/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ struct device; typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct net_device; struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_38 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_38 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_39 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_40 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_39 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_40 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_41 { uid_t val ; }; typedef struct __anonstruct_kuid_t_41 kuid_t; struct __anonstruct_kgid_t_42 { gid_t val ; }; typedef struct __anonstruct_kgid_t_42 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_43 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_43 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_108 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_108 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct proc_dir_entry; struct pci_driver; union __anonunion____missing_field_name_136 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_136 __annonCompField33 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_139 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_140 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_138 { struct __anonstruct____missing_field_name_139 __annonCompField35 ; struct __anonstruct____missing_field_name_140 __annonCompField36 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_141 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_143 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_147 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_146 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_147 __annonCompField40 ; int units ; }; struct __anonstruct____missing_field_name_145 { union __anonunion____missing_field_name_146 __annonCompField41 ; atomic_t _count ; }; union __anonunion____missing_field_name_144 { unsigned long counters ; struct __anonstruct____missing_field_name_145 __annonCompField42 ; unsigned int active ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField39 ; union __anonunion____missing_field_name_144 __annonCompField43 ; }; struct __anonstruct____missing_field_name_149 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_148 { struct list_head lru ; struct __anonstruct____missing_field_name_149 __annonCompField45 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_150 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_141 __annonCompField38 ; struct __anonstruct____missing_field_name_142 __annonCompField44 ; union __anonunion____missing_field_name_148 __annonCompField46 ; union __anonunion____missing_field_name_150 __annonCompField47 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_152 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_151 { struct __anonstruct_linear_152 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_151 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct mem_cgroup; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_154 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_155 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_153 { struct __anonstruct____missing_field_name_154 __annonCompField48 ; struct __anonstruct____missing_field_name_155 __annonCompField49 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_153 __annonCompField50 ; }; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_156 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_156 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_158 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_158 sync_serial_settings; struct __anonstruct_te1_settings_159 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_159 te1_settings; struct __anonstruct_raw_hdlc_proto_160 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_160 raw_hdlc_proto; struct __anonstruct_fr_proto_161 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_161 fr_proto; struct __anonstruct_fr_proto_pvc_162 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_162 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_163 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_163 fr_proto_pvc_info; struct __anonstruct_cisco_proto_164 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_164 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_165 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_165 ifs_ifsu ; }; union __anonunion_ifr_ifrn_166 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_167 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_166 ifr_ifrn ; union __anonunion_ifr_ifru_167 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_170 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_169 { struct __anonstruct____missing_field_name_170 __annonCompField51 ; }; struct lockref { union __anonunion____missing_field_name_169 __annonCompField52 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_172 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_171 { struct __anonstruct____missing_field_name_172 __annonCompField53 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_171 __annonCompField54 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_173 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_173 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_175 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_175 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_176 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_176 __annonCompField55 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_178 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_177 { size_t written ; size_t count ; union __anonunion_arg_178 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_177 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_179 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_180 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_181 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_179 __annonCompField56 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_180 __annonCompField57 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_181 __annonCompField58 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_182 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_182 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_184 { struct list_head link ; int state ; }; union __anonunion_fl_u_183 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_184 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_183 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_185 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_185 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_187 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_188 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_189 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_190 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_191 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_192 { long _band ; int _fd ; }; struct __anonstruct__sigsys_193 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_186 { int _pad[28U] ; struct __anonstruct__kill_187 _kill ; struct __anonstruct__timer_188 _timer ; struct __anonstruct__rt_189 _rt ; struct __anonstruct__sigchld_190 _sigchld ; struct __anonstruct__sigfault_191 _sigfault ; struct __anonstruct__sigpoll_192 _sigpoll ; struct __anonstruct__sigsys_193 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_186 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_197 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_196 { struct __anonstruct____missing_field_name_197 __annonCompField59 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_196 __annonCompField60 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_198 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_199 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_201 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_200 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_201 __annonCompField63 ; }; union __anonunion_type_data_202 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_204 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_203 { union __anonunion_payload_204 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_198 __annonCompField61 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_199 __annonCompField62 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_200 __annonCompField64 ; union __anonunion_type_data_202 type_data ; union __anonunion____missing_field_name_203 __annonCompField65 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_23354 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_23354 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct exception_table_entry { int insn ; int fixup ; }; struct sk_buff; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_223 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_222 { __wsum csum ; struct __anonstruct____missing_field_name_223 __annonCompField68 ; }; union __anonunion____missing_field_name_224 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_225 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_222 __annonCompField69 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_224 __annonCompField70 ; __u32 secmark ; union __anonunion____missing_field_name_225 __annonCompField71 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_29093 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_29094 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_239 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_240 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_241 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_239 adj_list ; struct __anonstruct_all_adj_list_240 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_29093 reg_state : 8 ; bool dismantle ; enum ldv_29094 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; struct eeprom_93cx6 { void *data ; void (*register_read)(struct eeprom_93cx6 * ) ; void (*register_write)(struct eeprom_93cx6 * ) ; int width ; char drive_data ; char reg_data_in ; char reg_data_out ; char reg_data_clock ; char reg_chip_select ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_249 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_249 __annonCompField76 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct ieee80211_hdr { __le16 frame_control ; __le16 duration_id ; u8 addr1[6U] ; u8 addr2[6U] ; u8 addr3[6U] ; __le16 seq_ctrl ; u8 addr4[6U] ; }; struct ieee80211_p2p_noa_desc { u8 count ; __le32 duration ; __le32 interval ; __le32 start_time ; }; struct ieee80211_p2p_noa_attr { u8 index ; u8 oppps_ctwindow ; struct ieee80211_p2p_noa_desc desc[4U] ; }; struct ieee80211_mcs_info { u8 rx_mask[10U] ; __le16 rx_highest ; u8 tx_params ; u8 reserved[3U] ; }; struct ieee80211_ht_cap { __le16 cap_info ; u8 ampdu_params_info ; struct ieee80211_mcs_info mcs ; __le16 extended_ht_cap_info ; __le32 tx_BF_cap_info ; u8 antenna_selection_info ; }; struct ieee80211_vht_mcs_info { __le16 rx_mcs_map ; __le16 rx_highest ; __le16 tx_mcs_map ; __le16 tx_highest ; }; struct ieee80211_vht_cap { __le32 vht_cap_info ; struct ieee80211_vht_mcs_info supp_mcs ; }; enum nl80211_iftype { NL80211_IFTYPE_UNSPECIFIED = 0, NL80211_IFTYPE_ADHOC = 1, NL80211_IFTYPE_STATION = 2, NL80211_IFTYPE_AP = 3, NL80211_IFTYPE_AP_VLAN = 4, NL80211_IFTYPE_WDS = 5, NL80211_IFTYPE_MONITOR = 6, NL80211_IFTYPE_MESH_POINT = 7, NL80211_IFTYPE_P2P_CLIENT = 8, NL80211_IFTYPE_P2P_GO = 9, NL80211_IFTYPE_P2P_DEVICE = 10, NUM_NL80211_IFTYPES = 11, NL80211_IFTYPE_MAX = 10 } ; enum nl80211_reg_initiator { NL80211_REGDOM_SET_BY_CORE = 0, NL80211_REGDOM_SET_BY_USER = 1, NL80211_REGDOM_SET_BY_DRIVER = 2, NL80211_REGDOM_SET_BY_COUNTRY_IE = 3 } ; enum nl80211_dfs_regions { NL80211_DFS_UNSET = 0, NL80211_DFS_FCC = 1, NL80211_DFS_ETSI = 2, NL80211_DFS_JP = 3 } ; enum nl80211_user_reg_hint_type { NL80211_USER_REG_HINT_USER = 0, NL80211_USER_REG_HINT_CELL_BASE = 1 } ; enum nl80211_chan_width { NL80211_CHAN_WIDTH_20_NOHT = 0, NL80211_CHAN_WIDTH_20 = 1, NL80211_CHAN_WIDTH_40 = 2, NL80211_CHAN_WIDTH_80 = 3, NL80211_CHAN_WIDTH_80P80 = 4, NL80211_CHAN_WIDTH_160 = 5, NL80211_CHAN_WIDTH_5 = 6, NL80211_CHAN_WIDTH_10 = 7 } ; enum nl80211_bss_scan_width { NL80211_BSS_CHAN_WIDTH_20 = 0, NL80211_BSS_CHAN_WIDTH_10 = 1, NL80211_BSS_CHAN_WIDTH_5 = 2 } ; enum nl80211_auth_type { NL80211_AUTHTYPE_OPEN_SYSTEM = 0, NL80211_AUTHTYPE_SHARED_KEY = 1, NL80211_AUTHTYPE_FT = 2, NL80211_AUTHTYPE_NETWORK_EAP = 3, NL80211_AUTHTYPE_SAE = 4, __NL80211_AUTHTYPE_NUM = 5, NL80211_AUTHTYPE_MAX = 4, NL80211_AUTHTYPE_AUTOMATIC = 5 } ; enum nl80211_mfp { NL80211_MFP_NO = 0, NL80211_MFP_REQUIRED = 1 } ; struct nl80211_wowlan_tcp_data_seq { __u32 start ; __u32 offset ; __u32 len ; }; struct nl80211_wowlan_tcp_data_token { __u32 offset ; __u32 len ; __u8 token_stream[] ; }; struct nl80211_wowlan_tcp_data_token_feature { __u32 min_len ; __u32 max_len ; __u32 bufsize ; }; enum nl80211_dfs_state { NL80211_DFS_USABLE = 0, NL80211_DFS_UNAVAILABLE = 1, NL80211_DFS_AVAILABLE = 2 } ; struct nl80211_vendor_cmd_info { __u32 vendor_id ; __u32 subcmd ; }; enum environment_cap { ENVIRON_ANY = 0, ENVIRON_INDOOR = 1, ENVIRON_OUTDOOR = 2 } ; struct regulatory_request { struct callback_head callback_head ; int wiphy_idx ; enum nl80211_reg_initiator initiator ; enum nl80211_user_reg_hint_type user_reg_hint_type ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; bool intersect ; bool processed ; enum environment_cap country_ie_env ; struct list_head list ; }; struct ieee80211_freq_range { u32 start_freq_khz ; u32 end_freq_khz ; u32 max_bandwidth_khz ; }; struct ieee80211_power_rule { u32 max_antenna_gain ; u32 max_eirp ; }; struct ieee80211_reg_rule { struct ieee80211_freq_range freq_range ; struct ieee80211_power_rule power_rule ; u32 flags ; }; struct ieee80211_regdomain { struct callback_head callback_head ; u32 n_reg_rules ; char alpha2[2U] ; enum nl80211_dfs_regions dfs_region ; struct ieee80211_reg_rule reg_rules[] ; }; struct wiphy; enum ieee80211_band { IEEE80211_BAND_2GHZ = 0, IEEE80211_BAND_5GHZ = 1, IEEE80211_BAND_60GHZ = 2, IEEE80211_NUM_BANDS = 3 } ; struct ieee80211_channel { enum ieee80211_band band ; u16 center_freq ; u16 hw_value ; u32 flags ; int max_antenna_gain ; int max_power ; int max_reg_power ; bool beacon_found ; u32 orig_flags ; int orig_mag ; int orig_mpwr ; enum nl80211_dfs_state dfs_state ; unsigned long dfs_state_entered ; }; struct ieee80211_rate { u32 flags ; u16 bitrate ; u16 hw_value ; u16 hw_value_short ; }; struct ieee80211_sta_ht_cap { u16 cap ; bool ht_supported ; u8 ampdu_factor ; u8 ampdu_density ; struct ieee80211_mcs_info mcs ; }; struct ieee80211_sta_vht_cap { bool vht_supported ; u32 cap ; struct ieee80211_vht_mcs_info vht_mcs ; }; struct ieee80211_supported_band { struct ieee80211_channel *channels ; struct ieee80211_rate *bitrates ; enum ieee80211_band band ; int n_channels ; int n_bitrates ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; }; struct cfg80211_chan_def { struct ieee80211_channel *chan ; enum nl80211_chan_width width ; u32 center_freq1 ; u32 center_freq2 ; }; struct survey_info { struct ieee80211_channel *channel ; u64 channel_time ; u64 channel_time_busy ; u64 channel_time_ext_busy ; u64 channel_time_rx ; u64 channel_time_tx ; u32 filled ; s8 noise ; }; struct cfg80211_crypto_settings { u32 wpa_versions ; u32 cipher_group ; int n_ciphers_pairwise ; u32 ciphers_pairwise[5U] ; int n_akm_suites ; u32 akm_suites[2U] ; bool control_port ; __be16 control_port_ethertype ; bool control_port_no_encrypt ; }; struct mac_address { u8 addr[6U] ; }; struct cfg80211_ssid { u8 ssid[32U] ; u8 ssid_len ; }; struct cfg80211_scan_request { struct cfg80211_ssid *ssids ; int n_ssids ; u32 n_channels ; enum nl80211_bss_scan_width scan_width ; u8 const *ie ; size_t ie_len ; u32 flags ; u32 rates[3U] ; struct wireless_dev *wdev ; struct wiphy *wiphy ; unsigned long scan_start ; bool aborted ; bool notified ; bool no_cck ; struct ieee80211_channel *channels[0U] ; }; struct cfg80211_match_set { struct cfg80211_ssid ssid ; }; struct cfg80211_sched_scan_request { struct cfg80211_ssid *ssids ; int n_ssids ; u32 n_channels ; enum nl80211_bss_scan_width scan_width ; u32 interval ; u8 const *ie ; size_t ie_len ; u32 flags ; struct cfg80211_match_set *match_sets ; int n_match_sets ; s32 rssi_thold ; struct wiphy *wiphy ; struct net_device *dev ; unsigned long scan_start ; struct ieee80211_channel *channels[0U] ; }; enum cfg80211_signal_type { CFG80211_SIGNAL_TYPE_NONE = 0, CFG80211_SIGNAL_TYPE_MBM = 1, CFG80211_SIGNAL_TYPE_UNSPEC = 2 } ; struct cfg80211_ibss_params { u8 *ssid ; u8 *bssid ; struct cfg80211_chan_def chandef ; u8 *ie ; u8 ssid_len ; u8 ie_len ; u16 beacon_interval ; u32 basic_rates ; bool channel_fixed ; bool privacy ; bool control_port ; bool userspace_handles_dfs ; int mcast_rate[3U] ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; }; struct cfg80211_connect_params { struct ieee80211_channel *channel ; u8 *bssid ; u8 *ssid ; size_t ssid_len ; enum nl80211_auth_type auth_type ; u8 *ie ; size_t ie_len ; bool privacy ; enum nl80211_mfp mfp ; struct cfg80211_crypto_settings crypto ; u8 const *key ; u8 key_len ; u8 key_idx ; u32 flags ; int bg_scan_period ; struct ieee80211_ht_cap ht_capa ; struct ieee80211_ht_cap ht_capa_mask ; struct ieee80211_vht_cap vht_capa ; struct ieee80211_vht_cap vht_capa_mask ; }; struct __anonstruct_control_286 { u32 legacy ; u8 ht_mcs[10U] ; u16 vht_mcs[8U] ; }; struct cfg80211_bitrate_mask { struct __anonstruct_control_286 control[3U] ; }; struct cfg80211_pkt_pattern { u8 *mask ; u8 *pattern ; int pattern_len ; int pkt_offset ; }; struct cfg80211_wowlan_tcp { struct socket *sock ; __be32 src ; __be32 dst ; u16 src_port ; u16 dst_port ; u8 dst_mac[6U] ; int payload_len ; u8 const *payload ; struct nl80211_wowlan_tcp_data_seq payload_seq ; u32 data_interval ; u32 wake_len ; u8 const *wake_data ; u8 const *wake_mask ; u32 tokens_size ; struct nl80211_wowlan_tcp_data_token payload_tok ; }; struct cfg80211_wowlan { bool any ; bool disconnect ; bool magic_pkt ; bool gtk_rekey_failure ; bool eap_identity_req ; bool four_way_handshake ; bool rfkill_release ; struct cfg80211_pkt_pattern *patterns ; struct cfg80211_wowlan_tcp *tcp ; int n_patterns ; }; struct cfg80211_gtk_rekey_data { u8 kek[16U] ; u8 kck[16U] ; u8 replay_ctr[8U] ; }; struct ieee80211_iface_limit { u16 max ; u16 types ; }; struct ieee80211_iface_combination { struct ieee80211_iface_limit const *limits ; u32 num_different_channels ; u16 max_interfaces ; u8 n_limits ; bool beacon_int_infra_match ; u8 radar_detect_widths ; }; struct ieee80211_txrx_stypes { u16 tx ; u16 rx ; }; struct wiphy_wowlan_tcp_support { struct nl80211_wowlan_tcp_data_token_feature const *tok ; u32 data_payload_max ; u32 data_interval_max ; u32 wake_payload_max ; bool seq ; }; struct wiphy_wowlan_support { u32 flags ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; struct wiphy_wowlan_tcp_support const *tcp ; }; struct wiphy_coalesce_support { int n_rules ; int max_delay ; int n_patterns ; int pattern_max_len ; int pattern_min_len ; int max_pkt_offset ; }; struct wiphy_vendor_command { struct nl80211_vendor_cmd_info info ; u32 flags ; int (*doit)(struct wiphy * , struct wireless_dev * , void const * , int ) ; }; struct wiphy { u8 perm_addr[6U] ; u8 addr_mask[6U] ; struct mac_address *addresses ; struct ieee80211_txrx_stypes const *mgmt_stypes ; struct ieee80211_iface_combination const *iface_combinations ; int n_iface_combinations ; u16 software_iftypes ; u16 n_addresses ; u16 interface_modes ; u16 max_acl_mac_addrs ; u32 flags ; u32 regulatory_flags ; u32 features ; u32 ap_sme_capa ; enum cfg80211_signal_type signal_type ; int bss_priv_size ; u8 max_scan_ssids ; u8 max_sched_scan_ssids ; u8 max_match_sets ; u16 max_scan_ie_len ; u16 max_sched_scan_ie_len ; int n_cipher_suites ; u32 const *cipher_suites ; u8 retry_short ; u8 retry_long ; u32 frag_threshold ; u32 rts_threshold ; u8 coverage_class ; char fw_version[32U] ; u32 hw_version ; struct wiphy_wowlan_support const *wowlan ; struct cfg80211_wowlan *wowlan_config ; u16 max_remain_on_channel_duration ; u8 max_num_pmkids ; u32 available_antennas_tx ; u32 available_antennas_rx ; u32 probe_resp_offload ; u8 const *extended_capabilities ; u8 const *extended_capabilities_mask ; u8 extended_capabilities_len ; void const *privid ; struct ieee80211_supported_band *bands[3U] ; void (*reg_notifier)(struct wiphy * , struct regulatory_request * ) ; struct ieee80211_regdomain const *regd ; struct device dev ; bool registered ; struct dentry *debugfsdir ; struct ieee80211_ht_cap const *ht_capa_mod_mask ; struct ieee80211_vht_cap const *vht_capa_mod_mask ; struct net *_net ; struct iw_handler_def const *wext ; struct wiphy_coalesce_support const *coalesce ; struct wiphy_vendor_command const *vendor_commands ; struct nl80211_vendor_cmd_info const *vendor_events ; int n_vendor_commands ; int n_vendor_events ; char priv[0U] ; }; struct cfg80211_conn; struct cfg80211_internal_bss; struct cfg80211_cached_keys; struct __anonstruct_wext_287 { struct cfg80211_ibss_params ibss ; struct cfg80211_connect_params connect ; struct cfg80211_cached_keys *keys ; u8 *ie ; size_t ie_len ; u8 bssid[6U] ; u8 prev_bssid[6U] ; u8 ssid[32U] ; s8 default_key ; s8 default_mgmt_key ; bool prev_bssid_valid ; }; struct wireless_dev { struct wiphy *wiphy ; enum nl80211_iftype iftype ; struct list_head list ; struct net_device *netdev ; u32 identifier ; struct list_head mgmt_registrations ; spinlock_t mgmt_registrations_lock ; struct mutex mtx ; bool use_4addr ; bool p2p_started ; u8 address[6U] ; u8 ssid[32U] ; u8 ssid_len ; u8 mesh_id_len ; u8 mesh_id_up_len ; struct cfg80211_conn *conn ; struct cfg80211_cached_keys *connect_keys ; struct list_head event_list ; spinlock_t event_lock ; struct cfg80211_internal_bss *current_bss ; struct cfg80211_chan_def preset_chandef ; struct ieee80211_channel *channel ; bool ibss_fixed ; bool ibss_dfs_possible ; bool ps ; int ps_timeout ; int beacon_interval ; u32 ap_unexpected_nlportid ; bool cac_started ; unsigned long cac_start_time ; struct __anonstruct_wext_287 wext ; }; struct ieee80211_tx_queue_params { u16 txop ; u16 cw_min ; u16 cw_max ; u8 aifs ; bool acm ; bool uapsd ; }; struct ieee80211_low_level_stats { unsigned int dot11ACKFailureCount ; unsigned int dot11RTSFailureCount ; unsigned int dot11FCSErrorCount ; unsigned int dot11RTSSuccessCount ; }; struct ieee80211_chanctx_conf { struct cfg80211_chan_def def ; struct cfg80211_chan_def min_def ; u8 rx_chains_static ; u8 rx_chains_dynamic ; bool radar_enabled ; u8 drv_priv[0U] ; }; enum ieee80211_rssi_event { RSSI_EVENT_HIGH = 0, RSSI_EVENT_LOW = 1 } ; struct ieee80211_bss_conf { u8 const *bssid ; bool assoc ; bool ibss_joined ; bool ibss_creator ; u16 aid ; bool use_cts_prot ; bool use_short_preamble ; bool use_short_slot ; bool enable_beacon ; u8 dtim_period ; u16 beacon_int ; u16 assoc_capability ; u64 sync_tsf ; u32 sync_device_ts ; u8 sync_dtim_count ; u32 basic_rates ; struct ieee80211_rate *beacon_rate ; int mcast_rate[3U] ; u16 ht_operation_mode ; s32 cqm_rssi_thold ; u32 cqm_rssi_hyst ; struct cfg80211_chan_def chandef ; __be32 arp_addr_list[4U] ; int arp_addr_cnt ; bool qos ; bool idle ; bool ps ; u8 ssid[32U] ; size_t ssid_len ; bool hidden_ssid ; int txpower ; struct ieee80211_p2p_noa_attr p2p_noa_attr ; }; struct ieee80211_tx_rate { s8 idx ; u16 count : 5 ; u16 flags : 11 ; }; struct __anonstruct____missing_field_name_291 { struct ieee80211_tx_rate rates[4U] ; s8 rts_cts_rate_idx ; u8 use_rts : 1 ; u8 use_cts_prot : 1 ; u8 short_preamble : 1 ; u8 skip_table : 1 ; }; union __anonunion____missing_field_name_290 { struct __anonstruct____missing_field_name_291 __annonCompField78 ; unsigned long jiffies ; }; struct ieee80211_vif; struct ieee80211_key_conf; struct __anonstruct_control_289 { union __anonunion____missing_field_name_290 __annonCompField79 ; struct ieee80211_vif *vif ; struct ieee80211_key_conf *hw_key ; u32 flags ; }; struct __anonstruct_status_292 { struct ieee80211_tx_rate rates[4U] ; int ack_signal ; u8 ampdu_ack_len ; u8 ampdu_len ; u8 antenna ; }; struct __anonstruct____missing_field_name_293 { struct ieee80211_tx_rate driver_rates[4U] ; u8 pad[4U] ; void *rate_driver_data[3U] ; }; union __anonunion____missing_field_name_288 { struct __anonstruct_control_289 control ; struct __anonstruct_status_292 status ; struct __anonstruct____missing_field_name_293 __annonCompField80 ; void *driver_data[5U] ; }; struct ieee80211_tx_info { u32 flags ; u8 band ; u8 hw_queue ; u16 ack_frame_id ; union __anonunion____missing_field_name_288 __annonCompField81 ; }; struct ieee80211_sched_scan_ies { u8 *ie[3U] ; size_t len[3U] ; }; struct ieee80211_rx_status; struct ieee80211_rx_status { u64 mactime ; u32 device_timestamp ; u32 ampdu_reference ; u32 flag ; u32 vendor_radiotap_bitmap ; u16 vendor_radiotap_len ; u16 freq ; u8 rate_idx ; u8 vht_nss ; u8 rx_flags ; u8 band ; u8 antenna ; s8 signal ; u8 chains ; s8 chain_signal[4U] ; u8 ampdu_delimiter_crc ; u8 vendor_radiotap_align ; u8 vendor_radiotap_oui[3U] ; u8 vendor_radiotap_subns ; }; enum ieee80211_smps_mode { IEEE80211_SMPS_AUTOMATIC = 0, IEEE80211_SMPS_OFF = 1, IEEE80211_SMPS_STATIC = 2, IEEE80211_SMPS_DYNAMIC = 3, IEEE80211_SMPS_NUM_MODES = 4 } ; struct ieee80211_conf { u32 flags ; int power_level ; int dynamic_ps_timeout ; int max_sleep_period ; u16 listen_interval ; u8 ps_dtim_period ; u8 long_frame_max_tx_count ; u8 short_frame_max_tx_count ; struct cfg80211_chan_def chandef ; bool radar_enabled ; enum ieee80211_smps_mode smps_mode ; }; struct ieee80211_channel_switch { u64 timestamp ; bool block_tx ; struct cfg80211_chan_def chandef ; u8 count ; }; struct ieee80211_vif { enum nl80211_iftype type ; struct ieee80211_bss_conf bss_conf ; u8 addr[6U] ; bool p2p ; bool csa_active ; u8 cab_queue ; u8 hw_queue[4U] ; struct ieee80211_chanctx_conf *chanctx_conf ; u32 driver_flags ; struct dentry *debugfs_dir ; u8 drv_priv[0U] ; }; struct ieee80211_key_conf { u32 cipher ; u8 icv_len ; u8 iv_len ; u8 hw_key_idx ; u8 flags ; s8 keyidx ; u8 keylen ; u8 key[0U] ; }; struct ieee80211_cipher_scheme { u32 cipher ; u16 iftype ; u8 hdr_len ; u8 pn_len ; u8 pn_off ; u8 key_idx_off ; u8 key_idx_mask ; u8 key_idx_shift ; u8 mic_len ; }; enum set_key_cmd { SET_KEY = 0, DISABLE_KEY = 1 } ; enum ieee80211_sta_state { IEEE80211_STA_NOTEXIST = 0, IEEE80211_STA_NONE = 1, IEEE80211_STA_AUTH = 2, IEEE80211_STA_ASSOC = 3, IEEE80211_STA_AUTHORIZED = 4 } ; enum ieee80211_sta_rx_bandwidth { IEEE80211_STA_RX_BW_20 = 0, IEEE80211_STA_RX_BW_40 = 1, IEEE80211_STA_RX_BW_80 = 2, IEEE80211_STA_RX_BW_160 = 3 } ; struct __anonstruct_rate_294 { s8 idx ; u8 count ; u8 count_cts ; u8 count_rts ; u16 flags ; }; struct ieee80211_sta_rates { struct callback_head callback_head ; struct __anonstruct_rate_294 rate[4U] ; }; struct ieee80211_sta { u32 supp_rates[3U] ; u8 addr[6U] ; u16 aid ; struct ieee80211_sta_ht_cap ht_cap ; struct ieee80211_sta_vht_cap vht_cap ; bool wme ; u8 uapsd_queues ; u8 max_sp ; u8 rx_nss ; enum ieee80211_sta_rx_bandwidth bandwidth ; enum ieee80211_smps_mode smps_mode ; struct ieee80211_sta_rates *rates ; u8 drv_priv[0U] ; }; enum sta_notify_cmd { STA_NOTIFY_SLEEP = 0, STA_NOTIFY_AWAKE = 1 } ; struct ieee80211_tx_control { struct ieee80211_sta *sta ; }; struct ieee80211_hw { struct ieee80211_conf conf ; struct wiphy *wiphy ; char const *rate_control_algorithm ; void *priv ; u32 flags ; unsigned int extra_tx_headroom ; unsigned int extra_beacon_tailroom ; int vif_data_size ; int sta_data_size ; int chanctx_data_size ; int napi_weight ; u16 queues ; u16 max_listen_interval ; s8 max_signal ; u8 max_rates ; u8 max_report_rates ; u8 max_rate_tries ; u8 max_rx_aggregation_subframes ; u8 max_tx_aggregation_subframes ; u8 offchannel_tx_hw_queue ; u8 radiotap_mcs_details ; u16 radiotap_vht_details ; netdev_features_t netdev_features ; u8 uapsd_queues ; u8 uapsd_max_sp_len ; u8 n_cipher_schemes ; struct ieee80211_cipher_scheme const *cipher_schemes ; }; enum ieee80211_ampdu_mlme_action { IEEE80211_AMPDU_RX_START = 0, IEEE80211_AMPDU_RX_STOP = 1, IEEE80211_AMPDU_TX_START = 2, IEEE80211_AMPDU_TX_STOP_CONT = 3, IEEE80211_AMPDU_TX_STOP_FLUSH = 4, IEEE80211_AMPDU_TX_STOP_FLUSH_CONT = 5, IEEE80211_AMPDU_TX_OPERATIONAL = 6 } ; enum ieee80211_frame_release_type { IEEE80211_FRAME_RELEASE_PSPOLL = 0, IEEE80211_FRAME_RELEASE_UAPSD = 1 } ; enum ieee80211_roc_type { IEEE80211_ROC_TYPE_NORMAL = 0, IEEE80211_ROC_TYPE_MGMT_TX = 1 } ; struct ieee80211_ops { void (*tx)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) ; int (*start)(struct ieee80211_hw * ) ; void (*stop)(struct ieee80211_hw * ) ; int (*suspend)(struct ieee80211_hw * , struct cfg80211_wowlan * ) ; int (*resume)(struct ieee80211_hw * ) ; void (*set_wakeup)(struct ieee80211_hw * , bool ) ; int (*add_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*change_interface)(struct ieee80211_hw * , struct ieee80211_vif * , enum nl80211_iftype , bool ) ; void (*remove_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*config)(struct ieee80211_hw * , u32 ) ; void (*bss_info_changed)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , u32 ) ; int (*start_ap)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*stop_ap)(struct ieee80211_hw * , struct ieee80211_vif * ) ; u64 (*prepare_multicast)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) ; void (*configure_filter)(struct ieee80211_hw * , unsigned int , unsigned int * , u64 ) ; int (*set_tim)(struct ieee80211_hw * , struct ieee80211_sta * , bool ) ; int (*set_key)(struct ieee80211_hw * , enum set_key_cmd , struct ieee80211_vif * , struct ieee80211_sta * , struct ieee80211_key_conf * ) ; void (*update_tkip_key)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_key_conf * , struct ieee80211_sta * , u32 , u16 * ) ; void (*set_rekey_data)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_gtk_rekey_data * ) ; void (*set_default_unicast_key)(struct ieee80211_hw * , struct ieee80211_vif * , int ) ; int (*hw_scan)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_scan_request * ) ; void (*cancel_hw_scan)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*sched_scan_start)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_sched_scan_request * , struct ieee80211_sched_scan_ies * ) ; void (*sched_scan_stop)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*sw_scan_start)(struct ieee80211_hw * ) ; void (*sw_scan_complete)(struct ieee80211_hw * ) ; int (*get_stats)(struct ieee80211_hw * , struct ieee80211_low_level_stats * ) ; void (*get_tkip_seq)(struct ieee80211_hw * , u8 , u32 * , u16 * ) ; int (*set_frag_threshold)(struct ieee80211_hw * , u32 ) ; int (*set_rts_threshold)(struct ieee80211_hw * , u32 ) ; int (*sta_add)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; int (*sta_remove)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*sta_add_debugfs)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , struct dentry * ) ; void (*sta_remove_debugfs)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , struct dentry * ) ; void (*sta_notify)(struct ieee80211_hw * , struct ieee80211_vif * , enum sta_notify_cmd , struct ieee80211_sta * ) ; int (*sta_state)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , enum ieee80211_sta_state , enum ieee80211_sta_state ) ; void (*sta_pre_rcu_remove)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * ) ; void (*sta_rc_update)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , u32 ) ; int (*conf_tx)(struct ieee80211_hw * , struct ieee80211_vif * , u16 , struct ieee80211_tx_queue_params const * ) ; u64 (*get_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*set_tsf)(struct ieee80211_hw * , struct ieee80211_vif * , u64 ) ; void (*reset_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*tx_last_beacon)(struct ieee80211_hw * ) ; int (*ampdu_action)(struct ieee80211_hw * , struct ieee80211_vif * , enum ieee80211_ampdu_mlme_action , struct ieee80211_sta * , u16 , u16 * , u8 ) ; int (*get_survey)(struct ieee80211_hw * , int , struct survey_info * ) ; void (*rfkill_poll)(struct ieee80211_hw * ) ; void (*set_coverage_class)(struct ieee80211_hw * , u8 ) ; int (*testmode_cmd)(struct ieee80211_hw * , struct ieee80211_vif * , void * , int ) ; int (*testmode_dump)(struct ieee80211_hw * , struct sk_buff * , struct netlink_callback * , void * , int ) ; void (*flush)(struct ieee80211_hw * , u32 , bool ) ; void (*channel_switch)(struct ieee80211_hw * , struct ieee80211_channel_switch * ) ; int (*napi_poll)(struct ieee80211_hw * , int ) ; int (*set_antenna)(struct ieee80211_hw * , u32 , u32 ) ; int (*get_antenna)(struct ieee80211_hw * , u32 * , u32 * ) ; int (*remain_on_channel)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_channel * , int , enum ieee80211_roc_type ) ; int (*cancel_remain_on_channel)(struct ieee80211_hw * ) ; int (*set_ringparam)(struct ieee80211_hw * , u32 , u32 ) ; void (*get_ringparam)(struct ieee80211_hw * , u32 * , u32 * , u32 * , u32 * ) ; bool (*tx_frames_pending)(struct ieee80211_hw * ) ; int (*set_bitrate_mask)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_bitrate_mask const * ) ; void (*rssi_callback)(struct ieee80211_hw * , struct ieee80211_vif * , enum ieee80211_rssi_event ) ; void (*allow_buffered_frames)(struct ieee80211_hw * , struct ieee80211_sta * , u16 , int , enum ieee80211_frame_release_type , bool ) ; void (*release_buffered_frames)(struct ieee80211_hw * , struct ieee80211_sta * , u16 , int , enum ieee80211_frame_release_type , bool ) ; int (*get_et_sset_count)(struct ieee80211_hw * , struct ieee80211_vif * , int ) ; void (*get_et_stats)(struct ieee80211_hw * , struct ieee80211_vif * , struct ethtool_stats * , u64 * ) ; void (*get_et_strings)(struct ieee80211_hw * , struct ieee80211_vif * , u32 , u8 * ) ; int (*get_rssi)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_sta * , s8 * ) ; void (*mgd_prepare_tx)(struct ieee80211_hw * , struct ieee80211_vif * ) ; int (*add_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * ) ; void (*remove_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * ) ; void (*change_chanctx)(struct ieee80211_hw * , struct ieee80211_chanctx_conf * , u32 ) ; int (*assign_vif_chanctx)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_chanctx_conf * ) ; void (*unassign_vif_chanctx)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_chanctx_conf * ) ; void (*restart_complete)(struct ieee80211_hw * ) ; void (*ipv6_addr_change)(struct ieee80211_hw * , struct ieee80211_vif * , struct inet6_dev * ) ; void (*channel_switch_beacon)(struct ieee80211_hw * , struct ieee80211_vif * , struct cfg80211_chan_def * ) ; int (*join_ibss)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*leave_ibss)(struct ieee80211_hw * , struct ieee80211_vif * ) ; }; struct adm8211_csr { __le32 PAR ; __le32 FRCTL ; __le32 TDR ; __le32 WTDP ; __le32 RDR ; __le32 WRDP ; __le32 RDB ; __le32 TDBH ; __le32 TDBD ; __le32 TDBP ; __le32 STSR ; __le32 TDBB ; __le32 NAR ; __le32 CSR6A ; __le32 IER ; __le32 TKIPSCEP ; __le32 LPC ; __le32 CSR_TEST1 ; __le32 SPR ; __le32 CSR_TEST0 ; __le32 WCSR ; __le32 WPDR ; __le32 GPTMR ; __le32 GPIO ; __le32 BBPCTL ; __le32 SYNCTL ; __le32 PLCPHD ; __le32 MMIWA ; __le32 MMIRD0 ; __le32 MMIRD1 ; __le32 TXBR ; __le32 SYNDATA ; __le32 ALCS ; __le32 TOFS2 ; __le32 CMDR ; __le32 PCIC ; __le32 PMCSR ; __le32 PAR0 ; __le32 PAR1 ; __le32 MAR0 ; __le32 MAR1 ; __le32 ATIMDA0 ; __le32 ABDA1 ; __le32 BSSID0 ; __le32 TXLMT ; __le32 MIBCNT ; __le32 BCNT ; __le32 TSFTH ; __le32 TSC ; __le32 SYNRF ; __le32 BPLI ; __le32 CAP0 ; __le32 CAP1 ; __le32 RMD ; __le32 CFPP ; __le32 TOFS0 ; __le32 TOFS1 ; __le32 IFST ; __le32 RSPT ; __le32 TSFTL ; __le32 WEPCTL ; __le32 WESK ; __le32 WEPCNT ; __le32 MACTEST ; __le32 FER ; __le32 FEMR ; __le32 FPSR ; __le32 FFER ; }; struct adm8211_desc { __le32 status ; __le32 length ; __le32 buffer1 ; __le32 buffer2 ; }; struct adm8211_rx_ring_info { struct sk_buff *skb ; dma_addr_t mapping ; }; struct adm8211_tx_ring_info { struct sk_buff *skb ; dma_addr_t mapping ; size_t hdrlen ; }; struct adm8211_tx_hdr { u8 da[6U] ; u8 signal ; u8 service ; __le16 frame_body_size ; __le16 frame_control ; __le16 plcp_frag_tail_len ; __le16 plcp_frag_head_len ; __le16 dur_frag_tail ; __le16 dur_frag_head ; u8 addr4[6U] ; __le16 header_control ; __le16 frag ; u8 reserved_0 ; u8 retry_limit ; u32 wep2key0 ; u32 wep2key1 ; u32 wep2key2 ; u32 wep2key3 ; u8 keyid ; u8 entry_control ; u16 reserved_1 ; u32 reserved_2 ; }; struct adm8211_eeprom { __le16 signature ; u8 major_version ; u8 minor_version ; u8 reserved_1[4U] ; u8 hwaddr[6U] ; u8 reserved_2[8U] ; __le16 cr49 ; u8 cr03 ; u8 cr28 ; u8 cr29 ; u8 country_code ; u8 specific_bbptype ; u8 specific_rftype ; u8 reserved_3[2U] ; __le16 device_id ; __le16 vendor_id ; __le16 subsystem_id ; __le16 subsystem_vendor_id ; u8 maxlat ; u8 mingnt ; __le16 cis_pointer_low ; __le16 cis_pointer_high ; __le16 csr18 ; u8 reserved_4[16U] ; u8 d1_pwrdara ; u8 d0_pwrdara ; u8 d3_pwrdara ; u8 d2_pwrdara ; u8 antenna_power[14U] ; __le16 cis_wordcnt ; u8 tx_power[14U] ; u8 lpf_cutoff[14U] ; u8 lnags_threshold[14U] ; __le16 checksum ; u8 cis_data[0U] ; }; enum ldv_33197 { ADM8211_RFMD2948 = 0, ADM8211_RFMD2958 = 1, ADM8211_RFMD2958_RF3000_CONTROL_POWER = 2, ADM8211_MAX2820 = 8, ADM8211_AL2210L = 12 } ; struct adm8211_priv { struct pci_dev *pdev ; spinlock_t lock ; struct adm8211_csr *map ; struct adm8211_desc *rx_ring ; struct adm8211_desc *tx_ring ; dma_addr_t rx_ring_dma ; dma_addr_t tx_ring_dma ; struct adm8211_rx_ring_info *rx_buffers ; struct adm8211_tx_ring_info *tx_buffers ; unsigned int rx_ring_size ; unsigned int tx_ring_size ; unsigned int cur_tx ; unsigned int dirty_tx ; unsigned int cur_rx ; struct ieee80211_low_level_stats stats ; struct ieee80211_supported_band band ; struct ieee80211_channel channels[14U] ; int mode ; int channel ; u8 bssid[6U] ; u8 soft_rx_crc ; u8 retry_limit ; u8 ant_power ; u8 tx_power ; u8 lpf_cutoff ; u8 lnags_threshold ; struct adm8211_eeprom *eeprom ; size_t eeprom_len ; u32 nar ; unsigned int rf_type : 3 ; unsigned int bbp_type : 3 ; u8 specific_bbptype ; enum ldv_33197 transceiver_type ; }; struct ieee80211_chan_range { u8 min ; u8 max ; }; typedef int ldv_func_ret_type___0; typedef struct ieee80211_hw *ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; long ldv__builtin_expect(long exp , long c ) ; void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; extern int printk(char const * , ...) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/f860c18/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void __ldv_spin_lock(spinlock_t * ) ; static void ldv___ldv_spin_lock_64(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock_lock_of_adm8211_priv(void) ; void ldv_spin_unlock_lock_of_adm8211_priv(void) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; void ldv_check_final_state(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; int ldv_undef_int(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void *external_allocated_data(void) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_60(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_61(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) ; __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } extern unsigned int ioread32(void * ) ; extern void iowrite32(u32 , void * ) ; extern void pci_iounmap(struct pci_dev * , void * ) ; extern void *pci_iomap(struct pci_dev * , int , unsigned long ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } static void *ldv_dev_get_drvdata_27(struct device const *dev ) ; static int ldv_dev_set_drvdata_28(struct device *dev , void *data ) ; extern int dev_printk(char const * , struct device const * , char const * , ...) ; extern int dev_err(struct device const * , char const * , ...) ; extern int _dev_info(struct device const * , char const * , ...) ; extern int pci_bus_read_config_byte(struct pci_bus * , unsigned int , int , u8 * ) ; extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; __inline static int pci_read_config_byte(struct pci_dev const *dev , int where , u8 *val ) { int tmp ; { { tmp = pci_bus_read_config_byte(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_read_config_dword(struct pci_dev const *dev , int where , u32 *val ) { int tmp ; { { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_set_mwi(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern pci_power_t pci_choose_state(struct pci_dev * , pm_message_t ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_69(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_70(struct pci_driver *ldv_func_arg1 ) ; extern void kfree(void const * ) ; extern void *__kmalloc(size_t , gfp_t ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { { tmp___2 = __kmalloc(size, flags); } return (tmp___2); } } __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern void debug_dma_sync_single_for_device(struct device * , dma_addr_t , size_t , int ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (103), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); } return; } } __inline static void dma_sync_single_for_device(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (115), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_device))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_device(dev, addr, size, (int )dir); } return; } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/f860c18/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static void *pci_alloc_consistent(struct pci_dev *hwdev , size_t size , dma_addr_t *dma_handle ) { void *tmp ; { { tmp = dma_alloc_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, dma_handle, 32U, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_free_consistent(struct pci_dev *hwdev , size_t size , void *vaddr , dma_addr_t dma_handle ) { { { dma_free_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, size, vaddr, dma_handle, (struct dma_attrs *)0); } return; } } __inline static dma_addr_t pci_map_single(struct pci_dev *hwdev , void *ptr , size_t size , int direction ) { dma_addr_t tmp ; { { tmp = dma_map_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, ptr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return (tmp); } } __inline static void pci_unmap_single(struct pci_dev *hwdev , dma_addr_t dma_addr , size_t size , int direction ) { { { dma_unmap_single_attrs((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_addr, size, (enum dma_data_direction )direction, (struct dma_attrs *)0); } return; } } __inline static void pci_dma_sync_single_for_cpu(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { { dma_sync_single_for_cpu((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); } return; } } __inline static void pci_dma_sync_single_for_device(struct pci_dev *hwdev , dma_addr_t dma_handle , size_t size , int direction ) { { { dma_sync_single_for_device((unsigned long )hwdev != (unsigned long )((struct pci_dev *)0) ? & hwdev->dev : (struct device *)0, dma_handle, size, (enum dma_data_direction )direction); } return; } } __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_27((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_28(& pdev->dev, data); } return; } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; extern void get_random_bytes(void * , int ) ; extern int net_ratelimit(void) ; extern void consume_skb(struct sk_buff * ) ; __inline static unsigned char *skb_tail_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->tail); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_push(struct sk_buff * , unsigned int ) ; extern unsigned char *skb_pull(struct sk_buff * , unsigned int ) ; extern struct sk_buff *__netdev_alloc_skb(struct net_device * , unsigned int , gfp_t ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb(dev, length, 32U); } return (tmp); } } __inline static struct sk_buff *dev_alloc_skb(unsigned int length ) { struct sk_buff *tmp ; { { tmp = netdev_alloc_skb((struct net_device *)0, length); } return (tmp); } } extern void __compiletime_assert_186(void) ; extern void rtnl_lock(void) ; extern void rtnl_unlock(void) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_62(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_63(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static void eth_random_addr(u8 *addr ) { { { get_random_bytes((void *)addr, 6); *addr = (unsigned int )*addr & 254U; *addr = (u8 )((unsigned int )*addr | 2U); } return; } } __inline static bool ether_addr_equal(u8 const *addr1 , u8 const *addr2 ) { u32 fold ; { fold = ((unsigned int )*((u32 const *)addr1) ^ (unsigned int )*((u32 const *)addr2)) | (unsigned int )((int )((unsigned short )*((u16 const *)addr1 + 4U)) ^ (int )((unsigned short )*((u16 const *)addr2 + 4U))); return (fold == 0U); } } extern u32 bitrev32(u32 ) ; extern u32 crc32_le(u32 , unsigned char const * , size_t ) ; extern void eeprom_93cx6_multiread(struct eeprom_93cx6 * , u8 const , __le16 * , u16 const ) ; __inline static int ieee80211_has_tods(__le16 fc ) { { return (((int )fc & 256) != 0); } } __inline static u8 *ieee80211_get_DA(struct ieee80211_hdr *hdr ) { int tmp ; { { tmp = ieee80211_has_tods((int )hdr->frame_control); } if (tmp != 0) { return ((u8 *)(& hdr->addr3)); } else { return ((u8 *)(& hdr->addr1)); } } } __inline static void set_wiphy_dev(struct wiphy *wiphy , struct device *dev ) { { wiphy->dev.parent = dev; return; } } extern int ieee80211_frequency_to_channel(int ) ; extern unsigned int ieee80211_hdrlen(__le16 ) ; __inline static struct ieee80211_tx_info *IEEE80211_SKB_CB(struct sk_buff *skb ) { { return ((struct ieee80211_tx_info *)(& skb->cb)); } } __inline static struct ieee80211_rx_status *IEEE80211_SKB_RXCB(struct sk_buff *skb ) { { return ((struct ieee80211_rx_status *)(& skb->cb)); } } extern void __compiletime_assert_768(void) ; extern void __compiletime_assert_770(void) ; extern void __compiletime_assert_771(void) ; extern void __compiletime_assert_777(void) ; __inline static void ieee80211_tx_info_clear_status(struct ieee80211_tx_info *info ) { int i ; bool __cond ; bool __cond___0 ; bool __cond___1 ; bool __cond___2 ; { __cond = 0; if ((int )__cond) { { __compiletime_assert_768(); } } else { } __cond___0 = 0; if ((int )__cond___0) { { __compiletime_assert_770(); } } else { } __cond___1 = 0; if ((int )__cond___1) { { __compiletime_assert_771(); } } else { } i = 0; goto ldv_47318; ldv_47317: info->__annonCompField81.status.rates[i].count = 0U; i = i + 1; ldv_47318: ; if (i <= 3) { goto ldv_47317; } else { } __cond___2 = 0; if ((int )__cond___2) { { __compiletime_assert_777(); } } else { } { memset((void *)(& info->__annonCompField81.status.ampdu_ack_len), 0, 24UL); } return; } } __inline static void SET_IEEE80211_DEV(struct ieee80211_hw *hw , struct device *dev ) { { { set_wiphy_dev(hw->wiphy, dev); } return; } } __inline static void SET_IEEE80211_PERM_ADDR(struct ieee80211_hw *hw , u8 *addr ) { { { memcpy((void *)(& (hw->wiphy)->perm_addr), (void const *)addr, 6UL); } return; } } __inline static struct ieee80211_rate *ieee80211_get_tx_rate(struct ieee80211_hw const *hw , struct ieee80211_tx_info const *c ) { bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; { { __ret_warn_once = (int )((signed char )c->__annonCompField81.control.__annonCompField79.__annonCompField78.rates[0].idx) < 0; tmp___1 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___1 != 0L) { { __ret_warn_on = ! __warned; tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/net/mac80211.h", 1763); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { __warned = 1; } else { } } else { } { tmp___2 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___2 != 0L) { return ((struct ieee80211_rate *)0); } else { } return (((hw->wiphy)->bands[(int )c->band])->bitrates + (unsigned long )c->__annonCompField81.control.__annonCompField79.__annonCompField78.rates[0].idx); } } extern struct ieee80211_hw *ieee80211_alloc_hw(size_t , struct ieee80211_ops const * ) ; static struct ieee80211_hw *ldv_ieee80211_alloc_hw_66(size_t ldv_func_arg1 , struct ieee80211_ops const *ldv_func_arg2 ) ; extern int ieee80211_register_hw(struct ieee80211_hw * ) ; extern void ieee80211_unregister_hw(struct ieee80211_hw * ) ; extern void ieee80211_free_hw(struct ieee80211_hw * ) ; static void ldv_ieee80211_free_hw_67(struct ieee80211_hw *ldv_func_arg1 ) ; static void ldv_ieee80211_free_hw_68(struct ieee80211_hw *ldv_func_arg1 ) ; extern void ieee80211_rx_irqsafe(struct ieee80211_hw * , struct sk_buff * ) ; extern void ieee80211_tx_status_irqsafe(struct ieee80211_hw * , struct sk_buff * ) ; extern void ieee80211_wake_queue(struct ieee80211_hw * , int ) ; extern void ieee80211_stop_queue(struct ieee80211_hw * , int ) ; static struct ieee80211_chan_range const cranges[7U] = { {1U, 11U}, {1U, 11U}, {1U, 13U}, {10U, 11U}, {10U, 13U}, {14U, 14U}, {1U, 14U}}; static unsigned int tx_ring_size = 16U; static unsigned int rx_ring_size = 16U; static struct pci_device_id const adm8211_pci_id_table[5U] = { {4279U, 24576U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4608U, 33281U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4887U, 33281U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4887U, 33297U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; static struct ieee80211_rate adm8211_rates[5U] = { {1U, 10U, (unsigned short)0, (unsigned short)0}, {1U, 20U, (unsigned short)0, (unsigned short)0}, {1U, 55U, (unsigned short)0, (unsigned short)0}, {1U, 110U, (unsigned short)0, (unsigned short)0}, {1U, 220U, (unsigned short)0, (unsigned short)0}}; static struct ieee80211_channel const adm8211_channels[14U] = { {0, 2412U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2417U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2422U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2427U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2432U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2437U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2442U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2447U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2452U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2457U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2462U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2467U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2472U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}, {0, 2484U, (unsigned short)0, 0U, 0, 0, 0, (_Bool)0, 0U, 0, 0, 0, 0UL}}; static void adm8211_eeprom_register_read(struct eeprom_93cx6 *eeprom ) { struct adm8211_priv *priv ; u32 reg ; unsigned int tmp ; { { priv = (struct adm8211_priv *)eeprom->data; tmp = ioread32((void *)(& (priv->map)->SPR)); reg = tmp; eeprom->reg_data_in = (int )((char )reg) & 4; eeprom->reg_data_out = (int )((char )reg) & 8; eeprom->reg_data_clock = (int )((char )reg) & 2; eeprom->reg_chip_select = (int )((char )reg) & 1; } return; } } static void adm8211_eeprom_register_write(struct eeprom_93cx6 *eeprom ) { struct adm8211_priv *priv ; u32 reg ; { priv = (struct adm8211_priv *)eeprom->data; reg = 18432U; if ((int )((signed char )eeprom->reg_data_in) != 0) { reg = reg | 4U; } else { } if ((int )((signed char )eeprom->reg_data_out) != 0) { reg = reg | 8U; } else { } if ((int )((signed char )eeprom->reg_data_clock) != 0) { reg = reg | 2U; } else { } if ((int )((signed char )eeprom->reg_chip_select) != 0) { reg = reg | 1U; } else { } { iowrite32(reg, (void *)(& (priv->map)->SPR)); ioread32((void *)(& (priv->map)->SPR)); } return; } } static int adm8211_read_eeprom(struct ieee80211_hw *dev ) { struct adm8211_priv *priv ; unsigned int words ; unsigned int i ; struct ieee80211_chan_range chan_range ; u16 cr49 ; struct eeprom_93cx6 eeprom ; unsigned int tmp ; void *tmp___0 ; char const *tmp___1 ; char const *tmp___2 ; char const *tmp___3 ; char const *tmp___4 ; bool __cond ; char const *tmp___5 ; char const *tmp___6 ; char const *tmp___7 ; { { priv = (struct adm8211_priv *)dev->priv; eeprom.data = (void *)priv; eeprom.register_read = & adm8211_eeprom_register_read; eeprom.register_write = & adm8211_eeprom_register_write; eeprom.width = 0; eeprom.drive_data = (char)0; eeprom.reg_data_in = (char)0; eeprom.reg_data_out = (char)0; eeprom.reg_data_clock = (char)0; eeprom.reg_chip_select = (char)0; tmp = ioread32((void *)(& (priv->map)->CSR_TEST0)); } if ((tmp & 65536U) != 0U) { eeprom.width = 8; words = 256U; } else { eeprom.width = 6; words = 64U; } { priv->eeprom_len = (size_t )(words * 2U); tmp___0 = kmalloc(priv->eeprom_len, 208U); priv->eeprom = (struct adm8211_eeprom *)tmp___0; } if ((unsigned long )priv->eeprom == (unsigned long )((struct adm8211_eeprom *)0)) { return (-12); } else { } { eeprom_93cx6_multiread(& eeprom, 0, (__le16 *)priv->eeprom, (int )((u16 const )words)); cr49 = (priv->eeprom)->cr49; priv->rf_type = (unsigned int )((unsigned char )((int )cr49 >> 3)) & 7U; } { if ((int )priv->rf_type == 0) { goto case_0; } else { } if ((int )priv->rf_type == 1) { goto case_1; } else { } if ((int )priv->rf_type == 2) { goto case_2; } else { } if ((int )priv->rf_type == 3) { goto case_3; } else { } if ((int )priv->rf_type == 5) { goto case_5; } else { } goto switch_default; case_0: /* CIL Label */ ; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_5: /* CIL Label */ ; goto ldv_48682; switch_default: /* CIL Label */ ; if ((unsigned int )(priv->pdev)->revision <= 47U) { priv->rf_type = 1U; } else { priv->rf_type = 3U; } { tmp___1 = pci_name((struct pci_dev const *)priv->pdev); printk("\f%s (adm8211): Unknown RFtype %d\n", tmp___1, ((int )cr49 >> 3) & 7); } switch_break: /* CIL Label */ ; } ldv_48682: priv->bbp_type = (unsigned int )((unsigned char )cr49) & 7U; { if ((int )priv->bbp_type == 0) { goto case_0___0; } else { } if ((int )priv->bbp_type == 1) { goto case_1___0; } else { } if ((int )priv->bbp_type == 2) { goto case_2___0; } else { } if ((int )priv->bbp_type == 3) { goto case_3___0; } else { } if ((int )priv->bbp_type == 5) { goto case_5___0; } else { } goto switch_default___0; case_0___0: /* CIL Label */ ; case_1___0: /* CIL Label */ ; case_2___0: /* CIL Label */ ; case_3___0: /* CIL Label */ ; case_5___0: /* CIL Label */ ; goto ldv_48689; switch_default___0: /* CIL Label */ ; if ((unsigned int )(priv->pdev)->revision <= 47U) { priv->bbp_type = 1U; } else { priv->bbp_type = 5U; } { tmp___2 = pci_name((struct pci_dev const *)priv->pdev); printk("\f%s (adm8211): Unknown BBPtype: %d\n", tmp___2, (int )cr49 >> 3); } switch_break___0: /* CIL Label */ ; } ldv_48689: ; if ((unsigned int )(priv->eeprom)->country_code > 6U) { { tmp___3 = pci_name((struct pci_dev const *)priv->pdev); printk("\f%s (adm8211): Invalid country code (%d)\n", tmp___3, (int )(priv->eeprom)->country_code); chan_range = cranges[2]; } } else { chan_range = cranges[(int )(priv->eeprom)->country_code]; } { tmp___4 = pci_name((struct pci_dev const *)priv->pdev); printk("\017%s (adm8211): Channel range: %d - %d\n", tmp___4, (int )chan_range.min, (int )chan_range.max); __cond = 0; } if ((int )__cond) { { __compiletime_assert_186(); } } else { } { memcpy((void *)(& priv->channels), (void const *)(& adm8211_channels), 784UL); priv->band.channels = (struct ieee80211_channel *)(& priv->channels); priv->band.n_channels = 14; priv->band.bitrates = (struct ieee80211_rate *)(& adm8211_rates); priv->band.n_bitrates = 5; i = 1U; } goto ldv_48704; ldv_48703: ; if (i < (unsigned int )chan_range.min || i > (unsigned int )chan_range.max) { priv->channels[i - 1U].flags = priv->channels[i - 1U].flags | 1U; } else { } i = i + 1U; ldv_48704: ; if (i <= 14U) { goto ldv_48703; } else { } { if ((int )(priv->eeprom)->specific_bbptype == 0) { goto case_0___1; } else { } if ((int )(priv->eeprom)->specific_bbptype == 1) { goto case_1___1; } else { } if ((int )(priv->eeprom)->specific_bbptype == 4) { goto case_4; } else { } goto switch_default___1; case_0___1: /* CIL Label */ ; case_1___1: /* CIL Label */ ; case_4: /* CIL Label */ priv->specific_bbptype = (priv->eeprom)->specific_bbptype; goto ldv_48709; switch_default___1: /* CIL Label */ ; if ((unsigned int )(priv->pdev)->revision <= 47U) { priv->specific_bbptype = 0U; } else { priv->specific_bbptype = 4U; } { tmp___5 = pci_name((struct pci_dev const *)priv->pdev); printk("\f%s (adm8211): Unknown specific BBP: %d\n", tmp___5, (int )(priv->eeprom)->specific_bbptype); } switch_break___1: /* CIL Label */ ; } ldv_48709: ; { if ((int )(priv->eeprom)->specific_rftype == 0) { goto case_0___2; } else { } if ((int )(priv->eeprom)->specific_rftype == 1) { goto case_1___2; } else { } if ((int )(priv->eeprom)->specific_rftype == 2) { goto case_2___1; } else { } if ((int )(priv->eeprom)->specific_rftype == 8) { goto case_8; } else { } if ((int )(priv->eeprom)->specific_rftype == 12) { goto case_12; } else { } goto switch_default___2; case_0___2: /* CIL Label */ ; case_1___2: /* CIL Label */ ; case_2___1: /* CIL Label */ ; case_8: /* CIL Label */ ; case_12: /* CIL Label */ priv->transceiver_type = (enum ldv_33197 )(priv->eeprom)->specific_rftype; goto ldv_48716; switch_default___2: /* CIL Label */ ; if ((unsigned int )(priv->pdev)->revision == 32U) { priv->transceiver_type = 2; } else if ((unsigned int )(priv->pdev)->revision == 48U) { priv->transceiver_type = 12; } else if ((unsigned int )(priv->pdev)->revision == 17U) { priv->transceiver_type = 0; } else { } { tmp___6 = pci_name((struct pci_dev const *)priv->pdev); printk("\f%s (adm8211): Unknown transceiver: %d\n", tmp___6, (int )(priv->eeprom)->specific_rftype); } goto ldv_48716; switch_break___2: /* CIL Label */ ; } ldv_48716: { tmp___7 = pci_name((struct pci_dev const *)priv->pdev); printk("\017%s (adm8211): RFtype=%d BBPtype=%d Specific BBP=%d Transceiver=%d\n", tmp___7, (int )priv->rf_type, (int )priv->bbp_type, (int )priv->specific_bbptype, (unsigned int )priv->transceiver_type); } return (0); } } __inline static void adm8211_write_sram(struct ieee80211_hw *dev , u32 addr , u32 data ) { struct adm8211_priv *priv ; { { priv = (struct adm8211_priv *)dev->priv; iowrite32((addr | ((unsigned int )(priv->pdev)->revision <= 31U ? 0U : 8388608U)) | 268435456U, (void *)(& (priv->map)->WEPCTL)); ioread32((void *)(& (priv->map)->WEPCTL)); msleep(1U); iowrite32(data, (void *)(& (priv->map)->WESK)); ioread32((void *)(& (priv->map)->WESK)); msleep(1U); } return; } } static void adm8211_write_sram_bytes(struct ieee80211_hw *dev , unsigned int addr , u8 *buf , unsigned int len ) { struct adm8211_priv *priv ; u32 reg ; unsigned int tmp ; unsigned int i ; u16 val ; u32 val___0 ; { { priv = (struct adm8211_priv *)dev->priv; tmp = ioread32((void *)(& (priv->map)->WEPCTL)); reg = tmp; } if ((unsigned int )(priv->pdev)->revision <= 31U) { i = 0U; goto ldv_48735; ldv_48734: { val = (u16 )((int )((short )*(buf + (unsigned long )i)) | (int )((short )((int )*(buf + (unsigned long )(i + 1U)) << 8))); adm8211_write_sram(dev, addr + i / 2U, (u32 )val); i = i + 2U; } ldv_48735: ; if (i < len) { goto ldv_48734; } else { } } else { i = 0U; goto ldv_48739; ldv_48738: { val___0 = (u32 )((((int )*(buf + (unsigned long )i) | ((int )*(buf + (unsigned long )(i + 1U)) << 8)) | ((int )*(buf + (unsigned long )(i + 2U)) << 16)) | ((int )*(buf + (unsigned long )(i + 3U)) << 24)); adm8211_write_sram(dev, addr + i / 4U, val___0); i = i + 4U; } ldv_48739: ; if (i < len) { goto ldv_48738; } else { } } { iowrite32(reg, (void *)(& (priv->map)->WEPCTL)); } return; } } static void adm8211_clear_sram(struct ieee80211_hw *dev ) { struct adm8211_priv *priv ; u32 reg ; unsigned int tmp ; unsigned int addr ; { { priv = (struct adm8211_priv *)dev->priv; tmp = ioread32((void *)(& (priv->map)->WEPCTL)); reg = tmp; addr = 0U; } goto ldv_48748; ldv_48747: { adm8211_write_sram(dev, addr, 0U); addr = addr + 1U; } ldv_48748: ; if (addr < ((unsigned int )(priv->pdev)->revision <= 31U ? 512U : 448U)) { goto ldv_48747; } else { } { iowrite32(reg, (void *)(& (priv->map)->WEPCTL)); } return; } } static int adm8211_get_stats(struct ieee80211_hw *dev , struct ieee80211_low_level_stats *stats ) { struct adm8211_priv *priv ; { { priv = (struct adm8211_priv *)dev->priv; memcpy((void *)stats, (void const *)(& priv->stats), 16UL); } return (0); } } static void adm8211_interrupt_tci(struct ieee80211_hw *dev ) { struct adm8211_priv *priv ; unsigned int dirty_tx ; unsigned int entry ; u32 status ; struct ieee80211_tx_info *txi ; struct adm8211_tx_ring_info *info ; struct sk_buff *skb ; unsigned char *tmp ; { { priv = (struct adm8211_priv *)dev->priv; ldv_spin_lock_60(& priv->lock); dirty_tx = priv->dirty_tx; } goto ldv_48767; ldv_48766: entry = dirty_tx % priv->tx_ring_size; status = (priv->tx_ring + (unsigned long )entry)->status; if ((int )status < 0 || (status & 1073741824U) == 0U) { goto ldv_48765; } else { } { info = priv->tx_buffers + (unsigned long )entry; skb = info->skb; txi = IEEE80211_SKB_CB(skb); pci_unmap_single(priv->pdev, info->mapping, (size_t )(info->skb)->len, 1); ieee80211_tx_info_clear_status(txi); skb_pull(skb, 56U); tmp = skb_push(skb, (unsigned int )info->hdrlen); memcpy((void *)tmp, (void const *)(& skb->cb), info->hdrlen); } if ((txi->flags & 4U) == 0U && (status & 536870912U) == 0U) { txi->flags = txi->flags | 512U; } else { } { ieee80211_tx_status_irqsafe(dev, skb); info->skb = (struct sk_buff *)0; dirty_tx = dirty_tx + 1U; } ldv_48767: ; if (priv->cur_tx != dirty_tx) { goto ldv_48766; } else { } ldv_48765: ; if (priv->cur_tx - dirty_tx < priv->tx_ring_size - 2U) { { ieee80211_wake_queue(dev, 0); } } else { } { priv->dirty_tx = dirty_tx; ldv_spin_unlock_61(& priv->lock); } return; } } static void adm8211_interrupt_rci(struct ieee80211_hw *dev ) { struct adm8211_priv *priv ; unsigned int entry ; u32 status ; unsigned int pktlen ; struct sk_buff *skb ; struct sk_buff *newskb ; unsigned int limit ; u8 rssi ; u8 rate ; unsigned int tmp ; int tmp___0 ; unsigned char *tmp___1 ; unsigned char *tmp___2 ; unsigned char *tmp___3 ; struct ieee80211_rx_status rx_status ; struct ieee80211_rx_status *tmp___4 ; { priv = (struct adm8211_priv *)dev->priv; entry = priv->cur_rx % priv->rx_ring_size; limit = priv->rx_ring_size; goto ldv_48783; ldv_48782: tmp = limit; limit = limit - 1U; if (tmp == 0U) { goto ldv_48780; } else { } status = (priv->rx_ring + (unsigned long )entry)->status; rate = (u8 )((status & 61440U) >> 12); rssi = (unsigned int )((u8 )(priv->rx_ring + (unsigned long )entry)->length) & 127U; pktlen = status & 4095U; if (pktlen > 2500U) { { tmp___0 = net_ratelimit(); } if (tmp___0 != 0) { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "frame too long (%d)\n", pktlen); } } else { } pktlen = 2500U; } else { } if ((unsigned int )priv->soft_rx_crc == 0U && (status & 1073741824U) != 0U) { skb = (struct sk_buff *)0; } else if (pktlen <= 127U) { { skb = dev_alloc_skb(pktlen); } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { { pci_dma_sync_single_for_cpu(priv->pdev, (priv->rx_buffers + (unsigned long )entry)->mapping, (size_t )pktlen, 2); tmp___1 = skb_tail_pointer((struct sk_buff const *)(priv->rx_buffers + (unsigned long )entry)->skb); tmp___2 = skb_put(skb, pktlen); memcpy((void *)tmp___2, (void const *)tmp___1, (size_t )pktlen); pci_dma_sync_single_for_device(priv->pdev, (priv->rx_buffers + (unsigned long )entry)->mapping, 2500UL, 2); } } else { } } else { { newskb = dev_alloc_skb(2500U); } if ((unsigned long )newskb != (unsigned long )((struct sk_buff *)0)) { { skb = (priv->rx_buffers + (unsigned long )entry)->skb; skb_put(skb, pktlen); pci_unmap_single(priv->pdev, (priv->rx_buffers + (unsigned long )entry)->mapping, 2500UL, 2); (priv->rx_buffers + (unsigned long )entry)->skb = newskb; tmp___3 = skb_tail_pointer((struct sk_buff const *)newskb); (priv->rx_buffers + (unsigned long )entry)->mapping = pci_map_single(priv->pdev, (void *)tmp___3, 2500UL, 2); } } else { skb = (struct sk_buff *)0; } (priv->rx_ring + (unsigned long )entry)->buffer1 = (unsigned int )(priv->rx_buffers + (unsigned long )entry)->mapping; } (priv->rx_ring + (unsigned long )entry)->status = 2684354560U; (priv->rx_ring + (unsigned long )entry)->length = entry == priv->rx_ring_size - 1U ? 33556932U : 2500U; if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { rx_status.mactime = 0ULL; rx_status.device_timestamp = 0U; rx_status.ampdu_reference = 0U; rx_status.flag = 0U; rx_status.vendor_radiotap_bitmap = 0U; rx_status.vendor_radiotap_len = (unsigned short)0; rx_status.freq = (unsigned short)0; rx_status.rate_idx = (unsigned char)0; rx_status.vht_nss = (unsigned char)0; rx_status.rx_flags = (unsigned char)0; rx_status.band = (unsigned char)0; rx_status.antenna = (unsigned char)0; rx_status.signal = (signed char)0; rx_status.chains = (unsigned char)0; rx_status.chain_signal[0] = (signed char)0; rx_status.chain_signal[1] = (signed char)0; rx_status.chain_signal[2] = (signed char)0; rx_status.chain_signal[3] = (signed char)0; rx_status.ampdu_delimiter_crc = (unsigned char)0; rx_status.vendor_radiotap_align = (unsigned char)0; rx_status.vendor_radiotap_oui[0] = (unsigned char)0; rx_status.vendor_radiotap_oui[1] = (unsigned char)0; rx_status.vendor_radiotap_oui[2] = (unsigned char)0; rx_status.vendor_radiotap_subns = (unsigned char)0; if ((unsigned int )(priv->pdev)->revision <= 47U) { rx_status.signal = (s8 )rssi; } else { rx_status.signal = (s8 )(100U - (unsigned int )rssi); } { rx_status.rate_idx = rate; rx_status.freq = adm8211_channels[priv->channel + -1].center_freq; rx_status.band = 0U; tmp___4 = IEEE80211_SKB_RXCB(skb); memcpy((void *)tmp___4, (void const *)(& rx_status), 48UL); ieee80211_rx_irqsafe(dev, skb); } } else { } priv->cur_rx = priv->cur_rx + 1U; entry = priv->cur_rx % priv->rx_ring_size; ldv_48783: ; if ((int )(priv->rx_ring + (unsigned long )entry)->status >= 0) { goto ldv_48782; } else { } ldv_48780: ; return; } } static irqreturn_t adm8211_interrupt(int irq , void *dev_id ) { struct ieee80211_hw *dev ; struct adm8211_priv *priv ; u32 stsr ; unsigned int tmp ; long tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; long tmp___4 ; long tmp___5 ; long tmp___6 ; long tmp___7 ; long tmp___8 ; long tmp___9 ; long tmp___10 ; long tmp___11 ; long tmp___12 ; long tmp___13 ; long tmp___14 ; long tmp___15 ; long tmp___16 ; { { dev = (struct ieee80211_hw *)dev_id; priv = (struct adm8211_priv *)dev->priv; tmp = ioread32((void *)(& (priv->map)->STSR)); stsr = tmp; iowrite32(stsr, (void *)(& (priv->map)->STSR)); } if (stsr == 4294967295U) { return (1); } else { } if ((stsr & 98304U) == 0U) { return (1); } else { } if ((stsr & 64U) != 0U) { { adm8211_interrupt_rci(dev); } } else { } if ((int )stsr & 1) { { adm8211_interrupt_tci(dev); } } else { } { tmp___0 = ldv__builtin_expect((int )stsr < 0, 0L); } if (tmp___0 != 0L) { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "%s\n", (char *)"PCF"); } } else { } { tmp___1 = ldv__builtin_expect((stsr & 1073741824U) != 0U, 0L); } if (tmp___1 != 0L) { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "%s\n", (char *)"BCNTC"); } } else { } { tmp___2 = ldv__builtin_expect((stsr & 536870912U) != 0U, 0L); } if (tmp___2 != 0L) { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "%s\n", (char *)"GPINT"); } } else { } { tmp___3 = ldv__builtin_expect((stsr & 134217728U) != 0U, 0L); } if (tmp___3 != 0L) { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "%s\n", (char *)"ATIMTC"); } } else { } { tmp___4 = ldv__builtin_expect((stsr & 67108864U) != 0U, 0L); } if (tmp___4 != 0L) { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "%s\n", (char *)"TSFTF"); } } else { } { tmp___5 = ldv__builtin_expect((stsr & 33554432U) != 0U, 0L); } if (tmp___5 != 0L) { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "%s\n", (char *)"TSCZ"); } } else { } { tmp___6 = ldv__builtin_expect((stsr & 8388608U) != 0U, 0L); } if (tmp___6 != 0L) { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "%s\n", (char *)"SQL"); } } else { } { tmp___7 = ldv__builtin_expect((stsr & 4194304U) != 0U, 0L); } if (tmp___7 != 0L) { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "%s\n", (char *)"WEPTD"); } } else { } { tmp___8 = ldv__builtin_expect((stsr & 2097152U) != 0U, 0L); } if (tmp___8 != 0L) { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "%s\n", (char *)"ATIME"); } } else { } { tmp___9 = ldv__builtin_expect((stsr & 16384U) != 0U, 0L); } if (tmp___9 != 0L) { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "%s\n", (char *)"TEIS"); } } else { } { tmp___10 = ldv__builtin_expect((stsr & 8192U) != 0U, 0L); } if (tmp___10 != 0L) { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "%s\n", (char *)"FBE"); } } else { } { tmp___11 = ldv__builtin_expect((stsr & 4096U) != 0U, 0L); } if (tmp___11 != 0L) { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "%s\n", (char *)"REIS"); } } else { } { tmp___12 = ldv__builtin_expect((stsr & 2048U) != 0U, 0L); } if (tmp___12 != 0L) { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "%s\n", (char *)"GPTT"); } } else { } { tmp___13 = ldv__builtin_expect((stsr & 256U) != 0U, 0L); } if (tmp___13 != 0L) { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "%s\n", (char *)"RPS"); } } else { } { tmp___14 = ldv__builtin_expect((stsr & 128U) != 0U, 0L); } if (tmp___14 != 0L) { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "%s\n", (char *)"RDU"); } } else { } { tmp___15 = ldv__builtin_expect((stsr & 32U) != 0U, 0L); } if (tmp___15 != 0L) { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "%s\n", (char *)"TUF"); } } else { } { tmp___16 = ldv__builtin_expect((stsr & 2U) != 0U, 0L); } if (tmp___16 != 0L) { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "%s\n", (char *)"TPS"); } } else { } return (1); } } static void adm8211_rf_write_syn_max2820(struct ieee80211_hw *dev , u16 addr , u32 value ) { struct adm8211_priv *priv ; unsigned int i ; u32 reg ; u32 bitbuf ; { { priv = (struct adm8211_priv *)dev->priv; value = value & 4095U; addr = (unsigned int )addr & 15U; bitbuf = value | (u32 )((int )addr << 12); iowrite32(2415919104U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); iowrite32(2147483648U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); iowrite32(2147483648U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); i = 0U; } goto ldv_48801; ldv_48800: ; if ((bitbuf & (u32 )(1 << (int )(15U - i))) != 0U) { reg = 2214592512U; } else { reg = 2147483648U; } { iowrite32(reg, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); iowrite32(reg | 2281701376U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); iowrite32(reg | 2147483648U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); i = i + 1U; } ldv_48801: ; if (i <= 15U) { goto ldv_48800; } else { } { iowrite32(reg | 2147483648U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); iowrite32(0U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); } return; } } static void adm8211_rf_write_syn_al2210l(struct ieee80211_hw *dev , u16 addr , u32 value ) { struct adm8211_priv *priv ; unsigned int i ; u32 reg ; u32 bitbuf ; { { priv = (struct adm8211_priv *)dev->priv; value = value & 1048575U; addr = (unsigned int )addr & 15U; bitbuf = (value << 4) | (u32 )addr; iowrite32(2415919104U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); iowrite32(2147483648U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); iowrite32(2147483648U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); i = 0U; } goto ldv_48813; ldv_48812: ; if ((bitbuf & (u32 )(1 << (int )(23U - i))) != 0U) { reg = 2214592512U; } else { reg = 2147483648U; } { iowrite32(reg, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); iowrite32(reg | 2281701376U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); iowrite32(reg | 2147483648U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); i = i + 1U; } ldv_48813: ; if (i <= 23U) { goto ldv_48812; } else { } { iowrite32(reg | 2147483648U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); iowrite32(0U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); } return; } } static void adm8211_rf_write_syn_rfmd2958(struct ieee80211_hw *dev , u16 addr , u32 value ) { struct adm8211_priv *priv ; unsigned int i ; u32 reg ; u32 bitbuf ; { { priv = (struct adm8211_priv *)dev->priv; value = value & 262143U; addr = (unsigned int )addr & 31U; bitbuf = value | (u32 )((int )addr << 18); iowrite32(2415919104U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); iowrite32(2147483648U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); i = 0U; } goto ldv_48825; ldv_48824: ; if ((bitbuf & (u32 )(1 << (int )(23U - i))) != 0U) { reg = 2214592512U; } else { reg = 2147483648U; } { iowrite32(reg, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); iowrite32(reg | 2281701376U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); iowrite32(reg | 2147483648U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); i = i + 1U; } ldv_48825: ; if (i <= 23U) { goto ldv_48824; } else { } { iowrite32(reg | 2147483648U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); iowrite32(0U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); } return; } } static void adm8211_rf_write_syn_rfmd2948(struct ieee80211_hw *dev , u16 addr , u32 value ) { struct adm8211_priv *priv ; unsigned int i ; u32 reg ; u32 bitbuf ; { { priv = (struct adm8211_priv *)dev->priv; value = value & 65535U; addr = (unsigned int )addr & 15U; bitbuf = (value << 4) | (u32 )addr; iowrite32(2415919104U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); iowrite32(2147483648U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); i = 0U; } goto ldv_48837; ldv_48836: ; if ((bitbuf & (u32 )(1 << (int )(21U - i))) != 0U) { reg = 2214592512U; } else { reg = 2147483648U; } { iowrite32(reg, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); iowrite32(reg | 2281701376U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); iowrite32(reg | 2147483648U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); i = i + 1U; } ldv_48837: ; if (i <= 21U) { goto ldv_48836; } else { } { iowrite32(reg | 2415919104U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); iowrite32(0U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); } return; } } static int adm8211_write_bbp(struct ieee80211_hw *dev , u8 addr , u8 data ) { struct adm8211_priv *priv ; unsigned int timeout ; u32 reg ; unsigned int tmp ; { priv = (struct adm8211_priv *)dev->priv; timeout = 10U; goto ldv_48849; ldv_48848: { reg = ioread32((void *)(& (priv->map)->BBPCTL)); } if ((reg & 196608U) == 0U) { goto ldv_48847; } else { } { timeout = timeout - 1U; msleep(2U); } ldv_48849: ; if (timeout != 0U) { goto ldv_48848; } else { } ldv_48847: ; if (timeout == 0U) { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "adm8211_write_bbp(%d,%d) failed prewrite (reg=0x%08x)\n", (int )addr, (int )data, reg); } return (-110); } else { } { if ((int )priv->bbp_type == 0) { goto case_0; } else { } if ((int )priv->bbp_type == 1) { goto case_1; } else { } if ((int )priv->bbp_type == 5) { goto case_5; } else { } goto switch_break; case_0: /* CIL Label */ reg = 2147483648U; goto ldv_48851; case_1: /* CIL Label */ reg = 547618816U; goto ldv_48851; case_5: /* CIL Label */ reg = 548667392U; goto ldv_48851; switch_break: /* CIL Label */ ; } ldv_48851: { reg = reg | (u32 )((((int )addr << 8) | 131072) | (int )data); iowrite32(reg, (void *)(& (priv->map)->BBPCTL)); timeout = 10U; } goto ldv_48856; ldv_48855: { reg = ioread32((void *)(& (priv->map)->BBPCTL)); } if ((reg & 131072U) == 0U) { goto ldv_48854; } else { } { timeout = timeout - 1U; msleep(2U); } ldv_48856: ; if (timeout != 0U) { goto ldv_48855; } else { } ldv_48854: ; if (timeout == 0U) { { tmp = ioread32((void *)(& (priv->map)->BBPCTL)); iowrite32(tmp & 4294836223U, (void *)(& (priv->map)->BBPCTL)); dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "adm8211_write_bbp(%d,%d) failed postwrite (reg=0x%08x)\n", (int )addr, (int )data, reg); } return (-110); } else { } return (0); } } static int adm8211_rf_set_channel(struct ieee80211_hw *dev , unsigned int chan ) { u32 adm8211_rfmd2958_reg5[14U] ; u32 adm8211_rfmd2958_reg6[14U] ; struct adm8211_priv *priv ; u8 ant_power ; u8 tx_power ; u8 lpf_cutoff ; u8 lnags_thresh ; u32 reg ; { adm8211_rfmd2958_reg5[0] = 8893U; adm8211_rfmd2958_reg5[1] = 8914U; adm8211_rfmd2958_reg5[2] = 8936U; adm8211_rfmd2958_reg5[3] = 8958U; adm8211_rfmd2958_reg5[4] = 8980U; adm8211_rfmd2958_reg5[5] = 9002U; adm8211_rfmd2958_reg5[6] = 9024U; adm8211_rfmd2958_reg5[7] = 9045U; adm8211_rfmd2958_reg5[8] = 9067U; adm8211_rfmd2958_reg5[9] = 9089U; adm8211_rfmd2958_reg5[10] = 9111U; adm8211_rfmd2958_reg5[11] = 9133U; adm8211_rfmd2958_reg5[12] = 9154U; adm8211_rfmd2958_reg5[13] = 9207U; adm8211_rfmd2958_reg6[0] = 23831U; adm8211_rfmd2958_reg6[1] = 238312U; adm8211_rfmd2958_reg6[2] = 190650U; adm8211_rfmd2958_reg6[3] = 142987U; adm8211_rfmd2958_reg6[4] = 95325U; adm8211_rfmd2958_reg6[5] = 47662U; adm8211_rfmd2958_reg6[6] = 0U; adm8211_rfmd2958_reg6[7] = 214481U; adm8211_rfmd2958_reg6[8] = 166818U; adm8211_rfmd2958_reg6[9] = 119156U; adm8211_rfmd2958_reg6[10] = 71493U; adm8211_rfmd2958_reg6[11] = 23831U; adm8211_rfmd2958_reg6[12] = 238312U; adm8211_rfmd2958_reg6[13] = 71493U; priv = (struct adm8211_priv *)dev->priv; ant_power = (unsigned int )priv->ant_power > 63U ? (priv->eeprom)->antenna_power[chan - 1U] : priv->ant_power; tx_power = (unsigned int )priv->tx_power > 63U ? (priv->eeprom)->tx_power[chan - 1U] : priv->tx_power; lpf_cutoff = (unsigned int )priv->lpf_cutoff == 255U ? (priv->eeprom)->lpf_cutoff[chan - 1U] : priv->lpf_cutoff; lnags_thresh = (unsigned int )priv->lnags_threshold == 255U ? (priv->eeprom)->lnags_threshold[chan - 1U] : priv->lnags_threshold; if ((priv->nar & 8194U) != 0U) { { iowrite32(priv->nar & 4294959101U, (void *)(& (priv->map)->NAR)); ioread32((void *)(& (priv->map)->NAR)); msleep(20U); } } else { } { if ((unsigned int )priv->transceiver_type == 1U) { goto case_1; } else { } if ((unsigned int )priv->transceiver_type == 2U) { goto case_2; } else { } if ((unsigned int )priv->transceiver_type == 0U) { goto case_0; } else { } if ((unsigned int )priv->transceiver_type == 8U) { goto case_8; } else { } if ((unsigned int )priv->transceiver_type == 12U) { goto case_12; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ { adm8211_rf_write_syn_rfmd2958(dev, 0, 16391U); adm8211_rf_write_syn_rfmd2958(dev, 2, 51U); adm8211_rf_write_syn_rfmd2958(dev, 5, adm8211_rfmd2958_reg5[chan - 1U]); adm8211_rf_write_syn_rfmd2958(dev, 6, adm8211_rfmd2958_reg6[chan - 1U]); } goto ldv_48871; case_0: /* CIL Label */ { adm8211_rf_write_syn_rfmd2948(dev, 0, 64U); adm8211_rf_write_syn_rfmd2948(dev, 2, 3U); adm8211_rf_write_syn_rfmd2948(dev, 1, 0U); adm8211_rf_write_syn_rfmd2948(dev, 4, chan != 14U ? chan * 5U + 2033U : 2110U); adm8211_rf_write_syn_rfmd2948(dev, 5, 1496U); adm8211_rf_write_syn_rfmd2948(dev, 7, 44U); adm8211_rf_write_syn_rfmd2948(dev, 8, 44U); } goto ldv_48871; case_8: /* CIL Label */ { adm8211_rf_write_syn_max2820(dev, 3, chan != 14U ? chan * 5U + 7U : 84U); } goto ldv_48871; case_12: /* CIL Label */ { adm8211_rf_write_syn_al2210l(dev, 0, chan != 14U ? chan * 5U + 141671U : 141748U); } goto ldv_48871; switch_default: /* CIL Label */ { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "unsupported transceiver type %d\n", (unsigned int )priv->transceiver_type); } goto ldv_48871; switch_break: /* CIL Label */ ; } ldv_48871: ; if ((unsigned int )*((unsigned char *)priv + 1076UL) == 8U) { if ((unsigned int )priv->transceiver_type == 0U) { { reg = ioread32((void *)(& (priv->map)->GPIO)); reg = reg & 4294705152U; reg = reg | 4096U; } if (chan != 14U) { reg = reg | 64U; } else { } { iowrite32(reg, (void *)(& (priv->map)->GPIO)); } } else { } if ((unsigned int )priv->transceiver_type == 1U) { { adm8211_rf_write_syn_rfmd2958(dev, 11, 28928U); reg = (u32 )(priv->eeprom)->cr49; reg = reg >> 13; reg = reg << 15; reg = reg | (u32 )((int )ant_power << 9); adm8211_rf_write_syn_rfmd2958(dev, 10, reg); adm8211_rf_write_syn_rfmd2958(dev, 9, (unsigned int )(priv->pdev)->revision <= 47U ? (u32 )((int )tx_power | 80) : 80U); } } else { { reg = ioread32((void *)(& (priv->map)->PLCPHD)); reg = reg & 4278255615U; reg = reg | (u32 )((int )tx_power << 18); iowrite32(reg, (void *)(& (priv->map)->PLCPHD)); } } { iowrite32(1107558400U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); msleep(30U); } if ((unsigned int )priv->transceiver_type != 1U) { { adm8211_write_bbp(dev, 17, (int )tx_power << 2U); } } else { } { adm8211_write_bbp(dev, 20, (int )lpf_cutoff); adm8211_write_bbp(dev, 21, (int )lnags_thresh); adm8211_write_bbp(dev, 28, (unsigned int )(priv->pdev)->revision == 32U ? (int )(priv->eeprom)->cr28 : 0); adm8211_write_bbp(dev, 29, (int )(priv->eeprom)->cr29); iowrite32(0U, (void *)(& (priv->map)->SYNRF)); } } else if ((unsigned int )*((unsigned char *)priv + 1076UL) != 40U) { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "unsupported BBP type %d\n", (int )priv->bbp_type); } } else { } if ((priv->nar & 8194U) != 0U) { { iowrite32(priv->nar, (void *)(& (priv->map)->NAR)); } } else { } { reg = ioread32((void *)(& (priv->map)->CAP0)); reg = reg & 4294967280U; reg = reg | chan; iowrite32(reg, (void *)(& (priv->map)->CAP0)); } return (0); } } static void adm8211_update_mode(struct ieee80211_hw *dev ) { struct adm8211_priv *priv ; { priv = (struct adm8211_priv *)dev->priv; if ((priv->nar & 8194U) != 0U) { { iowrite32(priv->nar & 4294959101U, (void *)(& (priv->map)->NAR)); ioread32((void *)(& (priv->map)->NAR)); msleep(20U); } } else { } priv->soft_rx_crc = 0U; { if (priv->mode == 2) { goto case_2; } else { } if (priv->mode == 1) { goto case_1; } else { } if (priv->mode == 6) { goto case_6; } else { } goto switch_break; case_2: /* CIL Label */ priv->nar = priv->nar & 4294967199U; priv->nar = priv->nar | 8194U; goto ldv_48881; case_1: /* CIL Label */ priv->nar = priv->nar & 4294967231U; priv->nar = priv->nar | 8226U; if ((unsigned int )(priv->pdev)->revision > 31U) { priv->soft_rx_crc = 1U; } else { } goto ldv_48881; case_6: /* CIL Label */ priv->nar = priv->nar & 4294959071U; priv->nar = priv->nar | 66U; goto ldv_48881; switch_break: /* CIL Label */ ; } ldv_48881: ; if ((priv->nar & 8194U) != 0U) { { iowrite32(priv->nar, (void *)(& (priv->map)->NAR)); } } else { } return; } } static void adm8211_hw_init_syn(struct ieee80211_hw *dev ) { struct adm8211_priv *priv ; { priv = (struct adm8211_priv *)dev->priv; { if ((unsigned int )priv->transceiver_type == 1U) { goto case_1; } else { } if ((unsigned int )priv->transceiver_type == 2U) { goto case_2; } else { } if ((unsigned int )priv->transceiver_type == 8U) { goto case_8; } else { } if ((unsigned int )priv->transceiver_type == 12U) { goto case_12; } else { } if ((unsigned int )priv->transceiver_type == 0U) { goto case_0; } else { } goto switch_default; case_1: /* CIL Label */ ; case_2: /* CIL Label */ { adm8211_rf_write_syn_rfmd2958(dev, 31, 0U); adm8211_rf_write_syn_rfmd2958(dev, 12, 196639U); adm8211_rf_write_syn_rfmd2958(dev, 1, 171011U); adm8211_rf_write_syn_rfmd2958(dev, 3, 130927U); adm8211_rf_write_syn_rfmd2958(dev, 4, 168963U); adm8211_rf_write_syn_rfmd2958(dev, 7, 83311U); adm8211_rf_write_syn_rfmd2958(dev, 9, (unsigned int )priv->transceiver_type == 1U ? 65616U : 80U); adm8211_rf_write_syn_rfmd2958(dev, 8, 262136U); } goto ldv_48890; case_8: /* CIL Label */ { adm8211_rf_write_syn_max2820(dev, 1, 30U); adm8211_rf_write_syn_max2820(dev, 2, 1U); adm8211_rf_write_syn_max2820(dev, 3, 84U); adm8211_rf_write_syn_max2820(dev, 4, 784U); adm8211_rf_write_syn_max2820(dev, 5, 0U); } goto ldv_48890; case_12: /* CIL Label */ { adm8211_rf_write_syn_al2210l(dev, 0, 6508U); adm8211_rf_write_syn_al2210l(dev, 1, 1995U); adm8211_rf_write_syn_al2210l(dev, 2, 219183U); adm8211_rf_write_syn_al2210l(dev, 3, 4265U); adm8211_rf_write_syn_al2210l(dev, 4, 488064U); adm8211_rf_write_syn_al2210l(dev, 5, 284225U); adm8211_rf_write_syn_al2210l(dev, 6, 958768U); adm8211_rf_write_syn_al2210l(dev, 7, 524288U); adm8211_rf_write_syn_al2210l(dev, 8, 492815U); adm8211_rf_write_syn_al2210l(dev, 9, 1019916U); adm8211_rf_write_syn_al2210l(dev, 10, 0U); adm8211_rf_write_syn_al2210l(dev, 11, 0U); } goto ldv_48890; case_0: /* CIL Label */ ; switch_default: /* CIL Label */ ; goto ldv_48890; switch_break: /* CIL Label */ ; } ldv_48890: ; return; } } static int adm8211_hw_init_bbp(struct ieee80211_hw *dev ) { struct adm8211_priv *priv ; u32 reg ; { priv = (struct adm8211_priv *)dev->priv; if ((unsigned int )*((unsigned char *)priv + 1076UL) == 0U) { { iowrite32(269356042U, (void *)(& (priv->map)->MMIWA)); iowrite32(31870U, (void *)(& (priv->map)->MMIRD0)); iowrite32(1048576U, (void *)(& (priv->map)->MMIRD1)); } } else if ((unsigned int )*((unsigned char *)priv + 1076UL) == 8U || (unsigned int )*((unsigned char *)priv + 1076UL) == 40U) { { if ((int )priv->specific_bbptype == 0) { goto case_0; } else { } if ((int )priv->specific_bbptype == 1) { goto case_1; } else { } if ((int )priv->specific_bbptype == 4) { goto case_4; } else { } goto switch_break; case_0: /* CIL Label */ ; case_1: /* CIL Label */ { iowrite32(37121U, (void *)(& (priv->map)->MMIWA)); iowrite32(769U, (void *)(& (priv->map)->MMIRD0)); } goto ldv_48902; case_4: /* CIL Label */ { iowrite32(35075U, (void *)(& (priv->map)->MMIWA)); iowrite32(5910U, (void *)(& (priv->map)->MMIRD0)); reg = ioread32((void *)(& (priv->map)->BBPCTL)); reg = reg & 4293132287U; reg = reg | 1310720U; iowrite32(reg, (void *)(& (priv->map)->BBPCTL)); } goto ldv_48902; switch_break: /* CIL Label */ ; } ldv_48902: ; { if ((int )(priv->pdev)->revision == 48) { goto case_48; } else { } if ((int )(priv->pdev)->revision == 32) { goto case_32; } else { } if ((int )(priv->pdev)->revision == 17) { goto case_17; } else { } if ((int )(priv->pdev)->revision == 21) { goto case_21; } else { } goto switch_default; case_48: /* CIL Label */ ; if ((unsigned int )priv->transceiver_type <= 2U) { { iowrite32(4194304U, (void *)(& (priv->map)->SYNCTL)); } } else if ((unsigned int )priv->transceiver_type == 8U || (unsigned int )priv->transceiver_type == 12U) { { iowrite32(12582912U, (void *)(& (priv->map)->SYNCTL)); } } else { } goto ldv_48905; case_32: /* CIL Label */ { reg = ioread32((void *)(& (priv->map)->MMIRD1)); reg = reg & 65535U; reg = reg | 2114977792U; iowrite32(reg, (void *)(& (priv->map)->MMIRD1)); } goto ldv_48905; case_17: /* CIL Label */ ; case_21: /* CIL Label */ ; switch_default: /* CIL Label */ { iowrite32(2114977792U, (void *)(& (priv->map)->MMIRD1)); } goto ldv_48905; switch_break___0: /* CIL Label */ ; } ldv_48905: { iowrite32(2048U, (void *)(& (priv->map)->MACTEST)); } } else { } { adm8211_hw_init_syn(dev); iowrite32(1107558400U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); msleep(20U); } if ((unsigned int )*((unsigned char *)priv + 1076UL) == 8U) { { adm8211_write_bbp(dev, 2, 128); adm8211_write_bbp(dev, 3, 128); adm8211_write_bbp(dev, 17, 116); adm8211_write_bbp(dev, 20, 56); adm8211_write_bbp(dev, 21, 64); } if ((unsigned int )(priv->eeprom)->major_version <= 1U) { { adm8211_write_bbp(dev, 28, 0); adm8211_write_bbp(dev, 29, 128); } } else { if ((unsigned int )(priv->pdev)->revision == 32U) { { adm8211_write_bbp(dev, 28, (int )(priv->eeprom)->cr28); } } else { { adm8211_write_bbp(dev, 28, 0); } } { adm8211_write_bbp(dev, 29, (int )(priv->eeprom)->cr29); } } } else if ((unsigned int )*((unsigned char *)priv + 1076UL) == 40U) { { adm8211_write_bbp(dev, 0, 255); adm8211_write_bbp(dev, 7, 10); } { if ((unsigned int )priv->transceiver_type == 1U) { goto case_1___0; } else { } if ((unsigned int )priv->transceiver_type == 2U) { goto case_2; } else { } if ((unsigned int )priv->transceiver_type == 8U) { goto case_8; } else { } if ((unsigned int )priv->transceiver_type == 12U) { goto case_12; } else { } if ((unsigned int )priv->transceiver_type == 0U) { goto case_0___0; } else { } goto switch_default___0; case_1___0: /* CIL Label */ ; case_2: /* CIL Label */ { adm8211_write_bbp(dev, 0, 0); adm8211_write_bbp(dev, 1, 0); adm8211_write_bbp(dev, 2, 0); adm8211_write_bbp(dev, 3, 0); adm8211_write_bbp(dev, 6, 15); adm8211_write_bbp(dev, 9, 0); adm8211_write_bbp(dev, 10, 0); adm8211_write_bbp(dev, 11, 0); adm8211_write_bbp(dev, 12, 0); adm8211_write_bbp(dev, 15, 170); adm8211_write_bbp(dev, 16, 140); adm8211_write_bbp(dev, 17, 67); adm8211_write_bbp(dev, 24, 64); adm8211_write_bbp(dev, 32, 35); adm8211_write_bbp(dev, 33, 2); adm8211_write_bbp(dev, 34, 40); adm8211_write_bbp(dev, 35, 48); adm8211_write_bbp(dev, 36, 45); adm8211_write_bbp(dev, 40, 53); adm8211_write_bbp(dev, 42, 140); adm8211_write_bbp(dev, 43, 129); adm8211_write_bbp(dev, 44, 68); adm8211_write_bbp(dev, 45, 10); adm8211_write_bbp(dev, 41, 64); adm8211_write_bbp(dev, 96, 8); adm8211_write_bbp(dev, 100, 1); } goto ldv_48912; case_8: /* CIL Label */ { adm8211_write_bbp(dev, 0, 0); adm8211_write_bbp(dev, 1, 0); adm8211_write_bbp(dev, 2, 0); adm8211_write_bbp(dev, 3, 0); adm8211_write_bbp(dev, 6, 15); adm8211_write_bbp(dev, 9, 5); adm8211_write_bbp(dev, 10, 2); adm8211_write_bbp(dev, 11, 0); adm8211_write_bbp(dev, 12, 15); adm8211_write_bbp(dev, 15, 85); adm8211_write_bbp(dev, 16, 141); adm8211_write_bbp(dev, 17, 67); adm8211_write_bbp(dev, 24, 74); adm8211_write_bbp(dev, 32, 32); adm8211_write_bbp(dev, 33, 2); adm8211_write_bbp(dev, 34, 35); adm8211_write_bbp(dev, 35, 48); adm8211_write_bbp(dev, 36, 45); adm8211_write_bbp(dev, 42, 140); adm8211_write_bbp(dev, 43, 129); adm8211_write_bbp(dev, 44, 68); adm8211_write_bbp(dev, 41, 74); adm8211_write_bbp(dev, 96, 43); adm8211_write_bbp(dev, 100, 1); } goto ldv_48912; case_12: /* CIL Label */ { adm8211_write_bbp(dev, 0, 0); adm8211_write_bbp(dev, 1, 0); adm8211_write_bbp(dev, 2, 0); adm8211_write_bbp(dev, 3, 0); adm8211_write_bbp(dev, 6, 15); adm8211_write_bbp(dev, 7, 5); adm8211_write_bbp(dev, 8, 3); adm8211_write_bbp(dev, 9, 0); adm8211_write_bbp(dev, 10, 0); adm8211_write_bbp(dev, 11, 0); adm8211_write_bbp(dev, 12, 16); adm8211_write_bbp(dev, 15, 85); adm8211_write_bbp(dev, 16, 141); adm8211_write_bbp(dev, 17, 67); adm8211_write_bbp(dev, 24, 74); adm8211_write_bbp(dev, 32, 32); adm8211_write_bbp(dev, 33, 2); adm8211_write_bbp(dev, 34, 35); adm8211_write_bbp(dev, 35, 48); adm8211_write_bbp(dev, 36, 45); adm8211_write_bbp(dev, 42, 170); adm8211_write_bbp(dev, 43, 129); adm8211_write_bbp(dev, 44, 68); adm8211_write_bbp(dev, 41, 250); adm8211_write_bbp(dev, 96, 45); adm8211_write_bbp(dev, 100, 1); } goto ldv_48912; case_0___0: /* CIL Label */ ; goto ldv_48912; switch_default___0: /* CIL Label */ { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "unsupported transceiver %d\n", (unsigned int )priv->transceiver_type); } goto ldv_48912; switch_break___1: /* CIL Label */ ; } ldv_48912: ; } else { { dev_printk("\017", (struct device const *)(& (dev->wiphy)->dev), "unsupported BBP %d\n", (int )priv->bbp_type); } } { iowrite32(0U, (void *)(& (priv->map)->SYNRF)); reg = ioread32((void *)(& (priv->map)->SYNCTL)); reg = reg | 67108864U; iowrite32(reg, (void *)(& (priv->map)->SYNCTL)); } return (0); } } static int adm8211_set_rate(struct ieee80211_hw *dev ) { struct adm8211_priv *priv ; u32 reg ; int i ; u8 rate_buf[12U] ; unsigned int tmp ; unsigned int tmp___0 ; { priv = (struct adm8211_priv *)dev->priv; i = 0; rate_buf[0] = 0U; tmp = 1U; { while (1) { while_continue: /* CIL Label */ ; if (tmp >= 12U) { goto while_break; } else { } rate_buf[tmp] = (unsigned char)0; tmp = tmp + 1U; } while_break: /* CIL Label */ ; } if ((unsigned int )(priv->pdev)->revision != 32U) { rate_buf[0] = 5U; i = 0; goto ldv_48929; ldv_48928: rate_buf[i + 1] = (unsigned int )((u8 )((unsigned int )adm8211_rates[i].bitrate / 5U)) | 128U; i = i + 1; ldv_48929: ; if ((unsigned int )i <= 4U) { goto ldv_48928; } else { } } else { rate_buf[0] = 4U; rate_buf[1] = 130U; rate_buf[2] = 4U; rate_buf[3] = 11U; rate_buf[4] = 22U; } { adm8211_write_sram_bytes(dev, (unsigned int )(priv->pdev)->revision <= 31U ? 401U : 221U, (u8 *)(& rate_buf), 6U); tmp___0 = ioread32((void *)(& (priv->map)->PLCPHD)); reg = tmp___0 & 16777215U; reg = reg | 32768U; reg = reg | 1845493760U; iowrite32(reg, (void *)(& (priv->map)->PLCPHD)); iowrite32(33582816U, (void *)(& (priv->map)->TXLMT)); } return (0); } } static void adm8211_hw_init(struct ieee80211_hw *dev ) { struct adm8211_priv *priv ; u32 reg ; u8 cline ; int tmp ; unsigned int tmp___0 ; { { priv = (struct adm8211_priv *)dev->priv; reg = ioread32((void *)(& (priv->map)->PAR)); reg = reg | 10485760U; reg = reg & 4294918141U; tmp = pci_set_mwi(priv->pdev); } if (tmp == 0) { { reg = reg | 16777216U; pci_read_config_byte((struct pci_dev const *)priv->pdev, 12, & cline); } { if ((int )cline == 8) { goto case_8; } else { } if ((int )cline == 22) { goto case_22; } else { } if ((int )cline == 50) { goto case_50; } else { } goto switch_default; case_8: /* CIL Label */ reg = reg | 16384U; goto ldv_48940; case_22: /* CIL Label */ reg = reg | 32768U; goto ldv_48940; case_50: /* CIL Label */ reg = reg | 49152U; goto ldv_48940; switch_default: /* CIL Label */ reg = reg; goto ldv_48940; switch_break: /* CIL Label */ ; } ldv_48940: ; } else { } { iowrite32(reg, (void *)(& (priv->map)->PAR)); reg = ioread32((void *)(& (priv->map)->CSR_TEST1)); reg = reg & 268435455U; reg = reg | 2415919104U; iowrite32(reg, (void *)(& (priv->map)->CSR_TEST1)); reg = 9437440U; iowrite32(reg, (void *)(& (priv->map)->WCSR)); reg = ioread32((void *)(& (priv->map)->CMDR)); reg = reg & 4294705139U; reg = reg | 24U; iowrite32(reg, (void *)(& (priv->map)->CMDR)); adm8211_set_rate(dev); } if ((unsigned int )(priv->pdev)->revision <= 47U) { { iowrite32(2283130136U, (void *)(& (priv->map)->TOFS2)); } } else { { iowrite32(2234895638U, (void *)(& (priv->map)->TOFS2)); } } { priv->nar = 2097160U; iowrite32(priv->nar, (void *)(& (priv->map)->NAR)); iowrite32(1048576U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); msleep(10U); iowrite32(0U, (void *)(& (priv->map)->SYNRF)); ioread32((void *)(& (priv->map)->SYNRF)); msleep(5U); reg = ioread32((void *)(& (priv->map)->CFPP)); reg = reg & 4278190335U; reg = reg | 4096U; iowrite32(reg, (void *)(& (priv->map)->CFPP)); iowrite32(369099775U, (void *)(& (priv->map)->TOFS0)); } if ((unsigned int )(priv->pdev)->revision <= 47U) { { iowrite32(171402340U, (void *)(& (priv->map)->IFST)); } } else { { iowrite32(168584292U, (void *)(& (priv->map)->IFST)); } } { iowrite32(84305U, (void *)(& (priv->map)->RMD)); iowrite32(4294967040U, (void *)(& (priv->map)->RSPT)); adm8211_hw_init_bbp(dev); iowrite32(0U, (void *)(& (priv->map)->IER)); tmp___0 = ioread32((void *)(& (priv->map)->STSR)); iowrite32(tmp___0, (void *)(& (priv->map)->STSR)); reg = ioread32((void *)(& (priv->map)->MACTEST)); reg = reg & 4287627263U; iowrite32(reg, (void *)(& (priv->map)->MACTEST)); reg = ioread32((void *)(& (priv->map)->WEPCTL)); reg = reg & 2147483647U; reg = reg | 33554432U; iowrite32(reg, (void *)(& (priv->map)->WEPCTL)); ioread32((void *)(& (priv->map)->LPC)); } return; } } static int adm8211_hw_reset(struct ieee80211_hw *dev ) { struct adm8211_priv *priv ; u32 reg ; u32 tmp ; int timeout ; unsigned int tmp___0 ; int tmp___1 ; { { priv = (struct adm8211_priv *)dev->priv; timeout = 100; iowrite32(0U, (void *)(& (priv->map)->FRCTL)); tmp = ioread32((void *)(& (priv->map)->PAR)); iowrite32(1U, (void *)(& (priv->map)->PAR)); } goto ldv_48952; ldv_48951: { msleep(50U); } ldv_48952: { tmp___0 = ioread32((void *)(& (priv->map)->PAR)); } if ((int )tmp___0 & 1) { tmp___1 = timeout; timeout = timeout - 1; if (tmp___1 != 0) { goto ldv_48951; } else { goto ldv_48953; } } else { } ldv_48953: ; if (timeout <= 0) { return (-110); } else { } { iowrite32(tmp, (void *)(& (priv->map)->PAR)); } if ((unsigned int )(priv->pdev)->revision == 32U && (unsigned int )priv->transceiver_type - 1U <= 1U) { { reg = ioread32((void *)(& (priv->map)->CSR_TEST1)); reg = reg | 48U; iowrite32(reg, (void *)(& (priv->map)->CSR_TEST1)); } } else if ((unsigned int )(priv->pdev)->revision == 48U) { { reg = ioread32((void *)(& (priv->map)->CSR_TEST1)); reg = reg & 4294967247U; iowrite32(reg, (void *)(& (priv->map)->CSR_TEST1)); } } else { } { iowrite32(0U, (void *)(& (priv->map)->FRCTL)); reg = ioread32((void *)(& (priv->map)->CSR_TEST0)); reg = reg | 32768U; iowrite32(reg, (void *)(& (priv->map)->CSR_TEST0)); adm8211_clear_sram(dev); } return (0); } } static u64 adm8211_get_tsft(struct ieee80211_hw *dev , struct ieee80211_vif *vif ) { struct adm8211_priv *priv ; u32 tsftl ; u64 tsft ; unsigned int tmp ; { { priv = (struct adm8211_priv *)dev->priv; tsftl = ioread32((void *)(& (priv->map)->TSFTL)); tmp = ioread32((void *)(& (priv->map)->TSFTH)); tsft = (u64 )tmp; tsft = tsft << 32; tsft = tsft | (u64 )tsftl; } return (tsft); } } static void adm8211_set_interval(struct ieee80211_hw *dev , unsigned short bi , unsigned short li ) { struct adm8211_priv *priv ; u32 reg ; { { priv = (struct adm8211_priv *)dev->priv; reg = (u32 )(((int )bi << 16) | (int )li); iowrite32(reg, (void *)(& (priv->map)->BPLI)); } return; } } static void adm8211_set_bssid(struct ieee80211_hw *dev , u8 const *bssid ) { struct adm8211_priv *priv ; u32 reg ; { { priv = (struct adm8211_priv *)dev->priv; iowrite32(*((__le32 *)bssid), (void *)(& (priv->map)->BSSID0)); reg = ioread32((void *)(& (priv->map)->ABDA1)); reg = reg & 65535U; reg = reg | (u32 )(((int )*(bssid + 4UL) << 16) | ((int )*(bssid + 5UL) << 24)); iowrite32(reg, (void *)(& (priv->map)->ABDA1)); } return; } } static int adm8211_config(struct ieee80211_hw *dev , u32 changed ) { struct adm8211_priv *priv ; struct ieee80211_conf *conf ; int channel ; int tmp ; { { priv = (struct adm8211_priv *)dev->priv; conf = & dev->conf; tmp = ieee80211_frequency_to_channel((int )(conf->chandef.chan)->center_freq); channel = tmp; } if (channel != priv->channel) { { priv->channel = channel; adm8211_rf_set_channel(dev, (unsigned int )priv->channel); } } else { } return (0); } } static void adm8211_bss_info_changed(struct ieee80211_hw *dev , struct ieee80211_vif *vif , struct ieee80211_bss_conf *conf , u32 changes ) { struct adm8211_priv *priv ; bool tmp ; int tmp___0 ; { priv = (struct adm8211_priv *)dev->priv; if ((changes & 128U) == 0U) { return; } else { } { tmp = ether_addr_equal(conf->bssid, (u8 const *)(& priv->bssid)); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { adm8211_set_bssid(dev, conf->bssid); memcpy((void *)(& priv->bssid), (void const *)conf->bssid, 6UL); } } else { } return; } } static u64 adm8211_prepare_multicast(struct ieee80211_hw *hw , struct netdev_hw_addr_list *mc_list ) { unsigned int bit_nr ; u32 mc_filter[2U] ; struct netdev_hw_addr *ha ; struct list_head const *__mptr ; u32 tmp ; u32 tmp___0 ; struct list_head const *__mptr___0 ; { mc_filter[0] = 0U; mc_filter[1] = mc_filter[0]; __mptr = (struct list_head const *)mc_list->list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_49000; ldv_48999: { tmp = crc32_le(4294967295U, (unsigned char const *)(& ha->addr), 6UL); tmp___0 = bitrev32(tmp); bit_nr = tmp___0 >> 26; bit_nr = bit_nr & 63U; mc_filter[bit_nr >> 5] = mc_filter[bit_nr >> 5] | (u32 )(1 << ((int )bit_nr & 31)); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; } ldv_49000: ; if ((unsigned long )ha != (unsigned long )mc_list) { goto ldv_48999; } else { } return ((unsigned long long )mc_filter[0] | ((unsigned long long )mc_filter[1] << 32)); } } static void adm8211_configure_filter(struct ieee80211_hw *dev , unsigned int changed_flags , unsigned int *total_flags , u64 multicast ) { u8 bcast[6U] ; struct adm8211_priv *priv ; unsigned int new_flags ; u32 mc_filter[2U] ; unsigned long __ms ; unsigned long tmp ; { bcast[0] = 255U; bcast[1] = 255U; bcast[2] = 255U; bcast[3] = 255U; bcast[4] = 255U; bcast[5] = 255U; priv = (struct adm8211_priv *)dev->priv; mc_filter[0] = (u32 )multicast; mc_filter[1] = (u32 )(multicast >> 32); new_flags = 0U; if ((int )*total_flags & 1) { new_flags = new_flags | 1U; priv->nar = priv->nar | 64U; priv->nar = priv->nar & 4294967167U; mc_filter[0] = 4294967295U; mc_filter[1] = mc_filter[0]; } else if ((*total_flags & 2U) != 0U || multicast == 0xffffffffffffffffULL) { new_flags = new_flags | 2U; priv->nar = priv->nar & 4294967231U; priv->nar = priv->nar | 128U; mc_filter[0] = 4294967295U; mc_filter[1] = mc_filter[0]; } else { priv->nar = priv->nar & 4294967103U; } if ((priv->nar & 2U) != 0U) { { iowrite32(priv->nar & 4294967293U, (void *)(& (priv->map)->NAR)); ioread32((void *)(& (priv->map)->NAR)); __ms = 20UL; } goto ldv_49014; ldv_49013: { __const_udelay(4295000UL); } ldv_49014: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_49013; } else { } } else { } { iowrite32(mc_filter[0], (void *)(& (priv->map)->MAR0)); iowrite32(mc_filter[1], (void *)(& (priv->map)->MAR1)); ioread32((void *)(& (priv->map)->NAR)); } if ((priv->nar & 64U) != 0U) { dev->flags = dev->flags | 2U; } else { dev->flags = dev->flags & 4294967293U; } if ((*total_flags & 16U) != 0U) { { adm8211_set_bssid(dev, (u8 const *)(& bcast)); } } else { { adm8211_set_bssid(dev, (u8 const *)(& priv->bssid)); } } if ((priv->nar & 8194U) != 0U) { { iowrite32(priv->nar, (void *)(& (priv->map)->NAR)); } } else { } *total_flags = new_flags; return; } } static int adm8211_add_interface(struct ieee80211_hw *dev , struct ieee80211_vif *vif ) { struct adm8211_priv *priv ; { priv = (struct adm8211_priv *)dev->priv; if (priv->mode != 6) { return (-95); } else { } { if ((unsigned int )vif->type == 2U) { goto case_2; } else { } goto switch_default; case_2: /* CIL Label */ priv->mode = (int )vif->type; goto ldv_49022; switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } ldv_49022: ; if ((priv->nar & 8194U) != 0U) { { iowrite32(priv->nar & 4294959101U, (void *)(& (priv->map)->NAR)); ioread32((void *)(& (priv->map)->NAR)); msleep(20U); } } else { } { iowrite32(*((__le32 *)(& vif->addr)), (void *)(& (priv->map)->PAR0)); iowrite32((u32 )*((__le16 *)(& vif->addr) + 4U), (void *)(& (priv->map)->PAR1)); adm8211_update_mode(dev); } if ((priv->nar & 8194U) != 0U) { { iowrite32(priv->nar, (void *)(& (priv->map)->NAR)); } } else { } return (0); } } static void adm8211_remove_interface(struct ieee80211_hw *dev , struct ieee80211_vif *vif ) { struct adm8211_priv *priv ; { priv = (struct adm8211_priv *)dev->priv; priv->mode = 6; return; } } static int adm8211_init_rings(struct ieee80211_hw *dev ) { struct adm8211_priv *priv ; struct adm8211_desc *desc ; struct adm8211_rx_ring_info *rx_info ; struct adm8211_tx_ring_info *tx_info ; unsigned int i ; unsigned char *tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; { priv = (struct adm8211_priv *)dev->priv; desc = (struct adm8211_desc *)0; i = 0U; goto ldv_49038; ldv_49037: desc = priv->rx_ring + (unsigned long )i; desc->status = 0U; desc->length = 2500U; (priv->rx_buffers + (unsigned long )i)->skb = (struct sk_buff *)0; i = i + 1U; ldv_49038: ; if (i < priv->rx_ring_size) { goto ldv_49037; } else { } desc->length = desc->length | 33554432U; i = 0U; goto ldv_49042; ldv_49041: { desc = priv->rx_ring + (unsigned long )i; rx_info = priv->rx_buffers + (unsigned long )i; rx_info->skb = dev_alloc_skb(2500U); } if ((unsigned long )rx_info->skb == (unsigned long )((struct sk_buff *)0)) { goto ldv_49040; } else { } { tmp = skb_tail_pointer((struct sk_buff const *)rx_info->skb); rx_info->mapping = pci_map_single(priv->pdev, (void *)tmp, 2500UL, 2); desc->buffer1 = (unsigned int )rx_info->mapping; desc->status = 2684354560U; i = i + 1U; } ldv_49042: ; if (i < priv->rx_ring_size) { goto ldv_49041; } else { } ldv_49040: i = 0U; goto ldv_49044; ldv_49043: desc = priv->tx_ring + (unsigned long )i; tx_info = priv->tx_buffers + (unsigned long )i; tx_info->skb = (struct sk_buff *)0; tx_info->mapping = 0ULL; desc->status = 0U; i = i + 1U; ldv_49044: ; if (i < priv->tx_ring_size) { goto ldv_49043; } else { } { desc->length = 33554432U; tmp___1 = 0U; priv->dirty_tx = tmp___1; tmp___0 = tmp___1; priv->cur_tx = tmp___0; priv->cur_rx = tmp___0; iowrite32((u32 )priv->rx_ring_dma, (void *)(& (priv->map)->RDB)); iowrite32((u32 )priv->tx_ring_dma, (void *)(& (priv->map)->TDBD)); } return (0); } } static void adm8211_free_rings(struct ieee80211_hw *dev ) { struct adm8211_priv *priv ; unsigned int i ; { priv = (struct adm8211_priv *)dev->priv; i = 0U; goto ldv_49053; ldv_49052: ; if ((unsigned long )(priv->rx_buffers + (unsigned long )i)->skb == (unsigned long )((struct sk_buff *)0)) { goto ldv_49051; } else { } { pci_unmap_single(priv->pdev, (priv->rx_buffers + (unsigned long )i)->mapping, 2500UL, 2); consume_skb((priv->rx_buffers + (unsigned long )i)->skb); } ldv_49051: i = i + 1U; ldv_49053: ; if (i < priv->rx_ring_size) { goto ldv_49052; } else { } i = 0U; goto ldv_49057; ldv_49056: ; if ((unsigned long )(priv->tx_buffers + (unsigned long )i)->skb == (unsigned long )((struct sk_buff *)0)) { goto ldv_49055; } else { } { pci_unmap_single(priv->pdev, (priv->tx_buffers + (unsigned long )i)->mapping, (size_t )((priv->tx_buffers + (unsigned long )i)->skb)->len, 1); consume_skb((priv->tx_buffers + (unsigned long )i)->skb); } ldv_49055: i = i + 1U; ldv_49057: ; if (i < priv->tx_ring_size) { goto ldv_49056; } else { } return; } } static int adm8211_start(struct ieee80211_hw *dev ) { struct adm8211_priv *priv ; int retval ; { { priv = (struct adm8211_priv *)dev->priv; retval = adm8211_hw_reset(dev); } if (retval != 0) { { dev_err((struct device const *)(& (dev->wiphy)->dev), "hardware reset failed\n"); } goto fail; } else { } { retval = adm8211_init_rings(dev); } if (retval != 0) { { dev_err((struct device const *)(& (dev->wiphy)->dev), "failed to initialize rings\n"); } goto fail; } else { } { adm8211_hw_init(dev); adm8211_rf_set_channel(dev, (unsigned int )priv->channel); retval = ldv_request_irq_62((priv->pdev)->irq, & adm8211_interrupt, 128UL, "adm8211", (void *)dev); } if (retval != 0) { { dev_err((struct device const *)(& (dev->wiphy)->dev), "failed to register IRQ handler\n"); } goto fail; } else { } { iowrite32(100421U, (void *)(& (priv->map)->IER)); priv->mode = 6; adm8211_update_mode(dev); iowrite32(0U, (void *)(& (priv->map)->RDR)); adm8211_set_interval(dev, 100, 10); } return (0); fail: ; return (retval); } } static void adm8211_stop(struct ieee80211_hw *dev ) { struct adm8211_priv *priv ; { { priv = (struct adm8211_priv *)dev->priv; priv->mode = 0; priv->nar = 0U; iowrite32(0U, (void *)(& (priv->map)->NAR)); iowrite32(0U, (void *)(& (priv->map)->IER)); ioread32((void *)(& (priv->map)->NAR)); ldv_free_irq_63((priv->pdev)->irq, (void *)dev); adm8211_free_rings(dev); } return; } } static void adm8211_calc_durations(int *dur , int *plcp , size_t payload_len , int len , int plcp_signal , int short_preamble ) { int remainder ; { *dur = (int )(((payload_len * 80UL + (size_t )plcp_signal) + 1919UL) / (size_t )plcp_signal); if (plcp_signal <= 20) { *dur = *dur + 542; } else { *dur = *dur + 430; } if (short_preamble == 0) { *dur = *dur + 288; } else { } *plcp = (len * 80) / plcp_signal; remainder = (len * 80) % plcp_signal; if ((plcp_signal == 110 && remainder <= 30) && remainder > 0) { *plcp = (*plcp | 32768) + 1; } else if (remainder != 0) { *plcp = *plcp + 1; } else { } return; } } static void adm8211_tx_raw(struct ieee80211_hw *dev , struct sk_buff *skb , u16 plcp_signal , size_t hdrlen ) { struct adm8211_priv *priv ; unsigned long flags ; dma_addr_t mapping ; unsigned int entry ; u32 flag ; { { priv = (struct adm8211_priv *)dev->priv; mapping = pci_map_single(priv->pdev, (void *)skb->data, (size_t )skb->len, 1); ldv___ldv_spin_lock_64(& priv->lock); } if (priv->cur_tx - priv->dirty_tx == priv->tx_ring_size / 2U) { flag = 3758096384U; } else { flag = 1610612736U; } if (priv->cur_tx - priv->dirty_tx == priv->tx_ring_size - 2U) { { ieee80211_stop_queue(dev, 0); } } else { } entry = priv->cur_tx % priv->tx_ring_size; (priv->tx_buffers + (unsigned long )entry)->skb = skb; (priv->tx_buffers + (unsigned long )entry)->mapping = mapping; (priv->tx_buffers + (unsigned long )entry)->hdrlen = hdrlen; (priv->tx_ring + (unsigned long )entry)->buffer1 = (unsigned int )mapping; if (entry == priv->tx_ring_size - 1U) { flag = flag | 33554432U; } else { } { (priv->tx_ring + (unsigned long )entry)->length = flag | skb->len; flag = (u32 )(((int )plcp_signal << 20) | -2147483640); (priv->tx_ring + (unsigned long )entry)->status = flag; priv->cur_tx = priv->cur_tx + 1U; ldv_spin_unlock_irqrestore_65(& priv->lock, flags); iowrite32(0U, (void *)(& (priv->map)->TDR)); } return; } } static void adm8211_tx(struct ieee80211_hw *dev , struct ieee80211_tx_control *control , struct sk_buff *skb ) { struct adm8211_tx_hdr *txhdr ; size_t payload_len ; size_t hdrlen ; int plcp ; int dur ; int len ; int plcp_signal ; int short_preamble ; struct ieee80211_hdr *hdr ; struct ieee80211_tx_info *info ; struct ieee80211_tx_info *tmp ; struct ieee80211_rate *txrate ; struct ieee80211_rate *tmp___0 ; u8 rc_flags ; unsigned int tmp___1 ; unsigned char *tmp___2 ; u8 *tmp___3 ; { { tmp = IEEE80211_SKB_CB(skb); info = tmp; tmp___0 = ieee80211_get_tx_rate((struct ieee80211_hw const *)dev, (struct ieee80211_tx_info const *)info); txrate = tmp___0; rc_flags = (u8 )info->__annonCompField81.control.__annonCompField79.__annonCompField78.rates[0].flags; short_preamble = ((int )rc_flags & 4) != 0; plcp_signal = (int )txrate->bitrate; hdr = (struct ieee80211_hdr *)skb->data; tmp___1 = ieee80211_hdrlen((int )hdr->frame_control); hdrlen = (size_t )tmp___1; memcpy((void *)(& skb->cb), (void const *)skb->data, hdrlen); hdr = (struct ieee80211_hdr *)(& skb->cb); skb_pull(skb, (unsigned int )hdrlen); payload_len = (size_t )skb->len; tmp___2 = skb_push(skb, 56U); txhdr = (struct adm8211_tx_hdr *)tmp___2; memset((void *)txhdr, 0, 56UL); tmp___3 = ieee80211_get_DA(hdr); memcpy((void *)(& txhdr->da), (void const *)tmp___3, 6UL); txhdr->signal = (u8 )plcp_signal; txhdr->frame_body_size = (unsigned short )payload_len; txhdr->frame_control = hdr->frame_control; len = (int )(((unsigned int )hdrlen + (unsigned int )payload_len) + 4U); txhdr->frag = 4095U; adm8211_calc_durations(& dur, & plcp, payload_len, len, plcp_signal, short_preamble); txhdr->plcp_frag_head_len = (unsigned short )plcp; txhdr->plcp_frag_tail_len = (unsigned short )plcp; txhdr->dur_frag_head = (unsigned short )dur; txhdr->dur_frag_tail = (unsigned short )dur; txhdr->header_control = 32768U; } if (short_preamble != 0) { txhdr->header_control = (__le16 )((unsigned int )txhdr->header_control | 1U); } else { } if ((int )rc_flags & 1) { txhdr->header_control = (__le16 )((unsigned int )txhdr->header_control | 16U); } else { } { txhdr->retry_limit = (u8 )info->__annonCompField81.control.__annonCompField79.__annonCompField78.rates[0].count; adm8211_tx_raw(dev, skb, (int )((u16 )plcp_signal), hdrlen); } return; } } static int adm8211_alloc_rings(struct ieee80211_hw *dev ) { struct adm8211_priv *priv ; unsigned int ring_size ; void *tmp ; void *tmp___0 ; { { priv = (struct adm8211_priv *)dev->priv; tmp = kmalloc((unsigned long )priv->rx_ring_size * 16UL + (unsigned long )priv->tx_ring_size * 24UL, 208U); priv->rx_buffers = (struct adm8211_rx_ring_info *)tmp; } if ((unsigned long )priv->rx_buffers == (unsigned long )((struct adm8211_rx_ring_info *)0)) { return (-12); } else { } { priv->tx_buffers = (struct adm8211_tx_ring_info *)priv->rx_buffers + (unsigned long )priv->rx_ring_size * 16UL; ring_size = (unsigned int )((unsigned long )priv->rx_ring_size + (unsigned long )priv->tx_ring_size) * 16U; tmp___0 = pci_alloc_consistent(priv->pdev, (size_t )ring_size, & priv->rx_ring_dma); priv->rx_ring = (struct adm8211_desc *)tmp___0; } if ((unsigned long )priv->rx_ring == (unsigned long )((struct adm8211_desc *)0)) { { kfree((void const *)priv->rx_buffers); priv->rx_buffers = (struct adm8211_rx_ring_info *)0; priv->tx_buffers = (struct adm8211_tx_ring_info *)0; } return (-12); } else { } priv->tx_ring = priv->rx_ring + (unsigned long )priv->rx_ring_size; priv->tx_ring_dma = priv->rx_ring_dma + (unsigned long long )((unsigned long )priv->rx_ring_size * 16UL); return (0); } } static struct ieee80211_ops const adm8211_ops = {& adm8211_tx, & adm8211_start, & adm8211_stop, 0, 0, 0, & adm8211_add_interface, 0, & adm8211_remove_interface, & adm8211_config, & adm8211_bss_info_changed, 0, 0, & adm8211_prepare_multicast, & adm8211_configure_filter, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & adm8211_get_stats, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & adm8211_get_tsft, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int adm8211_probe(struct pci_dev *pdev , struct pci_device_id const *id ) { struct ieee80211_hw *dev ; struct adm8211_priv *priv ; unsigned long mem_addr ; unsigned long mem_len ; unsigned int io_addr ; unsigned int io_len ; int err ; u32 reg ; u8 perm_addr[6U] ; char const *tmp ; char const *tmp___0 ; char const *tmp___1 ; char const *tmp___2 ; char const *tmp___3 ; int tmp___4 ; int tmp___5 ; char const *tmp___6 ; struct lock_class_key __key ; void *tmp___7 ; void *tmp___8 ; char const *tmp___9 ; char const *tmp___10 ; int tmp___11 ; unsigned int tmp___12 ; char const *tmp___13 ; bool tmp___14 ; int tmp___15 ; char const *tmp___16 ; char const *tmp___17 ; { { err = pci_enable_device(pdev); } if (err != 0) { { tmp = pci_name((struct pci_dev const *)pdev); printk("\v%s (adm8211): Cannot enable new PCI device\n", tmp); } return (err); } else { } io_addr = (unsigned int )pdev->resource[0].start; io_len = pdev->resource[0].start != 0ULL || pdev->resource[0].end != pdev->resource[0].start ? ((unsigned int )pdev->resource[0].end - (unsigned int )pdev->resource[0].start) + 1U : 0U; mem_addr = (unsigned long )pdev->resource[1].start; mem_len = pdev->resource[1].start != 0ULL || pdev->resource[1].end != pdev->resource[1].start ? (unsigned long )((pdev->resource[1].end - pdev->resource[1].start) + 1ULL) : 0UL; if (io_len <= 255U || mem_len <= 1023UL) { { tmp___0 = pci_name((struct pci_dev const *)pdev); printk("\v%s (adm8211): Too short PCI resources\n", tmp___0); } goto err_disable_pdev; } else { } { pci_read_config_dword((struct pci_dev const *)pdev, 128, & reg); } if (reg != 2181108503U && reg != 2182157079U) { { tmp___1 = pci_name((struct pci_dev const *)pdev); printk("\v%s (adm8211): Invalid signature (0x%x)\n", tmp___1, reg); } goto err_disable_pdev; } else { } { err = pci_request_regions(pdev, "adm8211"); } if (err != 0) { { tmp___2 = pci_name((struct pci_dev const *)pdev); printk("\v%s (adm8211): Cannot obtain PCI resources\n", tmp___2); } return (err); } else { } { tmp___4 = pci_set_dma_mask(pdev, 4294967295ULL); } if (tmp___4 != 0) { { tmp___3 = pci_name((struct pci_dev const *)pdev); printk("\v%s (adm8211): No suitable DMA available\n", tmp___3); } goto err_free_reg; } else { { tmp___5 = pci_set_consistent_dma_mask(pdev, 4294967295ULL); } if (tmp___5 != 0) { { tmp___3 = pci_name((struct pci_dev const *)pdev); printk("\v%s (adm8211): No suitable DMA available\n", tmp___3); } goto err_free_reg; } else { } } { pci_set_master(pdev); dev = ldv_ieee80211_alloc_hw_66(1088UL, & adm8211_ops); } if ((unsigned long )dev == (unsigned long )((struct ieee80211_hw *)0)) { { tmp___6 = pci_name((struct pci_dev const *)pdev); printk("\v%s (adm8211): ieee80211 alloc failed\n", tmp___6); err = -12; } goto err_free_reg; } else { } { priv = (struct adm8211_priv *)dev->priv; priv->pdev = pdev; spinlock_check(& priv->lock); __raw_spin_lock_init(& priv->lock.__annonCompField19.rlock, "&(&priv->lock)->rlock", & __key); SET_IEEE80211_DEV(dev, & pdev->dev); pci_set_drvdata(pdev, (void *)dev); tmp___7 = pci_iomap(pdev, 1, mem_len); priv->map = (struct adm8211_csr *)tmp___7; } if ((unsigned long )priv->map == (unsigned long )((struct adm8211_csr *)0)) { { tmp___8 = pci_iomap(pdev, 0, (unsigned long )io_len); priv->map = (struct adm8211_csr *)tmp___8; } } else { } if ((unsigned long )priv->map == (unsigned long )((struct adm8211_csr *)0)) { { tmp___9 = pci_name((struct pci_dev const *)pdev); printk("\v%s (adm8211): Cannot map device memory\n", tmp___9); } goto err_free_dev; } else { } { priv->rx_ring_size = rx_ring_size; priv->tx_ring_size = tx_ring_size; tmp___11 = adm8211_alloc_rings(dev); } if (tmp___11 != 0) { { tmp___10 = pci_name((struct pci_dev const *)pdev); printk("\v%s (adm8211): Cannot allocate TX/RX ring\n", tmp___10); } goto err_iounmap; } else { } { *((__le32 *)(& perm_addr)) = ioread32((void *)(& (priv->map)->PAR0)); tmp___12 = ioread32((void *)(& (priv->map)->PAR1)); *((__le16 *)(& perm_addr) + 4U) = (unsigned short )tmp___12; tmp___14 = is_valid_ether_addr((u8 const *)(& perm_addr)); } if (tmp___14) { tmp___15 = 0; } else { tmp___15 = 1; } if (tmp___15) { { tmp___13 = pci_name((struct pci_dev const *)pdev); printk("\f%s (adm8211): Invalid hwaddr in EEPROM!\n", tmp___13); eth_random_addr((u8 *)(& perm_addr)); } } else { } { SET_IEEE80211_PERM_ADDR(dev, (u8 *)(& perm_addr)); dev->extra_tx_headroom = 56U; dev->flags = 32U; (dev->wiphy)->interface_modes = 4U; dev->max_signal = 100; dev->queues = 1U; priv->retry_limit = 3U; priv->ant_power = 64U; priv->tx_power = 64U; priv->lpf_cutoff = 255U; priv->lnags_threshold = 255U; priv->mode = 0; } if ((unsigned int )pdev->revision > 31U) { { iowrite32(0U, (void *)(& (priv->map)->FRCTL)); ioread32((void *)(& (priv->map)->FRCTL)); iowrite32(1U, (void *)(& (priv->map)->FRCTL)); ioread32((void *)(& (priv->map)->FRCTL)); msleep(100U); } } else { } { err = adm8211_read_eeprom(dev); } if (err != 0) { { tmp___16 = pci_name((struct pci_dev const *)pdev); printk("\v%s (adm8211): Can\'t alloc eeprom buffer\n", tmp___16); } goto err_free_desc; } else { } { priv->channel = 1; (dev->wiphy)->bands[0] = & priv->band; err = ieee80211_register_hw(dev); } if (err != 0) { { tmp___17 = pci_name((struct pci_dev const *)pdev); printk("\v%s (adm8211): Cannot register device\n", tmp___17); } goto err_free_eeprom; } else { } { _dev_info((struct device const *)(& (dev->wiphy)->dev), "hwaddr %pM, Rev 0x%02x\n", (u8 *)(& (dev->wiphy)->perm_addr), (int )pdev->revision); } return (0); err_free_eeprom: { kfree((void const *)priv->eeprom); } err_free_desc: { pci_free_consistent(pdev, ((unsigned long )priv->rx_ring_size + (unsigned long )priv->tx_ring_size) * 16UL, (void *)priv->rx_ring, priv->rx_ring_dma); kfree((void const *)priv->rx_buffers); } err_iounmap: { pci_iounmap(pdev, (void *)priv->map); } err_free_dev: { ldv_ieee80211_free_hw_67(dev); } err_free_reg: { pci_release_regions(pdev); } err_disable_pdev: { pci_disable_device(pdev); } return (err); } } static void adm8211_remove(struct pci_dev *pdev ) { struct ieee80211_hw *dev ; void *tmp ; struct adm8211_priv *priv ; { { tmp = pci_get_drvdata(pdev); dev = (struct ieee80211_hw *)tmp; } if ((unsigned long )dev == (unsigned long )((struct ieee80211_hw *)0)) { return; } else { } { ieee80211_unregister_hw(dev); priv = (struct adm8211_priv *)dev->priv; pci_free_consistent(pdev, ((unsigned long )priv->rx_ring_size + (unsigned long )priv->tx_ring_size) * 16UL, (void *)priv->rx_ring, priv->rx_ring_dma); kfree((void const *)priv->rx_buffers); kfree((void const *)priv->eeprom); pci_iounmap(pdev, (void *)priv->map); pci_release_regions(pdev); pci_disable_device(pdev); ldv_ieee80211_free_hw_68(dev); } return; } } static int adm8211_suspend(struct pci_dev *pdev , pm_message_t state ) { pci_power_t tmp ; { { pci_save_state(pdev); tmp = pci_choose_state(pdev, state); pci_set_power_state(pdev, tmp); } return (0); } } static int adm8211_resume(struct pci_dev *pdev ) { { { pci_set_power_state(pdev, 0); pci_restore_state(pdev); } return (0); } } struct pci_device_id const __mod_pci_device_table ; static struct pci_driver adm8211_driver = {{0, 0}, "adm8211", (struct pci_device_id const *)(& adm8211_pci_id_table), & adm8211_probe, & adm8211_remove, & adm8211_suspend, 0, 0, & adm8211_resume, 0, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int adm8211_driver_init(void) { int tmp ; { { tmp = ldv___pci_register_driver_69(& adm8211_driver, & __this_module, "adm8211"); } return (tmp); } } static void adm8211_driver_exit(void) { { { ldv_pci_unregister_driver_70(& adm8211_driver); } return; } } void ldv_EMGentry_exit_adm8211_driver_exit_9_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_adm8211_driver_init_9_7(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; void ldv_allocate_external_0(void) ; void ldv_dispatch_deregister_5_2(struct ieee80211_hw *arg0 ) ; void ldv_dispatch_deregister_7_1(struct pci_driver *arg0 ) ; void ldv_dispatch_irq_deregister_3_1(int arg0 ) ; void ldv_dispatch_irq_register_6_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_register_4_3(struct ieee80211_tx_control *arg0 ) ; void ldv_dispatch_register_8_2(struct pci_driver *arg0 ) ; void ldv_entry_EMGentry_9(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; struct ieee80211_hw *ldv_ieee80211_alloc_hw(struct ieee80211_hw *arg0 , unsigned long arg1 , struct ieee80211_ops *arg2 ) ; void ldv_ieee80211_free_hw(void *arg0 , struct ieee80211_hw **arg1 ) ; void ldv_ieee80211_ieee80211_instance_0(void *arg0 ) ; void ldv_ieee80211_instance_callback_0_10(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_0_18(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , struct ieee80211_bss_conf *arg3 , unsigned int arg4 ) ; void ldv_ieee80211_instance_callback_0_21(int (*arg0)(struct ieee80211_hw * , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 ) ; void ldv_ieee80211_instance_callback_0_24(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int *arg3 , unsigned long long arg4 ) ; void ldv_ieee80211_instance_callback_0_27(int (*arg0)(struct ieee80211_hw * , struct ieee80211_low_level_stats * ) , struct ieee80211_hw *arg1 , struct ieee80211_low_level_stats *arg2 ) ; void ldv_ieee80211_instance_callback_0_28(unsigned long long (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_0_29(unsigned long long (*arg0)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) , struct ieee80211_hw *arg1 , struct netdev_hw_addr_list *arg2 ) ; void ldv_ieee80211_instance_callback_0_30(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) ; void ldv_ieee80211_instance_callback_0_31(void (*arg0)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct ieee80211_tx_control *arg2 , struct sk_buff *arg3 ) ; void ldv_ieee80211_instance_resume_0_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; int ldv_ieee80211_instance_start_0_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_ieee80211_instance_stop_0_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) ; void ldv_initialize_external_data(void) ; enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_1(void *arg0 ) ; int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_2(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; void ldv_switch_automaton_state_0_1(void) ; void ldv_switch_automaton_state_0_15(void) ; void ldv_switch_automaton_state_1_1(void) ; void ldv_switch_automaton_state_1_6(void) ; void ldv_switch_automaton_state_2_11(void) ; void ldv_switch_automaton_state_2_20(void) ; int (*ldv_0_callback_add_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*ldv_0_callback_bss_info_changed)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) ; int (*ldv_0_callback_config)(struct ieee80211_hw * , unsigned int ) ; void (*ldv_0_callback_configure_filter)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) ; int (*ldv_0_callback_get_stats)(struct ieee80211_hw * , struct ieee80211_low_level_stats * ) ; unsigned long long (*ldv_0_callback_get_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) ; unsigned long long (*ldv_0_callback_prepare_multicast)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) ; void (*ldv_0_callback_remove_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) ; void (*ldv_0_callback_tx)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) ; struct ieee80211_ops *ldv_0_container_ieee80211_ops ; unsigned int ldv_0_ldv_param_18_3_default ; unsigned int ldv_0_ldv_param_21_1_default ; unsigned int ldv_0_ldv_param_24_1_default ; unsigned int *ldv_0_ldv_param_24_2_default ; unsigned long long ldv_0_ldv_param_24_3_default ; struct ieee80211_hw *ldv_0_resource_ieee80211_hw ; struct ieee80211_bss_conf *ldv_0_resource_struct_ieee80211_bss_conf_ptr ; struct ieee80211_low_level_stats *ldv_0_resource_struct_ieee80211_low_level_stats_ptr ; struct ieee80211_tx_control *ldv_0_resource_struct_ieee80211_tx_control_ptr ; struct ieee80211_vif *ldv_0_resource_struct_ieee80211_vif_ptr ; struct netdev_hw_addr_list *ldv_0_resource_struct_netdev_hw_addr_list_ptr ; struct sk_buff *ldv_0_resource_struct_sk_buff_ptr ; int ldv_0_ret_default ; enum irqreturn (*ldv_1_callback_handler)(int , void * ) ; void *ldv_1_data_data ; int ldv_1_line_line ; enum irqreturn ldv_1_ret_val_default ; enum irqreturn (*ldv_1_thread_thread)(int , void * ) ; struct pci_driver *ldv_2_container_pci_driver ; struct pci_dev *ldv_2_resource_dev ; struct pm_message ldv_2_resource_pm_message ; struct pci_device_id *ldv_2_resource_struct_pci_device_id_ptr ; int ldv_2_ret_default ; void (*ldv_9_exit_adm8211_driver_exit_default)(void) ; int (*ldv_9_init_adm8211_driver_init_default)(void) ; int ldv_9_ret_default ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_2 ; int ldv_statevar_9 ; int (*ldv_0_callback_add_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) = & adm8211_add_interface; void (*ldv_0_callback_bss_info_changed)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) = & adm8211_bss_info_changed; int (*ldv_0_callback_config)(struct ieee80211_hw * , unsigned int ) = & adm8211_config; void (*ldv_0_callback_configure_filter)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) = & adm8211_configure_filter; int (*ldv_0_callback_get_stats)(struct ieee80211_hw * , struct ieee80211_low_level_stats * ) = & adm8211_get_stats; unsigned long long (*ldv_0_callback_get_tsf)(struct ieee80211_hw * , struct ieee80211_vif * ) = & adm8211_get_tsft; unsigned long long (*ldv_0_callback_prepare_multicast)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) = & adm8211_prepare_multicast; void (*ldv_0_callback_remove_interface)(struct ieee80211_hw * , struct ieee80211_vif * ) = & adm8211_remove_interface; void (*ldv_0_callback_tx)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) = & adm8211_tx; enum irqreturn (*ldv_1_callback_handler)(int , void * ) = & adm8211_interrupt; void (*ldv_9_exit_adm8211_driver_exit_default)(void) = & adm8211_driver_exit; int (*ldv_9_init_adm8211_driver_init_default)(void) = & adm8211_driver_init; void ldv_EMGentry_exit_adm8211_driver_exit_9_2(void (*arg0)(void) ) { { { adm8211_driver_exit(); } return; } } int ldv_EMGentry_init_adm8211_driver_init_9_7(int (*arg0)(void) ) { int tmp ; { { tmp = adm8211_driver_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_8_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_8_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 20); ldv_dispatch_register_8_2(ldv_8_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_allocate_external_0(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; { { tmp = external_allocated_data(); ldv_0_ldv_param_24_2_default = (unsigned int *)tmp; tmp___0 = external_allocated_data(); ldv_0_resource_ieee80211_hw = (struct ieee80211_hw *)tmp___0; tmp___1 = external_allocated_data(); ldv_0_resource_struct_ieee80211_bss_conf_ptr = (struct ieee80211_bss_conf *)tmp___1; tmp___2 = external_allocated_data(); ldv_0_resource_struct_ieee80211_low_level_stats_ptr = (struct ieee80211_low_level_stats *)tmp___2; tmp___3 = external_allocated_data(); ldv_0_resource_struct_ieee80211_tx_control_ptr = (struct ieee80211_tx_control *)tmp___3; tmp___4 = external_allocated_data(); ldv_0_resource_struct_ieee80211_vif_ptr = (struct ieee80211_vif *)tmp___4; tmp___5 = external_allocated_data(); ldv_0_resource_struct_netdev_hw_addr_list_ptr = (struct netdev_hw_addr_list *)tmp___5; tmp___6 = external_allocated_data(); ldv_0_resource_struct_sk_buff_ptr = (struct sk_buff *)tmp___6; ldv_1_data_data = external_allocated_data(); tmp___7 = external_allocated_data(); ldv_1_thread_thread = (enum irqreturn (*)(int , void * ))tmp___7; tmp___8 = external_allocated_data(); ldv_2_resource_dev = (struct pci_dev *)tmp___8; } return; } } void ldv_dispatch_deregister_5_2(struct ieee80211_hw *arg0 ) { { { ldv_0_resource_ieee80211_hw = arg0; ldv_switch_automaton_state_0_1(); } return; } } void ldv_dispatch_deregister_7_1(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_11(); } return; } } void ldv_dispatch_irq_deregister_3_1(int arg0 ) { { { ldv_1_line_line = arg0; ldv_switch_automaton_state_1_1(); } return; } } void ldv_dispatch_irq_register_6_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { { { ldv_1_line_line = arg0; ldv_1_callback_handler = arg1; ldv_1_thread_thread = arg2; ldv_1_data_data = arg3; ldv_switch_automaton_state_1_6(); } return; } } void ldv_dispatch_register_4_3(struct ieee80211_tx_control *arg0 ) { { { ldv_0_resource_struct_ieee80211_tx_control_ptr = arg0; ldv_switch_automaton_state_0_15(); } return; } } void ldv_dispatch_register_8_2(struct pci_driver *arg0 ) { { { ldv_2_container_pci_driver = arg0; ldv_switch_automaton_state_2_20(); } return; } } void ldv_entry_EMGentry_9(void *arg0 ) { int tmp ; { { if (ldv_statevar_9 == 4) { goto case_4; } else { } if (ldv_statevar_9 == 6) { goto case_6; } else { } if (ldv_statevar_9 == 7) { goto case_7; } else { } goto switch_default; case_4: /* CIL Label */ { ldv_assume(ldv_9_ret_default == 0); ldv_assume(ldv_statevar_2 == 12); ldv_EMGentry_exit_adm8211_driver_exit_9_2(ldv_9_exit_adm8211_driver_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_9 = 7; } goto ldv_49527; case_6: /* CIL Label */ { ldv_assume(ldv_9_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_9 = 7; } goto ldv_49527; case_7: /* CIL Label */ { ldv_assume(ldv_statevar_2 == 20); ldv_9_ret_default = ldv_EMGentry_init_adm8211_driver_init_9_7(ldv_9_init_adm8211_driver_init_default); ldv_9_ret_default = ldv_post_init(ldv_9_ret_default); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_9 = 4; } else { ldv_statevar_9 = 6; } goto ldv_49527; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_49527: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_9 = 7; ldv_statevar_0 = 15; ldv_statevar_1 = 6; ldv_2_ret_default = 1; ldv_statevar_2 = 20; } ldv_49539: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_9((void *)0); } goto ldv_49534; case_1: /* CIL Label */ { ldv_ieee80211_ieee80211_instance_0((void *)0); } goto ldv_49534; case_2: /* CIL Label */ { ldv_interrupt_interrupt_instance_1((void *)0); } goto ldv_49534; case_3: /* CIL Label */ { ldv_pci_pci_instance_2((void *)0); } goto ldv_49534; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_49534: ; goto ldv_49539; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_3_line_line ; { { ldv_3_line_line = arg1; ldv_assume(ldv_statevar_1 == 2); ldv_dispatch_irq_deregister_3_1(ldv_3_line_line); } return; return; } } struct ieee80211_hw *ldv_ieee80211_alloc_hw(struct ieee80211_hw *arg0 , unsigned long arg1 , struct ieee80211_ops *arg2 ) { struct ieee80211_hw *ldv_4_ieee80211_hw_ieee80211_hw ; struct ieee80211_bss_conf *ldv_4_ieee80211_hw_struct_ieee80211_bss_conf_ptr ; struct ieee80211_low_level_stats *ldv_4_ieee80211_hw_struct_ieee80211_low_level_stats_ptr ; struct ieee80211_tx_control *ldv_4_ieee80211_hw_struct_ieee80211_tx_control_ptr ; struct ieee80211_vif *ldv_4_ieee80211_hw_struct_ieee80211_vif_ptr ; struct netdev_hw_addr_list *ldv_4_ieee80211_hw_struct_netdev_hw_addr_list_ptr ; struct sk_buff *ldv_4_ieee80211_hw_struct_sk_buff_ptr ; struct ieee80211_ops *ldv_4_ieee80211_ops_ieee80211_ops ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; int tmp___6 ; { { tmp___6 = ldv_undef_int(); } if (tmp___6 != 0) { { ldv_4_ieee80211_ops_ieee80211_ops = arg2; tmp = ldv_xmalloc(152UL); ldv_4_ieee80211_hw_ieee80211_hw = (struct ieee80211_hw *)tmp; tmp___0 = ldv_xmalloc(232UL); ldv_4_ieee80211_hw_struct_ieee80211_bss_conf_ptr = (struct ieee80211_bss_conf *)tmp___0; tmp___1 = ldv_xmalloc(16UL); ldv_4_ieee80211_hw_struct_ieee80211_low_level_stats_ptr = (struct ieee80211_low_level_stats *)tmp___1; tmp___2 = ldv_xmalloc(8UL); ldv_4_ieee80211_hw_struct_ieee80211_tx_control_ptr = (struct ieee80211_tx_control *)tmp___2; tmp___3 = ldv_xmalloc(280UL); ldv_4_ieee80211_hw_struct_ieee80211_vif_ptr = (struct ieee80211_vif *)tmp___3; tmp___4 = ldv_xmalloc(24UL); ldv_4_ieee80211_hw_struct_netdev_hw_addr_list_ptr = (struct netdev_hw_addr_list *)tmp___4; tmp___5 = ldv_xmalloc(232UL); ldv_4_ieee80211_hw_struct_sk_buff_ptr = (struct sk_buff *)tmp___5; ldv_assume(ldv_statevar_0 == 15); ldv_dispatch_register_4_3(ldv_4_ieee80211_hw_struct_ieee80211_tx_control_ptr); } return (ldv_4_ieee80211_hw_ieee80211_hw); return (arg0); } else { { ldv_assume((unsigned long )ldv_4_ieee80211_hw_ieee80211_hw == (unsigned long )((struct ieee80211_hw *)0)); } return ((struct ieee80211_hw *)0); return (arg0); } return (arg0); } } void ldv_ieee80211_free_hw(void *arg0 , struct ieee80211_hw **arg1 ) { struct ieee80211_hw *ldv_5_ieee80211_hw_ieee80211_hw ; { { ldv_assume(ldv_statevar_0 == 1); ldv_dispatch_deregister_5_2(ldv_5_ieee80211_hw_ieee80211_hw); ldv_free((void *)ldv_5_ieee80211_hw_ieee80211_hw); } return; return; } } void ldv_ieee80211_ieee80211_instance_0(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; { { if (ldv_statevar_0 == 1) { goto case_1; } else { } if (ldv_statevar_0 == 3) { goto case_3; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 6) { goto case_6; } else { } if (ldv_statevar_0 == 7) { goto case_7; } else { } if (ldv_statevar_0 == 8) { goto case_8; } else { } if (ldv_statevar_0 == 9) { goto case_9; } else { } if (ldv_statevar_0 == 10) { goto case_10; } else { } if (ldv_statevar_0 == 11) { goto case_11; } else { } if (ldv_statevar_0 == 12) { goto case_12; } else { } if (ldv_statevar_0 == 13) { goto case_13; } else { } if (ldv_statevar_0 == 14) { goto case_14; } else { } if (ldv_statevar_0 == 15) { goto case_15; } else { } if (ldv_statevar_0 == 19) { goto case_19; } else { } if (ldv_statevar_0 == 22) { goto case_22; } else { } if (ldv_statevar_0 == 25) { goto case_25; } else { } if (ldv_statevar_0 == 27) { goto case_27; } else { } if (ldv_statevar_0 == 28) { goto case_28; } else { } if (ldv_statevar_0 == 29) { goto case_29; } else { } if (ldv_statevar_0 == 30) { goto case_30; } else { } if (ldv_statevar_0 == 31) { goto case_31; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_49568; case_3: /* CIL Label */ { ldv_assume(ldv_0_ret_default != 0); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 1; } else { ldv_statevar_0 = 6; } goto ldv_49568; case_5: /* CIL Label */ { ldv_assume(ldv_0_ret_default == 0); ldv_statevar_0 = ldv_switch_0(); } goto ldv_49568; case_6: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 6); rtnl_lock(); ldv_0_ret_default = ldv_ieee80211_instance_start_0_6(ldv_0_container_ieee80211_ops->start, ldv_0_resource_ieee80211_hw); ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); rtnl_unlock(); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_0 = 3; } else { ldv_statevar_0 = 5; } goto ldv_49568; case_7: /* CIL Label */ { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_0 = 1; } else { ldv_statevar_0 = 6; } goto ldv_49568; case_8: /* CIL Label */ { ldv_assume(ldv_statevar_1 == 2); rtnl_lock(); ldv_ieee80211_instance_stop_0_8(ldv_0_container_ieee80211_ops->stop, ldv_0_resource_ieee80211_hw); rtnl_unlock(); ldv_statevar_0 = 7; } goto ldv_49568; case_9: /* CIL Label */ { ldv_statevar_0 = ldv_switch_0(); } goto ldv_49568; case_10: /* CIL Label */ { ldv_ieee80211_instance_callback_0_10(ldv_0_callback_add_interface, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_vif_ptr); ldv_statevar_0 = 9; } goto ldv_49568; case_11: /* CIL Label */ { ldv_statevar_0 = ldv_switch_0(); } goto ldv_49568; case_12: /* CIL Label */ ; if ((unsigned long )ldv_0_container_ieee80211_ops->resume != (unsigned long )((int (*)(struct ieee80211_hw * ))0)) { { ldv_ieee80211_instance_resume_0_12(ldv_0_container_ieee80211_ops->resume, ldv_0_resource_ieee80211_hw); } } else { } ldv_statevar_0 = 11; goto ldv_49568; case_13: /* CIL Label */ ldv_statevar_0 = 12; goto ldv_49568; case_14: /* CIL Label */ { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { ldv_statevar_0 = 1; } else { ldv_statevar_0 = 6; } goto ldv_49568; case_15: /* CIL Label */ ; goto ldv_49568; case_19: /* CIL Label */ { ldv_ieee80211_instance_callback_0_18(ldv_0_callback_bss_info_changed, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_vif_ptr, ldv_0_resource_struct_ieee80211_bss_conf_ptr, ldv_0_ldv_param_18_3_default); ldv_statevar_0 = 9; } goto ldv_49568; case_22: /* CIL Label */ { ldv_ieee80211_instance_callback_0_21(ldv_0_callback_config, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_21_1_default); ldv_statevar_0 = 9; } goto ldv_49568; case_25: /* CIL Label */ { tmp___3 = ldv_xmalloc(4UL); ldv_0_ldv_param_24_2_default = (unsigned int *)tmp___3; ldv_ieee80211_instance_callback_0_24(ldv_0_callback_configure_filter, ldv_0_resource_ieee80211_hw, ldv_0_ldv_param_24_1_default, ldv_0_ldv_param_24_2_default, ldv_0_ldv_param_24_3_default); ldv_free((void *)ldv_0_ldv_param_24_2_default); ldv_statevar_0 = 9; } goto ldv_49568; case_27: /* CIL Label */ { ldv_ieee80211_instance_callback_0_27(ldv_0_callback_get_stats, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_low_level_stats_ptr); ldv_statevar_0 = 9; } goto ldv_49568; case_28: /* CIL Label */ { ldv_ieee80211_instance_callback_0_28(ldv_0_callback_get_tsf, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_vif_ptr); ldv_statevar_0 = 9; } goto ldv_49568; case_29: /* CIL Label */ { ldv_ieee80211_instance_callback_0_29(ldv_0_callback_prepare_multicast, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_netdev_hw_addr_list_ptr); ldv_statevar_0 = 9; } goto ldv_49568; case_30: /* CIL Label */ { ldv_ieee80211_instance_callback_0_30(ldv_0_callback_remove_interface, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_vif_ptr); ldv_statevar_0 = 9; } goto ldv_49568; case_31: /* CIL Label */ { ldv_ieee80211_instance_callback_0_31(ldv_0_callback_tx, ldv_0_resource_ieee80211_hw, ldv_0_resource_struct_ieee80211_tx_control_ptr, ldv_0_resource_struct_sk_buff_ptr); ldv_statevar_0 = 9; } goto ldv_49568; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_49568: ; return; } } void ldv_ieee80211_instance_callback_0_10(int (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { adm8211_add_interface(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_18(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * , struct ieee80211_bss_conf * , unsigned int ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 , struct ieee80211_bss_conf *arg3 , unsigned int arg4 ) { { { adm8211_bss_info_changed(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_0_21(int (*arg0)(struct ieee80211_hw * , unsigned int ) , struct ieee80211_hw *arg1 , unsigned int arg2 ) { { { adm8211_config(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_24(void (*arg0)(struct ieee80211_hw * , unsigned int , unsigned int * , unsigned long long ) , struct ieee80211_hw *arg1 , unsigned int arg2 , unsigned int *arg3 , unsigned long long arg4 ) { { { adm8211_configure_filter(arg1, arg2, arg3, arg4); } return; } } void ldv_ieee80211_instance_callback_0_27(int (*arg0)(struct ieee80211_hw * , struct ieee80211_low_level_stats * ) , struct ieee80211_hw *arg1 , struct ieee80211_low_level_stats *arg2 ) { { { adm8211_get_stats(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_28(unsigned long long (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { adm8211_get_tsft(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_29(unsigned long long (*arg0)(struct ieee80211_hw * , struct netdev_hw_addr_list * ) , struct ieee80211_hw *arg1 , struct netdev_hw_addr_list *arg2 ) { { { adm8211_prepare_multicast(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_30(void (*arg0)(struct ieee80211_hw * , struct ieee80211_vif * ) , struct ieee80211_hw *arg1 , struct ieee80211_vif *arg2 ) { { { adm8211_remove_interface(arg1, arg2); } return; } } void ldv_ieee80211_instance_callback_0_31(void (*arg0)(struct ieee80211_hw * , struct ieee80211_tx_control * , struct sk_buff * ) , struct ieee80211_hw *arg1 , struct ieee80211_tx_control *arg2 , struct sk_buff *arg3 ) { { { adm8211_tx(arg1, arg2, arg3); } return; } } void ldv_ieee80211_instance_resume_0_12(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_ieee80211_instance_start_0_6(int (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { int tmp ; { { tmp = adm8211_start(arg1); } return (tmp); } } void ldv_ieee80211_instance_stop_0_8(void (*arg0)(struct ieee80211_hw * ) , struct ieee80211_hw *arg1 ) { { { adm8211_stop(arg1); } return; } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } enum irqreturn ldv_interrupt_instance_handler_1_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = adm8211_interrupt(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_1_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_1(void *arg0 ) { int tmp ; { { if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_1_ret_val_default != 2U); ldv_statevar_1 = 6; } goto ldv_49698; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_1_ret_val_default == 2U); } if ((unsigned long )ldv_1_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_1_3(ldv_1_thread_thread, ldv_1_line_line, ldv_1_data_data); } } else { } ldv_statevar_1 = 6; goto ldv_49698; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_1_ret_val_default = ldv_interrupt_instance_handler_1_5(ldv_1_callback_handler, ldv_1_line_line, ldv_1_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_1 = 2; } else { ldv_statevar_1 = 4; } goto ldv_49698; case_6: /* CIL Label */ ; goto ldv_49698; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_49698: ; return; } } int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = adm8211_probe(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { adm8211_remove(arg1); } return; } } void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { adm8211_resume(arg1); } return; } } void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = adm8211_suspend(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_2(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_2 == 1) { goto case_1; } else { } if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 3) { goto case_3; } else { } if (ldv_statevar_2 == 4) { goto case_4; } else { } if (ldv_statevar_2 == 5) { goto case_5; } else { } if (ldv_statevar_2 == 6) { goto case_6; } else { } if (ldv_statevar_2 == 7) { goto case_7; } else { } if (ldv_statevar_2 == 8) { goto case_8; } else { } if (ldv_statevar_2 == 9) { goto case_9; } else { } if (ldv_statevar_2 == 10) { goto case_10; } else { } if (ldv_statevar_2 == 12) { goto case_12; } else { } if (ldv_statevar_2 == 14) { goto case_14; } else { } if (ldv_statevar_2 == 16) { goto case_16; } else { } if (ldv_statevar_2 == 17) { goto case_17; } else { } if (ldv_statevar_2 == 19) { goto case_19; } else { } if (ldv_statevar_2 == 20) { goto case_20; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_49748; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 1); ldv_pci_instance_release_2_2(ldv_2_container_pci_driver->remove, ldv_2_resource_dev); ldv_statevar_2 = 1; } goto ldv_49748; case_3: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->shutdown != (unsigned long )((void (*)(struct pci_dev * ))0)) { { ldv_pci_instance_shutdown_2_3(ldv_2_container_pci_driver->shutdown, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 2; goto ldv_49748; case_4: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_49748; case_5: /* CIL Label */ { ldv_pci_instance_resume_2_5(ldv_2_container_pci_driver->resume, ldv_2_resource_dev); ldv_statevar_2 = 4; } goto ldv_49748; case_6: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_2_6(ldv_2_container_pci_driver->resume_early, ldv_2_resource_dev); } } else { } ldv_statevar_2 = 5; goto ldv_49748; case_7: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_late_2_7(ldv_2_container_pci_driver->suspend_late, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 6; } goto ldv_49748; case_8: /* CIL Label */ { ldv_2_ret_default = ldv_pci_instance_suspend_2_8(ldv_2_container_pci_driver->suspend, ldv_2_resource_dev, ldv_2_resource_pm_message); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); ldv_statevar_2 = 7; } goto ldv_49748; case_9: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_49748; case_10: /* CIL Label */ ldv_statevar_2 = 9; goto ldv_49748; case_12: /* CIL Label */ { ldv_free((void *)ldv_2_resource_dev); ldv_free((void *)ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = 1; ldv_statevar_2 = 20; } goto ldv_49748; case_14: /* CIL Label */ { ldv_assume(ldv_2_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_49748; case_16: /* CIL Label */ { ldv_assume(ldv_2_ret_default == 0); ldv_statevar_2 = ldv_switch_1(); } goto ldv_49748; case_17: /* CIL Label */ { ldv_assume(ldv_statevar_0 == 1 || ldv_statevar_0 == 15); ldv_pre_probe(); ldv_2_ret_default = ldv_pci_instance_probe_2_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_2_container_pci_driver->probe, ldv_2_resource_dev, ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = ldv_post_probe(ldv_2_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_2 = 14; } else { ldv_statevar_2 = 16; } goto ldv_49748; case_19: /* CIL Label */ { tmp___2 = ldv_xmalloc(2936UL); ldv_2_resource_dev = (struct pci_dev *)tmp___2; tmp___3 = ldv_xmalloc(32UL); ldv_2_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___3; tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_2 = 12; } else { ldv_statevar_2 = 17; } goto ldv_49748; case_20: /* CIL Label */ ; goto ldv_49748; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_49748: ; return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_7_pci_driver_pci_driver ; { { ldv_7_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_2 == 12); ldv_dispatch_deregister_7_1(ldv_7_pci_driver_pci_driver); } return; return; } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_6_callback_handler)(int , void * ) ; void *ldv_6_data_data ; int ldv_6_line_line ; enum irqreturn (*ldv_6_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_6_line_line = (int )arg1; ldv_6_callback_handler = arg2; ldv_6_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_6_data_data = arg5; ldv_assume(ldv_statevar_1 == 6); ldv_dispatch_irq_register_6_2(ldv_6_line_line, ldv_6_callback_handler, ldv_6_thread_thread, ldv_6_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } goto switch_default; case_0: /* CIL Label */ ; return (8); case_1: /* CIL Label */ ; return (10); case_2: /* CIL Label */ ; return (13); case_3: /* CIL Label */ ; return (19); case_4: /* CIL Label */ ; return (22); case_5: /* CIL Label */ ; return (25); case_6: /* CIL Label */ ; return (27); case_7: /* CIL Label */ ; return (28); case_8: /* CIL Label */ ; return (29); case_9: /* CIL Label */ ; return (30); case_10: /* CIL Label */ ; return (31); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (8); case_2: /* CIL Label */ ; return (10); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_0_1(void) { { ldv_statevar_0 = 15; return; } } void ldv_switch_automaton_state_0_15(void) { { ldv_statevar_0 = 14; return; } } void ldv_switch_automaton_state_1_1(void) { { ldv_statevar_1 = 6; return; } } void ldv_switch_automaton_state_1_6(void) { { ldv_statevar_1 = 5; return; } } void ldv_switch_automaton_state_2_11(void) { { ldv_2_ret_default = 1; ldv_statevar_2 = 20; return; } } void ldv_switch_automaton_state_2_20(void) { { ldv_statevar_2 = 19; return; } } static void *ldv_dev_get_drvdata_27(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_28(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } __inline static void ldv_spin_lock_60(spinlock_t *lock ) { { { ldv_spin_lock_lock_of_adm8211_priv(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_61(spinlock_t *lock ) { { { ldv_spin_unlock_lock_of_adm8211_priv(); spin_unlock(lock); } return; } } __inline static int ldv_request_irq_62(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_63(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static void ldv___ldv_spin_lock_64(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_adm8211_priv(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_65(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_lock_of_adm8211_priv(); spin_unlock_irqrestore(lock, flags); } return; } } static struct ieee80211_hw *ldv_ieee80211_alloc_hw_66(size_t ldv_func_arg1 , struct ieee80211_ops const *ldv_func_arg2 ) { ldv_func_ret_type___1 ldv_func_res ; struct ieee80211_hw *tmp ; struct ieee80211_hw *tmp___0 ; { { tmp = ieee80211_alloc_hw(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_ieee80211_alloc_hw(ldv_func_res, ldv_func_arg1, (struct ieee80211_ops *)ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static void ldv_ieee80211_free_hw_67(struct ieee80211_hw *ldv_func_arg1 ) { { { ieee80211_free_hw(ldv_func_arg1); ldv_ieee80211_free_hw((void *)0, (struct ieee80211_hw **)ldv_func_arg1); } return; } } static void ldv_ieee80211_free_hw_68(struct ieee80211_hw *ldv_func_arg1 ) { { { ieee80211_free_hw(ldv_func_arg1); ldv_ieee80211_free_hw((void *)0, (struct ieee80211_hw **)ldv_func_arg1); } return; } } static int ldv___pci_register_driver_69(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_70(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_check_alloc_flags(gfp_t ) ; extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; void *ldv_malloc_unknown_size(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_adm8211_priv = 1; void ldv_spin_lock_lock_of_adm8211_priv(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_adm8211_priv == 1); ldv_assume(ldv_spin_lock_of_adm8211_priv == 1); ldv_spin_lock_of_adm8211_priv = 2; } return; } } void ldv_spin_unlock_lock_of_adm8211_priv(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_adm8211_priv == 2); ldv_assume(ldv_spin_lock_of_adm8211_priv == 2); ldv_spin_lock_of_adm8211_priv = 1; } return; } } int ldv_spin_trylock_lock_of_adm8211_priv(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_adm8211_priv == 1); ldv_assume(ldv_spin_lock_of_adm8211_priv == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_adm8211_priv = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_adm8211_priv(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_adm8211_priv == 1); ldv_assume(ldv_spin_lock_of_adm8211_priv == 1); } return; } } int ldv_spin_is_locked_lock_of_adm8211_priv(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_adm8211_priv == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_adm8211_priv(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_adm8211_priv(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_adm8211_priv(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_adm8211_priv(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_adm8211_priv == 1); ldv_assume(ldv_spin_lock_of_adm8211_priv == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_adm8211_priv = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_adm8211_priv == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_siglock_of_sighand_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lock_of_adm8211_priv == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }