/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u32 uint32_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; typedef void (*ctor_fn_t)(void); struct file_operations; struct completion; struct pid; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct inode; struct cdev { struct kobject kobj ; struct module *owner ; struct file_operations const *ops ; struct list_head list ; dev_t dev ; unsigned int count ; }; struct backing_dev_info; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_41 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_40 { struct __anonstruct____missing_field_name_41 __annonCompField22 ; }; struct lockref { union __anonunion____missing_field_name_40 __annonCompField23 ; }; struct nameidata; struct path; struct vfsmount; struct __anonstruct____missing_field_name_43 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_42 { struct __anonstruct____missing_field_name_43 __annonCompField24 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_42 __annonCompField25 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_44 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_44 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct __anonstruct_nodemask_t_45 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_45 nodemask_t; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct llist_node; struct llist_node { struct llist_node *next ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct __anonstruct_mm_context_t_112 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_112 mm_context_t; struct block_device; struct io_context; struct export_operations; struct iovec; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct cred; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_139 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_139 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_140 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_140 __annonCompField37 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; struct address_space; struct writeback_control; union __anonunion_arg_142 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_141 { size_t written ; size_t count ; union __anonunion_arg_142 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_141 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_143 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_144 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; union __anonunion____missing_field_name_145 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_143 __annonCompField38 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_144 __annonCompField39 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_145 __annonCompField40 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_146 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_146 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_148 { struct list_head link ; int state ; }; union __anonunion_fl_u_147 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_148 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_147 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_151 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_152 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_150 { struct __anonstruct____missing_field_name_151 __annonCompField42 ; struct __anonstruct____missing_field_name_152 __annonCompField43 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_150 __annonCompField44 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; union __anonunion____missing_field_name_153 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_155 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_159 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_158 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_159 __annonCompField47 ; int units ; }; struct __anonstruct____missing_field_name_157 { union __anonunion____missing_field_name_158 __annonCompField48 ; atomic_t _count ; }; union __anonunion____missing_field_name_156 { unsigned long counters ; struct __anonstruct____missing_field_name_157 __annonCompField49 ; unsigned int active ; }; struct __anonstruct____missing_field_name_154 { union __anonunion____missing_field_name_155 __annonCompField46 ; union __anonunion____missing_field_name_156 __annonCompField50 ; }; struct __anonstruct____missing_field_name_161 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_160 { struct list_head lru ; struct __anonstruct____missing_field_name_161 __annonCompField52 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_162 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_153 __annonCompField45 ; struct __anonstruct____missing_field_name_154 __annonCompField51 ; union __anonunion____missing_field_name_160 __annonCompField53 ; union __anonunion____missing_field_name_162 __annonCompField54 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_164 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_163 { struct __anonstruct_linear_164 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_163 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct user_struct; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct exception_table_entry { int insn ; int fixup ; }; struct nsproxy; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_173 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_173 __annonCompField58 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct mem_cgroup; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_177 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_178 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_176 { struct __anonstruct____missing_field_name_177 __annonCompField61 ; struct __anonstruct____missing_field_name_178 __annonCompField62 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_176 __annonCompField63 ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; typedef unsigned long cputime_t; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; struct __anonstruct_sigset_t_179 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_179 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_181 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_182 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_184 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_185 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_186 { long _band ; int _fd ; }; struct __anonstruct__sigsys_187 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_180 { int _pad[28U] ; struct __anonstruct__kill_181 _kill ; struct __anonstruct__timer_182 _timer ; struct __anonstruct__rt_183 _rt ; struct __anonstruct__sigchld_184 _sigchld ; struct __anonstruct__sigfault_185 _sigfault ; struct __anonstruct__sigpoll_186 _sigpoll ; struct __anonstruct__sigsys_187 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_180 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_190 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_191 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_193 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_192 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_193 __annonCompField66 ; }; union __anonunion_type_data_194 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_196 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_195 { union __anonunion_payload_196 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_190 __annonCompField64 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_191 __annonCompField65 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_192 __annonCompField67 ; union __anonunion_type_data_194 type_data ; union __anonunion____missing_field_name_195 __annonCompField68 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; struct vfsmount { struct dentry *mnt_root ; struct super_block *mnt_sb ; int mnt_flags ; }; struct nameidata { struct path path ; struct qstr last ; struct path root ; struct inode *inode ; unsigned int flags ; unsigned int seq ; unsigned int m_seq ; int last_type ; unsigned int depth ; char *saved_names[9U] ; }; struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned int flags : 8 ; }; struct seq_operations; enum hrtimer_restart; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct match_token { int token ; char const *pattern ; }; struct __anonstruct_substring_t_170 { char *from ; char *to ; }; typedef struct __anonstruct_substring_t_170 substring_t; typedef unsigned int autofs_wqt_t; struct autofs_sb_info; struct autofs_info { struct dentry *dentry ; struct inode *inode ; int flags ; struct completion expire_complete ; struct list_head active ; int active_count ; struct list_head expiring ; struct autofs_sb_info *sbi ; unsigned long last_used ; atomic_t count ; kuid_t uid ; kgid_t gid ; }; struct autofs_wait_queue { wait_queue_head_t queue ; struct autofs_wait_queue *next ; autofs_wqt_t wait_queue_token ; struct qstr name ; u32 dev ; u64 ino ; kuid_t uid ; kgid_t gid ; pid_t pid ; pid_t tgid ; int status ; unsigned int wait_ctr ; }; struct autofs_sb_info { u32 magic ; int pipefd ; struct file *pipe ; struct pid *oz_pgrp ; int catatonic ; int version ; int sub_version ; int min_proto ; int max_proto ; unsigned long exp_timeout ; unsigned int type ; int reghost_enabled ; int needs_reghost ; struct super_block *sb ; struct mutex wq_mutex ; struct mutex pipe_mutex ; spinlock_t fs_lock ; struct autofs_wait_queue *queues ; spinlock_t lookup_lock ; struct list_head active_list ; struct list_head expiring_list ; struct callback_head rcu ; }; enum hrtimer_restart; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; typedef s32 compat_long_t; typedef u32 compat_ulong_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; struct autofs_packet_hdr { int proto_version ; int type ; }; struct autofs_packet_expire { struct autofs_packet_hdr hdr ; int len ; char name[256U] ; }; enum autofs_notify { NFY_NONE = 0, NFY_MOUNT = 1, NFY_EXPIRE = 2 } ; enum hrtimer_restart; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; struct exec_domain; struct map_segment; struct exec_domain { char const *name ; void (*handler)(int , struct pt_regs * ) ; unsigned char pers_low ; unsigned char pers_high ; unsigned long *signal_map ; unsigned long *signal_invmap ; struct map_segment *err_map ; struct map_segment *socktype_map ; struct map_segment *sockopt_map ; struct map_segment *af_map ; struct module *module ; struct exec_domain *next ; }; struct __anonstruct_mm_segment_t_27 { unsigned long seg ; }; typedef struct __anonstruct_mm_segment_t_27 mm_segment_t; struct compat_timespec; struct __anonstruct_futex_32 { u32 *uaddr ; u32 val ; u32 flags ; u32 bitset ; u64 time ; u32 *uaddr2 ; }; struct __anonstruct_nanosleep_33 { clockid_t clockid ; struct timespec *rmtp ; struct compat_timespec *compat_rmtp ; u64 expires ; }; struct pollfd; struct __anonstruct_poll_34 { struct pollfd *ufds ; int nfds ; int has_timeout ; unsigned long tv_sec ; unsigned long tv_nsec ; }; union __anonunion____missing_field_name_31 { struct __anonstruct_futex_32 futex ; struct __anonstruct_nanosleep_33 nanosleep ; struct __anonstruct_poll_34 poll ; }; struct restart_block { long (*fn)(struct restart_block * ) ; union __anonunion____missing_field_name_31 __annonCompField20 ; }; struct thread_info { struct task_struct *task ; struct exec_domain *exec_domain ; __u32 flags ; __u32 status ; __u32 cpu ; int saved_preempt_count ; mm_segment_t addr_limit ; struct restart_block restart_block ; void *sysenter_return ; unsigned int sig_on_uaccess_error : 1 ; unsigned int uaccess_err : 1 ; }; typedef int pao_T__; typedef int pao_T_____0; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue; typedef struct __wait_queue wait_queue_t; struct __wait_queue { unsigned int flags ; void *private ; int (*func)(wait_queue_t * , unsigned int , int , void * ) ; struct list_head task_list ; }; enum hrtimer_restart; struct autofs_packet_missing { struct autofs_packet_hdr hdr ; autofs_wqt_t wait_queue_token ; int len ; char name[256U] ; }; struct autofs_packet_expire_multi { struct autofs_packet_hdr hdr ; autofs_wqt_t wait_queue_token ; int len ; char name[256U] ; }; union autofs_packet_union { struct autofs_packet_hdr hdr ; struct autofs_packet_missing missing ; struct autofs_packet_expire expire ; struct autofs_packet_expire_multi expire_multi ; }; struct autofs_v5_packet { struct autofs_packet_hdr hdr ; autofs_wqt_t wait_queue_token ; __u32 dev ; __u64 ino ; __u32 uid ; __u32 gid ; __u32 pid ; __u32 tgid ; __u32 len ; char name[256U] ; }; typedef struct autofs_v5_packet autofs_packet_missing_indirect_t; typedef struct autofs_v5_packet autofs_packet_expire_indirect_t; typedef struct autofs_v5_packet autofs_packet_missing_direct_t; typedef struct autofs_v5_packet autofs_packet_expire_direct_t; union autofs_v5_packet_union { struct autofs_packet_hdr hdr ; struct autofs_v5_packet v5_packet ; autofs_packet_missing_indirect_t missing_indirect ; autofs_packet_expire_indirect_t expire_indirect ; autofs_packet_missing_direct_t missing_direct ; autofs_packet_expire_direct_t expire_direct ; }; union __anonunion_pkt_194 { struct autofs_packet_hdr hdr ; union autofs_packet_union v4_pkt ; union autofs_v5_packet_union v5_pkt ; }; enum hrtimer_restart; typedef int ldv_func_ret_type; struct device; typedef unsigned int uint; typedef unsigned long ulong; struct bin_attribute; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; enum hrtimer_restart; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct device_node; struct net; struct miscdevice { int minor ; char const *name ; struct file_operations const *fops ; struct list_head list ; struct device *parent ; struct device *this_device ; char const *nodename ; umode_t mode ; }; struct fdtable { unsigned int max_fds ; struct file **fd ; unsigned long *close_on_exec ; unsigned long *open_fds ; struct callback_head rcu ; }; struct files_struct { atomic_t count ; struct fdtable *fdt ; struct fdtable fdtab ; spinlock_t file_lock ; int next_fd ; unsigned long close_on_exec_init[1U] ; unsigned long open_fds_init[1U] ; struct file *fd_array[64U] ; }; struct uts_namespace; struct perf_event_attr; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct ring_buffer; struct ring_buffer_iter; struct trace_seq; struct trace_seq { unsigned char buffer[4096U] ; unsigned int len ; unsigned int readpos ; int full ; }; union __anonunion____missing_field_name_219 { __u64 sample_period ; __u64 sample_freq ; }; union __anonunion____missing_field_name_220 { __u32 wakeup_events ; __u32 wakeup_watermark ; }; union __anonunion____missing_field_name_221 { __u64 bp_addr ; __u64 config1 ; }; union __anonunion____missing_field_name_222 { __u64 bp_len ; __u64 config2 ; }; struct perf_event_attr { __u32 type ; __u32 size ; __u64 config ; union __anonunion____missing_field_name_219 __annonCompField65 ; __u64 sample_type ; __u64 read_format ; __u64 disabled : 1 ; __u64 inherit : 1 ; __u64 pinned : 1 ; __u64 exclusive : 1 ; __u64 exclude_user : 1 ; __u64 exclude_kernel : 1 ; __u64 exclude_hv : 1 ; __u64 exclude_idle : 1 ; __u64 mmap : 1 ; __u64 comm : 1 ; __u64 freq : 1 ; __u64 inherit_stat : 1 ; __u64 enable_on_exec : 1 ; __u64 task : 1 ; __u64 watermark : 1 ; __u64 precise_ip : 2 ; __u64 mmap_data : 1 ; __u64 sample_id_all : 1 ; __u64 exclude_host : 1 ; __u64 exclude_guest : 1 ; __u64 exclude_callchain_kernel : 1 ; __u64 exclude_callchain_user : 1 ; __u64 mmap2 : 1 ; __u64 __reserved_1 : 40 ; union __anonunion____missing_field_name_220 __annonCompField66 ; __u32 bp_type ; union __anonunion____missing_field_name_221 __annonCompField67 ; union __anonunion____missing_field_name_222 __annonCompField68 ; __u64 branch_sample_type ; __u64 sample_regs_user ; __u32 sample_stack_user ; __u32 __reserved_2 ; }; struct __anonstruct____missing_field_name_225 { __u64 mem_op : 5 ; __u64 mem_lvl : 14 ; __u64 mem_snoop : 5 ; __u64 mem_lock : 2 ; __u64 mem_dtlb : 7 ; __u64 mem_rsvd : 31 ; }; union perf_mem_data_src { __u64 val ; struct __anonstruct____missing_field_name_225 __annonCompField71 ; }; struct perf_branch_entry { __u64 from ; __u64 to ; __u64 mispred : 1 ; __u64 predicted : 1 ; __u64 in_tx : 1 ; __u64 abort : 1 ; __u64 reserved : 60 ; }; struct __anonstruct_local_t_229 { atomic_long_t a ; }; typedef struct __anonstruct_local_t_229 local_t; struct __anonstruct_local64_t_230 { local_t a ; }; typedef struct __anonstruct_local64_t_230 local64_t; struct arch_hw_breakpoint { unsigned long address ; u8 len ; u8 type ; }; struct pmu; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct pidmap { atomic_t nr_free ; void *page ; }; struct bsd_acct_struct; struct pid_namespace { struct kref kref ; struct pidmap pidmap[128U] ; struct callback_head rcu ; int last_pid ; unsigned int nr_hashed ; struct task_struct *child_reaper ; struct kmem_cache *pid_cachep ; unsigned int level ; struct pid_namespace *parent ; struct vfsmount *proc_mnt ; struct dentry *proc_self ; struct bsd_acct_struct *bacct ; struct user_namespace *user_ns ; struct work_struct proc_work ; kgid_t pid_gid ; int hide_pid ; int reboot ; unsigned int proc_inum ; }; struct ftrace_hash; struct ftrace_ops; struct ftrace_ops { void (*func)(unsigned long , unsigned long , struct ftrace_ops * , struct pt_regs * ) ; struct ftrace_ops *next ; unsigned long flags ; int *disabled ; struct ftrace_hash *notrace_hash ; struct ftrace_hash *filter_hash ; struct mutex regex_lock ; }; struct ftrace_ret_stack { unsigned long ret ; unsigned long func ; unsigned long long calltime ; unsigned long long subtime ; unsigned long fp ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct irq_work { unsigned long flags ; struct llist_node llnode ; void (*func)(struct irq_work * ) ; }; struct perf_callchain_entry { __u64 nr ; __u64 ip[127U] ; }; struct perf_raw_record { u32 size ; void *data ; }; struct perf_branch_stack { __u64 nr ; struct perf_branch_entry entries[0U] ; }; struct perf_regs_user { __u64 abi ; struct pt_regs *regs ; }; struct hw_perf_event_extra { u64 config ; unsigned int reg ; int alloc ; int idx ; }; struct event_constraint; struct __anonstruct____missing_field_name_233 { u64 config ; u64 last_tag ; unsigned long config_base ; unsigned long event_base ; int event_base_rdpmc ; int idx ; int last_cpu ; int flags ; struct hw_perf_event_extra extra_reg ; struct hw_perf_event_extra branch_reg ; struct event_constraint *constraint ; }; struct __anonstruct____missing_field_name_234 { struct hrtimer hrtimer ; }; struct __anonstruct____missing_field_name_235 { struct task_struct *tp_target ; struct list_head tp_list ; }; struct __anonstruct____missing_field_name_236 { struct task_struct *bp_target ; struct arch_hw_breakpoint info ; struct list_head bp_list ; }; union __anonunion____missing_field_name_232 { struct __anonstruct____missing_field_name_233 __annonCompField73 ; struct __anonstruct____missing_field_name_234 __annonCompField74 ; struct __anonstruct____missing_field_name_235 __annonCompField75 ; struct __anonstruct____missing_field_name_236 __annonCompField76 ; }; struct hw_perf_event { union __anonunion____missing_field_name_232 __annonCompField77 ; int state ; local64_t prev_count ; u64 sample_period ; u64 last_period ; local64_t period_left ; u64 interrupts_seq ; u64 interrupts ; u64 freq_time_stamp ; u64 freq_count_stamp ; }; struct perf_cpu_context; struct pmu { struct list_head entry ; struct device *dev ; struct attribute_group const **attr_groups ; char const *name ; int type ; int *pmu_disable_count ; struct perf_cpu_context *pmu_cpu_context ; int task_ctx_nr ; int hrtimer_interval_ms ; void (*pmu_enable)(struct pmu * ) ; void (*pmu_disable)(struct pmu * ) ; int (*event_init)(struct perf_event * ) ; int (*add)(struct perf_event * , int ) ; void (*del)(struct perf_event * , int ) ; void (*start)(struct perf_event * , int ) ; void (*stop)(struct perf_event * , int ) ; void (*read)(struct perf_event * ) ; void (*start_txn)(struct pmu * ) ; int (*commit_txn)(struct pmu * ) ; void (*cancel_txn)(struct pmu * ) ; int (*event_idx)(struct perf_event * ) ; void (*flush_branch_stack)(void) ; }; enum perf_event_active_state { PERF_EVENT_STATE_ERROR = -2, PERF_EVENT_STATE_OFF = -1, PERF_EVENT_STATE_INACTIVE = 0, PERF_EVENT_STATE_ACTIVE = 1 } ; struct perf_sample_data; struct perf_cgroup; struct event_filter; struct perf_event { struct list_head event_entry ; struct list_head group_entry ; struct list_head sibling_list ; struct list_head migrate_entry ; struct hlist_node hlist_entry ; struct list_head active_entry ; int nr_siblings ; int group_flags ; struct perf_event *group_leader ; struct pmu *pmu ; enum perf_event_active_state state ; unsigned int attach_state ; local64_t count ; atomic64_t child_count ; u64 total_time_enabled ; u64 total_time_running ; u64 tstamp_enabled ; u64 tstamp_running ; u64 tstamp_stopped ; u64 shadow_ctx_time ; struct perf_event_attr attr ; u16 header_size ; u16 id_header_size ; u16 read_size ; struct hw_perf_event hw ; struct perf_event_context *ctx ; atomic_long_t refcount ; atomic64_t child_total_time_enabled ; atomic64_t child_total_time_running ; struct mutex child_mutex ; struct list_head child_list ; struct perf_event *parent ; int oncpu ; int cpu ; struct list_head owner_entry ; struct task_struct *owner ; struct mutex mmap_mutex ; atomic_t mmap_count ; struct ring_buffer *rb ; struct list_head rb_entry ; wait_queue_head_t waitq ; struct fasync_struct *fasync ; int pending_wakeup ; int pending_kill ; int pending_disable ; struct irq_work pending ; atomic_t event_limit ; void (*destroy)(struct perf_event * ) ; struct callback_head callback_head ; struct pid_namespace *ns ; u64 id ; void (*overflow_handler)(struct perf_event * , struct perf_sample_data * , struct pt_regs * ) ; void *overflow_handler_context ; struct ftrace_event_call *tp_event ; struct event_filter *filter ; struct ftrace_ops ftrace_ops ; struct perf_cgroup *cgrp ; int cgrp_defer_enabled ; }; enum perf_event_context_type { task_context = 0, cpu_context = 1 } ; struct perf_event_context { struct pmu *pmu ; enum perf_event_context_type type ; raw_spinlock_t lock ; struct mutex mutex ; struct list_head pinned_groups ; struct list_head flexible_groups ; struct list_head event_list ; int nr_events ; int nr_active ; int is_active ; int nr_stat ; int nr_freq ; int rotate_disable ; atomic_t refcount ; struct task_struct *task ; u64 time ; u64 timestamp ; struct perf_event_context *parent_ctx ; u64 parent_gen ; u64 generation ; int pin_count ; int nr_cgroups ; int nr_branch_stack ; struct callback_head callback_head ; }; struct perf_cpu_context { struct perf_event_context ctx ; struct perf_event_context *task_ctx ; int active_oncpu ; int exclusive ; struct hrtimer hrtimer ; ktime_t hrtimer_interval ; struct list_head rotation_list ; struct pmu *unique_pmu ; struct perf_cgroup *cgrp ; }; struct __anonstruct_tid_entry_237 { u32 pid ; u32 tid ; }; struct __anonstruct_cpu_entry_238 { u32 cpu ; u32 reserved ; }; struct perf_sample_data { u64 type ; u64 ip ; struct __anonstruct_tid_entry_237 tid_entry ; u64 time ; u64 addr ; u64 id ; u64 stream_id ; struct __anonstruct_cpu_entry_238 cpu_entry ; u64 period ; union perf_mem_data_src data_src ; struct perf_callchain_entry *callchain ; struct perf_raw_record *raw ; struct perf_branch_stack *br_stack ; struct perf_regs_user regs_user ; u64 stack_user_size ; u64 weight ; u64 txn ; }; struct trace_array; struct trace_buffer; struct tracer; struct trace_iterator; struct trace_event; struct trace_entry { unsigned short type ; unsigned char flags ; unsigned char preempt_count ; int pid ; }; struct trace_iterator { struct trace_array *tr ; struct tracer *trace ; struct trace_buffer *trace_buffer ; void *private ; int cpu_file ; struct mutex mutex ; struct ring_buffer_iter **buffer_iter ; unsigned long iter_flags ; struct trace_seq tmp_seq ; cpumask_var_t started ; bool snapshot ; struct trace_seq seq ; struct trace_entry *ent ; unsigned long lost_events ; int leftover ; int ent_size ; int cpu ; u64 ts ; loff_t pos ; long idx ; }; enum print_line_t; struct trace_event_functions { enum print_line_t (*trace)(struct trace_iterator * , int , struct trace_event * ) ; enum print_line_t (*raw)(struct trace_iterator * , int , struct trace_event * ) ; enum print_line_t (*hex)(struct trace_iterator * , int , struct trace_event * ) ; enum print_line_t (*binary)(struct trace_iterator * , int , struct trace_event * ) ; }; struct trace_event { struct hlist_node node ; struct list_head list ; int type ; struct trace_event_functions *funcs ; }; enum print_line_t { TRACE_TYPE_PARTIAL_LINE = 0, TRACE_TYPE_HANDLED = 1, TRACE_TYPE_UNHANDLED = 2, TRACE_TYPE_NO_CONSUME = 3 } ; enum trace_reg { TRACE_REG_REGISTER = 0, TRACE_REG_UNREGISTER = 1, TRACE_REG_PERF_REGISTER = 2, TRACE_REG_PERF_UNREGISTER = 3, TRACE_REG_PERF_OPEN = 4, TRACE_REG_PERF_CLOSE = 5, TRACE_REG_PERF_ADD = 6, TRACE_REG_PERF_DEL = 7 } ; struct ftrace_event_class { char *system ; void *probe ; void *perf_probe ; int (*reg)(struct ftrace_event_call * , enum trace_reg , void * ) ; int (*define_fields)(struct ftrace_event_call * ) ; struct list_head *(*get_fields)(struct ftrace_event_call * ) ; struct list_head fields ; int (*raw_init)(struct ftrace_event_call * ) ; }; struct ftrace_event_call { struct list_head list ; struct ftrace_event_class *class ; char *name ; struct trace_event event ; char const *print_fmt ; struct event_filter *filter ; struct list_head *files ; void *mod ; void *data ; int flags ; int perf_refcount ; struct hlist_head *perf_events ; int (*perf_perm)(struct ftrace_event_call * , struct perf_event * ) ; }; struct args_protover { __u32 version ; }; struct args_protosubver { __u32 sub_version ; }; struct args_openmount { __u32 devid ; }; struct args_ready { __u32 token ; }; struct args_fail { __u32 token ; __s32 status ; }; struct args_setpipefd { __s32 pipefd ; }; struct args_timeout { __u64 timeout ; }; struct args_requester { __u32 uid ; __u32 gid ; }; struct args_expire { __u32 how ; }; struct args_askumount { __u32 may_umount ; }; struct args_in { __u32 type ; }; struct args_out { __u32 devid ; __u32 magic ; }; union __anonunion____missing_field_name_242 { struct args_in in ; struct args_out out ; }; struct args_ismountpoint { union __anonunion____missing_field_name_242 __annonCompField81 ; }; union __anonunion____missing_field_name_243 { struct args_protover protover ; struct args_protosubver protosubver ; struct args_openmount openmount ; struct args_ready ready ; struct args_fail fail ; struct args_setpipefd setpipefd ; struct args_timeout timeout ; struct args_requester requester ; struct args_expire expire ; struct args_askumount askumount ; struct args_ismountpoint ismountpoint ; }; struct autofs_dev_ioctl { __u32 ver_major ; __u32 ver_minor ; __u32 size ; __s32 ioctlfd ; union __anonunion____missing_field_name_243 __annonCompField82 ; char path[0U] ; }; typedef int (*ioctl_fn)(struct file * , struct autofs_sb_info * , struct autofs_dev_ioctl * ); struct __anonstruct__ioctls_245 { int cmd ; int (*fn)(struct file * , struct autofs_sb_info * , struct autofs_dev_ioctl * ) ; }; typedef int ldv_func_ret_type___0; struct device_private { void *driver_data ; }; typedef u64 dma_addr_t; enum hrtimer_restart; typedef unsigned long kernel_ulong_t; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; extern struct module __this_module ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; void ldv_check_final_state(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; int ldv_undef_int(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void *external_allocated_data(void) ; extern struct dentry *mount_nodev(struct file_system_type * , int , void * , int (*)(struct super_block * , void * , int ) ) ; extern int register_filesystem(struct file_system_type * ) ; extern int unregister_filesystem(struct file_system_type * ) ; int autofs_dev_ioctl_init(void) ; void autofs_dev_ioctl_exit(void) ; int autofs4_fill_super(struct super_block *s , void *data , int silent ) ; void autofs4_kill_sb(struct super_block *sb ) ; static struct dentry *autofs_mount(struct file_system_type *fs_type , int flags , char const *dev_name , void *data ) { struct dentry *tmp ; { { tmp = mount_nodev(fs_type, flags, data, & autofs4_fill_super); } return (tmp); } } static struct file_system_type autofs_fs_type = {"autofs", 0, & autofs_mount, & autofs4_kill_sb, & __this_module, 0, {0}, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}, {{{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}, {{{(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}, {(char)0}}}}; static int init_autofs4_fs(void) { int err ; { { autofs_dev_ioctl_init(); err = register_filesystem(& autofs_fs_type); } if (err != 0) { { autofs_dev_ioctl_exit(); } } else { } return (err); } } static void exit_autofs4_fs(void) { { { autofs_dev_ioctl_exit(); unregister_filesystem(& autofs_fs_type); } return; } } void ldv_EMGentry_exit_exit_autofs4_fs_8_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_init_autofs4_fs_8_13(int (*arg0)(void) ) ; void ldv_allocate_external_0(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_4_8_4(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_5_8_5(void) ; void ldv_dispatch_deregister_dummy_resourceless_instance_6_8_6(void) ; void ldv_dispatch_register_dummy_resourceless_instance_4_8_7(void) ; void ldv_dispatch_register_dummy_resourceless_instance_5_8_8(void) ; void ldv_dispatch_register_dummy_resourceless_instance_6_8_9(void) ; void ldv_dummy_resourceless_instance_callback_3_10(void (*arg0)(struct dentry * ) , struct dentry *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_3(struct vfsmount *(*arg0)(struct path * ) , struct path *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_7(int (*arg0)(struct dentry * , _Bool ) , struct dentry *arg1 , _Bool arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_10(int (*arg0)(struct inode * , struct dentry * , unsigned short ) , struct inode *arg1 , struct dentry *arg2 , unsigned short arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_13(int (*arg0)(struct dentry * , char * , int ) , struct dentry *arg1 , char *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_16(int (*arg0)(struct inode * , struct dentry * ) , struct inode *arg1 , struct dentry *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_17(int (*arg0)(struct inode * , struct dentry * , char * ) , struct inode *arg1 , struct dentry *arg2 , char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_4_20(int (*arg0)(struct inode * , struct dentry * ) , struct inode *arg1 , struct dentry *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_3(void *(*arg0)(struct dentry * , struct nameidata * ) , struct dentry *arg1 , struct nameidata *arg2 ) ; void ldv_dummy_resourceless_instance_callback_4_7(struct dentry *(*arg0)(struct inode * , struct dentry * , unsigned int ) , struct inode *arg1 , struct dentry *arg2 , unsigned int arg3 ) ; void ldv_dummy_resourceless_instance_callback_5_3(void (*arg0)(struct inode * ) , struct inode *arg1 ) ; void ldv_dummy_resourceless_instance_callback_5_7(int (*arg0)(struct seq_file * , struct dentry * ) , struct seq_file *arg1 , struct dentry *arg2 ) ; void ldv_dummy_resourceless_instance_callback_5_8(int (*arg0)(struct dentry * , struct kstatfs * ) , struct dentry *arg1 , struct kstatfs *arg2 ) ; void ldv_entry_EMGentry_8(void *arg0 ) ; int main(void) ; void ldv_file_operations_file_operations_instance_0(void *arg0 ) ; void ldv_file_operations_file_operations_instance_1(void *arg0 ) ; void ldv_file_operations_file_operations_instance_2(void *arg0 ) ; void ldv_file_operations_instance_callback_0_22(int (*arg0)(struct file * , struct dir_context * ) , struct file *arg1 , struct dir_context *arg2 ) ; void ldv_file_operations_instance_callback_0_23(void (*arg0)(struct super_block * ) , struct super_block *arg1 ) ; void ldv_file_operations_instance_callback_0_29(struct dentry *(*arg0)(struct file_system_type * , int , char * , void * ) , struct file_system_type *arg1 , int arg2 , char *arg3 , void *arg4 ) ; void ldv_file_operations_instance_callback_0_32(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_1_22(int (*arg0)(struct file * , struct dir_context * ) , struct file *arg1 , struct dir_context *arg2 ) ; void ldv_file_operations_instance_callback_1_23(void (*arg0)(struct super_block * ) , struct super_block *arg1 ) ; void ldv_file_operations_instance_callback_1_26(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_1_29(struct dentry *(*arg0)(struct file_system_type * , int , char * , void * ) , struct file_system_type *arg1 , int arg2 , char *arg3 , void *arg4 ) ; void ldv_file_operations_instance_callback_1_32(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_1_35(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_file_operations_instance_callback_1_5(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_file_operations_instance_callback_2_22(int (*arg0)(struct file * , struct dir_context * ) , struct file *arg1 , struct dir_context *arg2 ) ; void ldv_file_operations_instance_callback_2_23(void (*arg0)(struct super_block * ) , struct super_block *arg1 ) ; void ldv_file_operations_instance_callback_2_26(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_2_29(struct dentry *(*arg0)(struct file_system_type * , int , char * , void * ) , struct file_system_type *arg1 , int arg2 , char *arg3 , void *arg4 ) ; void ldv_file_operations_instance_callback_2_32(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_callback_2_35(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_file_operations_instance_callback_2_5(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; int ldv_file_operations_instance_probe_1_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; int ldv_file_operations_instance_probe_2_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_1_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_release_2_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) ; void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_1_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_file_operations_instance_write_2_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) ; void ldv_initialize_external_data(void) ; void ldv_struct_dentry_operations_dummy_resourceless_instance_3(void *arg0 ) ; void ldv_struct_inode_operations_dummy_resourceless_instance_4(void *arg0 ) ; void ldv_struct_super_operations_dummy_resourceless_instance_5(void *arg0 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; int ldv_switch_2(void) ; int ldv_switch_3(void) ; int ldv_switch_4(void) ; void ldv_switch_automaton_state_1_15(void) ; void ldv_switch_automaton_state_1_6(void) ; void ldv_switch_automaton_state_2_15(void) ; void ldv_switch_automaton_state_2_6(void) ; void ldv_switch_automaton_state_3_1(void) ; void ldv_switch_automaton_state_3_5(void) ; void ldv_switch_automaton_state_4_1(void) ; void ldv_switch_automaton_state_4_5(void) ; void ldv_switch_automaton_state_5_1(void) ; void ldv_switch_automaton_state_5_5(void) ; int (*ldv_0_callback_iterate)(struct file * , struct dir_context * ) ; void (*ldv_0_callback_kill_sb)(struct super_block * ) ; struct dentry *(*ldv_0_callback_mount)(struct file_system_type * , int , char * , void * ) ; long (*ldv_0_callback_read)(struct file * , char * , unsigned long , long long * ) ; struct super_block *ldv_0_ldv_param_23_0_default ; long long ldv_0_ldv_param_26_1_default ; int ldv_0_ldv_param_26_2_default ; struct file_system_type *ldv_0_ldv_param_29_0_default ; int ldv_0_ldv_param_29_1_default ; char *ldv_0_ldv_param_29_2_default ; char *ldv_0_ldv_param_32_1_default ; long long *ldv_0_ldv_param_32_3_default ; unsigned int ldv_0_ldv_param_35_1_default ; char *ldv_0_ldv_param_4_1_default ; long long *ldv_0_ldv_param_4_3_default ; unsigned int ldv_0_ldv_param_5_1_default ; struct file *ldv_0_resource_file ; struct inode *ldv_0_resource_inode ; int ldv_0_ret_default ; struct dir_context *ldv_0_size_cnt_struct_dir_context_ptr ; struct file_system_type *ldv_0_size_cnt_struct_file_system_type ; struct super_block *ldv_0_size_cnt_struct_super_block_ptr ; unsigned long ldv_0_size_cnt_write_size ; long (*ldv_1_callback_compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*ldv_1_callback_iterate)(struct file * , struct dir_context * ) ; void (*ldv_1_callback_kill_sb)(struct super_block * ) ; long long (*ldv_1_callback_llseek)(struct file * , long long , int ) ; struct dentry *(*ldv_1_callback_mount)(struct file_system_type * , int , char * , void * ) ; long (*ldv_1_callback_read)(struct file * , char * , unsigned long , long long * ) ; long (*ldv_1_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; struct file_operations *ldv_1_container_file_operations ; struct super_block *ldv_1_ldv_param_23_0_default ; long long ldv_1_ldv_param_26_1_default ; int ldv_1_ldv_param_26_2_default ; struct file_system_type *ldv_1_ldv_param_29_0_default ; int ldv_1_ldv_param_29_1_default ; char *ldv_1_ldv_param_29_2_default ; char *ldv_1_ldv_param_32_1_default ; long long *ldv_1_ldv_param_32_3_default ; unsigned int ldv_1_ldv_param_35_1_default ; char *ldv_1_ldv_param_4_1_default ; long long *ldv_1_ldv_param_4_3_default ; unsigned int ldv_1_ldv_param_5_1_default ; struct file *ldv_1_resource_file ; struct inode *ldv_1_resource_inode ; int ldv_1_ret_default ; struct dir_context *ldv_1_size_cnt_struct_dir_context_ptr ; struct file_system_type *ldv_1_size_cnt_struct_file_system_type ; struct super_block *ldv_1_size_cnt_struct_super_block_ptr ; unsigned long ldv_1_size_cnt_write_size ; long (*ldv_2_callback_compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*ldv_2_callback_iterate)(struct file * , struct dir_context * ) ; void (*ldv_2_callback_kill_sb)(struct super_block * ) ; long long (*ldv_2_callback_llseek)(struct file * , long long , int ) ; struct dentry *(*ldv_2_callback_mount)(struct file_system_type * , int , char * , void * ) ; long (*ldv_2_callback_read)(struct file * , char * , unsigned long , long long * ) ; long (*ldv_2_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; struct file_operations *ldv_2_container_file_operations ; struct super_block *ldv_2_ldv_param_23_0_default ; long long ldv_2_ldv_param_26_1_default ; int ldv_2_ldv_param_26_2_default ; struct file_system_type *ldv_2_ldv_param_29_0_default ; int ldv_2_ldv_param_29_1_default ; char *ldv_2_ldv_param_29_2_default ; char *ldv_2_ldv_param_32_1_default ; long long *ldv_2_ldv_param_32_3_default ; unsigned int ldv_2_ldv_param_35_1_default ; char *ldv_2_ldv_param_4_1_default ; long long *ldv_2_ldv_param_4_3_default ; unsigned int ldv_2_ldv_param_5_1_default ; struct file *ldv_2_resource_file ; struct inode *ldv_2_resource_inode ; int ldv_2_ret_default ; struct dir_context *ldv_2_size_cnt_struct_dir_context_ptr ; struct file_system_type *ldv_2_size_cnt_struct_file_system_type ; struct super_block *ldv_2_size_cnt_struct_super_block_ptr ; unsigned long ldv_2_size_cnt_write_size ; struct vfsmount *(*ldv_3_callback_d_automount)(struct path * ) ; int (*ldv_3_callback_d_manage)(struct dentry * , _Bool ) ; void (*ldv_3_callback_d_release)(struct dentry * ) ; struct dentry *ldv_3_container_struct_dentry_ptr ; struct path *ldv_3_container_struct_path_ptr ; _Bool ldv_3_ldv_param_7_1_default ; void *(*ldv_4_callback_follow_link)(struct dentry * , struct nameidata * ) ; struct dentry *(*ldv_4_callback_lookup)(struct inode * , struct dentry * , unsigned int ) ; int (*ldv_4_callback_mkdir)(struct inode * , struct dentry * , unsigned short ) ; int (*ldv_4_callback_readlink)(struct dentry * , char * , int ) ; int (*ldv_4_callback_rmdir)(struct inode * , struct dentry * ) ; int (*ldv_4_callback_symlink)(struct inode * , struct dentry * , char * ) ; int (*ldv_4_callback_unlink)(struct inode * , struct dentry * ) ; struct dentry *ldv_4_container_struct_dentry_ptr ; struct inode *ldv_4_container_struct_inode_ptr ; struct nameidata *ldv_4_container_struct_nameidata_ptr ; unsigned short ldv_4_ldv_param_10_2_default ; char *ldv_4_ldv_param_13_1_default ; int ldv_4_ldv_param_13_2_default ; char *ldv_4_ldv_param_17_2_default ; unsigned int ldv_4_ldv_param_7_2_default ; void (*ldv_5_callback_evict_inode)(struct inode * ) ; int (*ldv_5_callback_show_options)(struct seq_file * , struct dentry * ) ; int (*ldv_5_callback_statfs)(struct dentry * , struct kstatfs * ) ; struct dentry *ldv_5_container_struct_dentry_ptr ; struct inode *ldv_5_container_struct_inode_ptr ; struct kstatfs *ldv_5_container_struct_kstatfs_ptr ; struct seq_file *ldv_5_container_struct_seq_file_ptr ; void (*ldv_8_exit_exit_autofs4_fs_default)(void) ; int (*ldv_8_init_init_autofs4_fs_default)(void) ; int ldv_8_ret_default ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_2 ; int ldv_statevar_3 ; int ldv_statevar_4 ; int ldv_statevar_5 ; int ldv_statevar_8 ; void (*ldv_0_callback_kill_sb)(struct super_block * ) = & autofs4_kill_sb; struct dentry *(*ldv_0_callback_mount)(struct file_system_type * , int , char * , void * ) = (struct dentry *(*)(struct file_system_type * , int , char * , void * ))(& autofs_mount); void (*ldv_1_callback_kill_sb)(struct super_block * ) = & autofs4_kill_sb; struct dentry *(*ldv_1_callback_mount)(struct file_system_type * , int , char * , void * ) = (struct dentry *(*)(struct file_system_type * , int , char * , void * ))(& autofs_mount); void (*ldv_2_callback_kill_sb)(struct super_block * ) = & autofs4_kill_sb; struct dentry *(*ldv_2_callback_mount)(struct file_system_type * , int , char * , void * ) = (struct dentry *(*)(struct file_system_type * , int , char * , void * ))(& autofs_mount); void (*ldv_8_exit_exit_autofs4_fs_default)(void) = & exit_autofs4_fs; int (*ldv_8_init_init_autofs4_fs_default)(void) = & init_autofs4_fs; void ldv_EMGentry_exit_exit_autofs4_fs_8_2(void (*arg0)(void) ) { { { exit_autofs4_fs(); } return; } } int ldv_EMGentry_init_init_autofs4_fs_8_13(int (*arg0)(void) ) { int tmp ; { { tmp = init_autofs4_fs(); } return (tmp); } } void ldv_allocate_external_0(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; void *tmp___13 ; void *tmp___14 ; void *tmp___15 ; void *tmp___16 ; void *tmp___17 ; void *tmp___18 ; void *tmp___19 ; void *tmp___20 ; void *tmp___21 ; void *tmp___22 ; void *tmp___23 ; void *tmp___24 ; void *tmp___25 ; void *tmp___26 ; void *tmp___27 ; void *tmp___28 ; void *tmp___29 ; void *tmp___30 ; void *tmp___31 ; void *tmp___32 ; void *tmp___33 ; void *tmp___34 ; void *tmp___35 ; void *tmp___36 ; void *tmp___37 ; void *tmp___38 ; void *tmp___39 ; void *tmp___40 ; void *tmp___41 ; void *tmp___42 ; void *tmp___43 ; void *tmp___44 ; void *tmp___45 ; void *tmp___46 ; { { tmp = external_allocated_data(); ldv_0_callback_iterate = (int (*)(struct file * , struct dir_context * ))tmp; tmp___0 = external_allocated_data(); ldv_0_callback_read = (long (*)(struct file * , char * , unsigned long , long long * ))tmp___0; tmp___1 = external_allocated_data(); ldv_0_ldv_param_23_0_default = (struct super_block *)tmp___1; tmp___2 = external_allocated_data(); ldv_0_ldv_param_29_0_default = (struct file_system_type *)tmp___2; tmp___3 = external_allocated_data(); ldv_0_ldv_param_29_2_default = (char *)tmp___3; tmp___4 = external_allocated_data(); ldv_0_ldv_param_32_1_default = (char *)tmp___4; tmp___5 = external_allocated_data(); ldv_0_ldv_param_32_3_default = (long long *)tmp___5; tmp___6 = external_allocated_data(); ldv_0_ldv_param_4_1_default = (char *)tmp___6; tmp___7 = external_allocated_data(); ldv_0_ldv_param_4_3_default = (long long *)tmp___7; tmp___8 = external_allocated_data(); ldv_0_resource_file = (struct file *)tmp___8; tmp___9 = external_allocated_data(); ldv_0_resource_inode = (struct inode *)tmp___9; tmp___10 = external_allocated_data(); ldv_0_size_cnt_struct_dir_context_ptr = (struct dir_context *)tmp___10; tmp___11 = external_allocated_data(); ldv_0_size_cnt_struct_super_block_ptr = (struct super_block *)tmp___11; tmp___12 = external_allocated_data(); ldv_1_callback_compat_ioctl = (long (*)(struct file * , unsigned int , unsigned long ))tmp___12; tmp___13 = external_allocated_data(); ldv_1_callback_unlocked_ioctl = (long (*)(struct file * , unsigned int , unsigned long ))tmp___13; tmp___14 = external_allocated_data(); ldv_1_ldv_param_23_0_default = (struct super_block *)tmp___14; tmp___15 = external_allocated_data(); ldv_1_ldv_param_29_0_default = (struct file_system_type *)tmp___15; tmp___16 = external_allocated_data(); ldv_1_ldv_param_29_2_default = (char *)tmp___16; tmp___17 = external_allocated_data(); ldv_1_ldv_param_32_1_default = (char *)tmp___17; tmp___18 = external_allocated_data(); ldv_1_ldv_param_32_3_default = (long long *)tmp___18; tmp___19 = external_allocated_data(); ldv_1_ldv_param_4_1_default = (char *)tmp___19; tmp___20 = external_allocated_data(); ldv_1_ldv_param_4_3_default = (long long *)tmp___20; tmp___21 = external_allocated_data(); ldv_1_resource_file = (struct file *)tmp___21; tmp___22 = external_allocated_data(); ldv_1_resource_inode = (struct inode *)tmp___22; tmp___23 = external_allocated_data(); ldv_1_size_cnt_struct_dir_context_ptr = (struct dir_context *)tmp___23; tmp___24 = external_allocated_data(); ldv_1_size_cnt_struct_super_block_ptr = (struct super_block *)tmp___24; tmp___25 = external_allocated_data(); ldv_2_ldv_param_23_0_default = (struct super_block *)tmp___25; tmp___26 = external_allocated_data(); ldv_2_ldv_param_29_0_default = (struct file_system_type *)tmp___26; tmp___27 = external_allocated_data(); ldv_2_ldv_param_29_2_default = (char *)tmp___27; tmp___28 = external_allocated_data(); ldv_2_ldv_param_32_1_default = (char *)tmp___28; tmp___29 = external_allocated_data(); ldv_2_ldv_param_32_3_default = (long long *)tmp___29; tmp___30 = external_allocated_data(); ldv_2_ldv_param_4_1_default = (char *)tmp___30; tmp___31 = external_allocated_data(); ldv_2_ldv_param_4_3_default = (long long *)tmp___31; tmp___32 = external_allocated_data(); ldv_2_resource_file = (struct file *)tmp___32; tmp___33 = external_allocated_data(); ldv_2_resource_inode = (struct inode *)tmp___33; tmp___34 = external_allocated_data(); ldv_2_size_cnt_struct_dir_context_ptr = (struct dir_context *)tmp___34; tmp___35 = external_allocated_data(); ldv_2_size_cnt_struct_super_block_ptr = (struct super_block *)tmp___35; tmp___36 = external_allocated_data(); ldv_3_container_struct_dentry_ptr = (struct dentry *)tmp___36; tmp___37 = external_allocated_data(); ldv_3_container_struct_path_ptr = (struct path *)tmp___37; tmp___38 = external_allocated_data(); ldv_4_container_struct_dentry_ptr = (struct dentry *)tmp___38; tmp___39 = external_allocated_data(); ldv_4_container_struct_inode_ptr = (struct inode *)tmp___39; tmp___40 = external_allocated_data(); ldv_4_container_struct_nameidata_ptr = (struct nameidata *)tmp___40; tmp___41 = external_allocated_data(); ldv_4_ldv_param_13_1_default = (char *)tmp___41; tmp___42 = external_allocated_data(); ldv_4_ldv_param_17_2_default = (char *)tmp___42; tmp___43 = external_allocated_data(); ldv_5_container_struct_dentry_ptr = (struct dentry *)tmp___43; tmp___44 = external_allocated_data(); ldv_5_container_struct_inode_ptr = (struct inode *)tmp___44; tmp___45 = external_allocated_data(); ldv_5_container_struct_kstatfs_ptr = (struct kstatfs *)tmp___45; tmp___46 = external_allocated_data(); ldv_5_container_struct_seq_file_ptr = (struct seq_file *)tmp___46; } return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_4_8_4(void) { { { ldv_switch_automaton_state_3_1(); } return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_5_8_5(void) { { { ldv_switch_automaton_state_4_1(); } return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_6_8_6(void) { { { ldv_switch_automaton_state_5_1(); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_4_8_7(void) { { { ldv_switch_automaton_state_3_5(); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_5_8_8(void) { { { ldv_switch_automaton_state_4_5(); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_6_8_9(void) { { { ldv_switch_automaton_state_5_5(); } return; } } void ldv_entry_EMGentry_8(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_8 == 2) { goto case_2; } else { } if (ldv_statevar_8 == 3) { goto case_3; } else { } if (ldv_statevar_8 == 4) { goto case_4; } else { } if (ldv_statevar_8 == 5) { goto case_5; } else { } if (ldv_statevar_8 == 6) { goto case_6; } else { } if (ldv_statevar_8 == 7) { goto case_7; } else { } if (ldv_statevar_8 == 8) { goto case_8; } else { } if (ldv_statevar_8 == 9) { goto case_9; } else { } if (ldv_statevar_8 == 10) { goto case_10; } else { } if (ldv_statevar_8 == 12) { goto case_12; } else { } if (ldv_statevar_8 == 13) { goto case_13; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((ldv_statevar_0 == 7 || ldv_statevar_1 == 7) || ldv_statevar_2 == 7); ldv_EMGentry_exit_exit_autofs4_fs_8_2(ldv_8_exit_exit_autofs4_fs_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_8 = 13; } goto ldv_28552; case_3: /* CIL Label */ { ldv_assume((ldv_statevar_0 == 7 || ldv_statevar_1 == 7) || ldv_statevar_2 == 7); ldv_EMGentry_exit_exit_autofs4_fs_8_2(ldv_8_exit_exit_autofs4_fs_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_8 = 13; } goto ldv_28552; case_4: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 1); ldv_dispatch_deregister_dummy_resourceless_instance_4_8_4(); ldv_statevar_8 = 2; } goto ldv_28552; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 1); ldv_dispatch_deregister_dummy_resourceless_instance_5_8_5(); ldv_statevar_8 = 4; } goto ldv_28552; case_6: /* CIL Label */ { ldv_assume(ldv_statevar_5 == 1); ldv_dispatch_deregister_dummy_resourceless_instance_6_8_6(); ldv_statevar_8 = 5; } goto ldv_28552; case_7: /* CIL Label */ { ldv_assume(ldv_statevar_3 == 5); ldv_dispatch_register_dummy_resourceless_instance_4_8_7(); ldv_statevar_8 = 6; } goto ldv_28552; case_8: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 5); ldv_dispatch_register_dummy_resourceless_instance_5_8_8(); ldv_statevar_8 = 7; } goto ldv_28552; case_9: /* CIL Label */ { ldv_assume(ldv_statevar_5 == 5); ldv_dispatch_register_dummy_resourceless_instance_6_8_9(); ldv_statevar_8 = 8; } goto ldv_28552; case_10: /* CIL Label */ { ldv_assume(ldv_8_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_8 = 3; } else { ldv_statevar_8 = 9; } goto ldv_28552; case_12: /* CIL Label */ { ldv_assume(ldv_8_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_8 = 13; } goto ldv_28552; case_13: /* CIL Label */ { ldv_assume(((((ldv_statevar_0 == 7 || ldv_statevar_0 == 15) || ldv_statevar_1 == 7) || ldv_statevar_1 == 15) || ldv_statevar_2 == 7) || ldv_statevar_2 == 15); ldv_8_ret_default = ldv_EMGentry_init_init_autofs4_fs_8_13(ldv_8_init_init_autofs4_fs_default); ldv_8_ret_default = ldv_post_init(ldv_8_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_8 = 10; } else { ldv_statevar_8 = 12; } goto ldv_28552; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_28552: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_8 = 13; ldv_0_ret_default = 1; ldv_statevar_0 = 15; ldv_1_ret_default = 1; ldv_statevar_1 = 15; ldv_2_ret_default = 1; ldv_statevar_2 = 15; ldv_statevar_3 = 5; ldv_statevar_4 = 5; ldv_statevar_5 = 5; } ldv_28575: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_8((void *)0); } goto ldv_28567; case_1: /* CIL Label */ { ldv_file_operations_file_operations_instance_0((void *)0); } goto ldv_28567; case_2: /* CIL Label */ { ldv_file_operations_file_operations_instance_1((void *)0); } goto ldv_28567; case_3: /* CIL Label */ { ldv_file_operations_file_operations_instance_2((void *)0); } goto ldv_28567; case_4: /* CIL Label */ { ldv_struct_dentry_operations_dummy_resourceless_instance_3((void *)0); } goto ldv_28567; case_5: /* CIL Label */ { ldv_struct_inode_operations_dummy_resourceless_instance_4((void *)0); } goto ldv_28567; case_6: /* CIL Label */ { ldv_struct_super_operations_dummy_resourceless_instance_5((void *)0); } goto ldv_28567; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_28567: ; goto ldv_28575; } } void ldv_file_operations_file_operations_instance_1(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; int tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; { { if (ldv_statevar_1 == 1) { goto case_1; } else { } if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 3) { goto case_3; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 7) { goto case_7; } else { } if (ldv_statevar_1 == 9) { goto case_9; } else { } if (ldv_statevar_1 == 11) { goto case_11; } else { } if (ldv_statevar_1 == 12) { goto case_12; } else { } if (ldv_statevar_1 == 14) { goto case_14; } else { } if (ldv_statevar_1 == 15) { goto case_15; } else { } if (ldv_statevar_1 == 18) { goto case_18; } else { } if (ldv_statevar_1 == 20) { goto case_20; } else { } if (ldv_statevar_1 == 22) { goto case_22; } else { } if (ldv_statevar_1 == 24) { goto case_24; } else { } if (ldv_statevar_1 == 27) { goto case_27; } else { } if (ldv_statevar_1 == 30) { goto case_30; } else { } if (ldv_statevar_1 == 33) { goto case_33; } else { } if (ldv_statevar_1 == 36) { goto case_36; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_1 = 7; } else { ldv_statevar_1 = 12; } goto ldv_28580; case_2: /* CIL Label */ { ldv_file_operations_instance_release_1_2(ldv_1_container_file_operations->release, ldv_1_resource_inode, ldv_1_resource_file); ldv_statevar_1 = 1; } goto ldv_28580; case_3: /* CIL Label */ { ldv_statevar_1 = ldv_switch_0(); } goto ldv_28580; case_5: /* CIL Label */ ; if ((unsigned long )ldv_1_callback_compat_ioctl != (unsigned long )((long (*)(struct file * , unsigned int , unsigned long ))0)) { { ldv_file_operations_instance_callback_1_5(ldv_1_callback_compat_ioctl, ldv_1_resource_file, ldv_1_ldv_param_5_1_default, ldv_1_size_cnt_write_size); } } else { } ldv_statevar_1 = 3; goto ldv_28580; case_7: /* CIL Label */ { ldv_free((void *)ldv_1_resource_file); ldv_free((void *)ldv_1_resource_inode); ldv_1_ret_default = 1; ldv_statevar_1 = 15; } goto ldv_28580; case_9: /* CIL Label */ { ldv_assume(ldv_1_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_1 = 7; } else { ldv_statevar_1 = 12; } goto ldv_28580; case_11: /* CIL Label */ { ldv_assume(ldv_1_ret_default == 0); ldv_statevar_1 = ldv_switch_0(); } goto ldv_28580; case_12: /* CIL Label */ { ldv_1_ret_default = ldv_file_operations_instance_probe_1_12(ldv_1_container_file_operations->open, ldv_1_resource_inode, ldv_1_resource_file); ldv_1_ret_default = ldv_filter_err_code(ldv_1_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_1 = 9; } else { ldv_statevar_1 = 11; } goto ldv_28580; case_14: /* CIL Label */ { tmp___2 = ldv_xmalloc(520UL); ldv_1_resource_file = (struct file *)tmp___2; tmp___3 = ldv_xmalloc(1032UL); ldv_1_resource_inode = (struct inode *)tmp___3; tmp___4 = ldv_undef_int(); ldv_1_size_cnt_struct_dir_context_ptr = (struct dir_context *)((long )tmp___4); tmp___5 = ldv_undef_int(); } if (tmp___5 != 0) { ldv_statevar_1 = 7; } else { ldv_statevar_1 = 12; } goto ldv_28580; case_15: /* CIL Label */ ; goto ldv_28580; case_18: /* CIL Label */ { tmp___6 = ldv_xmalloc(1UL); ldv_1_ldv_param_4_1_default = (char *)tmp___6; tmp___7 = ldv_xmalloc(8UL); ldv_1_ldv_param_4_3_default = (long long *)tmp___7; ldv_assume((unsigned long )ldv_1_size_cnt_struct_dir_context_ptr <= (unsigned long )((struct dir_context *)2147479552)); } if ((unsigned long )ldv_1_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_1_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_1_container_file_operations->write, ldv_1_resource_file, ldv_1_ldv_param_4_1_default, ldv_1_size_cnt_write_size, ldv_1_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_1_ldv_param_4_1_default); ldv_free((void *)ldv_1_ldv_param_4_3_default); ldv_statevar_1 = 3; } goto ldv_28580; case_20: /* CIL Label */ { ldv_statevar_1 = ldv_switch_1(); } goto ldv_28580; case_22: /* CIL Label */ { ldv_file_operations_instance_callback_1_22(ldv_1_callback_iterate, ldv_1_resource_file, ldv_1_size_cnt_struct_dir_context_ptr); ldv_statevar_1 = 3; } goto ldv_28580; case_24: /* CIL Label */ { tmp___8 = ldv_xmalloc(2432UL); ldv_1_ldv_param_23_0_default = (struct super_block *)tmp___8; ldv_file_operations_instance_callback_1_23(ldv_1_callback_kill_sb, ldv_1_ldv_param_23_0_default); ldv_free((void *)ldv_1_ldv_param_23_0_default); ldv_statevar_1 = 3; } goto ldv_28580; case_27: /* CIL Label */ { ldv_file_operations_instance_callback_1_26(ldv_1_callback_llseek, ldv_1_resource_file, ldv_1_ldv_param_26_1_default, ldv_1_ldv_param_26_2_default); ldv_statevar_1 = 3; } goto ldv_28580; case_30: /* CIL Label */ { tmp___9 = ldv_xmalloc(128UL); ldv_1_ldv_param_29_0_default = (struct file_system_type *)tmp___9; tmp___10 = ldv_xmalloc(1UL); ldv_1_ldv_param_29_2_default = (char *)tmp___10; ldv_file_operations_instance_callback_1_29(ldv_1_callback_mount, ldv_1_ldv_param_29_0_default, ldv_1_ldv_param_29_1_default, ldv_1_ldv_param_29_2_default, (void *)ldv_1_resource_file); ldv_free((void *)ldv_1_ldv_param_29_0_default); ldv_free((void *)ldv_1_ldv_param_29_2_default); ldv_statevar_1 = 3; } goto ldv_28580; case_33: /* CIL Label */ { tmp___11 = ldv_xmalloc(1UL); ldv_1_ldv_param_32_1_default = (char *)tmp___11; tmp___12 = ldv_xmalloc(8UL); ldv_1_ldv_param_32_3_default = (long long *)tmp___12; ldv_file_operations_instance_callback_1_32(ldv_1_callback_read, ldv_1_resource_file, ldv_1_ldv_param_32_1_default, ldv_1_size_cnt_write_size, ldv_1_ldv_param_32_3_default); ldv_free((void *)ldv_1_ldv_param_32_1_default); ldv_free((void *)ldv_1_ldv_param_32_3_default); ldv_statevar_1 = 3; } goto ldv_28580; case_36: /* CIL Label */ ; if ((unsigned long )ldv_1_callback_unlocked_ioctl != (unsigned long )((long (*)(struct file * , unsigned int , unsigned long ))0)) { { ldv_file_operations_instance_callback_1_35(ldv_1_callback_unlocked_ioctl, ldv_1_resource_file, ldv_1_ldv_param_35_1_default, ldv_1_size_cnt_write_size); } } else { } ldv_statevar_1 = 3; goto ldv_28580; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_28580: ; return; } } void ldv_file_operations_file_operations_instance_2(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; int tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; { { if (ldv_statevar_2 == 1) { goto case_1; } else { } if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 3) { goto case_3; } else { } if (ldv_statevar_2 == 5) { goto case_5; } else { } if (ldv_statevar_2 == 7) { goto case_7; } else { } if (ldv_statevar_2 == 9) { goto case_9; } else { } if (ldv_statevar_2 == 11) { goto case_11; } else { } if (ldv_statevar_2 == 12) { goto case_12; } else { } if (ldv_statevar_2 == 14) { goto case_14; } else { } if (ldv_statevar_2 == 15) { goto case_15; } else { } if (ldv_statevar_2 == 18) { goto case_18; } else { } if (ldv_statevar_2 == 20) { goto case_20; } else { } if (ldv_statevar_2 == 22) { goto case_22; } else { } if (ldv_statevar_2 == 24) { goto case_24; } else { } if (ldv_statevar_2 == 27) { goto case_27; } else { } if (ldv_statevar_2 == 30) { goto case_30; } else { } if (ldv_statevar_2 == 33) { goto case_33; } else { } if (ldv_statevar_2 == 36) { goto case_36; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_2 = 7; } else { ldv_statevar_2 = 12; } goto ldv_28603; case_2: /* CIL Label */ { ldv_file_operations_instance_release_2_2(ldv_2_container_file_operations->release, ldv_2_resource_inode, ldv_2_resource_file); ldv_statevar_2 = 1; } goto ldv_28603; case_3: /* CIL Label */ { ldv_statevar_2 = ldv_switch_0(); } goto ldv_28603; case_5: /* CIL Label */ { ldv_file_operations_instance_callback_2_5(ldv_2_callback_compat_ioctl, ldv_2_resource_file, ldv_2_ldv_param_5_1_default, ldv_2_size_cnt_write_size); ldv_statevar_2 = 3; } goto ldv_28603; case_7: /* CIL Label */ { ldv_free((void *)ldv_2_resource_file); ldv_free((void *)ldv_2_resource_inode); ldv_2_ret_default = 1; ldv_statevar_2 = 15; } goto ldv_28603; case_9: /* CIL Label */ { ldv_assume(ldv_2_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_2 = 7; } else { ldv_statevar_2 = 12; } goto ldv_28603; case_11: /* CIL Label */ { ldv_assume(ldv_2_ret_default == 0); ldv_statevar_2 = ldv_switch_0(); } goto ldv_28603; case_12: /* CIL Label */ { ldv_2_ret_default = ldv_file_operations_instance_probe_2_12(ldv_2_container_file_operations->open, ldv_2_resource_inode, ldv_2_resource_file); ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_2 = 9; } else { ldv_statevar_2 = 11; } goto ldv_28603; case_14: /* CIL Label */ { tmp___2 = ldv_xmalloc(520UL); ldv_2_resource_file = (struct file *)tmp___2; tmp___3 = ldv_xmalloc(1032UL); ldv_2_resource_inode = (struct inode *)tmp___3; tmp___4 = ldv_undef_int(); ldv_2_size_cnt_struct_dir_context_ptr = (struct dir_context *)((long )tmp___4); tmp___5 = ldv_undef_int(); } if (tmp___5 != 0) { ldv_statevar_2 = 7; } else { ldv_statevar_2 = 12; } goto ldv_28603; case_15: /* CIL Label */ ; goto ldv_28603; case_18: /* CIL Label */ { tmp___6 = ldv_xmalloc(1UL); ldv_2_ldv_param_4_1_default = (char *)tmp___6; tmp___7 = ldv_xmalloc(8UL); ldv_2_ldv_param_4_3_default = (long long *)tmp___7; ldv_assume((unsigned long )ldv_2_size_cnt_struct_dir_context_ptr <= (unsigned long )((struct dir_context *)2147479552)); } if ((unsigned long )ldv_2_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_2_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_2_container_file_operations->write, ldv_2_resource_file, ldv_2_ldv_param_4_1_default, ldv_2_size_cnt_write_size, ldv_2_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_2_ldv_param_4_1_default); ldv_free((void *)ldv_2_ldv_param_4_3_default); ldv_statevar_2 = 3; } goto ldv_28603; case_20: /* CIL Label */ { ldv_statevar_2 = ldv_switch_1(); } goto ldv_28603; case_22: /* CIL Label */ { ldv_file_operations_instance_callback_2_22(ldv_2_callback_iterate, ldv_2_resource_file, ldv_2_size_cnt_struct_dir_context_ptr); ldv_statevar_2 = 3; } goto ldv_28603; case_24: /* CIL Label */ { tmp___8 = ldv_xmalloc(2432UL); ldv_2_ldv_param_23_0_default = (struct super_block *)tmp___8; ldv_file_operations_instance_callback_2_23(ldv_2_callback_kill_sb, ldv_2_ldv_param_23_0_default); ldv_free((void *)ldv_2_ldv_param_23_0_default); ldv_statevar_2 = 3; } goto ldv_28603; case_27: /* CIL Label */ { ldv_file_operations_instance_callback_2_26(ldv_2_callback_llseek, ldv_2_resource_file, ldv_2_ldv_param_26_1_default, ldv_2_ldv_param_26_2_default); ldv_statevar_2 = 3; } goto ldv_28603; case_30: /* CIL Label */ { tmp___9 = ldv_xmalloc(128UL); ldv_2_ldv_param_29_0_default = (struct file_system_type *)tmp___9; tmp___10 = ldv_xmalloc(1UL); ldv_2_ldv_param_29_2_default = (char *)tmp___10; ldv_file_operations_instance_callback_2_29(ldv_2_callback_mount, ldv_2_ldv_param_29_0_default, ldv_2_ldv_param_29_1_default, ldv_2_ldv_param_29_2_default, (void *)ldv_2_resource_file); ldv_free((void *)ldv_2_ldv_param_29_0_default); ldv_free((void *)ldv_2_ldv_param_29_2_default); ldv_statevar_2 = 3; } goto ldv_28603; case_33: /* CIL Label */ { tmp___11 = ldv_xmalloc(1UL); ldv_2_ldv_param_32_1_default = (char *)tmp___11; tmp___12 = ldv_xmalloc(8UL); ldv_2_ldv_param_32_3_default = (long long *)tmp___12; ldv_file_operations_instance_callback_2_32(ldv_2_callback_read, ldv_2_resource_file, ldv_2_ldv_param_32_1_default, ldv_2_size_cnt_write_size, ldv_2_ldv_param_32_3_default); ldv_free((void *)ldv_2_ldv_param_32_1_default); ldv_free((void *)ldv_2_ldv_param_32_3_default); ldv_statevar_2 = 3; } goto ldv_28603; case_36: /* CIL Label */ { ldv_file_operations_instance_callback_2_35(ldv_2_callback_unlocked_ioctl, ldv_2_resource_file, ldv_2_ldv_param_35_1_default, ldv_2_size_cnt_write_size); ldv_statevar_2 = 3; } goto ldv_28603; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_28603: ; return; } } void ldv_file_operations_instance_callback_0_22(int (*arg0)(struct file * , struct dir_context * ) , struct file *arg1 , struct dir_context *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_0_23(void (*arg0)(struct super_block * ) , struct super_block *arg1 ) { { { autofs4_kill_sb(arg1); } return; } } void ldv_file_operations_instance_callback_0_29(struct dentry *(*arg0)(struct file_system_type * , int , char * , void * ) , struct file_system_type *arg1 , int arg2 , char *arg3 , void *arg4 ) { { { autofs_mount(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_file_operations_instance_callback_0_32(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_1_23(void (*arg0)(struct super_block * ) , struct super_block *arg1 ) { { { autofs4_kill_sb(arg1); } return; } } void ldv_file_operations_instance_callback_1_29(struct dentry *(*arg0)(struct file_system_type * , int , char * , void * ) , struct file_system_type *arg1 , int arg2 , char *arg3 , void *arg4 ) { { { autofs_mount(arg1, arg2, (char const *)arg3, arg4); } return; } } void ldv_file_operations_instance_callback_1_35(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { (*arg0)(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_1_5(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { (*arg0)(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_2_23(void (*arg0)(struct super_block * ) , struct super_block *arg1 ) { { { autofs4_kill_sb(arg1); } return; } } void ldv_file_operations_instance_callback_2_29(struct dentry *(*arg0)(struct file_system_type * , int , char * , void * ) , struct file_system_type *arg1 , int arg2 , char *arg3 , void *arg4 ) { { { autofs_mount(arg1, arg2, (char const *)arg3, arg4); } return; } } int ldv_file_operations_instance_probe_0_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_release_0_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_file_operations_instance_write_0_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_1_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_write_2_4(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { (*arg0)(arg1, arg2, arg3, arg4); } return; } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } void ldv_struct_dentry_operations_dummy_resourceless_instance_3(void *arg0 ) { { { if (ldv_statevar_3 == 1) { goto case_1; } else { } if (ldv_statevar_3 == 2) { goto case_2; } else { } if (ldv_statevar_3 == 3) { goto case_3; } else { } if (ldv_statevar_3 == 4) { goto case_4; } else { } if (ldv_statevar_3 == 5) { goto case_5; } else { } if (ldv_statevar_3 == 8) { goto case_8; } else { } if (ldv_statevar_3 == 10) { goto case_10; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_28759; case_2: /* CIL Label */ { ldv_statevar_3 = ldv_switch_2(); } goto ldv_28759; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_3(ldv_3_callback_d_automount, ldv_3_container_struct_path_ptr); ldv_statevar_3 = 2; } goto ldv_28759; case_4: /* CIL Label */ { ldv_statevar_3 = ldv_switch_2(); } goto ldv_28759; case_5: /* CIL Label */ ; goto ldv_28759; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_7(ldv_3_callback_d_manage, ldv_3_container_struct_dentry_ptr, (int )ldv_3_ldv_param_7_1_default); ldv_statevar_3 = 2; } goto ldv_28759; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_10(ldv_3_callback_d_release, ldv_3_container_struct_dentry_ptr); ldv_statevar_3 = 2; } goto ldv_28759; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_28759: ; return; } } void ldv_struct_inode_operations_dummy_resourceless_instance_4(void *arg0 ) { void *tmp ; void *tmp___0 ; { { if (ldv_statevar_4 == 1) { goto case_1; } else { } if (ldv_statevar_4 == 2) { goto case_2; } else { } if (ldv_statevar_4 == 3) { goto case_3; } else { } if (ldv_statevar_4 == 4) { goto case_4; } else { } if (ldv_statevar_4 == 5) { goto case_5; } else { } if (ldv_statevar_4 == 8) { goto case_8; } else { } if (ldv_statevar_4 == 11) { goto case_11; } else { } if (ldv_statevar_4 == 14) { goto case_14; } else { } if (ldv_statevar_4 == 16) { goto case_16; } else { } if (ldv_statevar_4 == 18) { goto case_18; } else { } if (ldv_statevar_4 == 20) { goto case_20; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_28771; case_2: /* CIL Label */ { ldv_statevar_4 = ldv_switch_3(); } goto ldv_28771; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_3(ldv_4_callback_follow_link, ldv_4_container_struct_dentry_ptr, ldv_4_container_struct_nameidata_ptr); ldv_statevar_4 = 2; } goto ldv_28771; case_4: /* CIL Label */ { ldv_statevar_4 = ldv_switch_3(); } goto ldv_28771; case_5: /* CIL Label */ ; goto ldv_28771; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_7(ldv_4_callback_lookup, ldv_4_container_struct_inode_ptr, ldv_4_container_struct_dentry_ptr, ldv_4_ldv_param_7_2_default); ldv_statevar_4 = 2; } goto ldv_28771; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_10(ldv_4_callback_mkdir, ldv_4_container_struct_inode_ptr, ldv_4_container_struct_dentry_ptr, (int )ldv_4_ldv_param_10_2_default); ldv_statevar_4 = 2; } goto ldv_28771; case_14: /* CIL Label */ { tmp = ldv_xmalloc(1UL); ldv_4_ldv_param_13_1_default = (char *)tmp; ldv_dummy_resourceless_instance_callback_4_13(ldv_4_callback_readlink, ldv_4_container_struct_dentry_ptr, ldv_4_ldv_param_13_1_default, ldv_4_ldv_param_13_2_default); ldv_free((void *)ldv_4_ldv_param_13_1_default); ldv_statevar_4 = 2; } goto ldv_28771; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_16(ldv_4_callback_rmdir, ldv_4_container_struct_inode_ptr, ldv_4_container_struct_dentry_ptr); ldv_statevar_4 = 2; } goto ldv_28771; case_18: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_4_ldv_param_17_2_default = (char *)tmp___0; ldv_dummy_resourceless_instance_callback_4_17(ldv_4_callback_symlink, ldv_4_container_struct_inode_ptr, ldv_4_container_struct_dentry_ptr, ldv_4_ldv_param_17_2_default); ldv_free((void *)ldv_4_ldv_param_17_2_default); ldv_statevar_4 = 2; } goto ldv_28771; case_20: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_4_20(ldv_4_callback_unlink, ldv_4_container_struct_inode_ptr, ldv_4_container_struct_dentry_ptr); ldv_statevar_4 = 2; } goto ldv_28771; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_28771: ; return; } } void ldv_struct_super_operations_dummy_resourceless_instance_5(void *arg0 ) { { { if (ldv_statevar_5 == 1) { goto case_1; } else { } if (ldv_statevar_5 == 2) { goto case_2; } else { } if (ldv_statevar_5 == 3) { goto case_3; } else { } if (ldv_statevar_5 == 4) { goto case_4; } else { } if (ldv_statevar_5 == 5) { goto case_5; } else { } if (ldv_statevar_5 == 7) { goto case_7; } else { } if (ldv_statevar_5 == 8) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_28787; case_2: /* CIL Label */ { ldv_statevar_5 = ldv_switch_4(); } goto ldv_28787; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_3(ldv_5_callback_evict_inode, ldv_5_container_struct_inode_ptr); ldv_statevar_5 = 2; } goto ldv_28787; case_4: /* CIL Label */ { ldv_statevar_5 = ldv_switch_4(); } goto ldv_28787; case_5: /* CIL Label */ ; goto ldv_28787; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_7(ldv_5_callback_show_options, ldv_5_container_struct_seq_file_ptr, ldv_5_container_struct_dentry_ptr); ldv_statevar_5 = 2; } goto ldv_28787; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_5_8(ldv_5_callback_statfs, ldv_5_container_struct_dentry_ptr, ldv_5_container_struct_kstatfs_ptr); ldv_statevar_5 = 2; } goto ldv_28787; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_28787: ; return; } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (2); case_1: /* CIL Label */ ; return (18); case_2: /* CIL Label */ ; return (20); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } goto switch_default; case_0: /* CIL Label */ ; return (5); case_1: /* CIL Label */ ; return (22); case_2: /* CIL Label */ ; return (24); case_3: /* CIL Label */ ; return (27); case_4: /* CIL Label */ ; return (30); case_5: /* CIL Label */ ; return (33); case_6: /* CIL Label */ ; return (36); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_2(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (3); case_2: /* CIL Label */ ; return (8); case_3: /* CIL Label */ ; return (10); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_3(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (3); case_2: /* CIL Label */ ; return (8); case_3: /* CIL Label */ ; return (11); case_4: /* CIL Label */ ; return (14); case_5: /* CIL Label */ ; return (16); case_6: /* CIL Label */ ; return (18); case_7: /* CIL Label */ ; return (20); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_4(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (3); case_2: /* CIL Label */ ; return (7); case_3: /* CIL Label */ ; return (8); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_1_15(void) { { ldv_statevar_1 = 14; return; } } void ldv_switch_automaton_state_1_6(void) { { ldv_1_ret_default = 1; ldv_statevar_1 = 15; return; } } void ldv_switch_automaton_state_2_15(void) { { ldv_statevar_2 = 14; return; } } void ldv_switch_automaton_state_2_6(void) { { ldv_2_ret_default = 1; ldv_statevar_2 = 15; return; } } void ldv_switch_automaton_state_3_1(void) { { ldv_statevar_3 = 5; return; } } void ldv_switch_automaton_state_3_5(void) { { ldv_statevar_3 = 4; return; } } void ldv_switch_automaton_state_4_1(void) { { ldv_statevar_4 = 5; return; } } void ldv_switch_automaton_state_4_5(void) { { ldv_statevar_4 = 4; return; } } void ldv_switch_automaton_state_5_1(void) { { ldv_statevar_5 = 5; return; } } void ldv_switch_automaton_state_5_5(void) { { ldv_statevar_5 = 4; return; } } long ldv__builtin_expect(long exp , long c ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern int printk(char const * , ...) ; extern int __dynamic_pr_debug(struct _ddebug * , char const * , ...) ; extern void __bad_percpu_size(void) ; extern struct task_struct *current_task ; __inline static struct task_struct *get_current(void) { struct task_struct *pfo_ret__ ; { { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& current_task)); goto ldv_2908; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2908; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2908; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& current_task)); goto ldv_2908; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_2908: ; return (pfo_ret__); } } extern char *strsep(char ** , char const * ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } extern void kfree_call_rcu(struct callback_head * , void (*)(struct callback_head * ) ) ; extern int debug_lockdep_rcu_enabled(void) ; extern struct timespec current_kernel_time(void) ; extern struct user_namespace init_user_ns ; __inline static uid_t __kuid_val(kuid_t uid ) { { return (uid.val); } } __inline static gid_t __kgid_val(kgid_t gid ) { { return (gid.val); } } __inline static bool uid_eq(kuid_t left , kuid_t right ) { uid_t tmp ; uid_t tmp___0 ; { { tmp = __kuid_val(left); tmp___0 = __kuid_val(right); } return (tmp == tmp___0); } } __inline static bool gid_eq(kgid_t left , kgid_t right ) { gid_t tmp ; gid_t tmp___0 ; { { tmp = __kgid_val(left); tmp___0 = __kgid_val(right); } return (tmp == tmp___0); } } __inline static bool uid_valid(kuid_t uid ) { kuid_t __constr_expr_0 ; bool tmp ; int tmp___0 ; { { __constr_expr_0.val = 4294967295U; tmp = uid_eq(uid, __constr_expr_0); } if ((int )tmp != 0) { tmp___0 = 0; } else { tmp___0 = 1; } return ((bool )tmp___0); } } __inline static bool gid_valid(kgid_t gid ) { kgid_t __constr_expr_0 ; bool tmp ; int tmp___0 ; { { __constr_expr_0.val = 4294967295U; tmp = gid_eq(gid, __constr_expr_0); } if ((int )tmp != 0) { tmp___0 = 0; } else { tmp___0 = 1; } return ((bool )tmp___0); } } extern kuid_t make_kuid(struct user_namespace * , uid_t ) ; extern kgid_t make_kgid(struct user_namespace * , gid_t ) ; extern uid_t from_kuid_munged(struct user_namespace * , kuid_t ) ; extern gid_t from_kgid_munged(struct user_namespace * , kgid_t ) ; extern unsigned long volatile jiffies ; extern struct dentry *d_make_root(struct inode * ) ; extern void dput(struct dentry * ) ; extern void put_pid(struct pid * ) ; extern struct pid *get_task_pid(struct task_struct * , enum pid_type ) ; extern struct pid *find_get_pid(int ) ; __inline static pid_t pid_nr(struct pid *pid ) { pid_t nr ; { nr = 0; if ((unsigned long )pid != (unsigned long )((struct pid *)0)) { nr = pid->numbers[0].nr; } else { } return (nr); } } extern pid_t pid_vnr(struct pid * ) ; extern void set_nlink(struct inode * , unsigned int ) ; extern void kill_litter_super(struct super_block * ) ; __inline static struct inode *file_inode(struct file *f ) { { return (f->f_inode); } } extern unsigned int get_next_ino(void) ; extern void clear_inode(struct inode * ) ; extern struct inode *new_inode(struct super_block * ) ; extern int simple_statfs(struct dentry * , struct kstatfs * ) ; extern void kfree(void const * ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; extern void fput(struct file * ) ; extern struct file *fget(unsigned int ) ; extern int seq_printf(struct seq_file * , char const * , ...) ; extern int match_token(char * , struct match_token const * , substring_t * ) ; extern int match_int(substring_t * , int * ) ; __inline static void set_autofs_type_indirect(unsigned int *type ) { { *type = 1U; return; } } __inline static void set_autofs_type_direct(unsigned int *type ) { { *type = 2U; return; } } __inline static unsigned int autofs_type_direct(unsigned int type ) { { return (type == 2U); } } __inline static void set_autofs_type_offset(unsigned int *type ) { { *type = 4U; return; } } __inline static unsigned int autofs_type_offset(unsigned int type ) { { return (type == 4U); } } __inline static unsigned int autofs_type_trigger(unsigned int type ) { { return ((unsigned int )(type == 2U || type == 4U)); } } __inline static struct autofs_sb_info *autofs4_sbi(struct super_block *sb ) { { return ((struct autofs_sb_info *)sb->s_fs_info); } } struct inode *autofs4_get_inode(struct super_block *sb , umode_t mode ) ; void autofs4_free_ino(struct autofs_info *ino ) ; struct inode_operations const autofs4_symlink_inode_operations ; struct inode_operations const autofs4_dir_inode_operations ; struct file_operations const autofs4_dir_operations ; struct file_operations const autofs4_root_operations ; struct dentry_operations const autofs4_dentry_operations ; __inline static void __managed_dentry_set_managed(struct dentry *dentry ) { { dentry->d_flags = dentry->d_flags | 393216U; return; } } struct autofs_info *autofs4_new_ino(struct autofs_sb_info *sbi ) ; void autofs4_clean_ino(struct autofs_info *ino ) ; __inline static int autofs_prepare_pipe(struct file *pipe ) { struct inode *tmp ; { if ((unsigned long )(pipe->f_op)->write == (unsigned long )((ssize_t (*/* const */)(struct file * , char const * , size_t , loff_t * ))0)) { return (-22); } else { } { tmp = file_inode(pipe); } if (((int )tmp->i_mode & 61440) != 4096) { return (-22); } else { } pipe->f_flags = pipe->f_flags | 16384U; return (0); } } void autofs4_catatonic_mode(struct autofs_sb_info *sbi ) ; struct autofs_info *autofs4_new_ino(struct autofs_sb_info *sbi ) { struct autofs_info *ino ; void *tmp ; { { tmp = kzalloc(192UL, 208U); ino = (struct autofs_info *)tmp; } if ((unsigned long )ino != (unsigned long )((struct autofs_info *)0)) { { INIT_LIST_HEAD(& ino->active); INIT_LIST_HEAD(& ino->expiring); ino->last_used = jiffies; ino->sbi = sbi; } } else { } return (ino); } } void autofs4_clean_ino(struct autofs_info *ino ) { kuid_t __constr_expr_0 ; kgid_t __constr_expr_1 ; { __constr_expr_0.val = 0U; ino->uid = __constr_expr_0; __constr_expr_1.val = 0U; ino->gid = __constr_expr_1; ino->last_used = jiffies; return; } } void autofs4_free_ino(struct autofs_info *ino ) { { { kfree((void const *)ino); } return; } } extern void __compiletime_assert_68(void) ; void autofs4_kill_sb(struct super_block *sb ) { struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct _ddebug descriptor ; struct task_struct *tmp___0 ; long tmp___1 ; bool __cond ; { { tmp = autofs4_sbi(sb); sbi = tmp; } if ((unsigned long )sbi != (unsigned long )((struct autofs_sb_info *)0)) { { autofs4_catatonic_mode(sbi); put_pid(sbi->oz_pgrp); } } else { } { descriptor.modname = "autofs4"; descriptor.function = "autofs4_kill_sb"; descriptor.filename = "fs/autofs4/inode.c"; descriptor.format = "pid %d: %s: shutting down\n"; descriptor.lineno = 65U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { tmp___0 = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: shutting down\n", tmp___0->pid, "autofs4_kill_sb"); } } else { } { kill_litter_super(sb); } if ((unsigned long )sbi != (unsigned long )((struct autofs_sb_info *)0)) { __cond = 0; if ((int )__cond) { { __compiletime_assert_68(); } } else { } { kfree_call_rcu(& sbi->rcu, (void (*)(struct callback_head * ))600); } } else { } return; } } static int autofs4_show_options(struct seq_file *m , struct dentry *root ) { struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct inode *root_inode ; uid_t tmp___0 ; kuid_t __constr_expr_0 ; bool tmp___1 ; int tmp___2 ; gid_t tmp___3 ; kgid_t __constr_expr_1 ; bool tmp___4 ; int tmp___5 ; pid_t tmp___6 ; unsigned int tmp___7 ; unsigned int tmp___8 ; { { tmp = autofs4_sbi(root->d_sb); sbi = tmp; root_inode = ((root->d_sb)->s_root)->d_inode; } if ((unsigned long )sbi == (unsigned long )((struct autofs_sb_info *)0)) { return (0); } else { } { seq_printf(m, ",fd=%d", sbi->pipefd); __constr_expr_0.val = 0U; tmp___1 = uid_eq(root_inode->i_uid, __constr_expr_0); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { { tmp___0 = from_kuid_munged(& init_user_ns, root_inode->i_uid); seq_printf(m, ",uid=%u", tmp___0); } } else { } { __constr_expr_1.val = 0U; tmp___4 = gid_eq(root_inode->i_gid, __constr_expr_1); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { { tmp___3 = from_kgid_munged(& init_user_ns, root_inode->i_gid); seq_printf(m, ",gid=%u", tmp___3); } } else { } { tmp___6 = pid_vnr(sbi->oz_pgrp); seq_printf(m, ",pgrp=%d", tmp___6); seq_printf(m, ",timeout=%lu", sbi->exp_timeout / 250UL); seq_printf(m, ",minproto=%d", sbi->min_proto); seq_printf(m, ",maxproto=%d", sbi->max_proto); tmp___8 = autofs_type_offset(sbi->type); } if (tmp___8 != 0U) { { seq_printf(m, ",offset"); } } else { { tmp___7 = autofs_type_direct(sbi->type); } if (tmp___7 != 0U) { { seq_printf(m, ",direct"); } } else { { seq_printf(m, ",indirect"); } } } return (0); } } static void autofs4_evict_inode(struct inode *inode ) { { { clear_inode(inode); kfree((void const *)inode->i_private); } return; } } static struct super_operations const autofs4_sops = {0, 0, 0, 0, 0, & autofs4_evict_inode, 0, 0, 0, 0, & simple_statfs, 0, 0, & autofs4_show_options, 0, 0, 0, 0, 0, 0, 0, 0}; static struct match_token const tokens[10U] = { {1, "fd=%u"}, {2, "uid=%u"}, {3, "gid=%u"}, {4, "pgrp=%u"}, {5, "minproto=%u"}, {6, "maxproto=%u"}, {7, "indirect"}, {8, "direct"}, {9, "offset"}, {0, (char const *)0}}; static int parse_options(char *options , int *pipefd , kuid_t *uid , kgid_t *gid , int *pgrp , bool *pgrp_set , unsigned int *type , int *minproto , int *maxproto ) { char *p ; substring_t args[3U] ; int option ; int tmp ; struct task_struct *tmp___0 ; int tmp___1 ; struct task_struct *tmp___2 ; int token ; int tmp___3 ; int tmp___4 ; int tmp___5 ; struct task_struct *tmp___6 ; bool tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; struct task_struct *tmp___11 ; bool tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; int tmp___16 ; { { tmp = debug_lockdep_rcu_enabled(); tmp___0 = get_current(); *uid = (tmp___0->cred)->uid; tmp___1 = debug_lockdep_rcu_enabled(); tmp___2 = get_current(); *gid = (tmp___2->cred)->gid; *minproto = 3; *maxproto = 5; *pipefd = -1; } if ((unsigned long )options == (unsigned long )((char *)0)) { return (1); } else { } goto ldv_28256; ldv_28272: ; if ((int )((signed char )*p) == 0) { goto ldv_28256; } else { } { token = match_token(p, (struct match_token const *)(& tokens), (substring_t *)(& args)); } { if (token == 1) { goto case_1; } else { } if (token == 2) { goto case_2; } else { } if (token == 3) { goto case_3; } else { } if (token == 4) { goto case_4; } else { } if (token == 5) { goto case_5; } else { } if (token == 6) { goto case_6; } else { } if (token == 7) { goto case_7; } else { } if (token == 8) { goto case_8; } else { } if (token == 9) { goto case_9; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___3 = match_int((substring_t *)(& args), pipefd); } if (tmp___3 != 0) { return (1); } else { } goto ldv_28258; case_2: /* CIL Label */ { tmp___4 = match_int((substring_t *)(& args), & option); } if (tmp___4 != 0) { return (1); } else { } { tmp___5 = debug_lockdep_rcu_enabled(); tmp___6 = get_current(); *uid = make_kuid((tmp___6->cred)->user_ns, (uid_t )option); tmp___7 = uid_valid(*uid); } if (tmp___7) { tmp___8 = 0; } else { tmp___8 = 1; } if (tmp___8) { return (1); } else { } goto ldv_28258; case_3: /* CIL Label */ { tmp___9 = match_int((substring_t *)(& args), & option); } if (tmp___9 != 0) { return (1); } else { } { tmp___10 = debug_lockdep_rcu_enabled(); tmp___11 = get_current(); *gid = make_kgid((tmp___11->cred)->user_ns, (gid_t )option); tmp___12 = gid_valid(*gid); } if (tmp___12) { tmp___13 = 0; } else { tmp___13 = 1; } if (tmp___13) { return (1); } else { } goto ldv_28258; case_4: /* CIL Label */ { tmp___14 = match_int((substring_t *)(& args), & option); } if (tmp___14 != 0) { return (1); } else { } *pgrp = option; *pgrp_set = 1; goto ldv_28258; case_5: /* CIL Label */ { tmp___15 = match_int((substring_t *)(& args), & option); } if (tmp___15 != 0) { return (1); } else { } *minproto = option; goto ldv_28258; case_6: /* CIL Label */ { tmp___16 = match_int((substring_t *)(& args), & option); } if (tmp___16 != 0) { return (1); } else { } *maxproto = option; goto ldv_28258; case_7: /* CIL Label */ { set_autofs_type_indirect(type); } goto ldv_28258; case_8: /* CIL Label */ { set_autofs_type_direct(type); } goto ldv_28258; case_9: /* CIL Label */ { set_autofs_type_offset(type); } goto ldv_28258; switch_default: /* CIL Label */ ; return (1); switch_break: /* CIL Label */ ; } ldv_28258: ; ldv_28256: { p = strsep(& options, ","); } if ((unsigned long )p != (unsigned long )((char *)0)) { goto ldv_28272; } else { } return (*pipefd < 0); } } int autofs4_fill_super(struct super_block *s , void *data , int silent ) { struct inode *root_inode ; struct dentry *root ; struct file *pipe ; int pipefd ; struct autofs_sb_info *sbi ; struct autofs_info *ino ; int pgrp ; bool pgrp_set ; int ret ; void *tmp ; struct _ddebug descriptor ; struct task_struct *tmp___0 ; long tmp___1 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; struct lock_class_key __key___2 ; int tmp___2 ; struct task_struct *tmp___3 ; unsigned int tmp___4 ; struct _ddebug descriptor___0 ; pid_t tmp___5 ; struct task_struct *tmp___6 ; long tmp___7 ; { { pgrp_set = 0; ret = -22; tmp = kzalloc(616UL, 208U); sbi = (struct autofs_sb_info *)tmp; } if ((unsigned long )sbi == (unsigned long )((struct autofs_sb_info *)0)) { return (-12); } else { } { descriptor.modname = "autofs4"; descriptor.function = "autofs4_fill_super"; descriptor.filename = "fs/autofs4/inode.c"; descriptor.format = "pid %d: %s: starting up, sbi = %p\n"; descriptor.lineno = 220U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { tmp___0 = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: starting up, sbi = %p\n", tmp___0->pid, "autofs4_fill_super", sbi); } } else { } { s->s_fs_info = (void *)sbi; sbi->magic = 1833588077U; sbi->pipefd = -1; sbi->pipe = (struct file *)0; sbi->catatonic = 1; sbi->exp_timeout = 0UL; sbi->oz_pgrp = (struct pid *)0; sbi->sb = s; sbi->version = 0; sbi->sub_version = 0; set_autofs_type_indirect(& sbi->type); sbi->min_proto = 0; sbi->max_proto = 0; __mutex_init(& sbi->wq_mutex, "&sbi->wq_mutex", & __key); __mutex_init(& sbi->pipe_mutex, "&sbi->pipe_mutex", & __key___0); spinlock_check(& sbi->fs_lock); __raw_spin_lock_init(& sbi->fs_lock.__annonCompField19.rlock, "&(&sbi->fs_lock)->rlock", & __key___1); sbi->queues = (struct autofs_wait_queue *)0; spinlock_check(& sbi->lookup_lock); __raw_spin_lock_init(& sbi->lookup_lock.__annonCompField19.rlock, "&(&sbi->lookup_lock)->rlock", & __key___2); INIT_LIST_HEAD(& sbi->active_list); INIT_LIST_HEAD(& sbi->expiring_list); s->s_blocksize = 1024UL; s->s_blocksize_bits = 10U; s->s_magic = 391UL; s->s_op = & autofs4_sops; s->s_d_op = & autofs4_dentry_operations; s->s_time_gran = 1U; ino = autofs4_new_ino(sbi); } if ((unsigned long )ino == (unsigned long )((struct autofs_info *)0)) { ret = -12; goto fail_free; } else { } { root_inode = autofs4_get_inode(s, 16877); root = d_make_root(root_inode); } if ((unsigned long )root == (unsigned long )((struct dentry *)0)) { goto fail_ino; } else { } { pipe = (struct file *)0; root->d_fsdata = (void *)ino; tmp___2 = parse_options((char *)data, & pipefd, & root_inode->i_uid, & root_inode->i_gid, & pgrp, & pgrp_set, & sbi->type, & sbi->min_proto, & sbi->max_proto); } if (tmp___2 != 0) { { printk("autofs: called with bogus options\n"); } goto fail_dput; } else { } if ((int )pgrp_set) { { sbi->oz_pgrp = find_get_pid(pgrp); } if ((unsigned long )sbi->oz_pgrp == (unsigned long )((struct pid *)0)) { { printk("\fautofs: could not find process group %d\n", pgrp); } goto fail_dput; } else { } } else { { tmp___3 = get_current(); sbi->oz_pgrp = get_task_pid(tmp___3, 1); } } { tmp___4 = autofs_type_trigger(sbi->type); } if (tmp___4 != 0U) { { __managed_dentry_set_managed(root); } } else { } root_inode->i_fop = & autofs4_root_operations; root_inode->i_op = & autofs4_dir_inode_operations; if (sbi->max_proto <= 2 || sbi->min_proto > 5) { { printk("autofs: kernel does not match daemon version daemon (%d, %d) kernel (%d, %d)\n", sbi->min_proto, sbi->max_proto, 3, 5); } goto fail_dput; } else { } if (sbi->max_proto > 5) { sbi->version = 5; } else { sbi->version = sbi->max_proto; } { sbi->sub_version = 2; descriptor___0.modname = "autofs4"; descriptor___0.function = "autofs4_fill_super"; descriptor___0.filename = "fs/autofs4/inode.c"; descriptor___0.format = "pid %d: %s: pipe fd = %d, pgrp = %u\n"; descriptor___0.lineno = 307U; descriptor___0.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___7 != 0L) { { tmp___5 = pid_nr(sbi->oz_pgrp); tmp___6 = get_current(); __dynamic_pr_debug(& descriptor___0, "pid %d: %s: pipe fd = %d, pgrp = %u\n", tmp___6->pid, "autofs4_fill_super", pipefd, tmp___5); } } else { } { pipe = fget((unsigned int )pipefd); } if ((unsigned long )pipe == (unsigned long )((struct file *)0)) { { printk("autofs: could not open pipe file descriptor\n"); } goto fail_dput; } else { } { ret = autofs_prepare_pipe(pipe); } if (ret < 0) { goto fail_fput; } else { } sbi->pipe = pipe; sbi->pipefd = pipefd; sbi->catatonic = 0; s->s_root = root; return (0); fail_fput: { printk("autofs: pipe file descriptor does not contain proper ops\n"); fput(pipe); } fail_dput: { dput(root); } goto fail_free; fail_ino: { kfree((void const *)ino); } fail_free: { put_pid(sbi->oz_pgrp); kfree((void const *)sbi); s->s_fs_info = (void *)0; } return (ret); } } struct inode *autofs4_get_inode(struct super_block *sb , umode_t mode ) { struct inode *inode ; struct inode *tmp ; struct timespec tmp___0 ; struct timespec tmp___1 ; unsigned int tmp___2 ; { { tmp = new_inode(sb); inode = tmp; } if ((unsigned long )inode == (unsigned long )((struct inode *)0)) { return ((struct inode *)0); } else { } inode->i_mode = mode; if ((unsigned long )sb->s_root != (unsigned long )((struct dentry *)0)) { inode->i_uid = ((sb->s_root)->d_inode)->i_uid; inode->i_gid = ((sb->s_root)->d_inode)->i_gid; } else { } { tmp___1 = current_kernel_time(); inode->i_ctime = tmp___1; tmp___0 = tmp___1; inode->i_mtime = tmp___0; inode->i_atime = tmp___0; tmp___2 = get_next_ino(); inode->i_ino = (unsigned long )tmp___2; } if (((int )mode & 61440) == 16384) { { set_nlink(inode, 2U); inode->i_op = & autofs4_dir_inode_operations; inode->i_fop = & autofs4_dir_operations; } } else if (((int )mode & 61440) == 40960) { inode->i_op = & autofs4_symlink_inode_operations; } else { } return (inode); } } void (*ldv_5_callback_evict_inode)(struct inode * ) = & autofs4_evict_inode; int (*ldv_5_callback_show_options)(struct seq_file * , struct dentry * ) = & autofs4_show_options; int (*ldv_5_callback_statfs)(struct dentry * , struct kstatfs * ) = & simple_statfs; void ldv_dummy_resourceless_instance_callback_5_3(void (*arg0)(struct inode * ) , struct inode *arg1 ) { { { autofs4_evict_inode(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_5_7(int (*arg0)(struct seq_file * , struct dentry * ) , struct seq_file *arg1 , struct dentry *arg2 ) { { { autofs4_show_options(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_5_8(int (*arg0)(struct dentry * , struct kstatfs * ) , struct dentry *arg1 , struct kstatfs *arg2 ) { { { simple_statfs(arg1, arg2); } return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } void *ldv_err_ptr(long error ) ; extern void __list_add(struct list_head * , struct list_head * , struct list_head * ) ; __inline static void list_add(struct list_head *new , struct list_head *head ) { { { __list_add(new, head, head->next); } return; } } extern void __list_del_entry(struct list_head * ) ; extern void list_del(struct list_head * ) ; __inline static void list_del_init(struct list_head *entry ) { { { __list_del_entry(entry); INIT_LIST_HEAD(entry); } return; } } __inline static int list_empty(struct list_head const *head ) { { return ((unsigned long )((struct list_head const *)head->next) == (unsigned long )head); } } extern void might_fault(void) ; extern int memcmp(void const * , void const * , size_t ) ; extern size_t strlen(char const * ) ; extern char *strcpy(char * , char const * ) ; __inline static void *ERR_PTR(long error ) ; __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } __inline static void atomic_dec(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; decl %0": "+m" (v->counter)); return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { { __asm__ volatile ("":); return (0); return (1); } } void ldv_spin_lock_fs_lock_of_autofs_sb_info(void) ; void ldv_spin_unlock_fs_lock_of_autofs_sb_info(void) ; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) ; void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) ; void ldv_spin_lock_lookup_lock_of_autofs_sb_info(void) ; void ldv_spin_unlock_lookup_lock_of_autofs_sb_info(void) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_48(spinlock_t *lock ) ; __inline static void ldv_spin_lock_48(spinlock_t *lock ) ; __inline static void ldv_spin_lock_54(spinlock_t *lock ) ; __inline static void ldv_spin_lock_54(spinlock_t *lock ) ; __inline static void ldv_spin_lock_54(spinlock_t *lock ) ; __inline static void ldv_spin_lock_54(spinlock_t *lock ) ; __inline static void ldv_spin_lock_54(spinlock_t *lock ) ; __inline static void ldv_spin_lock_54(spinlock_t *lock ) ; __inline static void ldv_spin_lock_48(spinlock_t *lock ) ; __inline static void ldv_spin_lock_54(spinlock_t *lock ) ; __inline static void ldv_spin_lock_48(spinlock_t *lock ) ; __inline static void ldv_spin_lock_77(spinlock_t *lock ) ; __inline static void ldv_spin_lock_77(spinlock_t *lock ) ; __inline static void ldv_spin_lock_77(spinlock_t *lock ) ; __inline static void ldv_spin_lock_54(spinlock_t *lock ) ; __inline static void ldv_spin_lock_54(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_55(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_55(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_55(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_55(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_55(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_55(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_55(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_55(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_55(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_55(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_55(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_55(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_55(spinlock_t *lock ) ; __inline static int hlist_bl_unhashed(struct hlist_bl_node const *h ) { { return ((unsigned long )h->pprev == (unsigned long )((struct hlist_bl_node **/* const */)0)); } } extern void lockref_get(struct lockref * ) ; extern void d_instantiate(struct dentry * , struct inode * ) ; extern void d_drop(struct dentry * ) ; extern int have_submounts(struct dentry * ) ; extern void d_rehash(struct dentry * ) ; __inline static void d_add(struct dentry *entry , struct inode *inode ) { { { d_instantiate(entry, inode); d_rehash(entry); } return; } } extern struct dentry *d_lookup(struct dentry const * , struct qstr const * ) ; __inline static unsigned int d_count(struct dentry const *dentry ) { { return ((unsigned int )dentry->d_lockref.__annonCompField23.__annonCompField22.count); } } __inline static struct dentry *dget_dlock(struct dentry *dentry ) { { if ((unsigned long )dentry != (unsigned long )((struct dentry *)0)) { dentry->d_lockref.__annonCompField23.__annonCompField22.count = dentry->d_lockref.__annonCompField23.__annonCompField22.count + 1U; } else { } return (dentry); } } __inline static struct dentry *dget(struct dentry *dentry ) { { if ((unsigned long )dentry != (unsigned long )((struct dentry *)0)) { { lockref_get(& dentry->d_lockref); } } else { } return (dentry); } } __inline static int d_unhashed(struct dentry const *dentry ) { int tmp ; { { tmp = hlist_bl_unhashed(& dentry->d_hash); } return (tmp); } } __inline static bool d_mountpoint(struct dentry const *dentry ) { { return (((unsigned int )dentry->d_flags & 65536U) != 0U); } } extern struct pid_namespace init_pid_ns ; extern bool capable(int ) ; extern void inc_nlink(struct inode * ) ; extern void drop_nlink(struct inode * ) ; extern void clear_nlink(struct inode * ) ; extern int may_umount(struct vfsmount * ) ; extern int dcache_dir_open(struct inode * , struct file * ) ; extern int dcache_dir_close(struct inode * , struct file * ) ; extern loff_t dcache_dir_lseek(struct file * , loff_t , int ) ; extern int dcache_readdir(struct file * , struct dir_context * ) ; extern int simple_empty(struct dentry * ) ; extern ssize_t generic_read_dir(struct file * , char * , size_t , loff_t * ) ; extern void *__kmalloc(size_t , gfp_t ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) { void *tmp___2 ; { { tmp___2 = __kmalloc(size, flags); } return (tmp___2); } } __inline static struct pid *task_pgrp(struct task_struct *task ) { { return ((task->group_leader)->pids[1].pid); } } extern pid_t __task_pid_nr_ns(struct task_struct * , enum pid_type , struct pid_namespace * ) ; __inline static pid_t task_pgrp_nr_ns(struct task_struct *tsk , struct pid_namespace *ns ) { pid_t tmp ; { { tmp = __task_pid_nr_ns(tsk, 1, ns); } return (tmp); } } __inline static pid_t task_pgrp_nr(struct task_struct *tsk ) { pid_t tmp ; { { tmp = task_pgrp_nr_ns(tsk, & init_pid_ns); } return (tmp); } } __inline static void *compat_ptr(compat_uptr_t uptr ) { { return ((void *)((unsigned long )uptr)); } } __inline static unsigned int autofs_type_indirect(unsigned int type ) { { return (type == 1U); } } __inline static struct autofs_info *autofs4_dentry_ino(struct dentry *dentry ) { { return ((struct autofs_info *)dentry->d_fsdata); } } __inline static int autofs4_oz_mode(struct autofs_sb_info *sbi ) { struct task_struct *tmp ; struct pid *tmp___0 ; int tmp___1 ; { if (sbi->catatonic != 0) { tmp___1 = 1; } else { { tmp = get_current(); tmp___0 = task_pgrp(tmp); } if ((unsigned long )tmp___0 == (unsigned long )sbi->oz_pgrp) { tmp___1 = 1; } else { tmp___1 = 0; } } return (tmp___1); } } int is_autofs4_dentry(struct dentry *dentry ) ; int autofs4_expire_wait(struct dentry *dentry ) ; int autofs4_expire_run(struct super_block *sb , struct vfsmount *mnt , struct autofs_sb_info *sbi , struct autofs_packet_expire *pkt_p ) ; int autofs4_expire_multi(struct super_block *sb , struct vfsmount *mnt , struct autofs_sb_info *sbi , int *arg ) ; __inline static void managed_dentry_set_managed(struct dentry *dentry ) { { { ldv_spin_lock_48(& dentry->d_lockref.__annonCompField23.__annonCompField22.lock); __managed_dentry_set_managed(dentry); ldv_spin_unlock_49(& dentry->d_lockref.__annonCompField23.__annonCompField22.lock); } return; } } __inline static void __managed_dentry_clear_managed(struct dentry *dentry ) { { dentry->d_flags = dentry->d_flags & 4294574079U; return; } } __inline static void managed_dentry_clear_managed(struct dentry *dentry ) { { { ldv_spin_lock_48(& dentry->d_lockref.__annonCompField23.__annonCompField22.lock); __managed_dentry_clear_managed(dentry); ldv_spin_unlock_49(& dentry->d_lockref.__annonCompField23.__annonCompField22.lock); } return; } } int autofs4_wait(struct autofs_sb_info *sbi , struct dentry *dentry , enum autofs_notify notify ) ; int autofs4_wait_release(struct autofs_sb_info *sbi , autofs_wqt_t wait_queue_token , int status ) ; __inline static void __autofs4_add_expiring(struct dentry *dentry ) { struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct autofs_info *ino ; struct autofs_info *tmp___0 ; int tmp___1 ; { { tmp = autofs4_sbi(dentry->d_sb); sbi = tmp; tmp___0 = autofs4_dentry_ino(dentry); ino = tmp___0; } if ((unsigned long )ino != (unsigned long )((struct autofs_info *)0)) { { tmp___1 = list_empty((struct list_head const *)(& ino->expiring)); } if (tmp___1 != 0) { { list_add(& ino->expiring, & sbi->expiring_list); } } else { } } else { } return; } } __inline static void autofs4_del_expiring(struct dentry *dentry ) { struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct autofs_info *ino ; struct autofs_info *tmp___0 ; int tmp___1 ; { { tmp = autofs4_sbi(dentry->d_sb); sbi = tmp; tmp___0 = autofs4_dentry_ino(dentry); ino = tmp___0; } if ((unsigned long )ino != (unsigned long )((struct autofs_info *)0)) { { ldv_spin_lock_54(& sbi->lookup_lock); tmp___1 = list_empty((struct list_head const *)(& ino->expiring)); } if (tmp___1 == 0) { { list_del_init(& ino->expiring); } } else { } { ldv_spin_unlock_55(& sbi->lookup_lock); } } else { } return; } } static int autofs4_dir_symlink(struct inode *dir , struct dentry *dentry , char const *symname ) ; static int autofs4_dir_unlink(struct inode *dir , struct dentry *dentry ) ; static int autofs4_dir_rmdir(struct inode *dir , struct dentry *dentry ) ; static int autofs4_dir_mkdir(struct inode *dir , struct dentry *dentry , umode_t mode ) ; static long autofs4_root_ioctl(struct file *filp , unsigned int cmd , unsigned long arg ) ; static long autofs4_root_compat_ioctl(struct file *filp , unsigned int cmd , unsigned long arg ) ; static int autofs4_dir_open(struct inode *inode , struct file *file ) ; static struct dentry *autofs4_lookup(struct inode *dir , struct dentry *dentry , unsigned int flags ) ; static struct vfsmount *autofs4_d_automount(struct path *path ) ; static int autofs4_d_manage(struct dentry *dentry , bool rcu_walk ) ; static void autofs4_dentry_release(struct dentry *de ) ; struct file_operations const autofs4_root_operations = {0, & dcache_dir_lseek, & generic_read_dir, 0, 0, 0, & dcache_readdir, 0, & autofs4_root_ioctl, & autofs4_root_compat_ioctl, 0, & dcache_dir_open, 0, & dcache_dir_close, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; struct file_operations const autofs4_dir_operations = {0, & dcache_dir_lseek, & generic_read_dir, 0, 0, 0, & dcache_readdir, 0, 0, 0, 0, & autofs4_dir_open, 0, & dcache_dir_close, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; struct inode_operations const autofs4_dir_inode_operations = {& autofs4_lookup, 0, 0, 0, 0, 0, 0, 0, & autofs4_dir_unlink, & autofs4_dir_symlink, & autofs4_dir_mkdir, & autofs4_dir_rmdir, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; struct dentry_operations const autofs4_dentry_operations = {0, 0, 0, 0, 0, & autofs4_dentry_release, 0, 0, 0, & autofs4_d_automount, & autofs4_d_manage}; static void autofs4_add_active(struct dentry *dentry ) { struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct autofs_info *ino ; struct autofs_info *tmp___0 ; int tmp___1 ; { { tmp = autofs4_sbi(dentry->d_sb); sbi = tmp; tmp___0 = autofs4_dentry_ino(dentry); ino = tmp___0; } if ((unsigned long )ino != (unsigned long )((struct autofs_info *)0)) { { ldv_spin_lock_54(& sbi->lookup_lock); } if (ino->active_count == 0) { { tmp___1 = list_empty((struct list_head const *)(& ino->active)); } if (tmp___1 != 0) { { list_add(& ino->active, & sbi->active_list); } } else { } } else { } { ino->active_count = ino->active_count + 1; ldv_spin_unlock_55(& sbi->lookup_lock); } } else { } return; } } static void autofs4_del_active(struct dentry *dentry ) { struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct autofs_info *ino ; struct autofs_info *tmp___0 ; int tmp___1 ; { { tmp = autofs4_sbi(dentry->d_sb); sbi = tmp; tmp___0 = autofs4_dentry_ino(dentry); ino = tmp___0; } if ((unsigned long )ino != (unsigned long )((struct autofs_info *)0)) { { ldv_spin_lock_54(& sbi->lookup_lock); ino->active_count = ino->active_count - 1; } if (ino->active_count == 0) { { tmp___1 = list_empty((struct list_head const *)(& ino->active)); } if (tmp___1 == 0) { { list_del_init(& ino->active); } } else { } } else { } { ldv_spin_unlock_55(& sbi->lookup_lock); } } else { } return; } } static int autofs4_dir_open(struct inode *inode , struct file *file ) { struct dentry *dentry ; struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct _ddebug descriptor ; struct task_struct *tmp___0 ; long tmp___1 ; int tmp___2 ; bool tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; { { dentry = file->f_path.dentry; tmp = autofs4_sbi(dentry->d_sb); sbi = tmp; descriptor.modname = "autofs4"; descriptor.function = "autofs4_dir_open"; descriptor.filename = "fs/autofs4/root.c"; descriptor.format = "pid %d: %s: file=%p dentry=%p %.*s\n"; descriptor.lineno = 112U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { tmp___0 = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: file=%p dentry=%p %.*s\n", tmp___0->pid, "autofs4_dir_open", file, dentry, dentry->d_name.__annonCompField25.__annonCompField24.len, dentry->d_name.name); } } else { } { tmp___2 = autofs4_oz_mode(sbi); } if (tmp___2 != 0) { goto out; } else { } { ldv_spin_lock_54(& sbi->lookup_lock); tmp___3 = d_mountpoint((struct dentry const *)dentry); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { { tmp___5 = simple_empty(dentry); } if (tmp___5 != 0) { { ldv_spin_unlock_55(& sbi->lookup_lock); } return (-2); } else { } } else { } { ldv_spin_unlock_55(& sbi->lookup_lock); } out: { tmp___6 = dcache_dir_open(inode, file); } return (tmp___6); } } static void autofs4_dentry_release(struct dentry *de ) { struct autofs_info *ino ; struct autofs_info *tmp ; struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp___0 ; struct _ddebug descriptor ; struct task_struct *tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; { { tmp = autofs4_dentry_ino(de); ino = tmp; tmp___0 = autofs4_sbi(de->d_sb); sbi = tmp___0; descriptor.modname = "autofs4"; descriptor.function = "autofs4_dentry_release"; descriptor.filename = "fs/autofs4/root.c"; descriptor.format = "pid %d: %s: releasing %p\n"; descriptor.lineno = 142U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: releasing %p\n", tmp___1->pid, "autofs4_dentry_release", de); } } else { } if ((unsigned long )ino == (unsigned long )((struct autofs_info *)0)) { return; } else { } if ((unsigned long )sbi != (unsigned long )((struct autofs_sb_info *)0)) { { ldv_spin_lock_54(& sbi->lookup_lock); tmp___3 = list_empty((struct list_head const *)(& ino->active)); } if (tmp___3 == 0) { { list_del(& ino->active); } } else { } { tmp___4 = list_empty((struct list_head const *)(& ino->expiring)); } if (tmp___4 == 0) { { list_del(& ino->expiring); } } else { } { ldv_spin_unlock_55(& sbi->lookup_lock); } } else { } { autofs4_free_ino(ino); } return; } } static struct dentry *autofs4_lookup_active(struct dentry *dentry ) { struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct dentry *parent ; struct qstr *name ; unsigned int len ; unsigned int hash ; unsigned char const *str ; struct list_head *p ; struct list_head *head ; struct autofs_info *ino ; struct dentry *active ; struct qstr *qstr ; struct list_head const *__mptr ; unsigned int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = autofs4_sbi(dentry->d_sb); sbi = tmp; parent = dentry->d_parent; name = & dentry->d_name; len = name->__annonCompField25.__annonCompField24.len; hash = name->__annonCompField25.__annonCompField24.hash; str = name->name; ldv_spin_lock_54(& sbi->lookup_lock); head = & sbi->active_list; p = head->next; } goto ldv_28686; ldv_28685: { __mptr = (struct list_head const *)p; ino = (struct autofs_info *)__mptr + 0xffffffffffffff88UL; active = ino->dentry; ldv_spin_lock_48(& active->d_lockref.__annonCompField23.__annonCompField22.lock); tmp___0 = d_count((struct dentry const *)active); } if (tmp___0 == 0U) { goto next; } else { } qstr = & active->d_name; if (active->d_name.__annonCompField25.__annonCompField24.hash != hash) { goto next; } else { } if ((unsigned long )active->d_parent != (unsigned long )parent) { goto next; } else { } if (qstr->__annonCompField25.__annonCompField24.len != len) { goto next; } else { } { tmp___1 = memcmp((void const *)qstr->name, (void const *)str, (size_t )len); } if (tmp___1 != 0) { goto next; } else { } { tmp___2 = d_unhashed((struct dentry const *)active); } if (tmp___2 != 0) { { dget_dlock(active); ldv_spin_unlock_49(& active->d_lockref.__annonCompField23.__annonCompField22.lock); ldv_spin_unlock_55(& sbi->lookup_lock); } return (active); } else { } next: { ldv_spin_unlock_49(& active->d_lockref.__annonCompField23.__annonCompField22.lock); p = p->next; } ldv_28686: ; if ((unsigned long )p != (unsigned long )head) { goto ldv_28685; } else { } { ldv_spin_unlock_55(& sbi->lookup_lock); } return ((struct dentry *)0); } } static struct dentry *autofs4_lookup_expiring(struct dentry *dentry ) { struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct dentry *parent ; struct qstr *name ; unsigned int len ; unsigned int hash ; unsigned char const *str ; struct list_head *p ; struct list_head *head ; struct autofs_info *ino ; struct dentry *expiring ; struct qstr *qstr ; struct list_head const *__mptr ; int tmp___0 ; int tmp___1 ; { { tmp = autofs4_sbi(dentry->d_sb); sbi = tmp; parent = dentry->d_parent; name = & dentry->d_name; len = name->__annonCompField25.__annonCompField24.len; hash = name->__annonCompField25.__annonCompField24.hash; str = name->name; ldv_spin_lock_54(& sbi->lookup_lock); head = & sbi->expiring_list; p = head->next; } goto ldv_28706; ldv_28705: { __mptr = (struct list_head const *)p; ino = (struct autofs_info *)__mptr + 0xffffffffffffff70UL; expiring = ino->dentry; ldv_spin_lock_48(& expiring->d_lockref.__annonCompField23.__annonCompField22.lock); } if ((unsigned long )expiring->d_inode == (unsigned long )((struct inode *)0)) { goto next; } else { } qstr = & expiring->d_name; if (expiring->d_name.__annonCompField25.__annonCompField24.hash != hash) { goto next; } else { } if ((unsigned long )expiring->d_parent != (unsigned long )parent) { goto next; } else { } if (qstr->__annonCompField25.__annonCompField24.len != len) { goto next; } else { } { tmp___0 = memcmp((void const *)qstr->name, (void const *)str, (size_t )len); } if (tmp___0 != 0) { goto next; } else { } { tmp___1 = d_unhashed((struct dentry const *)expiring); } if (tmp___1 != 0) { { dget_dlock(expiring); ldv_spin_unlock_49(& expiring->d_lockref.__annonCompField23.__annonCompField22.lock); ldv_spin_unlock_55(& sbi->lookup_lock); } return (expiring); } else { } next: { ldv_spin_unlock_49(& expiring->d_lockref.__annonCompField23.__annonCompField22.lock); p = p->next; } ldv_28706: ; if ((unsigned long )p != (unsigned long )head) { goto ldv_28705; } else { } { ldv_spin_unlock_55(& sbi->lookup_lock); } return ((struct dentry *)0); } } static int autofs4_mount_wait(struct dentry *dentry ) { struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct autofs_info *ino ; struct autofs_info *tmp___0 ; int status ; struct _ddebug descriptor ; struct task_struct *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___0 ; struct task_struct *tmp___3 ; long tmp___4 ; { { tmp = autofs4_sbi(dentry->d_sb); sbi = tmp; tmp___0 = autofs4_dentry_ino(dentry); ino = tmp___0; status = 0; } if ((ino->flags & 4) != 0) { { descriptor.modname = "autofs4"; descriptor.function = "autofs4_mount_wait"; descriptor.filename = "fs/autofs4/root.c"; descriptor.format = "pid %d: %s: waiting for mount name=%.*s\n"; descriptor.lineno = 271U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: waiting for mount name=%.*s\n", tmp___1->pid, "autofs4_mount_wait", dentry->d_name.__annonCompField25.__annonCompField24.len, dentry->d_name.name); } } else { } { status = autofs4_wait(sbi, dentry, 1); descriptor___0.modname = "autofs4"; descriptor___0.function = "autofs4_mount_wait"; descriptor___0.filename = "fs/autofs4/root.c"; descriptor___0.format = "pid %d: %s: mount wait done status=%d\n"; descriptor___0.lineno = 273U; descriptor___0.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = get_current(); __dynamic_pr_debug(& descriptor___0, "pid %d: %s: mount wait done status=%d\n", tmp___3->pid, "autofs4_mount_wait", status); } } else { } } else { } ino->last_used = jiffies; return (status); } } static int do_expire_wait(struct dentry *dentry ) { struct dentry *expiring ; int tmp ; { { expiring = autofs4_lookup_expiring(dentry); } if ((unsigned long )expiring == (unsigned long )((struct dentry *)0)) { { tmp = autofs4_expire_wait(dentry); } return (tmp); } else { { autofs4_expire_wait(expiring); autofs4_del_expiring(expiring); dput(expiring); } } return (0); } } static struct dentry *autofs4_mountpoint_changed(struct path *path ) { struct dentry *dentry ; struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct dentry *parent ; struct autofs_info *ino ; struct dentry *new ; struct dentry *tmp___0 ; unsigned int tmp___1 ; int tmp___2 ; { { dentry = path->dentry; tmp = autofs4_sbi(dentry->d_sb); sbi = tmp; tmp___1 = autofs_type_indirect(sbi->type); } if (tmp___1 != 0U) { { tmp___2 = d_unhashed((struct dentry const *)dentry); } if (tmp___2 != 0) { { parent = dentry->d_parent; tmp___0 = d_lookup((struct dentry const *)parent, (struct qstr const *)(& dentry->d_name)); new = tmp___0; } if ((unsigned long )new == (unsigned long )((struct dentry *)0)) { return ((struct dentry *)0); } else { } { ino = autofs4_dentry_ino(new); ino->last_used = jiffies; dput(path->dentry); path->dentry = new; } } else { } } else { } return (path->dentry); } } static struct vfsmount *autofs4_d_automount(struct path *path ) { struct dentry *dentry ; struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct autofs_info *ino ; struct autofs_info *tmp___0 ; int status ; struct _ddebug descriptor ; struct task_struct *tmp___1 ; long tmp___2 ; int tmp___3 ; void *tmp___4 ; int tmp___5 ; int tmp___6 ; void *tmp___7 ; bool tmp___8 ; int tmp___9 ; void *tmp___10 ; { { dentry = path->dentry; tmp = autofs4_sbi(dentry->d_sb); sbi = tmp; tmp___0 = autofs4_dentry_ino(dentry); ino = tmp___0; descriptor.modname = "autofs4"; descriptor.function = "autofs4_d_automount"; descriptor.filename = "fs/autofs4/root.c"; descriptor.format = "pid %d: %s: dentry=%p %.*s\n"; descriptor.lineno = 330U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: dentry=%p %.*s\n", tmp___1->pid, "autofs4_d_automount", dentry, dentry->d_name.__annonCompField25.__annonCompField24.len, dentry->d_name.name); } } else { } { tmp___3 = autofs4_oz_mode(sbi); } if (tmp___3 != 0) { return ((struct vfsmount *)0); } else { } { status = do_expire_wait(dentry); } if (status != 0 && status != -11) { return ((struct vfsmount *)0); } else { } { ldv_spin_lock_77(& sbi->fs_lock); } if ((ino->flags & 4) != 0) { { ldv_spin_unlock_78(& sbi->fs_lock); status = autofs4_mount_wait(dentry); } if (status != 0) { { tmp___4 = ERR_PTR((long )status); } return ((struct vfsmount *)tmp___4); } else { } goto done; } else { } if ((unsigned long )dentry->d_inode != (unsigned long )((struct inode *)0) && ((int )(dentry->d_inode)->i_mode & 61440) == 40960) { { ldv_spin_unlock_78(& sbi->fs_lock); } goto done; } else { } { tmp___8 = d_mountpoint((struct dentry const *)dentry); } if (tmp___8) { tmp___9 = 0; } else { tmp___9 = 1; } if (tmp___9) { if (sbi->version > 4) { { tmp___5 = have_submounts(dentry); } if (tmp___5 != 0) { { ldv_spin_unlock_78(& sbi->fs_lock); } goto done; } else { } } else { { tmp___6 = simple_empty(dentry); } if (tmp___6 == 0) { { ldv_spin_unlock_78(& sbi->fs_lock); } goto done; } else { } } { ino->flags = ino->flags | 4; ldv_spin_unlock_78(& sbi->fs_lock); status = autofs4_mount_wait(dentry); ldv_spin_lock_77(& sbi->fs_lock); ino->flags = ino->flags & -5; } if (status != 0) { { ldv_spin_unlock_78(& sbi->fs_lock); tmp___7 = ERR_PTR((long )status); } return ((struct vfsmount *)tmp___7); } else { } } else { } { ldv_spin_unlock_78(& sbi->fs_lock); } done: { dentry = autofs4_mountpoint_changed(path); } if ((unsigned long )dentry == (unsigned long )((struct dentry *)0)) { { tmp___10 = ERR_PTR(-2L); } return ((struct vfsmount *)tmp___10); } else { } return ((struct vfsmount *)0); } } static int autofs4_d_manage(struct dentry *dentry , bool rcu_walk ) { struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct autofs_info *ino ; struct autofs_info *tmp___0 ; int status ; struct _ddebug descriptor ; struct task_struct *tmp___1 ; long tmp___2 ; bool tmp___3 ; int tmp___4 ; int tmp___5 ; bool tmp___6 ; int tmp___7 ; int tmp___8 ; { { tmp = autofs4_sbi(dentry->d_sb); sbi = tmp; tmp___0 = autofs4_dentry_ino(dentry); ino = tmp___0; descriptor.modname = "autofs4"; descriptor.function = "autofs4_d_manage"; descriptor.filename = "fs/autofs4/root.c"; descriptor.format = "pid %d: %s: dentry=%p %.*s\n"; descriptor.lineno = 418U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: dentry=%p %.*s\n", tmp___1->pid, "autofs4_d_manage", dentry, dentry->d_name.__annonCompField25.__annonCompField24.len, dentry->d_name.name); } } else { } { tmp___5 = autofs4_oz_mode(sbi); } if (tmp___5 != 0) { if ((int )rcu_walk) { return (0); } else { } { tmp___3 = d_mountpoint((struct dentry const *)dentry); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { return (-21); } else { } return (0); } else { } if ((int )rcu_walk) { return (-10); } else { } { do_expire_wait(dentry); status = autofs4_mount_wait(dentry); } if (status != 0) { return (status); } else { } { ldv_spin_lock_77(& sbi->fs_lock); } if ((ino->flags & 1) == 0) { { tmp___6 = d_mountpoint((struct dentry const *)dentry); } if (tmp___6) { tmp___7 = 0; } else { tmp___7 = 1; } if (tmp___7) { { tmp___8 = simple_empty(dentry); } if (tmp___8 == 0) { status = -21; } else { goto _L; } } else _L: /* CIL Label */ if ((unsigned long )dentry->d_inode != (unsigned long )((struct inode *)0) && ((int )(dentry->d_inode)->i_mode & 61440) == 40960) { status = -21; } else { } } else { } { ldv_spin_unlock_78(& sbi->fs_lock); } return (status); } } static struct dentry *autofs4_lookup(struct inode *dir , struct dentry *dentry , unsigned int flags ) { struct autofs_sb_info *sbi ; struct autofs_info *ino ; struct dentry *active ; struct _ddebug descriptor ; struct task_struct *tmp ; long tmp___0 ; void *tmp___1 ; struct _ddebug descriptor___0 ; int tmp___2 ; struct task_struct *tmp___3 ; pid_t tmp___4 ; struct task_struct *tmp___5 ; struct task_struct *tmp___6 ; long tmp___7 ; void *tmp___8 ; int tmp___9 ; unsigned int tmp___10 ; void *tmp___11 ; { { descriptor.modname = "autofs4"; descriptor.function = "autofs4_lookup"; descriptor.filename = "fs/autofs4/root.c"; descriptor.format = "pid %d: %s: name = %.*s\n"; descriptor.lineno = 475U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: name = %.*s\n", tmp->pid, "autofs4_lookup", dentry->d_name.__annonCompField25.__annonCompField24.len, dentry->d_name.name); } } else { } if (dentry->d_name.__annonCompField25.__annonCompField24.len > 255U) { { tmp___1 = ERR_PTR(-36L); } return ((struct dentry *)tmp___1); } else { } { sbi = autofs4_sbi(dir->i_sb); descriptor___0.modname = "autofs4"; descriptor___0.function = "autofs4_lookup"; descriptor___0.filename = "fs/autofs4/root.c"; descriptor___0.format = "pid %d: %s: pid = %u, pgrp = %u, catatonic = %d, oz_mode = %d\n"; descriptor___0.lineno = 485U; descriptor___0.flags = 0U; tmp___7 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___7 != 0L) { { tmp___2 = autofs4_oz_mode(sbi); tmp___3 = get_current(); tmp___4 = task_pgrp_nr(tmp___3); tmp___5 = get_current(); tmp___6 = get_current(); __dynamic_pr_debug(& descriptor___0, "pid %d: %s: pid = %u, pgrp = %u, catatonic = %d, oz_mode = %d\n", tmp___6->pid, "autofs4_lookup", tmp___5->pid, tmp___4, sbi->catatonic, tmp___2); } } else { } { active = autofs4_lookup_active(dentry); } if ((unsigned long )active != (unsigned long )((struct dentry *)0)) { return (active); } else { { tmp___9 = autofs4_oz_mode(sbi); } if (tmp___9 == 0 && (unsigned long )dentry->d_parent != (unsigned long )(dentry->d_parent)->d_parent) { { tmp___8 = ERR_PTR(-2L); } return ((struct dentry *)tmp___8); } else { } { tmp___10 = autofs_type_indirect(sbi->type); } if (tmp___10 != 0U && (unsigned long )dentry->d_parent == (unsigned long )(dentry->d_parent)->d_parent) { { __managed_dentry_set_managed(dentry); } } else { } { ino = autofs4_new_ino(sbi); } if ((unsigned long )ino == (unsigned long )((struct autofs_info *)0)) { { tmp___11 = ERR_PTR(-12L); } return ((struct dentry *)tmp___11); } else { } { dentry->d_fsdata = (void *)ino; ino->dentry = dentry; autofs4_add_active(dentry); d_instantiate(dentry, (struct inode *)0); } } return ((struct dentry *)0); } } static int autofs4_dir_symlink(struct inode *dir , struct dentry *dentry , char const *symname ) { struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct autofs_info *ino ; struct autofs_info *tmp___0 ; struct autofs_info *p_ino ; struct inode *inode ; size_t size ; size_t tmp___1 ; char *cp ; struct _ddebug descriptor ; struct task_struct *tmp___2 ; long tmp___3 ; int tmp___4 ; long tmp___5 ; void *tmp___6 ; { { tmp = autofs4_sbi(dir->i_sb); sbi = tmp; tmp___0 = autofs4_dentry_ino(dentry); ino = tmp___0; tmp___1 = strlen(symname); size = tmp___1; descriptor.modname = "autofs4"; descriptor.function = "autofs4_dir_symlink"; descriptor.filename = "fs/autofs4/root.c"; descriptor.format = "pid %d: %s: %s <- %.*s\n"; descriptor.lineno = 530U; descriptor.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___3 != 0L) { { tmp___2 = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: %s <- %.*s\n", tmp___2->pid, "autofs4_dir_symlink", symname, dentry->d_name.__annonCompField25.__annonCompField24.len, dentry->d_name.name); } } else { } { tmp___4 = autofs4_oz_mode(sbi); } if (tmp___4 == 0) { return (-13); } else { } { tmp___5 = ldv__builtin_expect((unsigned long )ino == (unsigned long )((struct autofs_info *)0), 0L); } if (tmp___5 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"fs/autofs4/root.c"), "i" (535), "i" (12UL)); __builtin_unreachable(); } } else { } { autofs4_clean_ino(ino); autofs4_del_active(dentry); tmp___6 = kmalloc(size + 1UL, 208U); cp = (char *)tmp___6; } if ((unsigned long )cp == (unsigned long )((char *)0)) { return (-12); } else { } { strcpy(cp, symname); inode = autofs4_get_inode(dir->i_sb, 41325); } if ((unsigned long )inode == (unsigned long )((struct inode *)0)) { { kfree((void const *)cp); } if ((unsigned long )dentry->d_fsdata == (unsigned long )((void *)0)) { { kfree((void const *)ino); } } else { } return (-12); } else { } { inode->i_private = (void *)cp; inode->i_size = (loff_t )size; d_add(dentry, inode); dget(dentry); atomic_inc(& ino->count); p_ino = autofs4_dentry_ino(dentry->d_parent); } if ((unsigned long )p_ino != (unsigned long )((struct autofs_info *)0) && (unsigned long )dentry != (unsigned long )dentry->d_parent) { { atomic_inc(& p_ino->count); } } else { } { dir->i_mtime = current_kernel_time(); } return (0); } } static int autofs4_dir_unlink(struct inode *dir , struct dentry *dentry ) { struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct autofs_info *ino ; struct autofs_info *tmp___0 ; struct autofs_info *p_ino ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; int tmp___4 ; { { tmp = autofs4_sbi(dir->i_sb); sbi = tmp; tmp___0 = autofs4_dentry_ino(dentry); ino = tmp___0; tmp___1 = autofs4_oz_mode(sbi); } if (tmp___1 == 0) { { tmp___2 = capable(21); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { return (-1); } else { } } else { } { tmp___4 = atomic_dec_and_test(& ino->count); } if (tmp___4 != 0) { { p_ino = autofs4_dentry_ino(dentry->d_parent); } if ((unsigned long )p_ino != (unsigned long )((struct autofs_info *)0) && (unsigned long )dentry != (unsigned long )dentry->d_parent) { { atomic_dec(& p_ino->count); } } else { } } else { } { dput(ino->dentry); (dentry->d_inode)->i_size = 0LL; clear_nlink(dentry->d_inode); dir->i_mtime = current_kernel_time(); ldv_spin_lock_54(& sbi->lookup_lock); __autofs4_add_expiring(dentry); d_drop(dentry); ldv_spin_unlock_55(& sbi->lookup_lock); } return (0); } } static void autofs_set_leaf_automount_flags(struct dentry *dentry ) { struct dentry *parent ; { if ((unsigned long )dentry->d_parent == (unsigned long )(dentry->d_parent)->d_parent) { return; } else { } { managed_dentry_set_managed(dentry); parent = dentry->d_parent; } if ((unsigned long )parent->d_parent == (unsigned long )(parent->d_parent)->d_parent) { return; } else { } { managed_dentry_clear_managed(parent); } return; } } static void autofs_clear_leaf_automount_flags(struct dentry *dentry ) { struct list_head *d_child ; struct dentry *parent ; { if ((unsigned long )dentry->d_parent == (unsigned long )(dentry->d_parent)->d_parent) { return; } else { } { managed_dentry_clear_managed(dentry); parent = dentry->d_parent; } if ((unsigned long )parent->d_parent == (unsigned long )(parent->d_parent)->d_parent) { return; } else { } d_child = & dentry->d_u.d_child; if ((unsigned long )d_child->next == (unsigned long )(& parent->d_subdirs) && (unsigned long )d_child->prev == (unsigned long )(& parent->d_subdirs)) { { managed_dentry_set_managed(parent); } } else { } return; } } static int autofs4_dir_rmdir(struct inode *dir , struct dentry *dentry ) { struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct autofs_info *ino ; struct autofs_info *tmp___0 ; struct autofs_info *p_ino ; struct _ddebug descriptor ; struct task_struct *tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { { tmp = autofs4_sbi(dir->i_sb); sbi = tmp; tmp___0 = autofs4_dentry_ino(dentry); ino = tmp___0; descriptor.modname = "autofs4"; descriptor.function = "autofs4_dir_rmdir"; descriptor.filename = "fs/autofs4/root.c"; descriptor.format = "pid %d: %s: dentry %p, removing %.*s\n"; descriptor.lineno = 673U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: dentry %p, removing %.*s\n", tmp___1->pid, "autofs4_dir_rmdir", dentry, dentry->d_name.__annonCompField25.__annonCompField24.len, dentry->d_name.name); } } else { } { tmp___3 = autofs4_oz_mode(sbi); } if (tmp___3 == 0) { return (-13); } else { } { ldv_spin_lock_54(& sbi->lookup_lock); tmp___4 = simple_empty(dentry); } if (tmp___4 == 0) { { ldv_spin_unlock_55(& sbi->lookup_lock); } return (-39); } else { } { __autofs4_add_expiring(dentry); d_drop(dentry); ldv_spin_unlock_55(& sbi->lookup_lock); } if (sbi->version <= 4) { { autofs_clear_leaf_automount_flags(dentry); } } else { } { tmp___5 = atomic_dec_and_test(& ino->count); } if (tmp___5 != 0) { { p_ino = autofs4_dentry_ino(dentry->d_parent); } if ((unsigned long )p_ino != (unsigned long )((struct autofs_info *)0) && (unsigned long )dentry->d_parent != (unsigned long )dentry) { { atomic_dec(& p_ino->count); } } else { } } else { } { dput(ino->dentry); (dentry->d_inode)->i_size = 0LL; clear_nlink(dentry->d_inode); } if ((unsigned int )dir->__annonCompField38.i_nlink != 0U) { { drop_nlink(dir); } } else { } return (0); } } static int autofs4_dir_mkdir(struct inode *dir , struct dentry *dentry , umode_t mode ) { struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct autofs_info *ino ; struct autofs_info *tmp___0 ; struct autofs_info *p_ino ; struct inode *inode ; int tmp___1 ; struct _ddebug descriptor ; struct task_struct *tmp___2 ; long tmp___3 ; long tmp___4 ; { { tmp = autofs4_sbi(dir->i_sb); sbi = tmp; tmp___0 = autofs4_dentry_ino(dentry); ino = tmp___0; tmp___1 = autofs4_oz_mode(sbi); } if (tmp___1 == 0) { return (-13); } else { } { descriptor.modname = "autofs4"; descriptor.function = "autofs4_dir_mkdir"; descriptor.filename = "fs/autofs4/root.c"; descriptor.format = "pid %d: %s: dentry %p, creating %.*s\n"; descriptor.lineno = 716U; descriptor.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___3 != 0L) { { tmp___2 = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: dentry %p, creating %.*s\n", tmp___2->pid, "autofs4_dir_mkdir", dentry, dentry->d_name.__annonCompField25.__annonCompField24.len, dentry->d_name.name); } } else { } { tmp___4 = ldv__builtin_expect((unsigned long )ino == (unsigned long )((struct autofs_info *)0), 0L); } if (tmp___4 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"fs/autofs4/root.c"), "i" (718), "i" (12UL)); __builtin_unreachable(); } } else { } { autofs4_clean_ino(ino); autofs4_del_active(dentry); inode = autofs4_get_inode(dir->i_sb, 16749); } if ((unsigned long )inode == (unsigned long )((struct inode *)0)) { return (-12); } else { } { d_add(dentry, inode); } if (sbi->version <= 4) { { autofs_set_leaf_automount_flags(dentry); } } else { } { dget(dentry); atomic_inc(& ino->count); p_ino = autofs4_dentry_ino(dentry->d_parent); } if ((unsigned long )p_ino != (unsigned long )((struct autofs_info *)0) && (unsigned long )dentry != (unsigned long )dentry->d_parent) { { atomic_inc(& p_ino->count); } } else { } { inc_nlink(dir); dir->i_mtime = current_kernel_time(); } return (0); } } __inline static int autofs4_compat_get_set_timeout(struct autofs_sb_info *sbi , compat_ulong_t *p ) { int rv ; unsigned long ntimeout ; int __ret_gu ; register unsigned long __val_gu ; int __ret_pu ; compat_ulong_t __pu_val ; { { might_fault(); __asm__ volatile ("call __get_user_%P3": "=a" (__ret_gu), "=r" (__val_gu): "0" (p), "i" (4UL)); ntimeout = (unsigned long )((unsigned int )__val_gu); rv = __ret_gu; } if (rv != 0) { return (rv); } else { { might_fault(); __pu_val = (compat_ulong_t )(sbi->exp_timeout / 250UL); } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28820; case_2: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28820; case_4: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28820; case_8: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28820; switch_default: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28820; switch_break: /* CIL Label */ ; } ldv_28820: rv = __ret_pu; if (rv != 0) { return (rv); } else { } } if (ntimeout > 17179869UL) { sbi->exp_timeout = 0UL; } else { sbi->exp_timeout = ntimeout * 250UL; } return (0); } } __inline static int autofs4_get_set_timeout(struct autofs_sb_info *sbi , unsigned long *p ) { int rv ; unsigned long ntimeout ; int __ret_gu ; register unsigned long __val_gu ; int __ret_pu ; unsigned long __pu_val ; { { might_fault(); __asm__ volatile ("call __get_user_%P3": "=a" (__ret_gu), "=r" (__val_gu): "0" (p), "i" (8UL)); ntimeout = __val_gu; rv = __ret_gu; } if (rv != 0) { return (rv); } else { { might_fault(); __pu_val = sbi->exp_timeout / 250UL; } { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28838; case_2: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28838; case_4: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28838; case_8: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28838; switch_default: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28838; switch_break: /* CIL Label */ ; } ldv_28838: rv = __ret_pu; if (rv != 0) { return (rv); } else { } } if (ntimeout > 73786976294838206UL) { sbi->exp_timeout = 0UL; } else { sbi->exp_timeout = ntimeout * 250UL; } return (0); } } __inline static int autofs4_get_protover(struct autofs_sb_info *sbi , int *p ) { int __ret_pu ; int __pu_val ; { { might_fault(); __pu_val = sbi->version; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28851; case_2: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28851; case_4: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28851; case_8: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28851; switch_default: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28851; switch_break: /* CIL Label */ ; } ldv_28851: ; return (__ret_pu); } } __inline static int autofs4_get_protosubver(struct autofs_sb_info *sbi , int *p ) { int __ret_pu ; int __pu_val ; { { might_fault(); __pu_val = sbi->sub_version; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28864; case_2: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28864; case_4: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28864; case_8: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28864; switch_default: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28864; switch_break: /* CIL Label */ ; } ldv_28864: ; return (__ret_pu); } } __inline static int autofs4_ask_umount(struct vfsmount *mnt , int *p ) { int status ; int tmp ; struct _ddebug descriptor ; struct task_struct *tmp___0 ; long tmp___1 ; int __ret_pu ; int __pu_val ; { { status = 0; tmp = may_umount(mnt); } if (tmp != 0) { status = 1; } else { } { descriptor.modname = "autofs4"; descriptor.function = "autofs4_ask_umount"; descriptor.filename = "fs/autofs4/root.c"; descriptor.format = "pid %d: %s: returning %d\n"; descriptor.lineno = 804U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { tmp___0 = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: returning %d\n", tmp___0->pid, "autofs4_ask_umount", status); } } else { } { might_fault(); __pu_val = status; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ volatile ("call __put_user_1": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28880; case_2: /* CIL Label */ __asm__ volatile ("call __put_user_2": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28880; case_4: /* CIL Label */ __asm__ volatile ("call __put_user_4": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28880; case_8: /* CIL Label */ __asm__ volatile ("call __put_user_8": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28880; switch_default: /* CIL Label */ __asm__ volatile ("call __put_user_X": "=a" (__ret_pu): "0" (__pu_val), "c" (p): "ebx"); goto ldv_28880; switch_break: /* CIL Label */ ; } ldv_28880: status = __ret_pu; return (status); } } int is_autofs4_dentry(struct dentry *dentry ) { { return ((((unsigned long )dentry != (unsigned long )((struct dentry *)0) && (unsigned long )dentry->d_inode != (unsigned long )((struct inode *)0)) && (unsigned long )dentry->d_op == (unsigned long )(& autofs4_dentry_operations)) && (unsigned long )dentry->d_fsdata != (unsigned long )((void *)0)); } } static int autofs4_root_ioctl_unlocked(struct inode *inode , struct file *filp , unsigned int cmd , unsigned long arg ) { struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; void *p ; struct _ddebug descriptor ; struct task_struct *tmp___0 ; pid_t tmp___1 ; struct task_struct *tmp___2 ; long tmp___3 ; int tmp___4 ; bool tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; int tmp___11 ; int tmp___12 ; int tmp___13 ; int tmp___14 ; int tmp___15 ; { { tmp = autofs4_sbi(inode->i_sb); sbi = tmp; p = (void *)arg; descriptor.modname = "autofs4"; descriptor.function = "autofs4_root_ioctl_unlocked"; descriptor.filename = "fs/autofs4/root.c"; descriptor.format = "pid %d: %s: cmd = 0x%08x, arg = 0x%08lx, sbi = %p, pgrp = %u\n"; descriptor.lineno = 833U; descriptor.flags = 0U; tmp___3 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___3 != 0L) { { tmp___0 = get_current(); tmp___1 = task_pgrp_nr(tmp___0); tmp___2 = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: cmd = 0x%08x, arg = 0x%08lx, sbi = %p, pgrp = %u\n", tmp___2->pid, "autofs4_root_ioctl_unlocked", cmd, arg, sbi, tmp___1); } } else { } if (((cmd >> 8) & 255U) != 147U || (cmd & 255U) - 96U > 31U) { return (-25); } else { } { tmp___4 = autofs4_oz_mode(sbi); } if (tmp___4 == 0) { { tmp___5 = capable(21); } if (tmp___5) { tmp___6 = 0; } else { tmp___6 = 1; } if (tmp___6) { return (-1); } else { } } else { } { if (cmd == 37728U) { goto case_37728; } else { } if (cmd == 37729U) { goto case_37729; } else { } if (cmd == 37730U) { goto case_37730; } else { } if (cmd == 2147783523U) { goto case_2147783523; } else { } if (cmd == 2147783527U) { goto case_2147783527; } else { } if (cmd == 3221787492U) { goto case_3221787492; } else { } if (cmd == 3221525348U) { goto case_3221525348; } else { } if (cmd == 2147783536U) { goto case_2147783536; } else { } if (cmd == 2165085029U) { goto case_2165085029; } else { } if (cmd == 1074041702U) { goto case_1074041702; } else { } goto switch_default; case_37728: /* CIL Label */ { tmp___7 = autofs4_wait_release(sbi, (unsigned int )arg, 0); } return (tmp___7); case_37729: /* CIL Label */ { tmp___8 = autofs4_wait_release(sbi, (unsigned int )arg, -2); } return (tmp___8); case_37730: /* CIL Label */ { autofs4_catatonic_mode(sbi); } return (0); case_2147783523: /* CIL Label */ { tmp___9 = autofs4_get_protover(sbi, (int *)p); } return (tmp___9); case_2147783527: /* CIL Label */ { tmp___10 = autofs4_get_protosubver(sbi, (int *)p); } return (tmp___10); case_3221787492: /* CIL Label */ { tmp___11 = autofs4_get_set_timeout(sbi, (unsigned long *)p); } return (tmp___11); case_3221525348: /* CIL Label */ { tmp___12 = autofs4_compat_get_set_timeout(sbi, (compat_ulong_t *)p); } return (tmp___12); case_2147783536: /* CIL Label */ { tmp___13 = autofs4_ask_umount(filp->f_path.mnt, (int *)p); } return (tmp___13); case_2165085029: /* CIL Label */ { tmp___14 = autofs4_expire_run(inode->i_sb, filp->f_path.mnt, sbi, (struct autofs_packet_expire *)p); } return (tmp___14); case_1074041702: /* CIL Label */ { tmp___15 = autofs4_expire_multi(inode->i_sb, filp->f_path.mnt, sbi, (int *)p); } return (tmp___15); switch_default: /* CIL Label */ ; return (-38); switch_break: /* CIL Label */ ; } } } static long autofs4_root_ioctl(struct file *filp , unsigned int cmd , unsigned long arg ) { struct inode *inode ; struct inode *tmp ; int tmp___0 ; { { tmp = file_inode(filp); inode = tmp; tmp___0 = autofs4_root_ioctl_unlocked(inode, filp, cmd, arg); } return ((long )tmp___0); } } static long autofs4_root_compat_ioctl(struct file *filp , unsigned int cmd , unsigned long arg ) { struct inode *inode ; struct inode *tmp ; int ret ; void *tmp___0 ; { { tmp = file_inode(filp); inode = tmp; } if (cmd - 37728U <= 1U) { { ret = autofs4_root_ioctl_unlocked(inode, filp, cmd, arg); } } else { { tmp___0 = compat_ptr((compat_uptr_t )arg); ret = autofs4_root_ioctl_unlocked(inode, filp, cmd, (unsigned long )tmp___0); } } return ((long )ret); } } struct file_operations *ldv_1_container_file_operations ; struct file_operations *ldv_2_container_file_operations ; int (*ldv_1_callback_iterate)(struct file * , struct dir_context * ) = & dcache_readdir; long long (*ldv_1_callback_llseek)(struct file * , long long , int ) = & dcache_dir_lseek; long (*ldv_1_callback_read)(struct file * , char * , unsigned long , long long * ) = & generic_read_dir; long (*ldv_2_callback_compat_ioctl)(struct file * , unsigned int , unsigned long ) = & autofs4_root_compat_ioctl; int (*ldv_2_callback_iterate)(struct file * , struct dir_context * ) = & dcache_readdir; long long (*ldv_2_callback_llseek)(struct file * , long long , int ) = & dcache_dir_lseek; long (*ldv_2_callback_read)(struct file * , char * , unsigned long , long long * ) = & generic_read_dir; long (*ldv_2_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) = & autofs4_root_ioctl; struct vfsmount *(*ldv_3_callback_d_automount)(struct path * ) = & autofs4_d_automount; int (*ldv_3_callback_d_manage)(struct dentry * , _Bool ) = & autofs4_d_manage; void (*ldv_3_callback_d_release)(struct dentry * ) = & autofs4_dentry_release; struct dentry *(*ldv_4_callback_lookup)(struct inode * , struct dentry * , unsigned int ) = & autofs4_lookup; int (*ldv_4_callback_mkdir)(struct inode * , struct dentry * , unsigned short ) = & autofs4_dir_mkdir; int (*ldv_4_callback_rmdir)(struct inode * , struct dentry * ) = & autofs4_dir_rmdir; int (*ldv_4_callback_symlink)(struct inode * , struct dentry * , char * ) = (int (*)(struct inode * , struct dentry * , char * ))(& autofs4_dir_symlink); int (*ldv_4_callback_unlink)(struct inode * , struct dentry * ) = & autofs4_dir_unlink; void ldv_dummy_resourceless_instance_callback_3_10(void (*arg0)(struct dentry * ) , struct dentry *arg1 ) { { { autofs4_dentry_release(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_3(struct vfsmount *(*arg0)(struct path * ) , struct path *arg1 ) { { { autofs4_d_automount(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_7(int (*arg0)(struct dentry * , _Bool ) , struct dentry *arg1 , _Bool arg2 ) { { { autofs4_d_manage(arg1, (int )arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_10(int (*arg0)(struct inode * , struct dentry * , unsigned short ) , struct inode *arg1 , struct dentry *arg2 , unsigned short arg3 ) { { { autofs4_dir_mkdir(arg1, arg2, (int )arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_16(int (*arg0)(struct inode * , struct dentry * ) , struct inode *arg1 , struct dentry *arg2 ) { { { autofs4_dir_rmdir(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_17(int (*arg0)(struct inode * , struct dentry * , char * ) , struct inode *arg1 , struct dentry *arg2 , char *arg3 ) { { { autofs4_dir_symlink(arg1, arg2, (char const *)arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_20(int (*arg0)(struct inode * , struct dentry * ) , struct inode *arg1 , struct dentry *arg2 ) { { { autofs4_dir_unlink(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_4_7(struct dentry *(*arg0)(struct inode * , struct dentry * , unsigned int ) , struct inode *arg1 , struct dentry *arg2 , unsigned int arg3 ) { { { autofs4_lookup(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_1_22(int (*arg0)(struct file * , struct dir_context * ) , struct file *arg1 , struct dir_context *arg2 ) { { { dcache_readdir(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_1_26(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { dcache_dir_lseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_1_32(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { generic_read_dir(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_2_22(int (*arg0)(struct file * , struct dir_context * ) , struct file *arg1 , struct dir_context *arg2 ) { { { dcache_readdir(arg1, arg2); } return; } } void ldv_file_operations_instance_callback_2_26(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { dcache_dir_lseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_2_32(long (*arg0)(struct file * , char * , unsigned long , long long * ) , struct file *arg1 , char *arg2 , unsigned long arg3 , long long *arg4 ) { { { generic_read_dir(arg1, arg2, arg3, arg4); } return; } } void ldv_file_operations_instance_callback_2_35(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { autofs4_root_ioctl(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_2_5(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { autofs4_root_compat_ioctl(arg1, arg2, arg3); } return; } } int ldv_file_operations_instance_probe_1_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = autofs4_dir_open(arg1, arg2); } return (tmp); } } int ldv_file_operations_instance_probe_2_12(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { int tmp ; { { tmp = dcache_dir_open(arg1, arg2); } return (tmp); } } void ldv_file_operations_instance_release_1_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { dcache_dir_close(arg1, arg2); } return; } } void ldv_file_operations_instance_release_2_2(int (*arg0)(struct inode * , struct file * ) , struct inode *arg1 , struct file *arg2 ) { { { dcache_dir_close(arg1, arg2); } return; } } __inline static void *ERR_PTR(long error ) { void *tmp ; { { tmp = ldv_err_ptr(error); } return (tmp); } } __inline static void ldv_spin_lock_48(spinlock_t *lock ) { { { ldv_spin_lock_lock_of_NOT_ARG_SIGN(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_49(spinlock_t *lock ) { { { ldv_spin_unlock_lock_of_NOT_ARG_SIGN(); spin_unlock(lock); } return; } } __inline static void ldv_spin_lock_54(spinlock_t *lock ) { { { ldv_spin_lock_lookup_lock_of_autofs_sb_info(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_55(spinlock_t *lock ) { { { ldv_spin_unlock_lookup_lock_of_autofs_sb_info(); spin_unlock(lock); } return; } } __inline static void ldv_spin_lock_77(spinlock_t *lock ) { { { ldv_spin_lock_fs_lock_of_autofs_sb_info(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_78(spinlock_t *lock ) { { { ldv_spin_unlock_fs_lock_of_autofs_sb_info(); spin_unlock(lock); } return; } } extern int generic_readlink(struct dentry * , char * , int ) ; __inline static void nd_set_link(struct nameidata *nd , char *path ) { { nd->saved_names[nd->depth] = path; return; } } static void *autofs4_follow_link(struct dentry *dentry , struct nameidata *nd ) { struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct autofs_info *ino ; struct autofs_info *tmp___0 ; int tmp___1 ; { { tmp = autofs4_sbi(dentry->d_sb); sbi = tmp; tmp___0 = autofs4_dentry_ino(dentry); ino = tmp___0; } if ((unsigned long )ino != (unsigned long )((struct autofs_info *)0)) { { tmp___1 = autofs4_oz_mode(sbi); } if (tmp___1 == 0) { ino->last_used = jiffies; } else { } } else { } { nd_set_link(nd, (char *)(dentry->d_inode)->i_private); } return ((void *)0); } } struct inode_operations const autofs4_symlink_inode_operations = {0, & autofs4_follow_link, 0, 0, & generic_readlink, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; void *(*ldv_4_callback_follow_link)(struct dentry * , struct nameidata * ) = & autofs4_follow_link; int (*ldv_4_callback_readlink)(struct dentry * , char * , int ) = & generic_readlink; void ldv_dummy_resourceless_instance_callback_4_13(int (*arg0)(struct dentry * , char * , int ) , struct dentry *arg1 , char *arg2 , int arg3 ) { { { generic_readlink(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_4_3(void *(*arg0)(struct dentry * , struct nameidata * ) , struct dentry *arg1 , struct nameidata *arg2 ) { { { autofs4_follow_link(arg1, arg2); } return; } } void *__builtin_return_address(unsigned int ) ; extern struct pv_irq_ops pv_irq_ops ; extern int sprintf(char * , char const * , ...) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern char *strncpy(char * , char const * , __kernel_size_t ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/f860c18/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static void arch_local_irq_restore(unsigned long f ) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.restore_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/f860c18/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (809), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (45UL), [paravirt_opptr] "i" (& pv_irq_ops.restore_fl.func), [paravirt_clobber] "i" (1), "D" (f): "memory", "cc"); return; } } __inline static void arch_local_irq_disable(void) { unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.irq_disable.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/f860c18/linux-kernel-locking-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (814), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (46UL), [paravirt_opptr] "i" (& pv_irq_ops.irq_disable.func), [paravirt_clobber] "i" (1): "memory", "cc"); return; } } __inline static unsigned long arch_local_irq_save(void) { unsigned long f ; { { f = arch_local_save_flags(); arch_local_irq_disable(); } return (f); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void trace_hardirqs_on(void) ; extern void trace_hardirqs_off(void) ; __inline static void rep_nop(void) { { __asm__ volatile ("rep; nop": : : "memory"); return; } } __inline static void cpu_relax(void) { { { rep_nop(); } return; } } __inline static void atomic64_inc(atomic64_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incq %0": "=m" (v->counter): "m" (v->counter)); return; } } __inline static void atomic_long_inc(atomic_long_t *l ) { atomic64_t *v ; { { v = l; atomic64_inc(v); } return; } } extern void lock_acquire(struct lockdep_map * , unsigned int , int , int , int , struct lockdep_map * , unsigned long ) ; extern void lock_release(struct lockdep_map * , int , unsigned long ) ; extern void lockdep_rcu_suspicious(char const * , int const , char const * ) ; extern void __ldv_spin_lock(spinlock_t * ) ; static void ldv___ldv_spin_lock_56(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_61(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_63(spinlock_t *ldv_func_arg1 ) ; void ldv_spin_lock_siglock_of_sighand_struct(void) ; void ldv_spin_unlock_siglock_of_sighand_struct(void) ; extern void mutex_lock_nested(struct mutex * , unsigned int ) ; extern int mutex_lock_interruptible_nested(struct mutex * , unsigned int ) ; extern void mutex_unlock(struct mutex * ) ; extern unsigned long kernel_stack ; __inline static struct thread_info *current_thread_info(void) { struct thread_info *ti ; unsigned long pfo_ret__ ; { { if (8UL == 1UL) { goto case_1; } else { } if (8UL == 2UL) { goto case_2; } else { } if (8UL == 4UL) { goto case_4; } else { } if (8UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "p" (& kernel_stack)); goto ldv_6331; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_6331; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_6331; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "p" (& kernel_stack)); goto ldv_6331; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6331: ti = (struct thread_info *)(pfo_ret__ - 8152UL); return (ti); } } extern int __preempt_count ; __inline static void __preempt_count_add(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (val)); } goto ldv_6450; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6450; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6450; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (val)); } goto ldv_6450; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6450: ; return; } } __inline static void __preempt_count_sub(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (- val)); } goto ldv_6462; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6462; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6462; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (- val)); } goto ldv_6462; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6462: ; return; } } extern void _raw_spin_unlock_irqrestore(raw_spinlock_t * , unsigned long ) ; __inline static void ldv_spin_lock_77(spinlock_t *lock ) ; __inline static void ldv_spin_lock_77(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_78(spinlock_t *lock ) ; __inline static void spin_unlock_irqrestore(spinlock_t *lock , unsigned long flags ) { { { _raw_spin_unlock_irqrestore(& lock->__annonCompField19.rlock, flags); } return; } } __inline static void ldv_spin_unlock_irqrestore_57(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_57(spinlock_t *lock , unsigned long flags ) ; __inline static void ldv_spin_unlock_irqrestore_57(spinlock_t *lock , unsigned long flags ) ; __inline static void seqcount_lockdep_reader_access(seqcount_t const *s ) { seqcount_t *l ; unsigned long flags ; void *tmp ; void *tmp___0 ; int tmp___1 ; { { l = (seqcount_t *)s; flags = arch_local_irq_save(); trace_hardirqs_off(); tmp = __builtin_return_address(0U); lock_acquire(& l->dep_map, 0U, 0, 2, 2, (struct lockdep_map *)0, (unsigned long )tmp); tmp___0 = __builtin_return_address(0U); lock_release(& l->dep_map, 1, (unsigned long )tmp___0); tmp___1 = arch_irqs_disabled_flags(flags); } if (tmp___1 != 0) { { arch_local_irq_restore(flags); trace_hardirqs_off(); } } else { { trace_hardirqs_on(); arch_local_irq_restore(flags); } } return; } } __inline static unsigned int __read_seqcount_begin(seqcount_t const *s ) { unsigned int ret ; long tmp ; { repeat: { ret = *((unsigned int const volatile *)(& s->sequence)); tmp = ldv__builtin_expect((long )((int )ret) & 1L, 0L); } if (tmp != 0L) { { cpu_relax(); } goto repeat; } else { } return (ret); } } __inline static unsigned int raw_read_seqcount_begin(seqcount_t const *s ) { unsigned int ret ; unsigned int tmp ; { { tmp = __read_seqcount_begin(s); ret = tmp; __asm__ volatile ("": : : "memory"); } return (ret); } } __inline static unsigned int read_seqcount_begin(seqcount_t const *s ) { unsigned int tmp ; { { seqcount_lockdep_reader_access(s); tmp = raw_read_seqcount_begin(s); } return (tmp); } } __inline static int __read_seqcount_retry(seqcount_t const *s , unsigned int start ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned int )s->sequence != start, 0L); } return ((int )tmp); } } __inline static int read_seqcount_retry(seqcount_t const *s , unsigned int start ) { int tmp ; { { __asm__ volatile ("": : : "memory"); tmp = __read_seqcount_retry(s, start); } return (tmp); } } __inline static unsigned int read_seqbegin(seqlock_t const *sl ) { unsigned int tmp ; { { tmp = read_seqcount_begin(& sl->seqcount); } return (tmp); } } __inline static unsigned int read_seqretry(seqlock_t const *sl , unsigned int start ) { int tmp ; { { tmp = read_seqcount_retry(& sl->seqcount, start); } return ((unsigned int )tmp); } } extern void __init_waitqueue_head(wait_queue_head_t * , char const * , struct lock_class_key * ) ; extern void __wake_up(wait_queue_head_t * , unsigned int , int , void * ) ; extern long prepare_to_wait_event(wait_queue_head_t * , wait_queue_t * , int ) ; extern void finish_wait(wait_queue_head_t * , wait_queue_t * ) ; __inline static void __rcu_read_lock(void) { { { __preempt_count_add(1); __asm__ volatile ("": : : "memory"); } return; } } __inline static void __rcu_read_unlock(void) { { { __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); } return; } } extern bool rcu_is_watching(void) ; __inline static void rcu_lock_acquire(struct lockdep_map *map ) { { { lock_acquire(map, 0U, 0, 2, 1, (struct lockdep_map *)0, (unsigned long )((void *)0)); } return; } } __inline static void rcu_lock_release(struct lockdep_map *map ) { { { lock_release(map, 1, (unsigned long )((void *)0)); } return; } } extern struct lockdep_map rcu_lock_map ; __inline static void rcu_read_lock(void) { bool __warned ; int tmp ; bool tmp___0 ; int tmp___1 ; { { __rcu_read_lock(); rcu_lock_acquire(& rcu_lock_map); tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_is_watching(); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { __warned = 1; lockdep_rcu_suspicious("include/linux/rcupdate.h", 812, "rcu_read_lock() used illegally while idle"); } } else { } } else { } return; } } __inline static void rcu_read_unlock(void) { bool __warned ; int tmp ; bool tmp___0 ; int tmp___1 ; { { tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_is_watching(); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { __warned = 1; lockdep_rcu_suspicious("include/linux/rcupdate.h", 833, "rcu_read_unlock() used illegally while idle"); } } else { } } else { } { rcu_lock_release(& rcu_lock_map); __rcu_read_unlock(); } return; } } __inline static u32 new_encode_dev(dev_t dev ) { unsigned int major ; unsigned int minor ; { major = dev >> 20; minor = dev & 1048575U; return (((minor & 255U) | (major << 8)) | ((minor & 4294967040U) << 12)); } } extern unsigned int full_name_hash(unsigned char const * , unsigned int ) ; extern seqlock_t rename_lock ; __inline static struct pid_namespace *ns_of_pid(struct pid *pid ) { struct pid_namespace *ns ; { ns = (struct pid_namespace *)0; if ((unsigned long )pid != (unsigned long )((struct pid *)0)) { ns = pid->numbers[pid->level].ns; } else { } return (ns); } } __inline static struct file *get_file(struct file *f ) { { { atomic_long_inc(& f->f_count); } return (f); } } __inline static void sigdelset(sigset_t *set , int _sig ) { unsigned long sig ; { sig = (unsigned long )(_sig + -1); set->sig[0] = set->sig[0] & ~ (1UL << (int )sig); return; } } __inline static int sigismember(sigset_t *set , int _sig ) { unsigned long sig ; { sig = (unsigned long )(_sig + -1); return ((int )(set->sig[0] >> (int )sig) & 1); } } __inline static void siginitsetinv(sigset_t *set , unsigned long mask ) { { set->sig[0] = ~ mask; { if (1 == 2) { goto case_2; } else { } if (1 == 1) { goto case_1; } else { } goto switch_default; switch_default: /* CIL Label */ { memset((void *)(& set->sig) + 1U, -1, 0UL); } goto ldv_23469; case_2: /* CIL Label */ set->sig[1] = 0xffffffffffffffffUL; case_1: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_23469: ; return; } } extern long schedule_timeout_interruptible(long ) ; extern void schedule(void) ; __inline static pid_t task_pid_nr_ns(struct task_struct *tsk , struct pid_namespace *ns ) { pid_t tmp ; { { tmp = __task_pid_nr_ns(tsk, 0, ns); } return (tmp); } } extern pid_t task_tgid_nr_ns(struct task_struct * , struct pid_namespace * ) ; extern void recalc_sigpending(void) ; __inline static u32 autofs4_get_dev(struct autofs_sb_info *sbi ) { u32 tmp ; { { tmp = new_encode_dev((sbi->sb)->s_dev); } return (tmp); } } __inline static u64 autofs4_get_ino(struct autofs_sb_info *sbi ) { { return ((u64 )(((sbi->sb)->s_root)->d_inode)->i_ino); } } static autofs_wqt_t autofs4_next_wait_queue = 1U; void autofs4_catatonic_mode(struct autofs_sb_info *sbi ) { struct autofs_wait_queue *wq ; struct autofs_wait_queue *nwq ; struct _ddebug descriptor ; struct task_struct *tmp ; long tmp___0 ; { { mutex_lock_nested(& sbi->wq_mutex, 0U); } if (sbi->catatonic != 0) { { mutex_unlock(& sbi->wq_mutex); } return; } else { } { descriptor.modname = "autofs4"; descriptor.function = "autofs4_catatonic_mode"; descriptor.filename = "fs/autofs4/waitq.c"; descriptor.format = "pid %d: %s: entering catatonic mode\n"; descriptor.lineno = 37U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: entering catatonic mode\n", tmp->pid, "autofs4_catatonic_mode"); } } else { } sbi->catatonic = 1; wq = sbi->queues; sbi->queues = (struct autofs_wait_queue *)0; goto ldv_27233; ldv_27232: { nwq = wq->next; wq->status = -2; kfree((void const *)wq->name.name); wq->name.name = (unsigned char const *)0U; wq->wait_ctr = wq->wait_ctr - 1U; __wake_up(& wq->queue, 1U, 1, (void *)0); wq = nwq; } ldv_27233: ; if ((unsigned long )wq != (unsigned long )((struct autofs_wait_queue *)0)) { goto ldv_27232; } else { } { fput(sbi->pipe); sbi->pipe = (struct file *)0; sbi->pipefd = -1; mutex_unlock(& sbi->wq_mutex); } return; } } static int autofs4_write(struct autofs_sb_info *sbi , struct file *file , void const *addr , int bytes ) { unsigned long sigpipe ; unsigned long flags ; mm_segment_t fs ; char const *data ; ssize_t wr ; struct task_struct *tmp ; int tmp___0 ; struct thread_info *tmp___1 ; struct thread_info *tmp___2 ; mm_segment_t __constr_expr_0 ; struct thread_info *tmp___3 ; struct task_struct *tmp___4 ; struct task_struct *tmp___5 ; struct task_struct *tmp___6 ; { { data = (char const *)addr; wr = 0L; tmp = get_current(); tmp___0 = sigismember(& tmp->pending.signal, 13); sigpipe = (unsigned long )tmp___0; tmp___1 = current_thread_info(); fs = tmp___1->addr_limit; tmp___2 = current_thread_info(); __constr_expr_0.seg = 0xffffffffffffffffUL; tmp___2->addr_limit = __constr_expr_0; mutex_lock_nested(& sbi->pipe_mutex, 0U); } goto ldv_27248; ldv_27247: data = data + (unsigned long )wr; bytes = (int )((unsigned int )bytes - (unsigned int )wr); ldv_27248: ; if (bytes != 0) { { wr = (*((file->f_op)->write))(file, data, (size_t )bytes, & file->f_pos); } if (wr > 0L) { goto ldv_27247; } else { goto ldv_27249; } } else { } ldv_27249: { mutex_unlock(& sbi->pipe_mutex); tmp___3 = current_thread_info(); tmp___3->addr_limit = fs; } if (wr == -32L && sigpipe == 0UL) { { tmp___4 = get_current(); ldv___ldv_spin_lock_56(& (tmp___4->sighand)->siglock); tmp___5 = get_current(); sigdelset(& tmp___5->pending.signal, 13); recalc_sigpending(); tmp___6 = get_current(); ldv_spin_unlock_irqrestore_57(& (tmp___6->sighand)->siglock, flags); } } else { } return (bytes > 0); } } static void autofs4_notify_daemon(struct autofs_sb_info *sbi , struct autofs_wait_queue *wq , int type ) { union __anonunion_pkt_194 pkt ; struct file *pipe ; size_t pktsz ; struct _ddebug descriptor ; struct task_struct *tmp ; long tmp___0 ; struct autofs_packet_missing *mp ; struct autofs_packet_expire_multi *ep ; struct autofs_v5_packet *packet ; struct user_namespace *user_ns ; int tmp___1 ; { { pipe = (struct file *)0; descriptor.modname = "autofs4"; descriptor.function = "autofs4_notify_daemon"; descriptor.filename = "fs/autofs4/waitq.c"; descriptor.format = "pid %d: %s: wait id = 0x%08lx, name = %.*s, type=%d\n"; descriptor.lineno = 106U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: wait id = 0x%08lx, name = %.*s, type=%d\n", tmp->pid, "autofs4_notify_daemon", (unsigned long )wq->wait_queue_token, wq->name.__annonCompField25.__annonCompField24.len, wq->name.name, type); } } else { } { memset((void *)(& pkt), 0, 304UL); pkt.hdr.proto_version = sbi->version; pkt.hdr.type = type; } { if (type == 0) { goto case_0; } else { } if (type == 2) { goto case_2; } else { } if (type == 3) { goto case_3; } else { } if (type == 4) { goto case_4; } else { } if (type == 5) { goto case_5; } else { } if (type == 6) { goto case_6; } else { } goto switch_default; case_0: /* CIL Label */ { mp = & pkt.v4_pkt.missing; pktsz = 272UL; mp->wait_queue_token = wq->wait_queue_token; mp->len = (int )wq->name.__annonCompField25.__annonCompField24.len; memcpy((void *)(& mp->name), (void const *)wq->name.name, (size_t )wq->name.__annonCompField25.__annonCompField24.len); mp->name[wq->name.__annonCompField25.__annonCompField24.len] = 0; } goto ldv_27266; case_2: /* CIL Label */ { ep = & pkt.v4_pkt.expire_multi; pktsz = 272UL; ep->wait_queue_token = wq->wait_queue_token; ep->len = (int )wq->name.__annonCompField25.__annonCompField24.len; memcpy((void *)(& ep->name), (void const *)wq->name.name, (size_t )wq->name.__annonCompField25.__annonCompField24.len); ep->name[wq->name.__annonCompField25.__annonCompField24.len] = 0; } goto ldv_27266; case_3: /* CIL Label */ ; case_4: /* CIL Label */ ; case_5: /* CIL Label */ ; case_6: /* CIL Label */ { packet = & pkt.v5_pkt.v5_packet; user_ns = ((sbi->pipe)->f_cred)->user_ns; pktsz = 304UL; packet->wait_queue_token = wq->wait_queue_token; packet->len = wq->name.__annonCompField25.__annonCompField24.len; memcpy((void *)(& packet->name), (void const *)wq->name.name, (size_t )wq->name.__annonCompField25.__annonCompField24.len); packet->name[wq->name.__annonCompField25.__annonCompField24.len] = 0; packet->dev = wq->dev; packet->ino = wq->ino; packet->uid = from_kuid_munged(user_ns, wq->uid); packet->gid = from_kgid_munged(user_ns, wq->gid); packet->pid = (__u32 )wq->pid; packet->tgid = (__u32 )wq->tgid; } goto ldv_27266; switch_default: /* CIL Label */ { printk("autofs4_notify_daemon: bad type %d!\n", type); mutex_unlock(& sbi->wq_mutex); } return; switch_break: /* CIL Label */ ; } ldv_27266: { pipe = get_file(sbi->pipe); mutex_unlock(& sbi->wq_mutex); tmp___1 = autofs4_write(sbi, pipe, (void const *)(& pkt), (int )pktsz); } if (tmp___1 != 0) { { autofs4_catatonic_mode(sbi); } } else { } { fput(pipe); } return; } } static int autofs4_getpath(struct autofs_sb_info *sbi , struct dentry *dentry , char **name ) { struct dentry *root ; struct dentry *tmp ; char *buf ; char *p ; int len ; unsigned int seq ; unsigned int tmp___0 ; unsigned int tmp___1 ; { root = (sbi->sb)->s_root; rename_retry: { buf = *name; len = 0; seq = read_seqbegin((seqlock_t const *)(& rename_lock)); rcu_read_lock(); ldv_spin_lock_77(& sbi->fs_lock); tmp = dentry; } goto ldv_27289; ldv_27288: len = (int )(((u32 )len + tmp->d_name.__annonCompField25.__annonCompField24.len) + 1U); tmp = tmp->d_parent; ldv_27289: ; if ((unsigned long )tmp != (unsigned long )root) { goto ldv_27288; } else { } if (len == 0) { goto _L; } else { len = len - 1; if (len > 255) { _L: /* CIL Label */ { ldv_spin_unlock_78(& sbi->fs_lock); rcu_read_unlock(); tmp___0 = read_seqretry((seqlock_t const *)(& rename_lock), seq); } if (tmp___0 != 0U) { goto rename_retry; } else { } return (0); } else { } } { *(buf + (unsigned long )len) = 0; p = buf + ((unsigned long )len - (unsigned long )dentry->d_name.__annonCompField25.__annonCompField24.len); strncpy(p, (char const *)dentry->d_name.name, (__kernel_size_t )dentry->d_name.__annonCompField25.__annonCompField24.len); tmp = dentry->d_parent; } goto ldv_27292; ldv_27291: { p = p - 1; *p = 47; p = p + - ((unsigned long )tmp->d_name.__annonCompField25.__annonCompField24.len); strncpy(p, (char const *)tmp->d_name.name, (__kernel_size_t )tmp->d_name.__annonCompField25.__annonCompField24.len); tmp = tmp->d_parent; } ldv_27292: ; if ((unsigned long )tmp != (unsigned long )root) { goto ldv_27291; } else { } { ldv_spin_unlock_78(& sbi->fs_lock); rcu_read_unlock(); tmp___1 = read_seqretry((seqlock_t const *)(& rename_lock), seq); } if (tmp___1 != 0U) { goto rename_retry; } else { } return (len); } } static struct autofs_wait_queue *autofs4_find_wait(struct autofs_sb_info *sbi , struct qstr *qstr ) { struct autofs_wait_queue *wq ; int tmp ; { wq = sbi->queues; goto ldv_27301; ldv_27300: ; if (*((unsigned long *)wq + 13UL) == *((unsigned long *)qstr + 0UL) && (unsigned long )wq->name.name != (unsigned long )((unsigned char const *)0U)) { { tmp = memcmp((void const *)wq->name.name, (void const *)qstr->name, (size_t )qstr->__annonCompField25.__annonCompField24.len); } if (tmp == 0) { goto ldv_27299; } else { } } else { } wq = wq->next; ldv_27301: ; if ((unsigned long )wq != (unsigned long )((struct autofs_wait_queue *)0)) { goto ldv_27300; } else { } ldv_27299: ; return (wq); } } static int validate_request(struct autofs_wait_queue **wait , struct autofs_sb_info *sbi , struct qstr *qstr , struct dentry *dentry , enum autofs_notify notify ) { struct autofs_wait_queue *wq ; struct autofs_info *ino ; int tmp ; struct dentry *new ; int valid ; struct dentry *parent ; int tmp___0 ; int tmp___1 ; { if (sbi->catatonic != 0) { return (-2); } else { } { wq = autofs4_find_wait(sbi, qstr); } if ((unsigned long )wq != (unsigned long )((struct autofs_wait_queue *)0)) { *wait = wq; return (1); } else { } { *wait = (struct autofs_wait_queue *)0; ino = autofs4_dentry_ino(dentry); } if ((unsigned long )ino == (unsigned long )((struct autofs_info *)0)) { return (1); } else { } if ((unsigned int )notify == 0U) { goto ldv_27312; ldv_27311: { mutex_unlock(& sbi->wq_mutex); schedule_timeout_interruptible(25L); tmp = mutex_lock_interruptible_nested(& sbi->wq_mutex, 0U); } if (tmp != 0) { return (-4); } else { } if (sbi->catatonic != 0) { return (-2); } else { } { wq = autofs4_find_wait(sbi, qstr); } if ((unsigned long )wq != (unsigned long )((struct autofs_wait_queue *)0)) { *wait = wq; return (1); } else { } ldv_27312: ; if (ino->flags & 1) { goto ldv_27311; } else { } return (0); } else { } if ((unsigned int )notify == 1U) { new = (struct dentry *)0; valid = 1; if ((unsigned long )dentry != (unsigned long )dentry->d_parent) { if ((unsigned long )dentry->d_inode != (unsigned long )((struct inode *)0)) { { tmp___0 = d_unhashed((struct dentry const *)dentry); } if (tmp___0 != 0) { { parent = dentry->d_parent; new = d_lookup((struct dentry const *)parent, (struct qstr const *)(& dentry->d_name)); } if ((unsigned long )new != (unsigned long )((struct dentry *)0)) { dentry = new; } else { } } else { } } else { } } else { } { tmp___1 = have_submounts(dentry); } if (tmp___1 != 0) { valid = 0; } else { } if ((unsigned long )new != (unsigned long )((struct dentry *)0)) { { dput(new); } } else { } return (valid); } else { } return (1); } } int autofs4_wait(struct autofs_sb_info *sbi , struct dentry *dentry , enum autofs_notify notify ) { struct autofs_wait_queue *wq ; struct qstr qstr ; char *name ; int status ; int ret ; int type ; pid_t pid ; pid_t tgid ; struct pid_namespace *tmp ; struct task_struct *tmp___0 ; struct pid_namespace *tmp___1 ; struct task_struct *tmp___2 ; unsigned int tmp___3 ; void *tmp___4 ; int tmp___5 ; int tmp___6 ; unsigned int tmp___7 ; int tmp___8 ; void *tmp___9 ; struct lock_class_key __key ; int tmp___10 ; struct task_struct *tmp___11 ; int tmp___12 ; struct task_struct *tmp___13 ; unsigned int tmp___14 ; unsigned int tmp___15 ; struct _ddebug descriptor ; struct task_struct *tmp___16 ; long tmp___17 ; struct _ddebug descriptor___0 ; struct task_struct *tmp___18 ; long tmp___19 ; sigset_t oldset ; unsigned long irqflags ; struct task_struct *tmp___20 ; struct task_struct *tmp___21 ; struct task_struct *tmp___22 ; struct task_struct *tmp___23 ; int __ret ; wait_queue_t __wait ; long __ret___0 ; long __int ; long tmp___24 ; struct task_struct *tmp___25 ; struct task_struct *tmp___26 ; struct task_struct *tmp___27 ; struct _ddebug descriptor___1 ; struct task_struct *tmp___28 ; long tmp___29 ; struct autofs_info *ino ; struct dentry *de ; { if (sbi->catatonic != 0) { return (-2); } else { } { tmp = ns_of_pid(sbi->oz_pgrp); tmp___0 = get_current(); pid = task_pid_nr_ns(tmp___0, tmp); tmp___1 = ns_of_pid(sbi->oz_pgrp); tmp___2 = get_current(); tgid = task_tgid_nr_ns(tmp___2, tmp___1); } if (pid == 0 || tgid == 0) { return (-2); } else { } if ((unsigned long )dentry->d_inode == (unsigned long )((struct inode *)0)) { { tmp___3 = autofs_type_trigger(sbi->type); } if (tmp___3 != 0U) { return (-2); } else if ((unsigned long )dentry->d_parent != (unsigned long )(dentry->d_parent)->d_parent) { return (-2); } else { } } else { } { tmp___4 = kmalloc(256UL, 208U); name = (char *)tmp___4; } if ((unsigned long )name == (unsigned long )((char *)0)) { return (-12); } else { } if ((unsigned long )dentry == (unsigned long )dentry->d_parent) { { tmp___7 = autofs_type_trigger(sbi->type); } if (tmp___7 != 0U) { { tmp___5 = sprintf(name, "%p", dentry); qstr.__annonCompField25.__annonCompField24.len = (u32 )tmp___5; } } else { goto _L; } } else { _L: /* CIL Label */ { tmp___6 = autofs4_getpath(sbi, dentry, & name); qstr.__annonCompField25.__annonCompField24.len = (u32 )tmp___6; } if (qstr.__annonCompField25.__annonCompField24.len == 0U) { { kfree((void const *)name); } return (-2); } else { } } { qstr.name = (unsigned char const *)name; qstr.__annonCompField25.__annonCompField24.hash = full_name_hash((unsigned char const *)name, qstr.__annonCompField25.__annonCompField24.len); tmp___8 = mutex_lock_interruptible_nested(& sbi->wq_mutex, 0U); } if (tmp___8 != 0) { { kfree((void const *)qstr.name); } return (-4); } else { } { ret = validate_request(& wq, sbi, & qstr, dentry, notify); } if (ret <= 0) { if (ret != -4) { { mutex_unlock(& sbi->wq_mutex); } } else { } { kfree((void const *)qstr.name); } return (ret); } else { } if ((unsigned long )wq == (unsigned long )((struct autofs_wait_queue *)0)) { { tmp___9 = kmalloc(160UL, 208U); wq = (struct autofs_wait_queue *)tmp___9; } if ((unsigned long )wq == (unsigned long )((struct autofs_wait_queue *)0)) { { kfree((void const *)qstr.name); mutex_unlock(& sbi->wq_mutex); } return (-12); } else { } wq->wait_queue_token = autofs4_next_wait_queue; autofs4_next_wait_queue = autofs4_next_wait_queue + 1U; if (autofs4_next_wait_queue == 0U) { autofs4_next_wait_queue = 1U; } else { } { wq->next = sbi->queues; sbi->queues = wq; __init_waitqueue_head(& wq->queue, "&wq->queue", & __key); memcpy((void *)(& wq->name), (void const *)(& qstr), 16UL); wq->dev = autofs4_get_dev(sbi); wq->ino = autofs4_get_ino(sbi); tmp___10 = debug_lockdep_rcu_enabled(); tmp___11 = get_current(); wq->uid = (tmp___11->cred)->uid; tmp___12 = debug_lockdep_rcu_enabled(); tmp___13 = get_current(); wq->gid = (tmp___13->cred)->gid; wq->pid = pid; wq->tgid = tgid; wq->status = -4; wq->wait_ctr = 2U; } if (sbi->version <= 4) { if ((unsigned int )notify == 1U) { type = 0; } else { type = 2; } } else if ((unsigned int )notify == 1U) { { tmp___14 = autofs_type_trigger(sbi->type); type = tmp___14 != 0U ? 5 : 3; } } else { { tmp___15 = autofs_type_trigger(sbi->type); type = tmp___15 != 0U ? 6 : 4; } } { descriptor.modname = "autofs4"; descriptor.function = "autofs4_wait"; descriptor.filename = "fs/autofs4/waitq.c"; descriptor.format = "pid %d: %s: new wait id = 0x%08lx, name = %.*s, nfy=%d\n\n"; descriptor.lineno = 455U; descriptor.flags = 0U; tmp___17 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___17 != 0L) { { tmp___16 = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: new wait id = 0x%08lx, name = %.*s, nfy=%d\n\n", tmp___16->pid, "autofs4_wait", (unsigned long )wq->wait_queue_token, wq->name.__annonCompField25.__annonCompField24.len, wq->name.name, (unsigned int )notify); } } else { } { autofs4_notify_daemon(sbi, wq, type); } } else { { wq->wait_ctr = wq->wait_ctr + 1U; descriptor___0.modname = "autofs4"; descriptor___0.function = "autofs4_wait"; descriptor___0.filename = "fs/autofs4/waitq.c"; descriptor___0.format = "pid %d: %s: existing wait id = 0x%08lx, name = %.*s, nfy=%d\n"; descriptor___0.lineno = 463U; descriptor___0.flags = 0U; tmp___19 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___19 != 0L) { { tmp___18 = get_current(); __dynamic_pr_debug(& descriptor___0, "pid %d: %s: existing wait id = 0x%08lx, name = %.*s, nfy=%d\n", tmp___18->pid, "autofs4_wait", (unsigned long )wq->wait_queue_token, wq->name.__annonCompField25.__annonCompField24.len, wq->name.name, (unsigned int )notify); } } else { } { mutex_unlock(& sbi->wq_mutex); kfree((void const *)qstr.name); } } if ((unsigned long )wq->name.name != (unsigned long )((unsigned char const *)0U)) { { tmp___20 = get_current(); ldv___ldv_spin_lock_61(& (tmp___20->sighand)->siglock); tmp___21 = get_current(); oldset = tmp___21->blocked; tmp___22 = get_current(); siginitsetinv(& tmp___22->blocked, ~ oldset.sig[0] & 262UL); recalc_sigpending(); tmp___23 = get_current(); ldv_spin_unlock_irqrestore_57(& (tmp___23->sighand)->siglock, irqflags); __ret = 0; } if ((unsigned long )wq->name.name != (unsigned long )((unsigned char const *)0U)) { { __ret___0 = 0L; INIT_LIST_HEAD(& __wait.task_list); __wait.flags = 0U; } ldv_27346: { tmp___24 = prepare_to_wait_event(& wq->queue, & __wait, 1); __int = tmp___24; } if ((unsigned long )wq->name.name == (unsigned long )((unsigned char const *)0U)) { goto ldv_27345; } else { } if (__int != 0L) { __ret___0 = __int; goto ldv_27345; } else { } { schedule(); } goto ldv_27346; ldv_27345: { finish_wait(& wq->queue, & __wait); } __ret = (int )__ret___0; } else { } { tmp___25 = get_current(); ldv___ldv_spin_lock_63(& (tmp___25->sighand)->siglock); tmp___26 = get_current(); tmp___26->blocked = oldset; recalc_sigpending(); tmp___27 = get_current(); ldv_spin_unlock_irqrestore_57(& (tmp___27->sighand)->siglock, irqflags); } } else { { descriptor___1.modname = "autofs4"; descriptor___1.function = "autofs4_wait"; descriptor___1.filename = "fs/autofs4/waitq.c"; descriptor___1.format = "pid %d: %s: skipped sleeping\n"; descriptor___1.lineno = 490U; descriptor___1.flags = 0U; tmp___29 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___29 != 0L) { { tmp___28 = get_current(); __dynamic_pr_debug(& descriptor___1, "pid %d: %s: skipped sleeping\n", tmp___28->pid, "autofs4_wait"); } } else { } } status = wq->status; if (status == 0) { { de = (struct dentry *)0; ino = autofs4_dentry_ino(dentry); } if ((unsigned long )ino == (unsigned long )((struct autofs_info *)0)) { { de = d_lookup((struct dentry const *)dentry->d_parent, (struct qstr const *)(& dentry->d_name)); } if ((unsigned long )de != (unsigned long )((struct dentry *)0)) { { ino = autofs4_dentry_ino(de); } } else { } } else { } if ((unsigned long )ino != (unsigned long )((struct autofs_info *)0)) { { ldv_spin_lock_77(& sbi->fs_lock); ino->uid = wq->uid; ino->gid = wq->gid; ldv_spin_unlock_78(& sbi->fs_lock); } } else { } if ((unsigned long )de != (unsigned long )((struct dentry *)0)) { { dput(de); } } else { } } else { } { mutex_lock_nested(& sbi->wq_mutex, 0U); wq->wait_ctr = wq->wait_ctr - 1U; } if (wq->wait_ctr == 0U) { { kfree((void const *)wq); } } else { } { mutex_unlock(& sbi->wq_mutex); } return (status); } } int autofs4_wait_release(struct autofs_sb_info *sbi , autofs_wqt_t wait_queue_token , int status ) { struct autofs_wait_queue *wq ; struct autofs_wait_queue **wql ; { { mutex_lock_nested(& sbi->wq_mutex, 0U); wql = & sbi->queues; } goto ldv_27361; ldv_27360: ; if (wq->wait_queue_token == wait_queue_token) { goto ldv_27359; } else { } wql = & wq->next; ldv_27361: wq = *wql; if ((unsigned long )wq != (unsigned long )((struct autofs_wait_queue *)0)) { goto ldv_27360; } else { } ldv_27359: ; if ((unsigned long )wq == (unsigned long )((struct autofs_wait_queue *)0)) { { mutex_unlock(& sbi->wq_mutex); } return (-22); } else { } { *wql = wq->next; kfree((void const *)wq->name.name); wq->name.name = (unsigned char const *)0U; wq->status = status; __wake_up(& wq->queue, 1U, 1, (void *)0); wq->wait_ctr = wq->wait_ctr - 1U; } if (wq->wait_ctr == 0U) { { kfree((void const *)wq); } } else { } { mutex_unlock(& sbi->wq_mutex); } return (0); } } static void ldv___ldv_spin_lock_56(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_siglock_of_sighand_struct(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void ldv_spin_unlock_irqrestore_57(spinlock_t *lock , unsigned long flags ) { { { ldv_spin_unlock_siglock_of_sighand_struct(); spin_unlock_irqrestore(lock, flags); } return; } } static void ldv___ldv_spin_lock_61(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_siglock_of_sighand_struct(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_63(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_siglock_of_sighand_struct(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static void list_move(struct list_head *list , struct list_head *head ) { { { __list_del_entry(list); list_add(list, head); } return; } } __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } extern void lock_set_class(struct lockdep_map * , char const * , struct lock_class_key * , unsigned int , unsigned long ) ; __inline static void lock_set_subclass(struct lockdep_map *lock , unsigned int subclass , unsigned long ip ) { { { lock_set_class(lock, lock->name, lock->key, subclass, ip); } return; } } static void ldv___ldv_spin_lock_60(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_72(spinlock_t *ldv_func_arg1 ) ; static void ldv___ldv_spin_lock_85(spinlock_t *ldv_func_arg1 ) ; int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) ; extern int _raw_spin_trylock(raw_spinlock_t * ) ; __inline static void ldv_spin_lock_54(spinlock_t *lock ) ; __inline static void ldv_spin_lock_48(spinlock_t *lock ) ; __inline static void ldv_spin_lock_54(spinlock_t *lock ) ; __inline static void ldv_spin_lock_48(spinlock_t *lock ) ; __inline static void ldv_spin_lock_77(spinlock_t *lock ) ; __inline static void ldv_spin_lock_77(spinlock_t *lock ) ; __inline static void ldv_spin_lock_54(spinlock_t *lock ) ; __inline static void ldv_spin_lock_48(spinlock_t *lock ) ; __inline static void ldv_spin_lock_77(spinlock_t *lock ) ; __inline static void ldv_spin_lock_77(spinlock_t *lock ) ; __inline static void ldv_spin_lock_77(spinlock_t *lock ) ; __inline static int spin_trylock(spinlock_t *lock ) { int tmp ; { { tmp = _raw_spin_trylock(& lock->__annonCompField19.rlock); } return (tmp); } } __inline static int ldv_spin_trylock_69(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_55(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_55(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_55(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_55(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_49(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_55(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_78(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_78(spinlock_t *lock ) ; __inline static void init_completion(struct completion *x ) { struct lock_class_key __key ; { { x->done = 0U; __init_waitqueue_head(& x->wait, "&x->wait", & __key); } return; } } extern void wait_for_completion(struct completion * ) ; extern void complete_all(struct completion * ) ; extern int d_invalidate(struct dentry * ) ; extern void path_get(struct path const * ) ; extern void path_put(struct path const * ) ; extern int may_umount_tree(struct vfsmount * ) ; extern unsigned long _copy_to_user(void * , void const * , unsigned int ) ; extern void __copy_to_user_overflow(void) ; __inline static unsigned long copy_to_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_to_user(to, from, (unsigned int )n); } } else { { __copy_to_user_overflow(); } } } return (n); } } extern int follow_down_one(struct path * ) ; int autofs4_do_expire_multi(struct super_block *sb , struct vfsmount *mnt , struct autofs_sb_info *sbi , int when ) ; struct dentry *autofs4_expire_direct(struct super_block *sb , struct vfsmount *mnt , struct autofs_sb_info *sbi , int how ) ; struct dentry *autofs4_expire_indirect(struct super_block *sb , struct vfsmount *mnt , struct autofs_sb_info *sbi , int how ) ; __inline static int simple_positive(struct dentry *dentry ) { int tmp ; int tmp___0 ; { if ((unsigned long )dentry->d_inode != (unsigned long )((struct inode *)0)) { { tmp = d_unhashed((struct dentry const *)dentry); } if (tmp == 0) { tmp___0 = 1; } else { tmp___0 = 0; } } else { tmp___0 = 0; } return (tmp___0); } } static unsigned long now ; __inline static int autofs4_can_expire(struct dentry *dentry , unsigned long timeout , int do_now ) { struct autofs_info *ino ; struct autofs_info *tmp ; { { tmp = autofs4_dentry_ino(dentry); ino = tmp; } if ((unsigned long )ino == (unsigned long )((struct autofs_info *)0)) { return (0); } else { } if (do_now == 0) { if (timeout == 0UL || (long )(now - (ino->last_used + timeout)) < 0L) { return (0); } else { } ino->last_used = now; } else { } return (1); } } static int autofs4_mount_busy(struct vfsmount *mnt , struct dentry *dentry ) { struct dentry *top ; struct path path ; int status ; struct _ddebug descriptor ; struct task_struct *tmp ; long tmp___0 ; int tmp___1 ; struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp___2 ; unsigned int tmp___3 ; int tmp___4 ; struct autofs_info *ino ; struct autofs_info *tmp___5 ; int tmp___6 ; struct _ddebug descriptor___0 ; struct task_struct *tmp___7 ; long tmp___8 ; { { top = dentry; path.mnt = mnt; path.dentry = dentry; status = 1; descriptor.modname = "autofs4"; descriptor.function = "autofs4_mount_busy"; descriptor.filename = "fs/autofs4/expire.c"; descriptor.format = "pid %d: %s: dentry %p %.*s\n"; descriptor.lineno = 51U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: dentry %p %.*s\n", tmp->pid, "autofs4_mount_busy", dentry, (int )dentry->d_name.__annonCompField25.__annonCompField24.len, dentry->d_name.name); } } else { } { path_get((struct path const *)(& path)); tmp___1 = follow_down_one(& path); } if (tmp___1 == 0) { goto done; } else { } { tmp___4 = is_autofs4_dentry(path.dentry); } if (tmp___4 != 0) { { tmp___2 = autofs4_sbi((path.dentry)->d_sb); sbi = tmp___2; tmp___3 = autofs_type_indirect(sbi->type); } if (tmp___3 != 0U) { goto done; } else { } } else { } { tmp___6 = may_umount_tree(path.mnt); } if (tmp___6 == 0) { { tmp___5 = autofs4_dentry_ino(top); ino = tmp___5; ino->last_used = jiffies; } goto done; } else { } status = 0; done: { descriptor___0.modname = "autofs4"; descriptor___0.function = "autofs4_mount_busy"; descriptor___0.filename = "fs/autofs4/expire.c"; descriptor___0.format = "pid %d: %s: returning = %d\n"; descriptor___0.lineno = 75U; descriptor___0.flags = 0U; tmp___8 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___8 != 0L) { { tmp___7 = get_current(); __dynamic_pr_debug(& descriptor___0, "pid %d: %s: returning = %d\n", tmp___7->pid, "autofs4_mount_busy", status); } } else { } { path_put((struct path const *)(& path)); } return (status); } } static struct dentry *get_next_positive_subdir(struct dentry *prev , struct dentry *root ) { struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct list_head *next ; struct dentry *q ; struct list_head const *__mptr ; unsigned int tmp___0 ; int tmp___1 ; { { tmp = autofs4_sbi(root->d_sb); sbi = tmp; ldv_spin_lock_54(& sbi->lookup_lock); ldv_spin_lock_48(& root->d_lockref.__annonCompField23.__annonCompField22.lock); } if ((unsigned long )prev != (unsigned long )((struct dentry *)0)) { next = prev->d_u.d_child.next; } else { { prev = dget_dlock(root); next = prev->d_subdirs.next; } } cont: ; if ((unsigned long )next == (unsigned long )(& root->d_subdirs)) { { ldv_spin_unlock_49(& root->d_lockref.__annonCompField23.__annonCompField22.lock); ldv_spin_unlock_55(& sbi->lookup_lock); dput(prev); } return ((struct dentry *)0); } else { } { __mptr = (struct list_head const *)next; q = (struct dentry *)__mptr + 0xfffffffffffffef0UL; ldv___ldv_spin_lock_60(& q->d_lockref.__annonCompField23.__annonCompField22.lock); tmp___0 = d_count((struct dentry const *)q); } if (tmp___0 == 0U) { { ldv_spin_unlock_49(& q->d_lockref.__annonCompField23.__annonCompField22.lock); next = q->d_u.d_child.next; } goto cont; } else { { tmp___1 = simple_positive(q); } if (tmp___1 == 0) { { ldv_spin_unlock_49(& q->d_lockref.__annonCompField23.__annonCompField22.lock); next = q->d_u.d_child.next; } goto cont; } else { } } { dget_dlock(q); ldv_spin_unlock_49(& q->d_lockref.__annonCompField23.__annonCompField22.lock); ldv_spin_unlock_49(& root->d_lockref.__annonCompField23.__annonCompField22.lock); ldv_spin_unlock_55(& sbi->lookup_lock); dput(prev); } return (q); } } static struct dentry *get_next_positive_dentry(struct dentry *prev , struct dentry *root ) { struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct list_head *next ; struct dentry *p ; struct dentry *ret ; struct dentry *tmp___0 ; struct dentry *parent ; int tmp___1 ; struct list_head const *__mptr ; void *tmp___2 ; int tmp___3 ; { { tmp = autofs4_sbi(root->d_sb); sbi = tmp; } if ((unsigned long )prev == (unsigned long )((struct dentry *)0)) { { tmp___0 = dget(root); } return (tmp___0); } else { } { ldv_spin_lock_54(& sbi->lookup_lock); } relock: { p = prev; ldv_spin_lock_48(& p->d_lockref.__annonCompField23.__annonCompField22.lock); } again: next = p->d_subdirs.next; if ((unsigned long )next == (unsigned long )(& p->d_subdirs)) { ldv_27346: ; if ((unsigned long )p == (unsigned long )root) { { ldv_spin_unlock_49(& p->d_lockref.__annonCompField23.__annonCompField22.lock); ldv_spin_unlock_55(& sbi->lookup_lock); dput(prev); } return ((struct dentry *)0); } else { } { parent = p->d_parent; tmp___1 = ldv_spin_trylock_69(& parent->d_lockref.__annonCompField23.__annonCompField22.lock); } if (tmp___1 == 0) { { ldv_spin_unlock_49(& p->d_lockref.__annonCompField23.__annonCompField22.lock); cpu_relax(); } goto relock; } else { } { ldv_spin_unlock_49(& p->d_lockref.__annonCompField23.__annonCompField22.lock); next = p->d_u.d_child.next; p = parent; } if ((unsigned long )next != (unsigned long )(& parent->d_subdirs)) { goto ldv_27345; } else { } goto ldv_27346; ldv_27345: ; } else { } { __mptr = (struct list_head const *)next; ret = (struct dentry *)__mptr + 0xfffffffffffffef0UL; ldv___ldv_spin_lock_72(& ret->d_lockref.__annonCompField23.__annonCompField22.lock); tmp___3 = simple_positive(ret); } if (tmp___3 == 0) { { ldv_spin_unlock_49(& p->d_lockref.__annonCompField23.__annonCompField22.lock); tmp___2 = __builtin_return_address(0U); lock_set_subclass(& ret->d_lockref.__annonCompField23.__annonCompField22.lock.__annonCompField19.__annonCompField18.dep_map, 0U, (unsigned long )tmp___2); p = ret; } goto again; } else { } { dget_dlock(ret); ldv_spin_unlock_49(& ret->d_lockref.__annonCompField23.__annonCompField22.lock); ldv_spin_unlock_49(& p->d_lockref.__annonCompField23.__annonCompField22.lock); ldv_spin_unlock_55(& sbi->lookup_lock); dput(prev); } return (ret); } } static int autofs4_direct_busy(struct vfsmount *mnt , struct dentry *top , unsigned long timeout , int do_now ) { struct _ddebug descriptor ; struct task_struct *tmp ; long tmp___0 ; struct autofs_info *ino ; struct autofs_info *tmp___1 ; int tmp___2 ; int tmp___3 ; { { descriptor.modname = "autofs4"; descriptor.function = "autofs4_direct_busy"; descriptor.filename = "fs/autofs4/expire.c"; descriptor.format = "pid %d: %s: top %p %.*s\n"; descriptor.lineno = 202U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: top %p %.*s\n", tmp->pid, "autofs4_direct_busy", top, (int )top->d_name.__annonCompField25.__annonCompField24.len, top->d_name.name); } } else { } { tmp___2 = may_umount_tree(mnt); } if (tmp___2 == 0) { { tmp___1 = autofs4_dentry_ino(top); ino = tmp___1; } if ((unsigned long )ino != (unsigned long )((struct autofs_info *)0)) { ino->last_used = jiffies; } else { } return (1); } else { } { tmp___3 = autofs4_can_expire(top, timeout, do_now); } if (tmp___3 == 0) { return (1); } else { } return (0); } } static int autofs4_tree_busy(struct vfsmount *mnt , struct dentry *top , unsigned long timeout , int do_now ) { struct autofs_info *top_ino ; struct autofs_info *tmp ; struct dentry *p ; struct _ddebug descriptor ; struct task_struct *tmp___0 ; long tmp___1 ; int tmp___2 ; struct _ddebug descriptor___0 ; struct task_struct *tmp___3 ; long tmp___4 ; int tmp___5 ; struct autofs_info *ino ; struct autofs_info *tmp___6 ; unsigned int ino_count ; int tmp___7 ; unsigned int tmp___8 ; bool tmp___9 ; int tmp___10 ; { { tmp = autofs4_dentry_ino(top); top_ino = tmp; descriptor.modname = "autofs4"; descriptor.function = "autofs4_tree_busy"; descriptor.filename = "fs/autofs4/expire.c"; descriptor.format = "pid %d: %s: top %p %.*s\n"; descriptor.lineno = 231U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { tmp___0 = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: top %p %.*s\n", tmp___0->pid, "autofs4_tree_busy", top, (int )top->d_name.__annonCompField25.__annonCompField24.len, top->d_name.name); } } else { } { tmp___2 = simple_positive(top); } if (tmp___2 == 0) { return (1); } else { } p = (struct dentry *)0; goto ldv_27372; ldv_27371: { descriptor___0.modname = "autofs4"; descriptor___0.function = "autofs4_tree_busy"; descriptor___0.filename = "fs/autofs4/expire.c"; descriptor___0.format = "pid %d: %s: dentry %p %.*s\n"; descriptor___0.lineno = 240U; descriptor___0.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = get_current(); __dynamic_pr_debug(& descriptor___0, "pid %d: %s: dentry %p %.*s\n", tmp___3->pid, "autofs4_tree_busy", p, (int )p->d_name.__annonCompField25.__annonCompField24.len, p->d_name.name); } } else { } { tmp___9 = d_mountpoint((struct dentry const *)p); } if ((int )tmp___9) { { tmp___5 = autofs4_mount_busy(mnt, p); } if (tmp___5 != 0) { { top_ino->last_used = jiffies; dput(p); } return (1); } else { } } else { { tmp___6 = autofs4_dentry_ino(p); ino = tmp___6; tmp___7 = atomic_read((atomic_t const *)(& ino->count)); ino_count = (unsigned int )tmp___7; d_invalidate(p); } if ((unsigned long )p == (unsigned long )top) { ino_count = ino_count + 2U; } else { ino_count = ino_count + 1U; } { tmp___8 = d_count((struct dentry const *)p); } if (tmp___8 > ino_count) { { top_ino->last_used = jiffies; dput(p); } return (1); } else { } } ldv_27372: { p = get_next_positive_dentry(p, top); } if ((unsigned long )p != (unsigned long )((struct dentry *)0)) { goto ldv_27371; } else { } { tmp___10 = autofs4_can_expire(top, timeout, do_now); } if (tmp___10 == 0) { return (1); } else { } return (0); } } static struct dentry *autofs4_check_leaves(struct vfsmount *mnt , struct dentry *parent , unsigned long timeout , int do_now ) { struct dentry *p ; struct _ddebug descriptor ; struct task_struct *tmp ; long tmp___0 ; struct _ddebug descriptor___0 ; struct task_struct *tmp___1 ; long tmp___2 ; int tmp___3 ; int tmp___4 ; bool tmp___5 ; { { descriptor.modname = "autofs4"; descriptor.function = "autofs4_check_leaves"; descriptor.filename = "fs/autofs4/expire.c"; descriptor.format = "pid %d: %s: parent %p %.*s\n"; descriptor.lineno = 293U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: parent %p %.*s\n", tmp->pid, "autofs4_check_leaves", parent, (int )parent->d_name.__annonCompField25.__annonCompField24.len, parent->d_name.name); } } else { } p = (struct dentry *)0; goto ldv_27384; ldv_27385: { descriptor___0.modname = "autofs4"; descriptor___0.function = "autofs4_check_leaves"; descriptor___0.filename = "fs/autofs4/expire.c"; descriptor___0.format = "pid %d: %s: dentry %p %.*s\n"; descriptor___0.lineno = 298U; descriptor___0.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = get_current(); __dynamic_pr_debug(& descriptor___0, "pid %d: %s: dentry %p %.*s\n", tmp___1->pid, "autofs4_check_leaves", p, (int )p->d_name.__annonCompField25.__annonCompField24.len, p->d_name.name); } } else { } { tmp___5 = d_mountpoint((struct dentry const *)p); } if ((int )tmp___5) { { tmp___3 = autofs4_mount_busy(mnt, p); } if (tmp___3 != 0) { goto ldv_27384; } else { } { tmp___4 = autofs4_can_expire(p, timeout, do_now); } if (tmp___4 != 0) { return (p); } else { } } else { } ldv_27384: { p = get_next_positive_dentry(p, parent); } if ((unsigned long )p != (unsigned long )((struct dentry *)0)) { goto ldv_27385; } else { } return ((struct dentry *)0); } } struct dentry *autofs4_expire_direct(struct super_block *sb , struct vfsmount *mnt , struct autofs_sb_info *sbi , int how ) { unsigned long timeout ; struct dentry *root ; struct dentry *tmp ; int do_now ; struct autofs_info *ino ; struct autofs_info *ino___0 ; struct autofs_info *tmp___0 ; int tmp___1 ; { { tmp = dget(sb->s_root); root = tmp; do_now = how & 1; } if ((unsigned long )root == (unsigned long )((struct dentry *)0)) { return ((struct dentry *)0); } else { } { now = jiffies; timeout = sbi->exp_timeout; ldv_spin_lock_77(& sbi->fs_lock); ino = autofs4_dentry_ino(root); } if ((ino->flags & 4) != 0) { goto out; } else { } { tmp___1 = autofs4_direct_busy(mnt, root, timeout, do_now); } if (tmp___1 == 0) { { tmp___0 = autofs4_dentry_ino(root); ino___0 = tmp___0; ino___0->flags = ino___0->flags | 1; init_completion(& ino___0->expire_complete); ldv_spin_unlock_78(& sbi->fs_lock); } return (root); } else { } out: { ldv_spin_unlock_78(& sbi->fs_lock); dput(root); } return ((struct dentry *)0); } } struct dentry *autofs4_expire_indirect(struct super_block *sb , struct vfsmount *mnt , struct autofs_sb_info *sbi , int how ) { unsigned long timeout ; struct dentry *root ; struct dentry *dentry ; struct dentry *expired ; int do_now ; int exp_leaves ; struct autofs_info *ino ; unsigned int ino_count ; struct _ddebug descriptor ; struct task_struct *tmp ; long tmp___0 ; int tmp___1 ; int tmp___2 ; bool tmp___3 ; struct _ddebug descriptor___0 ; struct task_struct *tmp___4 ; long tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; unsigned int tmp___9 ; int tmp___10 ; int tmp___11 ; unsigned int tmp___12 ; struct _ddebug descriptor___1 ; struct task_struct *tmp___13 ; long tmp___14 ; { root = sb->s_root; expired = (struct dentry *)0; do_now = how & 1; exp_leaves = how & 2; if ((unsigned long )root == (unsigned long )((struct dentry *)0)) { return ((struct dentry *)0); } else { } now = jiffies; timeout = sbi->exp_timeout; dentry = (struct dentry *)0; goto ldv_27419; ldv_27418: { ldv_spin_lock_77(& sbi->fs_lock); ino = autofs4_dentry_ino(dentry); } if ((ino->flags & 4) != 0) { goto next; } else { } { tmp___3 = d_mountpoint((struct dentry const *)dentry); } if ((int )tmp___3) { { descriptor.modname = "autofs4"; descriptor.function = "autofs4_expire_indirect"; descriptor.filename = "fs/autofs4/expire.c"; descriptor.format = "pid %d: %s: checking mountpoint %p %.*s\n"; descriptor.lineno = 391U; descriptor.flags = 0U; tmp___0 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___0 != 0L) { { tmp = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: checking mountpoint %p %.*s\n", tmp->pid, "autofs4_expire_indirect", dentry, (int )dentry->d_name.__annonCompField25.__annonCompField24.len, dentry->d_name.name); } } else { } { tmp___1 = autofs4_mount_busy(mnt, dentry); } if (tmp___1 != 0) { goto next; } else { } { tmp___2 = autofs4_can_expire(dentry, timeout, do_now); } if (tmp___2 != 0) { expired = dentry; goto found; } else { } goto next; } else { } if ((unsigned long )dentry->d_inode != (unsigned long )((struct inode *)0) && ((int )(dentry->d_inode)->i_mode & 61440) == 40960) { { descriptor___0.modname = "autofs4"; descriptor___0.function = "autofs4_expire_indirect"; descriptor___0.filename = "fs/autofs4/expire.c"; descriptor___0.format = "pid %d: %s: checking symlink %p %.*s\n"; descriptor___0.lineno = 407U; descriptor___0.flags = 0U; tmp___5 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___5 != 0L) { { tmp___4 = get_current(); __dynamic_pr_debug(& descriptor___0, "pid %d: %s: checking symlink %p %.*s\n", tmp___4->pid, "autofs4_expire_indirect", dentry, (int )dentry->d_name.__annonCompField25.__annonCompField24.len, dentry->d_name.name); } } else { } { tmp___6 = autofs4_can_expire(dentry, timeout, do_now); } if (tmp___6 != 0) { expired = dentry; goto found; } else { } goto next; } else { } { tmp___7 = simple_empty(dentry); } if (tmp___7 != 0) { goto next; } else { } if (exp_leaves == 0) { { tmp___8 = atomic_read((atomic_t const *)(& ino->count)); ino_count = (unsigned int )(tmp___8 + 1); tmp___9 = d_count((struct dentry const *)dentry); } if (tmp___9 > ino_count) { goto next; } else { } { tmp___10 = autofs4_tree_busy(mnt, dentry, timeout, do_now); } if (tmp___10 == 0) { expired = dentry; goto found; } else { } } else { { tmp___11 = atomic_read((atomic_t const *)(& ino->count)); ino_count = (unsigned int )(tmp___11 + 1); tmp___12 = d_count((struct dentry const *)dentry); } if (tmp___12 > ino_count) { goto next; } else { } { expired = autofs4_check_leaves(mnt, dentry, timeout, do_now); } if ((unsigned long )expired != (unsigned long )((struct dentry *)0)) { { dput(dentry); } goto found; } else { } } next: { ldv_spin_unlock_78(& sbi->fs_lock); } ldv_27419: { dentry = get_next_positive_subdir(dentry, root); } if ((unsigned long )dentry != (unsigned long )((struct dentry *)0)) { goto ldv_27418; } else { } return ((struct dentry *)0); found: { descriptor___1.modname = "autofs4"; descriptor___1.function = "autofs4_expire_indirect"; descriptor___1.filename = "fs/autofs4/expire.c"; descriptor___1.format = "pid %d: %s: returning %p %.*s\n"; descriptor___1.lineno = 456U; descriptor___1.flags = 0U; tmp___14 = ldv__builtin_expect((long )descriptor___1.flags & 1L, 0L); } if (tmp___14 != 0L) { { tmp___13 = get_current(); __dynamic_pr_debug(& descriptor___1, "pid %d: %s: returning %p %.*s\n", tmp___13->pid, "autofs4_expire_indirect", expired, (int )expired->d_name.__annonCompField25.__annonCompField24.len, expired->d_name.name); } } else { } { ino = autofs4_dentry_ino(expired); ino->flags = ino->flags | 1; init_completion(& ino->expire_complete); ldv_spin_unlock_78(& sbi->fs_lock); ldv_spin_lock_54(& sbi->lookup_lock); ldv_spin_lock_48(& (expired->d_parent)->d_lockref.__annonCompField23.__annonCompField22.lock); ldv___ldv_spin_lock_85(& expired->d_lockref.__annonCompField23.__annonCompField22.lock); list_move(& (expired->d_parent)->d_subdirs, & expired->d_u.d_child); ldv_spin_unlock_49(& expired->d_lockref.__annonCompField23.__annonCompField22.lock); ldv_spin_unlock_49(& (expired->d_parent)->d_lockref.__annonCompField23.__annonCompField22.lock); ldv_spin_unlock_55(& sbi->lookup_lock); } return (expired); } } int autofs4_expire_wait(struct dentry *dentry ) { struct autofs_sb_info *sbi ; struct autofs_sb_info *tmp ; struct autofs_info *ino ; struct autofs_info *tmp___0 ; int status ; struct _ddebug descriptor ; struct task_struct *tmp___1 ; long tmp___2 ; struct _ddebug descriptor___0 ; struct task_struct *tmp___3 ; long tmp___4 ; int tmp___5 ; { { tmp = autofs4_sbi(dentry->d_sb); sbi = tmp; tmp___0 = autofs4_dentry_ino(dentry); ino = tmp___0; ldv_spin_lock_77(& sbi->fs_lock); } if (ino->flags & 1) { { ldv_spin_unlock_78(& sbi->fs_lock); descriptor.modname = "autofs4"; descriptor.function = "autofs4_expire_wait"; descriptor.filename = "fs/autofs4/expire.c"; descriptor.format = "pid %d: %s: waiting for expire %p name=%.*s\n"; descriptor.lineno = 483U; descriptor.flags = 0U; tmp___2 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___2 != 0L) { { tmp___1 = get_current(); __dynamic_pr_debug(& descriptor, "pid %d: %s: waiting for expire %p name=%.*s\n", tmp___1->pid, "autofs4_expire_wait", dentry, dentry->d_name.__annonCompField25.__annonCompField24.len, dentry->d_name.name); } } else { } { status = autofs4_wait(sbi, dentry, 0); wait_for_completion(& ino->expire_complete); descriptor___0.modname = "autofs4"; descriptor___0.function = "autofs4_expire_wait"; descriptor___0.filename = "fs/autofs4/expire.c"; descriptor___0.format = "pid %d: %s: expire done status=%d\n"; descriptor___0.lineno = 488U; descriptor___0.flags = 0U; tmp___4 = ldv__builtin_expect((long )descriptor___0.flags & 1L, 0L); } if (tmp___4 != 0L) { { tmp___3 = get_current(); __dynamic_pr_debug(& descriptor___0, "pid %d: %s: expire done status=%d\n", tmp___3->pid, "autofs4_expire_wait", status); } } else { } { tmp___5 = d_unhashed((struct dentry const *)dentry); } if (tmp___5 != 0) { return (-11); } else { } return (status); } else { } { ldv_spin_unlock_78(& sbi->fs_lock); } return (0); } } int autofs4_expire_run(struct super_block *sb , struct vfsmount *mnt , struct autofs_sb_info *sbi , struct autofs_packet_expire *pkt_p ) { struct autofs_packet_expire pkt ; struct autofs_info *ino ; struct dentry *dentry ; int ret ; unsigned long tmp ; { { ret = 0; memset((void *)(& pkt), 0, 268UL); pkt.hdr.proto_version = sbi->version; pkt.hdr.type = 1; dentry = autofs4_expire_indirect(sb, mnt, sbi, 0); } if ((unsigned long )dentry == (unsigned long )((struct dentry *)0)) { return (-11); } else { } { pkt.len = (int )dentry->d_name.__annonCompField25.__annonCompField24.len; memcpy((void *)(& pkt.name), (void const *)dentry->d_name.name, (size_t )pkt.len); pkt.name[pkt.len] = 0; dput(dentry); tmp = copy_to_user((void *)pkt_p, (void const *)(& pkt), 268UL); } if (tmp != 0UL) { ret = -14; } else { } { ldv_spin_lock_77(& sbi->fs_lock); ino = autofs4_dentry_ino(dentry); ino->flags = ino->flags & -2; complete_all(& ino->expire_complete); ldv_spin_unlock_78(& sbi->fs_lock); } return (ret); } } int autofs4_do_expire_multi(struct super_block *sb , struct vfsmount *mnt , struct autofs_sb_info *sbi , int when ) { struct dentry *dentry ; int ret ; unsigned int tmp ; struct autofs_info *ino ; struct autofs_info *tmp___0 ; { { ret = -11; tmp = autofs_type_trigger(sbi->type); } if (tmp != 0U) { { dentry = autofs4_expire_direct(sb, mnt, sbi, when); } } else { { dentry = autofs4_expire_indirect(sb, mnt, sbi, when); } } if ((unsigned long )dentry != (unsigned long )((struct dentry *)0)) { { tmp___0 = autofs4_dentry_ino(dentry); ino = tmp___0; ret = autofs4_wait(sbi, dentry, 2); ldv_spin_lock_77(& sbi->fs_lock); ino->flags = ino->flags & -2; complete_all(& ino->expire_complete); ldv_spin_unlock_78(& sbi->fs_lock); dput(dentry); } } else { } return (ret); } } int autofs4_expire_multi(struct super_block *sb , struct vfsmount *mnt , struct autofs_sb_info *sbi , int *arg ) { int do_now ; int __ret_gu ; register unsigned long __val_gu ; int tmp ; { do_now = 0; if ((unsigned long )arg != (unsigned long )((int *)0)) { { might_fault(); __asm__ volatile ("call __get_user_%P3": "=a" (__ret_gu), "=r" (__val_gu): "0" (arg), "i" (4UL)); do_now = (int )__val_gu; } if (__ret_gu != 0) { return (-14); } else { } } else { } { tmp = autofs4_do_expire_multi(sb, mnt, sbi, do_now); } return (tmp); } } static void ldv___ldv_spin_lock_60(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); } return; } } __inline static int ldv_spin_trylock_69(spinlock_t *lock ) { ldv_func_ret_type ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = spin_trylock(lock); ldv_func_res = tmp; tmp___0 = ldv_spin_trylock_lock_of_NOT_ARG_SIGN(); } return (tmp___0); return (ldv_func_res); } } static void ldv___ldv_spin_lock_72(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); } return; } } static void ldv___ldv_spin_lock_85(spinlock_t *ldv_func_arg1 ) { { { ldv_spin_lock_lock_of_NOT_ARG_SIGN(); __ldv_spin_lock(ldv_func_arg1); } return; } } long ldv_is_err(void const *ptr ) ; long ldv_ptr_err(void const *ptr ) ; extern void *memdup_user(void const * , size_t ) ; extern char *strchr(char const * , int ) ; extern void *memchr(void const * , int , __kernel_size_t ) ; __inline static void *ERR_PTR(long error ) ; __inline static long PTR_ERR(void const *ptr ) ; __inline static long IS_ERR(void const *ptr ) ; __inline static void ldv_spin_lock_77(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_78(spinlock_t *lock ) ; __inline static dev_t new_decode_dev(u32 dev ) { unsigned int major ; unsigned int minor ; { major = (dev & 1048320U) >> 8; minor = (dev & 255U) | ((dev >> 12) & 1048320U); return ((major << 20) | minor); } } extern struct file *dentry_open(struct path const * , int , struct cred const * ) ; extern loff_t noop_llseek(struct file * , loff_t , int ) ; extern unsigned long _copy_from_user(void * , void const * , unsigned int ) ; extern void __copy_from_user_overflow(void) ; __inline static unsigned long copy_from_user(void *to , void const *from , unsigned long n ) { int sz ; long tmp ; long tmp___0 ; { { sz = -1; might_fault(); tmp = ldv__builtin_expect(sz < 0, 1L); } if (tmp != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { tmp___0 = ldv__builtin_expect((unsigned long )sz >= n, 1L); } if (tmp___0 != 0L) { { n = _copy_from_user(to, from, (unsigned int )n); } } else { { __copy_from_user_overflow(); } } } return (n); } } extern int misc_register(struct miscdevice * ) ; static int ldv_misc_register_58(struct miscdevice *ldv_func_arg1 ) ; extern int misc_deregister(struct miscdevice * ) ; static int ldv_misc_deregister_59(struct miscdevice *ldv_func_arg1 ) ; extern int kern_path_mountpoint(int , char const * , struct path * , unsigned int ) ; extern int follow_up(struct path * ) ; extern int get_unused_fd_flags(unsigned int ) ; extern void put_unused_fd(unsigned int ) ; extern void fd_install(unsigned int , struct file * ) ; extern long sys_close(unsigned int ) ; __inline static unsigned int autofs_type_any(unsigned int type ) { { return (type == 0U); } } static int check_name(char const *name ) { char *tmp ; { { tmp = strchr(name, 47); } if ((unsigned long )tmp == (unsigned long )((char *)0)) { return (-22); } else { } return (0); } } static int invalid_str(char *str , size_t size ) { void *tmp ; { { tmp = memchr((void const *)str, 0, size); } if ((unsigned long )tmp != (unsigned long )((void *)0)) { return (0); } else { } return (-22); } } static int check_dev_ioctl_version(int cmd , struct autofs_dev_ioctl *param ) { int err ; struct task_struct *tmp ; { err = 0; if (*((unsigned long *)param + 0UL) != 1UL) { { tmp = get_current(); printk("\fpid %d: %s: ioctl control interface version mismatch: kernel(%u.%u), user(%u.%u), cmd(%d)\n", tmp->pid, "check_dev_ioctl_version", 1, 0, param->ver_major, param->ver_minor, cmd); err = -22; } } else { } param->ver_major = 1U; param->ver_minor = 0U; return (err); } } static struct autofs_dev_ioctl *copy_dev_ioctl(struct autofs_dev_ioctl *in ) { struct autofs_dev_ioctl tmp ; void *tmp___0 ; unsigned long tmp___1 ; void *tmp___2 ; void *tmp___3 ; { { tmp___1 = copy_from_user((void *)(& tmp), (void const *)in, 24UL); } if (tmp___1 != 0UL) { { tmp___0 = ERR_PTR(-14L); } return ((struct autofs_dev_ioctl *)tmp___0); } else { } if (tmp.size <= 23U) { { tmp___2 = ERR_PTR(-22L); } return ((struct autofs_dev_ioctl *)tmp___2); } else { } { tmp___3 = memdup_user((void const *)in, (size_t )tmp.size); } return ((struct autofs_dev_ioctl *)tmp___3); } } __inline static void free_dev_ioctl(struct autofs_dev_ioctl *param ) { { { kfree((void const *)param); } return; } } static int validate_dev_ioctl(int cmd , struct autofs_dev_ioctl *param ) { int err ; struct task_struct *tmp ; struct task_struct *tmp___0 ; struct task_struct *tmp___1 ; { { err = check_dev_ioctl_version(cmd, param); } if (err != 0) { { tmp = get_current(); printk("\fpid %d: %s: invalid device control module version supplied for cmd(0x%08x)\n", tmp->pid, "validate_dev_ioctl", cmd); } goto out; } else { } if (param->size > 24U) { { err = invalid_str((char *)(& param->path), (unsigned long )param->size - 24UL); } if (err != 0) { { tmp___0 = get_current(); printk("\fpid %d: %s: path string terminator missing for cmd(0x%08x)\n", tmp___0->pid, "validate_dev_ioctl", cmd); } goto out; } else { } { err = check_name((char const *)(& param->path)); } if (err != 0) { { tmp___1 = get_current(); printk("\fpid %d: %s: invalid path supplied for cmd(0x%08x)\n", tmp___1->pid, "validate_dev_ioctl", cmd); } goto out; } else { } } else { } err = 0; out: ; return (err); } } static struct autofs_sb_info *autofs_dev_ioctl_sbi(struct file *f ) { struct autofs_sb_info *sbi ; struct inode *inode ; { sbi = (struct autofs_sb_info *)0; if ((unsigned long )f != (unsigned long )((struct file *)0)) { { inode = file_inode(f); sbi = autofs4_sbi(inode->i_sb); } } else { } return (sbi); } } static int autofs_dev_ioctl_protover(struct file *fp , struct autofs_sb_info *sbi , struct autofs_dev_ioctl *param ) { { param->__annonCompField82.protover.version = (__u32 )sbi->version; return (0); } } static int autofs_dev_ioctl_protosubver(struct file *fp , struct autofs_sb_info *sbi , struct autofs_dev_ioctl *param ) { { param->__annonCompField82.protosubver.sub_version = (__u32 )sbi->sub_version; return (0); } } static int find_autofs_mount(char const *pathname , struct path *res , int (*test)(struct path * , void * ) , void *data ) { struct path path ; int err ; int tmp ; int tmp___0 ; int tmp___1 ; { { tmp = kern_path_mountpoint(-100, pathname, & path, 0U); err = tmp; } if (err != 0) { return (err); } else { } err = -2; goto ldv_34398; ldv_34397: ; if (((path.dentry)->d_sb)->s_magic == 391UL) { { tmp___0 = (*test)(& path, data); } if (tmp___0 != 0) { { path_get((struct path const *)(& path)); *res = path; err = 0; } goto ldv_34396; } else { } } else { } { tmp___1 = follow_up(& path); } if (tmp___1 == 0) { goto ldv_34396; } else { } ldv_34398: ; if ((unsigned long )path.dentry == (unsigned long )(path.mnt)->mnt_root) { goto ldv_34397; } else { } ldv_34396: { path_put((struct path const *)(& path)); } return (err); } } static int test_by_dev(struct path *path , void *p ) { { return (((path->dentry)->d_sb)->s_dev == *((dev_t *)p)); } } static int test_by_type(struct path *path , void *p ) { struct autofs_info *ino ; struct autofs_info *tmp ; { { tmp = autofs4_dentry_ino(path->dentry); ino = tmp; } return ((unsigned long )ino != (unsigned long )((struct autofs_info *)0) && ((ino->sbi)->type & *((unsigned int *)p)) != 0U); } } static int autofs_dev_ioctl_open_mountpoint(char const *name , dev_t devid ) { int err ; int fd ; struct file *filp ; struct path path ; int tmp ; struct task_struct *tmp___0 ; long tmp___1 ; long tmp___2 ; long tmp___3 ; { { fd = get_unused_fd_flags(524288U); tmp___3 = ldv__builtin_expect(fd >= 0, 1L); } if (tmp___3 != 0L) { { err = find_autofs_mount(name, & path, & test_by_dev, (void *)(& devid)); } if (err != 0) { goto out; } else { } { tmp = debug_lockdep_rcu_enabled(); tmp___0 = get_current(); filp = dentry_open((struct path const *)(& path), 0, tmp___0->cred); path_put((struct path const *)(& path)); tmp___2 = IS_ERR((void const *)filp); } if (tmp___2 != 0L) { { tmp___1 = PTR_ERR((void const *)filp); err = (int )tmp___1; } goto out; } else { } { fd_install((unsigned int )fd, filp); } } else { } return (fd); out: { put_unused_fd((unsigned int )fd); } return (err); } } static int autofs_dev_ioctl_openmount(struct file *fp , struct autofs_sb_info *sbi , struct autofs_dev_ioctl *param ) { char const *path ; dev_t devid ; int err ; int fd ; long tmp ; { if (param->__annonCompField82.openmount.devid == 0U) { return (-22); } else { } { param->ioctlfd = -1; path = (char const *)(& param->path); devid = new_decode_dev(param->__annonCompField82.openmount.devid); err = 0; fd = autofs_dev_ioctl_open_mountpoint(path, devid); tmp = ldv__builtin_expect(fd < 0, 0L); } if (tmp != 0L) { err = fd; goto out; } else { } param->ioctlfd = fd; out: ; return (err); } } static int autofs_dev_ioctl_closemount(struct file *fp , struct autofs_sb_info *sbi , struct autofs_dev_ioctl *param ) { long tmp ; { { tmp = sys_close((unsigned int )param->ioctlfd); } return ((int )tmp); } } static int autofs_dev_ioctl_ready(struct file *fp , struct autofs_sb_info *sbi , struct autofs_dev_ioctl *param ) { autofs_wqt_t token ; int tmp ; { { token = param->__annonCompField82.ready.token; tmp = autofs4_wait_release(sbi, token, 0); } return (tmp); } } static int autofs_dev_ioctl_fail(struct file *fp , struct autofs_sb_info *sbi , struct autofs_dev_ioctl *param ) { autofs_wqt_t token ; int status ; int tmp ; { { token = param->__annonCompField82.fail.token; status = param->__annonCompField82.fail.status != 0 ? param->__annonCompField82.fail.status : -2; tmp = autofs4_wait_release(sbi, token, status); } return (tmp); } } static int autofs_dev_ioctl_setpipefd(struct file *fp , struct autofs_sb_info *sbi , struct autofs_dev_ioctl *param ) { int pipefd ; int err ; struct pid *new_pid ; struct file *pipe ; struct task_struct *tmp ; struct task_struct *tmp___0 ; struct pid_namespace *tmp___1 ; struct pid_namespace *tmp___2 ; int tmp___3 ; struct pid *__tmp ; { err = 0; new_pid = (struct pid *)0; if (param->__annonCompField82.setpipefd.pipefd == -1) { return (-22); } else { } { pipefd = param->__annonCompField82.setpipefd.pipefd; mutex_lock_nested(& sbi->wq_mutex, 0U); } if (sbi->catatonic == 0) { { mutex_unlock(& sbi->wq_mutex); } return (-16); } else { { tmp = get_current(); new_pid = get_task_pid(tmp, 1); tmp___1 = ns_of_pid(new_pid); tmp___2 = ns_of_pid(sbi->oz_pgrp); } if ((unsigned long )tmp___1 != (unsigned long )tmp___2) { { tmp___0 = get_current(); printk("\fpid %d: %s: Not allowed to change PID namespace\n", tmp___0->pid, "autofs_dev_ioctl_setpipefd"); err = -22; } goto out; } else { } { pipe = fget((unsigned int )pipefd); } if ((unsigned long )pipe == (unsigned long )((struct file *)0)) { err = -9; goto out; } else { } { tmp___3 = autofs_prepare_pipe(pipe); } if (tmp___3 < 0) { { err = -32; fput(pipe); } goto out; } else { } __tmp = sbi->oz_pgrp; sbi->oz_pgrp = new_pid; new_pid = __tmp; sbi->pipefd = pipefd; sbi->pipe = pipe; sbi->catatonic = 0; } out: { put_pid(new_pid); mutex_unlock(& sbi->wq_mutex); } return (err); } } static int autofs_dev_ioctl_catatonic(struct file *fp , struct autofs_sb_info *sbi , struct autofs_dev_ioctl *param ) { { { autofs4_catatonic_mode(sbi); } return (0); } } static int autofs_dev_ioctl_timeout(struct file *fp , struct autofs_sb_info *sbi , struct autofs_dev_ioctl *param ) { unsigned long timeout ; { timeout = (unsigned long )param->__annonCompField82.timeout.timeout; param->__annonCompField82.timeout.timeout = (__u64 )(sbi->exp_timeout / 250UL); sbi->exp_timeout = timeout * 250UL; return (0); } } static int autofs_dev_ioctl_requester(struct file *fp , struct autofs_sb_info *sbi , struct autofs_dev_ioctl *param ) { struct autofs_info *ino ; struct path path ; dev_t devid ; int err ; __u32 tmp ; int tmp___0 ; struct task_struct *tmp___1 ; int tmp___2 ; struct task_struct *tmp___3 ; { err = -2; if (param->size <= 24U) { err = -22; goto out; } else { } { devid = (sbi->sb)->s_dev; tmp = 4294967295U; param->__annonCompField82.requester.gid = tmp; param->__annonCompField82.requester.uid = tmp; err = find_autofs_mount((char const *)(& param->path), & path, & test_by_dev, (void *)(& devid)); } if (err != 0) { goto out; } else { } { ino = autofs4_dentry_ino(path.dentry); } if ((unsigned long )ino != (unsigned long )((struct autofs_info *)0)) { { err = 0; autofs4_expire_wait(path.dentry); ldv_spin_lock_77(& sbi->fs_lock); tmp___0 = debug_lockdep_rcu_enabled(); tmp___1 = get_current(); param->__annonCompField82.requester.uid = from_kuid_munged((tmp___1->cred)->user_ns, ino->uid); tmp___2 = debug_lockdep_rcu_enabled(); tmp___3 = get_current(); param->__annonCompField82.requester.gid = from_kgid_munged((tmp___3->cred)->user_ns, ino->gid); ldv_spin_unlock_78(& sbi->fs_lock); } } else { } { path_put((struct path const *)(& path)); } out: ; return (err); } } static int autofs_dev_ioctl_expire(struct file *fp , struct autofs_sb_info *sbi , struct autofs_dev_ioctl *param ) { struct vfsmount *mnt ; int how ; int tmp ; { { how = (int )param->__annonCompField82.expire.how; mnt = fp->f_path.mnt; tmp = autofs4_do_expire_multi(sbi->sb, mnt, sbi, how); } return (tmp); } } static int autofs_dev_ioctl_askumount(struct file *fp , struct autofs_sb_info *sbi , struct autofs_dev_ioctl *param ) { int tmp ; { { param->__annonCompField82.askumount.may_umount = 0U; tmp = may_umount(fp->f_path.mnt); } if (tmp != 0) { param->__annonCompField82.askumount.may_umount = 1U; } else { } return (0); } } static int autofs_dev_ioctl_ismountpoint(struct file *fp , struct autofs_sb_info *sbi , struct autofs_dev_ioctl *param ) { struct path path ; char const *name ; unsigned int type ; unsigned int devid ; unsigned int magic ; int err ; unsigned int tmp ; dev_t dev ; int tmp___0 ; { err = -2; if (param->size <= 24U) { err = -22; goto out; } else { } name = (char const *)(& param->path); type = param->__annonCompField82.ismountpoint.__annonCompField81.in.type; devid = 0U; param->__annonCompField82.ismountpoint.__annonCompField81.out.devid = devid; magic = 0U; param->__annonCompField82.ismountpoint.__annonCompField81.out.magic = magic; if ((unsigned long )fp == (unsigned long )((struct file *)0) || param->ioctlfd == -1) { { tmp = autofs_type_any(type); } if (tmp != 0U) { { err = kern_path_mountpoint(-100, name, & path, 1U); } } else { { err = find_autofs_mount(name, & path, & test_by_type, (void *)(& type)); } } if (err != 0) { goto out; } else { } { devid = new_encode_dev(((path.dentry)->d_sb)->s_dev); err = 0; } if ((unsigned long )(path.mnt)->mnt_root == (unsigned long )path.dentry) { err = 1; magic = (unsigned int )((path.dentry)->d_sb)->s_magic; } else { } } else { { dev = (sbi->sb)->s_dev; err = find_autofs_mount(name, & path, & test_by_dev, (void *)(& dev)); } if (err != 0) { goto out; } else { } { devid = new_encode_dev(dev); err = have_submounts(path.dentry); tmp___0 = follow_down_one(& path); } if (tmp___0 != 0) { magic = (unsigned int )((path.dentry)->d_sb)->s_magic; } else { } } { param->__annonCompField82.ismountpoint.__annonCompField81.out.devid = devid; param->__annonCompField82.ismountpoint.__annonCompField81.out.magic = magic; path_put((struct path const *)(& path)); } out: ; return (err); } } static ioctl_fn lookup_dev_ioctl(unsigned int cmd ) { struct __anonstruct__ioctls_245 _ioctls[14U] ; unsigned int idx ; { _ioctls[0].cmd = 0; _ioctls[0].fn = (int (*)(struct file * , struct autofs_sb_info * , struct autofs_dev_ioctl * ))0; _ioctls[1].cmd = 1; _ioctls[1].fn = & autofs_dev_ioctl_protover; _ioctls[2].cmd = 2; _ioctls[2].fn = & autofs_dev_ioctl_protosubver; _ioctls[3].cmd = 3; _ioctls[3].fn = & autofs_dev_ioctl_openmount; _ioctls[4].cmd = 4; _ioctls[4].fn = & autofs_dev_ioctl_closemount; _ioctls[5].cmd = 5; _ioctls[5].fn = & autofs_dev_ioctl_ready; _ioctls[6].cmd = 6; _ioctls[6].fn = & autofs_dev_ioctl_fail; _ioctls[7].cmd = 7; _ioctls[7].fn = & autofs_dev_ioctl_setpipefd; _ioctls[8].cmd = 8; _ioctls[8].fn = & autofs_dev_ioctl_catatonic; _ioctls[9].cmd = 9; _ioctls[9].fn = & autofs_dev_ioctl_timeout; _ioctls[10].cmd = 10; _ioctls[10].fn = & autofs_dev_ioctl_requester; _ioctls[11].cmd = 11; _ioctls[11].fn = & autofs_dev_ioctl_expire; _ioctls[12].cmd = 12; _ioctls[12].fn = & autofs_dev_ioctl_askumount; _ioctls[13].cmd = 13; _ioctls[13].fn = & autofs_dev_ioctl_ismountpoint; idx = cmd - 113U; return (idx <= 13U ? _ioctls[idx].fn : (int (*)(struct file * , struct autofs_sb_info * , struct autofs_dev_ioctl * ))0); } } static int _autofs_dev_ioctl(unsigned int command , struct autofs_dev_ioctl *user ) { struct autofs_dev_ioctl *param ; struct file *fp ; struct autofs_sb_info *sbi ; unsigned int cmd_first ; unsigned int cmd ; int (*fn)(struct file * , struct autofs_sb_info * , struct autofs_dev_ioctl * ) ; int err ; bool tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; struct task_struct *tmp___3 ; int tmp___4 ; unsigned long tmp___5 ; { { fn = (int (*)(struct file * , struct autofs_sb_info * , struct autofs_dev_ioctl * ))0; err = 0; tmp = capable(21); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-1); } else { } cmd_first = 113U; cmd = command & 255U; if (((unsigned long )(command >> 8) & 255UL) != 147UL || cmd - cmd_first > 20U) { return (-25); } else { } { param = copy_dev_ioctl(user); tmp___2 = IS_ERR((void const *)param); } if (tmp___2 != 0L) { { tmp___1 = PTR_ERR((void const *)param); } return ((int )tmp___1); } else { } { err = validate_dev_ioctl((int )command, param); } if (err != 0) { goto out; } else { } if (cmd == 113U) { goto done; } else { } { fn = lookup_dev_ioctl(cmd); } if ((unsigned long )fn == (unsigned long )((int (*)(struct file * , struct autofs_sb_info * , struct autofs_dev_ioctl * ))0)) { { tmp___3 = get_current(); printk("\fpid %d: %s: unknown command 0x%08x\n", tmp___3->pid, "_autofs_dev_ioctl", command); } return (-25); } else { } fp = (struct file *)0; sbi = (struct autofs_sb_info *)0; if (cmd - 116U > 1U) { { fp = fget((unsigned int )param->ioctlfd); } if ((unsigned long )fp == (unsigned long )((struct file *)0)) { if (cmd == 126U) { goto cont; } else { } err = -9; goto out; } else { } { sbi = autofs_dev_ioctl_sbi(fp); } if ((unsigned long )sbi == (unsigned long )((struct autofs_sb_info *)0) || sbi->magic != 1833588077U) { { err = -22; fput(fp); } goto out; } else { } { tmp___4 = autofs4_oz_mode(sbi); } if (tmp___4 == 0 && cmd != 121U) { { err = -13; fput(fp); } goto out; } else { } } else { } cont: { err = (*fn)(fp, sbi, param); } if ((unsigned long )fp != (unsigned long )((struct file *)0)) { { fput(fp); } } else { } done: ; if (err >= 0) { { tmp___5 = copy_to_user((void *)user, (void const *)param, 24UL); } if (tmp___5 != 0UL) { err = -14; } else { } } else { } out: { free_dev_ioctl(param); } return (err); } } static long autofs_dev_ioctl(struct file *file , uint command , ulong u ) { int err ; { { err = _autofs_dev_ioctl(command, (struct autofs_dev_ioctl *)u); } return ((long )err); } } static long autofs_dev_ioctl_compat(struct file *file , uint command , ulong u ) { void *tmp ; long tmp___0 ; { { tmp = compat_ptr((compat_uptr_t )u); tmp___0 = autofs_dev_ioctl(file, command, (unsigned long )tmp); } return (tmp___0); } } static struct file_operations const _dev_ioctl_fops = {& __this_module, & noop_llseek, 0, 0, 0, 0, 0, 0, & autofs_dev_ioctl, & autofs_dev_ioctl_compat, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct miscdevice _autofs_dev_ioctl_misc = {235, "autofs", & _dev_ioctl_fops, {0, 0}, 0, 0, 0, (unsigned short)0}; int autofs_dev_ioctl_init(void) { int r ; struct task_struct *tmp ; { { r = ldv_misc_register_58(& _autofs_dev_ioctl_misc); } if (r != 0) { { tmp = get_current(); printk("\vpid %d: %s: misc_register failed for control device\n", tmp->pid, "autofs_dev_ioctl_init"); } return (r); } else { } return (0); } } void autofs_dev_ioctl_exit(void) { { { ldv_misc_deregister_59(& _autofs_dev_ioctl_misc); } return; } } void ldv_dispatch_deregister_6_1(struct file_operations *arg0 ) ; void ldv_dispatch_register_7_2(struct file_operations *arg0 ) ; void ldv_file_operations_instance_callback_0_26(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) ; void ldv_file_operations_instance_callback_0_35(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_file_operations_instance_callback_0_5(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) ; void ldv_misc_deregister(void *arg0 , struct miscdevice *arg1 ) ; int ldv_misc_register(int arg0 , struct miscdevice *arg1 ) ; void ldv_switch_automaton_state_0_15(void) ; void ldv_switch_automaton_state_0_6(void) ; long (*ldv_0_callback_compat_ioctl)(struct file * , unsigned int , unsigned long ) ; long long (*ldv_0_callback_llseek)(struct file * , long long , int ) ; long (*ldv_0_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; struct file_operations *ldv_0_container_file_operations ; int ldv_statevar_0 ; long (*ldv_0_callback_compat_ioctl)(struct file * , unsigned int , unsigned long ) = & autofs_dev_ioctl_compat; long long (*ldv_0_callback_llseek)(struct file * , long long , int ) = & noop_llseek; long (*ldv_0_callback_unlocked_ioctl)(struct file * , unsigned int , unsigned long ) = & autofs_dev_ioctl; void ldv_dispatch_deregister_6_1(struct file_operations *arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_0_container_file_operations = arg0; ldv_switch_automaton_state_0_6(); } goto ldv_34734; case_1: /* CIL Label */ { ldv_1_container_file_operations = arg0; ldv_switch_automaton_state_1_6(); } goto ldv_34734; case_2: /* CIL Label */ { ldv_2_container_file_operations = arg0; ldv_switch_automaton_state_2_6(); } goto ldv_34734; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_34734: ; return; } } void ldv_dispatch_register_7_2(struct file_operations *arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_0_container_file_operations = arg0; ldv_switch_automaton_state_0_15(); } goto ldv_34743; case_1: /* CIL Label */ { ldv_1_container_file_operations = arg0; ldv_switch_automaton_state_1_15(); } goto ldv_34743; case_2: /* CIL Label */ { ldv_2_container_file_operations = arg0; ldv_switch_automaton_state_2_15(); } goto ldv_34743; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_34743: ; return; } } void ldv_file_operations_file_operations_instance_0(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; int tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; { { if (ldv_statevar_0 == 1) { goto case_1; } else { } if (ldv_statevar_0 == 2) { goto case_2; } else { } if (ldv_statevar_0 == 3) { goto case_3; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 7) { goto case_7; } else { } if (ldv_statevar_0 == 9) { goto case_9; } else { } if (ldv_statevar_0 == 11) { goto case_11; } else { } if (ldv_statevar_0 == 12) { goto case_12; } else { } if (ldv_statevar_0 == 14) { goto case_14; } else { } if (ldv_statevar_0 == 15) { goto case_15; } else { } if (ldv_statevar_0 == 18) { goto case_18; } else { } if (ldv_statevar_0 == 20) { goto case_20; } else { } if (ldv_statevar_0 == 22) { goto case_22; } else { } if (ldv_statevar_0 == 24) { goto case_24; } else { } if (ldv_statevar_0 == 27) { goto case_27; } else { } if (ldv_statevar_0 == 30) { goto case_30; } else { } if (ldv_statevar_0 == 33) { goto case_33; } else { } if (ldv_statevar_0 == 36) { goto case_36; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 7; } else { ldv_statevar_0 = 12; } goto ldv_34751; case_2: /* CIL Label */ ; if ((unsigned long )ldv_0_container_file_operations->release != (unsigned long )((int (*)(struct inode * , struct file * ))0)) { { ldv_file_operations_instance_release_0_2(ldv_0_container_file_operations->release, ldv_0_resource_inode, ldv_0_resource_file); } } else { } ldv_statevar_0 = 1; goto ldv_34751; case_3: /* CIL Label */ { ldv_statevar_0 = ldv_switch_0(); } goto ldv_34751; case_5: /* CIL Label */ { ldv_file_operations_instance_callback_0_5(ldv_0_callback_compat_ioctl, ldv_0_resource_file, ldv_0_ldv_param_5_1_default, ldv_0_size_cnt_write_size); ldv_statevar_0 = 3; } goto ldv_34751; case_7: /* CIL Label */ { ldv_free((void *)ldv_0_resource_file); ldv_free((void *)ldv_0_resource_inode); ldv_0_ret_default = 1; ldv_statevar_0 = 15; } goto ldv_34751; case_9: /* CIL Label */ { ldv_assume(ldv_0_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_0 = 7; } else { ldv_statevar_0 = 12; } goto ldv_34751; case_11: /* CIL Label */ { ldv_assume(ldv_0_ret_default == 0); ldv_statevar_0 = ldv_switch_0(); } goto ldv_34751; case_12: /* CIL Label */ ; if ((unsigned long )ldv_0_container_file_operations->open != (unsigned long )((int (*)(struct inode * , struct file * ))0)) { { ldv_0_ret_default = ldv_file_operations_instance_probe_0_12(ldv_0_container_file_operations->open, ldv_0_resource_inode, ldv_0_resource_file); } } else { } { ldv_0_ret_default = ldv_filter_err_code(ldv_0_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_0 = 9; } else { ldv_statevar_0 = 11; } goto ldv_34751; case_14: /* CIL Label */ { tmp___2 = ldv_xmalloc(520UL); ldv_0_resource_file = (struct file *)tmp___2; tmp___3 = ldv_xmalloc(1032UL); ldv_0_resource_inode = (struct inode *)tmp___3; tmp___4 = ldv_undef_int(); ldv_0_size_cnt_struct_dir_context_ptr = (struct dir_context *)((long )tmp___4); tmp___5 = ldv_undef_int(); } if (tmp___5 != 0) { ldv_statevar_0 = 7; } else { ldv_statevar_0 = 12; } goto ldv_34751; case_15: /* CIL Label */ ; goto ldv_34751; case_18: /* CIL Label */ { tmp___6 = ldv_xmalloc(1UL); ldv_0_ldv_param_4_1_default = (char *)tmp___6; tmp___7 = ldv_xmalloc(8UL); ldv_0_ldv_param_4_3_default = (long long *)tmp___7; ldv_assume((unsigned long )ldv_0_size_cnt_struct_dir_context_ptr <= (unsigned long )((struct dir_context *)2147479552)); } if ((unsigned long )ldv_0_container_file_operations->write != (unsigned long )((ssize_t (*)(struct file * , char const * , size_t , loff_t * ))0)) { { ldv_file_operations_instance_write_0_4((long (*)(struct file * , char * , unsigned long , long long * ))ldv_0_container_file_operations->write, ldv_0_resource_file, ldv_0_ldv_param_4_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_4_3_default); } } else { } { ldv_free((void *)ldv_0_ldv_param_4_1_default); ldv_free((void *)ldv_0_ldv_param_4_3_default); ldv_statevar_0 = 3; } goto ldv_34751; case_20: /* CIL Label */ { ldv_statevar_0 = ldv_switch_1(); } goto ldv_34751; case_22: /* CIL Label */ ; if ((unsigned long )ldv_0_callback_iterate != (unsigned long )((int (*)(struct file * , struct dir_context * ))0)) { { ldv_file_operations_instance_callback_0_22(ldv_0_callback_iterate, ldv_0_resource_file, ldv_0_size_cnt_struct_dir_context_ptr); } } else { } ldv_statevar_0 = 3; goto ldv_34751; case_24: /* CIL Label */ { tmp___8 = ldv_xmalloc(2432UL); ldv_0_ldv_param_23_0_default = (struct super_block *)tmp___8; ldv_file_operations_instance_callback_0_23(ldv_0_callback_kill_sb, ldv_0_ldv_param_23_0_default); ldv_free((void *)ldv_0_ldv_param_23_0_default); ldv_statevar_0 = 3; } goto ldv_34751; case_27: /* CIL Label */ { ldv_file_operations_instance_callback_0_26(ldv_0_callback_llseek, ldv_0_resource_file, ldv_0_ldv_param_26_1_default, ldv_0_ldv_param_26_2_default); ldv_statevar_0 = 3; } goto ldv_34751; case_30: /* CIL Label */ { tmp___9 = ldv_xmalloc(128UL); ldv_0_ldv_param_29_0_default = (struct file_system_type *)tmp___9; tmp___10 = ldv_xmalloc(1UL); ldv_0_ldv_param_29_2_default = (char *)tmp___10; ldv_file_operations_instance_callback_0_29(ldv_0_callback_mount, ldv_0_ldv_param_29_0_default, ldv_0_ldv_param_29_1_default, ldv_0_ldv_param_29_2_default, (void *)ldv_0_resource_file); ldv_free((void *)ldv_0_ldv_param_29_0_default); ldv_free((void *)ldv_0_ldv_param_29_2_default); ldv_statevar_0 = 3; } goto ldv_34751; case_33: /* CIL Label */ { tmp___11 = ldv_xmalloc(1UL); ldv_0_ldv_param_32_1_default = (char *)tmp___11; tmp___12 = ldv_xmalloc(8UL); ldv_0_ldv_param_32_3_default = (long long *)tmp___12; } if ((unsigned long )ldv_0_callback_read != (unsigned long )((long (*)(struct file * , char * , unsigned long , long long * ))0)) { { ldv_file_operations_instance_callback_0_32(ldv_0_callback_read, ldv_0_resource_file, ldv_0_ldv_param_32_1_default, ldv_0_size_cnt_write_size, ldv_0_ldv_param_32_3_default); } } else { } { ldv_free((void *)ldv_0_ldv_param_32_1_default); ldv_free((void *)ldv_0_ldv_param_32_3_default); ldv_statevar_0 = 3; } goto ldv_34751; case_36: /* CIL Label */ { ldv_file_operations_instance_callback_0_35(ldv_0_callback_unlocked_ioctl, ldv_0_resource_file, ldv_0_ldv_param_35_1_default, ldv_0_size_cnt_write_size); ldv_statevar_0 = 3; } goto ldv_34751; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_34751: ; return; } } void ldv_file_operations_instance_callback_0_26(long long (*arg0)(struct file * , long long , int ) , struct file *arg1 , long long arg2 , int arg3 ) { { { noop_llseek(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_0_35(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { autofs_dev_ioctl(arg1, arg2, arg3); } return; } } void ldv_file_operations_instance_callback_0_5(long (*arg0)(struct file * , unsigned int , unsigned long ) , struct file *arg1 , unsigned int arg2 , unsigned long arg3 ) { { { autofs_dev_ioctl_compat(arg1, arg2, arg3); } return; } } void ldv_misc_deregister(void *arg0 , struct miscdevice *arg1 ) { struct file_operations *ldv_6_file_operations_file_operations ; struct miscdevice *ldv_6_miscdevice_miscdevice ; { { ldv_6_miscdevice_miscdevice = arg1; ldv_6_file_operations_file_operations = (struct file_operations *)ldv_6_miscdevice_miscdevice->fops; ldv_assume((ldv_statevar_0 == 7 || ldv_statevar_1 == 7) || ldv_statevar_2 == 7); ldv_dispatch_deregister_6_1(ldv_6_file_operations_file_operations); } return; return; } } int ldv_misc_register(int arg0 , struct miscdevice *arg1 ) { struct file_operations *ldv_7_file_operations_file_operations ; struct miscdevice *ldv_7_miscdevice_miscdevice ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_7_miscdevice_miscdevice = arg1; ldv_7_file_operations_file_operations = (struct file_operations *)ldv_7_miscdevice_miscdevice->fops; ldv_assume((ldv_statevar_0 == 15 || ldv_statevar_1 == 15) || ldv_statevar_2 == 15); ldv_dispatch_register_7_2(ldv_7_file_operations_file_operations); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_switch_automaton_state_0_15(void) { { ldv_statevar_0 = 14; return; } } void ldv_switch_automaton_state_0_6(void) { { ldv_0_ret_default = 1; ldv_statevar_0 = 15; return; } } __inline static long PTR_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_ptr_err(ptr); } return (tmp); } } __inline static long IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_is_err(ptr); } return (tmp); } } static int ldv_misc_register_58(struct miscdevice *ldv_func_arg1 ) { ldv_func_ret_type ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = misc_register(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_misc_register(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_misc_deregister_59(struct miscdevice *ldv_func_arg1 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; { { tmp = misc_deregister(ldv_func_arg1); ldv_func_res = tmp; ldv_misc_deregister((void *)0, ldv_func_arg1); } return (ldv_func_res); } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } int ldv_post_probe(int probe_ret_val ) ; static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_check_alloc_flags(gfp_t ) ; extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; void *ldv_malloc_unknown_size(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) ; static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_fs_lock_of_autofs_sb_info = 1; void ldv_spin_lock_fs_lock_of_autofs_sb_info(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_fs_lock_of_autofs_sb_info == 1); ldv_assume(ldv_spin_fs_lock_of_autofs_sb_info == 1); ldv_spin_fs_lock_of_autofs_sb_info = 2; } return; } } void ldv_spin_unlock_fs_lock_of_autofs_sb_info(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_fs_lock_of_autofs_sb_info == 2); ldv_assume(ldv_spin_fs_lock_of_autofs_sb_info == 2); ldv_spin_fs_lock_of_autofs_sb_info = 1; } return; } } int ldv_spin_trylock_fs_lock_of_autofs_sb_info(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_fs_lock_of_autofs_sb_info == 1); ldv_assume(ldv_spin_fs_lock_of_autofs_sb_info == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_fs_lock_of_autofs_sb_info = 2; return (1); } } } void ldv_spin_unlock_wait_fs_lock_of_autofs_sb_info(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_fs_lock_of_autofs_sb_info == 1); ldv_assume(ldv_spin_fs_lock_of_autofs_sb_info == 1); } return; } } int ldv_spin_is_locked_fs_lock_of_autofs_sb_info(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_fs_lock_of_autofs_sb_info == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_fs_lock_of_autofs_sb_info(void) { int tmp ; { { tmp = ldv_spin_is_locked_fs_lock_of_autofs_sb_info(); } return (tmp == 0); } } int ldv_spin_is_contended_fs_lock_of_autofs_sb_info(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_fs_lock_of_autofs_sb_info(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_fs_lock_of_autofs_sb_info == 1); ldv_assume(ldv_spin_fs_lock_of_autofs_sb_info == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_fs_lock_of_autofs_sb_info = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lookup_lock_of_autofs_sb_info = 1; void ldv_spin_lock_lookup_lock_of_autofs_sb_info(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_lookup_lock_of_autofs_sb_info == 1); ldv_assume(ldv_spin_lookup_lock_of_autofs_sb_info == 1); ldv_spin_lookup_lock_of_autofs_sb_info = 2; } return; } } void ldv_spin_unlock_lookup_lock_of_autofs_sb_info(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_lookup_lock_of_autofs_sb_info == 2); ldv_assume(ldv_spin_lookup_lock_of_autofs_sb_info == 2); ldv_spin_lookup_lock_of_autofs_sb_info = 1; } return; } } int ldv_spin_trylock_lookup_lock_of_autofs_sb_info(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lookup_lock_of_autofs_sb_info == 1); ldv_assume(ldv_spin_lookup_lock_of_autofs_sb_info == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lookup_lock_of_autofs_sb_info = 2; return (1); } } } void ldv_spin_unlock_wait_lookup_lock_of_autofs_sb_info(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lookup_lock_of_autofs_sb_info == 1); ldv_assume(ldv_spin_lookup_lock_of_autofs_sb_info == 1); } return; } } int ldv_spin_is_locked_lookup_lock_of_autofs_sb_info(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lookup_lock_of_autofs_sb_info == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lookup_lock_of_autofs_sb_info(void) { int tmp ; { { tmp = ldv_spin_is_locked_lookup_lock_of_autofs_sb_info(); } return (tmp == 0); } } int ldv_spin_is_contended_lookup_lock_of_autofs_sb_info(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lookup_lock_of_autofs_sb_info(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_lookup_lock_of_autofs_sb_info == 1); ldv_assume(ldv_spin_lookup_lock_of_autofs_sb_info == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lookup_lock_of_autofs_sb_info = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_fs_lock_of_autofs_sb_info == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_i_lock_of_inode == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_lookup_lock_of_autofs_sb_info == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_ptl == 1); ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_fs_lock_of_autofs_sb_info == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lookup_lock_of_autofs_sb_info == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } return (0); } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_lock_try(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_double_unlock(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_kernel_locking_spinlock__one_thread_locked_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }