc + 4294967296ULL; } else { } adapter->stats.last_vfmprc = (u64 )current_counter___3; adapter->stats.vfmprc = adapter->stats.vfmprc & 0xffffffff00000000ULL; adapter->stats.vfmprc = adapter->stats.vfmprc | (u64 )current_counter___3; i = 0; goto ldv_51675; ldv_51674: adapter->hw_csum_rx_error = adapter->hw_csum_rx_error + (adapter->rx_ring[i])->hw_csum_rx_error; (adapter->rx_ring[i])->hw_csum_rx_error = 0ULL; i = i + 1; ldv_51675: ; if (i < adapter->num_rx_queues) { goto ldv_51674; } else { } return; } } static void ixgbevf_watchdog(unsigned long data ) { struct ixgbevf_adapter *adapter ; struct ixgbe_hw *hw ; u32 eics ; int i ; int tmp ; struct ixgbevf_q_vector *qv ; { { adapter = (struct ixgbevf_adapter *)data; hw = & adapter->hw; eics = 0U; tmp = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->state)); } if (tmp != 0) { goto watchdog_short_circuit; } else { } i = 0; goto ldv_51687; ldv_51686: qv = adapter->q_vector[i]; if ((unsigned long )qv->rx.ring != (unsigned long )((struct ixgbevf_ring *)0) || (unsigned long )qv->tx.ring != (unsigned long )((struct ixgbevf_ring *)0)) { eics = eics | (u32 )(1 << i); } else { } i = i + 1; ldv_51687: ; if (i < adapter->num_msix_vectors + -1) { goto ldv_51686; } else { } { writel(eics, (void volatile *)hw->hw_addr + 260U); } watchdog_short_circuit: { schedule_work(& adapter->watchdog_task); } return; } } static void ixgbevf_tx_timeout(struct net_device *netdev ) { struct ixgbevf_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; schedule_work(& adapter->reset_task); } return; } } static void ixgbevf_reset_task(struct work_struct *work ) { struct ixgbevf_adapter *adapter ; struct work_struct const *__mptr ; int tmp ; int tmp___0 ; { { __mptr = (struct work_struct const *)work; adapter = (struct ixgbevf_adapter *)__mptr + 0xfffffffffffffd80UL; tmp = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->state)); } if (tmp != 0) { return; } else { { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& adapter->state)); } if (tmp___0 != 0) { return; } else { } } { adapter->tx_timeout_count = adapter->tx_timeout_count + 1U; ixgbevf_reinit_locked(adapter); } return; } } static void ixgbevf_watchdog_task(struct work_struct *work ) { struct ixgbevf_adapter *adapter ; struct work_struct const *__mptr ; struct net_device *netdev ; struct ixgbe_hw *hw ; u32 link_speed ; bool link_up ; s32 need_reset ; char *link_speed_string ; bool tmp ; int tmp___0 ; bool tmp___1 ; unsigned long tmp___2 ; int tmp___3 ; { { __mptr = (struct work_struct const *)work; adapter = (struct ixgbevf_adapter *)__mptr + 0xfffffffffffff9b0UL; netdev = adapter->netdev; hw = & adapter->hw; link_speed = adapter->link_speed; link_up = adapter->link_up; ixgbevf_queue_reset_subtask(adapter); adapter->flags = adapter->flags | 1U; ldv_spin_lock_bh_93(& adapter->mbx_lock); need_reset = (*(hw->mac.ops.check_link))(hw, & link_speed, & link_up, 0); ldv_spin_unlock_bh_94(& adapter->mbx_lock); } if (need_reset != 0) { { adapter->link_up = link_up; adapter->link_speed = link_speed; netif_carrier_off(netdev); netif_tx_stop_all_queues(netdev); schedule_work(& adapter->reset_task); } goto pf_has_reset; } else { } adapter->link_up = link_up; adapter->link_speed = link_speed; if ((int )link_up) { { tmp = netif_carrier_ok((struct net_device const *)netdev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { if (link_speed == 128U) { goto case_128; } else { } if (link_speed == 32U) { goto case_32; } else { } if (link_speed == 8U) { goto case_8; } else { } goto switch_default; case_128: /* CIL Label */ link_speed_string = (char *)"10 Gbps"; goto ldv_51713; case_32: /* CIL Label */ link_speed_string = (char *)"1 Gbps"; goto ldv_51713; case_8: /* CIL Label */ link_speed_string = (char *)"100 Mbps"; goto ldv_51713; switch_default: /* CIL Label */ link_speed_string = (char *)"unknown speed"; goto ldv_51713; switch_break: /* CIL Label */ ; } ldv_51713: { _dev_info((struct device const *)(& (adapter->pdev)->dev), "NIC Link is Up, %s\n", link_speed_string); netif_carrier_on(netdev); netif_tx_wake_all_queues(netdev); } } else { } } else { { adapter->link_up = 0; adapter->link_speed = 0U; tmp___1 = netif_carrier_ok((struct net_device const *)netdev); } if ((int )tmp___1) { { _dev_info((struct device const *)(& (adapter->pdev)->dev), "NIC Link is Down\n"); netif_carrier_off(netdev); netif_tx_stop_all_queues(netdev); } } else { } } { ixgbevf_update_stats(adapter); } pf_has_reset: { tmp___3 = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->state)); } if (tmp___3 == 0) { { tmp___2 = round_jiffies((unsigned long )jiffies + 500UL); ldv_mod_timer_111(& adapter->watchdog_timer, tmp___2); } } else { } adapter->flags = adapter->flags & 4294967294U; return; } } void ixgbevf_free_tx_resources(struct ixgbevf_ring *tx_ring ) { { { ixgbevf_clean_tx_ring(tx_ring); vfree((void const *)tx_ring->__annonCompField91.tx_buffer_info); tx_ring->__annonCompField91.tx_buffer_info = (struct ixgbevf_tx_buffer *)0; } if ((unsigned long )tx_ring->desc == (unsigned long )((void *)0)) { return; } else { } { dma_free_attrs(tx_ring->dev, (size_t )tx_ring->size, tx_ring->desc, tx_ring->dma, (struct dma_attrs *)0); tx_ring->desc = (void *)0; } return; } } static void ixgbevf_free_all_tx_resources(struct ixgbevf_adapter *adapter ) { int i ; { i = 0; goto ldv_51725; ldv_51724: ; if ((unsigned long )(adapter->tx_ring[i])->desc != (unsigned long )((void *)0)) { { ixgbevf_free_tx_resources(adapter->tx_ring[i]); } } else { } i = i + 1; ldv_51725: ; if (i < adapter->num_tx_queues) { goto ldv_51724; } else { } return; } } int ixgbevf_setup_tx_resources(struct ixgbevf_ring *tx_ring ) { int size ; void *tmp ; { { size = (int )(tx_ring->count * 48U); tmp = vzalloc((unsigned long )size); tx_ring->__annonCompField91.tx_buffer_info = (struct ixgbevf_tx_buffer *)tmp; } if ((unsigned long )tx_ring->__annonCompField91.tx_buffer_info == (unsigned long )((struct ixgbevf_tx_buffer *)0)) { goto err; } else { } { tx_ring->size = tx_ring->count * 16U; tx_ring->size = (tx_ring->size + 4095U) & 4294963200U; tx_ring->desc = dma_alloc_attrs(tx_ring->dev, (size_t )tx_ring->size, & tx_ring->dma, 208U, (struct dma_attrs *)0); } if ((unsigned long )tx_ring->desc == (unsigned long )((void *)0)) { goto err; } else { } return (0); err: { vfree((void const *)tx_ring->__annonCompField91.tx_buffer_info); tx_ring->__annonCompField91.tx_buffer_info = (struct ixgbevf_tx_buffer *)0; } return (-12); } } static int ixgbevf_setup_all_tx_resources(struct ixgbevf_adapter *adapter ) { int i ; int err ; { err = 0; i = 0; goto ldv_51740; ldv_51739: { err = ixgbevf_setup_tx_resources(adapter->tx_ring[i]); } if (err == 0) { goto ldv_51737; } else { } goto ldv_51738; ldv_51737: i = i + 1; ldv_51740: ; if (i < adapter->num_tx_queues) { goto ldv_51739; } else { } ldv_51738: ; return (err); } } int ixgbevf_setup_rx_resources(struct ixgbevf_ring *rx_ring ) { int size ; void *tmp ; { { size = (int )(rx_ring->count * 16U); tmp = vzalloc((unsigned long )size); rx_ring->__annonCompField91.rx_buffer_info = (struct ixgbevf_rx_buffer *)tmp; } if ((unsigned long )rx_ring->__annonCompField91.rx_buffer_info == (unsigned long )((struct ixgbevf_rx_buffer *)0)) { goto err; } else { } { rx_ring->size = rx_ring->count * 16U; rx_ring->size = (rx_ring->size + 4095U) & 4294963200U; rx_ring->desc = dma_alloc_attrs(rx_ring->dev, (size_t )rx_ring->size, & rx_ring->dma, 208U, (struct dma_attrs *)0); } if ((unsigned long )rx_ring->desc == (unsigned long )((void *)0)) { goto err; } else { } return (0); err: { vfree((void const *)rx_ring->__annonCompField91.rx_buffer_info); rx_ring->__annonCompField91.rx_buffer_info = (struct ixgbevf_rx_buffer *)0; dev_err((struct device const *)rx_ring->dev, "Unable to allocate memory for the Rx descriptor ring\n"); } return (-12); } } static int ixgbevf_setup_all_rx_resources(struct ixgbevf_adapter *adapter ) { int i ; int err ; { err = 0; i = 0; goto ldv_51754; ldv_51753: { err = ixgbevf_setup_rx_resources(adapter->rx_ring[i]); } if (err == 0) { goto ldv_51751; } else { } goto ldv_51752; ldv_51751: i = i + 1; ldv_51754: ; if (i < adapter->num_rx_queues) { goto ldv_51753; } else { } ldv_51752: ; return (err); } } void ixgbevf_free_rx_resources(struct ixgbevf_ring *rx_ring ) { { { ixgbevf_clean_rx_ring(rx_ring); vfree((void const *)rx_ring->__annonCompField91.rx_buffer_info); rx_ring->__annonCompField91.rx_buffer_info = (struct ixgbevf_rx_buffer *)0; dma_free_attrs(rx_ring->dev, (size_t )rx_ring->size, rx_ring->desc, rx_ring->dma, (struct dma_attrs *)0); rx_ring->desc = (void *)0; } return; } } static void ixgbevf_free_all_rx_resources(struct ixgbevf_adapter *adapter ) { int i ; { i = 0; goto ldv_51763; ldv_51762: ; if ((unsigned long )(adapter->rx_ring[i])->desc != (unsigned long )((void *)0)) { { ixgbevf_free_rx_resources(adapter->rx_ring[i]); } } else { } i = i + 1; ldv_51763: ; if (i < adapter->num_rx_queues) { goto ldv_51762; } else { } return; } } static int ixgbevf_open(struct net_device *netdev ) { struct ixgbevf_adapter *adapter ; void *tmp ; struct ixgbe_hw *hw ; int err ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; hw = & adapter->hw; } if (adapter->num_msix_vectors == 0) { return (-12); } else { } { tmp___0 = constant_test_bit(0L, (unsigned long const volatile *)(& adapter->state)); } if (tmp___0 != 0) { return (-16); } else { } if ((int )hw->adapter_stopped) { { ixgbevf_reset(adapter); } if ((int )hw->adapter_stopped) { { err = -100; printk("\vixgbevf: Unable to start - perhaps the PF Driver isn\'t up yet\n"); } goto err_setup_reset; } else { } } else { } { err = ixgbevf_setup_all_tx_resources(adapter); } if (err != 0) { goto err_setup_tx; } else { } { err = ixgbevf_setup_all_rx_resources(adapter); } if (err != 0) { goto err_setup_rx; } else { } { ixgbevf_configure(adapter); ixgbevf_map_rings_to_vectors(adapter); ixgbevf_up_complete(adapter); readl((void const volatile *)hw->hw_addr + 256U); err = ixgbevf_request_irq(adapter); } if (err != 0) { goto err_req_irq; } else { } { ixgbevf_irq_enable(adapter); } return (0); err_req_irq: { ixgbevf_down(adapter); } err_setup_rx: { ixgbevf_free_all_rx_resources(adapter); } err_setup_tx: { ixgbevf_free_all_tx_resources(adapter); ixgbevf_reset(adapter); } err_setup_reset: ; return (err); } } static int ixgbevf_close(struct net_device *netdev ) { struct ixgbevf_adapter *adapter ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; ixgbevf_down(adapter); ixgbevf_free_irq(adapter); ixgbevf_free_all_tx_resources(adapter); ixgbevf_free_all_rx_resources(adapter); } return (0); } } static void ixgbevf_queue_reset_subtask(struct ixgbevf_adapter *adapter ) { struct net_device *dev ; int tmp ; int tmp___0 ; bool tmp___1 ; bool tmp___2 ; { dev = adapter->netdev; if ((adapter->flags & 4U) == 0U) { return; } else { } { adapter->flags = adapter->flags & 4294967291U; tmp = constant_test_bit(2L, (unsigned long const volatile *)(& adapter->state)); } if (tmp != 0) { return; } else { { tmp___0 = constant_test_bit(1L, (unsigned long const volatile *)(& adapter->state)); } if (tmp___0 != 0) { return; } else { } } { tmp___1 = netif_running((struct net_device const *)dev); } if ((int )tmp___1) { { ixgbevf_close(dev); } } else { } { ixgbevf_clear_interrupt_scheme(adapter); ixgbevf_init_interrupt_scheme(adapter); tmp___2 = netif_running((struct net_device const *)dev); } if ((int )tmp___2) { { ixgbevf_open(dev); } } else { } return; } } static void ixgbevf_tx_ctxtdesc(struct ixgbevf_ring *tx_ring , u32 vlan_macip_lens , u32 type_tucmd , u32 mss_l4len_idx ) { struct ixgbe_adv_tx_context_desc *context_desc ; u16 i ; { i = (u16 )tx_ring->next_to_use; context_desc = (struct ixgbe_adv_tx_context_desc *)tx_ring->desc + (unsigned long )i; i = (u16 )((int )i + 1); tx_ring->next_to_use = (unsigned int )i < tx_ring->count ? (unsigned int )i : 0U; type_tucmd = type_tucmd | 538968064U; context_desc->vlan_macip_lens = vlan_macip_lens; context_desc->seqnum_seed = 0U; context_desc->type_tucmd_mlhl = type_tucmd; context_desc->mss_l4len_idx = mss_l4len_idx; return; } } static int ixgbevf_tso(struct ixgbevf_ring *tx_ring , struct ixgbevf_tx_buffer *first , u8 *hdr_len ) { struct sk_buff *skb ; u32 vlan_macip_lens ; u32 type_tucmd ; u32 mss_l4len_idx ; u32 l4len ; bool tmp ; int tmp___0 ; int err ; int tmp___1 ; int tmp___2 ; struct iphdr *iph ; struct iphdr *tmp___3 ; struct tcphdr *tmp___4 ; __sum16 tmp___5 ; struct ipv6hdr *tmp___6 ; struct tcphdr *tmp___7 ; struct ipv6hdr *tmp___8 ; struct ipv6hdr *tmp___9 ; __sum16 tmp___10 ; bool tmp___11 ; int tmp___12 ; unsigned char *tmp___13 ; unsigned char *tmp___14 ; int tmp___15 ; { { skb = first->skb; tmp = skb_is_gso((struct sk_buff const *)skb); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (0); } else { } { tmp___2 = skb_header_cloned((struct sk_buff const *)skb); } if (tmp___2 != 0) { { tmp___1 = pskb_expand_head(skb, 0, 0, 32U); err = tmp___1; } if (err != 0) { return (err); } else { } } else { } type_tucmd = 2048U; if ((unsigned int )skb->protocol == 8U) { { tmp___3 = ip_hdr((struct sk_buff const *)skb); iph = tmp___3; iph->tot_len = 0U; iph->check = 0U; tmp___4 = tcp_hdr((struct sk_buff const *)skb); tmp___5 = csum_tcpudp_magic(iph->saddr, iph->daddr, 0, 6, 0U); tmp___4->check = ~ ((int )tmp___5); type_tucmd = type_tucmd | 1024U; first->tx_flags = first->tx_flags | 13U; } } else { { tmp___11 = skb_is_gso_v6((struct sk_buff const *)skb); } if ((int )tmp___11) { { tmp___6 = ipv6_hdr((struct sk_buff const *)skb); tmp___6->payload_len = 0U; tmp___7 = tcp_hdr((struct sk_buff const *)skb); tmp___8 = ipv6_hdr((struct sk_buff const *)skb); tmp___9 = ipv6_hdr((struct sk_buff const *)skb); tmp___10 = csum_ipv6_magic((struct in6_addr const *)(& tmp___9->saddr), (struct in6_addr const *)(& tmp___8->daddr), 0U, 6, 0U); tmp___7->check = ~ ((int )tmp___10); first->tx_flags = first->tx_flags | 5U; } } else { } } { l4len = tcp_hdrlen((struct sk_buff const *)skb); *hdr_len = (int )*hdr_len + (int )((u8 )l4len); tmp___12 = skb_transport_offset((struct sk_buff const *)skb); *hdr_len = (int )((u8 )tmp___12) + (int )((u8 )l4len); tmp___13 = skb_end_pointer((struct sk_buff const *)skb); first->gso_segs = ((struct skb_shared_info *)tmp___13)->gso_segs; first->bytecount = first->bytecount + (unsigned int )(((int )first->gso_segs + -1) * (int )*hdr_len); mss_l4len_idx = l4len << 8; tmp___14 = skb_end_pointer((struct sk_buff const *)skb); mss_l4len_idx = mss_l4len_idx | (u32 )((int )((struct skb_shared_info *)tmp___14)->gso_size << 16); mss_l4len_idx = mss_l4len_idx | 16U; vlan_macip_lens = skb_network_header_len((struct sk_buff const *)skb); tmp___15 = skb_network_offset((struct sk_buff const *)skb); vlan_macip_lens = vlan_macip_lens | (u32 )(tmp___15 << 9); vlan_macip_lens = vlan_macip_lens | (first->tx_flags & 4294901760U); ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); } return (1); } } static void ixgbevf_tx_csum(struct ixgbevf_ring *tx_ring , struct ixgbevf_tx_buffer *first ) { struct sk_buff *skb ; u32 vlan_macip_lens ; u32 mss_l4len_idx ; u32 type_tucmd ; u8 l4_hdr ; u32 tmp ; struct iphdr *tmp___0 ; u32 tmp___1 ; struct ipv6hdr *tmp___2 ; int tmp___3 ; long tmp___4 ; unsigned int tmp___5 ; int tmp___6 ; long tmp___7 ; int tmp___8 ; { skb = first->skb; vlan_macip_lens = 0U; mss_l4len_idx = 0U; type_tucmd = 0U; if ((unsigned int )*((unsigned char *)skb + 124UL) == 12U) { l4_hdr = 0U; { if ((int )skb->protocol == 8) { goto case_8; } else { } if ((int )skb->protocol == 56710) { goto case_56710; } else { } goto switch_default; case_8: /* CIL Label */ { tmp = skb_network_header_len((struct sk_buff const *)skb); vlan_macip_lens = vlan_macip_lens | tmp; type_tucmd = type_tucmd | 1024U; tmp___0 = ip_hdr((struct sk_buff const *)skb); l4_hdr = tmp___0->protocol; } goto ldv_51813; case_56710: /* CIL Label */ { tmp___1 = skb_network_header_len((struct sk_buff const *)skb); vlan_macip_lens = vlan_macip_lens | tmp___1; tmp___2 = ipv6_hdr((struct sk_buff const *)skb); l4_hdr = tmp___2->nexthdr; } goto ldv_51813; switch_default: /* CIL Label */ { tmp___3 = net_ratelimit(); tmp___4 = ldv__builtin_expect(tmp___3 != 0, 0L); } if (tmp___4 != 0L) { { dev_warn((struct device const *)tx_ring->dev, "partial checksum but proto=%x!\n", (int )first->protocol); } } else { } goto ldv_51813; switch_break: /* CIL Label */ ; } ldv_51813: ; { if ((int )l4_hdr == 6) { goto case_6; } else { } if ((int )l4_hdr == 132) { goto case_132; } else { } if ((int )l4_hdr == 17) { goto case_17; } else { } goto switch_default___0; case_6: /* CIL Label */ { type_tucmd = type_tucmd | 2048U; tmp___5 = tcp_hdrlen((struct sk_buff const *)skb); mss_l4len_idx = tmp___5 << 8; } goto ldv_51817; case_132: /* CIL Label */ type_tucmd = type_tucmd | 4096U; mss_l4len_idx = 3072U; goto ldv_51817; case_17: /* CIL Label */ mss_l4len_idx = 2048U; goto ldv_51817; switch_default___0: /* CIL Label */ { tmp___6 = net_ratelimit(); tmp___7 = ldv__builtin_expect(tmp___6 != 0, 0L); } if (tmp___7 != 0L) { { dev_warn((struct device const *)tx_ring->dev, "partial checksum but l4 proto=%x!\n", (int )l4_hdr); } } else { } goto ldv_51817; switch_break___0: /* CIL Label */ ; } ldv_51817: first->tx_flags = first->tx_flags | 1U; } else { } { tmp___8 = skb_network_offset((struct sk_buff const *)skb); vlan_macip_lens = vlan_macip_lens | (u32 )(tmp___8 << 9); vlan_macip_lens = vlan_macip_lens | (first->tx_flags & 4294901760U); ixgbevf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx); } return; } } static __le32 ixgbevf_tx_cmd_type(u32 tx_flags ) { __le32 cmd_type ; { cmd_type = 573571072U; if ((tx_flags & 2U) != 0U) { cmd_type = cmd_type | 1073741824U; } else { } if ((tx_flags & 4U) != 0U) { cmd_type = cmd_type | 2147483648U; } else { } return (cmd_type); } } static void ixgbevf_tx_olinfo_status(union ixgbe_adv_tx_desc *tx_desc , u32 tx_flags , unsigned int paylen ) { __le32 olinfo_status ; { olinfo_status = paylen << 14; if ((int )tx_flags & 1) { olinfo_status = olinfo_status | 512U; } else { } if ((tx_flags & 8U) != 0U) { olinfo_status = olinfo_status | 256U; } else { } if ((tx_flags & 4U) != 0U) { olinfo_status = olinfo_status | 16U; } else { } olinfo_status = olinfo_status | 128U; tx_desc->read.olinfo_status = olinfo_status; return; } } static void ixgbevf_tx_map(struct ixgbevf_ring *tx_ring , struct ixgbevf_tx_buffer *first , u8 const hdr_len ) { dma_addr_t dma ; struct sk_buff *skb ; struct ixgbevf_tx_buffer *tx_buffer ; union ixgbe_adv_tx_desc *tx_desc ; struct skb_frag_struct *frag ; unsigned char *tmp ; unsigned int data_len ; unsigned int size ; unsigned int tmp___0 ; unsigned int paylen ; u32 tx_flags ; __le32 cmd_type ; u16 i ; int tmp___1 ; long tmp___2 ; long tmp___3 ; int tmp___4 ; { { skb = first->skb; tmp = skb_end_pointer((struct sk_buff const *)skb); frag = (struct skb_frag_struct *)(& ((struct skb_shared_info *)tmp)->frags); data_len = skb->data_len; tmp___0 = skb_headlen((struct sk_buff const *)skb); size = tmp___0; paylen = skb->len - (unsigned int )hdr_len; tx_flags = first->tx_flags; i = (u16 )tx_ring->next_to_use; tx_desc = (union ixgbe_adv_tx_desc *)tx_ring->desc + (unsigned long )i; ixgbevf_tx_olinfo_status(tx_desc, tx_flags, paylen); cmd_type = ixgbevf_tx_cmd_type(tx_flags); dma = dma_map_single_attrs(tx_ring->dev, (void *)skb->data, (size_t )size, 1, (struct dma_attrs *)0); tmp___1 = dma_mapping_error(tx_ring->dev, dma); } if (tmp___1 != 0) { goto dma_error; } else { } first->len = size; first->dma = dma; tx_desc->read.buffer_addr = dma; ldv_51852: ; goto ldv_51849; ldv_51848: tx_desc->read.cmd_type_len = cmd_type | 16384U; i = (u16 )((int )i + 1); tx_desc = tx_desc + 1; if ((unsigned int )i == tx_ring->count) { tx_desc = (union ixgbe_adv_tx_desc *)tx_ring->desc; i = 0U; } else { } dma = dma + 16384ULL; size = size - 16384U; tx_desc->read.buffer_addr = dma; tx_desc->read.olinfo_status = 0U; ldv_51849: { tmp___2 = ldv__builtin_expect(size > 16384U, 0L); } if (tmp___2 != 0L) { goto ldv_51848; } else { } { tmp___3 = ldv__builtin_expect(data_len == 0U, 1L); } if (tmp___3 != 0L) { goto ldv_51851; } else { } tx_desc->read.cmd_type_len = cmd_type | size; i = (u16 )((int )i + 1); tx_desc = tx_desc + 1; if ((unsigned int )i == tx_ring->count) { tx_desc = (union ixgbe_adv_tx_desc *)tx_ring->desc; i = 0U; } else { } { size = skb_frag_size((skb_frag_t const *)frag); data_len = data_len - size; dma = skb_frag_dma_map(tx_ring->dev, (skb_frag_t const *)frag, 0UL, (size_t )size, 1); tmp___4 = dma_mapping_error(tx_ring->dev, dma); } if (tmp___4 != 0) { goto dma_error; } else { } tx_buffer = tx_ring->__annonCompField91.tx_buffer_info + (unsigned long )i; tx_buffer->len = size; tx_buffer->dma = dma; tx_desc->read.buffer_addr = dma; tx_desc->read.olinfo_status = 0U; frag = frag + 1; goto ldv_51852; ldv_51851: cmd_type = (cmd_type | size) | 150994944U; tx_desc->read.cmd_type_len = cmd_type; first->time_stamp = jiffies; __asm__ volatile ("sfence": : : "memory"); first->next_to_watch = tx_desc; i = (u16 )((int )i + 1); if ((unsigned int )i == tx_ring->count) { i = 0U; } else { } { tx_ring->next_to_use = (unsigned int )i; writel((unsigned int )i, (void volatile *)tx_ring->tail); } return; dma_error: { dev_err((struct device const *)tx_ring->dev, "TX DMA map failed\n"); } ldv_51854: { tx_buffer = tx_ring->__annonCompField91.tx_buffer_info + (unsigned long )i; ixgbevf_unmap_and_free_tx_resource(tx_ring, tx_buffer); } if ((unsigned long )tx_buffer == (unsigned long )first) { goto ldv_51853; } else { } if ((unsigned int )i == 0U) { i = (u16 )tx_ring->count; } else { } i = (u16 )((int )i - 1); goto ldv_51854; ldv_51853: tx_ring->next_to_use = (unsigned int )i; return; } } static int __ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring , int size ) { u16 tmp ; long tmp___0 ; { { netif_stop_subqueue(tx_ring->netdev, (int )((u16 )tx_ring->queue_index)); __asm__ volatile ("mfence": : : "memory"); tmp = ixgbevf_desc_unused(tx_ring); tmp___0 = ldv__builtin_expect((int )tmp < size, 1L); } if (tmp___0 != 0L) { return (-16); } else { } { netif_start_subqueue(tx_ring->netdev, (int )((u16 )tx_ring->queue_index)); tx_ring->__annonCompField92.tx_stats.restart_queue = tx_ring->__annonCompField92.tx_stats.restart_queue + 1ULL; } return (0); } } static int ixgbevf_maybe_stop_tx(struct ixgbevf_ring *tx_ring , int size ) { u16 tmp ; long tmp___0 ; int tmp___1 ; { { tmp = ixgbevf_desc_unused(tx_ring); tmp___0 = ldv__builtin_expect((int )tmp >= size, 1L); } if (tmp___0 != 0L) { return (0); } else { } { tmp___1 = __ixgbevf_maybe_stop_tx(tx_ring, size); } return (tmp___1); } } static int ixgbevf_xmit_frame(struct sk_buff *skb , struct net_device *netdev ) { struct ixgbevf_adapter *adapter ; void *tmp ; struct ixgbevf_tx_buffer *first ; struct ixgbevf_ring *tx_ring ; int tso ; u32 tx_flags ; u16 count ; unsigned int tmp___0 ; u8 hdr_len ; u8 *dst_mac ; void *tmp___1 ; bool tmp___2 ; unsigned char *tmp___3 ; int tmp___4 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; tx_flags = 0U; tmp___0 = skb_headlen((struct sk_buff const *)skb); count = (u16 )((tmp___0 + 16383U) / 16384U); hdr_len = 0U; tmp___1 = skb_header_pointer((struct sk_buff const *)skb, 0, 0, (void *)0); dst_mac = (u8 *)tmp___1; } if ((unsigned long )dst_mac == (unsigned long )((u8 *)0U)) { { consume_skb(skb); } return (0); } else { { tmp___2 = is_link_local_ether_addr___0((u8 const *)dst_mac); } if ((int )tmp___2) { { consume_skb(skb); } return (0); } else { } } { tx_ring = adapter->tx_ring[(int )skb->queue_mapping]; tmp___3 = skb_end_pointer((struct sk_buff const *)skb); count = (int )count + (int )((u16 )((struct skb_shared_info *)tmp___3)->nr_frags); tmp___4 = ixgbevf_maybe_stop_tx(tx_ring, (int )count + 3); } if (tmp___4 != 0) { tx_ring->__annonCompField92.tx_stats.tx_busy = tx_ring->__annonCompField92.tx_stats.tx_busy + 1ULL; return (16); } else { } first = tx_ring->__annonCompField91.tx_buffer_info + (unsigned long )tx_ring->next_to_use; first->skb = skb; first->bytecount = skb->len; first->gso_segs = 1U; if (((int )skb->vlan_tci & 4096) != 0) { tx_flags = tx_flags | ((u32 )skb->vlan_tci & 4294963199U); tx_flags = tx_flags << 16; tx_flags = tx_flags | 2U; } else { } { first->tx_flags = tx_flags; first->protocol = vlan_get_protocol((struct sk_buff const *)skb); tso = ixgbevf_tso(tx_ring, first, & hdr_len); } if (tso < 0) { goto out_drop; } else { { ixgbevf_tx_csum(tx_ring, first); } } { ixgbevf_tx_map(tx_ring, first, (int )hdr_len); ixgbevf_maybe_stop_tx(tx_ring, 21); } return (0); out_drop: { dev_kfree_skb_any(first->skb); first->skb = (struct sk_buff *)0; } return (0); } } static int ixgbevf_set_mac(struct net_device *netdev , void *p ) { struct ixgbevf_adapter *adapter ; void *tmp ; struct ixgbe_hw *hw ; struct sockaddr *addr ; bool tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; hw = & adapter->hw; addr = (struct sockaddr *)p; tmp___0 = is_valid_ether_addr((u8 const *)(& addr->sa_data)); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-99); } else { } { memcpy((void *)netdev->dev_addr, (void const *)(& addr->sa_data), (size_t )netdev->addr_len); memcpy((void *)(& hw->mac.addr), (void const *)(& addr->sa_data), (size_t )netdev->addr_len); ldv_spin_lock_bh_93(& adapter->mbx_lock); (*(hw->mac.ops.set_rar))(hw, 0U, (u8 *)(& hw->mac.addr), 0U); ldv_spin_unlock_bh_94(& adapter->mbx_lock); } return (0); } } static int ixgbevf_change_mtu(struct net_device *netdev , int new_mtu ) { struct ixgbevf_adapter *adapter ; void *tmp ; int max_frame ; int max_possible_frame ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; max_frame = new_mtu + 18; max_possible_frame = 1522; } { if (adapter->hw.api_version == 2) { goto case_2; } else { } goto switch_default; case_2: /* CIL Label */ max_possible_frame = 9728; goto ldv_51891; switch_default: /* CIL Label */ ; if ((unsigned int )adapter->hw.mac.type == 2U) { max_possible_frame = 9728; } else { } goto ldv_51891; switch_break: /* CIL Label */ ; } ldv_51891: ; if (new_mtu <= 67 || max_frame > max_possible_frame) { return (-22); } else { } { netdev->mtu = (unsigned int )new_mtu; tmp___0 = netif_running((struct net_device const *)netdev); } if ((int )tmp___0) { { ixgbevf_reinit_locked(adapter); } } else { } return (0); } } static int ixgbevf_suspend(struct pci_dev *pdev , pm_message_t state ) { struct net_device *netdev ; void *tmp ; struct ixgbevf_adapter *adapter ; void *tmp___0 ; int retval ; bool tmp___1 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp___0; retval = 0; netif_device_detach(netdev); tmp___1 = netif_running((struct net_device const *)netdev); } if ((int )tmp___1) { { rtnl_lock(); ixgbevf_down(adapter); ixgbevf_free_irq(adapter); ixgbevf_free_all_tx_resources(adapter); ixgbevf_free_all_rx_resources(adapter); rtnl_unlock(); } } else { } { ixgbevf_clear_interrupt_scheme(adapter); retval = pci_save_state(pdev); } if (retval != 0) { return (retval); } else { } { pci_disable_device(pdev); } return (0); } } static int ixgbevf_resume(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct ixgbevf_adapter *adapter ; void *tmp___0 ; u32 err ; int tmp___1 ; int tmp___2 ; int tmp___3 ; bool tmp___4 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp___0; pci_set_power_state(pdev, 0); pci_restore_state(pdev); pci_save_state(pdev); tmp___1 = pci_enable_device_mem(pdev); err = (u32 )tmp___1; } if (err != 0U) { { dev_err((struct device const *)(& pdev->dev), "Cannot enable PCI device from suspend\n"); } return ((int )err); } else { } { pci_set_master(pdev); ixgbevf_reset(adapter); rtnl_lock(); tmp___2 = ixgbevf_init_interrupt_scheme(adapter); err = (u32 )tmp___2; rtnl_unlock(); } if (err != 0U) { { dev_err((struct device const *)(& pdev->dev), "Cannot initialize interrupts\n"); } return ((int )err); } else { } { tmp___4 = netif_running((struct net_device const *)netdev); } if ((int )tmp___4) { { tmp___3 = ixgbevf_open(netdev); err = (u32 )tmp___3; } if (err != 0U) { return ((int )err); } else { } } else { } { netif_device_attach(netdev); } return ((int )err); } } static void ixgbevf_shutdown(struct pci_dev *pdev ) { struct pm_message __constr_expr_0 ; { { __constr_expr_0.event = 2; ixgbevf_suspend(pdev, __constr_expr_0); } return; } } static struct rtnl_link_stats64 *ixgbevf_get_stats(struct net_device *netdev , struct rtnl_link_stats64 *stats ) { struct ixgbevf_adapter *adapter ; void *tmp ; unsigned int start ; u64 bytes ; u64 packets ; struct ixgbevf_ring const *ring ; int i ; bool tmp___0 ; bool tmp___1 ; { { tmp = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp; ixgbevf_update_stats(adapter); stats->multicast = adapter->stats.vfmprc - adapter->stats.base_vfmprc; i = 0; } goto ldv_51923; ldv_51922: ring = (struct ixgbevf_ring const *)adapter->rx_ring[i]; ldv_51920: { start = u64_stats_fetch_begin_bh(& ring->syncp); bytes = ring->stats.bytes; packets = ring->stats.packets; tmp___0 = u64_stats_fetch_retry_bh(& ring->syncp, start); } if ((int )tmp___0) { goto ldv_51920; } else { } stats->rx_bytes = stats->rx_bytes + bytes; stats->rx_packets = stats->rx_packets + packets; i = i + 1; ldv_51923: ; if (i < adapter->num_rx_queues) { goto ldv_51922; } else { } i = 0; goto ldv_51928; ldv_51927: ring = (struct ixgbevf_ring const *)adapter->tx_ring[i]; ldv_51925: { start = u64_stats_fetch_begin_bh(& ring->syncp); bytes = ring->stats.bytes; packets = ring->stats.packets; tmp___1 = u64_stats_fetch_retry_bh(& ring->syncp, start); } if ((int )tmp___1) { goto ldv_51925; } else { } stats->tx_bytes = stats->tx_bytes + bytes; stats->tx_packets = stats->tx_packets + packets; i = i + 1; ldv_51928: ; if (i < adapter->num_tx_queues) { goto ldv_51927; } else { } return (stats); } } static struct net_device_ops const ixgbevf_netdev_ops = {0, 0, & ixgbevf_open, & ixgbevf_close, (netdev_tx_t (*)(struct sk_buff * , struct net_device * ))(& ixgbevf_xmit_frame), 0, 0, & ixgbevf_set_rx_mode, & ixgbevf_set_mac, & eth_validate_addr, 0, 0, & ixgbevf_change_mtu, 0, & ixgbevf_tx_timeout, & ixgbevf_get_stats, 0, & ixgbevf_vlan_rx_add_vid, & ixgbevf_vlan_rx_kill_vid, 0, 0, 0, & ixgbevf_busy_poll_recv, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static void ixgbevf_assign_netdev_ops(struct net_device *dev ) { { { dev->netdev_ops = & ixgbevf_netdev_ops; ixgbevf_set_ethtool_ops(dev); dev->watchdog_timeo = 1250; } return; } } static int ixgbevf_probe(struct pci_dev *pdev , struct pci_device_id const *ent ) { struct net_device *netdev ; struct ixgbevf_adapter *adapter ; struct ixgbe_hw *hw ; struct ixgbevf_info const *ii ; int cards_found ; int err ; int pci_using_dac ; int tmp ; void *tmp___0 ; u32 tmp___1 ; void *tmp___2 ; bool tmp___3 ; int tmp___4 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; atomic_long_t __constr_expr_0 ; struct lock_class_key __key___1 ; atomic_long_t __constr_expr_1 ; { { adapter = (struct ixgbevf_adapter *)0; hw = (struct ixgbe_hw *)0; ii = ixgbevf_info_tbl[ent->driver_data]; err = pci_enable_device(pdev); } if (err != 0) { return (err); } else { } { tmp = dma_set_mask_and_coherent(& pdev->dev, 0xffffffffffffffffULL); } if (tmp == 0) { pci_using_dac = 1; } else { { err = dma_set_mask_and_coherent(& pdev->dev, 4294967295ULL); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "No usable DMA configuration, aborting\n"); } goto err_dma; } else { } pci_using_dac = 0; } { err = pci_request_regions(pdev, (char const *)(& ixgbevf_driver_name)); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "pci_request_regions failed 0x%x\n", err); } goto err_pci_reg; } else { } { pci_set_master(pdev); netdev = ldv_alloc_etherdev_mqs_114(1696, 8U, 8U); } if ((unsigned long )netdev == (unsigned long )((struct net_device *)0)) { err = -12; goto err_alloc_etherdev; } else { } { netdev->dev.parent = & pdev->dev; pci_set_drvdata(pdev, (void *)netdev); tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp___0; adapter->netdev = netdev; adapter->pdev = pdev; hw = & adapter->hw; hw->back = (void *)adapter; tmp___1 = netif_msg_init(debug, 7); adapter->msg_enable = (u16 )tmp___1; pci_save_state(pdev); tmp___2 = ioremap(pdev->resource[0].start, pdev->resource[0].start != 0ULL || pdev->resource[0].end != pdev->resource[0].start ? (unsigned long )((pdev->resource[0].end - pdev->resource[0].start) + 1ULL) : 0UL); hw->hw_addr = (u8 *)tmp___2; } if ((unsigned long )hw->hw_addr == (unsigned long )((u8 *)0U)) { err = -5; goto err_ioremap; } else { } { ixgbevf_assign_netdev_ops(netdev); adapter->bd_number = (u16 )cards_found; memcpy((void *)(& hw->mac.ops), (void const *)ii->mac_ops, 160UL); hw->mac.type = ii->mac; memcpy((void *)(& hw->mbx.ops), (void const *)(& ixgbevf_mbx_ops), 64UL); err = ixgbevf_sw_init(adapter); } if (err != 0) { goto err_sw_init; } else { } { tmp___3 = is_valid_ether_addr((u8 const *)netdev->dev_addr); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { { printk("\vixgbevf: invalid MAC address\n"); err = -5; } goto err_sw_init; } else { } netdev->hw_features = 4296081427ULL; netdev->features = netdev->hw_features | 896ULL; netdev->vlan_features = netdev->vlan_features | 65536ULL; netdev->vlan_features = netdev->vlan_features | 1048576ULL; netdev->vlan_features = netdev->vlan_features | 2ULL; netdev->vlan_features = netdev->vlan_features | 16ULL; netdev->vlan_features = netdev->vlan_features | 1ULL; if (pci_using_dac != 0) { netdev->features = netdev->features | 32ULL; } else { } { netdev->priv_flags = netdev->priv_flags | 131072U; init_timer_key(& adapter->watchdog_timer, 0U, "(&adapter->watchdog_timer)", & __key); adapter->watchdog_timer.function = & ixgbevf_watchdog; adapter->watchdog_timer.data = (unsigned long )adapter; __init_work(& adapter->reset_task, 0); __constr_expr_0.counter = 137438953408L; adapter->reset_task.data = __constr_expr_0; lockdep_init_map(& adapter->reset_task.lockdep_map, "(&adapter->reset_task)", & __key___0, 0); INIT_LIST_HEAD(& adapter->reset_task.entry); adapter->reset_task.func = & ixgbevf_reset_task; __init_work(& adapter->watchdog_task, 0); __constr_expr_1.counter = 137438953408L; adapter->watchdog_task.data = __constr_expr_1; lockdep_init_map(& adapter->watchdog_task.lockdep_map, "(&adapter->watchdog_task)", & __key___1, 0); INIT_LIST_HEAD(& adapter->watchdog_task.entry); adapter->watchdog_task.func = & ixgbevf_watchdog_task; err = ixgbevf_init_interrupt_scheme(adapter); } if (err != 0) { goto err_sw_init; } else { } { strcpy((char *)(& netdev->name), "eth%d"); err = ldv_register_netdev_115(netdev); } if (err != 0) { goto err_register; } else { } { netif_carrier_off(netdev); ixgbevf_init_last_counter_stats(adapter); cards_found = cards_found + 1; } return (0); err_register: { ixgbevf_clear_interrupt_scheme(adapter); } err_sw_init: { ixgbevf_reset_interrupt_capability(adapter); iounmap((void volatile *)hw->hw_addr); } err_ioremap: { ldv_free_netdev_116(netdev); } err_alloc_etherdev: { pci_release_regions(pdev); } err_pci_reg: ; err_dma: { pci_disable_device(pdev); } return (err); } } static void ixgbevf_remove(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct ixgbevf_adapter *adapter ; void *tmp___0 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp___0; set_bit(2L, (unsigned long volatile *)(& adapter->state)); ldv_del_timer_sync_117(& adapter->watchdog_timer); cancel_work_sync(& adapter->reset_task); cancel_work_sync(& adapter->watchdog_task); } if ((unsigned int )netdev->reg_state == 1U) { { ldv_unregister_netdev_118(netdev); } } else { } { ixgbevf_clear_interrupt_scheme(adapter); ixgbevf_reset_interrupt_capability(adapter); iounmap((void volatile *)adapter->hw.hw_addr); pci_release_regions(pdev); ldv_free_netdev_119(netdev); pci_disable_device(pdev); } return; } } static pci_ers_result_t ixgbevf_io_error_detected(struct pci_dev *pdev , pci_channel_state_t state ) { struct net_device *netdev ; void *tmp ; struct ixgbevf_adapter *adapter ; void *tmp___0 ; bool tmp___1 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp___0; netif_device_detach(netdev); } if (state == 3U) { return (4U); } else { } { tmp___1 = netif_running((struct net_device const *)netdev); } if ((int )tmp___1) { { ixgbevf_down(adapter); } } else { } { pci_disable_device(pdev); } return (3U); } } static pci_ers_result_t ixgbevf_io_slot_reset(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct ixgbevf_adapter *adapter ; void *tmp___0 ; int tmp___1 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp___0; tmp___1 = pci_enable_device_mem(pdev); } if (tmp___1 != 0) { { dev_err((struct device const *)(& pdev->dev), "Cannot re-enable PCI device after reset.\n"); } return (4U); } else { } { pci_set_master(pdev); ixgbevf_reset(adapter); } return (5U); } } static void ixgbevf_io_resume(struct pci_dev *pdev ) { struct net_device *netdev ; void *tmp ; struct ixgbevf_adapter *adapter ; void *tmp___0 ; bool tmp___1 ; { { tmp = pci_get_drvdata(pdev); netdev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)netdev); adapter = (struct ixgbevf_adapter *)tmp___0; tmp___1 = netif_running((struct net_device const *)netdev); } if ((int )tmp___1) { { ixgbevf_up(adapter); } } else { } { netif_device_attach(netdev); } return; } } static struct pci_error_handlers const ixgbevf_err_handler = {(pci_ers_result_t (*)(struct pci_dev * , enum pci_channel_state ))(& ixgbevf_io_error_detected), 0, 0, & ixgbevf_io_slot_reset, & ixgbevf_io_resume}; static struct pci_driver ixgbevf_driver = {{0, 0}, (char const *)(& ixgbevf_driver_name), (struct pci_device_id const *)(& ixgbevf_pci_tbl), & ixgbevf_probe, & ixgbevf_remove, & ixgbevf_suspend, 0, 0, & ixgbevf_resume, & ixgbevf_shutdown, 0, & ixgbevf_err_handler, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int ixgbevf_init_module(void) { int ret ; { { printk("\016ixgbevf: %s - version %s\n", (char const *)(& ixgbevf_driver_string), (char const *)(& ixgbevf_driver_version)); printk("\016ixgbevf: %s\n", (char *)(& ixgbevf_copyright)); ret = ldv___pci_register_driver_120(& ixgbevf_driver, & __this_module, "ixgbevf"); } return (ret); } } static void ixgbevf_exit_module(void) { { { ldv_pci_unregister_driver_121(& ixgbevf_driver); } return; } } void ldv_EMGentry_exit_ixgbevf_exit_module_17_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_ixgbevf_init_module_17_9(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_allocate_external_0(void) ; extern int ldv_del_timer_sync(int , struct timer_list * ) ; void ldv_dispatch_deregister_14_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_15_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_resourceless_instance_14_17_4(void) ; void ldv_dispatch_instance_register_10_2(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_8_1(int arg0 ) ; void ldv_dispatch_irq_register_12_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_irq_register_13_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_11_4(struct net_device *arg0 ) ; void ldv_dispatch_register_16_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_dummy_resourceless_instance_14_17_5(void) ; void ldv_dummy_resourceless_instance_callback_2_23(int (*arg0)(struct napi_struct * ) , struct napi_struct *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_24(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_27(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_28(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_29(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_30(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_31(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_32(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_33(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_36(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) ; void ldv_entry_EMGentry_17(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_initialize_external_data(void) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; void ldv_interrupt_interrupt_instance_1(void *arg0 ) ; int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) ; void ldv_net_dummy_resourceless_instance_2(void *arg0 ) ; void ldv_pci_instance_callback_3_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) ; void ldv_pci_instance_callback_3_23(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_callback_3_24(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_probe_3_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_3_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_3_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_3_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_3_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_3_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_3_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_3(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_11_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_struct_ixgbevf_info_dummy_resourceless_instance_4(void *arg0 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; int ldv_switch_2(void) ; void ldv_switch_automaton_state_0_1(void) ; void ldv_switch_automaton_state_0_6(void) ; void ldv_switch_automaton_state_1_1(void) ; void ldv_switch_automaton_state_1_6(void) ; void ldv_switch_automaton_state_2_1(void) ; void ldv_switch_automaton_state_2_5(void) ; void ldv_switch_automaton_state_3_11(void) ; void ldv_switch_automaton_state_3_20(void) ; void ldv_switch_automaton_state_4_1(void) ; void ldv_switch_automaton_state_4_5(void) ; void ldv_switch_automaton_state_5_1(void) ; void ldv_switch_automaton_state_5_3(void) ; void ldv_timer_instance_callback_5_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_5(void *arg0 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_14_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; void (*ldv_17_exit_ixgbevf_exit_module_default)(void) ; int (*ldv_17_init_ixgbevf_init_module_default)(void) ; int ldv_17_ret_default ; enum irqreturn (*ldv_1_callback_handler)(int , void * ) ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; int (*ldv_2_callback_ndo_busy_poll)(struct napi_struct * ) ; int (*ldv_2_callback_ndo_change_mtu)(struct net_device * , int ) ; struct rtnl_link_stats64 *(*ldv_2_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; int (*ldv_2_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_2_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_2_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_2_callback_ndo_tx_timeout)(struct net_device * ) ; int (*ldv_2_callback_ndo_validate_addr)(struct net_device * ) ; int (*ldv_2_callback_ndo_vlan_rx_add_vid)(struct net_device * , unsigned short , unsigned short ) ; int (*ldv_2_callback_ndo_vlan_rx_kill_vid)(struct net_device * , unsigned short , unsigned short ) ; struct net_device *ldv_2_container_net_device ; struct ethtool_cmd *ldv_2_container_struct_ethtool_cmd_ptr ; struct ethtool_coalesce *ldv_2_container_struct_ethtool_coalesce_ptr ; struct ethtool_drvinfo *ldv_2_container_struct_ethtool_drvinfo_ptr ; struct ethtool_regs *ldv_2_container_struct_ethtool_regs_ptr ; struct ethtool_ringparam *ldv_2_container_struct_ethtool_ringparam_ptr ; struct ethtool_stats *ldv_2_container_struct_ethtool_stats_ptr ; struct ethtool_test *ldv_2_container_struct_ethtool_test_ptr ; struct napi_struct *ldv_2_container_struct_napi_struct_ptr ; struct rtnl_link_stats64 *ldv_2_container_struct_rtnl_link_stats64_ptr ; struct sk_buff *ldv_2_container_struct_sk_buff_ptr ; int ldv_2_ldv_param_17_1_default ; unsigned int ldv_2_ldv_param_20_1_default ; unsigned char *ldv_2_ldv_param_20_2_default ; int ldv_2_ldv_param_24_1_default ; unsigned short ldv_2_ldv_param_33_1_default ; unsigned short ldv_2_ldv_param_33_2_default ; unsigned short ldv_2_ldv_param_36_1_default ; unsigned short ldv_2_ldv_param_36_2_default ; unsigned long long *ldv_2_ldv_param_40_2_default ; unsigned int ldv_2_ldv_param_44_1_default ; unsigned long long *ldv_2_ldv_param_8_2_default ; unsigned int (*ldv_3_callback_error_detected)(struct pci_dev * , enum pci_channel_state ) ; void (*ldv_3_callback_func_1_ptr)(struct pci_dev * ) ; unsigned int (*ldv_3_callback_slot_reset)(struct pci_dev * ) ; struct pci_driver *ldv_3_container_pci_driver ; struct pci_dev *ldv_3_resource_dev ; enum pci_channel_state ldv_3_resource_enum_pci_channel_state ; struct pm_message ldv_3_resource_pm_message ; struct pci_device_id *ldv_3_resource_struct_pci_device_id_ptr ; int ldv_3_ret_default ; struct ixgbe_hw *ldv_4_container_struct_ixgbe_hw_ptr ; struct net_device *ldv_4_container_struct_net_device_ptr ; unsigned char *ldv_4_ldv_param_12_1_default ; unsigned int *ldv_4_ldv_param_17_1_default ; unsigned short ldv_4_ldv_param_17_2_default ; unsigned int *ldv_4_ldv_param_20_1_default ; unsigned short ldv_4_ldv_param_20_2_default ; unsigned int ldv_4_ldv_param_24_1_default ; unsigned char *ldv_4_ldv_param_24_2_default ; unsigned int ldv_4_ldv_param_24_3_default ; unsigned int ldv_4_ldv_param_27_1_default ; unsigned char *ldv_4_ldv_param_27_2_default ; unsigned int ldv_4_ldv_param_30_1_default ; unsigned int ldv_4_ldv_param_30_2_default ; _Bool ldv_4_ldv_param_30_3_default ; unsigned int ldv_4_ldv_param_33_1_default ; _Bool ldv_4_ldv_param_33_2_default ; _Bool ldv_4_ldv_param_33_3_default ; unsigned int *ldv_4_ldv_param_39_1_default ; unsigned short ldv_4_ldv_param_39_2_default ; unsigned int *ldv_4_ldv_param_42_1_default ; unsigned short ldv_4_ldv_param_42_2_default ; unsigned int *ldv_4_ldv_param_9_1_default ; _Bool *ldv_4_ldv_param_9_2_default ; _Bool ldv_4_ldv_param_9_3_default ; struct timer_list *ldv_5_container_timer_list ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_17 ; int ldv_statevar_2 ; int ldv_statevar_3 ; int ldv_statevar_4 ; int ldv_statevar_5 ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) = & ixgbevf_msix_clean_rings; void (*ldv_17_exit_ixgbevf_exit_module_default)(void) = & ixgbevf_exit_module; int (*ldv_17_init_ixgbevf_init_module_default)(void) = & ixgbevf_init_module; enum irqreturn (*ldv_1_callback_handler)(int , void * ) = & ixgbevf_msix_other; int (*ldv_2_callback_ndo_busy_poll)(struct napi_struct * ) = & ixgbevf_busy_poll_recv; int (*ldv_2_callback_ndo_change_mtu)(struct net_device * , int ) = & ixgbevf_change_mtu; struct rtnl_link_stats64 *(*ldv_2_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) = & ixgbevf_get_stats; int (*ldv_2_callback_ndo_set_mac_address)(struct net_device * , void * ) = & ixgbevf_set_mac; void (*ldv_2_callback_ndo_set_rx_mode)(struct net_device * ) = & ixgbevf_set_rx_mode; enum netdev_tx (*ldv_2_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) = (enum netdev_tx (*)(struct sk_buff * , struct net_device * ))(& ixgbevf_xmit_frame); void (*ldv_2_callback_ndo_tx_timeout)(struct net_device * ) = & ixgbevf_tx_timeout; int (*ldv_2_callback_ndo_validate_addr)(struct net_device * ) = & eth_validate_addr; int (*ldv_2_callback_ndo_vlan_rx_add_vid)(struct net_device * , unsigned short , unsigned short ) = & ixgbevf_vlan_rx_add_vid; int (*ldv_2_callback_ndo_vlan_rx_kill_vid)(struct net_device * , unsigned short , unsigned short ) = & ixgbevf_vlan_rx_kill_vid; unsigned int (*ldv_3_callback_error_detected)(struct pci_dev * , enum pci_channel_state ) = (unsigned int (*)(struct pci_dev * , enum pci_channel_state ))(& ixgbevf_io_error_detected); void (*ldv_3_callback_func_1_ptr)(struct pci_dev * ) = & ixgbevf_io_resume; unsigned int (*ldv_3_callback_slot_reset)(struct pci_dev * ) = & ixgbevf_io_slot_reset; void ldv_EMGentry_exit_ixgbevf_exit_module_17_2(void (*arg0)(void) ) { { { ixgbevf_exit_module(); } return; } } int ldv_EMGentry_init_ixgbevf_init_module_17_9(int (*arg0)(void) ) { int tmp ; { { tmp = ixgbevf_init_module(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_16_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_16_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_3 == 20); ldv_dispatch_register_16_2(ldv_16_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_6_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3200UL); ldv_6_netdev_net_device = (struct net_device *)tmp; } return (ldv_6_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } void ldv_allocate_external_0(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; void *tmp___13 ; void *tmp___14 ; void *tmp___15 ; void *tmp___16 ; void *tmp___17 ; void *tmp___18 ; void *tmp___19 ; void *tmp___20 ; void *tmp___21 ; void *tmp___22 ; void *tmp___23 ; void *tmp___24 ; void *tmp___25 ; void *tmp___26 ; void *tmp___27 ; { { ldv_0_data_data = external_allocated_data(); tmp = external_allocated_data(); ldv_0_thread_thread = (enum irqreturn (*)(int , void * ))tmp; ldv_1_data_data = external_allocated_data(); tmp___0 = external_allocated_data(); ldv_1_thread_thread = (enum irqreturn (*)(int , void * ))tmp___0; tmp___1 = external_allocated_data(); ldv_2_container_net_device = (struct net_device *)tmp___1; tmp___2 = external_allocated_data(); ldv_2_container_struct_ethtool_cmd_ptr = (struct ethtool_cmd *)tmp___2; tmp___3 = external_allocated_data(); ldv_2_container_struct_ethtool_coalesce_ptr = (struct ethtool_coalesce *)tmp___3; tmp___4 = external_allocated_data(); ldv_2_container_struct_ethtool_drvinfo_ptr = (struct ethtool_drvinfo *)tmp___4; tmp___5 = external_allocated_data(); ldv_2_container_struct_ethtool_regs_ptr = (struct ethtool_regs *)tmp___5; tmp___6 = external_allocated_data(); ldv_2_container_struct_ethtool_ringparam_ptr = (struct ethtool_ringparam *)tmp___6; tmp___7 = external_allocated_data(); ldv_2_container_struct_ethtool_stats_ptr = (struct ethtool_stats *)tmp___7; tmp___8 = external_allocated_data(); ldv_2_container_struct_ethtool_test_ptr = (struct ethtool_test *)tmp___8; tmp___9 = external_allocated_data(); ldv_2_container_struct_napi_struct_ptr = (struct napi_struct *)tmp___9; tmp___10 = external_allocated_data(); ldv_2_container_struct_rtnl_link_stats64_ptr = (struct rtnl_link_stats64 *)tmp___10; tmp___11 = external_allocated_data(); ldv_2_container_struct_sk_buff_ptr = (struct sk_buff *)tmp___11; tmp___12 = external_allocated_data(); ldv_2_ldv_param_20_2_default = (unsigned char *)tmp___12; tmp___13 = external_allocated_data(); ldv_2_ldv_param_40_2_default = (unsigned long long *)tmp___13; tmp___14 = external_allocated_data(); ldv_2_ldv_param_8_2_default = (unsigned long long *)tmp___14; tmp___15 = external_allocated_data(); ldv_3_resource_dev = (struct pci_dev *)tmp___15; tmp___16 = external_allocated_data(); ldv_4_container_struct_ixgbe_hw_ptr = (struct ixgbe_hw *)tmp___16; tmp___17 = external_allocated_data(); ldv_4_container_struct_net_device_ptr = (struct net_device *)tmp___17; tmp___18 = external_allocated_data(); ldv_4_ldv_param_12_1_default = (unsigned char *)tmp___18; tmp___19 = external_allocated_data(); ldv_4_ldv_param_17_1_default = (unsigned int *)tmp___19; tmp___20 = external_allocated_data(); ldv_4_ldv_param_20_1_default = (unsigned int *)tmp___20; tmp___21 = external_allocated_data(); ldv_4_ldv_param_24_2_default = (unsigned char *)tmp___21; tmp___22 = external_allocated_data(); ldv_4_ldv_param_27_2_default = (unsigned char *)tmp___22; tmp___23 = external_allocated_data(); ldv_4_ldv_param_39_1_default = (unsigned int *)tmp___23; tmp___24 = external_allocated_data(); ldv_4_ldv_param_42_1_default = (unsigned int *)tmp___24; tmp___25 = external_allocated_data(); ldv_4_ldv_param_9_1_default = (unsigned int *)tmp___25; tmp___26 = external_allocated_data(); ldv_4_ldv_param_9_2_default = (_Bool *)tmp___26; tmp___27 = external_allocated_data(); ldv_5_container_timer_list = (struct timer_list *)tmp___27; } return; } } void ldv_dispatch_deregister_14_1(struct net_device *arg0 ) { { { ldv_2_container_net_device = arg0; ldv_switch_automaton_state_2_1(); } return; } } void ldv_dispatch_deregister_15_1(struct pci_driver *arg0 ) { { { ldv_3_container_pci_driver = arg0; ldv_switch_automaton_state_3_11(); } return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_14_17_4(void) { { { ldv_switch_automaton_state_4_1(); } return; } } void ldv_dispatch_instance_register_10_2(struct timer_list *arg0 ) { { { ldv_5_container_timer_list = arg0; ldv_switch_automaton_state_5_3(); } return; } } void ldv_dispatch_irq_deregister_8_1(int arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_0_line_line = arg0; ldv_switch_automaton_state_0_1(); } } else { { ldv_1_line_line = arg0; ldv_switch_automaton_state_1_1(); } } return; } } void ldv_dispatch_irq_register_12_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } } else { { ldv_1_line_line = arg0; ldv_1_callback_handler = arg1; ldv_1_thread_thread = arg2; ldv_1_data_data = arg3; ldv_switch_automaton_state_1_6(); } } return; } } void ldv_dispatch_irq_register_13_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } } else { { ldv_1_line_line = arg0; ldv_1_callback_handler = arg1; ldv_1_thread_thread = arg2; ldv_1_data_data = arg3; ldv_switch_automaton_state_1_6(); } } return; } } void ldv_dispatch_register_11_4(struct net_device *arg0 ) { { { ldv_2_container_net_device = arg0; ldv_switch_automaton_state_2_5(); } return; } } void ldv_dispatch_register_16_2(struct pci_driver *arg0 ) { { { ldv_3_container_pci_driver = arg0; ldv_switch_automaton_state_3_20(); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_14_17_5(void) { { { ldv_switch_automaton_state_4_5(); } return; } } void ldv_dummy_resourceless_instance_callback_2_23(int (*arg0)(struct napi_struct * ) , struct napi_struct *arg1 ) { { { ixgbevf_busy_poll_recv(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_24(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { ixgbevf_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_27(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) { { { ixgbevf_get_stats(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_28(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { ixgbevf_set_mac(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_29(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ixgbevf_set_rx_mode(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_30(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { ixgbevf_xmit_frame(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_31(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ixgbevf_tx_timeout(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_32(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_33(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) { { { ixgbevf_vlan_rx_add_vid(arg1, (int )arg2, (int )arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_36(int (*arg0)(struct net_device * , unsigned short , unsigned short ) , struct net_device *arg1 , unsigned short arg2 , unsigned short arg3 ) { { { ixgbevf_vlan_rx_kill_vid(arg1, (int )arg2, (int )arg3); } return; } } void ldv_entry_EMGentry_17(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_17 == 2) { goto case_2; } else { } if (ldv_statevar_17 == 3) { goto case_3; } else { } if (ldv_statevar_17 == 4) { goto case_4; } else { } if (ldv_statevar_17 == 5) { goto case_5; } else { } if (ldv_statevar_17 == 6) { goto case_6; } else { } if (ldv_statevar_17 == 8) { goto case_8; } else { } if (ldv_statevar_17 == 9) { goto case_9; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 12); ldv_EMGentry_exit_ixgbevf_exit_module_17_2(ldv_17_exit_ixgbevf_exit_module_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_17 = 9; } goto ldv_52910; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 12); ldv_EMGentry_exit_ixgbevf_exit_module_17_2(ldv_17_exit_ixgbevf_exit_module_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_17 = 9; } goto ldv_52910; case_4: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 1); ldv_dispatch_deregister_dummy_resourceless_instance_14_17_4(); ldv_statevar_17 = 2; } goto ldv_52910; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 5); ldv_dispatch_register_dummy_resourceless_instance_14_17_5(); ldv_statevar_17 = 4; } goto ldv_52910; case_6: /* CIL Label */ { ldv_assume(ldv_17_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_17 = 3; } else { ldv_statevar_17 = 5; } goto ldv_52910; case_8: /* CIL Label */ { ldv_assume(ldv_17_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_17 = 9; } goto ldv_52910; case_9: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 20); ldv_17_ret_default = ldv_EMGentry_init_ixgbevf_init_module_17_9(ldv_17_init_ixgbevf_init_module_default); ldv_17_ret_default = ldv_post_init(ldv_17_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_17 = 6; } else { ldv_statevar_17 = 8; } goto ldv_52910; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52910: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_17 = 9; ldv_statevar_0 = 6; ldv_statevar_1 = 6; ldv_statevar_2 = 5; ldv_3_ret_default = 1; ldv_statevar_3 = 20; ldv_statevar_4 = 5; ldv_statevar_5 = 3; } ldv_52929: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_17((void *)0); } goto ldv_52921; case_1: /* CIL Label */ { ldv_interrupt_interrupt_instance_0((void *)0); } goto ldv_52921; case_2: /* CIL Label */ { ldv_interrupt_interrupt_instance_1((void *)0); } goto ldv_52921; case_3: /* CIL Label */ { ldv_net_dummy_resourceless_instance_2((void *)0); } goto ldv_52921; case_4: /* CIL Label */ { ldv_pci_pci_instance_3((void *)0); } goto ldv_52921; case_5: /* CIL Label */ { ldv_struct_ixgbevf_info_dummy_resourceless_instance_4((void *)0); } goto ldv_52921; case_6: /* CIL Label */ { ldv_timer_timer_instance_5((void *)0); } goto ldv_52921; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_52921: ; goto ldv_52929; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_8_line_line ; { { ldv_8_line_line = arg1; ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_1 == 2); ldv_dispatch_irq_deregister_8_1(ldv_8_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_9_netdev_net_device ; { { ldv_9_netdev_net_device = arg1; ldv_free((void *)ldv_9_netdev_net_device); } return; return; } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = ixgbevf_msix_clean_rings(arg1, arg2); } return (tmp); } } enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = ixgbevf_msix_other(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { int tmp ; { { if (ldv_statevar_0 == 2) { goto case_2; } else { } if (ldv_statevar_0 == 4) { goto case_4; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); ldv_statevar_0 = 6; } goto ldv_52975; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } ldv_statevar_0 = 6; goto ldv_52975; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 2; } else { ldv_statevar_0 = 4; } goto ldv_52975; case_6: /* CIL Label */ ; goto ldv_52975; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52975: ; return; } } void ldv_interrupt_interrupt_instance_1(void *arg0 ) { int tmp ; { { if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_1_ret_val_default != 2U); ldv_statevar_1 = 6; } goto ldv_52984; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_1_ret_val_default == 2U); } if ((unsigned long )ldv_1_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_1_3(ldv_1_thread_thread, ldv_1_line_line, ldv_1_data_data); } } else { } ldv_statevar_1 = 6; goto ldv_52984; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_5 == 3); ldv_switch_to_interrupt_context(); ldv_1_ret_val_default = ldv_interrupt_instance_handler_1_5(ldv_1_callback_handler, ldv_1_line_line, ldv_1_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_1 = 2; } else { ldv_statevar_1 = 4; } goto ldv_52984; case_6: /* CIL Label */ ; goto ldv_52984; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52984: ; return; } } int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) { struct timer_list *ldv_10_timer_list_timer_list ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_10_timer_list_timer_list = arg1; ldv_assume(ldv_statevar_5 == 3); ldv_dispatch_instance_register_10_2(ldv_10_timer_list_timer_list); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_net_dummy_resourceless_instance_2(void *arg0 ) { void *tmp ; void *tmp___0 ; void *tmp___1 ; { { if (ldv_statevar_2 == 1) { goto case_1; } else { } if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 3) { goto case_3; } else { } if (ldv_statevar_2 == 4) { goto case_4; } else { } if (ldv_statevar_2 == 5) { goto case_5; } else { } if (ldv_statevar_2 == 7) { goto case_7; } else { } if (ldv_statevar_2 == 9) { goto case_9; } else { } if (ldv_statevar_2 == 11) { goto case_11; } else { } if (ldv_statevar_2 == 12) { goto case_12; } else { } if (ldv_statevar_2 == 13) { goto case_13; } else { } if (ldv_statevar_2 == 14) { goto case_14; } else { } if (ldv_statevar_2 == 15) { goto case_15; } else { } if (ldv_statevar_2 == 16) { goto case_16; } else { } if (ldv_statevar_2 == 18) { goto case_18; } else { } if (ldv_statevar_2 == 21) { goto case_21; } else { } if (ldv_statevar_2 == 23) { goto case_23; } else { } if (ldv_statevar_2 == 25) { goto case_25; } else { } if (ldv_statevar_2 == 27) { goto case_27; } else { } if (ldv_statevar_2 == 28) { goto case_28; } else { } if (ldv_statevar_2 == 29) { goto case_29; } else { } if (ldv_statevar_2 == 30) { goto case_30; } else { } if (ldv_statevar_2 == 31) { goto case_31; } else { } if (ldv_statevar_2 == 32) { goto case_32; } else { } if (ldv_statevar_2 == 34) { goto case_34; } else { } if (ldv_statevar_2 == 37) { goto case_37; } else { } if (ldv_statevar_2 == 39) { goto case_39; } else { } if (ldv_statevar_2 == 41) { goto case_41; } else { } if (ldv_statevar_2 == 43) { goto case_43; } else { } if (ldv_statevar_2 == 45) { goto case_45; } else { } if (ldv_statevar_2 == 47) { goto case_47; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_52999; case_2: /* CIL Label */ { ldv_statevar_2 = ldv_switch_0(); } goto ldv_52999; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_3(ldv_2_callback_get_coalesce, ldv_2_container_net_device, ldv_2_container_struct_ethtool_coalesce_ptr); ldv_statevar_2 = 2; } goto ldv_52999; case_4: /* CIL Label */ { ldv_statevar_2 = ldv_switch_0(); } goto ldv_52999; case_5: /* CIL Label */ ; goto ldv_52999; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_7(ldv_2_callback_get_drvinfo, ldv_2_container_net_device, ldv_2_container_struct_ethtool_drvinfo_ptr); ldv_statevar_2 = 2; } goto ldv_52999; case_9: /* CIL Label */ { tmp = ldv_xmalloc(8UL); ldv_2_ldv_param_8_2_default = (unsigned long long *)tmp; ldv_dummy_resourceless_instance_callback_2_8(ldv_2_callback_get_ethtool_stats, ldv_2_container_net_device, ldv_2_container_struct_ethtool_stats_ptr, ldv_2_ldv_param_8_2_default); ldv_free((void *)ldv_2_ldv_param_8_2_default); ldv_statevar_2 = 2; } goto ldv_52999; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_11(ldv_2_callback_get_link, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52999; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_12(ldv_2_callback_get_msglevel, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52999; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_13(ldv_2_callback_get_regs, ldv_2_container_net_device, ldv_2_container_struct_ethtool_regs_ptr, (void *)ldv_2_container_struct_ethtool_cmd_ptr); ldv_statevar_2 = 2; } goto ldv_52999; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_14(ldv_2_callback_get_regs_len, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52999; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_15(ldv_2_callback_get_ringparam, ldv_2_container_net_device, ldv_2_container_struct_ethtool_ringparam_ptr); ldv_statevar_2 = 2; } goto ldv_52999; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_16(ldv_2_callback_get_settings, ldv_2_container_net_device, ldv_2_container_struct_ethtool_cmd_ptr); ldv_statevar_2 = 2; } goto ldv_52999; case_18: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_17(ldv_2_callback_get_sset_count, ldv_2_container_net_device, ldv_2_ldv_param_17_1_default); ldv_statevar_2 = 2; } goto ldv_52999; case_21: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_2_ldv_param_20_2_default = (unsigned char *)tmp___0; ldv_dummy_resourceless_instance_callback_2_20(ldv_2_callback_get_strings, ldv_2_container_net_device, ldv_2_ldv_param_20_1_default, ldv_2_ldv_param_20_2_default); ldv_free((void *)ldv_2_ldv_param_20_2_default); ldv_statevar_2 = 2; } goto ldv_52999; case_23: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_23(ldv_2_callback_ndo_busy_poll, ldv_2_container_struct_napi_struct_ptr); ldv_statevar_2 = 2; } goto ldv_52999; case_25: /* CIL Label */ { ldv_assume(ldv_statevar_5 == 2); ldv_dummy_resourceless_instance_callback_2_24(ldv_2_callback_ndo_change_mtu, ldv_2_container_net_device, ldv_2_ldv_param_24_1_default); ldv_statevar_2 = 2; } goto ldv_52999; case_27: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_27(ldv_2_callback_ndo_get_stats64, ldv_2_container_net_device, ldv_2_container_struct_rtnl_link_stats64_ptr); ldv_statevar_2 = 2; } goto ldv_52999; case_28: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_28(ldv_2_callback_ndo_set_mac_address, ldv_2_container_net_device, (void *)ldv_2_container_struct_ethtool_cmd_ptr); ldv_statevar_2 = 2; } goto ldv_52999; case_29: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_29(ldv_2_callback_ndo_set_rx_mode, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52999; case_30: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_30(ldv_2_callback_ndo_start_xmit, ldv_2_container_struct_sk_buff_ptr, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52999; case_31: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_31(ldv_2_callback_ndo_tx_timeout, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52999; case_32: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_32(ldv_2_callback_ndo_validate_addr, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52999; case_34: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_33(ldv_2_callback_ndo_vlan_rx_add_vid, ldv_2_container_net_device, (int )ldv_2_ldv_param_33_1_default, (int )ldv_2_ldv_param_33_2_default); ldv_statevar_2 = 2; } goto ldv_52999; case_37: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_36(ldv_2_callback_ndo_vlan_rx_kill_vid, ldv_2_container_net_device, (int )ldv_2_ldv_param_36_1_default, (int )ldv_2_ldv_param_36_2_default); ldv_statevar_2 = 2; } goto ldv_52999; case_39: /* CIL Label */ { ldv_assume(ldv_statevar_5 == 2); ldv_dummy_resourceless_instance_callback_2_39(ldv_2_callback_nway_reset, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52999; case_41: /* CIL Label */ { tmp___1 = ldv_xmalloc(8UL); ldv_2_ldv_param_40_2_default = (unsigned long long *)tmp___1; ldv_dummy_resourceless_instance_callback_2_40(ldv_2_callback_self_test, ldv_2_container_net_device, ldv_2_container_struct_ethtool_test_ptr, ldv_2_ldv_param_40_2_default); ldv_free((void *)ldv_2_ldv_param_40_2_default); ldv_statevar_2 = 2; } goto ldv_52999; case_43: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_43(ldv_2_callback_set_coalesce, ldv_2_container_net_device, ldv_2_container_struct_ethtool_coalesce_ptr); ldv_statevar_2 = 2; } goto ldv_52999; case_45: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_44(ldv_2_callback_set_msglevel, ldv_2_container_net_device, ldv_2_ldv_param_44_1_default); ldv_statevar_2 = 2; } goto ldv_52999; case_47: /* CIL Label */ { ldv_assume((unsigned int )ldv_statevar_5 - 2U <= 1U); ldv_dummy_resourceless_instance_callback_2_47(ldv_2_callback_set_ringparam, ldv_2_container_net_device, ldv_2_container_struct_ethtool_ringparam_ptr); ldv_statevar_2 = 2; } goto ldv_52999; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52999: ; return; } } void ldv_pci_instance_callback_3_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) { { { ixgbevf_io_error_detected(arg1, (pci_channel_state_t )arg2); } return; } } void ldv_pci_instance_callback_3_23(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { ixgbevf_io_resume(arg1); } return; } } void ldv_pci_instance_callback_3_24(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { ixgbevf_io_slot_reset(arg1); } return; } } int ldv_pci_instance_probe_3_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = ixgbevf_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_3_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { ixgbevf_remove(arg1); } return; } } void ldv_pci_instance_resume_3_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { ixgbevf_resume(arg1); } return; } } void ldv_pci_instance_resume_early_3_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_3_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { ixgbevf_shutdown(arg1); } return; } } int ldv_pci_instance_suspend_3_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = ixgbevf_suspend(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_3_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_3(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_3 == 1) { goto case_1; } else { } if (ldv_statevar_3 == 2) { goto case_2; } else { } if (ldv_statevar_3 == 3) { goto case_3; } else { } if (ldv_statevar_3 == 4) { goto case_4; } else { } if (ldv_statevar_3 == 5) { goto case_5; } else { } if (ldv_statevar_3 == 6) { goto case_6; } else { } if (ldv_statevar_3 == 7) { goto case_7; } else { } if (ldv_statevar_3 == 8) { goto case_8; } else { } if (ldv_statevar_3 == 9) { goto case_9; } else { } if (ldv_statevar_3 == 10) { goto case_10; } else { } if (ldv_statevar_3 == 12) { goto case_12; } else { } if (ldv_statevar_3 == 14) { goto case_14; } else { } if (ldv_statevar_3 == 16) { goto case_16; } else { } if (ldv_statevar_3 == 17) { goto case_17; } else { } if (ldv_statevar_3 == 19) { goto case_19; } else { } if (ldv_statevar_3 == 20) { goto case_20; } else { } if (ldv_statevar_3 == 23) { goto case_23; } else { } if (ldv_statevar_3 == 24) { goto case_24; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_3 = 12; } else { ldv_statevar_3 = 17; } goto ldv_53092; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 1 || ldv_statevar_5 == 2); ldv_pci_instance_release_3_2(ldv_3_container_pci_driver->remove, ldv_3_resource_dev); ldv_statevar_3 = 1; } goto ldv_53092; case_3: /* CIL Label */ { ldv_assume((ldv_statevar_0 == 2 || ldv_statevar_1 == 2) || ldv_statevar_5 == 2); ldv_pci_instance_shutdown_3_3(ldv_3_container_pci_driver->shutdown, ldv_3_resource_dev); ldv_statevar_3 = 2; } goto ldv_53092; case_4: /* CIL Label */ { ldv_statevar_3 = ldv_switch_1(); } goto ldv_53092; case_5: /* CIL Label */ { ldv_assume((unsigned int )ldv_statevar_5 - 2U <= 1U); ldv_pci_instance_resume_3_5(ldv_3_container_pci_driver->resume, ldv_3_resource_dev); ldv_statevar_3 = 4; } goto ldv_53092; case_6: /* CIL Label */ ; if ((unsigned long )ldv_3_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_3_6(ldv_3_container_pci_driver->resume_early, ldv_3_resource_dev); } } else { } ldv_statevar_3 = 5; goto ldv_53092; case_7: /* CIL Label */ ; if ((unsigned long )ldv_3_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_3_ret_default = ldv_pci_instance_suspend_late_3_7(ldv_3_container_pci_driver->suspend_late, ldv_3_resource_dev, ldv_3_resource_pm_message); } } else { } { ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); ldv_statevar_3 = 6; } goto ldv_53092; case_8: /* CIL Label */ { ldv_assume((ldv_statevar_0 == 2 || ldv_statevar_1 == 2) || ldv_statevar_5 == 2); ldv_3_ret_default = ldv_pci_instance_suspend_3_8(ldv_3_container_pci_driver->suspend, ldv_3_resource_dev, ldv_3_resource_pm_message); ldv_3_ret_default = ldv_filter_err_code(ldv_3_ret_default); ldv_statevar_3 = 7; } goto ldv_53092; case_9: /* CIL Label */ { ldv_statevar_3 = ldv_switch_1(); } goto ldv_53092; case_10: /* CIL Label */ { ldv_assume(ldv_statevar_5 == 2); ldv_pci_instance_callback_3_10(ldv_3_callback_error_detected, ldv_3_resource_dev, ldv_3_resource_enum_pci_channel_state); ldv_statevar_3 = 9; } goto ldv_53092; case_12: /* CIL Label */ { ldv_free((void *)ldv_3_resource_dev); ldv_free((void *)ldv_3_resource_struct_pci_device_id_ptr); ldv_3_ret_default = 1; ldv_statevar_3 = 20; } goto ldv_53092; case_14: /* CIL Label */ { ldv_assume(ldv_3_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_3 = 12; } else { ldv_statevar_3 = 17; } goto ldv_53092; case_16: /* CIL Label */ { ldv_assume(ldv_3_ret_default == 0); ldv_statevar_3 = ldv_switch_1(); } goto ldv_53092; case_17: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 5); ldv_pre_probe(); ldv_3_ret_default = ldv_pci_instance_probe_3_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_3_container_pci_driver->probe, ldv_3_resource_dev, ldv_3_resource_struct_pci_device_id_ptr); ldv_3_ret_default = ldv_post_probe(ldv_3_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_3 = 14; } else { ldv_statevar_3 = 16; } goto ldv_53092; case_19: /* CIL Label */ { tmp___2 = ldv_xmalloc(2936UL); ldv_3_resource_dev = (struct pci_dev *)tmp___2; tmp___3 = ldv_xmalloc(32UL); ldv_3_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___3; tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_3 = 12; } else { ldv_statevar_3 = 17; } goto ldv_53092; case_20: /* CIL Label */ ; goto ldv_53092; case_23: /* CIL Label */ { ldv_assume(ldv_statevar_5 == 3); ldv_pci_instance_callback_3_23(ldv_3_callback_func_1_ptr, ldv_3_resource_dev); ldv_statevar_3 = 9; } goto ldv_53092; case_24: /* CIL Label */ { ldv_pci_instance_callback_3_24(ldv_3_callback_slot_reset, ldv_3_resource_dev); ldv_statevar_3 = 9; } goto ldv_53092; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53092: ; return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_15_pci_driver_pci_driver ; { { ldv_15_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_3 == 12); ldv_dispatch_deregister_15_1(ldv_15_pci_driver_pci_driver); } return; return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_11_netdev_net_device ; int ldv_11_ret_default ; int tmp ; int tmp___0 ; { { ldv_11_ret_default = 1; ldv_11_ret_default = ldv_pre_register_netdev(); ldv_11_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_11_ret_default == 0); ldv_assume(((((ldv_statevar_0 == 2 || ldv_statevar_0 == 6) || ldv_statevar_1 == 2) || ldv_statevar_1 == 6) || ldv_statevar_5 == 2) || ldv_statevar_5 == 3); ldv_11_ret_default = ldv_register_netdev_open_11_6((ldv_11_netdev_net_device->netdev_ops)->ndo_open, ldv_11_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_11_ret_default == 0); ldv_assume(ldv_statevar_2 == 5); ldv_dispatch_register_11_4(ldv_11_netdev_net_device); } } else { { ldv_assume(ldv_11_ret_default != 0); } } } else { { ldv_assume(ldv_11_ret_default != 0); } } return (ldv_11_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_11_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = ixgbevf_open(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_13_callback_handler)(int , void * ) ; void *ldv_13_data_data ; int ldv_13_line_line ; enum irqreturn (*ldv_13_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_13_line_line = (int )arg1; ldv_13_callback_handler = arg2; ldv_13_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_13_data_data = arg5; ldv_assume(ldv_statevar_0 == 6 || ldv_statevar_1 == 6); ldv_dispatch_irq_register_13_2(ldv_13_line_line, ldv_13_callback_handler, ldv_13_thread_thread, ldv_13_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_struct_ixgbevf_info_dummy_resourceless_instance_4(void *arg0 ) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; { { if (ldv_statevar_4 == 1) { goto case_1; } else { } if (ldv_statevar_4 == 2) { goto case_2; } else { } if (ldv_statevar_4 == 3) { goto case_3; } else { } if (ldv_statevar_4 == 4) { goto case_4; } else { } if (ldv_statevar_4 == 5) { goto case_5; } else { } if (ldv_statevar_4 == 7) { goto case_7; } else { } if (ldv_statevar_4 == 8) { goto case_8; } else { } if (ldv_statevar_4 == 10) { goto case_10; } else { } if (ldv_statevar_4 == 13) { goto case_13; } else { } if (ldv_statevar_4 == 15) { goto case_15; } else { } if (ldv_statevar_4 == 16) { goto case_16; } else { } if (ldv_statevar_4 == 18) { goto case_18; } else { } if (ldv_statevar_4 == 21) { goto case_21; } else { } if (ldv_statevar_4 == 23) { goto case_23; } else { } if (ldv_statevar_4 == 25) { goto case_25; } else { } if (ldv_statevar_4 == 28) { goto case_28; } else { } if (ldv_statevar_4 == 31) { goto case_31; } else { } if (ldv_statevar_4 == 34) { goto case_34; } else { } if (ldv_statevar_4 == 36) { goto case_36; } else { } if (ldv_statevar_4 == 37) { goto case_37; } else { } if (ldv_statevar_4 == 38) { goto case_38; } else { } if (ldv_statevar_4 == 40) { goto case_40; } else { } if (ldv_statevar_4 == 43) { goto case_43; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53149; case_2: /* CIL Label */ { ldv_statevar_4 = ldv_switch_2(); } goto ldv_53149; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_3(ldv_4_callback_check_for_ack, ldv_4_container_struct_ixgbe_hw_ptr); ldv_statevar_4 = 2; } goto ldv_53149; case_4: /* CIL Label */ { ldv_statevar_4 = ldv_switch_2(); } goto ldv_53149; case_5: /* CIL Label */ ; goto ldv_53149; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_7(ldv_4_callback_check_for_msg, ldv_4_container_struct_ixgbe_hw_ptr); ldv_statevar_4 = 2; } goto ldv_53149; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_8(ldv_4_callback_check_for_rst, ldv_4_container_struct_ixgbe_hw_ptr); ldv_statevar_4 = 2; } goto ldv_53149; case_10: /* CIL Label */ { tmp = ldv_xmalloc(4UL); ldv_4_ldv_param_9_1_default = (unsigned int *)tmp; tmp___0 = ldv_xmalloc(1UL); ldv_4_ldv_param_9_2_default = (_Bool *)tmp___0; ldv_dummy_resourceless_instance_callback_4_9(ldv_4_callback_check_link, ldv_4_container_struct_ixgbe_hw_ptr, ldv_4_ldv_param_9_1_default, ldv_4_ldv_param_9_2_default, (int )ldv_4_ldv_param_9_3_default); ldv_free((void *)ldv_4_ldv_param_9_1_default); ldv_free((void *)ldv_4_ldv_param_9_2_default); ldv_statevar_4 = 2; } goto ldv_53149; case_13: /* CIL Label */ { tmp___1 = ldv_xmalloc(1UL); ldv_4_ldv_param_12_1_default = (unsigned char *)tmp___1; ldv_dummy_resourceless_instance_callback_4_12(ldv_4_callback_get_mac_addr, ldv_4_container_struct_ixgbe_hw_ptr, ldv_4_ldv_param_12_1_default); ldv_free((void *)ldv_4_ldv_param_12_1_default); ldv_statevar_4 = 2; } goto ldv_53149; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_15(ldv_4_callback_init_hw, ldv_4_container_struct_ixgbe_hw_ptr); ldv_statevar_4 = 2; } goto ldv_53149; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_16(ldv_4_callback_init_params, ldv_4_container_struct_ixgbe_hw_ptr); ldv_statevar_4 = 2; } goto ldv_53149; case_18: /* CIL Label */ { tmp___2 = ldv_xmalloc(4UL); ldv_4_ldv_param_17_1_default = (unsigned int *)tmp___2; ldv_dummy_resourceless_instance_callback_4_17(ldv_4_callback_read, ldv_4_container_struct_ixgbe_hw_ptr, ldv_4_ldv_param_17_1_default, (int )ldv_4_ldv_param_17_2_default); ldv_free((void *)ldv_4_ldv_param_17_1_default); ldv_statevar_4 = 2; } goto ldv_53149; case_21: /* CIL Label */ { tmp___3 = ldv_xmalloc(4UL); ldv_4_ldv_param_20_1_default = (unsigned int *)tmp___3; ldv_dummy_resourceless_instance_callback_4_20(ldv_4_callback_read_posted, ldv_4_container_struct_ixgbe_hw_ptr, ldv_4_ldv_param_20_1_default, (int )ldv_4_ldv_param_20_2_default); ldv_free((void *)ldv_4_ldv_param_20_1_default); ldv_statevar_4 = 2; } goto ldv_53149; case_23: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_23(ldv_4_callback_reset_hw, ldv_4_container_struct_ixgbe_hw_ptr); ldv_statevar_4 = 2; } goto ldv_53149; case_25: /* CIL Label */ { tmp___4 = ldv_xmalloc(1UL); ldv_4_ldv_param_24_2_default = (unsigned char *)tmp___4; ldv_dummy_resourceless_instance_callback_4_24(ldv_4_callback_set_rar, ldv_4_container_struct_ixgbe_hw_ptr, ldv_4_ldv_param_24_1_default, ldv_4_ldv_param_24_2_default, ldv_4_ldv_param_24_3_default); ldv_free((void *)ldv_4_ldv_param_24_2_default); ldv_statevar_4 = 2; } goto ldv_53149; case_28: /* CIL Label */ { tmp___5 = ldv_xmalloc(1UL); ldv_4_ldv_param_27_2_default = (unsigned char *)tmp___5; ldv_dummy_resourceless_instance_callback_4_27(ldv_4_callback_set_uc_addr, ldv_4_container_struct_ixgbe_hw_ptr, ldv_4_ldv_param_27_1_default, ldv_4_ldv_param_27_2_default); ldv_free((void *)ldv_4_ldv_param_27_2_default); ldv_statevar_4 = 2; } goto ldv_53149; case_31: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_30(ldv_4_callback_set_vfta, ldv_4_container_struct_ixgbe_hw_ptr, ldv_4_ldv_param_30_1_default, ldv_4_ldv_param_30_2_default, (int )ldv_4_ldv_param_30_3_default); ldv_statevar_4 = 2; } goto ldv_53149; case_34: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_33(ldv_4_callback_setup_link, ldv_4_container_struct_ixgbe_hw_ptr, ldv_4_ldv_param_33_1_default, (int )ldv_4_ldv_param_33_2_default, (int )ldv_4_ldv_param_33_3_default); ldv_statevar_4 = 2; } goto ldv_53149; case_36: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_36(ldv_4_callback_start_hw, ldv_4_container_struct_ixgbe_hw_ptr); ldv_statevar_4 = 2; } goto ldv_53149; case_37: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_37(ldv_4_callback_stop_adapter, ldv_4_container_struct_ixgbe_hw_ptr); ldv_statevar_4 = 2; } goto ldv_53149; case_38: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_38(ldv_4_callback_update_mc_addr_list, ldv_4_container_struct_ixgbe_hw_ptr, ldv_4_container_struct_net_device_ptr); ldv_statevar_4 = 2; } goto ldv_53149; case_40: /* CIL Label */ { tmp___6 = ldv_xmalloc(4UL); ldv_4_ldv_param_39_1_default = (unsigned int *)tmp___6; ldv_dummy_resourceless_instance_callback_4_39(ldv_4_callback_write, ldv_4_container_struct_ixgbe_hw_ptr, ldv_4_ldv_param_39_1_default, (int )ldv_4_ldv_param_39_2_default); ldv_free((void *)ldv_4_ldv_param_39_1_default); ldv_statevar_4 = 2; } goto ldv_53149; case_43: /* CIL Label */ { tmp___7 = ldv_xmalloc(4UL); ldv_4_ldv_param_42_1_default = (unsigned int *)tmp___7; ldv_dummy_resourceless_instance_callback_4_42(ldv_4_callback_write_posted, ldv_4_container_struct_ixgbe_hw_ptr, ldv_4_ldv_param_42_1_default, (int )ldv_4_ldv_param_42_2_default); ldv_free((void *)ldv_4_ldv_param_42_1_default); ldv_statevar_4 = 2; } goto ldv_53149; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53149: ; return; } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } if (tmp == 22) { goto case_22; } else { } if (tmp == 23) { goto case_23; } else { } if (tmp == 24) { goto case_24; } else { } if (tmp == 25) { goto case_25; } else { } if (tmp == 26) { goto case_26; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (3); case_2: /* CIL Label */ ; return (7); case_3: /* CIL Label */ ; return (9); case_4: /* CIL Label */ ; return (11); case_5: /* CIL Label */ ; return (12); case_6: /* CIL Label */ ; return (13); case_7: /* CIL Label */ ; return (14); case_8: /* CIL Label */ ; return (15); case_9: /* CIL Label */ ; return (16); case_10: /* CIL Label */ ; return (18); case_11: /* CIL Label */ ; return (21); case_12: /* CIL Label */ ; return (23); case_13: /* CIL Label */ ; return (25); case_14: /* CIL Label */ ; return (27); case_15: /* CIL Label */ ; return (28); case_16: /* CIL Label */ ; return (29); case_17: /* CIL Label */ ; return (30); case_18: /* CIL Label */ ; return (31); case_19: /* CIL Label */ ; return (32); case_20: /* CIL Label */ ; return (34); case_21: /* CIL Label */ ; return (37); case_22: /* CIL Label */ ; return (39); case_23: /* CIL Label */ ; return (41); case_24: /* CIL Label */ ; return (43); case_25: /* CIL Label */ ; return (45); case_26: /* CIL Label */ ; return (47); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (8); case_2: /* CIL Label */ ; return (10); case_3: /* CIL Label */ ; return (23); case_4: /* CIL Label */ ; return (24); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_2(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (3); case_2: /* CIL Label */ ; return (7); case_3: /* CIL Label */ ; return (8); case_4: /* CIL Label */ ; return (10); case_5: /* CIL Label */ ; return (13); case_6: /* CIL Label */ ; return (15); case_7: /* CIL Label */ ; return (16); case_8: /* CIL Label */ ; return (18); case_9: /* CIL Label */ ; return (21); case_10: /* CIL Label */ ; return (23); case_11: /* CIL Label */ ; return (25); case_12: /* CIL Label */ ; return (28); case_13: /* CIL Label */ ; return (31); case_14: /* CIL Label */ ; return (34); case_15: /* CIL Label */ ; return (36); case_16: /* CIL Label */ ; return (37); case_17: /* CIL Label */ ; return (38); case_18: /* CIL Label */ ; return (40); case_19: /* CIL Label */ ; return (43); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_0_1(void) { { ldv_statevar_0 = 6; return; } } void ldv_switch_automaton_state_0_6(void) { { ldv_statevar_0 = 5; return; } } void ldv_switch_automaton_state_1_1(void) { { ldv_statevar_1 = 6; return; } } void ldv_switch_automaton_state_1_6(void) { { ldv_statevar_1 = 5; return; } } void ldv_switch_automaton_state_2_1(void) { { ldv_statevar_2 = 5; return; } } void ldv_switch_automaton_state_2_5(void) { { ldv_statevar_2 = 4; return; } } void ldv_switch_automaton_state_3_11(void) { { ldv_3_ret_default = 1; ldv_statevar_3 = 20; return; } } void ldv_switch_automaton_state_3_20(void) { { ldv_statevar_3 = 19; return; } } void ldv_switch_automaton_state_4_1(void) { { ldv_statevar_4 = 5; return; } } void ldv_switch_automaton_state_4_5(void) { { ldv_statevar_4 = 4; return; } } void ldv_switch_automaton_state_5_1(void) { { ldv_statevar_5 = 3; return; } } void ldv_switch_automaton_state_5_3(void) { { ldv_statevar_5 = 2; return; } } void ldv_timer_instance_callback_5_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_5(void *arg0 ) { { { if (ldv_statevar_5 == 2) { goto case_2; } else { } if (ldv_statevar_5 == 3) { goto case_3; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_5_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_5_2(ldv_5_container_timer_list->function, ldv_5_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); ldv_statevar_5 = 3; } goto ldv_53267; case_3: /* CIL Label */ ; goto ldv_53267; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53267: ; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_14_netdev_net_device ; { { ldv_14_netdev_net_device = arg1; ldv_assume((ldv_statevar_0 == 2 || ldv_statevar_1 == 2) || ldv_statevar_5 == 2); ldv_unregister_netdev_stop_14_2((ldv_14_netdev_net_device->netdev_ops)->ndo_stop, ldv_14_netdev_net_device); ldv_assume(ldv_statevar_2 == 1); ldv_dispatch_deregister_14_1(ldv_14_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_14_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ixgbevf_close(arg1); } return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } __inline static void ldv_spin_lock_46(spinlock_t *lock ) { { { ldv_spin_lock__xmit_lock_of_netdev_queue(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_49(spinlock_t *lock ) { { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); spin_unlock(lock); } return; } } static void *ldv_dev_get_drvdata_58(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_59(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } __inline static void ldv_spin_lock_bh_77(spinlock_t *lock ) { { { ldv_spin_lock_lock_of_ixgbevf_q_vector(); spin_lock_bh(lock); } return; } } __inline static void ldv_spin_unlock_bh_78(spinlock_t *lock ) { { { ldv_spin_unlock_lock_of_ixgbevf_q_vector(); spin_unlock_bh(lock); } return; } } static int ldv_mod_timer_87(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_88(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_89(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_90(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_91(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv_free_irq_92(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static void ldv_spin_lock_bh_93(spinlock_t *lock ) { { { ldv_spin_lock_mbx_lock_of_ixgbevf_adapter(); spin_lock_bh(lock); } return; } } __inline static void ldv_spin_unlock_bh_94(spinlock_t *lock ) { { { ldv_spin_unlock_mbx_lock_of_ixgbevf_adapter(); spin_unlock_bh(lock); } return; } } static int ldv_mod_timer_105(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_sync_106(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_111(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static struct net_device *ldv_alloc_etherdev_mqs_114(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___6 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_115(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___7 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_116(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv_del_timer_sync_117(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___8 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_unregister_netdev_118(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_free_netdev_119(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv___pci_register_driver_120(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___9 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_121(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_check_alloc_flags(gfp_t ) ; extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; void *ldv_malloc_unknown_size(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_ixgbevf_q_vector = 1; void ldv_spin_lock_lock_of_ixgbevf_q_vector(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_ixgbevf_q_vector == 1); ldv_assume(ldv_spin_lock_of_ixgbevf_q_vector == 1); ldv_spin_lock_of_ixgbevf_q_vector = 2; } return; } } void ldv_spin_unlock_lock_of_ixgbevf_q_vector(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_ixgbevf_q_vector == 2); ldv_assume(ldv_spin_lock_of_ixgbevf_q_vector == 2); ldv_spin_lock_of_ixgbevf_q_vector = 1; } return; } } int ldv_spin_trylock_lock_of_ixgbevf_q_vector(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_ixgbevf_q_vector == 1); ldv_assume(ldv_spin_lock_of_ixgbevf_q_vector == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_ixgbevf_q_vector = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_ixgbevf_q_vector(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_ixgbevf_q_vector == 1); ldv_assume(ldv_spin_lock_of_ixgbevf_q_vector == 1); } return; } } int ldv_spin_is_locked_lock_of_ixgbevf_q_vector(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_ixgbevf_q_vector == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_ixgbevf_q_vector(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_ixgbevf_q_vector(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_ixgbevf_q_vector(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_ixgbevf_q_vector(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_ixgbevf_q_vector == 1); ldv_assume(ldv_spin_lock_of_ixgbevf_q_vector == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_ixgbevf_q_vector = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_res_counter = 1; void ldv_spin_lock_lock_of_res_counter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); ldv_spin_lock_of_res_counter = 2; } return; } } void ldv_spin_unlock_lock_of_res_counter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_res_counter == 2); ldv_assume(ldv_spin_lock_of_res_counter == 2); ldv_spin_lock_of_res_counter = 1; } return; } } int ldv_spin_trylock_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_res_counter = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_res_counter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); } return; } } int ldv_spin_is_locked_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_res_counter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_res_counter(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_res_counter(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_res_counter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_res_counter(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_res_counter = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_mbx_lock_of_ixgbevf_adapter = 1; void ldv_spin_lock_mbx_lock_of_ixgbevf_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_mbx_lock_of_ixgbevf_adapter == 1); ldv_assume(ldv_spin_mbx_lock_of_ixgbevf_adapter == 1); ldv_spin_mbx_lock_of_ixgbevf_adapter = 2; } return; } } void ldv_spin_unlock_mbx_lock_of_ixgbevf_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_mbx_lock_of_ixgbevf_adapter == 2); ldv_assume(ldv_spin_mbx_lock_of_ixgbevf_adapter == 2); ldv_spin_mbx_lock_of_ixgbevf_adapter = 1; } return; } } int ldv_spin_trylock_mbx_lock_of_ixgbevf_adapter(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_mbx_lock_of_ixgbevf_adapter == 1); ldv_assume(ldv_spin_mbx_lock_of_ixgbevf_adapter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_mbx_lock_of_ixgbevf_adapter = 2; return (1); } } } void ldv_spin_unlock_wait_mbx_lock_of_ixgbevf_adapter(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_mbx_lock_of_ixgbevf_adapter == 1); ldv_assume(ldv_spin_mbx_lock_of_ixgbevf_adapter == 1); } return; } } int ldv_spin_is_locked_mbx_lock_of_ixgbevf_adapter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_mbx_lock_of_ixgbevf_adapter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_mbx_lock_of_ixgbevf_adapter(void) { int tmp ; { { tmp = ldv_spin_is_locked_mbx_lock_of_ixgbevf_adapter(); } return (tmp == 0); } } int ldv_spin_is_contended_mbx_lock_of_ixgbevf_adapter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_mbx_lock_of_ixgbevf_adapter(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_mbx_lock_of_ixgbevf_adapter == 1); ldv_assume(ldv_spin_mbx_lock_of_ixgbevf_adapter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_mbx_lock_of_ixgbevf_adapter = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_sk_dst_lock_of_sock = 1; void ldv_spin_lock_sk_dst_lock_of_sock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); ldv_spin_sk_dst_lock_of_sock = 2; } return; } } void ldv_spin_unlock_sk_dst_lock_of_sock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_sk_dst_lock_of_sock == 2); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 2); ldv_spin_sk_dst_lock_of_sock = 1; } return; } } int ldv_spin_trylock_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } } } void ldv_spin_unlock_wait_sk_dst_lock_of_sock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); } return; } } int ldv_spin_is_locked_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_sk_dst_lock_of_sock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_sk_dst_lock_of_sock(void) { int tmp ; { { tmp = ldv_spin_is_locked_sk_dst_lock_of_sock(); } return (tmp == 0); } } int ldv_spin_is_contended_sk_dst_lock_of_sock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_sk_dst_lock_of_sock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } else { } return (0); } } static int ldv_spin_slock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_spin_slock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_spin_slock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_slock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_slock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_slock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_slock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_ixgbevf_q_vector == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_res_counter == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_mbx_lock_of_ixgbevf_adapter == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_sk_dst_lock_of_sock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lock_of_ixgbevf_q_vector == 2) { return (1); } else { } if (ldv_spin_lock_of_res_counter == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_mbx_lock_of_ixgbevf_adapter == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_sk_dst_lock_of_sock == 2) { return (1); } else { } if (ldv_spin_slock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }