/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __le16; typedef __u16 __be16; typedef __u32 __le32; typedef __u32 __be32; typedef __u64 __le64; typedef __u16 __sum16; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct device; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_9 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_10 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_8 { struct __anonstruct____missing_field_name_9 __annonCompField4 ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; struct desc_struct { union __anonunion____missing_field_name_8 __annonCompField6 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_12 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_12 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct task_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; struct arch_spinlock; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_15 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_15 __annonCompField7 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_17 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_16 { s64 lock ; struct __anonstruct____missing_field_name_17 __annonCompField8 ; }; typedef union __anonunion_arch_rwlock_t_16 arch_rwlock_t; typedef void (*ctor_fn_t)(void); struct _ddebug { char const *modname ; char const *function ; char const *filename ; char const *format ; unsigned int lineno : 18 ; unsigned int flags : 8 ; }; struct net_device; struct file_operations; struct completion; struct pid; enum system_states { SYSTEM_BOOTING = 0, SYSTEM_RUNNING = 1, SYSTEM_HALT = 2, SYSTEM_POWER_OFF = 3, SYSTEM_RESTART = 4 } ; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct lockdep_map; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct pdev_archdata { }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_133 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_133 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_136 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_137 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_135 { struct __anonstruct____missing_field_name_136 __annonCompField34 ; struct __anonstruct____missing_field_name_137 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_135 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_138 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_144 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_143 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_144 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_141 { unsigned long counters ; struct __anonstruct____missing_field_name_142 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_139 { union __anonunion____missing_field_name_140 __annonCompField38 ; union __anonunion____missing_field_name_141 __annonCompField42 ; }; struct __anonstruct____missing_field_name_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_145 { struct list_head lru ; struct __anonstruct____missing_field_name_146 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_147 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct __anonstruct____missing_field_name_139 __annonCompField43 ; union __anonunion____missing_field_name_145 __annonCompField45 ; union __anonunion____missing_field_name_147 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_151 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_151 sync_serial_settings; struct __anonstruct_te1_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_152 te1_settings; struct __anonstruct_raw_hdlc_proto_153 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_153 raw_hdlc_proto; struct __anonstruct_fr_proto_154 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_154 fr_proto; struct __anonstruct_fr_proto_pvc_155 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_155 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_156 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_156 fr_proto_pvc_info; struct __anonstruct_cisco_proto_157 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_157 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_158 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_158 ifs_ifsu ; }; union __anonunion_ifr_ifrn_159 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_160 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_159 ifr_ifrn ; union __anonunion_ifr_ifru_160 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_163 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_162 { struct __anonstruct____missing_field_name_163 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_162 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_165 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_164 { struct __anonstruct____missing_field_name_165 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_164 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_166 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_168 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_168 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_169 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_169 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_171 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_170 { size_t written ; size_t count ; union __anonunion_arg_171 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_170 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_172 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_173 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_174 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_172 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_173 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_174 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_175 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_175 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_177 { struct list_head link ; int state ; }; union __anonunion_fl_u_176 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_177 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_176 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_178 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_178 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_180 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_181 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_184 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_185 { long _band ; int _fd ; }; struct __anonstruct__sigsys_186 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_179 { int _pad[28U] ; struct __anonstruct__kill_180 _kill ; struct __anonstruct__timer_181 _timer ; struct __anonstruct__rt_182 _rt ; struct __anonstruct__sigchld_183 _sigchld ; struct __anonstruct__sigfault_184 _sigfault ; struct __anonstruct__sigpoll_185 _sigpoll ; struct __anonstruct__sigsys_186 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_179 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_190 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_189 { struct __anonstruct____missing_field_name_190 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_189 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_191 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_192 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_194 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_193 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; union __anonunion_type_data_195 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_197 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_196 { union __anonunion_payload_197 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_191 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_192 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_193 __annonCompField60 ; union __anonunion_type_data_195 type_data ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_21642 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_21642 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_214 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_215 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField63 ; struct __anonstruct____missing_field_name_215 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_213 __annonCompField65 ; }; struct exception_table_entry { int insn ; int fixup ; }; struct in6_addr; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_217 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_217 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_219 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_218 { __wsum csum ; struct __anonstruct____missing_field_name_219 __annonCompField67 ; }; union __anonunion____missing_field_name_220 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_221 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_218 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_221 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; union __anonunion_in6_u_224 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_224 in6_u ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum gro_result { GRO_MERGED = 0, GRO_MERGED_FREE = 1, GRO_HELD = 2, GRO_NORMAL = 3, GRO_DROP = 4 } ; typedef enum gro_result gro_result_t; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28000 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28001 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28000 reg_state : 8 ; bool dismantle ; enum ldv_28001 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_246 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_246 __annonCompField76 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct mii_ioctl_data { __u16 phy_id ; __u16 reg_num ; __u16 val_in ; __u16 val_out ; }; struct mii_if_info { int phy_id ; int advertising ; int phy_id_mask ; int reg_num_mask ; unsigned int full_duplex : 1 ; unsigned int force_media : 1 ; unsigned int supports_gmii : 1 ; struct net_device *dev ; int (*mdio_read)(struct net_device * , int , int ) ; void (*mdio_write)(struct net_device * , int , int , int ) ; }; struct iphdr { __u8 ihl : 4 ; __u8 version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct res_counter { unsigned long long usage ; unsigned long long max_usage ; unsigned long long limit ; unsigned long long soft_limit ; unsigned long long failcnt ; spinlock_t lock ; struct res_counter *parent ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * ); union __anonunion_ki_obj_251 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void *private ; union __anonunion_ki_obj_251 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; size_t ki_nbytes ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; union __anonunion____missing_field_name_252 { struct sock_filter insns[0U] ; struct work_struct work ; }; struct sk_filter { atomic_t refcnt ; unsigned int len ; struct callback_head rcu ; unsigned int (*bpf_func)(struct sk_buff const * , struct sock_filter const * ) ; union __anonunion____missing_field_name_252 __annonCompField77 ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct neigh_parms *next ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { struct neigh_table *next ; int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_254 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_254 __annonCompField78 ; }; struct __anonstruct_socket_lock_t_255 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_255 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_257 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_256 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_257 __annonCompField79 ; }; union __anonunion____missing_field_name_258 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_260 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_259 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_260 __annonCompField82 ; }; union __anonunion____missing_field_name_261 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_262 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_256 __annonCompField80 ; union __anonunion____missing_field_name_258 __annonCompField81 ; union __anonunion____missing_field_name_259 __annonCompField83 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 4 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_261 __annonCompField84 ; struct proto *skc_prot ; struct net *skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_262 __annonCompField85 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_263 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_263 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned int sk_shutdown : 2 ; unsigned int sk_no_check : 2 ; unsigned int sk_userlocks : 4 ; unsigned int sk_protocol : 8 ; unsigned int sk_type : 16 ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * , int ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_264 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*mtu_reduced)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_264 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct res_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct sock_common __req_common ; struct request_sock *dl_next ; u16 mss ; u8 num_retrans ; u8 cookie_ts : 1 ; u8 num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; enum rtl_tx_desc_version { RTL_TD_0 = 0, RTL_TD_1 = 1 } ; struct __anonstruct_rtl_chip_infos_271 { char const *name ; enum rtl_tx_desc_version txd_version ; char const *fw_name ; u16 jumbo_max ; bool jumbo_tx_csum ; }; struct __anonstruct_debug_272 { u32 msg_enable ; }; struct __anonstruct_checksum_273 { u32 udp ; u32 tcp ; }; struct rtl_tx_desc_info { struct __anonstruct_checksum_273 checksum ; u16 mss_shift ; u16 opts_offset ; }; struct TxDesc { __le32 opts1 ; __le32 opts2 ; __le64 addr ; }; struct RxDesc { __le32 opts1 ; __le32 opts2 ; __le64 addr ; }; struct ring_info { struct sk_buff *skb ; u32 len ; u8 __pad[4U] ; }; struct rtl8169_counters { __le64 tx_packets ; __le64 rx_packets ; __le64 tx_errors ; __le32 rx_errors ; __le16 rx_missed ; __le16 align_errors ; __le32 tx_one_collision ; __le32 tx_multi_collision ; __le64 rx_unicast ; __le64 rx_broadcast ; __le32 rx_multicast ; __le16 tx_aborted ; __le16 tx_underun ; }; enum rtl_flag { RTL_FLAG_TASK_ENABLED = 0, RTL_FLAG_TASK_SLOW_PENDING = 1, RTL_FLAG_TASK_RESET_PENDING = 2, RTL_FLAG_TASK_PHY_PENDING = 3, RTL_FLAG_MAX = 4 } ; struct rtl8169_stats { u64 packets ; u64 bytes ; struct u64_stats_sync syncp ; }; struct rtl8169_private; struct mdio_ops { void (*write)(struct rtl8169_private * , int , int ) ; int (*read)(struct rtl8169_private * , int ) ; }; struct pll_power_ops { void (*down)(struct rtl8169_private * ) ; void (*up)(struct rtl8169_private * ) ; }; struct jumbo_ops { void (*enable)(struct rtl8169_private * ) ; void (*disable)(struct rtl8169_private * ) ; }; struct csi_ops { void (*write)(struct rtl8169_private * , int , int ) ; u32 (*read)(struct rtl8169_private * , int ) ; }; struct rtl_fw_phy_action { __le32 *code ; size_t size ; }; struct rtl_fw { struct firmware const *fw ; char version[32U] ; struct rtl_fw_phy_action phy_action ; }; struct __anonstruct_wk_274 { unsigned long flags[1U] ; struct mutex mutex ; struct work_struct work ; }; struct rtl8169_private { void *mmio_addr ; struct pci_dev *pci_dev ; struct net_device *dev ; struct napi_struct napi ; u32 msg_enable ; u16 txd_version ; u16 mac_version ; u32 cur_rx ; u32 cur_tx ; u32 dirty_tx ; struct rtl8169_stats rx_stats ; struct rtl8169_stats tx_stats ; struct TxDesc *TxDescArray ; struct RxDesc *RxDescArray ; dma_addr_t TxPhyAddr ; dma_addr_t RxPhyAddr ; void *Rx_databuff[256U] ; struct ring_info tx_skb[64U] ; struct timer_list timer ; u16 cp_cmd ; u16 event_slow ; struct mdio_ops mdio_ops ; struct pll_power_ops pll_power_ops ; struct jumbo_ops jumbo_ops ; struct csi_ops csi_ops ; int (*set_speed)(struct net_device * , u8 , u16 , u8 , u32 ) ; int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*phy_reset_enable)(struct rtl8169_private * ) ; void (*hw_start)(struct net_device * ) ; unsigned int (*phy_reset_pending)(struct rtl8169_private * ) ; unsigned int (*link_ok)(void * ) ; int (*do_ioctl)(struct rtl8169_private * , struct mii_ioctl_data * , int ) ; struct __anonstruct_wk_274 wk ; unsigned int features ; struct mii_if_info mii ; struct rtl8169_counters counters ; u32 saved_wolopts ; u32 opts1_mask ; struct rtl_fw *rtl_fw ; u32 ocp_base ; }; struct rtl_cond { bool (*check)(struct rtl8169_private * ) ; char const *msg ; }; struct exgmac_reg { u16 addr ; u16 mask ; u32 val ; }; struct __anonstruct_cfg_276 { u32 opt ; u16 reg ; u8 mask ; }; struct rtl_mac_info { u32 mask ; u32 val ; int mac_version ; }; struct phy_reg { u16 reg ; u16 val ; }; struct fw_info { u32 magic ; char version[32U] ; __le32 fw_start ; __le32 fw_len ; u8 chksum ; }; struct rtl_cfg2_info { u32 mac_version ; u32 clk ; u32 val ; }; struct ephy_info { unsigned int offset ; u16 mask ; u16 bits ; }; struct __anonstruct_rtl_work_323 { int bitnr ; void (*action)(struct rtl8169_private * ) ; }; struct rtl_cfg_info { void (*hw_start)(struct net_device * ) ; unsigned int region ; unsigned int align ; u16 event_slow ; unsigned int features ; u8 default_ver ; }; typedef int ldv_func_ret_type; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef struct net_device *ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; typedef int ldv_func_ret_type___6; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; typedef int ldv_map; struct usb_device; struct ldv_thread; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; void __builtin_prefetch(void const * , ...) ; long ldv__builtin_expect(long exp , long c ) ; void ldv_atomic_inc(atomic_t *v ) ; void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; long ldv_is_err(void const *ptr ) ; long ldv_is_err_or_null(void const *ptr ) ; void *ldv_err_ptr(long error ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_check_return_value_probe(int retval ) ; void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; static int ldv_ldv_post_probe_33(int ldv_func_arg1 ) ; static int ldv_ldv_post_probe_34(int ldv_func_arg1 ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; int ldv_undef_int(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; extern void *external_allocated_data(void) ; extern struct module __this_module ; extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u32 __fswab32(__u32 val ) { int tmp ; { { tmp = __builtin_bswap32(val); } return ((__u32 )tmp); } } extern int printk(char const * , ...) ; extern void dump_stack(void) ; extern int __dynamic_netdev_dbg(struct _ddebug * , struct net_device const * , char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; extern enum system_states system_state ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern size_t strlcpy(char * , char const * , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/a068ef8/linux-usb-dev/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static void *ERR_PTR(long error ) ; __inline static long IS_ERR(void const *ptr ) ; __inline static long IS_ERR_OR_NULL(void const *ptr ) ; __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } extern void __cmpxchg_wrong_size(void) ; __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } __inline static void atomic_inc(atomic_t *v ) ; __inline static int atomic_cmpxchg(atomic_t *v , int old , int new ) { int __ret ; int __old ; int __new ; u8 volatile *__ptr ; u16 volatile *__ptr___0 ; u32 volatile *__ptr___1 ; u64 volatile *__ptr___2 ; { __old = old; __new = new; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ __ptr = (u8 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgb %2,%1": "=a" (__ret), "+m" (*__ptr): "q" (__new), "0" (__old): "memory"); goto ldv_5711; case_2: /* CIL Label */ __ptr___0 = (u16 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgw %2,%1": "=a" (__ret), "+m" (*__ptr___0): "r" (__new), "0" (__old): "memory"); goto ldv_5711; case_4: /* CIL Label */ __ptr___1 = (u32 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgl %2,%1": "=a" (__ret), "+m" (*__ptr___1): "r" (__new), "0" (__old): "memory"); goto ldv_5711; case_8: /* CIL Label */ __ptr___2 = (u64 volatile *)(& v->counter); __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; cmpxchgq %2,%1": "=a" (__ret), "+m" (*__ptr___2): "r" (__new), "0" (__old): "memory"); goto ldv_5711; switch_default: /* CIL Label */ { __cmpxchg_wrong_size(); } switch_break: /* CIL Label */ ; } ldv_5711: ; return (__ret); } } __inline static int __atomic_add_unless(atomic_t *v , int a , int u ) { int c ; int old ; long tmp ; long tmp___0 ; { { c = atomic_read((atomic_t const *)v); } ldv_5740: { tmp = ldv__builtin_expect(c == u, 0L); } if (tmp != 0L) { goto ldv_5739; } else { } { old = atomic_cmpxchg(v, c, c + a); tmp___0 = ldv__builtin_expect(old == c, 1L); } if (tmp___0 != 0L) { goto ldv_5739; } else { } c = old; goto ldv_5740; ldv_5739: ; return (c); } } __inline static int atomic_add_unless(atomic_t *v , int a , int u ) { int tmp ; { { tmp = __atomic_add_unless(v, a, u); } return (tmp != u); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; extern void mutex_lock_nested(struct mutex * , unsigned int ) ; extern void mutex_unlock(struct mutex * ) ; extern void synchronize_sched(void) ; extern unsigned long volatile jiffies ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern int mod_timer(struct timer_list * , unsigned long ) ; static int ldv_mod_timer_20(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_22(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_21(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_24(struct timer_list *ldv_func_arg1 ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool cancel_work_sync(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static unsigned char readb(void const volatile *addr ) { unsigned char ret ; { __asm__ volatile ("movb %1,%0": "=q" (ret): "m" (*((unsigned char volatile *)addr)): "memory"); return (ret); } } __inline static unsigned short readw(void const volatile *addr ) { unsigned short ret ; { __asm__ volatile ("movw %1,%0": "=r" (ret): "m" (*((unsigned short volatile *)addr)): "memory"); return (ret); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writeb(unsigned char val , void volatile *addr ) { { __asm__ volatile ("movb %0,%1": : "q" (val), "m" (*((unsigned char volatile *)addr)): "memory"); return; } } __inline static void writew(unsigned short val , void volatile *addr ) { { __asm__ volatile ("movw %0,%1": : "r" (val), "m" (*((unsigned short volatile *)addr)): "memory"); return; } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void *ioremap_nocache(resource_size_t , unsigned long ) ; __inline static void *ioremap(resource_size_t offset , unsigned long size ) { void *tmp ; { { tmp = ioremap_nocache(offset, size); } return (tmp); } } extern void iounmap(void volatile * ) ; __inline static void memcpy_fromio(void *dst , void const volatile *src , size_t count ) { { { memcpy(dst, (void const *)src, count); } return; } } extern int device_set_wakeup_enable(struct device * , bool ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } __inline static int dev_to_node(struct device *dev ) { { return (dev->numa_node); } } static void *ldv_dev_get_drvdata_16(struct device const *dev ) ; static int ldv_dev_set_drvdata_17(struct device *dev , void *data ) ; extern void __udelay(unsigned long ) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern int net_ratelimit(void) ; extern void kfree(void const * ) ; extern void *__kmalloc_node(size_t , gfp_t , int ) ; __inline static void *kmalloc_node(size_t size , gfp_t flags , int node ) { void *tmp___1 ; { { tmp___1 = __kmalloc_node(size, flags, node); } return (tmp___1); } } __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern void debug_dma_sync_single_for_device(struct device * , dma_addr_t , size_t , int ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (103), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); } return; } } __inline static void dma_sync_single_for_device(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (115), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_device))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_device(dev, addr, size, (int )dir); } return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/dfbfd2da522a1f5f4786ee57b863db44/klever-core-work-dir/a068ef8/linux-usb-dev/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } extern void consume_skb(struct sk_buff * ) ; extern int skb_pad(struct sk_buff * , int ) ; __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static unsigned char *skb_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->network_header); } } extern struct sk_buff *__netdev_alloc_skb(struct net_device * , unsigned int , gfp_t ) ; __inline static struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev , unsigned int length , gfp_t gfp ) { struct sk_buff *skb ; struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb(dev, length, gfp); skb = tmp; } return (skb); } } __inline static struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = __netdev_alloc_skb_ip_align(dev, length, 32U); } return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static void *skb_frag_address(skb_frag_t const *frag ) { struct page *tmp ; void *tmp___0 ; { { tmp = skb_frag_page(frag); tmp___0 = lowmem_page_address((struct page const *)tmp); } return (tmp___0 + (unsigned long )frag->page_offset); } } __inline static int skb_padto(struct sk_buff *skb , unsigned int len ) { unsigned int size ; long tmp ; int tmp___0 ; { { size = skb->len; tmp = ldv__builtin_expect(size >= len, 1L); } if (tmp != 0L) { return (0); } else { } { tmp___0 = skb_pad(skb, (int )(len - size)); } return (tmp___0); } } extern void skb_clone_tx_timestamp(struct sk_buff * ) ; extern void skb_tstamp_tx(struct sk_buff * , struct skb_shared_hwtstamps * ) ; __inline static void sw_tx_timestamp(struct sk_buff *skb ) { unsigned char *tmp ; unsigned char *tmp___0 ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); } if (((int )((struct skb_shared_info *)tmp)->tx_flags & 2) != 0) { { tmp___0 = skb_end_pointer((struct sk_buff const *)skb); } if (((int )((struct skb_shared_info *)tmp___0)->tx_flags & 4) == 0) { { skb_tstamp_tx(skb, (struct skb_shared_hwtstamps *)0); } } else { } } else { } return; } } __inline static void skb_tx_timestamp(struct sk_buff *skb ) { { { skb_clone_tx_timestamp(skb); sw_tx_timestamp(skb); } return; } } __inline static void skb_checksum_none_assert(struct sk_buff const *skb ) { { return; } } __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } __inline static __u32 ethtool_cmd_speed(struct ethtool_cmd const *ep ) { { return ((__u32 )(((int )ep->speed_hi << 16) | (int )ep->speed)); } } extern u32 ethtool_op_get_link(struct net_device * ) ; extern int ethtool_op_get_ts_info(struct net_device * , struct ethtool_ts_info * ) ; __inline static void u64_stats_update_begin(struct u64_stats_sync *syncp ) { { return; } } __inline static unsigned int u64_stats_fetch_begin_bh(struct u64_stats_sync const *syncp ) { { return (0U); } } __inline static bool u64_stats_fetch_retry_bh(struct u64_stats_sync const *syncp , unsigned int start ) { { return (0); } } extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); } return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = napi_disable_pending(n); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } __inline static void napi_schedule(struct napi_struct *n ) { bool tmp ; { { tmp = napi_schedule_prep(n); } if ((int )tmp) { { __napi_schedule(n); } } else { } return; } } extern void napi_complete(struct napi_struct * ) ; __inline static void napi_disable(struct napi_struct *n ) { int tmp ; { { __might_sleep("include/linux/netdevice.h", 486, 0); set_bit(1L, (unsigned long volatile *)(& n->state)); } goto ldv_37742; ldv_37741: { msleep(1U); } ldv_37742: { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp != 0) { goto ldv_37741; } else { } { clear_bit(1L, (unsigned long volatile *)(& n->state)); } return; } } __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (502), "i" (12UL)); __builtin_unreachable(); } } else { } { __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void netif_napi_del(struct napi_struct * ) ; extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_23(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_30(struct net_device *ldv_func_arg1 ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_start_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_start_queue(tmp); } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_wake_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_wake_queue(tmp); } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_stop_queue(struct net_device *dev ) { struct netdev_queue *tmp ; { { tmp = netdev_get_tx_queue((struct net_device const *)dev, 0U); netif_tx_stop_queue(tmp); } return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); } return (tmp != 0); } } __inline static bool netif_queue_stopped(struct net_device const *dev ) { struct netdev_queue *tmp ; bool tmp___0 ; { { tmp = netdev_get_tx_queue(dev, 0U); tmp___0 = netif_tx_queue_stopped((struct netdev_queue const *)tmp); } return (tmp___0); } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } extern gro_result_t napi_gro_receive(struct napi_struct * , struct sk_buff * ) ; extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; __inline static u32 netif_msg_init(int debug_value , int default_msg_enable_bits ) { { if ((unsigned int )debug_value > 31U) { return ((u32 )default_msg_enable_bits); } else { } if (debug_value == 0) { return (0U); } else { } return ((u32 )((1 << debug_value) + -1)); } } extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_29(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_27(struct net_device *ldv_func_arg1 ) ; extern int skb_checksum_help(struct sk_buff * ) ; extern void netdev_update_features(struct net_device * ) ; extern int netdev_err(struct net_device const * , char const * , ...) ; extern int netdev_warn(struct net_device const * , char const * , ...) ; extern int netdev_notice(struct net_device const * , char const * , ...) ; extern int netdev_info(struct net_device const * , char const * , ...) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; extern int pci_bus_write_config_byte(struct pci_bus * , unsigned int , int , u8 ) ; extern int pci_bus_write_config_word(struct pci_bus * , unsigned int , int , u16 ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_write_config_byte(struct pci_dev const *dev , int where , u8 val ) { int tmp ; { { tmp = pci_bus_write_config_byte(dev->bus, dev->devfn, where, (int )val); } return (tmp); } } __inline static int pci_write_config_word(struct pci_dev const *dev , int where , u16 val ) { int tmp ; { { tmp = pci_bus_write_config_word(dev->bus, dev->devfn, where, (int )val); } return (tmp); } } extern int pcie_capability_clear_and_set_word(struct pci_dev * , int , u16 , u16 ) ; __inline static int pcie_capability_set_word(struct pci_dev *dev , int pos , u16 set ) { int tmp ; { { tmp = pcie_capability_clear_and_set_word(dev, pos, 0, (int )set); } return (tmp); } } __inline static int pcie_capability_clear_word(struct pci_dev *dev , int pos , u16 clear ) { int tmp ; { { tmp = pcie_capability_clear_and_set_word(dev, pos, (int )clear, 0); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern void pci_clear_master(struct pci_dev * ) ; extern int pci_set_mwi(struct pci_dev * ) ; extern void pci_clear_mwi(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern int pci_wake_from_d3(struct pci_dev * , bool ) ; extern bool pci_dev_run_wake(struct pci_dev * ) ; extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_31(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_32(struct pci_driver *ldv_func_arg1 ) ; extern int pci_enable_msi_block(struct pci_dev * , int ) ; extern void pci_disable_msi(struct pci_dev * ) ; __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_16((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_17(& pdev->dev, data); } return; } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } __inline static int pci_pcie_cap(struct pci_dev *dev ) { { return ((int )dev->pcie_cap); } } __inline static bool pci_is_pcie(struct pci_dev *dev ) { int tmp ; { { tmp = pci_pcie_cap(dev); } return (tmp != 0); } } extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_28(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } extern int mii_ethtool_gset(struct mii_if_info * , struct ethtool_cmd * ) ; __inline static struct mii_ioctl_data *if_mii(struct ifreq *rq ) { { return ((struct mii_ioctl_data *)(& rq->ifr_ifru)); } } extern int rtnl_is_locked(void) ; __inline static struct sk_buff *__vlan_hwaccel_put_tag(struct sk_buff *skb , __be16 vlan_proto , u16 vlan_tci ) { { skb->vlan_proto = vlan_proto; skb->vlan_tci = (__u16 )((unsigned int )vlan_tci | 4096U); return (skb); } } extern u32 bitrev32(u32 ) ; extern u32 crc32_le(u32 , unsigned char const * , size_t ) ; __inline static struct iphdr *ip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct iphdr *)tmp); } } extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_26(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_25(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern int __pm_runtime_idle(struct device * , int ) ; extern int __pm_runtime_resume(struct device * , int ) ; extern int pm_schedule_suspend(struct device * , unsigned int ) ; __inline static void pm_runtime_get_noresume(struct device *dev ) { { { atomic_inc(& dev->power.usage_count); } return; } } __inline static void pm_runtime_put_noidle(struct device *dev ) { { { atomic_add_unless(& dev->power.usage_count, -1, 0); } return; } } __inline static int pm_request_resume(struct device *dev ) { int tmp ; { { tmp = __pm_runtime_resume(dev, 1); } return (tmp); } } __inline static int pm_runtime_get_sync(struct device *dev ) { int tmp ; { { tmp = __pm_runtime_resume(dev, 4); } return (tmp); } } __inline static int pm_runtime_put_sync(struct device *dev ) { int tmp ; { { tmp = __pm_runtime_idle(dev, 4); } return (tmp); } } extern int request_firmware(struct firmware const ** , char const * , struct device * ) ; extern void release_firmware(struct firmware const * ) ; extern void pci_disable_link_state(struct pci_dev * , int ) ; static struct __anonstruct_rtl_chip_infos_271 const rtl_chip_infos[44U] = { {"RTL8169", 0, (char const *)0, 7152U, 1}, {"RTL8169s", 0, (char const *)0, 7152U, 1}, {"RTL8110s", 0, (char const *)0, 7152U, 1}, {"RTL8169sb/8110sb", 0, (char const *)0, 7152U, 1}, {"RTL8169sc/8110sc", 0, (char const *)0, 7152U, 1}, {"RTL8169sc/8110sc", 0, (char const *)0, 7152U, 1}, {"RTL8102e", 1, (char const *)0, 1500U, 1}, {"RTL8102e", 1, (char const *)0, 1500U, 1}, {"RTL8102e", 1, (char const *)0, 1500U, 1}, {"RTL8101e", 0, (char const *)0, 1500U, 1}, {"RTL8168b/8111b", 0, (char const *)0, 4080U, 0}, {"RTL8168b/8111b", 0, (char const *)0, 4080U, 0}, {"RTL8101e", 0, (char const *)0, 1500U, 1}, {"RTL8100e", 0, (char const *)0, 1500U, 1}, {"RTL8100e", 0, (char const *)0, 1500U, 1}, {"RTL8101e", 0, (char const *)0, 1500U, 1}, {"RTL8168b/8111b", 0, (char const *)0, 4080U, 0}, {"RTL8168cp/8111cp", 1, (char const *)0, 6128U, 0}, {"RTL8168c/8111c", 1, (char const *)0, 6128U, 0}, {"RTL8168c/8111c", 1, (char const *)0, 6128U, 0}, {"RTL8168c/8111c", 1, (char const *)0, 6128U, 0}, {"RTL8168c/8111c", 1, (char const *)0, 6128U, 0}, {"RTL8168cp/8111cp", 1, (char const *)0, 6128U, 0}, {"RTL8168cp/8111cp", 1, (char const *)0, 6128U, 0}, {"RTL8168d/8111d", 1, "rtl_nic/rtl8168d-1.fw", 9200U, 0}, {"RTL8168d/8111d", 1, "rtl_nic/rtl8168d-2.fw", 9200U, 0}, {"RTL8168dp/8111dp", 1, (char const *)0, 9200U, 0}, {"RTL8168dp/8111dp", 1, (char const *)0, 9200U, 0}, {"RTL8105e", 1, "rtl_nic/rtl8105e-1.fw", 1500U, 1}, {"RTL8105e", 1, "rtl_nic/rtl8105e-1.fw", 1500U, 1}, {"RTL8168dp/8111dp", 1, (char const *)0, 9200U, 0}, {"RTL8168e/8111e", 1, "rtl_nic/rtl8168e-1.fw", 9200U, 0}, {"RTL8168e/8111e", 1, "rtl_nic/rtl8168e-2.fw", 9200U, 0}, {"RTL8168evl/8111evl", 1, "rtl_nic/rtl8168e-3.fw", 9200U, 0}, {"RTL8168f/8111f", 1, "rtl_nic/rtl8168f-1.fw", 9200U, 0}, {"RTL8168f/8111f", 1, "rtl_nic/rtl8168f-2.fw", 9200U, 0}, {"RTL8402", 1, "rtl_nic/rtl8402-1.fw", 1500U, 1}, {"RTL8411", 1, "rtl_nic/rtl8411-1.fw", 9200U, 0}, {"RTL8106e", 1, "rtl_nic/rtl8106e-1.fw", 1500U, 1}, {"RTL8168g/8111g", 1, "rtl_nic/rtl8168g-2.fw", 9200U, 0}, {"RTL8168g/8111g", 1, (char const *)0, 9200U, 0}, {"RTL8168g/8111g", 1, "rtl_nic/rtl8168g-3.fw", 9200U, 0}, {"RTL8106e", 1, "rtl_nic/rtl8106e-2.fw", 1500U, 1}, {"RTL8411", 1, "rtl_nic/rtl8411-2.fw", 9200U, 0}}; static struct pci_device_id const rtl8169_pci_tbl[13U] = { {4332U, 33065U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4332U, 33078U, 4294967295U, 4294967295U, 0U, 0U, 2UL}, {4332U, 33127U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4332U, 33128U, 4294967295U, 4294967295U, 0U, 0U, 1UL}, {4332U, 33129U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4486U, 17152U, 4486U, 19216U, 0U, 0U, 1UL}, {4486U, 17152U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4486U, 17154U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {4697U, 49415U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5868U, 278U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5943U, 4146U, 4294967295U, 36U, 0U, 0U, 0UL}, {1U, 33128U, 4294967295U, 9232U, 0U, 0U, 2UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; struct pci_device_id const __mod_pci_device_table ; static int rx_buf_sz = 16383; static int use_dac ; static struct __anonstruct_debug_272 debug = {4294967295U}; static struct rtl_tx_desc_info const tx_desc_info[2U] = { {{393216U, 327680U}, 16U, 0U}, {{2684354560U, 1610612736U}, 18U, 1U}}; static void rtl_lock_work(struct rtl8169_private *tp ) { { { mutex_lock_nested(& tp->wk.mutex, 0U); } return; } } static void rtl_unlock_work(struct rtl8169_private *tp ) { { { mutex_unlock(& tp->wk.mutex); } return; } } static void rtl_tx_performance_tweak(struct pci_dev *pdev , u16 force ) { { { pcie_capability_clear_and_set_word(pdev, 8, 28672, (int )force); } return; } } static void rtl_udelay(unsigned int d ) { { { __udelay((unsigned long )d); } return; } } static bool rtl_loop_wait(struct rtl8169_private *tp , struct rtl_cond const *c , void (*delay)(unsigned int ) , unsigned int d , int n , bool high ) { int i ; bool tmp ; { i = 0; goto ldv_48253; ldv_48252: { (*delay)(d); tmp = (*(c->check))(tp); } if ((int )tmp == (int )high) { return (1); } else { } i = i + 1; ldv_48253: ; if (i < n) { goto ldv_48252; } else { } if ((int )tp->msg_enable & 1) { { netdev_err((struct net_device const *)tp->dev, "%s == %d (loop: %d, delay: %d).\n", c->msg, ! high, n, d); } } else { } return (0); } } static bool rtl_udelay_loop_wait_high(struct rtl8169_private *tp , struct rtl_cond const *c , unsigned int d , int n ) { bool tmp ; { { tmp = rtl_loop_wait(tp, c, & rtl_udelay, d, n, 1); } return (tmp); } } static bool rtl_udelay_loop_wait_low(struct rtl8169_private *tp , struct rtl_cond const *c , unsigned int d , int n ) { bool tmp ; { { tmp = rtl_loop_wait(tp, c, & rtl_udelay, d, n, 0); } return (tmp); } } static bool rtl_msleep_loop_wait_high(struct rtl8169_private *tp , struct rtl_cond const *c , unsigned int d , int n ) { bool tmp ; { { tmp = rtl_loop_wait(tp, c, & msleep, d, n, 1); } return (tmp); } } static bool rtl_msleep_loop_wait_low(struct rtl8169_private *tp , struct rtl_cond const *c , unsigned int d , int n ) { bool tmp ; { { tmp = rtl_loop_wait(tp, c, & msleep, d, n, 0); } return (tmp); } } static bool rtl_ocpar_cond_check(struct rtl8169_private *tp ) ; static struct rtl_cond const rtl_ocpar_cond = {& rtl_ocpar_cond_check, "rtl_ocpar_cond"}; static bool rtl_ocpar_cond_check(struct rtl8169_private *tp ) { void *ioaddr ; unsigned int tmp ; { { ioaddr = tp->mmio_addr; tmp = readl((void const volatile *)ioaddr + 180U); } return ((tmp & 2147483648U) != 0U); } } static u32 ocp_read(struct rtl8169_private *tp , u8 mask , u16 reg ) { void *ioaddr ; unsigned int tmp___0 ; u32 tmp___1 ; bool tmp___2 ; { { ioaddr = tp->mmio_addr; writel((((unsigned int )mask << 12) & 65535U) | ((unsigned int )reg & 4095U), (void volatile *)ioaddr + 180U); tmp___2 = rtl_udelay_loop_wait_high(tp, & rtl_ocpar_cond, 100U, 20); } if ((int )tmp___2) { { tmp___0 = readl((void const volatile *)ioaddr + 176U); tmp___1 = tmp___0; } } else { tmp___1 = 4294967295U; } return (tmp___1); } } static void ocp_write(struct rtl8169_private *tp , u8 mask , u16 reg , u32 data ) { void *ioaddr ; { { ioaddr = tp->mmio_addr; writel(data, (void volatile *)ioaddr + 176U); writel(((((unsigned int )mask << 12) & 65535U) | ((unsigned int )reg & 4095U)) | 2147483648U, (void volatile *)ioaddr + 180U); rtl_udelay_loop_wait_low(tp, & rtl_ocpar_cond, 100U, 20); } return; } } static bool rtl_eriar_cond_check(struct rtl8169_private *tp ) ; static struct rtl_cond const rtl_eriar_cond = {& rtl_eriar_cond_check, "rtl_eriar_cond"}; static bool rtl_eriar_cond_check(struct rtl8169_private *tp ) { void *ioaddr ; unsigned int tmp ; { { ioaddr = tp->mmio_addr; tmp = readl((void const volatile *)ioaddr + 116U); } return ((tmp & 2147483648U) != 0U); } } static void rtl8168_oob_notify(struct rtl8169_private *tp , u8 cmd ) { void *ioaddr ; bool tmp ; int tmp___0 ; { { ioaddr = tp->mmio_addr; writeb((int )cmd, (void volatile *)ioaddr + 112U); writel(2147487976U, (void volatile *)ioaddr + 116U); msleep(2U); tmp = rtl_udelay_loop_wait_low(tp, & rtl_eriar_cond, 100U, 5); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } { ocp_write(tp, 1, 48, 1U); } return; } } static u16 rtl8168_get_ocp_reg(struct rtl8169_private *tp ) { { return ((unsigned int )tp->mac_version == 30U ? 184U : 16U); } } static bool rtl_ocp_read_cond_check(struct rtl8169_private *tp ) ; static struct rtl_cond const rtl_ocp_read_cond = {& rtl_ocp_read_cond_check, "rtl_ocp_read_cond"}; static bool rtl_ocp_read_cond_check(struct rtl8169_private *tp ) { u16 reg ; u32 tmp ; { { reg = rtl8168_get_ocp_reg(tp); tmp = ocp_read(tp, 15, (int )reg); } return ((tmp & 2048U) != 0U); } } static void rtl8168_driver_start(struct rtl8169_private *tp ) { { { rtl8168_oob_notify(tp, 5); rtl_msleep_loop_wait_high(tp, & rtl_ocp_read_cond, 10U, 10); } return; } } static void rtl8168_driver_stop(struct rtl8169_private *tp ) { { { rtl8168_oob_notify(tp, 6); rtl_msleep_loop_wait_low(tp, & rtl_ocp_read_cond, 10U, 10); } return; } } static int r8168dp_check_dash(struct rtl8169_private *tp ) { u16 reg ; u16 tmp ; u32 tmp___0 ; { { tmp = rtl8168_get_ocp_reg(tp); reg = tmp; tmp___0 = ocp_read(tp, 15, (int )reg); } return ((tmp___0 & 32768U) != 0U); } } static bool rtl_ocp_reg_failure(struct rtl8169_private *tp , u32 reg ) { { if ((reg & 4294901761U) != 0U) { if ((int )tp->msg_enable & 1) { { netdev_err((struct net_device const *)tp->dev, "Invalid ocp reg %x!\n", reg); } } else { } return (1); } else { } return (0); } } static bool rtl_ocp_gphy_cond_check(struct rtl8169_private *tp ) ; static struct rtl_cond const rtl_ocp_gphy_cond = {& rtl_ocp_gphy_cond_check, "rtl_ocp_gphy_cond"}; static bool rtl_ocp_gphy_cond_check(struct rtl8169_private *tp ) { void *ioaddr ; unsigned int tmp ; { { ioaddr = tp->mmio_addr; tmp = readl((void const volatile *)ioaddr + 184U); } return ((tmp & 2147483648U) != 0U); } } static void r8168_phy_ocp_write(struct rtl8169_private *tp , u32 reg , u32 data ) { void *ioaddr ; bool tmp ; { { ioaddr = tp->mmio_addr; tmp = rtl_ocp_reg_failure(tp, reg); } if ((int )tmp) { return; } else { } { writel(((reg << 15) | data) | 2147483648U, (void volatile *)ioaddr + 184U); rtl_udelay_loop_wait_low(tp, & rtl_ocp_gphy_cond, 25U, 10); } return; } } static u16 r8168_phy_ocp_read(struct rtl8169_private *tp , u32 reg ) { void *ioaddr ; bool tmp ; unsigned int tmp___1 ; unsigned int tmp___2 ; bool tmp___3 ; { { ioaddr = tp->mmio_addr; tmp = rtl_ocp_reg_failure(tp, reg); } if ((int )tmp) { return (0U); } else { } { writel(reg << 15, (void volatile *)ioaddr + 184U); tmp___3 = rtl_udelay_loop_wait_high(tp, & rtl_ocp_gphy_cond, 25U, 10); } if ((int )tmp___3) { { tmp___1 = readl((void const volatile *)ioaddr + 184U); tmp___2 = (u16 )tmp___1; } } else { tmp___2 = 65535U; } return (tmp___2); } } static void r8168_mac_ocp_write(struct rtl8169_private *tp , u32 reg , u32 data ) { void *ioaddr ; bool tmp ; { { ioaddr = tp->mmio_addr; tmp = rtl_ocp_reg_failure(tp, reg); } if ((int )tmp) { return; } else { } { writel(((reg << 15) | data) | 2147483648U, (void volatile *)ioaddr + 176U); } return; } } static u16 r8168_mac_ocp_read(struct rtl8169_private *tp , u32 reg ) { void *ioaddr ; bool tmp ; unsigned int tmp___0 ; { { ioaddr = tp->mmio_addr; tmp = rtl_ocp_reg_failure(tp, reg); } if ((int )tmp) { return (0U); } else { } { writel(reg << 15, (void volatile *)ioaddr + 176U); tmp___0 = readl((void const volatile *)ioaddr + 176U); } return ((u16 )tmp___0); } } static void r8168g_mdio_write(struct rtl8169_private *tp , int reg , int value ) { { if (reg == 31) { tp->ocp_base = value != 0 ? (u32 )(value << 4) : 41984U; return; } else { } if (tp->ocp_base != 41984U) { reg = reg + -16; } else { } { r8168_phy_ocp_write(tp, tp->ocp_base + (u32 )(reg * 2), (u32 )value); } return; } } static int r8168g_mdio_read(struct rtl8169_private *tp , int reg ) { u16 tmp ; { if (tp->ocp_base != 41984U) { reg = reg + -16; } else { } { tmp = r8168_phy_ocp_read(tp, tp->ocp_base + (u32 )(reg * 2)); } return ((int )tmp); } } static void mac_mcu_write(struct rtl8169_private *tp , int reg , int value ) { { if (reg == 31) { tp->ocp_base = (u32 )(value << 4); return; } else { } { r8168_mac_ocp_write(tp, tp->ocp_base + (u32 )reg, (u32 )value); } return; } } static int mac_mcu_read(struct rtl8169_private *tp , int reg ) { u16 tmp ; { { tmp = r8168_mac_ocp_read(tp, tp->ocp_base + (u32 )reg); } return ((int )tmp); } } static bool rtl_phyar_cond_check(struct rtl8169_private *tp ) ; static struct rtl_cond const rtl_phyar_cond = {& rtl_phyar_cond_check, "rtl_phyar_cond"}; static bool rtl_phyar_cond_check(struct rtl8169_private *tp ) { void *ioaddr ; unsigned int tmp ; { { ioaddr = tp->mmio_addr; tmp = readl((void const volatile *)ioaddr + 96U); } return ((tmp & 2147483648U) != 0U); } } static void r8169_mdio_write(struct rtl8169_private *tp , int reg , int value ) { void *ioaddr ; { { ioaddr = tp->mmio_addr; writel(((unsigned int )((reg & 31) << 16) | ((unsigned int )value & 65535U)) | 2147483648U, (void volatile *)ioaddr + 96U); rtl_udelay_loop_wait_low(tp, & rtl_phyar_cond, 25U, 20); __const_udelay(85900UL); } return; } } static int r8169_mdio_read(struct rtl8169_private *tp , int reg ) { void *ioaddr ; int value ; unsigned int tmp___0 ; bool tmp___1 ; { { ioaddr = tp->mmio_addr; writel((unsigned int )((reg & 31) << 16), (void volatile *)ioaddr + 96U); tmp___1 = rtl_udelay_loop_wait_high(tp, & rtl_phyar_cond, 25U, 20); } if ((int )tmp___1) { { tmp___0 = readl((void const volatile *)ioaddr + 96U); value = (int )tmp___0 & 65535; } } else { value = -1; } { __const_udelay(85900UL); } return (value); } } static void r8168dp_1_mdio_access(struct rtl8169_private *tp , int reg , u32 data ) { void *ioaddr ; { { ioaddr = tp->mmio_addr; writel(data | (u32 )((reg & 127) << 16), (void volatile *)ioaddr + 176U); writel(2147545184U, (void volatile *)ioaddr + 180U); writel(0U, (void volatile *)ioaddr + 124U); rtl_udelay_loop_wait_low(tp, & rtl_ocpar_cond, 1000U, 100); } return; } } static void r8168dp_1_mdio_write(struct rtl8169_private *tp , int reg , int value ) { { { r8168dp_1_mdio_access(tp, reg, ((unsigned int )value & 65535U) | 2147483648U); } return; } } static int r8168dp_1_mdio_read(struct rtl8169_private *tp , int reg ) { void *ioaddr ; unsigned long __ms ; unsigned long tmp ; unsigned int tmp___1 ; int tmp___2 ; bool tmp___3 ; { { ioaddr = tp->mmio_addr; r8168dp_1_mdio_access(tp, reg, 0U); } if (1) { { __const_udelay(4295000UL); } } else { __ms = 1UL; goto ldv_48419; ldv_48418: { __const_udelay(4295000UL); } ldv_48419: tmp = __ms; __ms = __ms - 1UL; if (tmp != 0UL) { goto ldv_48418; } else { } } { writel(61536U, (void volatile *)ioaddr + 180U); writel(0U, (void volatile *)ioaddr + 124U); tmp___3 = rtl_udelay_loop_wait_high(tp, & rtl_ocpar_cond, 1000U, 100); } if ((int )tmp___3) { { tmp___1 = readl((void const volatile *)ioaddr + 176U); tmp___2 = (int )tmp___1 & 65535; } } else { tmp___2 = -1; } return (tmp___2); } } static void r8168dp_2_mdio_start(void *ioaddr ) { unsigned int tmp ; { { tmp = readl((void const volatile *)ioaddr + 208U); writel(tmp & 4294836223U, (void volatile *)ioaddr + 208U); } return; } } static void r8168dp_2_mdio_stop(void *ioaddr ) { unsigned int tmp ; { { tmp = readl((void const volatile *)ioaddr + 208U); writel(tmp | 131072U, (void volatile *)ioaddr + 208U); } return; } } static void r8168dp_2_mdio_write(struct rtl8169_private *tp , int reg , int value ) { void *ioaddr ; { { ioaddr = tp->mmio_addr; r8168dp_2_mdio_start(ioaddr); r8169_mdio_write(tp, reg, value); r8168dp_2_mdio_stop(ioaddr); } return; } } static int r8168dp_2_mdio_read(struct rtl8169_private *tp , int reg ) { void *ioaddr ; int value ; { { ioaddr = tp->mmio_addr; r8168dp_2_mdio_start(ioaddr); value = r8169_mdio_read(tp, reg); r8168dp_2_mdio_stop(ioaddr); } return (value); } } static void rtl_writephy(struct rtl8169_private *tp , int location , u32 val ) { { { (*(tp->mdio_ops.write))(tp, location, (int )val); } return; } } static int rtl_readphy(struct rtl8169_private *tp , int location ) { int tmp ; { { tmp = (*(tp->mdio_ops.read))(tp, location); } return (tmp); } } static void rtl_patchphy(struct rtl8169_private *tp , int reg_addr , int value ) { int tmp ; { { tmp = rtl_readphy(tp, reg_addr); rtl_writephy(tp, reg_addr, (u32 )(tmp | value)); } return; } } static void rtl_w1w0_phy(struct rtl8169_private *tp , int reg_addr , int p , int m ) { int val ; { { val = rtl_readphy(tp, reg_addr); rtl_writephy(tp, reg_addr, (u32 )((val | p) & ~ m)); } return; } } static void rtl_mdio_write(struct net_device *dev , int phy_id , int location , int val ) { struct rtl8169_private *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; rtl_writephy(tp, location, (u32 )val); } return; } } static int rtl_mdio_read(struct net_device *dev , int phy_id , int location ) { struct rtl8169_private *tp ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; tmp___0 = rtl_readphy(tp, location); } return (tmp___0); } } static bool rtl_ephyar_cond_check(struct rtl8169_private *tp ) ; static struct rtl_cond const rtl_ephyar_cond = {& rtl_ephyar_cond_check, "rtl_ephyar_cond"}; static bool rtl_ephyar_cond_check(struct rtl8169_private *tp ) { void *ioaddr ; unsigned int tmp ; { { ioaddr = tp->mmio_addr; tmp = readl((void const volatile *)ioaddr + 128U); } return ((tmp & 2147483648U) != 0U); } } static void rtl_ephy_write(struct rtl8169_private *tp , int reg_addr , int value ) { void *ioaddr ; { { ioaddr = tp->mmio_addr; writel((((unsigned int )value & 65535U) | (unsigned int )((reg_addr & 31) << 16)) | 2147483648U, (void volatile *)ioaddr + 128U); rtl_udelay_loop_wait_low(tp, & rtl_ephyar_cond, 10U, 100); __const_udelay(42950UL); } return; } } static u16 rtl_ephy_read(struct rtl8169_private *tp , int reg_addr ) { void *ioaddr ; unsigned int tmp___0 ; unsigned int tmp___1 ; bool tmp___2 ; { { ioaddr = tp->mmio_addr; writel((unsigned int )((reg_addr & 31) << 16), (void volatile *)ioaddr + 128U); tmp___2 = rtl_udelay_loop_wait_high(tp, & rtl_ephyar_cond, 10U, 100); } if ((int )tmp___2) { { tmp___0 = readl((void const volatile *)ioaddr + 128U); tmp___1 = (u16 )tmp___0; } } else { tmp___1 = 65535U; } return (tmp___1); } } static void rtl_eri_write(struct rtl8169_private *tp , int addr , u32 mask , u32 val , int type ) { void *ioaddr ; long tmp ; { { ioaddr = tp->mmio_addr; tmp = ldv__builtin_expect((long )((addr & 3) != 0 || mask == 0U), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/realtek/r8169.c"), "i" (1288), "i" (12UL)); __builtin_unreachable(); } } else { } { writel(val, (void volatile *)ioaddr + 112U); writel((((unsigned int )type | mask) | (unsigned int )addr) | 2147483648U, (void volatile *)ioaddr + 116U); rtl_udelay_loop_wait_low(tp, & rtl_eriar_cond, 100U, 100); } return; } } static u32 rtl_eri_read(struct rtl8169_private *tp , int addr , int type ) { void *ioaddr ; unsigned int tmp___0 ; u32 tmp___1 ; bool tmp___2 ; { { ioaddr = tp->mmio_addr; writel((unsigned int )((type | 61440) | addr), (void volatile *)ioaddr + 116U); tmp___2 = rtl_udelay_loop_wait_high(tp, & rtl_eriar_cond, 100U, 100); } if ((int )tmp___2) { { tmp___0 = readl((void const volatile *)ioaddr + 112U); tmp___1 = tmp___0; } } else { tmp___1 = 4294967295U; } return (tmp___1); } } static void rtl_w1w0_eri(struct rtl8169_private *tp , int addr , u32 mask , u32 p , u32 m , int type ) { u32 val ; { { val = rtl_eri_read(tp, addr, type); rtl_eri_write(tp, addr, mask, (val & ~ m) | p, type); } return; } } static void rtl_write_exgmac_batch(struct rtl8169_private *tp , struct exgmac_reg const *r , int len ) { int tmp ; { goto ldv_48524; ldv_48523: { rtl_eri_write(tp, (int )r->addr, (u32 )r->mask, r->val, 0); r = r + 1; } ldv_48524: tmp = len; len = len - 1; if (tmp > 0) { goto ldv_48523; } else { } return; } } static bool rtl_efusear_cond_check(struct rtl8169_private *tp ) ; static struct rtl_cond const rtl_efusear_cond = {& rtl_efusear_cond_check, "rtl_efusear_cond"}; static bool rtl_efusear_cond_check(struct rtl8169_private *tp ) { void *ioaddr ; unsigned int tmp ; { { ioaddr = tp->mmio_addr; tmp = readl((void const volatile *)ioaddr + 220U); } return ((tmp & 2147483648U) != 0U); } } static u8 rtl8168d_efuse_read(struct rtl8169_private *tp , int reg_addr ) { void *ioaddr ; unsigned int tmp___0 ; unsigned int tmp___1 ; bool tmp___2 ; { { ioaddr = tp->mmio_addr; writel((unsigned int )((reg_addr & 1023) << 8), (void volatile *)ioaddr + 220U); tmp___2 = rtl_udelay_loop_wait_high(tp, & rtl_efusear_cond, 100U, 300); } if ((int )tmp___2) { { tmp___0 = readl((void const volatile *)ioaddr + 220U); tmp___1 = (u8 )tmp___0; } } else { tmp___1 = 255U; } return (tmp___1); } } static u16 rtl_get_events(struct rtl8169_private *tp ) { void *ioaddr ; unsigned short tmp ; { { ioaddr = tp->mmio_addr; tmp = readw((void const volatile *)ioaddr + 62U); } return (tmp); } } static void rtl_ack_events(struct rtl8169_private *tp , u16 bits ) { void *ioaddr ; { { ioaddr = tp->mmio_addr; writew((int )bits, (void volatile *)ioaddr + 62U); __asm__ volatile ("": : : "memory"); } return; } } static void rtl_irq_disable(struct rtl8169_private *tp ) { void *ioaddr ; { { ioaddr = tp->mmio_addr; writew(0, (void volatile *)ioaddr + 60U); __asm__ volatile ("": : : "memory"); } return; } } static void rtl_irq_enable(struct rtl8169_private *tp , u16 bits ) { void *ioaddr ; { { ioaddr = tp->mmio_addr; writew((int )bits, (void volatile *)ioaddr + 60U); } return; } } static void rtl_irq_enable_all(struct rtl8169_private *tp ) { { { rtl_irq_enable(tp, (int )((unsigned int )tp->event_slow | 15U)); } return; } } static void rtl8169_irq_mask_and_ack(struct rtl8169_private *tp ) { void *ioaddr ; { { ioaddr = tp->mmio_addr; rtl_irq_disable(tp); rtl_ack_events(tp, (int )((unsigned int )tp->event_slow | 15U)); readb((void const volatile *)ioaddr + 55U); } return; } } static unsigned int rtl8169_tbi_reset_pending(struct rtl8169_private *tp ) { void *ioaddr ; unsigned int tmp ; { { ioaddr = tp->mmio_addr; tmp = readl((void const volatile *)ioaddr + 100U); } return (tmp & 2147483648U); } } static unsigned int rtl8169_xmii_reset_pending(struct rtl8169_private *tp ) { int tmp ; { { tmp = rtl_readphy(tp, 0); } return ((unsigned int )tmp & 32768U); } } static unsigned int rtl8169_tbi_link_ok(void *ioaddr ) { unsigned int tmp ; { { tmp = readl((void const volatile *)ioaddr + 100U); } return (tmp & 33554432U); } } static unsigned int rtl8169_xmii_link_ok(void *ioaddr ) { unsigned char tmp ; { { tmp = readb((void const volatile *)ioaddr + 108U); } return ((unsigned int )tmp & 2U); } } static void rtl8169_tbi_reset_enable(struct rtl8169_private *tp ) { void *ioaddr ; unsigned int tmp ; { { ioaddr = tp->mmio_addr; tmp = readl((void const volatile *)ioaddr + 100U); writel(tmp | 2147483648U, (void volatile *)ioaddr + 100U); } return; } } static void rtl8169_xmii_reset_enable(struct rtl8169_private *tp ) { unsigned int val ; int tmp ; { { tmp = rtl_readphy(tp, 0); val = (unsigned int )(tmp | 32768); rtl_writephy(tp, 0, val & 65535U); } return; } } static void rtl_link_chg_patch(struct rtl8169_private *tp ) { void *ioaddr ; struct net_device *dev ; bool tmp ; int tmp___0 ; unsigned char tmp___1 ; unsigned char tmp___2 ; unsigned char tmp___3 ; unsigned char tmp___4 ; { { ioaddr = tp->mmio_addr; dev = tp->dev; tmp = netif_running((struct net_device const *)dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } if ((unsigned int )tp->mac_version == 33U || (unsigned int )tp->mac_version == 37U) { { tmp___2 = readb((void const volatile *)ioaddr + 108U); } if (((int )tmp___2 & 16) != 0) { { rtl_eri_write(tp, 444, 61440U, 17U, 0); rtl_eri_write(tp, 476, 61440U, 5U, 0); } } else { { tmp___1 = readb((void const volatile *)ioaddr + 108U); } if (((int )tmp___1 & 8) != 0) { { rtl_eri_write(tp, 444, 61440U, 31U, 0); rtl_eri_write(tp, 476, 61440U, 5U, 0); } } else { { rtl_eri_write(tp, 444, 61440U, 31U, 0); rtl_eri_write(tp, 476, 61440U, 63U, 0); } } } { rtl_w1w0_eri(tp, 220, 4096U, 0U, 1U, 0); rtl_w1w0_eri(tp, 220, 4096U, 1U, 0U, 0); } } else if ((unsigned int )tp->mac_version - 34U <= 1U) { { tmp___3 = readb((void const volatile *)ioaddr + 108U); } if (((int )tmp___3 & 16) != 0) { { rtl_eri_write(tp, 444, 61440U, 17U, 0); rtl_eri_write(tp, 476, 61440U, 5U, 0); } } else { { rtl_eri_write(tp, 444, 61440U, 31U, 0); rtl_eri_write(tp, 476, 61440U, 63U, 0); } } } else if ((unsigned int )tp->mac_version == 36U) { { tmp___4 = readb((void const volatile *)ioaddr + 108U); } if (((int )tmp___4 & 4) != 0) { { rtl_eri_write(tp, 464, 12288U, 19714U, 0); rtl_eri_write(tp, 476, 12288U, 96U, 0); } } else { { rtl_eri_write(tp, 464, 12288U, 0U, 0); } } } else { } return; } } static void __rtl8169_check_link_status(struct net_device *dev , struct rtl8169_private *tp , void *ioaddr , bool pm ) { int tmp ; unsigned int tmp___0 ; { { tmp___0 = (*(tp->link_ok))(ioaddr); } if (tmp___0 != 0U) { { rtl_link_chg_patch(tp); } if ((int )pm) { { pm_request_resume(& (tp->pci_dev)->dev); } } else { } { netif_carrier_on(dev); tmp = net_ratelimit(); } if (tmp != 0) { if ((tp->msg_enable & 32U) != 0U) { { netdev_info((struct net_device const *)dev, "link up\n"); } } else { } } else { } } else { { netif_carrier_off(dev); } if ((tp->msg_enable & 16U) != 0U) { { netdev_info((struct net_device const *)dev, "link down\n"); } } else { } if ((int )pm) { { pm_schedule_suspend(& (tp->pci_dev)->dev, 5000U); } } else { } } return; } } static void rtl8169_check_link_status(struct net_device *dev , struct rtl8169_private *tp , void *ioaddr ) { { { __rtl8169_check_link_status(dev, tp, ioaddr, 0); } return; } } static u32 __rtl8169_get_wol(struct rtl8169_private *tp ) { void *ioaddr ; u8 options ; u32 wolopts ; { { ioaddr = tp->mmio_addr; wolopts = 0U; options = readb((void const volatile *)ioaddr + 82U); } if (((int )options & 1) == 0) { return (0U); } else { } { options = readb((void const volatile *)ioaddr + 84U); } if (((int )options & 16) != 0) { wolopts = wolopts | 1U; } else { } if (((int )options & 32) != 0) { wolopts = wolopts | 32U; } else { } { options = readb((void const volatile *)ioaddr + 86U); } if (((int )options & 16) != 0) { wolopts = wolopts | 2U; } else { } if (((int )options & 64) != 0) { wolopts = wolopts | 8U; } else { } if (((int )options & 32) != 0) { wolopts = wolopts | 4U; } else { } return (wolopts); } } static void rtl8169_get_wol(struct net_device *dev , struct ethtool_wolinfo *wol ) { struct rtl8169_private *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; rtl_lock_work(tp); wol->supported = 47U; wol->wolopts = __rtl8169_get_wol(tp); rtl_unlock_work(tp); } return; } } static void __rtl8169_set_wol(struct rtl8169_private *tp , u32 wolopts ) { void *ioaddr ; unsigned int i ; struct __anonstruct_cfg_276 cfg[6U] ; u8 options ; unsigned char tmp ; unsigned char tmp___0 ; unsigned char tmp___1 ; { { ioaddr = tp->mmio_addr; cfg[0].opt = 1U; cfg[0].reg = 84U; cfg[0].mask = 16U; cfg[1].opt = 32U; cfg[1].reg = 84U; cfg[1].mask = 32U; cfg[2].opt = 2U; cfg[2].reg = 86U; cfg[2].mask = 16U; cfg[3].opt = 8U; cfg[3].reg = 86U; cfg[3].mask = 64U; cfg[4].opt = 4U; cfg[4].reg = 86U; cfg[4].mask = 32U; cfg[5].opt = 47U; cfg[5].reg = 86U; cfg[5].mask = 2U; writeb(192, (void volatile *)ioaddr + 80U); i = 0U; } goto ldv_48626; ldv_48625: { tmp = readb((void const volatile *)ioaddr + (unsigned long )cfg[i].reg); options = (u8 )((int )((signed char )tmp) & ~ ((int )((signed char )cfg[i].mask))); } if ((wolopts & cfg[i].opt) != 0U) { options = (u8 )((int )options | (int )cfg[i].mask); } else { } { writeb((int )options, (void volatile *)ioaddr + (unsigned long )cfg[i].reg); i = i + 1U; } ldv_48626: ; if (i <= 5U) { goto ldv_48625; } else { } { if (((((((((((((((((int )tp->mac_version == 16 || (int )tp->mac_version == 15) || (int )tp->mac_version == 14) || (int )tp->mac_version == 13) || (int )tp->mac_version == 12) || (int )tp->mac_version == 11) || (int )tp->mac_version == 10) || (int )tp->mac_version == 9) || (int )tp->mac_version == 8) || (int )tp->mac_version == 7) || (int )tp->mac_version == 6) || (int )tp->mac_version == 5) || (int )tp->mac_version == 4) || (int )tp->mac_version == 3) || (int )tp->mac_version == 2) || (int )tp->mac_version == 1) || (int )tp->mac_version == 0) { goto case_16; } else { } goto switch_default; case_16: /* CIL Label */ case_15: /* CIL Label */ case_14: /* CIL Label */ case_13: /* CIL Label */ case_12: /* CIL Label */ case_11: /* CIL Label */ case_10: /* CIL Label */ case_9: /* CIL Label */ case_8: /* CIL Label */ case_7: /* CIL Label */ case_6: /* CIL Label */ case_5: /* CIL Label */ case_4: /* CIL Label */ case_3: /* CIL Label */ case_2: /* CIL Label */ case_1: /* CIL Label */ case_0: /* CIL Label */ { tmp___0 = readb((void const volatile *)ioaddr + 82U); options = (unsigned int )tmp___0 & 254U; } if (wolopts != 0U) { options = (u8 )((unsigned int )options | 1U); } else { } { writeb((int )options, (void volatile *)ioaddr + 82U); } goto ldv_48629; switch_default: /* CIL Label */ { tmp___1 = readb((void const volatile *)ioaddr + 83U); options = (unsigned int )tmp___1 & 223U; } if (wolopts != 0U) { options = (u8 )((unsigned int )options | 32U); } else { } { writeb((int )options, (void volatile *)ioaddr + 83U); } goto ldv_48629; switch_break: /* CIL Label */ ; } ldv_48629: { writeb(0, (void volatile *)ioaddr + 80U); } return; } } static int rtl8169_set_wol(struct net_device *dev , struct ethtool_wolinfo *wol ) { struct rtl8169_private *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; rtl_lock_work(tp); } if (wol->wolopts != 0U) { tp->features = tp->features | 1U; } else { tp->features = tp->features & 4294967294U; } { __rtl8169_set_wol(tp, wol->wolopts); rtl_unlock_work(tp); device_set_wakeup_enable(& (tp->pci_dev)->dev, wol->wolopts != 0U); } return (0); } } static char const *rtl_lookup_firmware_name(struct rtl8169_private *tp ) { { return ((char const *)rtl_chip_infos[(int )tp->mac_version].fw_name); } } extern void __compiletime_assert_1634(void) ; static void rtl8169_get_drvinfo(struct net_device *dev , struct ethtool_drvinfo *info ) { struct rtl8169_private *tp ; void *tmp ; struct rtl_fw *rtl_fw ; char const *tmp___0 ; bool __cond ; long tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; rtl_fw = tp->rtl_fw; strlcpy((char *)(& info->driver), "r8169", 32UL); strlcpy((char *)(& info->version), "2.3LK-NAPI", 32UL); tmp___0 = pci_name((struct pci_dev const *)tp->pci_dev); strlcpy((char *)(& info->bus_info), tmp___0, 32UL); __cond = 0; } if ((int )__cond) { { __compiletime_assert_1634(); } } else { } { tmp___1 = IS_ERR_OR_NULL((void const *)rtl_fw); } if (tmp___1 == 0L) { { strlcpy((char *)(& info->fw_version), (char const *)(& rtl_fw->version), 32UL); } } else { } return; } } static int rtl8169_get_regs_len(struct net_device *dev ) { { return (256); } } static int rtl8169_set_speed_tbi(struct net_device *dev , u8 autoneg , u16 speed , u8 duplex , u32 ignored ) { struct rtl8169_private *tp ; void *tmp ; void *ioaddr ; int ret ; u32 reg ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; ioaddr = tp->mmio_addr; ret = 0; reg = readl((void const volatile *)ioaddr + 100U); } if (((unsigned int )autoneg == 0U && (unsigned int )speed == 1000U) && (unsigned int )duplex == 1U) { { writel(reg & 3489660927U, (void volatile *)ioaddr + 100U); } } else if ((unsigned int )autoneg == 1U) { { writel(reg | 805306368U, (void volatile *)ioaddr + 100U); } } else { if ((tp->msg_enable & 4U) != 0U) { { netdev_warn((struct net_device const *)dev, "incorrect speed setting refused in TBI mode\n"); } } else { } ret = -95; } return (ret); } } static int rtl8169_set_speed_xmii(struct net_device *dev , u8 autoneg , u16 speed , u8 duplex , u32 adv ) { struct rtl8169_private *tp ; void *tmp ; int giga_ctrl ; int bmcr ; int rc ; int auto_nego ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; rc = -22; rtl_writephy(tp, 31, 0U); } if ((unsigned int )autoneg == 1U) { { auto_nego = rtl_readphy(tp, 4); auto_nego = auto_nego & -481; } if ((int )adv & 1) { auto_nego = auto_nego | 32; } else { } if ((adv & 2U) != 0U) { auto_nego = auto_nego | 64; } else { } if ((adv & 4U) != 0U) { auto_nego = auto_nego | 128; } else { } if ((adv & 8U) != 0U) { auto_nego = auto_nego | 256; } else { } { auto_nego = auto_nego | 3072; giga_ctrl = rtl_readphy(tp, 9); giga_ctrl = giga_ctrl & -769; } if ((unsigned int )*((unsigned char *)tp + 3904UL) != 0U) { if ((adv & 16U) != 0U) { giga_ctrl = giga_ctrl | 256; } else { } if ((adv & 32U) != 0U) { giga_ctrl = giga_ctrl | 512; } else { } } else if ((adv & 48U) != 0U) { if ((tp->msg_enable & 4U) != 0U) { { netdev_info((struct net_device const *)dev, "PHY does not support 1000Mbps\n"); } } else { } goto out; } else { } { bmcr = 4608; rtl_writephy(tp, 4, (u32 )auto_nego); rtl_writephy(tp, 9, (u32 )giga_ctrl); } } else { giga_ctrl = 0; if ((unsigned int )speed == 10U) { bmcr = 0; } else if ((unsigned int )speed == 100U) { bmcr = 8192; } else { goto out; } if ((unsigned int )duplex == 1U) { bmcr = bmcr | 256; } else { } } { rtl_writephy(tp, 0, (u32 )bmcr); } if ((unsigned int )tp->mac_version - 1U <= 1U) { if ((unsigned int )speed == 100U && (unsigned int )autoneg != 1U) { { rtl_writephy(tp, 23, 8504U); rtl_writephy(tp, 14, 608U); } } else { { rtl_writephy(tp, 23, 8456U); rtl_writephy(tp, 14, 0U); } } } else { } rc = 0; out: ; return (rc); } } static int rtl8169_set_speed(struct net_device *dev , u8 autoneg , u16 speed , u8 duplex , u32 advertising ) { struct rtl8169_private *tp ; void *tmp ; int ret ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; ret = (*(tp->set_speed))(dev, (int )autoneg, (int )speed, (int )duplex, advertising); } if (ret < 0) { goto out; } else { } { tmp___0 = netif_running((struct net_device const *)dev); } if (((int )tmp___0 && (unsigned int )autoneg == 1U) && (advertising & 32U) != 0U) { { ldv_mod_timer_20(& tp->timer, (unsigned long )jiffies + 2500UL); } } else { } out: ; return (ret); } } static int rtl8169_set_settings(struct net_device *dev , struct ethtool_cmd *cmd ) { struct rtl8169_private *tp ; void *tmp ; int ret ; __u32 tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; ldv_del_timer_sync_21(& tp->timer); rtl_lock_work(tp); tmp___0 = ethtool_cmd_speed((struct ethtool_cmd const *)cmd); ret = rtl8169_set_speed(dev, (int )cmd->autoneg, (int )((u16 )tmp___0), (int )cmd->duplex, cmd->advertising); rtl_unlock_work(tp); } return (ret); } } static netdev_features_t rtl8169_fix_features(struct net_device *dev , netdev_features_t features ) { struct rtl8169_private *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; } if (dev->mtu > 2047U) { features = features & 0xffffffffffe6ffffULL; } else { } if (dev->mtu > 1500U && ! ((_Bool )rtl_chip_infos[(int )tp->mac_version].jumbo_tx_csum)) { features = features & 0xfffffffffffffffdULL; } else { } return (features); } } static void __rtl8169_set_features(struct net_device *dev , netdev_features_t features ) { struct rtl8169_private *tp ; void *tmp ; netdev_features_t changed ; void *ioaddr ; int tmp___0 ; unsigned int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; changed = features ^ dev->features; ioaddr = tp->mmio_addr; } if ((changed & 73014444288ULL) == 0ULL) { return; } else { } if ((changed & 4294967552ULL) != 0ULL) { if ((features & 4294967296ULL) != 0ULL) { tp->cp_cmd = (u16 )((unsigned int )tp->cp_cmd | 32U); } else { tp->cp_cmd = (unsigned int )tp->cp_cmd & 65503U; } if ((dev->features & 256ULL) != 0ULL) { tp->cp_cmd = (u16 )((unsigned int )tp->cp_cmd | 64U); } else { tp->cp_cmd = (unsigned int )tp->cp_cmd & 65471U; } { writew((int )tp->cp_cmd, (void volatile *)ioaddr + 224U); readw((void const volatile *)ioaddr + 224U); } } else { } if ((changed & 68719476736ULL) != 0ULL) { { tmp___1 = readl((void const volatile *)ioaddr + 68U); tmp___0 = (int )tmp___1 & -49; } if ((features & 68719476736ULL) != 0ULL) { tmp___0 = tmp___0 | 48; } else { } { writel((unsigned int )tmp___0, (void volatile *)ioaddr + 68U); } } else { } return; } } static int rtl8169_set_features(struct net_device *dev , netdev_features_t features ) { struct rtl8169_private *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; rtl_lock_work(tp); __rtl8169_set_features(dev, features); rtl_unlock_work(tp); } return (0); } } __inline static u32 rtl8169_tx_vlan_tag(struct sk_buff *skb ) { __u16 tmp ; u32 tmp___0 ; { if (((int )skb->vlan_tci & 4096) != 0) { { tmp = __fswab16((int )skb->vlan_tci & 61439); tmp___0 = (u32 )((int )tmp | 131072); } } else { tmp___0 = 0U; } return (tmp___0); } } static void rtl8169_rx_vlan_tag(struct RxDesc *desc , struct sk_buff *skb ) { u32 opts2 ; __u16 tmp ; { opts2 = desc->opts2; if ((opts2 & 65536U) != 0U) { { tmp = __fswab16((int )((__u16 )opts2)); __vlan_hwaccel_put_tag(skb, 129, (int )tmp); } } else { } return; } } static int rtl8169_gset_tbi(struct net_device *dev , struct ethtool_cmd *cmd ) { struct rtl8169_private *tp ; void *tmp ; void *ioaddr ; u32 status ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; ioaddr = tp->mmio_addr; cmd->supported = 1120U; cmd->port = 3U; cmd->transceiver = 0U; status = readl((void const volatile *)ioaddr + 100U); cmd->advertising = (status & 536870912U) != 0U ? 64U : 0U; cmd->autoneg = (status & 536870912U) != 0U; ethtool_cmd_speed_set(cmd, 1000U); cmd->duplex = 1U; } return (0); } } static int rtl8169_gset_xmii(struct net_device *dev , struct ethtool_cmd *cmd ) { struct rtl8169_private *tp ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; tmp___0 = mii_ethtool_gset(& tp->mii, cmd); } return (tmp___0); } } static int rtl8169_get_settings(struct net_device *dev , struct ethtool_cmd *cmd ) { struct rtl8169_private *tp ; void *tmp ; int rc ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; rtl_lock_work(tp); rc = (*(tp->get_settings))(dev, cmd); rtl_unlock_work(tp); } return (rc); } } static void rtl8169_get_regs(struct net_device *dev , struct ethtool_regs *regs , void *p ) { struct rtl8169_private *tp ; void *tmp ; u32 *data ; u32 *dw ; int i ; u32 *tmp___0 ; u32 *tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; data = (u32 *)tp->mmio_addr; dw = (u32 *)p; rtl_lock_work(tp); i = 0; } goto ldv_48746; ldv_48745: { tmp___0 = data; data = data + 1; tmp___1 = dw; dw = dw + 1; memcpy_fromio((void *)tmp___1, (void const volatile *)tmp___0, 4UL); i = i + 4; } ldv_48746: ; if (i <= 255) { goto ldv_48745; } else { } { rtl_unlock_work(tp); } return; } } static u32 rtl8169_get_msglevel(struct net_device *dev ) { struct rtl8169_private *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; } return (tp->msg_enable); } } static void rtl8169_set_msglevel(struct net_device *dev , u32 value ) { struct rtl8169_private *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; tp->msg_enable = value; } return; } } static char const rtl8169_gstrings[13U][32U] = { { 't', 'x', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 'r', 'x', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}, { 't', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 'r', 'x', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 'r', 'x', '_', 'm', 'i', 's', 's', 'e', 'd', '\000'}, { 'a', 'l', 'i', 'g', 'n', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}, { 't', 'x', '_', 's', 'i', 'n', 'g', 'l', 'e', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}, { 't', 'x', '_', 'm', 'u', 'l', 't', 'i', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}, { 'u', 'n', 'i', 'c', 'a', 's', 't', '\000'}, { 'b', 'r', 'o', 'a', 'd', 'c', 'a', 's', 't', '\000'}, { 'm', 'u', 'l', 't', 'i', 'c', 'a', 's', 't', '\000'}, { 't', 'x', '_', 'a', 'b', 'o', 'r', 't', 'e', 'd', '\000'}, { 't', 'x', '_', 'u', 'n', 'd', 'e', 'r', 'r', 'u', 'n', '\000'}}; static int rtl8169_get_sset_count(struct net_device *dev , int sset ) { { { if (sset == 1) { goto case_1; } else { } goto switch_default; case_1: /* CIL Label */ ; return (13); switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } } } static bool rtl_counters_cond_check(struct rtl8169_private *tp ) ; static struct rtl_cond const rtl_counters_cond = {& rtl_counters_cond_check, "rtl_counters_cond"}; static bool rtl_counters_cond_check(struct rtl8169_private *tp ) { void *ioaddr ; unsigned int tmp ; { { ioaddr = tp->mmio_addr; tmp = readl((void const volatile *)ioaddr + 16U); } return ((tmp & 8U) != 0U); } } static void rtl8169_update_counters(struct net_device *dev ) { struct rtl8169_private *tp ; void *tmp ; void *ioaddr ; struct device *d ; struct rtl8169_counters *counters ; dma_addr_t paddr ; u32 cmd ; unsigned char tmp___0 ; void *tmp___1 ; bool tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; ioaddr = tp->mmio_addr; d = & (tp->pci_dev)->dev; tmp___0 = readb((void const volatile *)ioaddr + 55U); } if (((int )tmp___0 & 8) == 0) { return; } else { } { tmp___1 = dma_alloc_attrs(d, 64UL, & paddr, 208U, (struct dma_attrs *)0); counters = (struct rtl8169_counters *)tmp___1; } if ((unsigned long )counters == (unsigned long )((struct rtl8169_counters *)0)) { return; } else { } { writel((unsigned int )(paddr >> 32), (void volatile *)ioaddr + 20U); cmd = (u32 )paddr; writel(cmd, (void volatile *)ioaddr + 16U); writel(cmd | 8U, (void volatile *)ioaddr + 16U); tmp___2 = rtl_udelay_loop_wait_low(tp, & rtl_counters_cond, 10U, 1000); } if ((int )tmp___2) { { memcpy((void *)(& tp->counters), (void const *)counters, 64UL); } } else { } { writel(0U, (void volatile *)ioaddr + 16U); writel(0U, (void volatile *)ioaddr + 20U); dma_free_attrs(d, 64UL, (void *)counters, paddr, (struct dma_attrs *)0); } return; } } static void rtl8169_get_ethtool_stats(struct net_device *dev , struct ethtool_stats *stats , u64 *data ) { struct rtl8169_private *tp ; void *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; tmp___0 = rtnl_is_locked(); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { printk("\vRTNL: assertion failed at %s (%d)\n", (char *)"drivers/net/ethernet/realtek/r8169.c", 1995); dump_stack(); } } else { } { rtl8169_update_counters(dev); *data = tp->counters.tx_packets; *(data + 1UL) = tp->counters.rx_packets; *(data + 2UL) = tp->counters.tx_errors; *(data + 3UL) = (u64 )tp->counters.rx_errors; *(data + 4UL) = (u64 )tp->counters.rx_missed; *(data + 5UL) = (u64 )tp->counters.align_errors; *(data + 6UL) = (u64 )tp->counters.tx_one_collision; *(data + 7UL) = (u64 )tp->counters.tx_multi_collision; *(data + 8UL) = tp->counters.rx_unicast; *(data + 9UL) = tp->counters.rx_broadcast; *(data + 10UL) = (u64 )tp->counters.rx_multicast; *(data + 11UL) = (u64 )tp->counters.tx_aborted; *(data + 12UL) = (u64 )tp->counters.tx_underun; } return; } } static void rtl8169_get_strings(struct net_device *dev , u32 stringset , u8 *data ) { { { if (stringset == 1U) { goto case_1; } else { } goto switch_break; case_1: /* CIL Label */ { memcpy((void *)data, (void const *)(& rtl8169_gstrings), 416UL); } goto ldv_48794; switch_break: /* CIL Label */ ; } ldv_48794: ; return; } } static struct ethtool_ops const rtl8169_ethtool_ops = {& rtl8169_get_settings, & rtl8169_set_settings, & rtl8169_get_drvinfo, & rtl8169_get_regs_len, & rtl8169_get_regs, & rtl8169_get_wol, & rtl8169_set_wol, & rtl8169_get_msglevel, & rtl8169_set_msglevel, 0, & ethtool_op_get_link, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & rtl8169_get_strings, 0, & rtl8169_get_ethtool_stats, 0, 0, 0, 0, & rtl8169_get_sset_count, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ethtool_op_get_ts_info, 0, 0, 0, 0}; static void rtl8169_get_mac_version(struct rtl8169_private *tp , struct net_device *dev , u8 default_version ) { void *ioaddr ; struct rtl_mac_info mac_info[58U] ; struct rtl_mac_info const *p ; u32 reg ; { { ioaddr = tp->mmio_addr; mac_info[0].mask = 2096103424U; mac_info[0].val = 1551892480U; mac_info[0].mac_version = 43; mac_info[1].mask = 2096103424U; mac_info[1].val = 1351614464U; mac_info[1].mac_version = 41; mac_info[2].mask = 2096103424U; mac_info[2].val = 1276116992U; mac_info[2].mac_version = 40; mac_info[3].mask = 2096103424U; mac_info[3].val = 1275068416U; mac_info[3].mac_version = 39; mac_info[4].mask = 2088763392U; mac_info[4].val = 1216348160U; mac_info[4].mac_version = 37; mac_info[5].mask = 2096103424U; mac_info[5].val = 1209008128U; mac_info[5].mac_version = 35; mac_info[6].mask = 2096103424U; mac_info[6].val = 1207959552U; mac_info[6].mac_version = 34; mac_info[7].mask = 2088763392U; mac_info[7].val = 746586112U; mac_info[7].mac_version = 33; mac_info[8].mask = 2096103424U; mac_info[8].val = 740294656U; mac_info[8].mac_version = 32; mac_info[9].mask = 2096103424U; mac_info[9].val = 739246080U; mac_info[9].mac_version = 31; mac_info[10].mask = 2088763392U; mac_info[10].val = 738197504U; mac_info[10].mac_version = 32; mac_info[11].mask = 2096103424U; mac_info[11].val = 674234368U; mac_info[11].mac_version = 25; mac_info[12].mask = 2096103424U; mac_info[12].val = 672137216U; mac_info[12].mac_version = 24; mac_info[13].mask = 2088763392U; mac_info[13].val = 671088640U; mac_info[13].mac_version = 25; mac_info[14].mask = 2096103424U; mac_info[14].val = 679477248U; mac_info[14].mac_version = 26; mac_info[15].mask = 2096103424U; mac_info[15].val = 681574400U; mac_info[15].mac_version = 27; mac_info[16].mask = 2096103424U; mac_info[16].val = 682622976U; mac_info[16].mac_version = 30; mac_info[17].mask = 2096103424U; mac_info[17].val = 1018167296U; mac_info[17].mac_version = 23; mac_info[18].mask = 2096103424U; mac_info[18].val = 1016070144U; mac_info[18].mac_version = 22; mac_info[19].mask = 2096103424U; mac_info[19].val = 1015021568U; mac_info[19].mac_version = 17; mac_info[20].mask = 2088763392U; mac_info[20].val = 1015021568U; mac_info[20].mac_version = 23; mac_info[21].mask = 2096103424U; mac_info[21].val = 1006632960U; mac_info[21].mac_version = 18; mac_info[22].mask = 2096103424U; mac_info[22].val = 1008730112U; mac_info[22].mac_version = 19; mac_info[23].mask = 2096103424U; mac_info[23].val = 1009778688U; mac_info[23].mac_version = 20; mac_info[24].mask = 2096103424U; mac_info[24].val = 1010827264U; mac_info[24].mac_version = 21; mac_info[25].mask = 2088763392U; mac_info[25].val = 1006632960U; mac_info[25].mac_version = 21; mac_info[26].mask = 2096103424U; mac_info[26].val = 939524096U; mac_info[26].mac_version = 11; mac_info[27].mask = 2096103424U; mac_info[27].val = 944766976U; mac_info[27].mac_version = 16; mac_info[28].mask = 2088763392U; mac_info[28].val = 939524096U; mac_info[28].mac_version = 16; mac_info[29].mask = 2088763392U; mac_info[29].val = 805306368U; mac_info[29].mac_version = 10; mac_info[30].mask = 2096103424U; mac_info[30].val = 1150287872U; mac_info[30].mac_version = 38; mac_info[31].mask = 2088763392U; mac_info[31].val = 1149239296U; mac_info[31].mac_version = 38; mac_info[32].mask = 2088763392U; mac_info[32].val = 1140850688U; mac_info[32].mac_version = 36; mac_info[33].mask = 2096103424U; mac_info[33].val = 1085276160U; mac_info[33].mac_version = 29; mac_info[34].mask = 2096103424U; mac_info[34].val = 1084227584U; mac_info[34].mac_version = 29; mac_info[35].mask = 2096103424U; mac_info[35].val = 1083179008U; mac_info[35].mac_version = 28; mac_info[36].mask = 2088763392U; mac_info[36].val = 1082130432U; mac_info[36].mac_version = 29; mac_info[37].mask = 2096103424U; mac_info[37].val = 882900992U; mac_info[37].mac_version = 8; mac_info[38].mask = 2096103424U; mac_info[38].val = 614465536U; mac_info[38].mac_version = 8; mac_info[39].mask = 2096103424U; mac_info[39].val = 881852416U; mac_info[39].mac_version = 7; mac_info[40].mask = 2096103424U; mac_info[40].val = 613416960U; mac_info[40].mac_version = 7; mac_info[41].mask = 2096103424U; mac_info[41].val = 880803840U; mac_info[41].mac_version = 6; mac_info[42].mask = 2096103424U; mac_info[42].val = 612368384U; mac_info[42].mac_version = 6; mac_info[43].mask = 2096103424U; mac_info[43].val = 872415232U; mac_info[43].mac_version = 12; mac_info[44].mask = 2096103424U; mac_info[44].val = 875560960U; mac_info[44].mac_version = 9; mac_info[45].mask = 2096103424U; mac_info[45].val = 874512384U; mac_info[45].mac_version = 15; mac_info[46].mask = 2088763392U; mac_info[46].val = 880803840U; mac_info[46].mac_version = 8; mac_info[47].mask = 2088763392U; mac_info[47].val = 612368384U; mac_info[47].mac_version = 8; mac_info[48].mask = 2088763392U; mac_info[48].val = 872415232U; mac_info[48].mac_version = 15; mac_info[49].mask = 4236247040U; mac_info[49].val = 947912704U; mac_info[49].mac_version = 14; mac_info[50].mask = 4236247040U; mac_info[50].val = 813694976U; mac_info[50].mac_version = 13; mac_info[51].mask = 4236247040U; mac_info[51].val = 2550136832U; mac_info[51].mac_version = 5; mac_info[52].mask = 4236247040U; mac_info[52].val = 402653184U; mac_info[52].mac_version = 4; mac_info[53].mask = 4236247040U; mac_info[53].val = 268435456U; mac_info[53].mac_version = 3; mac_info[54].mask = 4236247040U; mac_info[54].val = 67108864U; mac_info[54].mac_version = 2; mac_info[55].mask = 4236247040U; mac_info[55].val = 8388608U; mac_info[55].mac_version = 1; mac_info[56].mask = 4236247040U; mac_info[56].val = 0U; mac_info[56].mac_version = 0; mac_info[57].mask = 0U; mac_info[57].val = 0U; mac_info[57].mac_version = 255; p = (struct rtl_mac_info const *)(& mac_info); reg = readl((void const volatile *)ioaddr + 64U); } goto ldv_48810; ldv_48809: p = p + 1; ldv_48810: ; if ((reg & (u32 )p->mask) != (u32 )p->val) { goto ldv_48809; } else { } tp->mac_version = (u16 )p->mac_version; if ((unsigned int )tp->mac_version == 255U) { if ((tp->msg_enable & 2U) != 0U) { { netdev_notice((struct net_device const *)dev, "unknown MAC, using family default\n"); } } else { } tp->mac_version = (u16 )default_version; } else if ((unsigned int )tp->mac_version == 41U) { tp->mac_version = (unsigned int )*((unsigned char *)tp + 3904UL) != 0U ? 41U : 42U; } else { } return; } } static void rtl8169_print_mac_version(struct rtl8169_private *tp ) { { return; } } static void rtl_writephy_batch(struct rtl8169_private *tp , struct phy_reg const *regs , int len ) { int tmp ; { goto ldv_48824; ldv_48823: { rtl_writephy(tp, (int )regs->reg, (u32 )regs->val); regs = regs + 1; } ldv_48824: tmp = len; len = len - 1; if (tmp > 0) { goto ldv_48823; } else { } return; } } static bool rtl_fw_format_ok(struct rtl8169_private *tp , struct rtl_fw *rtl_fw ) { struct firmware const *fw ; struct fw_info *fw_info ; struct rtl_fw_phy_action *pa ; char *version ; bool rc ; size_t i ; size_t size ; size_t start ; u8 checksum ; char const *tmp ; { fw = rtl_fw->fw; fw_info = (struct fw_info *)fw->data; pa = & rtl_fw->phy_action; version = (char *)(& rtl_fw->version); rc = 0; if ((unsigned long )fw->size <= 3UL) { goto out; } else { } if (fw_info->magic == 0U) { checksum = 0U; if ((unsigned long )fw->size <= 44UL) { goto out; } else { } i = 0UL; goto ldv_48847; ldv_48846: checksum = (int )checksum + (int )((u8 )*(fw->data + i)); i = i + 1UL; ldv_48847: ; if (i < (unsigned long )fw->size) { goto ldv_48846; } else { } if ((unsigned int )checksum != 0U) { goto out; } else { } start = (size_t )fw_info->fw_start; if (start > (unsigned long )fw->size) { goto out; } else { } size = (size_t )fw_info->fw_len; if (size > ((unsigned long )fw->size - start) / 4UL) { goto out; } else { } { memcpy((void *)version, (void const *)(& fw_info->version), 32UL); pa->code = (__le32 *)(fw->data + start); pa->size = size; } } else { if (((unsigned long )fw->size & 3UL) != 0UL) { goto out; } else { } { tmp = rtl_lookup_firmware_name(tp); strlcpy(version, tmp, 32UL); pa->code = (__le32 *)fw->data; pa->size = (unsigned long )fw->size / 4UL; } } *(version + 31UL) = 0; rc = 1; out: ; return (rc); } } static bool rtl_fw_data_ok(struct rtl8169_private *tp , struct net_device *dev , struct rtl_fw_phy_action *pa ) { bool rc ; size_t index ; u32 action ; u32 regno ; { rc = 0; index = 0UL; goto ldv_48875; ldv_48874: action = *(pa->code + index); regno = (action & 268369920U) >> 16; { if ((action & 4026531840U) == 0U) { goto case_0; } else { } if ((action & 4026531840U) == 268435456U) { goto case_268435456; } else { } if ((action & 4026531840U) == 536870912U) { goto case_536870912; } else { } if ((action & 4026531840U) == 1073741824U) { goto case_1073741824; } else { } if ((action & 4026531840U) == 1879048192U) { goto case_1879048192; } else { } if ((action & 4026531840U) == 2147483648U) { goto case_2147483648; } else { } if ((action & 4026531840U) == 3221225472U) { goto case_3221225472; } else { } if ((action & 4026531840U) == 3758096384U) { goto case_3758096384; } else { } if ((action & 4026531840U) == 805306368U) { goto case_805306368; } else { } if ((action & 4026531840U) == 2415919104U) { goto case_2415919104; } else { } if ((action & 4026531840U) == 2684354560U) { goto case_2684354560; } else { } if ((action & 4026531840U) == 2952790016U) { goto case_2952790016; } else { } if ((action & 4026531840U) == 3489660928U) { goto case_3489660928; } else { } goto switch_default; case_0: /* CIL Label */ ; case_268435456: /* CIL Label */ ; case_536870912: /* CIL Label */ ; case_1073741824: /* CIL Label */ ; case_1879048192: /* CIL Label */ ; case_2147483648: /* CIL Label */ ; case_3221225472: /* CIL Label */ ; case_3758096384: /* CIL Label */ ; goto ldv_48866; case_805306368: /* CIL Label */ ; if ((size_t )regno > index) { if ((tp->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)tp->dev, "Out of range of firmware\n"); } } else { } goto out; } else { } goto ldv_48866; case_2415919104: /* CIL Label */ ; if (index + 2UL >= pa->size) { if ((tp->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)tp->dev, "Out of range of firmware\n"); } } else { } goto out; } else { } goto ldv_48866; case_2684354560: /* CIL Label */ ; case_2952790016: /* CIL Label */ ; case_3489660928: /* CIL Label */ ; if ((index + (size_t )regno) + 1UL >= pa->size) { if ((tp->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)tp->dev, "Out of range of firmware\n"); } } else { } goto out; } else { } goto ldv_48866; switch_default: /* CIL Label */ ; if ((tp->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)tp->dev, "Invalid action 0x%08x\n", action); } } else { } goto out; switch_break: /* CIL Label */ ; } ldv_48866: index = index + 1UL; ldv_48875: ; if (index < pa->size) { goto ldv_48874; } else { } rc = 1; out: ; return (rc); } } static int rtl_check_firmware(struct rtl8169_private *tp , struct rtl_fw *rtl_fw ) { struct net_device *dev ; int rc ; bool tmp ; int tmp___0 ; bool tmp___1 ; { { dev = tp->dev; rc = -22; tmp = rtl_fw_format_ok(tp, rtl_fw); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { if ((tp->msg_enable & 32U) != 0U) { { netdev_err((struct net_device const *)dev, "invalid firwmare\n"); } } else { } goto out; } else { } { tmp___1 = rtl_fw_data_ok(tp, dev, & rtl_fw->phy_action); } if ((int )tmp___1) { rc = 0; } else { } out: ; return (rc); } } static void rtl_phy_write_fw(struct rtl8169_private *tp , struct rtl_fw *rtl_fw ) { struct rtl_fw_phy_action *pa ; struct mdio_ops org ; struct mdio_ops *ops ; u32 predata ; u32 count ; size_t index ; u32 action ; u32 data ; u32 regno ; int tmp ; unsigned long __ms ; unsigned long tmp___0 ; { pa = & rtl_fw->phy_action; ops = & tp->mdio_ops; count = 0U; predata = count; org.write = ops->write; org.read = ops->read; index = 0UL; goto ldv_48918; ldv_48917: action = *(pa->code + index); data = action & 65535U; regno = (action & 268369920U) >> 16; if (action == 0U) { goto ldv_48897; } else { } { if ((action & 4026531840U) == 0U) { goto case_0; } else { } if ((action & 4026531840U) == 268435456U) { goto case_268435456; } else { } if ((action & 4026531840U) == 536870912U) { goto case_536870912; } else { } if ((action & 4026531840U) == 805306368U) { goto case_805306368; } else { } if ((action & 4026531840U) == 1073741824U) { goto case_1073741824; } else { } if ((action & 4026531840U) == 1879048192U) { goto case_1879048192; } else { } if ((action & 4026531840U) == 2147483648U) { goto case_2147483648; } else { } if ((action & 4026531840U) == 2415919104U) { goto case_2415919104; } else { } if ((action & 4026531840U) == 2684354560U) { goto case_2684354560; } else { } if ((action & 4026531840U) == 2952790016U) { goto case_2952790016; } else { } if ((action & 4026531840U) == 3221225472U) { goto case_3221225472; } else { } if ((action & 4026531840U) == 3489660928U) { goto case_3489660928; } else { } if ((action & 4026531840U) == 3758096384U) { goto case_3758096384; } else { } goto switch_default; case_0: /* CIL Label */ { tmp = rtl_readphy(tp, (int )regno); predata = (u32 )tmp; count = count + 1U; index = index + 1UL; } goto ldv_48899; case_268435456: /* CIL Label */ predata = predata | data; index = index + 1UL; goto ldv_48899; case_536870912: /* CIL Label */ predata = predata & data; index = index + 1UL; goto ldv_48899; case_805306368: /* CIL Label */ index = index - (size_t )regno; goto ldv_48899; case_1073741824: /* CIL Label */ ; if (data == 0U) { ops->write = org.write; ops->read = org.read; } else if (data == 1U) { ops->write = & mac_mcu_write; ops->read = & mac_mcu_read; } else { } index = index + 1UL; goto ldv_48899; case_1879048192: /* CIL Label */ count = 0U; index = index + 1UL; goto ldv_48899; case_2147483648: /* CIL Label */ { rtl_writephy(tp, (int )regno, data); index = index + 1UL; } goto ldv_48899; case_2415919104: /* CIL Label */ index = index + (count == data ? 2UL : 1UL); goto ldv_48899; case_2684354560: /* CIL Label */ ; if (predata == data) { index = index + (size_t )regno; } else { } index = index + 1UL; goto ldv_48899; case_2952790016: /* CIL Label */ ; if (predata != data) { index = index + (size_t )regno; } else { } index = index + 1UL; goto ldv_48899; case_3221225472: /* CIL Label */ { rtl_writephy(tp, (int )regno, predata); index = index + 1UL; } goto ldv_48899; case_3489660928: /* CIL Label */ index = index + (size_t )(regno + 1U); goto ldv_48899; case_3758096384: /* CIL Label */ __ms = (unsigned long )data; goto ldv_48914; ldv_48913: { __const_udelay(4295000UL); } ldv_48914: tmp___0 = __ms; __ms = __ms - 1UL; if (tmp___0 != 0UL) { goto ldv_48913; } else { } index = index + 1UL; goto ldv_48899; switch_default: /* CIL Label */ { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"drivers/net/ethernet/realtek/r8169.c"), "i" (2405), "i" (12UL)); __builtin_unreachable(); } switch_break: /* CIL Label */ ; } ldv_48899: ; ldv_48918: ; if (index < pa->size) { goto ldv_48917; } else { } ldv_48897: ops->write = org.write; ops->read = org.read; return; } } static void rtl_release_firmware(struct rtl8169_private *tp ) { long tmp ; void *tmp___0 ; { { tmp = IS_ERR_OR_NULL((void const *)tp->rtl_fw); } if (tmp == 0L) { { release_firmware((tp->rtl_fw)->fw); kfree((void const *)tp->rtl_fw); } } else { } { tmp___0 = ERR_PTR(-11L); tp->rtl_fw = (struct rtl_fw *)tmp___0; } return; } } static void rtl_apply_firmware(struct rtl8169_private *tp ) { struct rtl_fw *rtl_fw ; long tmp ; { { rtl_fw = tp->rtl_fw; tmp = IS_ERR_OR_NULL((void const *)rtl_fw); } if (tmp == 0L) { { rtl_phy_write_fw(tp, rtl_fw); } } else { } return; } } static void rtl_apply_firmware_cond(struct rtl8169_private *tp , u8 reg , u16 val ) { int tmp ; { { tmp = rtl_readphy(tp, (int )reg); } if (tmp != (int )val) { if ((tp->msg_enable & 8192U) != 0U) { { netdev_warn((struct net_device const *)tp->dev, "chipset not ready for firmware\n"); } } else { } } else { { rtl_apply_firmware(tp); } } return; } } static void rtl8169s_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init[51U] ; { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 1U; phy_reg_init[1].reg = 6U; phy_reg_init[1].val = 110U; phy_reg_init[2].reg = 8U; phy_reg_init[2].val = 1800U; phy_reg_init[3].reg = 21U; phy_reg_init[3].val = 16384U; phy_reg_init[4].reg = 24U; phy_reg_init[4].val = 26055U; phy_reg_init[5].reg = 31U; phy_reg_init[5].val = 1U; phy_reg_init[6].reg = 3U; phy_reg_init[6].val = 161U; phy_reg_init[7].reg = 2U; phy_reg_init[7].val = 8U; phy_reg_init[8].reg = 1U; phy_reg_init[8].val = 288U; phy_reg_init[9].reg = 0U; phy_reg_init[9].val = 4096U; phy_reg_init[10].reg = 4U; phy_reg_init[10].val = 2048U; phy_reg_init[11].reg = 4U; phy_reg_init[11].val = 0U; phy_reg_init[12].reg = 3U; phy_reg_init[12].val = 65345U; phy_reg_init[13].reg = 2U; phy_reg_init[13].val = 57184U; phy_reg_init[14].reg = 1U; phy_reg_init[14].val = 320U; phy_reg_init[15].reg = 0U; phy_reg_init[15].val = 119U; phy_reg_init[16].reg = 4U; phy_reg_init[16].val = 30720U; phy_reg_init[17].reg = 4U; phy_reg_init[17].val = 28672U; phy_reg_init[18].reg = 3U; phy_reg_init[18].val = 32815U; phy_reg_init[19].reg = 2U; phy_reg_init[19].val = 20226U; phy_reg_init[20].reg = 1U; phy_reg_init[20].val = 1033U; phy_reg_init[21].reg = 0U; phy_reg_init[21].val = 61689U; phy_reg_init[22].reg = 4U; phy_reg_init[22].val = 38912U; phy_reg_init[23].reg = 4U; phy_reg_init[23].val = 36864U; phy_reg_init[24].reg = 3U; phy_reg_init[24].val = 57089U; phy_reg_init[25].reg = 2U; phy_reg_init[25].val = 57120U; phy_reg_init[26].reg = 1U; phy_reg_init[26].val = 65429U; phy_reg_init[27].reg = 0U; phy_reg_init[27].val = 47616U; phy_reg_init[28].reg = 4U; phy_reg_init[28].val = 43008U; phy_reg_init[29].reg = 4U; phy_reg_init[29].val = 40960U; phy_reg_init[30].reg = 3U; phy_reg_init[30].val = 65345U; phy_reg_init[31].reg = 2U; phy_reg_init[31].val = 57120U; phy_reg_init[32].reg = 1U; phy_reg_init[32].val = 320U; phy_reg_init[33].reg = 0U; phy_reg_init[33].val = 187U; phy_reg_init[34].reg = 4U; phy_reg_init[34].val = 47104U; phy_reg_init[35].reg = 4U; phy_reg_init[35].val = 45056U; phy_reg_init[36].reg = 3U; phy_reg_init[36].val = 57153U; phy_reg_init[37].reg = 2U; phy_reg_init[37].val = 56416U; phy_reg_init[38].reg = 1U; phy_reg_init[38].val = 25408U; phy_reg_init[39].reg = 0U; phy_reg_init[39].val = 125U; phy_reg_init[40].reg = 4U; phy_reg_init[40].val = 55296U; phy_reg_init[41].reg = 4U; phy_reg_init[41].val = 53248U; phy_reg_init[42].reg = 3U; phy_reg_init[42].val = 57089U; phy_reg_init[43].reg = 2U; phy_reg_init[43].val = 57120U; phy_reg_init[44].reg = 1U; phy_reg_init[44].val = 4106U; phy_reg_init[45].reg = 0U; phy_reg_init[45].val = 41215U; phy_reg_init[46].reg = 4U; phy_reg_init[46].val = 63488U; phy_reg_init[47].reg = 4U; phy_reg_init[47].val = 61440U; phy_reg_init[48].reg = 31U; phy_reg_init[48].val = 0U; phy_reg_init[49].reg = 11U; phy_reg_init[49].val = 0U; phy_reg_init[50].reg = 0U; phy_reg_init[50].val = 37376U; rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 51); } return; } } static void rtl8169sb_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init[3U] ; { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 2U; phy_reg_init[1].reg = 1U; phy_reg_init[1].val = 37072U; phy_reg_init[2].reg = 31U; phy_reg_init[2].val = 0U; rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 3); } return; } } static void rtl8169scd_hw_phy_config_quirk(struct rtl8169_private *tp ) { struct pci_dev *pdev ; { pdev = tp->pci_dev; if (*((unsigned int *)pdev + 16UL) != 3758101592U) { return; } else { } { rtl_writephy(tp, 31, 1U); rtl_writephy(tp, 16, 61467U); rtl_writephy(tp, 31, 0U); } return; } } static void rtl8169scd_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init[35U] ; { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 1U; phy_reg_init[1].reg = 4U; phy_reg_init[1].val = 0U; phy_reg_init[2].reg = 3U; phy_reg_init[2].val = 161U; phy_reg_init[3].reg = 2U; phy_reg_init[3].val = 8U; phy_reg_init[4].reg = 1U; phy_reg_init[4].val = 288U; phy_reg_init[5].reg = 0U; phy_reg_init[5].val = 4096U; phy_reg_init[6].reg = 4U; phy_reg_init[6].val = 2048U; phy_reg_init[7].reg = 4U; phy_reg_init[7].val = 36864U; phy_reg_init[8].reg = 3U; phy_reg_init[8].val = 32815U; phy_reg_init[9].reg = 2U; phy_reg_init[9].val = 20226U; phy_reg_init[10].reg = 1U; phy_reg_init[10].val = 1033U; phy_reg_init[11].reg = 0U; phy_reg_init[11].val = 61593U; phy_reg_init[12].reg = 4U; phy_reg_init[12].val = 38912U; phy_reg_init[13].reg = 4U; phy_reg_init[13].val = 40960U; phy_reg_init[14].reg = 3U; phy_reg_init[14].val = 57089U; phy_reg_init[15].reg = 2U; phy_reg_init[15].val = 57120U; phy_reg_init[16].reg = 1U; phy_reg_init[16].val = 65429U; phy_reg_init[17].reg = 0U; phy_reg_init[17].val = 47616U; phy_reg_init[18].reg = 4U; phy_reg_init[18].val = 43008U; phy_reg_init[19].reg = 4U; phy_reg_init[19].val = 61440U; phy_reg_init[20].reg = 3U; phy_reg_init[20].val = 57089U; phy_reg_init[21].reg = 2U; phy_reg_init[21].val = 57120U; phy_reg_init[22].reg = 1U; phy_reg_init[22].val = 4122U; phy_reg_init[23].reg = 0U; phy_reg_init[23].val = 41215U; phy_reg_init[24].reg = 4U; phy_reg_init[24].val = 63488U; phy_reg_init[25].reg = 4U; phy_reg_init[25].val = 0U; phy_reg_init[26].reg = 31U; phy_reg_init[26].val = 0U; phy_reg_init[27].reg = 31U; phy_reg_init[27].val = 1U; phy_reg_init[28].reg = 16U; phy_reg_init[28].val = 62491U; phy_reg_init[29].reg = 20U; phy_reg_init[29].val = 64340U; phy_reg_init[30].reg = 24U; phy_reg_init[30].val = 62919U; phy_reg_init[31].reg = 31U; phy_reg_init[31].val = 0U; phy_reg_init[32].reg = 31U; phy_reg_init[32].val = 1U; phy_reg_init[33].reg = 23U; phy_reg_init[33].val = 3264U; phy_reg_init[34].reg = 31U; phy_reg_init[34].val = 0U; rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 35); rtl8169scd_hw_phy_config_quirk(tp); } return; } } static void rtl8169sce_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init[42U] ; { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 1U; phy_reg_init[1].reg = 4U; phy_reg_init[1].val = 0U; phy_reg_init[2].reg = 3U; phy_reg_init[2].val = 161U; phy_reg_init[3].reg = 2U; phy_reg_init[3].val = 8U; phy_reg_init[4].reg = 1U; phy_reg_init[4].val = 288U; phy_reg_init[5].reg = 0U; phy_reg_init[5].val = 4096U; phy_reg_init[6].reg = 4U; phy_reg_init[6].val = 2048U; phy_reg_init[7].reg = 4U; phy_reg_init[7].val = 36864U; phy_reg_init[8].reg = 3U; phy_reg_init[8].val = 32815U; phy_reg_init[9].reg = 2U; phy_reg_init[9].val = 20226U; phy_reg_init[10].reg = 1U; phy_reg_init[10].val = 1033U; phy_reg_init[11].reg = 0U; phy_reg_init[11].val = 61593U; phy_reg_init[12].reg = 4U; phy_reg_init[12].val = 38912U; phy_reg_init[13].reg = 4U; phy_reg_init[13].val = 40960U; phy_reg_init[14].reg = 3U; phy_reg_init[14].val = 57089U; phy_reg_init[15].reg = 2U; phy_reg_init[15].val = 57120U; phy_reg_init[16].reg = 1U; phy_reg_init[16].val = 65429U; phy_reg_init[17].reg = 0U; phy_reg_init[17].val = 47616U; phy_reg_init[18].reg = 4U; phy_reg_init[18].val = 43008U; phy_reg_init[19].reg = 4U; phy_reg_init[19].val = 61440U; phy_reg_init[20].reg = 3U; phy_reg_init[20].val = 57089U; phy_reg_init[21].reg = 2U; phy_reg_init[21].val = 57120U; phy_reg_init[22].reg = 1U; phy_reg_init[22].val = 4122U; phy_reg_init[23].reg = 0U; phy_reg_init[23].val = 41215U; phy_reg_init[24].reg = 4U; phy_reg_init[24].val = 63488U; phy_reg_init[25].reg = 4U; phy_reg_init[25].val = 0U; phy_reg_init[26].reg = 31U; phy_reg_init[26].val = 0U; phy_reg_init[27].reg = 31U; phy_reg_init[27].val = 1U; phy_reg_init[28].reg = 11U; phy_reg_init[28].val = 33920U; phy_reg_init[29].reg = 31U; phy_reg_init[29].val = 0U; phy_reg_init[30].reg = 31U; phy_reg_init[30].val = 1U; phy_reg_init[31].reg = 24U; phy_reg_init[31].val = 26567U; phy_reg_init[32].reg = 4U; phy_reg_init[32].val = 8192U; phy_reg_init[33].reg = 3U; phy_reg_init[33].val = 47U; phy_reg_init[34].reg = 2U; phy_reg_init[34].val = 17248U; phy_reg_init[35].reg = 1U; phy_reg_init[35].val = 265U; phy_reg_init[36].reg = 0U; phy_reg_init[36].val = 12322U; phy_reg_init[37].reg = 4U; phy_reg_init[37].val = 10240U; phy_reg_init[38].reg = 31U; phy_reg_init[38].val = 0U; phy_reg_init[39].reg = 31U; phy_reg_init[39].val = 1U; phy_reg_init[40].reg = 23U; phy_reg_init[40].val = 3264U; phy_reg_init[41].reg = 31U; phy_reg_init[41].val = 0U; rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 42); } return; } } static void rtl8168bb_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init[2U] ; { { phy_reg_init[0].reg = 16U; phy_reg_init[0].val = 62491U; phy_reg_init[1].reg = 31U; phy_reg_init[1].val = 0U; rtl_writephy(tp, 31, 1U); rtl_patchphy(tp, 22, 1); rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 2); } return; } } static void rtl8168bef_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init[3U] ; { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 1U; phy_reg_init[1].reg = 16U; phy_reg_init[1].val = 62491U; phy_reg_init[2].reg = 31U; phy_reg_init[2].val = 0U; rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 3); } return; } } static void rtl8168cp_1_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init[5U] ; { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 0U; phy_reg_init[1].reg = 29U; phy_reg_init[1].val = 3840U; phy_reg_init[2].reg = 31U; phy_reg_init[2].val = 2U; phy_reg_init[3].reg = 12U; phy_reg_init[3].val = 7880U; phy_reg_init[4].reg = 31U; phy_reg_init[4].val = 0U; rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 5); } return; } } static void rtl8168cp_2_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init[3U] ; { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 1U; phy_reg_init[1].reg = 29U; phy_reg_init[1].val = 15768U; phy_reg_init[2].reg = 31U; phy_reg_init[2].val = 0U; rtl_writephy(tp, 31, 0U); rtl_patchphy(tp, 20, 32); rtl_patchphy(tp, 13, 32); rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 3); } return; } } static void rtl8168c_1_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init[17U] ; { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 1U; phy_reg_init[1].reg = 18U; phy_reg_init[1].val = 8960U; phy_reg_init[2].reg = 31U; phy_reg_init[2].val = 2U; phy_reg_init[3].reg = 0U; phy_reg_init[3].val = 35028U; phy_reg_init[4].reg = 1U; phy_reg_init[4].val = 33457U; phy_reg_init[5].reg = 3U; phy_reg_init[5].val = 28674U; phy_reg_init[6].reg = 8U; phy_reg_init[6].val = 40496U; phy_reg_init[7].reg = 9U; phy_reg_init[7].val = 496U; phy_reg_init[8].reg = 10U; phy_reg_init[8].val = 21760U; phy_reg_init[9].reg = 12U; phy_reg_init[9].val = 200U; phy_reg_init[10].reg = 31U; phy_reg_init[10].val = 3U; phy_reg_init[11].reg = 18U; phy_reg_init[11].val = 49302U; phy_reg_init[12].reg = 22U; phy_reg_init[12].val = 10U; phy_reg_init[13].reg = 31U; phy_reg_init[13].val = 0U; phy_reg_init[14].reg = 31U; phy_reg_init[14].val = 0U; phy_reg_init[15].reg = 9U; phy_reg_init[15].val = 8192U; phy_reg_init[16].reg = 9U; phy_reg_init[16].val = 0U; rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 17); rtl_patchphy(tp, 20, 32); rtl_patchphy(tp, 13, 32); rtl_writephy(tp, 31, 0U); } return; } } static void rtl8168c_2_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init[15U] ; { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 1U; phy_reg_init[1].reg = 18U; phy_reg_init[1].val = 8960U; phy_reg_init[2].reg = 3U; phy_reg_init[2].val = 32815U; phy_reg_init[3].reg = 2U; phy_reg_init[3].val = 20226U; phy_reg_init[4].reg = 1U; phy_reg_init[4].val = 1033U; phy_reg_init[5].reg = 0U; phy_reg_init[5].val = 61593U; phy_reg_init[6].reg = 4U; phy_reg_init[6].val = 38912U; phy_reg_init[7].reg = 4U; phy_reg_init[7].val = 36864U; phy_reg_init[8].reg = 29U; phy_reg_init[8].val = 15768U; phy_reg_init[9].reg = 31U; phy_reg_init[9].val = 2U; phy_reg_init[10].reg = 12U; phy_reg_init[10].val = 32440U; phy_reg_init[11].reg = 6U; phy_reg_init[11].val = 1889U; phy_reg_init[12].reg = 31U; phy_reg_init[12].val = 3U; phy_reg_init[13].reg = 22U; phy_reg_init[13].val = 3850U; phy_reg_init[14].reg = 31U; phy_reg_init[14].val = 0U; rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 15); rtl_patchphy(tp, 22, 1); rtl_patchphy(tp, 20, 32); rtl_patchphy(tp, 13, 32); rtl_writephy(tp, 31, 0U); } return; } } static void rtl8168c_3_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init[9U] ; { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 1U; phy_reg_init[1].reg = 18U; phy_reg_init[1].val = 8960U; phy_reg_init[2].reg = 29U; phy_reg_init[2].val = 15768U; phy_reg_init[3].reg = 31U; phy_reg_init[3].val = 2U; phy_reg_init[4].reg = 12U; phy_reg_init[4].val = 32440U; phy_reg_init[5].reg = 6U; phy_reg_init[5].val = 21601U; phy_reg_init[6].reg = 31U; phy_reg_init[6].val = 3U; phy_reg_init[7].reg = 22U; phy_reg_init[7].val = 3850U; phy_reg_init[8].reg = 31U; phy_reg_init[8].val = 0U; rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 9); rtl_patchphy(tp, 22, 1); rtl_patchphy(tp, 20, 32); rtl_patchphy(tp, 13, 32); rtl_writephy(tp, 31, 0U); } return; } } static void rtl8168c_4_hw_phy_config(struct rtl8169_private *tp ) { { { rtl8168c_3_hw_phy_config(tp); } return; } } static void rtl8168d_1_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init_0[26U] ; struct phy_reg phy_reg_init[6U] ; int val ; u32 set[8U] ; int i ; struct phy_reg phy_reg_init___0[5U] ; u8 tmp ; { { phy_reg_init_0[0].reg = 31U; phy_reg_init_0[0].val = 1U; phy_reg_init_0[1].reg = 6U; phy_reg_init_0[1].val = 16484U; phy_reg_init_0[2].reg = 7U; phy_reg_init_0[2].val = 10339U; phy_reg_init_0[3].reg = 8U; phy_reg_init_0[3].val = 1436U; phy_reg_init_0[4].reg = 9U; phy_reg_init_0[4].val = 9908U; phy_reg_init_0[5].reg = 10U; phy_reg_init_0[5].val = 27161U; phy_reg_init_0[6].reg = 11U; phy_reg_init_0[6].val = 56520U; phy_reg_init_0[7].reg = 16U; phy_reg_init_0[7].val = 61549U; phy_reg_init_0[8].reg = 20U; phy_reg_init_0[8].val = 32616U; phy_reg_init_0[9].reg = 24U; phy_reg_init_0[9].val = 32729U; phy_reg_init_0[10].reg = 28U; phy_reg_init_0[10].val = 61695U; phy_reg_init_0[11].reg = 29U; phy_reg_init_0[11].val = 15772U; phy_reg_init_0[12].reg = 31U; phy_reg_init_0[12].val = 3U; phy_reg_init_0[13].reg = 18U; phy_reg_init_0[13].val = 62623U; phy_reg_init_0[14].reg = 19U; phy_reg_init_0[14].val = 1803U; phy_reg_init_0[15].reg = 26U; phy_reg_init_0[15].val = 1453U; phy_reg_init_0[16].reg = 20U; phy_reg_init_0[16].val = 38080U; phy_reg_init_0[17].reg = 31U; phy_reg_init_0[17].val = 2U; phy_reg_init_0[18].reg = 6U; phy_reg_init_0[18].val = 21857U; phy_reg_init_0[19].reg = 31U; phy_reg_init_0[19].val = 5U; phy_reg_init_0[20].reg = 5U; phy_reg_init_0[20].val = 33586U; phy_reg_init_0[21].reg = 6U; phy_reg_init_0[21].val = 21857U; phy_reg_init_0[22].reg = 31U; phy_reg_init_0[22].val = 1U; phy_reg_init_0[23].reg = 23U; phy_reg_init_0[23].val = 3264U; phy_reg_init_0[24].reg = 31U; phy_reg_init_0[24].val = 0U; phy_reg_init_0[25].reg = 13U; phy_reg_init_0[25].val = 63616U; rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init_0), 26); rtl_writephy(tp, 31, 2U); rtl_w1w0_phy(tp, 11, 16, 239); rtl_w1w0_phy(tp, 12, 41472, 23808); tmp = rtl8168d_efuse_read(tp, 1); } if ((unsigned int )tmp == 177U) { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 2U; phy_reg_init[1].reg = 5U; phy_reg_init[1].val = 26266U; phy_reg_init[2].reg = 31U; phy_reg_init[2].val = 5U; phy_reg_init[3].reg = 5U; phy_reg_init[3].val = 33584U; phy_reg_init[4].reg = 6U; phy_reg_init[4].val = 26266U; phy_reg_init[5].reg = 31U; phy_reg_init[5].val = 2U; rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 6); val = rtl_readphy(tp, 13); } if ((val & 255) != 108) { { set[0] = 101U; set[1] = 102U; set[2] = 103U; set[3] = 104U; set[4] = 105U; set[5] = 106U; set[6] = 107U; set[7] = 108U; rtl_writephy(tp, 31, 2U); val = val & 65280; i = 0; } goto ldv_49019; ldv_49018: { rtl_writephy(tp, 13, (unsigned int )val | set[i]); i = i + 1; } ldv_49019: ; if ((unsigned int )i <= 7U) { goto ldv_49018; } else { } } else { } } else { { phy_reg_init___0[0].reg = 31U; phy_reg_init___0[0].val = 2U; phy_reg_init___0[1].reg = 5U; phy_reg_init___0[1].val = 26210U; phy_reg_init___0[2].reg = 31U; phy_reg_init___0[2].val = 5U; phy_reg_init___0[3].reg = 5U; phy_reg_init___0[3].val = 33584U; phy_reg_init___0[4].reg = 6U; phy_reg_init___0[4].val = 26210U; rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init___0), 5); } } { rtl_writephy(tp, 31, 2U); rtl_patchphy(tp, 13, 768); rtl_patchphy(tp, 15, 16); rtl_writephy(tp, 31, 2U); rtl_w1w0_phy(tp, 2, 256, 1536); rtl_w1w0_phy(tp, 3, 0, 57344); rtl_writephy(tp, 31, 5U); rtl_writephy(tp, 5, 27U); rtl_apply_firmware_cond(tp, 6, 48896); rtl_writephy(tp, 31, 0U); } return; } } static void rtl8168d_2_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init_0[26U] ; struct phy_reg phy_reg_init[6U] ; int val ; u32 set[8U] ; int i ; struct phy_reg phy_reg_init___0[5U] ; u8 tmp ; { { phy_reg_init_0[0].reg = 31U; phy_reg_init_0[0].val = 1U; phy_reg_init_0[1].reg = 6U; phy_reg_init_0[1].val = 16484U; phy_reg_init_0[2].reg = 7U; phy_reg_init_0[2].val = 10339U; phy_reg_init_0[3].reg = 8U; phy_reg_init_0[3].val = 1436U; phy_reg_init_0[4].reg = 9U; phy_reg_init_0[4].val = 9908U; phy_reg_init_0[5].reg = 10U; phy_reg_init_0[5].val = 27161U; phy_reg_init_0[6].reg = 11U; phy_reg_init_0[6].val = 56520U; phy_reg_init_0[7].reg = 16U; phy_reg_init_0[7].val = 61549U; phy_reg_init_0[8].reg = 20U; phy_reg_init_0[8].val = 32616U; phy_reg_init_0[9].reg = 24U; phy_reg_init_0[9].val = 32729U; phy_reg_init_0[10].reg = 28U; phy_reg_init_0[10].val = 61695U; phy_reg_init_0[11].reg = 29U; phy_reg_init_0[11].val = 15772U; phy_reg_init_0[12].reg = 31U; phy_reg_init_0[12].val = 3U; phy_reg_init_0[13].reg = 18U; phy_reg_init_0[13].val = 62623U; phy_reg_init_0[14].reg = 19U; phy_reg_init_0[14].val = 1803U; phy_reg_init_0[15].reg = 26U; phy_reg_init_0[15].val = 1453U; phy_reg_init_0[16].reg = 20U; phy_reg_init_0[16].val = 38080U; phy_reg_init_0[17].reg = 31U; phy_reg_init_0[17].val = 2U; phy_reg_init_0[18].reg = 6U; phy_reg_init_0[18].val = 21857U; phy_reg_init_0[19].reg = 31U; phy_reg_init_0[19].val = 5U; phy_reg_init_0[20].reg = 5U; phy_reg_init_0[20].val = 33586U; phy_reg_init_0[21].reg = 6U; phy_reg_init_0[21].val = 21857U; phy_reg_init_0[22].reg = 31U; phy_reg_init_0[22].val = 1U; phy_reg_init_0[23].reg = 23U; phy_reg_init_0[23].val = 3264U; phy_reg_init_0[24].reg = 31U; phy_reg_init_0[24].val = 0U; phy_reg_init_0[25].reg = 13U; phy_reg_init_0[25].val = 63616U; rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init_0), 26); tmp = rtl8168d_efuse_read(tp, 1); } if ((unsigned int )tmp == 177U) { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 2U; phy_reg_init[1].reg = 5U; phy_reg_init[1].val = 26266U; phy_reg_init[2].reg = 31U; phy_reg_init[2].val = 5U; phy_reg_init[3].reg = 5U; phy_reg_init[3].val = 33584U; phy_reg_init[4].reg = 6U; phy_reg_init[4].val = 26266U; phy_reg_init[5].reg = 31U; phy_reg_init[5].val = 2U; rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 6); val = rtl_readphy(tp, 13); } if ((val & 255) != 108) { { set[0] = 101U; set[1] = 102U; set[2] = 103U; set[3] = 104U; set[4] = 105U; set[5] = 106U; set[6] = 107U; set[7] = 108U; rtl_writephy(tp, 31, 2U); val = val & 65280; i = 0; } goto ldv_49039; ldv_49038: { rtl_writephy(tp, 13, (unsigned int )val | set[i]); i = i + 1; } ldv_49039: ; if ((unsigned int )i <= 7U) { goto ldv_49038; } else { } } else { } } else { { phy_reg_init___0[0].reg = 31U; phy_reg_init___0[0].val = 2U; phy_reg_init___0[1].reg = 5U; phy_reg_init___0[1].val = 9794U; phy_reg_init___0[2].reg = 31U; phy_reg_init___0[2].val = 5U; phy_reg_init___0[3].reg = 5U; phy_reg_init___0[3].val = 33584U; phy_reg_init___0[4].reg = 6U; phy_reg_init___0[4].val = 9794U; rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init___0), 5); } } { rtl_writephy(tp, 31, 2U); rtl_w1w0_phy(tp, 2, 256, 1536); rtl_w1w0_phy(tp, 3, 0, 57344); rtl_writephy(tp, 31, 2U); rtl_patchphy(tp, 15, 23); rtl_writephy(tp, 31, 5U); rtl_writephy(tp, 5, 27U); rtl_apply_firmware_cond(tp, 6, 45824); rtl_writephy(tp, 31, 0U); } return; } } static void rtl8168d_3_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init[48U] ; { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 2U; phy_reg_init[1].reg = 16U; phy_reg_init[1].val = 8U; phy_reg_init[2].reg = 13U; phy_reg_init[2].val = 108U; phy_reg_init[3].reg = 31U; phy_reg_init[3].val = 0U; phy_reg_init[4].reg = 13U; phy_reg_init[4].val = 63616U; phy_reg_init[5].reg = 31U; phy_reg_init[5].val = 1U; phy_reg_init[6].reg = 23U; phy_reg_init[6].val = 3264U; phy_reg_init[7].reg = 31U; phy_reg_init[7].val = 1U; phy_reg_init[8].reg = 11U; phy_reg_init[8].val = 42200U; phy_reg_init[9].reg = 9U; phy_reg_init[9].val = 10268U; phy_reg_init[10].reg = 7U; phy_reg_init[10].val = 10371U; phy_reg_init[11].reg = 10U; phy_reg_init[11].val = 27445U; phy_reg_init[12].reg = 29U; phy_reg_init[12].val = 15780U; phy_reg_init[13].reg = 28U; phy_reg_init[13].val = 61437U; phy_reg_init[14].reg = 20U; phy_reg_init[14].val = 32594U; phy_reg_init[15].reg = 24U; phy_reg_init[15].val = 32710U; phy_reg_init[16].reg = 8U; phy_reg_init[16].val = 1537U; phy_reg_init[17].reg = 6U; phy_reg_init[17].val = 16483U; phy_reg_init[18].reg = 16U; phy_reg_init[18].val = 61556U; phy_reg_init[19].reg = 31U; phy_reg_init[19].val = 3U; phy_reg_init[20].reg = 19U; phy_reg_init[20].val = 1929U; phy_reg_init[21].reg = 18U; phy_reg_init[21].val = 62653U; phy_reg_init[22].reg = 26U; phy_reg_init[22].val = 1277U; phy_reg_init[23].reg = 20U; phy_reg_init[23].val = 33968U; phy_reg_init[24].reg = 31U; phy_reg_init[24].val = 0U; phy_reg_init[25].reg = 0U; phy_reg_init[25].val = 37376U; phy_reg_init[26].reg = 31U; phy_reg_init[26].val = 5U; phy_reg_init[27].reg = 1U; phy_reg_init[27].val = 832U; phy_reg_init[28].reg = 31U; phy_reg_init[28].val = 1U; phy_reg_init[29].reg = 4U; phy_reg_init[29].val = 16384U; phy_reg_init[30].reg = 3U; phy_reg_init[30].val = 7457U; phy_reg_init[31].reg = 2U; phy_reg_init[31].val = 3122U; phy_reg_init[32].reg = 1U; phy_reg_init[32].val = 512U; phy_reg_init[33].reg = 0U; phy_reg_init[33].val = 21844U; phy_reg_init[34].reg = 4U; phy_reg_init[34].val = 18432U; phy_reg_init[35].reg = 4U; phy_reg_init[35].val = 16384U; phy_reg_init[36].reg = 4U; phy_reg_init[36].val = 61440U; phy_reg_init[37].reg = 3U; phy_reg_init[37].val = 57089U; phy_reg_init[38].reg = 2U; phy_reg_init[38].val = 57120U; phy_reg_init[39].reg = 1U; phy_reg_init[39].val = 4122U; phy_reg_init[40].reg = 0U; phy_reg_init[40].val = 41215U; phy_reg_init[41].reg = 4U; phy_reg_init[41].val = 63488U; phy_reg_init[42].reg = 4U; phy_reg_init[42].val = 61440U; phy_reg_init[43].reg = 31U; phy_reg_init[43].val = 0U; phy_reg_init[44].reg = 31U; phy_reg_init[44].val = 7U; phy_reg_init[45].reg = 30U; phy_reg_init[45].val = 35U; phy_reg_init[46].reg = 22U; phy_reg_init[46].val = 0U; phy_reg_init[47].reg = 31U; phy_reg_init[47].val = 0U; rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 48); } return; } } static void rtl8168d_4_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init[6U] ; { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 1U; phy_reg_init[1].reg = 23U; phy_reg_init[1].val = 3264U; phy_reg_init[2].reg = 31U; phy_reg_init[2].val = 7U; phy_reg_init[3].reg = 30U; phy_reg_init[3].val = 45U; phy_reg_init[4].reg = 24U; phy_reg_init[4].val = 64U; phy_reg_init[5].reg = 31U; phy_reg_init[5].val = 0U; rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 6); rtl_patchphy(tp, 13, 32); } return; } } static void rtl8168e_1_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init[19U] ; { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 5U; phy_reg_init[1].reg = 5U; phy_reg_init[1].val = 35712U; phy_reg_init[2].reg = 6U; phy_reg_init[2].val = 51350U; phy_reg_init[3].reg = 31U; phy_reg_init[3].val = 0U; phy_reg_init[4].reg = 31U; phy_reg_init[4].val = 1U; phy_reg_init[5].reg = 11U; phy_reg_init[5].val = 27680U; phy_reg_init[6].reg = 7U; phy_reg_init[6].val = 10354U; phy_reg_init[7].reg = 28U; phy_reg_init[7].val = 61439U; phy_reg_init[8].reg = 31U; phy_reg_init[8].val = 3U; phy_reg_init[9].reg = 20U; phy_reg_init[9].val = 25632U; phy_reg_init[10].reg = 31U; phy_reg_init[10].val = 0U; phy_reg_init[11].reg = 31U; phy_reg_init[11].val = 7U; phy_reg_init[12].reg = 30U; phy_reg_init[12].val = 47U; phy_reg_init[13].reg = 21U; phy_reg_init[13].val = 6425U; phy_reg_init[14].reg = 31U; phy_reg_init[14].val = 0U; phy_reg_init[15].reg = 31U; phy_reg_init[15].val = 7U; phy_reg_init[16].reg = 30U; phy_reg_init[16].val = 172U; phy_reg_init[17].reg = 24U; phy_reg_init[17].val = 6U; phy_reg_init[18].reg = 31U; phy_reg_init[18].val = 0U; rtl_apply_firmware(tp); rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 19); rtl_writephy(tp, 31, 7U); rtl_writephy(tp, 30, 35U); rtl_w1w0_phy(tp, 23, 6, 0); rtl_writephy(tp, 31, 0U); rtl_writephy(tp, 31, 2U); rtl_w1w0_phy(tp, 8, 32768, 32512); rtl_writephy(tp, 31, 0U); rtl_writephy(tp, 31, 7U); rtl_writephy(tp, 30, 45U); rtl_w1w0_phy(tp, 24, 80, 0); rtl_writephy(tp, 31, 0U); rtl_w1w0_phy(tp, 20, 32768, 0); rtl_writephy(tp, 31, 5U); rtl_writephy(tp, 5, 35718U); rtl_w1w0_phy(tp, 6, 1, 0); rtl_writephy(tp, 31, 0U); rtl_writephy(tp, 31, 5U); rtl_writephy(tp, 5, 35717U); rtl_w1w0_phy(tp, 6, 0, 8192); rtl_writephy(tp, 31, 7U); rtl_writephy(tp, 30, 32U); rtl_w1w0_phy(tp, 21, 0, 4352); rtl_writephy(tp, 31, 6U); rtl_writephy(tp, 0, 23040U); rtl_writephy(tp, 31, 0U); rtl_writephy(tp, 13, 7U); rtl_writephy(tp, 14, 60U); rtl_writephy(tp, 13, 16391U); rtl_writephy(tp, 14, 0U); rtl_writephy(tp, 13, 0U); } return; } } static void rtl_rar_exgmac_set(struct rtl8169_private *tp , u8 *addr ) { u16 w[3U] ; struct exgmac_reg e[4U] ; { { w[0] = (unsigned short )((int )((short )*addr) | (int )((short )((int )*(addr + 1UL) << 8))); w[1] = (unsigned short )((int )((short )*(addr + 2UL)) | (int )((short )((int )*(addr + 3UL) << 8))); w[2] = (unsigned short )((int )((short )*(addr + 4UL)) | (int )((short )((int )*(addr + 5UL) << 8))); e[0].addr = 224U; e[0].mask = 61440U; e[0].val = (unsigned int )((int )w[0] | ((int )w[1] << 16)); e[1].addr = 228U; e[1].mask = 61440U; e[1].val = (unsigned int )w[2]; e[2].addr = 240U; e[2].mask = 61440U; e[2].val = (unsigned int )((int )w[0] << 16); e[3].addr = 244U; e[3].mask = 61440U; e[3].val = (unsigned int )((int )w[1] | ((int )w[2] << 16)); rtl_write_exgmac_batch(tp, (struct exgmac_reg const *)(& e), 4); } return; } } static void rtl8168e_2_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init[19U] ; { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 4U; phy_reg_init[1].reg = 31U; phy_reg_init[1].val = 7U; phy_reg_init[2].reg = 30U; phy_reg_init[2].val = 172U; phy_reg_init[3].reg = 24U; phy_reg_init[3].val = 6U; phy_reg_init[4].reg = 31U; phy_reg_init[4].val = 2U; phy_reg_init[5].reg = 31U; phy_reg_init[5].val = 0U; phy_reg_init[6].reg = 31U; phy_reg_init[6].val = 0U; phy_reg_init[7].reg = 31U; phy_reg_init[7].val = 3U; phy_reg_init[8].reg = 9U; phy_reg_init[8].val = 41487U; phy_reg_init[9].reg = 31U; phy_reg_init[9].val = 0U; phy_reg_init[10].reg = 31U; phy_reg_init[10].val = 0U; phy_reg_init[11].reg = 31U; phy_reg_init[11].val = 5U; phy_reg_init[12].reg = 5U; phy_reg_init[12].val = 35675U; phy_reg_init[13].reg = 6U; phy_reg_init[13].val = 37410U; phy_reg_init[14].reg = 5U; phy_reg_init[14].val = 35693U; phy_reg_init[15].reg = 6U; phy_reg_init[15].val = 32768U; phy_reg_init[16].reg = 5U; phy_reg_init[16].val = 35702U; phy_reg_init[17].reg = 6U; phy_reg_init[17].val = 32768U; phy_reg_init[18].reg = 31U; phy_reg_init[18].val = 0U; rtl_apply_firmware(tp); rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 19); rtl_writephy(tp, 31, 5U); rtl_writephy(tp, 5, 35712U); rtl_w1w0_phy(tp, 23, 6, 0); rtl_writephy(tp, 31, 0U); rtl_writephy(tp, 31, 4U); rtl_writephy(tp, 31, 7U); rtl_writephy(tp, 30, 45U); rtl_w1w0_phy(tp, 24, 16, 0); rtl_writephy(tp, 31, 2U); rtl_writephy(tp, 31, 0U); rtl_w1w0_phy(tp, 20, 32768, 0); rtl_writephy(tp, 31, 5U); rtl_writephy(tp, 5, 35718U); rtl_w1w0_phy(tp, 6, 1, 0); rtl_writephy(tp, 31, 0U); rtl_writephy(tp, 31, 5U); rtl_writephy(tp, 5, 35717U); rtl_w1w0_phy(tp, 6, 16384, 0); rtl_writephy(tp, 31, 0U); rtl_w1w0_eri(tp, 432, 61440U, 0U, 3U, 0); rtl_writephy(tp, 31, 5U); rtl_writephy(tp, 5, 35717U); rtl_w1w0_phy(tp, 6, 0, 8192); rtl_writephy(tp, 31, 4U); rtl_writephy(tp, 31, 7U); rtl_writephy(tp, 30, 32U); rtl_w1w0_phy(tp, 21, 0, 256); rtl_writephy(tp, 31, 2U); rtl_writephy(tp, 31, 0U); rtl_writephy(tp, 13, 7U); rtl_writephy(tp, 14, 60U); rtl_writephy(tp, 13, 16391U); rtl_writephy(tp, 14, 0U); rtl_writephy(tp, 13, 0U); rtl_writephy(tp, 31, 3U); rtl_w1w0_phy(tp, 25, 0, 1); rtl_w1w0_phy(tp, 16, 0, 1024); rtl_writephy(tp, 31, 0U); rtl_rar_exgmac_set(tp, (tp->dev)->dev_addr); } return; } } static void rtl8168f_hw_phy_config(struct rtl8169_private *tp ) { { { rtl_writephy(tp, 31, 5U); rtl_writephy(tp, 5, 35712U); rtl_w1w0_phy(tp, 6, 6, 0); rtl_writephy(tp, 31, 0U); rtl_writephy(tp, 31, 7U); rtl_writephy(tp, 30, 45U); rtl_w1w0_phy(tp, 24, 16, 0); rtl_writephy(tp, 31, 0U); rtl_w1w0_phy(tp, 20, 32768, 0); rtl_writephy(tp, 31, 5U); rtl_writephy(tp, 5, 35718U); rtl_w1w0_phy(tp, 6, 1, 0); rtl_writephy(tp, 31, 0U); } return; } } static void rtl8168f_1_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init[25U] ; { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 3U; phy_reg_init[1].reg = 9U; phy_reg_init[1].val = 41487U; phy_reg_init[2].reg = 31U; phy_reg_init[2].val = 0U; phy_reg_init[3].reg = 31U; phy_reg_init[3].val = 5U; phy_reg_init[4].reg = 5U; phy_reg_init[4].val = 35669U; phy_reg_init[5].reg = 6U; phy_reg_init[5].val = 0U; phy_reg_init[6].reg = 5U; phy_reg_init[6].val = 35678U; phy_reg_init[7].reg = 6U; phy_reg_init[7].val = 0U; phy_reg_init[8].reg = 5U; phy_reg_init[8].val = 35687U; phy_reg_init[9].reg = 6U; phy_reg_init[9].val = 0U; phy_reg_init[10].reg = 5U; phy_reg_init[10].val = 35696U; phy_reg_init[11].reg = 6U; phy_reg_init[11].val = 0U; phy_reg_init[12].reg = 31U; phy_reg_init[12].val = 0U; phy_reg_init[13].reg = 31U; phy_reg_init[13].val = 7U; phy_reg_init[14].reg = 30U; phy_reg_init[14].val = 120U; phy_reg_init[15].reg = 23U; phy_reg_init[15].val = 0U; phy_reg_init[16].reg = 25U; phy_reg_init[16].val = 251U; phy_reg_init[17].reg = 31U; phy_reg_init[17].val = 0U; phy_reg_init[18].reg = 31U; phy_reg_init[18].val = 5U; phy_reg_init[19].reg = 5U; phy_reg_init[19].val = 35705U; phy_reg_init[20].reg = 6U; phy_reg_init[20].val = 43520U; phy_reg_init[21].reg = 31U; phy_reg_init[21].val = 0U; phy_reg_init[22].reg = 31U; phy_reg_init[22].val = 3U; phy_reg_init[23].reg = 1U; phy_reg_init[23].val = 12938U; phy_reg_init[24].reg = 31U; phy_reg_init[24].val = 0U; rtl_apply_firmware(tp); rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 25); rtl8168f_hw_phy_config(tp); rtl_writephy(tp, 31, 5U); rtl_writephy(tp, 5, 35717U); rtl_w1w0_phy(tp, 6, 16384, 0); rtl_writephy(tp, 31, 0U); } return; } } static void rtl8168f_2_hw_phy_config(struct rtl8169_private *tp ) { { { rtl_apply_firmware(tp); rtl8168f_hw_phy_config(tp); } return; } } static void rtl8411_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init[25U] ; { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 3U; phy_reg_init[1].reg = 9U; phy_reg_init[1].val = 41487U; phy_reg_init[2].reg = 31U; phy_reg_init[2].val = 0U; phy_reg_init[3].reg = 31U; phy_reg_init[3].val = 5U; phy_reg_init[4].reg = 5U; phy_reg_init[4].val = 35669U; phy_reg_init[5].reg = 6U; phy_reg_init[5].val = 0U; phy_reg_init[6].reg = 5U; phy_reg_init[6].val = 35678U; phy_reg_init[7].reg = 6U; phy_reg_init[7].val = 0U; phy_reg_init[8].reg = 5U; phy_reg_init[8].val = 35687U; phy_reg_init[9].reg = 6U; phy_reg_init[9].val = 0U; phy_reg_init[10].reg = 5U; phy_reg_init[10].val = 35696U; phy_reg_init[11].reg = 6U; phy_reg_init[11].val = 0U; phy_reg_init[12].reg = 31U; phy_reg_init[12].val = 0U; phy_reg_init[13].reg = 31U; phy_reg_init[13].val = 7U; phy_reg_init[14].reg = 30U; phy_reg_init[14].val = 120U; phy_reg_init[15].reg = 23U; phy_reg_init[15].val = 0U; phy_reg_init[16].reg = 25U; phy_reg_init[16].val = 170U; phy_reg_init[17].reg = 31U; phy_reg_init[17].val = 0U; phy_reg_init[18].reg = 31U; phy_reg_init[18].val = 5U; phy_reg_init[19].reg = 5U; phy_reg_init[19].val = 35705U; phy_reg_init[20].reg = 6U; phy_reg_init[20].val = 43520U; phy_reg_init[21].reg = 31U; phy_reg_init[21].val = 0U; phy_reg_init[22].reg = 31U; phy_reg_init[22].val = 3U; phy_reg_init[23].reg = 1U; phy_reg_init[23].val = 12938U; phy_reg_init[24].reg = 31U; phy_reg_init[24].val = 0U; rtl_apply_firmware(tp); rtl8168f_hw_phy_config(tp); rtl_writephy(tp, 31, 5U); rtl_writephy(tp, 5, 35717U); rtl_w1w0_phy(tp, 6, 16384, 0); rtl_writephy(tp, 31, 0U); rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 25); rtl_writephy(tp, 31, 5U); rtl_writephy(tp, 5, 35668U); rtl_w1w0_phy(tp, 6, 0, 2048); rtl_writephy(tp, 5, 35677U); rtl_w1w0_phy(tp, 6, 0, 2048); rtl_writephy(tp, 5, 35452U); rtl_w1w0_phy(tp, 6, 0, 256); rtl_writephy(tp, 5, 35455U); rtl_w1w0_phy(tp, 6, 256, 0); rtl_writephy(tp, 5, 35458U); rtl_w1w0_phy(tp, 6, 0, 256); rtl_writephy(tp, 5, 35461U); rtl_w1w0_phy(tp, 6, 0, 256); rtl_writephy(tp, 5, 35464U); rtl_w1w0_phy(tp, 6, 0, 256); rtl_writephy(tp, 31, 0U); rtl_writephy(tp, 31, 5U); rtl_writephy(tp, 5, 35717U); rtl_w1w0_phy(tp, 6, 32768, 0); rtl_writephy(tp, 31, 0U); rtl_w1w0_eri(tp, 432, 4096U, 0U, 3U, 0); rtl_writephy(tp, 31, 5U); rtl_writephy(tp, 5, 35717U); rtl_w1w0_phy(tp, 6, 0, 8192); rtl_writephy(tp, 31, 4U); rtl_writephy(tp, 31, 7U); rtl_writephy(tp, 30, 32U); rtl_w1w0_phy(tp, 21, 0, 256); rtl_writephy(tp, 31, 0U); rtl_writephy(tp, 13, 7U); rtl_writephy(tp, 14, 60U); rtl_writephy(tp, 13, 16391U); rtl_writephy(tp, 14, 0U); rtl_writephy(tp, 13, 0U); rtl_writephy(tp, 31, 3U); rtl_w1w0_phy(tp, 25, 0, 1); rtl_w1w0_phy(tp, 16, 0, 1024); rtl_writephy(tp, 31, 0U); } return; } } static void rtl8168g_1_hw_phy_config(struct rtl8169_private *tp ) { int tmp ; int tmp___0 ; int tmp___1 ; { { rtl_apply_firmware(tp); rtl_writephy(tp, 31, 2630U); tmp = rtl_readphy(tp, 16); } if ((tmp & 256) != 0) { { rtl_writephy(tp, 31, 3020U); rtl_w1w0_phy(tp, 18, 0, 32768); } } else { { rtl_writephy(tp, 31, 3020U); rtl_w1w0_phy(tp, 18, 32768, 0); } } { rtl_writephy(tp, 31, 2630U); tmp___0 = rtl_readphy(tp, 19); } if ((tmp___0 & 256) != 0) { { rtl_writephy(tp, 31, 3137U); rtl_w1w0_phy(tp, 21, 2, 0); } } else { { rtl_writephy(tp, 31, 3137U); rtl_w1w0_phy(tp, 21, 0, 2); } } { rtl_writephy(tp, 31, 2628U); rtl_w1w0_phy(tp, 17, 12, 0); rtl_writephy(tp, 31, 3020U); rtl_w1w0_phy(tp, 20, 256, 0); rtl_writephy(tp, 31, 2628U); rtl_w1w0_phy(tp, 17, 192, 0); rtl_writephy(tp, 31, 2627U); rtl_writephy(tp, 19, 32900U); rtl_w1w0_phy(tp, 20, 0, 24576); rtl_w1w0_phy(tp, 16, 4099, 0); rtl_writephy(tp, 31, 2635U); rtl_w1w0_phy(tp, 17, 4, 0); rtl_writephy(tp, 31, 2627U); rtl_writephy(tp, 19, 32786U); rtl_w1w0_phy(tp, 20, 32768, 0); rtl_writephy(tp, 31, 3138U); rtl_w1w0_phy(tp, 17, 16384, 8192); rtl_writephy(tp, 31, 3021U); rtl_writephy(tp, 20, 20581U); rtl_writephy(tp, 20, 53349U); rtl_writephy(tp, 31, 3016U); rtl_writephy(tp, 17, 22101U); rtl_writephy(tp, 31, 3021U); rtl_writephy(tp, 20, 4197U); rtl_writephy(tp, 20, 36965U); rtl_writephy(tp, 20, 4197U); rtl_writephy(tp, 31, 2627U); tmp___1 = rtl_readphy(tp, 16); } if ((tmp___1 & 4) != 0) { { rtl_w1w0_phy(tp, 16, 0, 4); } } else { } { rtl_writephy(tp, 31, 0U); } return; } } static void rtl8168g_2_hw_phy_config(struct rtl8169_private *tp ) { { { rtl_apply_firmware(tp); } return; } } static void rtl8102e_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init[4U] ; { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 3U; phy_reg_init[1].reg = 8U; phy_reg_init[1].val = 17437U; phy_reg_init[2].reg = 1U; phy_reg_init[2].val = 37120U; phy_reg_init[3].reg = 31U; phy_reg_init[3].val = 0U; rtl_writephy(tp, 31, 0U); rtl_patchphy(tp, 17, 4096); rtl_patchphy(tp, 25, 8192); rtl_patchphy(tp, 16, 32768); rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 4); } return; } } static void rtl8105e_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init[9U] ; { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 5U; phy_reg_init[1].reg = 26U; phy_reg_init[1].val = 0U; phy_reg_init[2].reg = 31U; phy_reg_init[2].val = 0U; phy_reg_init[3].reg = 31U; phy_reg_init[3].val = 4U; phy_reg_init[4].reg = 28U; phy_reg_init[4].val = 0U; phy_reg_init[5].reg = 31U; phy_reg_init[5].val = 0U; phy_reg_init[6].reg = 31U; phy_reg_init[6].val = 1U; phy_reg_init[7].reg = 21U; phy_reg_init[7].val = 30465U; phy_reg_init[8].reg = 31U; phy_reg_init[8].val = 0U; rtl_writephy(tp, 31, 0U); rtl_writephy(tp, 24, 784U); msleep(100U); rtl_apply_firmware(tp); rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 9); } return; } } static void rtl8402_hw_phy_config(struct rtl8169_private *tp ) { { { rtl_writephy(tp, 31, 0U); rtl_writephy(tp, 24, 784U); msleep(20U); rtl_apply_firmware(tp); rtl_eri_write(tp, 432, 12288U, 0U, 0); rtl_writephy(tp, 31, 4U); rtl_writephy(tp, 16, 16415U); rtl_writephy(tp, 25, 28720U); rtl_writephy(tp, 31, 0U); } return; } } static void rtl8106e_hw_phy_config(struct rtl8169_private *tp ) { struct phy_reg phy_reg_init[4U] ; { { phy_reg_init[0].reg = 31U; phy_reg_init[0].val = 4U; phy_reg_init[1].reg = 16U; phy_reg_init[1].val = 49279U; phy_reg_init[2].reg = 25U; phy_reg_init[2].val = 28720U; phy_reg_init[3].reg = 31U; phy_reg_init[3].val = 0U; rtl_writephy(tp, 31, 0U); rtl_writephy(tp, 24, 784U); msleep(100U); rtl_apply_firmware(tp); rtl_eri_write(tp, 432, 12288U, 0U, 0); rtl_writephy_batch(tp, (struct phy_reg const *)(& phy_reg_init), 4); rtl_eri_write(tp, 464, 12288U, 0U, 0); } return; } } static void rtl_hw_phy_config(struct net_device *dev ) { struct rtl8169_private *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; rtl8169_print_mac_version(tp); } { if ((int )tp->mac_version == 0) { goto case_0; } else { } if ((int )tp->mac_version == 1) { goto case_1; } else { } if ((int )tp->mac_version == 2) { goto case_2; } else { } if ((int )tp->mac_version == 3) { goto case_3; } else { } if ((int )tp->mac_version == 4) { goto case_4; } else { } if ((int )tp->mac_version == 5) { goto case_5; } else { } if ((int )tp->mac_version == 6) { goto case_6; } else { } if ((int )tp->mac_version == 7) { goto case_7; } else { } if ((int )tp->mac_version == 8) { goto case_8; } else { } if ((int )tp->mac_version == 10) { goto case_10; } else { } if ((int )tp->mac_version == 11) { goto case_11; } else { } if ((int )tp->mac_version == 16) { goto case_16; } else { } if ((int )tp->mac_version == 17) { goto case_17; } else { } if ((int )tp->mac_version == 18) { goto case_18; } else { } if ((int )tp->mac_version == 19) { goto case_19; } else { } if ((int )tp->mac_version == 20) { goto case_20; } else { } if ((int )tp->mac_version == 21) { goto case_21; } else { } if ((int )tp->mac_version == 22) { goto case_22; } else { } if ((int )tp->mac_version == 23) { goto case_23; } else { } if ((int )tp->mac_version == 24) { goto case_24; } else { } if ((int )tp->mac_version == 25) { goto case_25; } else { } if ((int )tp->mac_version == 26) { goto case_26; } else { } if ((int )tp->mac_version == 27) { goto case_27; } else { } if ((int )tp->mac_version == 28) { goto case_28; } else { } if ((int )tp->mac_version == 29) { goto case_29; } else { } if ((int )tp->mac_version == 30) { goto case_30; } else { } if ((int )tp->mac_version == 31) { goto case_31; } else { } if ((int )tp->mac_version == 32) { goto case_32; } else { } if ((int )tp->mac_version == 33) { goto case_33; } else { } if ((int )tp->mac_version == 34) { goto case_34; } else { } if ((int )tp->mac_version == 35) { goto case_35; } else { } if ((int )tp->mac_version == 36) { goto case_36; } else { } if ((int )tp->mac_version == 37) { goto case_37; } else { } if ((int )tp->mac_version == 38) { goto case_38; } else { } if ((int )tp->mac_version == 39) { goto case_39; } else { } if ((int )tp->mac_version == 41) { goto case_41; } else { } if ((int )tp->mac_version == 42) { goto case_42; } else { } if ((int )tp->mac_version == 43) { goto case_43; } else { } if ((int )tp->mac_version == 40) { goto case_40; } else { } goto switch_default; case_0: /* CIL Label */ ; goto ldv_49126; case_1: /* CIL Label */ ; case_2: /* CIL Label */ { rtl8169s_hw_phy_config(tp); } goto ldv_49126; case_3: /* CIL Label */ { rtl8169sb_hw_phy_config(tp); } goto ldv_49126; case_4: /* CIL Label */ { rtl8169scd_hw_phy_config(tp); } goto ldv_49126; case_5: /* CIL Label */ { rtl8169sce_hw_phy_config(tp); } goto ldv_49126; case_6: /* CIL Label */ ; case_7: /* CIL Label */ ; case_8: /* CIL Label */ { rtl8102e_hw_phy_config(tp); } goto ldv_49126; case_10: /* CIL Label */ { rtl8168bb_hw_phy_config(tp); } goto ldv_49126; case_11: /* CIL Label */ { rtl8168bef_hw_phy_config(tp); } goto ldv_49126; case_16: /* CIL Label */ { rtl8168bef_hw_phy_config(tp); } goto ldv_49126; case_17: /* CIL Label */ { rtl8168cp_1_hw_phy_config(tp); } goto ldv_49126; case_18: /* CIL Label */ { rtl8168c_1_hw_phy_config(tp); } goto ldv_49126; case_19: /* CIL Label */ { rtl8168c_2_hw_phy_config(tp); } goto ldv_49126; case_20: /* CIL Label */ { rtl8168c_3_hw_phy_config(tp); } goto ldv_49126; case_21: /* CIL Label */ { rtl8168c_4_hw_phy_config(tp); } goto ldv_49126; case_22: /* CIL Label */ ; case_23: /* CIL Label */ { rtl8168cp_2_hw_phy_config(tp); } goto ldv_49126; case_24: /* CIL Label */ { rtl8168d_1_hw_phy_config(tp); } goto ldv_49126; case_25: /* CIL Label */ { rtl8168d_2_hw_phy_config(tp); } goto ldv_49126; case_26: /* CIL Label */ { rtl8168d_3_hw_phy_config(tp); } goto ldv_49126; case_27: /* CIL Label */ { rtl8168d_4_hw_phy_config(tp); } goto ldv_49126; case_28: /* CIL Label */ ; case_29: /* CIL Label */ { rtl8105e_hw_phy_config(tp); } goto ldv_49126; case_30: /* CIL Label */ ; goto ldv_49126; case_31: /* CIL Label */ ; case_32: /* CIL Label */ { rtl8168e_1_hw_phy_config(tp); } goto ldv_49126; case_33: /* CIL Label */ { rtl8168e_2_hw_phy_config(tp); } goto ldv_49126; case_34: /* CIL Label */ { rtl8168f_1_hw_phy_config(tp); } goto ldv_49126; case_35: /* CIL Label */ { rtl8168f_2_hw_phy_config(tp); } goto ldv_49126; case_36: /* CIL Label */ { rtl8402_hw_phy_config(tp); } goto ldv_49126; case_37: /* CIL Label */ { rtl8411_hw_phy_config(tp); } goto ldv_49126; case_38: /* CIL Label */ { rtl8106e_hw_phy_config(tp); } goto ldv_49126; case_39: /* CIL Label */ { rtl8168g_1_hw_phy_config(tp); } goto ldv_49126; case_41: /* CIL Label */ ; case_42: /* CIL Label */ ; case_43: /* CIL Label */ { rtl8168g_2_hw_phy_config(tp); } goto ldv_49126; case_40: /* CIL Label */ ; switch_default: /* CIL Label */ ; goto ldv_49126; switch_break: /* CIL Label */ ; } ldv_49126: ; return; } } static void rtl_phy_work(struct rtl8169_private *tp ) { struct timer_list *timer ; void *ioaddr ; unsigned long timeout ; unsigned int tmp ; unsigned int tmp___0 ; struct _ddebug descriptor ; long tmp___1 ; { { timer = & tp->timer; ioaddr = tp->mmio_addr; timeout = 2500UL; tmp = (*(tp->phy_reset_pending))(tp); } if (tmp != 0U) { timeout = 25UL; goto out_mod_timer; } else { } { tmp___0 = (*(tp->link_ok))(ioaddr); } if (tmp___0 != 0U) { return; } else { } if ((tp->msg_enable & 4U) != 0U) { { descriptor.modname = "r8169"; descriptor.function = "rtl_phy_work"; descriptor.filename = "drivers/net/ethernet/realtek/r8169.c"; descriptor.format = "PHY reset until link up\n"; descriptor.lineno = 3697U; descriptor.flags = 0U; tmp___1 = ldv__builtin_expect((long )descriptor.flags & 1L, 0L); } if (tmp___1 != 0L) { { __dynamic_netdev_dbg(& descriptor, (struct net_device const *)tp->dev, "PHY reset until link up\n"); } } else { } } else { } { (*(tp->phy_reset_enable))(tp); } out_mod_timer: { ldv_mod_timer_22(timer, (unsigned long )jiffies + timeout); } return; } } static void rtl_schedule_task(struct rtl8169_private *tp , enum rtl_flag flag ) { int tmp ; { { tmp = test_and_set_bit((long )flag, (unsigned long volatile *)(& tp->wk.flags)); } if (tmp == 0) { { schedule_work(& tp->wk.work); } } else { } return; } } static void rtl8169_phy_timer(unsigned long __opaque ) { struct net_device *dev ; struct rtl8169_private *tp ; void *tmp ; { { dev = (struct net_device *)__opaque; tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; rtl_schedule_task(tp, 3); } return; } } static void rtl8169_release_board(struct pci_dev *pdev , struct net_device *dev , void *ioaddr ) { { { iounmap((void volatile *)ioaddr); pci_release_regions(pdev); pci_clear_mwi(pdev); pci_disable_device(pdev); ldv_free_netdev_23(dev); } return; } } static bool rtl_phy_reset_cond_check(struct rtl8169_private *tp ) ; static struct rtl_cond const rtl_phy_reset_cond = {& rtl_phy_reset_cond_check, "rtl_phy_reset_cond"}; static bool rtl_phy_reset_cond_check(struct rtl8169_private *tp ) { unsigned int tmp ; { { tmp = (*(tp->phy_reset_pending))(tp); } return (tmp != 0U); } } static void rtl8169_phy_reset(struct net_device *dev , struct rtl8169_private *tp ) { { { (*(tp->phy_reset_enable))(tp); rtl_msleep_loop_wait_low(tp, & rtl_phy_reset_cond, 1U, 100); } return; } } static bool rtl_tbi_enabled(struct rtl8169_private *tp ) { void *ioaddr ; unsigned char tmp ; int tmp___0 ; { ioaddr = tp->mmio_addr; if ((unsigned int )tp->mac_version == 0U) { { tmp = readb((void const volatile *)ioaddr + 108U); } if ((int )((signed char )tmp) < 0) { tmp___0 = 1; } else { tmp___0 = 0; } } else { tmp___0 = 0; } return ((bool )tmp___0); } } static void rtl8169_init_phy(struct net_device *dev , struct rtl8169_private *tp ) { void *ioaddr ; bool tmp ; { { ioaddr = tp->mmio_addr; rtl_hw_phy_config(dev); } if ((unsigned int )tp->mac_version <= 5U) { { writeb(1, (void volatile *)ioaddr + 130U); } } else { } { pci_write_config_byte((struct pci_dev const *)tp->pci_dev, 13, 64); } if ((unsigned int )tp->mac_version <= 5U) { { pci_write_config_byte((struct pci_dev const *)tp->pci_dev, 12, 8); } } else { } if ((unsigned int )tp->mac_version == 1U) { { writeb(1, (void volatile *)ioaddr + 130U); rtl_writephy(tp, 11, 0U); } } else { } { rtl8169_phy_reset(dev, tp); rtl8169_set_speed(dev, 1, 1000, 1, (unsigned int )*((unsigned char *)tp + 3904UL) != 0U ? 63U : 15U); tmp = rtl_tbi_enabled(tp); } if ((int )tmp) { if ((tp->msg_enable & 4U) != 0U) { { netdev_info((struct net_device const *)dev, "TBI auto-negotiating\n"); } } else { } } else { } return; } } static void rtl_rar_set(struct rtl8169_private *tp , u8 *addr ) { void *ioaddr ; { { ioaddr = tp->mmio_addr; rtl_lock_work(tp); writeb(192, (void volatile *)ioaddr + 80U); writel((unsigned int )((int )*(addr + 4UL) | ((int )*(addr + 5UL) << 8)), (void volatile *)ioaddr + 4U); readl((void const volatile *)ioaddr + 4U); writel((unsigned int )((((int )*addr | ((int )*(addr + 1UL) << 8)) | ((int )*(addr + 2UL) << 16)) | ((int )*(addr + 3UL) << 24)), (void volatile *)ioaddr); readl((void const volatile *)ioaddr); } if ((unsigned int )tp->mac_version == 33U) { { rtl_rar_exgmac_set(tp, addr); } } else { } { writeb(0, (void volatile *)ioaddr + 80U); rtl_unlock_work(tp); } return; } } static int rtl_set_mac_address(struct net_device *dev , void *p ) { struct rtl8169_private *tp ; void *tmp ; struct sockaddr *addr ; bool tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; addr = (struct sockaddr *)p; tmp___0 = is_valid_ether_addr((u8 const *)(& addr->sa_data)); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-99); } else { } { memcpy((void *)dev->dev_addr, (void const *)(& addr->sa_data), (size_t )dev->addr_len); rtl_rar_set(tp, dev->dev_addr); } return (0); } } static int rtl8169_ioctl(struct net_device *dev , struct ifreq *ifr , int cmd ) { struct rtl8169_private *tp ; void *tmp ; struct mii_ioctl_data *data ; struct mii_ioctl_data *tmp___0 ; int tmp___2 ; int tmp___3 ; bool tmp___4 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; tmp___0 = if_mii(ifr); data = tmp___0; tmp___4 = netif_running((struct net_device const *)dev); } if ((int )tmp___4) { { tmp___2 = (*(tp->do_ioctl))(tp, data, cmd); tmp___3 = tmp___2; } } else { tmp___3 = -19; } return (tmp___3); } } static int rtl_xmii_ioctl(struct rtl8169_private *tp , struct mii_ioctl_data *data , int cmd ) { int tmp ; { { if (cmd == 35143) { goto case_35143; } else { } if (cmd == 35144) { goto case_35144; } else { } if (cmd == 35145) { goto case_35145; } else { } goto switch_break; case_35143: /* CIL Label */ data->phy_id = 32U; return (0); case_35144: /* CIL Label */ { tmp = rtl_readphy(tp, (int )data->reg_num & 31); data->val_out = (__u16 )tmp; } return (0); case_35145: /* CIL Label */ { rtl_writephy(tp, (int )data->reg_num & 31, (u32 )data->val_in); } return (0); switch_break: /* CIL Label */ ; } return (-95); } } static int rtl_tbi_ioctl(struct rtl8169_private *tp , struct mii_ioctl_data *data , int cmd ) { { return (-95); } } static void rtl_disable_msi(struct pci_dev *pdev , struct rtl8169_private *tp ) { { if ((tp->features & 2U) != 0U) { { pci_disable_msi(pdev); tp->features = tp->features & 4294967293U; } } else { } return; } } static void rtl_init_mdio_ops(struct rtl8169_private *tp ) { struct mdio_ops *ops ; { ops = & tp->mdio_ops; { if ((int )tp->mac_version == 26) { goto case_26; } else { } if ((int )tp->mac_version == 27) { goto case_27; } else { } if ((int )tp->mac_version == 30) { goto case_30; } else { } if ((int )tp->mac_version == 39) { goto case_39; } else { } if ((int )tp->mac_version == 40) { goto case_40; } else { } if ((int )tp->mac_version == 41) { goto case_41; } else { } if ((int )tp->mac_version == 42) { goto case_42; } else { } if ((int )tp->mac_version == 43) { goto case_43; } else { } goto switch_default; case_26: /* CIL Label */ ops->write = & r8168dp_1_mdio_write; ops->read = & r8168dp_1_mdio_read; goto ldv_49248; case_27: /* CIL Label */ ; case_30: /* CIL Label */ ops->write = & r8168dp_2_mdio_write; ops->read = & r8168dp_2_mdio_read; goto ldv_49248; case_39: /* CIL Label */ ; case_40: /* CIL Label */ ; case_41: /* CIL Label */ ; case_42: /* CIL Label */ ; case_43: /* CIL Label */ ops->write = & r8168g_mdio_write; ops->read = & r8168g_mdio_read; goto ldv_49248; switch_default: /* CIL Label */ ops->write = & r8169_mdio_write; ops->read = & r8169_mdio_read; goto ldv_49248; switch_break: /* CIL Label */ ; } ldv_49248: ; return; } } static void rtl_speed_down(struct rtl8169_private *tp ) { u32 adv ; int lpa ; { { rtl_writephy(tp, 31, 0U); lpa = rtl_readphy(tp, 5); } if ((lpa & 96) != 0) { adv = 3U; } else if ((lpa & 384) != 0) { adv = 15U; } else { adv = (unsigned int )*((unsigned char *)tp + 3904UL) != 0U ? 63U : 15U; } { rtl8169_set_speed(tp->dev, 1, 1000, 1, adv); } return; } } static void rtl_wol_suspend_quirk(struct rtl8169_private *tp ) { void *ioaddr ; unsigned int tmp ; { ioaddr = tp->mmio_addr; { if ((int )tp->mac_version == 24) { goto case_24; } else { } if ((int )tp->mac_version == 25) { goto case_25; } else { } if ((int )tp->mac_version == 28) { goto case_28; } else { } if ((int )tp->mac_version == 29) { goto case_29; } else { } if ((int )tp->mac_version == 31) { goto case_31; } else { } if ((int )tp->mac_version == 32) { goto case_32; } else { } if ((int )tp->mac_version == 33) { goto case_33; } else { } if ((int )tp->mac_version == 36) { goto case_36; } else { } if ((int )tp->mac_version == 37) { goto case_37; } else { } if ((int )tp->mac_version == 38) { goto case_38; } else { } if ((int )tp->mac_version == 39) { goto case_39; } else { } if ((int )tp->mac_version == 40) { goto case_40; } else { } if ((int )tp->mac_version == 41) { goto case_41; } else { } if ((int )tp->mac_version == 42) { goto case_42; } else { } if ((int )tp->mac_version == 43) { goto case_43; } else { } goto switch_default; case_24: /* CIL Label */ ; case_25: /* CIL Label */ ; case_28: /* CIL Label */ ; case_29: /* CIL Label */ ; case_31: /* CIL Label */ ; case_32: /* CIL Label */ ; case_33: /* CIL Label */ ; case_36: /* CIL Label */ ; case_37: /* CIL Label */ ; case_38: /* CIL Label */ ; case_39: /* CIL Label */ ; case_40: /* CIL Label */ ; case_41: /* CIL Label */ ; case_42: /* CIL Label */ ; case_43: /* CIL Label */ { tmp = readl((void const volatile *)ioaddr + 68U); writel(tmp | 14U, (void volatile *)ioaddr + 68U); } goto ldv_49281; switch_default: /* CIL Label */ ; goto ldv_49281; switch_break: /* CIL Label */ ; } ldv_49281: ; return; } } static bool rtl_wol_pll_power_down(struct rtl8169_private *tp ) { u32 tmp ; { { tmp = __rtl8169_get_wol(tp); } if ((tmp & 47U) == 0U) { return (0); } else { } { rtl_speed_down(tp); rtl_wol_suspend_quirk(tp); } return (1); } } static void r810x_phy_power_down(struct rtl8169_private *tp ) { { { rtl_writephy(tp, 31, 0U); rtl_writephy(tp, 0, 2048U); } return; } } static void r810x_phy_power_up(struct rtl8169_private *tp ) { { { rtl_writephy(tp, 31, 0U); rtl_writephy(tp, 0, 4096U); } return; } } static void r810x_pll_power_down(struct rtl8169_private *tp ) { void *ioaddr ; bool tmp ; unsigned char tmp___0 ; { { ioaddr = tp->mmio_addr; tmp = rtl_wol_pll_power_down(tp); } if ((int )tmp) { return; } else { } { r810x_phy_power_down(tp); } { if ((int )tp->mac_version == 6) { goto case_6; } else { } if ((int )tp->mac_version == 7) { goto case_7; } else { } if ((int )tp->mac_version == 8) { goto case_8; } else { } if ((int )tp->mac_version == 9) { goto case_9; } else { } if ((int )tp->mac_version == 12) { goto case_12; } else { } if ((int )tp->mac_version == 15) { goto case_15; } else { } goto switch_default; case_6: /* CIL Label */ ; case_7: /* CIL Label */ ; case_8: /* CIL Label */ ; case_9: /* CIL Label */ ; case_12: /* CIL Label */ ; case_15: /* CIL Label */ ; goto ldv_49302; switch_default: /* CIL Label */ { tmp___0 = readb((void const volatile *)ioaddr + 111U); writeb((int )tmp___0 & 127, (void volatile *)ioaddr + 111U); } goto ldv_49302; switch_break: /* CIL Label */ ; } ldv_49302: ; return; } } static void r810x_pll_power_up(struct rtl8169_private *tp ) { void *ioaddr ; unsigned char tmp ; { { ioaddr = tp->mmio_addr; r810x_phy_power_up(tp); } { if ((int )tp->mac_version == 6) { goto case_6; } else { } if ((int )tp->mac_version == 7) { goto case_7; } else { } if ((int )tp->mac_version == 8) { goto case_8; } else { } if ((int )tp->mac_version == 9) { goto case_9; } else { } if ((int )tp->mac_version == 12) { goto case_12; } else { } if ((int )tp->mac_version == 15) { goto case_15; } else { } goto switch_default; case_6: /* CIL Label */ ; case_7: /* CIL Label */ ; case_8: /* CIL Label */ ; case_9: /* CIL Label */ ; case_12: /* CIL Label */ ; case_15: /* CIL Label */ ; goto ldv_49314; switch_default: /* CIL Label */ { tmp = readb((void const volatile *)ioaddr + 111U); writeb((int )((unsigned int )tmp | 128U), (void volatile *)ioaddr + 111U); } goto ldv_49314; switch_break: /* CIL Label */ ; } ldv_49314: ; return; } } static void r8168_phy_power_up(struct rtl8169_private *tp ) { { { rtl_writephy(tp, 31, 0U); } { if ((int )tp->mac_version == 10) { goto case_10; } else { } if ((int )tp->mac_version == 11) { goto case_11; } else { } if ((int )tp->mac_version == 16) { goto case_16; } else { } if ((int )tp->mac_version == 17) { goto case_17; } else { } if ((int )tp->mac_version == 18) { goto case_18; } else { } if ((int )tp->mac_version == 19) { goto case_19; } else { } if ((int )tp->mac_version == 20) { goto case_20; } else { } if ((int )tp->mac_version == 21) { goto case_21; } else { } if ((int )tp->mac_version == 22) { goto case_22; } else { } if ((int )tp->mac_version == 23) { goto case_23; } else { } if ((int )tp->mac_version == 24) { goto case_24; } else { } if ((int )tp->mac_version == 25) { goto case_25; } else { } if ((int )tp->mac_version == 26) { goto case_26; } else { } if ((int )tp->mac_version == 27) { goto case_27; } else { } if ((int )tp->mac_version == 30) { goto case_30; } else { } goto switch_default; case_10: /* CIL Label */ ; case_11: /* CIL Label */ ; case_16: /* CIL Label */ ; case_17: /* CIL Label */ ; case_18: /* CIL Label */ ; case_19: /* CIL Label */ ; case_20: /* CIL Label */ ; case_21: /* CIL Label */ ; case_22: /* CIL Label */ ; case_23: /* CIL Label */ ; case_24: /* CIL Label */ ; case_25: /* CIL Label */ ; case_26: /* CIL Label */ ; case_27: /* CIL Label */ ; case_30: /* CIL Label */ { rtl_writephy(tp, 14, 0U); } goto ldv_49334; switch_default: /* CIL Label */ ; goto ldv_49334; switch_break: /* CIL Label */ ; } ldv_49334: { rtl_writephy(tp, 0, 4096U); } return; } } static void r8168_phy_power_down(struct rtl8169_private *tp ) { { { rtl_writephy(tp, 31, 0U); } { if ((int )tp->mac_version == 31) { goto case_31; } else { } if ((int )tp->mac_version == 32) { goto case_32; } else { } if ((int )tp->mac_version == 39) { goto case_39; } else { } if ((int )tp->mac_version == 40) { goto case_40; } else { } if ((int )tp->mac_version == 10) { goto case_10; } else { } if ((int )tp->mac_version == 11) { goto case_11; } else { } if ((int )tp->mac_version == 16) { goto case_16; } else { } if ((int )tp->mac_version == 17) { goto case_17; } else { } if ((int )tp->mac_version == 18) { goto case_18; } else { } if ((int )tp->mac_version == 19) { goto case_19; } else { } if ((int )tp->mac_version == 20) { goto case_20; } else { } if ((int )tp->mac_version == 21) { goto case_21; } else { } if ((int )tp->mac_version == 22) { goto case_22; } else { } if ((int )tp->mac_version == 23) { goto case_23; } else { } if ((int )tp->mac_version == 24) { goto case_24; } else { } if ((int )tp->mac_version == 25) { goto case_25; } else { } if ((int )tp->mac_version == 26) { goto case_26; } else { } if ((int )tp->mac_version == 27) { goto case_27; } else { } if ((int )tp->mac_version == 30) { goto case_30; } else { } goto switch_default; case_31: /* CIL Label */ ; case_32: /* CIL Label */ ; case_39: /* CIL Label */ ; case_40: /* CIL Label */ { rtl_writephy(tp, 0, 6144U); } goto ldv_49343; case_10: /* CIL Label */ ; case_11: /* CIL Label */ ; case_16: /* CIL Label */ ; case_17: /* CIL Label */ ; case_18: /* CIL Label */ ; case_19: /* CIL Label */ ; case_20: /* CIL Label */ ; case_21: /* CIL Label */ ; case_22: /* CIL Label */ ; case_23: /* CIL Label */ ; case_24: /* CIL Label */ ; case_25: /* CIL Label */ ; case_26: /* CIL Label */ ; case_27: /* CIL Label */ ; case_30: /* CIL Label */ { rtl_writephy(tp, 14, 512U); } switch_default: /* CIL Label */ { rtl_writephy(tp, 0, 2048U); } goto ldv_49343; switch_break: /* CIL Label */ ; } ldv_49343: ; return; } } static void r8168_pll_power_down(struct rtl8169_private *tp ) { void *ioaddr ; int tmp ; unsigned short tmp___0 ; bool tmp___1 ; unsigned char tmp___2 ; { ioaddr = tp->mmio_addr; if ((unsigned int )tp->mac_version - 26U <= 1U || (unsigned int )tp->mac_version == 30U) { { tmp = r8168dp_check_dash(tp); } if (tmp != 0) { return; } else { } } else { } if ((unsigned int )tp->mac_version - 22U <= 1U) { { tmp___0 = readw((void const volatile *)ioaddr + 224U); } if (((int )tmp___0 & 256) != 0) { return; } else { } } else { } if ((unsigned int )tp->mac_version - 31U <= 1U) { { rtl_ephy_write(tp, 25, 65380); } } else { } { tmp___1 = rtl_wol_pll_power_down(tp); } if ((int )tmp___1) { return; } else { } { r8168_phy_power_down(tp); } { if ((int )tp->mac_version == 24) { goto case_24; } else { } if ((int )tp->mac_version == 25) { goto case_25; } else { } if ((int )tp->mac_version == 26) { goto case_26; } else { } if ((int )tp->mac_version == 27) { goto case_27; } else { } if ((int )tp->mac_version == 30) { goto case_30; } else { } if ((int )tp->mac_version == 31) { goto case_31; } else { } if ((int )tp->mac_version == 32) { goto case_32; } else { } if ((int )tp->mac_version == 39) { goto case_39; } else { } if ((int )tp->mac_version == 40) { goto case_40; } else { } goto switch_break; case_24: /* CIL Label */ ; case_25: /* CIL Label */ ; case_26: /* CIL Label */ ; case_27: /* CIL Label */ ; case_30: /* CIL Label */ ; case_31: /* CIL Label */ ; case_32: /* CIL Label */ { tmp___2 = readb((void const volatile *)ioaddr + 111U); writeb((int )tmp___2 & 127, (void volatile *)ioaddr + 111U); } goto ldv_49371; case_39: /* CIL Label */ ; case_40: /* CIL Label */ { rtl_w1w0_eri(tp, 424, 61440U, 0U, 4227858432U, 0); } goto ldv_49371; switch_break: /* CIL Label */ ; } ldv_49371: ; return; } } static void r8168_pll_power_up(struct rtl8169_private *tp ) { void *ioaddr ; unsigned char tmp ; { ioaddr = tp->mmio_addr; { if ((int )tp->mac_version == 24) { goto case_24; } else { } if ((int )tp->mac_version == 25) { goto case_25; } else { } if ((int )tp->mac_version == 26) { goto case_26; } else { } if ((int )tp->mac_version == 27) { goto case_27; } else { } if ((int )tp->mac_version == 30) { goto case_30; } else { } if ((int )tp->mac_version == 31) { goto case_31; } else { } if ((int )tp->mac_version == 32) { goto case_32; } else { } if ((int )tp->mac_version == 39) { goto case_39; } else { } if ((int )tp->mac_version == 40) { goto case_40; } else { } goto switch_break; case_24: /* CIL Label */ ; case_25: /* CIL Label */ ; case_26: /* CIL Label */ ; case_27: /* CIL Label */ ; case_30: /* CIL Label */ ; case_31: /* CIL Label */ ; case_32: /* CIL Label */ { tmp = readb((void const volatile *)ioaddr + 111U); writeb((int )((unsigned int )tmp | 128U), (void volatile *)ioaddr + 111U); } goto ldv_49385; case_39: /* CIL Label */ ; case_40: /* CIL Label */ { rtl_w1w0_eri(tp, 424, 61440U, 4227858432U, 0U, 0); } goto ldv_49385; switch_break: /* CIL Label */ ; } ldv_49385: { r8168_phy_power_up(tp); } return; } } static void rtl_generic_op(struct rtl8169_private *tp , void (*op)(struct rtl8169_private * ) ) { { if ((unsigned long )op != (unsigned long )((void (*)(struct rtl8169_private * ))0)) { { (*op)(tp); } } else { } return; } } static void rtl_pll_power_down(struct rtl8169_private *tp ) { { { rtl_generic_op(tp, tp->pll_power_ops.down); } return; } } static void rtl_pll_power_up(struct rtl8169_private *tp ) { { { rtl_generic_op(tp, tp->pll_power_ops.up); } return; } } static void rtl_init_pll_power_ops(struct rtl8169_private *tp ) { struct pll_power_ops *ops ; { ops = & tp->pll_power_ops; { if ((int )tp->mac_version == 6) { goto case_6; } else { } if ((int )tp->mac_version == 7) { goto case_7; } else { } if ((int )tp->mac_version == 8) { goto case_8; } else { } if ((int )tp->mac_version == 9) { goto case_9; } else { } if ((int )tp->mac_version == 15) { goto case_15; } else { } if ((int )tp->mac_version == 28) { goto case_28; } else { } if ((int )tp->mac_version == 29) { goto case_29; } else { } if ((int )tp->mac_version == 36) { goto case_36; } else { } if ((int )tp->mac_version == 38) { goto case_38; } else { } if ((int )tp->mac_version == 42) { goto case_42; } else { } if ((int )tp->mac_version == 10) { goto case_10; } else { } if ((int )tp->mac_version == 11) { goto case_11; } else { } if ((int )tp->mac_version == 16) { goto case_16; } else { } if ((int )tp->mac_version == 17) { goto case_17; } else { } if ((int )tp->mac_version == 18) { goto case_18; } else { } if ((int )tp->mac_version == 19) { goto case_19; } else { } if ((int )tp->mac_version == 20) { goto case_20; } else { } if ((int )tp->mac_version == 21) { goto case_21; } else { } if ((int )tp->mac_version == 22) { goto case_22; } else { } if ((int )tp->mac_version == 23) { goto case_23; } else { } if ((int )tp->mac_version == 24) { goto case_24; } else { } if ((int )tp->mac_version == 25) { goto case_25; } else { } if ((int )tp->mac_version == 26) { goto case_26; } else { } if ((int )tp->mac_version == 27) { goto case_27; } else { } if ((int )tp->mac_version == 30) { goto case_30; } else { } if ((int )tp->mac_version == 31) { goto case_31; } else { } if ((int )tp->mac_version == 32) { goto case_32; } else { } if ((int )tp->mac_version == 33) { goto case_33; } else { } if ((int )tp->mac_version == 34) { goto case_34; } else { } if ((int )tp->mac_version == 35) { goto case_35; } else { } if ((int )tp->mac_version == 37) { goto case_37; } else { } if ((int )tp->mac_version == 39) { goto case_39; } else { } if ((int )tp->mac_version == 40) { goto case_40; } else { } if ((int )tp->mac_version == 41) { goto case_41; } else { } if ((int )tp->mac_version == 43) { goto case_43; } else { } goto switch_default; case_6: /* CIL Label */ ; case_7: /* CIL Label */ ; case_8: /* CIL Label */ ; case_9: /* CIL Label */ ; case_15: /* CIL Label */ ; case_28: /* CIL Label */ ; case_29: /* CIL Label */ ; case_36: /* CIL Label */ ; case_38: /* CIL Label */ ; case_42: /* CIL Label */ ops->down = & r810x_pll_power_down; ops->up = & r810x_pll_power_up; goto ldv_49413; case_10: /* CIL Label */ ; case_11: /* CIL Label */ ; case_16: /* CIL Label */ ; case_17: /* CIL Label */ ; case_18: /* CIL Label */ ; case_19: /* CIL Label */ ; case_20: /* CIL Label */ ; case_21: /* CIL Label */ ; case_22: /* CIL Label */ ; case_23: /* CIL Label */ ; case_24: /* CIL Label */ ; case_25: /* CIL Label */ ; case_26: /* CIL Label */ ; case_27: /* CIL Label */ ; case_30: /* CIL Label */ ; case_31: /* CIL Label */ ; case_32: /* CIL Label */ ; case_33: /* CIL Label */ ; case_34: /* CIL Label */ ; case_35: /* CIL Label */ ; case_37: /* CIL Label */ ; case_39: /* CIL Label */ ; case_40: /* CIL Label */ ; case_41: /* CIL Label */ ; case_43: /* CIL Label */ ops->down = & r8168_pll_power_down; ops->up = & r8168_pll_power_up; goto ldv_49413; switch_default: /* CIL Label */ ops->down = (void (*)(struct rtl8169_private * ))0; ops->up = (void (*)(struct rtl8169_private * ))0; goto ldv_49413; switch_break: /* CIL Label */ ; } ldv_49413: ; return; } } static void rtl_init_rxcfg(struct rtl8169_private *tp ) { void *ioaddr ; { ioaddr = tp->mmio_addr; { if ((int )tp->mac_version == 0) { goto case_0; } else { } if ((int )tp->mac_version == 1) { goto case_1; } else { } if ((int )tp->mac_version == 2) { goto case_2; } else { } if ((int )tp->mac_version == 3) { goto case_3; } else { } if ((int )tp->mac_version == 4) { goto case_4; } else { } if ((int )tp->mac_version == 5) { goto case_5; } else { } if ((int )tp->mac_version == 9) { goto case_9; } else { } if ((int )tp->mac_version == 10) { goto case_10; } else { } if ((int )tp->mac_version == 11) { goto case_11; } else { } if ((int )tp->mac_version == 12) { goto case_12; } else { } if ((int )tp->mac_version == 13) { goto case_13; } else { } if ((int )tp->mac_version == 14) { goto case_14; } else { } if ((int )tp->mac_version == 15) { goto case_15; } else { } if ((int )tp->mac_version == 16) { goto case_16; } else { } if ((int )tp->mac_version == 17) { goto case_17; } else { } if ((int )tp->mac_version == 18) { goto case_18; } else { } if ((int )tp->mac_version == 19) { goto case_19; } else { } if ((int )tp->mac_version == 20) { goto case_20; } else { } if ((int )tp->mac_version == 21) { goto case_21; } else { } if ((int )tp->mac_version == 22) { goto case_22; } else { } if ((int )tp->mac_version == 23) { goto case_23; } else { } if ((int )tp->mac_version == 33) { goto case_33; } else { } if ((int )tp->mac_version == 34) { goto case_34; } else { } if ((int )tp->mac_version == 39) { goto case_39; } else { } if ((int )tp->mac_version == 40) { goto case_40; } else { } if ((int )tp->mac_version == 41) { goto case_41; } else { } if ((int )tp->mac_version == 42) { goto case_42; } else { } if ((int )tp->mac_version == 43) { goto case_43; } else { } goto switch_default; case_0: /* CIL Label */ ; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_4: /* CIL Label */ ; case_5: /* CIL Label */ ; case_9: /* CIL Label */ ; case_10: /* CIL Label */ ; case_11: /* CIL Label */ ; case_12: /* CIL Label */ ; case_13: /* CIL Label */ ; case_14: /* CIL Label */ ; case_15: /* CIL Label */ ; case_16: /* CIL Label */ { writel(59136U, (void volatile *)ioaddr + 68U); } goto ldv_49458; case_17: /* CIL Label */ ; case_18: /* CIL Label */ ; case_19: /* CIL Label */ ; case_20: /* CIL Label */ ; case_21: /* CIL Label */ ; case_22: /* CIL Label */ ; case_23: /* CIL Label */ ; case_33: /* CIL Label */ ; case_34: /* CIL Label */ { writel(50944U, (void volatile *)ioaddr + 68U); } goto ldv_49458; case_39: /* CIL Label */ ; case_40: /* CIL Label */ ; case_41: /* CIL Label */ ; case_42: /* CIL Label */ ; case_43: /* CIL Label */ { writel(36608U, (void volatile *)ioaddr + 68U); } goto ldv_49458; switch_default: /* CIL Label */ { writel(34560U, (void volatile *)ioaddr + 68U); } goto ldv_49458; switch_break: /* CIL Label */ ; } ldv_49458: ; return; } } static void rtl8169_init_ring_indexes(struct rtl8169_private *tp ) { u32 tmp ; u32 tmp___0 ; { tmp___0 = 0U; tp->cur_rx = tmp___0; tmp = tmp___0; tp->cur_tx = tmp; tp->dirty_tx = tmp; return; } } static void rtl_hw_jumbo_enable(struct rtl8169_private *tp ) { void *ioaddr ; { { ioaddr = tp->mmio_addr; writeb(192, (void volatile *)ioaddr + 80U); rtl_generic_op(tp, tp->jumbo_ops.enable); writeb(0, (void volatile *)ioaddr + 80U); } return; } } static void rtl_hw_jumbo_disable(struct rtl8169_private *tp ) { void *ioaddr ; { { ioaddr = tp->mmio_addr; writeb(192, (void volatile *)ioaddr + 80U); rtl_generic_op(tp, tp->jumbo_ops.disable); writeb(0, (void volatile *)ioaddr + 80U); } return; } } static void r8168c_hw_jumbo_enable(struct rtl8169_private *tp ) { void *ioaddr ; unsigned char tmp ; unsigned char tmp___0 ; { { ioaddr = tp->mmio_addr; tmp = readb((void const volatile *)ioaddr + 84U); writeb((int )((unsigned int )tmp | 4U), (void volatile *)ioaddr + 84U); tmp___0 = readb((void const volatile *)ioaddr + 85U); writeb((int )((unsigned int )tmp___0 | 2U), (void volatile *)ioaddr + 85U); rtl_tx_performance_tweak(tp->pci_dev, 8192); } return; } } static void r8168c_hw_jumbo_disable(struct rtl8169_private *tp ) { void *ioaddr ; unsigned char tmp ; unsigned char tmp___0 ; { { ioaddr = tp->mmio_addr; tmp = readb((void const volatile *)ioaddr + 84U); writeb((int )tmp & 251, (void volatile *)ioaddr + 84U); tmp___0 = readb((void const volatile *)ioaddr + 85U); writeb((int )tmp___0 & 253, (void volatile *)ioaddr + 85U); rtl_tx_performance_tweak(tp->pci_dev, 20480); } return; } } static void r8168dp_hw_jumbo_enable(struct rtl8169_private *tp ) { void *ioaddr ; unsigned char tmp ; { { ioaddr = tp->mmio_addr; tmp = readb((void const volatile *)ioaddr + 84U); writeb((int )((unsigned int )tmp | 4U), (void volatile *)ioaddr + 84U); } return; } } static void r8168dp_hw_jumbo_disable(struct rtl8169_private *tp ) { void *ioaddr ; unsigned char tmp ; { { ioaddr = tp->mmio_addr; tmp = readb((void const volatile *)ioaddr + 84U); writeb((int )tmp & 251, (void volatile *)ioaddr + 84U); } return; } } static void r8168e_hw_jumbo_enable(struct rtl8169_private *tp ) { void *ioaddr ; unsigned char tmp ; unsigned char tmp___0 ; { { ioaddr = tp->mmio_addr; writeb(63, (void volatile *)ioaddr + 236U); tmp = readb((void const volatile *)ioaddr + 84U); writeb((int )((unsigned int )tmp | 4U), (void volatile *)ioaddr + 84U); tmp___0 = readb((void const volatile *)ioaddr + 85U); writeb((int )((unsigned int )tmp___0 | 1U), (void volatile *)ioaddr + 85U); rtl_tx_performance_tweak(tp->pci_dev, 8192); } return; } } static void r8168e_hw_jumbo_disable(struct rtl8169_private *tp ) { void *ioaddr ; unsigned char tmp ; unsigned char tmp___0 ; { { ioaddr = tp->mmio_addr; writeb(12, (void volatile *)ioaddr + 236U); tmp = readb((void const volatile *)ioaddr + 84U); writeb((int )tmp & 251, (void volatile *)ioaddr + 84U); tmp___0 = readb((void const volatile *)ioaddr + 85U); writeb((int )tmp___0 & 254, (void volatile *)ioaddr + 85U); rtl_tx_performance_tweak(tp->pci_dev, 20480); } return; } } static void r8168b_0_hw_jumbo_enable(struct rtl8169_private *tp ) { { { rtl_tx_performance_tweak(tp->pci_dev, 10240); } return; } } static void r8168b_0_hw_jumbo_disable(struct rtl8169_private *tp ) { { { rtl_tx_performance_tweak(tp->pci_dev, 22528); } return; } } static void r8168b_1_hw_jumbo_enable(struct rtl8169_private *tp ) { void *ioaddr ; unsigned char tmp ; { { ioaddr = tp->mmio_addr; r8168b_0_hw_jumbo_enable(tp); tmp = readb((void const volatile *)ioaddr + 85U); writeb((int )((unsigned int )tmp | 1U), (void volatile *)ioaddr + 85U); } return; } } static void r8168b_1_hw_jumbo_disable(struct rtl8169_private *tp ) { void *ioaddr ; unsigned char tmp ; { { ioaddr = tp->mmio_addr; r8168b_0_hw_jumbo_disable(tp); tmp = readb((void const volatile *)ioaddr + 85U); writeb((int )tmp & 254, (void volatile *)ioaddr + 85U); } return; } } static void rtl_init_jumbo_ops(struct rtl8169_private *tp ) { struct jumbo_ops *ops ; { ops = & tp->jumbo_ops; { if ((int )tp->mac_version == 10) { goto case_10; } else { } if ((int )tp->mac_version == 11) { goto case_11; } else { } if ((int )tp->mac_version == 16) { goto case_16; } else { } if ((int )tp->mac_version == 17) { goto case_17; } else { } if ((int )tp->mac_version == 18) { goto case_18; } else { } if ((int )tp->mac_version == 19) { goto case_19; } else { } if ((int )tp->mac_version == 20) { goto case_20; } else { } if ((int )tp->mac_version == 21) { goto case_21; } else { } if ((int )tp->mac_version == 22) { goto case_22; } else { } if ((int )tp->mac_version == 23) { goto case_23; } else { } if ((int )tp->mac_version == 24) { goto case_24; } else { } if ((int )tp->mac_version == 25) { goto case_25; } else { } if ((int )tp->mac_version == 26) { goto case_26; } else { } if ((int )tp->mac_version == 27) { goto case_27; } else { } if ((int )tp->mac_version == 30) { goto case_30; } else { } if ((int )tp->mac_version == 31) { goto case_31; } else { } if ((int )tp->mac_version == 32) { goto case_32; } else { } if ((int )tp->mac_version == 33) { goto case_33; } else { } if ((int )tp->mac_version == 39) { goto case_39; } else { } if ((int )tp->mac_version == 40) { goto case_40; } else { } if ((int )tp->mac_version == 41) { goto case_41; } else { } if ((int )tp->mac_version == 42) { goto case_42; } else { } if ((int )tp->mac_version == 43) { goto case_43; } else { } goto switch_default; case_10: /* CIL Label */ ops->disable = & r8168b_0_hw_jumbo_disable; ops->enable = & r8168b_0_hw_jumbo_enable; goto ldv_49528; case_11: /* CIL Label */ ; case_16: /* CIL Label */ ops->disable = & r8168b_1_hw_jumbo_disable; ops->enable = & r8168b_1_hw_jumbo_enable; goto ldv_49528; case_17: /* CIL Label */ ; case_18: /* CIL Label */ ; case_19: /* CIL Label */ ; case_20: /* CIL Label */ ; case_21: /* CIL Label */ ; case_22: /* CIL Label */ ; case_23: /* CIL Label */ ; case_24: /* CIL Label */ ; case_25: /* CIL Label */ ops->disable = & r8168c_hw_jumbo_disable; ops->enable = & r8168c_hw_jumbo_enable; goto ldv_49528; case_26: /* CIL Label */ ; case_27: /* CIL Label */ ops->disable = & r8168dp_hw_jumbo_disable; ops->enable = & r8168dp_hw_jumbo_enable; goto ldv_49528; case_30: /* CIL Label */ ; case_31: /* CIL Label */ ; case_32: /* CIL Label */ ; case_33: /* CIL Label */ ops->disable = & r8168e_hw_jumbo_disable; ops->enable = & r8168e_hw_jumbo_enable; goto ldv_49528; case_39: /* CIL Label */ ; case_40: /* CIL Label */ ; case_41: /* CIL Label */ ; case_42: /* CIL Label */ ; case_43: /* CIL Label */ ; switch_default: /* CIL Label */ ops->disable = (void (*)(struct rtl8169_private * ))0; ops->enable = (void (*)(struct rtl8169_private * ))0; goto ldv_49528; switch_break: /* CIL Label */ ; } ldv_49528: ; return; } } static bool rtl_chipcmd_cond_check(struct rtl8169_private *tp ) ; static struct rtl_cond const rtl_chipcmd_cond = {& rtl_chipcmd_cond_check, "rtl_chipcmd_cond"}; static bool rtl_chipcmd_cond_check(struct rtl8169_private *tp ) { void *ioaddr ; unsigned char tmp ; { { ioaddr = tp->mmio_addr; tmp = readb((void const volatile *)ioaddr + 55U); } return (((int )tmp & 16) != 0); } } static void rtl_hw_reset(struct rtl8169_private *tp ) { void *ioaddr ; { { ioaddr = tp->mmio_addr; writeb(16, (void volatile *)ioaddr + 55U); rtl_udelay_loop_wait_low(tp, & rtl_chipcmd_cond, 100U, 100); } return; } } static void rtl_request_uncached_firmware(struct rtl8169_private *tp ) { struct rtl_fw *rtl_fw ; char const *name ; int rc ; void *tmp ; { { rc = -12; name = rtl_lookup_firmware_name(tp); } if ((unsigned long )name == (unsigned long )((char const *)0)) { goto out_no_firmware; } else { } { tmp = kzalloc(56UL, 208U); rtl_fw = (struct rtl_fw *)tmp; } if ((unsigned long )rtl_fw == (unsigned long )((struct rtl_fw *)0)) { goto err_warn; } else { } { rc = request_firmware(& rtl_fw->fw, name, & (tp->pci_dev)->dev); } if (rc < 0) { goto err_free; } else { } { rc = rtl_check_firmware(tp, rtl_fw); } if (rc < 0) { goto err_release_firmware; } else { } tp->rtl_fw = rtl_fw; out: ; return; err_release_firmware: { release_firmware(rtl_fw->fw); } err_free: { kfree((void const *)rtl_fw); } err_warn: ; if ((tp->msg_enable & 32U) != 0U) { { netdev_warn((struct net_device const *)tp->dev, "unable to load firmware patch %s (%d)\n", name, rc); } } else { } out_no_firmware: tp->rtl_fw = (struct rtl_fw *)0; goto out; } } static void rtl_request_firmware(struct rtl8169_private *tp ) { long tmp ; { { tmp = IS_ERR((void const *)tp->rtl_fw); } if (tmp != 0L) { { rtl_request_uncached_firmware(tp); } } else { } return; } } static void rtl_rx_close(struct rtl8169_private *tp ) { void *ioaddr ; unsigned int tmp ; { { ioaddr = tp->mmio_addr; tmp = readl((void const volatile *)ioaddr + 68U); writel(tmp & 4294967232U, (void volatile *)ioaddr + 68U); } return; } } static bool rtl_npq_cond_check(struct rtl8169_private *tp ) ; static struct rtl_cond const rtl_npq_cond = {& rtl_npq_cond_check, "rtl_npq_cond"}; static bool rtl_npq_cond_check(struct rtl8169_private *tp ) { void *ioaddr ; unsigned char tmp ; { { ioaddr = tp->mmio_addr; tmp = readb((void const volatile *)ioaddr + 56U); } return (((int )tmp & 64) != 0); } } static bool rtl_txcfg_empty_cond_check(struct rtl8169_private *tp ) ; static struct rtl_cond const rtl_txcfg_empty_cond = {& rtl_txcfg_empty_cond_check, "rtl_txcfg_empty_cond"}; static bool rtl_txcfg_empty_cond_check(struct rtl8169_private *tp ) { void *ioaddr ; unsigned int tmp ; { { ioaddr = tp->mmio_addr; tmp = readl((void const volatile *)ioaddr + 64U); } return ((tmp & 2048U) != 0U); } } static void rtl8169_hw_reset(struct rtl8169_private *tp ) { void *ioaddr ; unsigned char tmp ; unsigned char tmp___0 ; { { ioaddr = tp->mmio_addr; rtl8169_irq_mask_and_ack(tp); rtl_rx_close(tp); } if ((unsigned int )tp->mac_version - 26U <= 1U || (unsigned int )tp->mac_version == 30U) { { rtl_udelay_loop_wait_low(tp, & rtl_npq_cond, 20U, 1764); } } else if (((((((unsigned int )tp->mac_version - 33U <= 3U || (unsigned int )tp->mac_version == 39U) || (unsigned int )tp->mac_version == 40U) || (unsigned int )tp->mac_version == 41U) || (unsigned int )tp->mac_version == 42U) || (unsigned int )tp->mac_version == 43U) || (unsigned int )tp->mac_version == 37U) { { tmp = readb((void const volatile *)ioaddr + 55U); writeb((int )((unsigned int )tmp | 128U), (void volatile *)ioaddr + 55U); rtl_udelay_loop_wait_high(tp, & rtl_txcfg_empty_cond, 100U, 666); } } else { { tmp___0 = readb((void const volatile *)ioaddr + 55U); writeb((int )((unsigned int )tmp___0 | 128U), (void volatile *)ioaddr + 55U); __const_udelay(429500UL); } } { rtl_hw_reset(tp); } return; } } static void rtl_set_rx_tx_config_registers(struct rtl8169_private *tp ) { void *ioaddr ; { { ioaddr = tp->mmio_addr; writel(50333440U, (void volatile *)ioaddr + 64U); } return; } } static void rtl_hw_start(struct net_device *dev ) { struct rtl8169_private *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; (*(tp->hw_start))(dev); rtl_irq_enable_all(tp); } return; } } static void rtl_set_rx_tx_desc_registers(struct rtl8169_private *tp , void *ioaddr ) { { { writel((unsigned int )(tp->TxPhyAddr >> 32), (void volatile *)ioaddr + 36U); writel((unsigned int )tp->TxPhyAddr, (void volatile *)ioaddr + 32U); writel((unsigned int )(tp->RxPhyAddr >> 32), (void volatile *)ioaddr + 232U); writel((unsigned int )tp->RxPhyAddr, (void volatile *)ioaddr + 228U); } return; } } static u16 rtl_rw_cpluscmd(void *ioaddr ) { u16 cmd ; { { cmd = readw((void const volatile *)ioaddr + 224U); writew((int )cmd, (void volatile *)ioaddr + 224U); } return (cmd); } } static void rtl_set_rx_max_size(void *ioaddr , unsigned int rx_buf_sz___0 ) { { { writew((int )((unsigned int )((unsigned short )rx_buf_sz___0) + 1U), (void volatile *)ioaddr + 218U); } return; } } static void rtl8169_set_magic_reg(void *ioaddr , unsigned int mac_version ) { struct rtl_cfg2_info cfg2_info[4U] ; struct rtl_cfg2_info const *p ; unsigned int i ; u32 clk ; unsigned char tmp ; { { cfg2_info[0].mac_version = 4U; cfg2_info[0].clk = 0U; cfg2_info[0].val = 1048320U; cfg2_info[1].mac_version = 4U; cfg2_info[1].clk = 1U; cfg2_info[1].val = 1048575U; cfg2_info[2].mac_version = 5U; cfg2_info[2].clk = 0U; cfg2_info[2].val = 16776960U; cfg2_info[3].mac_version = 5U; cfg2_info[3].clk = 1U; cfg2_info[3].val = 16777215U; p = (struct rtl_cfg2_info const *)(& cfg2_info); tmp = readb((void const volatile *)ioaddr + 83U); clk = (u32 )tmp & 1U; i = 0U; } goto ldv_49635; ldv_49634: ; if ((unsigned int )p->mac_version == mac_version && (unsigned int )p->clk == clk) { { writel(p->val, (void volatile *)ioaddr + 124U); } goto ldv_49633; } else { } i = i + 1U; p = p + 1; ldv_49635: ; if (i <= 3U) { goto ldv_49634; } else { } ldv_49633: ; return; } } static void rtl_set_rx_mode(struct net_device *dev ) { struct rtl8169_private *tp ; void *tmp ; void *ioaddr ; u32 mc_filter[2U] ; int rx_mode ; u32 tmp___0 ; struct netdev_hw_addr *ha ; struct list_head const *__mptr ; int bit_nr ; u32 tmp___1 ; u32 tmp___2 ; struct list_head const *__mptr___0 ; unsigned int tmp___3 ; u32 data ; __u32 tmp___4 ; __u32 tmp___5 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; ioaddr = tp->mmio_addr; tmp___0 = 0U; } if ((dev->flags & 256U) != 0U) { if ((tp->msg_enable & 4U) != 0U) { { netdev_notice((struct net_device const *)dev, "Promiscuous mode enabled\n"); } } else { } rx_mode = 15; mc_filter[0] = 4294967295U; mc_filter[1] = mc_filter[0]; } else if (dev->mc.count > 32 || (dev->flags & 512U) != 0U) { rx_mode = 14; mc_filter[0] = 4294967295U; mc_filter[1] = mc_filter[0]; } else { rx_mode = 10; mc_filter[0] = 0U; mc_filter[1] = mc_filter[0]; __mptr = (struct list_head const *)dev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; goto ldv_49651; ldv_49650: { tmp___1 = crc32_le(4294967295U, (unsigned char const *)(& ha->addr), 6UL); tmp___2 = bitrev32(tmp___1); bit_nr = (int )(tmp___2 >> 26); mc_filter[bit_nr >> 5] = mc_filter[bit_nr >> 5] | (u32 )(1 << (bit_nr & 31)); rx_mode = rx_mode | 4; __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; } ldv_49651: ; if ((unsigned long )(& ha->list) != (unsigned long )(& dev->mc.list)) { goto ldv_49650; } else { } } if ((dev->features & 68719476736ULL) != 0ULL) { rx_mode = rx_mode | 48; } else { } { tmp___3 = readl((void const volatile *)ioaddr + 68U); tmp___0 = (tmp___3 & 4294967232U) | (unsigned int )rx_mode; } if ((unsigned int )tp->mac_version > 5U) { { data = mc_filter[0]; tmp___4 = __fswab32(mc_filter[1]); mc_filter[0] = tmp___4; tmp___5 = __fswab32(data); mc_filter[1] = tmp___5; } } else { } if ((unsigned int )tp->mac_version == 34U) { mc_filter[0] = 4294967295U; mc_filter[1] = mc_filter[0]; } else { } { writel(mc_filter[1], (void volatile *)ioaddr + 12U); writel(mc_filter[0], (void volatile *)ioaddr + 8U); writel(tmp___0, (void volatile *)ioaddr + 68U); } return; } } static void rtl_hw_start_8169(struct net_device *dev ) { struct rtl8169_private *tp ; void *tmp ; void *ioaddr ; struct pci_dev *pdev ; unsigned short tmp___0 ; u16 tmp___1 ; unsigned short tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; ioaddr = tp->mmio_addr; pdev = tp->pci_dev; } if ((unsigned int )tp->mac_version == 4U) { { tmp___0 = readw((void const volatile *)ioaddr + 224U); writew((int )((unsigned int )tmp___0 | 8U), (void volatile *)ioaddr + 224U); pci_write_config_byte((struct pci_dev const *)pdev, 12, 8); } } else { } { writeb(192, (void volatile *)ioaddr + 80U); } if ((unsigned int )tp->mac_version <= 3U) { { writeb(12, (void volatile *)ioaddr + 55U); } } else { } { rtl_init_rxcfg(tp); writeb(63, (void volatile *)ioaddr + 236U); rtl_set_rx_max_size(ioaddr, (unsigned int )rx_buf_sz); } if ((unsigned int )tp->mac_version <= 3U) { { rtl_set_rx_tx_config_registers(tp); } } else { } { tmp___1 = rtl_rw_cpluscmd(ioaddr); tp->cp_cmd = (u16 )((unsigned int )((int )tp->cp_cmd | (int )tmp___1) | 8U); } if ((unsigned int )tp->mac_version - 1U <= 1U) { tp->cp_cmd = (u16 )((unsigned int )tp->cp_cmd | 16384U); } else { } { writew((int )tp->cp_cmd, (void volatile *)ioaddr + 224U); rtl8169_set_magic_reg(ioaddr, (unsigned int )tp->mac_version); writew(0, (void volatile *)ioaddr + 226U); rtl_set_rx_tx_desc_registers(tp, ioaddr); } if ((unsigned int )tp->mac_version > 3U) { { writeb(12, (void volatile *)ioaddr + 55U); rtl_set_rx_tx_config_registers(tp); } } else { } { writeb(0, (void volatile *)ioaddr + 80U); readb((void const volatile *)ioaddr + 60U); writel(0U, (void volatile *)ioaddr + 76U); rtl_set_rx_mode(dev); tmp___2 = readw((void const volatile *)ioaddr + 92U); writew((int )tmp___2 & 61440, (void volatile *)ioaddr + 92U); } return; } } static void rtl_csi_write(struct rtl8169_private *tp , int addr , int value ) { { if ((unsigned long )tp->csi_ops.write != (unsigned long )((void (*)(struct rtl8169_private * , int , int ))0)) { { (*(tp->csi_ops.write))(tp, addr, value); } } else { } return; } } static u32 rtl_csi_read(struct rtl8169_private *tp , int addr ) { u32 tmp ; u32 tmp___0 ; { if ((unsigned long )tp->csi_ops.read != (unsigned long )((u32 (*)(struct rtl8169_private * , int ))0)) { { tmp = (*(tp->csi_ops.read))(tp, addr); tmp___0 = tmp; } } else { tmp___0 = 4294967295U; } return (tmp___0); } } static void rtl_csi_access_enable(struct rtl8169_private *tp , u32 bits ) { u32 csi ; u32 tmp ; { { tmp = rtl_csi_read(tp, 1804); csi = tmp & 16777215U; rtl_csi_write(tp, 1804, (int )(csi | bits)); } return; } } static void rtl_csi_access_enable_1(struct rtl8169_private *tp ) { { { rtl_csi_access_enable(tp, 385875968U); } return; } } static void rtl_csi_access_enable_2(struct rtl8169_private *tp ) { { { rtl_csi_access_enable(tp, 654311424U); } return; } } static bool rtl_csiar_cond_check(struct rtl8169_private *tp ) ; static struct rtl_cond const rtl_csiar_cond = {& rtl_csiar_cond_check, "rtl_csiar_cond"}; static bool rtl_csiar_cond_check(struct rtl8169_private *tp ) { void *ioaddr ; unsigned int tmp ; { { ioaddr = tp->mmio_addr; tmp = readl((void const volatile *)ioaddr + 104U); } return ((tmp & 2147483648U) != 0U); } } static void r8169_csi_write(struct rtl8169_private *tp , int addr , int value ) { void *ioaddr ; { { ioaddr = tp->mmio_addr; writel((unsigned int )value, (void volatile *)ioaddr + 100U); writel(((unsigned int )addr & 65535U) | 2147545088U, (void volatile *)ioaddr + 104U); rtl_udelay_loop_wait_low(tp, & rtl_csiar_cond, 10U, 100); } return; } } static u32 r8169_csi_read(struct rtl8169_private *tp , int addr ) { void *ioaddr ; unsigned int tmp___0 ; u32 tmp___1 ; bool tmp___2 ; { { ioaddr = tp->mmio_addr; writel((unsigned int )((addr & 65535) | 61440), (void volatile *)ioaddr + 104U); tmp___2 = rtl_udelay_loop_wait_high(tp, & rtl_csiar_cond, 10U, 100); } if ((int )tmp___2) { { tmp___0 = readl((void const volatile *)ioaddr + 100U); tmp___1 = tmp___0; } } else { tmp___1 = 4294967295U; } return (tmp___1); } } static void r8402_csi_write(struct rtl8169_private *tp , int addr , int value ) { void *ioaddr ; { { ioaddr = tp->mmio_addr; writel((unsigned int )value, (void volatile *)ioaddr + 100U); writel(((unsigned int )addr & 65535U) | 2147676160U, (void volatile *)ioaddr + 104U); rtl_udelay_loop_wait_low(tp, & rtl_csiar_cond, 10U, 100); } return; } } static u32 r8402_csi_read(struct rtl8169_private *tp , int addr ) { void *ioaddr ; unsigned int tmp___0 ; u32 tmp___1 ; bool tmp___2 ; { { ioaddr = tp->mmio_addr; writel((unsigned int )((addr & 65535) | 192512), (void volatile *)ioaddr + 104U); tmp___2 = rtl_udelay_loop_wait_high(tp, & rtl_csiar_cond, 10U, 100); } if ((int )tmp___2) { { tmp___0 = readl((void const volatile *)ioaddr + 100U); tmp___1 = tmp___0; } } else { tmp___1 = 4294967295U; } return (tmp___1); } } static void r8411_csi_write(struct rtl8169_private *tp , int addr , int value ) { void *ioaddr ; { { ioaddr = tp->mmio_addr; writel((unsigned int )value, (void volatile *)ioaddr + 100U); writel(((unsigned int )addr & 65535U) | 2147610624U, (void volatile *)ioaddr + 104U); rtl_udelay_loop_wait_low(tp, & rtl_csiar_cond, 10U, 100); } return; } } static u32 r8411_csi_read(struct rtl8169_private *tp , int addr ) { void *ioaddr ; unsigned int tmp___0 ; u32 tmp___1 ; bool tmp___2 ; { { ioaddr = tp->mmio_addr; writel((unsigned int )((addr & 65535) | 126976), (void volatile *)ioaddr + 104U); tmp___2 = rtl_udelay_loop_wait_high(tp, & rtl_csiar_cond, 10U, 100); } if ((int )tmp___2) { { tmp___0 = readl((void const volatile *)ioaddr + 100U); tmp___1 = tmp___0; } } else { tmp___1 = 4294967295U; } return (tmp___1); } } static void rtl_init_csi_ops(struct rtl8169_private *tp ) { struct csi_ops *ops ; { ops = & tp->csi_ops; { if ((int )tp->mac_version == 0) { goto case_0; } else { } if ((int )tp->mac_version == 1) { goto case_1; } else { } if ((int )tp->mac_version == 2) { goto case_2; } else { } if ((int )tp->mac_version == 3) { goto case_3; } else { } if ((int )tp->mac_version == 4) { goto case_4; } else { } if ((int )tp->mac_version == 5) { goto case_5; } else { } if ((int )tp->mac_version == 9) { goto case_9; } else { } if ((int )tp->mac_version == 10) { goto case_10; } else { } if ((int )tp->mac_version == 11) { goto case_11; } else { } if ((int )tp->mac_version == 12) { goto case_12; } else { } if ((int )tp->mac_version == 13) { goto case_13; } else { } if ((int )tp->mac_version == 14) { goto case_14; } else { } if ((int )tp->mac_version == 15) { goto case_15; } else { } if ((int )tp->mac_version == 16) { goto case_16; } else { } if ((int )tp->mac_version == 36) { goto case_36; } else { } if ((int )tp->mac_version == 37) { goto case_37; } else { } if ((int )tp->mac_version == 43) { goto case_43; } else { } goto switch_default; case_0: /* CIL Label */ ; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_3: /* CIL Label */ ; case_4: /* CIL Label */ ; case_5: /* CIL Label */ ; case_9: /* CIL Label */ ; case_10: /* CIL Label */ ; case_11: /* CIL Label */ ; case_12: /* CIL Label */ ; case_13: /* CIL Label */ ; case_14: /* CIL Label */ ; case_15: /* CIL Label */ ; case_16: /* CIL Label */ ops->write = (void (*)(struct rtl8169_private * , int , int ))0; ops->read = (u32 (*)(struct rtl8169_private * , int ))0; goto ldv_49738; case_36: /* CIL Label */ ; case_37: /* CIL Label */ ops->write = & r8402_csi_write; ops->read = & r8402_csi_read; goto ldv_49738; case_43: /* CIL Label */ ops->write = & r8411_csi_write; ops->read = & r8411_csi_read; goto ldv_49738; switch_default: /* CIL Label */ ops->write = & r8169_csi_write; ops->read = & r8169_csi_read; goto ldv_49738; switch_break: /* CIL Label */ ; } ldv_49738: ; return; } } static void rtl_ephy_init(struct rtl8169_private *tp , struct ephy_info const *e , int len ) { u16 w ; u16 tmp ; int tmp___0 ; { goto ldv_49754; ldv_49753: { tmp = rtl_ephy_read(tp, (int )e->offset); w = (u16 )(((int )((short )tmp) & ~ ((int )((short )e->mask))) | (int )((short )e->bits)); rtl_ephy_write(tp, (int )e->offset, (int )w); e = e + 1; } ldv_49754: tmp___0 = len; len = len - 1; if (tmp___0 > 0) { goto ldv_49753; } else { } return; } } static void rtl_disable_clock_request(struct pci_dev *pdev ) { { { pcie_capability_clear_word(pdev, 16, 256); } return; } } static void rtl_enable_clock_request(struct pci_dev *pdev ) { { { pcie_capability_set_word(pdev, 16, 256); } return; } } static void rtl_hw_start_8168bb(struct rtl8169_private *tp ) { void *ioaddr ; struct pci_dev *pdev ; unsigned char tmp ; unsigned short tmp___0 ; { { ioaddr = tp->mmio_addr; pdev = tp->pci_dev; tmp = readb((void const volatile *)ioaddr + 84U); writeb((int )tmp & 254, (void volatile *)ioaddr + 84U); tmp___0 = readw((void const volatile *)ioaddr + 224U); writew((int )tmp___0 & 8291, (void volatile *)ioaddr + 224U); } if ((tp->dev)->mtu <= 1500U) { { rtl_tx_performance_tweak(pdev, 22528); } } else { } return; } } static void rtl_hw_start_8168bef(struct rtl8169_private *tp ) { void *ioaddr ; unsigned char tmp ; { { ioaddr = tp->mmio_addr; rtl_hw_start_8168bb(tp); writeb(63, (void volatile *)ioaddr + 236U); tmp = readb((void const volatile *)ioaddr + 85U); writeb((int )tmp & 254, (void volatile *)ioaddr + 85U); } return; } } static void __rtl_hw_start_8168cp(struct rtl8169_private *tp ) { void *ioaddr ; struct pci_dev *pdev ; unsigned char tmp ; unsigned char tmp___0 ; unsigned short tmp___1 ; { { ioaddr = tp->mmio_addr; pdev = tp->pci_dev; tmp = readb((void const volatile *)ioaddr + 82U); writeb((int )((unsigned int )tmp | 16U), (void volatile *)ioaddr + 82U); tmp___0 = readb((void const volatile *)ioaddr + 84U); writeb((int )tmp___0 & 254, (void volatile *)ioaddr + 84U); } if ((tp->dev)->mtu <= 1500U) { { rtl_tx_performance_tweak(pdev, 20480); } } else { } { rtl_disable_clock_request(pdev); tmp___1 = readw((void const volatile *)ioaddr + 224U); writew((int )tmp___1 & 8291, (void volatile *)ioaddr + 224U); } return; } } static void rtl_hw_start_8168cp_1(struct rtl8169_private *tp ) { struct ephy_info e_info_8168cp[5U] ; { { e_info_8168cp[0].offset = 1U; e_info_8168cp[0].mask = 0U; e_info_8168cp[0].bits = 1U; e_info_8168cp[1].offset = 2U; e_info_8168cp[1].mask = 2048U; e_info_8168cp[1].bits = 4096U; e_info_8168cp[2].offset = 3U; e_info_8168cp[2].mask = 0U; e_info_8168cp[2].bits = 66U; e_info_8168cp[3].offset = 6U; e_info_8168cp[3].mask = 128U; e_info_8168cp[3].bits = 0U; e_info_8168cp[4].offset = 7U; e_info_8168cp[4].mask = 0U; e_info_8168cp[4].bits = 8192U; rtl_csi_access_enable_2(tp); rtl_ephy_init(tp, (struct ephy_info const *)(& e_info_8168cp), 5); __rtl_hw_start_8168cp(tp); } return; } } static void rtl_hw_start_8168cp_2(struct rtl8169_private *tp ) { void *ioaddr ; struct pci_dev *pdev ; unsigned char tmp ; unsigned short tmp___0 ; { { ioaddr = tp->mmio_addr; pdev = tp->pci_dev; rtl_csi_access_enable_2(tp); tmp = readb((void const volatile *)ioaddr + 84U); writeb((int )tmp & 254, (void volatile *)ioaddr + 84U); } if ((tp->dev)->mtu <= 1500U) { { rtl_tx_performance_tweak(pdev, 20480); } } else { } { tmp___0 = readw((void const volatile *)ioaddr + 224U); writew((int )tmp___0 & 8291, (void volatile *)ioaddr + 224U); } return; } } static void rtl_hw_start_8168cp_3(struct rtl8169_private *tp ) { void *ioaddr ; struct pci_dev *pdev ; unsigned char tmp ; unsigned short tmp___0 ; { { ioaddr = tp->mmio_addr; pdev = tp->pci_dev; rtl_csi_access_enable_2(tp); tmp = readb((void const volatile *)ioaddr + 84U); writeb((int )tmp & 254, (void volatile *)ioaddr + 84U); writeb(32, (void volatile *)ioaddr + 209U); writeb(63, (void volatile *)ioaddr + 236U); } if ((tp->dev)->mtu <= 1500U) { { rtl_tx_performance_tweak(pdev, 20480); } } else { } { tmp___0 = readw((void const volatile *)ioaddr + 224U); writew((int )tmp___0 & 8291, (void volatile *)ioaddr + 224U); } return; } } static void rtl_hw_start_8168c_1(struct rtl8169_private *tp ) { void *ioaddr ; struct ephy_info e_info_8168c_1[3U] ; { { ioaddr = tp->mmio_addr; e_info_8168c_1[0].offset = 2U; e_info_8168c_1[0].mask = 2048U; e_info_8168c_1[0].bits = 4096U; e_info_8168c_1[1].offset = 3U; e_info_8168c_1[1].mask = 0U; e_info_8168c_1[1].bits = 2U; e_info_8168c_1[2].offset = 6U; e_info_8168c_1[2].mask = 128U; e_info_8168c_1[2].bits = 0U; rtl_csi_access_enable_2(tp); writeb(30, (void volatile *)ioaddr + 209U); rtl_ephy_init(tp, (struct ephy_info const *)(& e_info_8168c_1), 3); __rtl_hw_start_8168cp(tp); } return; } } static void rtl_hw_start_8168c_2(struct rtl8169_private *tp ) { struct ephy_info e_info_8168c_2[2U] ; { { e_info_8168c_2[0].offset = 1U; e_info_8168c_2[0].mask = 0U; e_info_8168c_2[0].bits = 1U; e_info_8168c_2[1].offset = 3U; e_info_8168c_2[1].mask = 1024U; e_info_8168c_2[1].bits = 544U; rtl_csi_access_enable_2(tp); rtl_ephy_init(tp, (struct ephy_info const *)(& e_info_8168c_2), 2); __rtl_hw_start_8168cp(tp); } return; } } static void rtl_hw_start_8168c_3(struct rtl8169_private *tp ) { { { rtl_hw_start_8168c_2(tp); } return; } } static void rtl_hw_start_8168c_4(struct rtl8169_private *tp ) { { { rtl_csi_access_enable_2(tp); __rtl_hw_start_8168cp(tp); } return; } } static void rtl_hw_start_8168d(struct rtl8169_private *tp ) { void *ioaddr ; struct pci_dev *pdev ; unsigned short tmp ; { { ioaddr = tp->mmio_addr; pdev = tp->pci_dev; rtl_csi_access_enable_2(tp); rtl_disable_clock_request(pdev); writeb(63, (void volatile *)ioaddr + 236U); } if ((tp->dev)->mtu <= 1500U) { { rtl_tx_performance_tweak(pdev, 20480); } } else { } { tmp = readw((void const volatile *)ioaddr + 224U); writew((int )tmp & 8291, (void volatile *)ioaddr + 224U); } return; } } static void rtl_hw_start_8168dp(struct rtl8169_private *tp ) { void *ioaddr ; struct pci_dev *pdev ; { { ioaddr = tp->mmio_addr; pdev = tp->pci_dev; rtl_csi_access_enable_1(tp); } if ((tp->dev)->mtu <= 1500U) { { rtl_tx_performance_tweak(pdev, 20480); } } else { } { writeb(63, (void volatile *)ioaddr + 236U); rtl_disable_clock_request(pdev); } return; } } static void rtl_hw_start_8168d_4(struct rtl8169_private *tp ) { void *ioaddr ; struct pci_dev *pdev ; struct ephy_info e_info_8168d_4[3U] ; int i ; struct ephy_info const *e ; u16 w ; { { ioaddr = tp->mmio_addr; pdev = tp->pci_dev; e_info_8168d_4[0].offset = 11U; e_info_8168d_4[0].mask = 65535U; e_info_8168d_4[0].bits = 72U; e_info_8168d_4[1].offset = 25U; e_info_8168d_4[1].mask = 32U; e_info_8168d_4[1].bits = 80U; e_info_8168d_4[2].offset = 12U; e_info_8168d_4[2].mask = 65535U; e_info_8168d_4[2].bits = 32U; rtl_csi_access_enable_1(tp); rtl_tx_performance_tweak(pdev, 20480); writeb(63, (void volatile *)ioaddr + 236U); i = 0; } goto ldv_49833; ldv_49832: { e = (struct ephy_info const *)(& e_info_8168d_4) + (unsigned long )i; w = rtl_ephy_read(tp, (int )e->offset); rtl_ephy_write(tp, 3, ((int )w & (int )((unsigned short )e->mask)) | (int )((unsigned short )e->bits)); i = i + 1; } ldv_49833: ; if ((unsigned int )i <= 2U) { goto ldv_49832; } else { } { rtl_enable_clock_request(pdev); } return; } } static void rtl_hw_start_8168e_1(struct rtl8169_private *tp ) { void *ioaddr ; struct pci_dev *pdev ; struct ephy_info e_info_8168e_1[13U] ; unsigned int tmp ; unsigned int tmp___0 ; unsigned char tmp___1 ; { { ioaddr = tp->mmio_addr; pdev = tp->pci_dev; e_info_8168e_1[0].offset = 0U; e_info_8168e_1[0].mask = 512U; e_info_8168e_1[0].bits = 256U; e_info_8168e_1[1].offset = 0U; e_info_8168e_1[1].mask = 0U; e_info_8168e_1[1].bits = 4U; e_info_8168e_1[2].offset = 6U; e_info_8168e_1[2].mask = 2U; e_info_8168e_1[2].bits = 1U; e_info_8168e_1[3].offset = 6U; e_info_8168e_1[3].mask = 0U; e_info_8168e_1[3].bits = 48U; e_info_8168e_1[4].offset = 7U; e_info_8168e_1[4].mask = 0U; e_info_8168e_1[4].bits = 8192U; e_info_8168e_1[5].offset = 0U; e_info_8168e_1[5].mask = 0U; e_info_8168e_1[5].bits = 32U; e_info_8168e_1[6].offset = 3U; e_info_8168e_1[6].mask = 22528U; e_info_8168e_1[6].bits = 8192U; e_info_8168e_1[7].offset = 3U; e_info_8168e_1[7].mask = 0U; e_info_8168e_1[7].bits = 1U; e_info_8168e_1[8].offset = 1U; e_info_8168e_1[8].mask = 2048U; e_info_8168e_1[8].bits = 4096U; e_info_8168e_1[9].offset = 7U; e_info_8168e_1[9].mask = 0U; e_info_8168e_1[9].bits = 16384U; e_info_8168e_1[10].offset = 30U; e_info_8168e_1[10].mask = 0U; e_info_8168e_1[10].bits = 8192U; e_info_8168e_1[11].offset = 25U; e_info_8168e_1[11].mask = 65535U; e_info_8168e_1[11].bits = 65132U; e_info_8168e_1[12].offset = 10U; e_info_8168e_1[12].mask = 0U; e_info_8168e_1[12].bits = 64U; rtl_csi_access_enable_2(tp); rtl_ephy_init(tp, (struct ephy_info const *)(& e_info_8168e_1), 13); } if ((tp->dev)->mtu <= 1500U) { { rtl_tx_performance_tweak(pdev, 20480); } } else { } { writeb(63, (void volatile *)ioaddr + 236U); rtl_disable_clock_request(pdev); tmp = readl((void const volatile *)ioaddr + 240U); writel(tmp | 536870912U, (void volatile *)ioaddr + 240U); tmp___0 = readl((void const volatile *)ioaddr + 240U); writel(tmp___0 & 3758096383U, (void volatile *)ioaddr + 240U); tmp___1 = readb((void const volatile *)ioaddr + 86U); writeb((int )tmp___1 & 247, (void volatile *)ioaddr + 86U); } return; } } static void rtl_hw_start_8168e_2(struct rtl8169_private *tp ) { void *ioaddr ; struct pci_dev *pdev ; struct ephy_info e_info_8168e_2[2U] ; unsigned int tmp ; unsigned char tmp___0 ; unsigned char tmp___1 ; unsigned char tmp___2 ; unsigned int tmp___3 ; unsigned char tmp___4 ; { { ioaddr = tp->mmio_addr; pdev = tp->pci_dev; e_info_8168e_2[0].offset = 9U; e_info_8168e_2[0].mask = 0U; e_info_8168e_2[0].bits = 128U; e_info_8168e_2[1].offset = 25U; e_info_8168e_2[1].mask = 0U; e_info_8168e_2[1].bits = 548U; rtl_csi_access_enable_1(tp); rtl_ephy_init(tp, (struct ephy_info const *)(& e_info_8168e_2), 2); } if ((tp->dev)->mtu <= 1500U) { { rtl_tx_performance_tweak(pdev, 20480); } } else { } { rtl_eri_write(tp, 192, 12288U, 0U, 0); rtl_eri_write(tp, 184, 12288U, 0U, 0); rtl_eri_write(tp, 200, 61440U, 1048578U, 0); rtl_eri_write(tp, 232, 61440U, 1048582U, 0); rtl_eri_write(tp, 204, 61440U, 80U, 0); rtl_eri_write(tp, 208, 61440U, 134152288U, 0); rtl_w1w0_eri(tp, 432, 4096U, 16U, 0U, 0); rtl_w1w0_eri(tp, 212, 12288U, 3072U, 65280U, 0); writeb(39, (void volatile *)ioaddr + 236U); rtl_disable_clock_request(pdev); tmp = readl((void const volatile *)ioaddr + 64U); writel(tmp | 128U, (void volatile *)ioaddr + 64U); tmp___0 = readb((void const volatile *)ioaddr + 211U); writeb((int )tmp___0 & 127, (void volatile *)ioaddr + 211U); tmp___1 = readb((void const volatile *)ioaddr + 27U); writeb((int )tmp___1 & 248, (void volatile *)ioaddr + 27U); tmp___2 = readb((void const volatile *)ioaddr + 208U); writeb((int )((unsigned int )tmp___2 | 64U), (void volatile *)ioaddr + 208U); tmp___3 = readl((void const volatile *)ioaddr + 240U); writel(tmp___3 | 4194304U, (void volatile *)ioaddr + 240U); tmp___4 = readb((void const volatile *)ioaddr + 86U); writeb((int )tmp___4 & 247, (void volatile *)ioaddr + 86U); } return; } } static void rtl_hw_start_8168f(struct rtl8169_private *tp ) { void *ioaddr ; struct pci_dev *pdev ; unsigned int tmp ; unsigned char tmp___0 ; unsigned char tmp___1 ; unsigned int tmp___2 ; unsigned char tmp___3 ; { { ioaddr = tp->mmio_addr; pdev = tp->pci_dev; rtl_csi_access_enable_2(tp); rtl_tx_performance_tweak(pdev, 20480); rtl_eri_write(tp, 192, 12288U, 0U, 0); rtl_eri_write(tp, 184, 12288U, 0U, 0); rtl_eri_write(tp, 200, 61440U, 1048578U, 0); rtl_eri_write(tp, 232, 61440U, 1048582U, 0); rtl_w1w0_eri(tp, 220, 4096U, 0U, 1U, 0); rtl_w1w0_eri(tp, 220, 4096U, 1U, 0U, 0); rtl_w1w0_eri(tp, 432, 4096U, 16U, 0U, 0); rtl_w1w0_eri(tp, 464, 4096U, 16U, 0U, 0); rtl_eri_write(tp, 204, 61440U, 80U, 0); rtl_eri_write(tp, 208, 61440U, 96U, 0); writeb(39, (void volatile *)ioaddr + 236U); rtl_disable_clock_request(pdev); tmp = readl((void const volatile *)ioaddr + 64U); writel(tmp | 128U, (void volatile *)ioaddr + 64U); tmp___0 = readb((void const volatile *)ioaddr + 211U); writeb((int )tmp___0 & 127, (void volatile *)ioaddr + 211U); tmp___1 = readb((void const volatile *)ioaddr + 208U); writeb((int )((unsigned int )tmp___1 | 64U), (void volatile *)ioaddr + 208U); tmp___2 = readl((void const volatile *)ioaddr + 240U); writel(tmp___2 | 4194304U, (void volatile *)ioaddr + 240U); tmp___3 = readb((void const volatile *)ioaddr + 86U); writeb((int )tmp___3 & 247, (void volatile *)ioaddr + 86U); } return; } } static void rtl_hw_start_8168f_1(struct rtl8169_private *tp ) { void *ioaddr ; struct ephy_info e_info_8168f_1[4U] ; unsigned char tmp ; { { ioaddr = tp->mmio_addr; e_info_8168f_1[0].offset = 6U; e_info_8168f_1[0].mask = 192U; e_info_8168f_1[0].bits = 32U; e_info_8168f_1[1].offset = 8U; e_info_8168f_1[1].mask = 1U; e_info_8168f_1[1].bits = 2U; e_info_8168f_1[2].offset = 9U; e_info_8168f_1[2].mask = 0U; e_info_8168f_1[2].bits = 128U; e_info_8168f_1[3].offset = 25U; e_info_8168f_1[3].mask = 0U; e_info_8168f_1[3].bits = 548U; rtl_hw_start_8168f(tp); rtl_ephy_init(tp, (struct ephy_info const *)(& e_info_8168f_1), 4); rtl_w1w0_eri(tp, 212, 12288U, 3072U, 65280U, 0); tmp = readb((void const volatile *)ioaddr + 27U); writeb((int )tmp & 248, (void volatile *)ioaddr + 27U); } return; } } static void rtl_hw_start_8411(struct rtl8169_private *tp ) { struct ephy_info e_info_8168f_1[4U] ; { { e_info_8168f_1[0].offset = 6U; e_info_8168f_1[0].mask = 192U; e_info_8168f_1[0].bits = 32U; e_info_8168f_1[1].offset = 15U; e_info_8168f_1[1].mask = 65535U; e_info_8168f_1[1].bits = 20992U; e_info_8168f_1[2].offset = 30U; e_info_8168f_1[2].mask = 0U; e_info_8168f_1[2].bits = 16384U; e_info_8168f_1[3].offset = 25U; e_info_8168f_1[3].mask = 0U; e_info_8168f_1[3].bits = 548U; rtl_hw_start_8168f(tp); rtl_ephy_init(tp, (struct ephy_info const *)(& e_info_8168f_1), 4); rtl_w1w0_eri(tp, 212, 12288U, 3072U, 0U, 0); } return; } } static void rtl_hw_start_8168g_1(struct rtl8169_private *tp ) { void *ioaddr ; struct pci_dev *pdev ; unsigned int tmp ; unsigned int tmp___0 ; unsigned char tmp___1 ; { { ioaddr = tp->mmio_addr; pdev = tp->pci_dev; tmp = readl((void const volatile *)ioaddr + 64U); writel(tmp | 128U, (void volatile *)ioaddr + 64U); rtl_eri_write(tp, 200, 20480U, 524290U, 0); rtl_eri_write(tp, 204, 4096U, 56U, 0); rtl_eri_write(tp, 208, 4096U, 72U, 0); rtl_eri_write(tp, 232, 61440U, 1048582U, 0); rtl_csi_access_enable_1(tp); rtl_tx_performance_tweak(pdev, 20480); rtl_w1w0_eri(tp, 220, 4096U, 0U, 1U, 0); rtl_w1w0_eri(tp, 220, 4096U, 1U, 0U, 0); rtl_eri_write(tp, 760, 12288U, 7567U, 0); writeb(12, (void volatile *)ioaddr + 55U); tmp___0 = readl((void const volatile *)ioaddr + 240U); writel(tmp___0 & 4294443007U, (void volatile *)ioaddr + 240U); writeb(39, (void volatile *)ioaddr + 236U); rtl_eri_write(tp, 192, 12288U, 0U, 0); rtl_eri_write(tp, 184, 12288U, 0U, 0); tmp___1 = readb((void const volatile *)ioaddr + 27U); writeb((int )tmp___1 & 248, (void volatile *)ioaddr + 27U); rtl_w1w0_eri(tp, 764, 4096U, 1U, 6U, 0); rtl_w1w0_eri(tp, 432, 12288U, 0U, 4096U, 0); } return; } } static void rtl_hw_start_8168g_2(struct rtl8169_private *tp ) { void *ioaddr ; struct ephy_info e_info_8168g_2[4U] ; unsigned char tmp ; unsigned char tmp___0 ; { { ioaddr = tp->mmio_addr; e_info_8168g_2[0].offset = 0U; e_info_8168g_2[0].mask = 0U; e_info_8168g_2[0].bits = 8U; e_info_8168g_2[1].offset = 12U; e_info_8168g_2[1].mask = 15856U; e_info_8168g_2[1].bits = 512U; e_info_8168g_2[2].offset = 25U; e_info_8168g_2[2].mask = 65535U; e_info_8168g_2[2].bits = 64512U; e_info_8168g_2[3].offset = 30U; e_info_8168g_2[3].mask = 65535U; e_info_8168g_2[3].bits = 8427U; rtl_hw_start_8168g_1(tp); tmp = readb((void const volatile *)ioaddr + 83U); writeb((int )tmp & 127, (void volatile *)ioaddr + 83U); tmp___0 = readb((void const volatile *)ioaddr + 86U); writeb((int )tmp___0 & 254, (void volatile *)ioaddr + 86U); rtl_ephy_init(tp, (struct ephy_info const *)(& e_info_8168g_2), 4); } return; } } static void rtl_hw_start_8411_2(struct rtl8169_private *tp ) { void *ioaddr ; struct ephy_info e_info_8411_2[5U] ; unsigned char tmp ; unsigned char tmp___0 ; { { ioaddr = tp->mmio_addr; e_info_8411_2[0].offset = 0U; e_info_8411_2[0].mask = 0U; e_info_8411_2[0].bits = 8U; e_info_8411_2[1].offset = 12U; e_info_8411_2[1].mask = 15856U; e_info_8411_2[1].bits = 512U; e_info_8411_2[2].offset = 15U; e_info_8411_2[2].mask = 65535U; e_info_8411_2[2].bits = 20992U; e_info_8411_2[3].offset = 25U; e_info_8411_2[3].mask = 32U; e_info_8411_2[3].bits = 0U; e_info_8411_2[4].offset = 30U; e_info_8411_2[4].mask = 0U; e_info_8411_2[4].bits = 8192U; rtl_hw_start_8168g_1(tp); tmp = readb((void const volatile *)ioaddr + 83U); writeb((int )tmp & 127, (void volatile *)ioaddr + 83U); tmp___0 = readb((void const volatile *)ioaddr + 86U); writeb((int )tmp___0 & 254, (void volatile *)ioaddr + 86U); rtl_ephy_init(tp, (struct ephy_info const *)(& e_info_8411_2), 5); } return; } } static void rtl_hw_start_8168(struct net_device *dev ) { struct rtl8169_private *tp ; void *tmp ; void *ioaddr ; unsigned short tmp___0 ; unsigned short tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; ioaddr = tp->mmio_addr; writeb(192, (void volatile *)ioaddr + 80U); writeb(63, (void volatile *)ioaddr + 236U); rtl_set_rx_max_size(ioaddr, (unsigned int )rx_buf_sz); tmp___0 = readw((void const volatile *)ioaddr + 224U); tp->cp_cmd = (u16 )((unsigned int )((int )tp->cp_cmd | (int )tmp___0) | 129U); writew((int )tp->cp_cmd, (void volatile *)ioaddr + 224U); writew(20817, (void volatile *)ioaddr + 226U); } if ((unsigned int )tp->mac_version == 10U) { tp->event_slow = (u16 )((unsigned int )tp->event_slow | 16448U); tp->event_slow = (unsigned int )tp->event_slow & 65519U; } else { } { rtl_set_rx_tx_desc_registers(tp, ioaddr); rtl_set_rx_tx_config_registers(tp); readb((void const volatile *)ioaddr + 60U); } { if ((int )tp->mac_version == 10) { goto case_10; } else { } if ((int )tp->mac_version == 11) { goto case_11; } else { } if ((int )tp->mac_version == 16) { goto case_16; } else { } if ((int )tp->mac_version == 17) { goto case_17; } else { } if ((int )tp->mac_version == 18) { goto case_18; } else { } if ((int )tp->mac_version == 19) { goto case_19; } else { } if ((int )tp->mac_version == 20) { goto case_20; } else { } if ((int )tp->mac_version == 21) { goto case_21; } else { } if ((int )tp->mac_version == 22) { goto case_22; } else { } if ((int )tp->mac_version == 23) { goto case_23; } else { } if ((int )tp->mac_version == 24) { goto case_24; } else { } if ((int )tp->mac_version == 25) { goto case_25; } else { } if ((int )tp->mac_version == 26) { goto case_26; } else { } if ((int )tp->mac_version == 27) { goto case_27; } else { } if ((int )tp->mac_version == 30) { goto case_30; } else { } if ((int )tp->mac_version == 31) { goto case_31; } else { } if ((int )tp->mac_version == 32) { goto case_32; } else { } if ((int )tp->mac_version == 33) { goto case_33; } else { } if ((int )tp->mac_version == 34) { goto case_34; } else { } if ((int )tp->mac_version == 35) { goto case_35; } else { } if ((int )tp->mac_version == 37) { goto case_37; } else { } if ((int )tp->mac_version == 39) { goto case_39; } else { } if ((int )tp->mac_version == 40) { goto case_40; } else { } if ((int )tp->mac_version == 41) { goto case_41; } else { } if ((int )tp->mac_version == 43) { goto case_43; } else { } goto switch_default; case_10: /* CIL Label */ { rtl_hw_start_8168bb(tp); } goto ldv_49894; case_11: /* CIL Label */ ; case_16: /* CIL Label */ { rtl_hw_start_8168bef(tp); } goto ldv_49894; case_17: /* CIL Label */ { rtl_hw_start_8168cp_1(tp); } goto ldv_49894; case_18: /* CIL Label */ { rtl_hw_start_8168c_1(tp); } goto ldv_49894; case_19: /* CIL Label */ { rtl_hw_start_8168c_2(tp); } goto ldv_49894; case_20: /* CIL Label */ { rtl_hw_start_8168c_3(tp); } goto ldv_49894; case_21: /* CIL Label */ { rtl_hw_start_8168c_4(tp); } goto ldv_49894; case_22: /* CIL Label */ { rtl_hw_start_8168cp_2(tp); } goto ldv_49894; case_23: /* CIL Label */ { rtl_hw_start_8168cp_3(tp); } goto ldv_49894; case_24: /* CIL Label */ ; case_25: /* CIL Label */ ; case_26: /* CIL Label */ { rtl_hw_start_8168d(tp); } goto ldv_49894; case_27: /* CIL Label */ { rtl_hw_start_8168d_4(tp); } goto ldv_49894; case_30: /* CIL Label */ { rtl_hw_start_8168dp(tp); } goto ldv_49894; case_31: /* CIL Label */ ; case_32: /* CIL Label */ { rtl_hw_start_8168e_1(tp); } goto ldv_49894; case_33: /* CIL Label */ { rtl_hw_start_8168e_2(tp); } goto ldv_49894; case_34: /* CIL Label */ ; case_35: /* CIL Label */ { rtl_hw_start_8168f_1(tp); } goto ldv_49894; case_37: /* CIL Label */ { rtl_hw_start_8411(tp); } goto ldv_49894; case_39: /* CIL Label */ ; case_40: /* CIL Label */ { rtl_hw_start_8168g_1(tp); } goto ldv_49894; case_41: /* CIL Label */ { rtl_hw_start_8168g_2(tp); } goto ldv_49894; case_43: /* CIL Label */ { rtl_hw_start_8411_2(tp); } goto ldv_49894; switch_default: /* CIL Label */ { printk("\vr8169: %s: unknown chipset (mac_version = %d).\n", (char *)(& dev->name), (int )tp->mac_version); } goto ldv_49894; switch_break: /* CIL Label */ ; } ldv_49894: { writeb(0, (void volatile *)ioaddr + 80U); writeb(12, (void volatile *)ioaddr + 55U); rtl_set_rx_mode(dev); tmp___1 = readw((void const volatile *)ioaddr + 92U); writew((int )tmp___1 & 61440, (void volatile *)ioaddr + 92U); } return; } } static void rtl_hw_start_8102e_1(struct rtl8169_private *tp ) { void *ioaddr ; struct pci_dev *pdev ; struct ephy_info e_info_8102e_1[8U] ; u8 cfg1 ; unsigned char tmp ; { { ioaddr = tp->mmio_addr; pdev = tp->pci_dev; e_info_8102e_1[0].offset = 1U; e_info_8102e_1[0].mask = 0U; e_info_8102e_1[0].bits = 28261U; e_info_8102e_1[1].offset = 2U; e_info_8102e_1[1].mask = 0U; e_info_8102e_1[1].bits = 2335U; e_info_8102e_1[2].offset = 3U; e_info_8102e_1[2].mask = 0U; e_info_8102e_1[2].bits = 49913U; e_info_8102e_1[3].offset = 6U; e_info_8102e_1[3].mask = 0U; e_info_8102e_1[3].bits = 44981U; e_info_8102e_1[4].offset = 7U; e_info_8102e_1[4].mask = 0U; e_info_8102e_1[4].bits = 3584U; e_info_8102e_1[5].offset = 25U; e_info_8102e_1[5].mask = 0U; e_info_8102e_1[5].bits = 60544U; e_info_8102e_1[6].offset = 1U; e_info_8102e_1[6].mask = 0U; e_info_8102e_1[6].bits = 11877U; e_info_8102e_1[7].offset = 1U; e_info_8102e_1[7].mask = 0U; e_info_8102e_1[7].bits = 28261U; rtl_csi_access_enable_2(tp); writeb(16, (void volatile *)ioaddr + 209U); rtl_tx_performance_tweak(pdev, 20480); writeb(223, (void volatile *)ioaddr + 82U); tmp = readb((void const volatile *)ioaddr + 84U); writeb((int )tmp & 254, (void volatile *)ioaddr + 84U); cfg1 = readb((void const volatile *)ioaddr + 82U); } if (((int )cfg1 & 64) != 0 && (int )((signed char )cfg1) < 0) { { writeb((int )cfg1 & 191, (void volatile *)ioaddr + 82U); } } else { } { rtl_ephy_init(tp, (struct ephy_info const *)(& e_info_8102e_1), 8); } return; } } static void rtl_hw_start_8102e_2(struct rtl8169_private *tp ) { void *ioaddr ; struct pci_dev *pdev ; unsigned char tmp ; { { ioaddr = tp->mmio_addr; pdev = tp->pci_dev; rtl_csi_access_enable_2(tp); rtl_tx_performance_tweak(pdev, 20480); writeb(15, (void volatile *)ioaddr + 82U); tmp = readb((void const volatile *)ioaddr + 84U); writeb((int )tmp & 254, (void volatile *)ioaddr + 84U); } return; } } static void rtl_hw_start_8102e_3(struct rtl8169_private *tp ) { { { rtl_hw_start_8102e_2(tp); rtl_ephy_write(tp, 3, 49913); } return; } } static void rtl_hw_start_8105e_1(struct rtl8169_private *tp ) { void *ioaddr ; struct ephy_info e_info_8105e_1[8U] ; unsigned int tmp ; unsigned int tmp___0 ; unsigned char tmp___1 ; unsigned char tmp___2 ; { { ioaddr = tp->mmio_addr; e_info_8105e_1[0].offset = 7U; e_info_8105e_1[0].mask = 0U; e_info_8105e_1[0].bits = 16384U; e_info_8105e_1[1].offset = 25U; e_info_8105e_1[1].mask = 0U; e_info_8105e_1[1].bits = 512U; e_info_8105e_1[2].offset = 25U; e_info_8105e_1[2].mask = 0U; e_info_8105e_1[2].bits = 32U; e_info_8105e_1[3].offset = 30U; e_info_8105e_1[3].mask = 0U; e_info_8105e_1[3].bits = 8192U; e_info_8105e_1[4].offset = 3U; e_info_8105e_1[4].mask = 0U; e_info_8105e_1[4].bits = 1U; e_info_8105e_1[5].offset = 25U; e_info_8105e_1[5].mask = 0U; e_info_8105e_1[5].bits = 256U; e_info_8105e_1[6].offset = 25U; e_info_8105e_1[6].mask = 0U; e_info_8105e_1[6].bits = 4U; e_info_8105e_1[7].offset = 10U; e_info_8105e_1[7].mask = 0U; e_info_8105e_1[7].bits = 32U; tmp = readl((void const volatile *)ioaddr + 240U); writel(tmp | 10240U, (void volatile *)ioaddr + 240U); tmp___0 = readl((void const volatile *)ioaddr + 240U); writel(tmp___0 & 4294901759U, (void volatile *)ioaddr + 240U); tmp___1 = readb((void const volatile *)ioaddr + 211U); writeb((int )((unsigned int )tmp___1 | 12U), (void volatile *)ioaddr + 211U); tmp___2 = readb((void const volatile *)ioaddr + 208U); writeb((int )((unsigned int )tmp___2 | 64U), (void volatile *)ioaddr + 208U); rtl_ephy_init(tp, (struct ephy_info const *)(& e_info_8105e_1), 8); } return; } } static void rtl_hw_start_8105e_2(struct rtl8169_private *tp ) { u16 tmp ; { { rtl_hw_start_8105e_1(tp); tmp = rtl_ephy_read(tp, 30); rtl_ephy_write(tp, 30, (int )((unsigned int )tmp | 32768U)); } return; } } static void rtl_hw_start_8402(struct rtl8169_private *tp ) { void *ioaddr ; struct ephy_info e_info_8402[2U] ; unsigned int tmp ; unsigned int tmp___0 ; unsigned char tmp___1 ; { { ioaddr = tp->mmio_addr; e_info_8402[0].offset = 25U; e_info_8402[0].mask = 65535U; e_info_8402[0].bits = 65380U; e_info_8402[1].offset = 30U; e_info_8402[1].mask = 0U; e_info_8402[1].bits = 16384U; rtl_csi_access_enable_2(tp); tmp = readl((void const volatile *)ioaddr + 240U); writel(tmp | 10240U, (void volatile *)ioaddr + 240U); tmp___0 = readl((void const volatile *)ioaddr + 64U); writel(tmp___0 | 128U, (void volatile *)ioaddr + 64U); tmp___1 = readb((void const volatile *)ioaddr + 211U); writeb((int )tmp___1 & 127, (void volatile *)ioaddr + 211U); rtl_ephy_init(tp, (struct ephy_info const *)(& e_info_8402), 2); rtl_tx_performance_tweak(tp->pci_dev, 20480); rtl_eri_write(tp, 200, 61440U, 2U, 0); rtl_eri_write(tp, 232, 61440U, 6U, 0); rtl_w1w0_eri(tp, 220, 4096U, 0U, 1U, 0); rtl_w1w0_eri(tp, 220, 4096U, 1U, 0U, 0); rtl_eri_write(tp, 192, 12288U, 0U, 0); rtl_eri_write(tp, 184, 12288U, 0U, 0); rtl_w1w0_eri(tp, 212, 12288U, 3584U, 65280U, 0); } return; } } static void rtl_hw_start_8106(struct rtl8169_private *tp ) { void *ioaddr ; unsigned int tmp ; unsigned int tmp___0 ; unsigned char tmp___1 ; unsigned char tmp___2 ; { { ioaddr = tp->mmio_addr; tmp = readl((void const volatile *)ioaddr + 240U); writel(tmp | 10240U, (void volatile *)ioaddr + 240U); tmp___0 = readl((void const volatile *)ioaddr + 240U); writel((tmp___0 & 4286513151U) | 8388608U, (void volatile *)ioaddr + 240U); tmp___1 = readb((void const volatile *)ioaddr + 211U); writeb((int )((unsigned int )tmp___1 | 12U), (void volatile *)ioaddr + 211U); tmp___2 = readb((void const volatile *)ioaddr + 208U); writeb((int )tmp___2 & 191, (void volatile *)ioaddr + 208U); } return; } } static void rtl_hw_start_8101(struct net_device *dev ) { struct rtl8169_private *tp ; void *tmp ; void *ioaddr ; struct pci_dev *pdev ; unsigned short tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; ioaddr = tp->mmio_addr; pdev = tp->pci_dev; } if ((unsigned int )tp->mac_version > 28U) { tp->event_slow = (unsigned int )tp->event_slow & 65471U; } else { } if ((unsigned int )tp->mac_version == 12U || (unsigned int )tp->mac_version == 15U) { { pcie_capability_set_word(pdev, 8, 2048); } } else { } { writeb(192, (void volatile *)ioaddr + 80U); writeb(63, (void volatile *)ioaddr + 236U); rtl_set_rx_max_size(ioaddr, (unsigned int )rx_buf_sz); tp->cp_cmd = (unsigned int )tp->cp_cmd & 8291U; writew((int )tp->cp_cmd, (void volatile *)ioaddr + 224U); rtl_set_rx_tx_desc_registers(tp, ioaddr); rtl_set_rx_tx_config_registers(tp); } { if ((int )tp->mac_version == 6) { goto case_6; } else { } if ((int )tp->mac_version == 7) { goto case_7; } else { } if ((int )tp->mac_version == 8) { goto case_8; } else { } if ((int )tp->mac_version == 28) { goto case_28; } else { } if ((int )tp->mac_version == 29) { goto case_29; } else { } if ((int )tp->mac_version == 36) { goto case_36; } else { } if ((int )tp->mac_version == 38) { goto case_38; } else { } if ((int )tp->mac_version == 42) { goto case_42; } else { } goto switch_break; case_6: /* CIL Label */ { rtl_hw_start_8102e_1(tp); } goto ldv_49965; case_7: /* CIL Label */ { rtl_hw_start_8102e_3(tp); } goto ldv_49965; case_8: /* CIL Label */ { rtl_hw_start_8102e_2(tp); } goto ldv_49965; case_28: /* CIL Label */ { rtl_hw_start_8105e_1(tp); } goto ldv_49965; case_29: /* CIL Label */ { rtl_hw_start_8105e_2(tp); } goto ldv_49965; case_36: /* CIL Label */ { rtl_hw_start_8402(tp); } goto ldv_49965; case_38: /* CIL Label */ { rtl_hw_start_8106(tp); } goto ldv_49965; case_42: /* CIL Label */ { rtl_hw_start_8168g_2(tp); } goto ldv_49965; switch_break: /* CIL Label */ ; } ldv_49965: { writeb(0, (void volatile *)ioaddr + 80U); writew(0, (void volatile *)ioaddr + 226U); writeb(12, (void volatile *)ioaddr + 55U); rtl_set_rx_mode(dev); readb((void const volatile *)ioaddr + 60U); tmp___0 = readw((void const volatile *)ioaddr + 92U); writew((int )tmp___0 & 61440, (void volatile *)ioaddr + 92U); } return; } } static int rtl8169_change_mtu(struct net_device *dev , int new_mtu ) { struct rtl8169_private *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; } if (new_mtu <= 59 || new_mtu > (int )rtl_chip_infos[(int )tp->mac_version].jumbo_max) { return (-22); } else { } if (new_mtu > 1500) { { rtl_hw_jumbo_enable(tp); } } else { { rtl_hw_jumbo_disable(tp); } } { dev->mtu = (unsigned int )new_mtu; netdev_update_features(dev); } return (0); } } __inline static void rtl8169_make_unusable_by_asic(struct RxDesc *desc ) { { desc->addr = 841534158063459245ULL; desc->opts1 = desc->opts1 & 1073758207U; return; } } static void rtl8169_free_rx_databuff(struct rtl8169_private *tp , void **data_buff , struct RxDesc *desc ) { { { dma_unmap_single_attrs(& (tp->pci_dev)->dev, desc->addr, (size_t )rx_buf_sz, 2, (struct dma_attrs *)0); kfree((void const *)*data_buff); *data_buff = (void *)0; rtl8169_make_unusable_by_asic(desc); } return; } } __inline static void rtl8169_mark_to_asic(struct RxDesc *desc , u32 rx_buf_sz___0 ) { u32 eor ; { eor = desc->opts1 & 1073741824U; desc->opts1 = (eor | rx_buf_sz___0) | 2147483648U; return; } } __inline static void rtl8169_map_to_asic(struct RxDesc *desc , dma_addr_t mapping , u32 rx_buf_sz___0 ) { { { desc->addr = mapping; __asm__ volatile ("sfence": : : "memory"); rtl8169_mark_to_asic(desc, rx_buf_sz___0); } return; } } __inline static void *rtl8169_align(void *data ) { { return ((void *)(((long )data + 15L) & -16L)); } } static struct sk_buff *rtl8169_alloc_rx_data(struct rtl8169_private *tp , struct RxDesc *desc ) { void *data ; dma_addr_t mapping ; struct device *d ; struct net_device *dev ; int node ; int tmp ; int tmp___0 ; void *tmp___1 ; void *tmp___2 ; int tmp___3 ; int tmp___4 ; long tmp___5 ; { d = & (tp->pci_dev)->dev; dev = tp->dev; if ((unsigned long )dev->dev.parent != (unsigned long )((struct device *)0)) { { tmp = dev_to_node(dev->dev.parent); tmp___0 = tmp; } } else { tmp___0 = -1; } { node = tmp___0; data = kmalloc_node((size_t )rx_buf_sz, 208U, node); } if ((unsigned long )data == (unsigned long )((void *)0)) { return ((struct sk_buff *)0); } else { } { tmp___1 = rtl8169_align(data); } if ((unsigned long )tmp___1 != (unsigned long )data) { { kfree((void const *)data); data = kmalloc_node((size_t )(rx_buf_sz + 15), 208U, node); } if ((unsigned long )data == (unsigned long )((void *)0)) { return ((struct sk_buff *)0); } else { } } else { } { tmp___2 = rtl8169_align(data); mapping = dma_map_single_attrs(d, tmp___2, (size_t )rx_buf_sz, 2, (struct dma_attrs *)0); tmp___4 = dma_mapping_error(d, mapping); tmp___5 = ldv__builtin_expect(tmp___4 != 0, 0L); } if (tmp___5 != 0L) { { tmp___3 = net_ratelimit(); } if (tmp___3 != 0) { if ((int )tp->msg_enable & 1) { { netdev_err((struct net_device const *)tp->dev, "Failed to map RX DMA!\n"); } } else { } } else { } goto err_out; } else { } { rtl8169_map_to_asic(desc, mapping, (u32 )rx_buf_sz); } return ((struct sk_buff *)data); err_out: { kfree((void const *)data); } return ((struct sk_buff *)0); } } static void rtl8169_rx_clear(struct rtl8169_private *tp ) { unsigned int i ; { i = 0U; goto ldv_50014; ldv_50013: ; if ((unsigned long )tp->Rx_databuff[i] != (unsigned long )((void *)0)) { { rtl8169_free_rx_databuff(tp, (void **)(& tp->Rx_databuff) + (unsigned long )i, tp->RxDescArray + (unsigned long )i); } } else { } i = i + 1U; ldv_50014: ; if (i <= 255U) { goto ldv_50013; } else { } return; } } __inline static void rtl8169_mark_as_last_descriptor(struct RxDesc *desc ) { { desc->opts1 = desc->opts1 | 1073741824U; return; } } static int rtl8169_rx_fill(struct rtl8169_private *tp ) { unsigned int i ; void *data ; struct sk_buff *tmp ; { i = 0U; goto ldv_50027; ldv_50026: ; if ((unsigned long )tp->Rx_databuff[i] != (unsigned long )((void *)0)) { goto ldv_50024; } else { } { tmp = rtl8169_alloc_rx_data(tp, tp->RxDescArray + (unsigned long )i); data = (void *)tmp; } if ((unsigned long )data == (unsigned long )((void *)0)) { { rtl8169_make_unusable_by_asic(tp->RxDescArray + (unsigned long )i); } goto err_out; } else { } tp->Rx_databuff[i] = data; ldv_50024: i = i + 1U; ldv_50027: ; if (i <= 255U) { goto ldv_50026; } else { } { rtl8169_mark_as_last_descriptor(tp->RxDescArray + 255U); } return (0); err_out: { rtl8169_rx_clear(tp); } return (-12); } } static int rtl8169_init_ring(struct net_device *dev ) { struct rtl8169_private *tp ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; rtl8169_init_ring_indexes(tp); memset((void *)(& tp->tx_skb), 0, 1024UL); memset((void *)(& tp->Rx_databuff), 0, 2048UL); tmp___0 = rtl8169_rx_fill(tp); } return (tmp___0); } } static void rtl8169_unmap_tx_skb(struct device *d , struct ring_info *tx_skb , struct TxDesc *desc ) { unsigned int len ; { { len = tx_skb->len; dma_unmap_single_attrs(d, desc->addr, (size_t )len, 1, (struct dma_attrs *)0); desc->opts1 = 0U; desc->opts2 = 0U; desc->addr = 0ULL; tx_skb->len = 0U; } return; } } static void rtl8169_tx_clear_range(struct rtl8169_private *tp , u32 start , unsigned int n ) { unsigned int i ; unsigned int entry ; struct ring_info *tx_skb ; unsigned int len ; struct sk_buff *skb ; { i = 0U; goto ldv_50050; ldv_50049: entry = (start + i) & 63U; tx_skb = (struct ring_info *)(& tp->tx_skb) + (unsigned long )entry; len = tx_skb->len; if (len != 0U) { { skb = tx_skb->skb; rtl8169_unmap_tx_skb(& (tp->pci_dev)->dev, tx_skb, tp->TxDescArray + (unsigned long )entry); } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { { (tp->dev)->stats.tx_dropped = (tp->dev)->stats.tx_dropped + 1UL; consume_skb(skb); tx_skb->skb = (struct sk_buff *)0; } } else { } } else { } i = i + 1U; ldv_50050: ; if (i < n) { goto ldv_50049; } else { } return; } } static void rtl8169_tx_clear(struct rtl8169_private *tp ) { u32 tmp ; { { rtl8169_tx_clear_range(tp, tp->dirty_tx, 64U); tmp = 0U; tp->dirty_tx = tmp; tp->cur_tx = tmp; } return; } } static void rtl_reset_work(struct rtl8169_private *tp ) { struct net_device *dev ; int i ; { { dev = tp->dev; napi_disable(& tp->napi); netif_stop_queue(dev); synchronize_sched(); rtl8169_hw_reset(tp); i = 0; } goto ldv_50061; ldv_50060: { rtl8169_mark_to_asic(tp->RxDescArray + (unsigned long )i, (u32 )rx_buf_sz); i = i + 1; } ldv_50061: ; if ((unsigned int )i <= 255U) { goto ldv_50060; } else { } { rtl8169_tx_clear(tp); rtl8169_init_ring_indexes(tp); napi_enable(& tp->napi); rtl_hw_start(dev); netif_wake_queue(dev); rtl8169_check_link_status(dev, tp, tp->mmio_addr); } return; } } static void rtl8169_tx_timeout(struct net_device *dev ) { struct rtl8169_private *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; rtl_schedule_task(tp, 2); } return; } } static int rtl8169_xmit_frags(struct rtl8169_private *tp , struct sk_buff *skb , u32 *opts ) { struct skb_shared_info *info ; unsigned char *tmp ; unsigned int cur_frag ; unsigned int entry ; struct TxDesc *txd ; struct device *d ; skb_frag_t const *frag ; dma_addr_t mapping ; u32 status ; u32 len ; void *addr ; int tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); info = (struct skb_shared_info *)tmp; txd = txd; d = & (tp->pci_dev)->dev; entry = tp->cur_tx; cur_frag = 0U; } goto ldv_50084; ldv_50083: { frag = (skb_frag_t const *)(& info->frags) + (unsigned long )cur_frag; entry = (entry + 1U) & 63U; txd = tp->TxDescArray + (unsigned long )entry; len = skb_frag_size(frag); addr = skb_frag_address(frag); mapping = dma_map_single_attrs(d, addr, (size_t )len, 1, (struct dma_attrs *)0); tmp___1 = dma_mapping_error(d, mapping); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { { tmp___0 = net_ratelimit(); } if (tmp___0 != 0) { if ((int )tp->msg_enable & 1) { { netdev_err((struct net_device const *)tp->dev, "Failed to map TX fragments DMA!\n"); } } else { } } else { } goto err_out; } else { } status = (*opts | len) | (((entry + 1U) & 63U) == 0U ? 1073741824U : 0U); txd->opts1 = status; txd->opts2 = *(opts + 1UL); txd->addr = mapping; tp->tx_skb[entry].len = len; cur_frag = cur_frag + 1U; ldv_50084: ; if (cur_frag < (unsigned int )info->nr_frags) { goto ldv_50083; } else { } if (cur_frag != 0U) { tp->tx_skb[entry].skb = skb; txd->opts1 = txd->opts1 | 268435456U; } else { } return ((int )cur_frag); err_out: { rtl8169_tx_clear_range(tp, tp->cur_tx + 1U, cur_frag); } return (-5); } } static bool rtl_skb_pad(struct sk_buff *skb ) { int tmp ; { { tmp = skb_padto(skb, 60U); } if (tmp != 0) { return (0); } else { } { skb_put(skb, 60U - skb->len); } return (1); } } static bool rtl_test_hw_pad_bug(struct rtl8169_private *tp , struct sk_buff *skb ) { { return ((bool )(skb->len <= 59U && (unsigned int )tp->mac_version == 33U)); } } __inline static bool rtl8169_tso_csum(struct rtl8169_private *tp , struct sk_buff *skb , u32 *opts ) { struct rtl_tx_desc_info const *info ; u32 mss ; unsigned char *tmp ; int offset ; u32 _min1 ; unsigned int _min2 ; struct iphdr const *ip ; struct iphdr *tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; bool tmp___4 ; long tmp___5 ; bool __warned ; int __ret_warn_once ; int __ret_warn_on ; long tmp___6 ; long tmp___7 ; long tmp___8 ; bool tmp___9 ; bool tmp___10 ; long tmp___11 ; { { info = (struct rtl_tx_desc_info const *)(& tx_desc_info) + (unsigned long )tp->txd_version; tmp = skb_end_pointer((struct sk_buff const *)skb); mss = (u32 )((struct skb_shared_info *)tmp)->gso_size; offset = (int )info->opts_offset; } if (mss != 0U) { *opts = *opts | 134217728U; _min1 = mss; _min2 = 2047U; *(opts + (unsigned long )offset) = *(opts + (unsigned long )offset) | ((_min1 < _min2 ? _min1 : _min2) << (int )info->mss_shift); } else if ((unsigned int )*((unsigned char *)skb + 124UL) == 12U) { { tmp___0 = ip_hdr((struct sk_buff const *)skb); ip = (struct iphdr const *)tmp___0; tmp___4 = rtl_test_hw_pad_bug(tp, skb); tmp___5 = ldv__builtin_expect((long )tmp___4, 0L); } if (tmp___5 != 0L) { { tmp___1 = skb_checksum_help(skb); } if (tmp___1 == 0) { { tmp___2 = rtl_skb_pad(skb); } if ((int )tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } else { } if ((unsigned int )((unsigned char )ip->protocol) == 6U) { *(opts + (unsigned long )offset) = *(opts + (unsigned long )offset) | (u32 )info->checksum.tcp; } else if ((unsigned int )((unsigned char )ip->protocol) == 17U) { *(opts + (unsigned long )offset) = *(opts + (unsigned long )offset) | (u32 )info->checksum.udp; } else { { __ret_warn_once = 1; tmp___8 = ldv__builtin_expect(__ret_warn_once != 0, 0L); } if (tmp___8 != 0L) { { __ret_warn_on = ! __warned; tmp___6 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___6 != 0L) { { warn_slowpath_null("drivers/net/ethernet/realtek/r8169.c", 5965); } } else { } { tmp___7 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___7 != 0L) { __warned = 1; } else { } } else { } { ldv__builtin_expect(__ret_warn_once != 0, 0L); } } } else { { tmp___10 = rtl_test_hw_pad_bug(tp, skb); tmp___11 = ldv__builtin_expect((long )tmp___10, 0L); } if (tmp___11 != 0L) { { tmp___9 = rtl_skb_pad(skb); } return (tmp___9); } else { } } return (1); } } static netdev_tx_t rtl8169_start_xmit(struct sk_buff *skb , struct net_device *dev ) { struct rtl8169_private *tp ; void *tmp ; unsigned int entry ; struct TxDesc *txd ; void *ioaddr ; struct device *d ; dma_addr_t mapping ; u32 status ; u32 len ; u32 opts[2U] ; int frags ; unsigned char *tmp___0 ; long tmp___1 ; long tmp___2 ; bool tmp___3 ; int tmp___4 ; int tmp___5 ; int tmp___6 ; long tmp___7 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; entry = tp->cur_tx & 63U; txd = tp->TxDescArray + (unsigned long )entry; ioaddr = tp->mmio_addr; d = & (tp->pci_dev)->dev; tmp___0 = skb_end_pointer((struct sk_buff const *)skb); tmp___1 = ldv__builtin_expect((tp->dirty_tx - tp->cur_tx) + 64U < (u32 )((int )((struct skb_shared_info *)tmp___0)->nr_frags + 1), 0L); } if (tmp___1 != 0L) { if ((int )tp->msg_enable & 1) { { netdev_err((struct net_device const *)dev, "BUG! Tx Ring full when queue awake!\n"); } } else { } goto err_stop_0; } else { } { tmp___2 = ldv__builtin_expect((int )txd->opts1 < 0, 0L); } if (tmp___2 != 0L) { goto err_stop_0; } else { } { opts[1] = rtl8169_tx_vlan_tag(skb); opts[0] = 2147483648U; tmp___3 = rtl8169_tso_csum(tp, skb, (u32 *)(& opts)); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { goto err_update_stats; } else { } { len = skb_headlen((struct sk_buff const *)skb); mapping = dma_map_single_attrs(d, (void *)skb->data, (size_t )len, 1, (struct dma_attrs *)0); tmp___6 = dma_mapping_error(d, mapping); tmp___7 = ldv__builtin_expect(tmp___6 != 0, 0L); } if (tmp___7 != 0L) { { tmp___5 = net_ratelimit(); } if (tmp___5 != 0) { if ((int )tp->msg_enable & 1) { { netdev_err((struct net_device const *)dev, "Failed to map TX DMA!\n"); } } else { } } else { } goto err_dma_0; } else { } { tp->tx_skb[entry].len = len; txd->addr = mapping; frags = rtl8169_xmit_frags(tp, skb, (u32 *)(& opts)); } if (frags < 0) { goto err_dma_1; } else if (frags != 0) { opts[0] = opts[0] | 536870912U; } else { opts[0] = opts[0] | 805306368U; tp->tx_skb[entry].skb = skb; } { txd->opts2 = opts[1]; skb_tx_timestamp(skb); __asm__ volatile ("sfence": : : "memory"); status = (opts[0] | len) | (((entry + 1U) & 63U) == 0U ? 1073741824U : 0U); txd->opts1 = status; tp->cur_tx = (tp->cur_tx + (u32 )frags) + 1U; __asm__ volatile ("sfence": : : "memory"); writeb(64, (void volatile *)ioaddr + 56U); __asm__ volatile ("": : : "memory"); } if ((tp->dirty_tx - tp->cur_tx) + 64U <= 17U) { { __asm__ volatile ("": : : "memory"); netif_stop_queue(dev); __asm__ volatile ("mfence": : : "memory"); } if ((tp->dirty_tx - tp->cur_tx) + 64U > 17U) { { netif_wake_queue(dev); } } else { } } else { } return (0); err_dma_1: { rtl8169_unmap_tx_skb(d, (struct ring_info *)(& tp->tx_skb) + (unsigned long )entry, txd); } err_dma_0: { consume_skb(skb); } err_update_stats: dev->stats.tx_dropped = dev->stats.tx_dropped + 1UL; return (0); err_stop_0: { netif_stop_queue(dev); dev->stats.tx_dropped = dev->stats.tx_dropped + 1UL; } return (16); } } static void rtl8169_pcierr_interrupt(struct net_device *dev ) { struct rtl8169_private *tp ; void *tmp ; struct pci_dev *pdev ; u16 pci_status ; u16 pci_cmd ; void *ioaddr ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; pdev = tp->pci_dev; pci_read_config_word((struct pci_dev const *)pdev, 4, & pci_cmd); pci_read_config_word((struct pci_dev const *)pdev, 6, & pci_status); } if ((tp->msg_enable & 512U) != 0U) { { netdev_err((struct net_device const *)dev, "PCI error (cmd = 0x%04x, status = 0x%04x)\n", (int )pci_cmd, (int )pci_status); } } else { } if ((unsigned int )*((unsigned char *)pdev + 2497UL) != 0U) { pci_cmd = (unsigned int )pci_cmd & 65471U; } else { pci_cmd = (u16 )((unsigned int )pci_cmd | 320U); } { pci_write_config_word((struct pci_dev const *)pdev, 4, (int )pci_cmd); pci_write_config_word((struct pci_dev const *)pdev, 6, (int )pci_status & 63488); } if (((int )tp->cp_cmd & 16) != 0 && tp->cur_rx == 0U) { ioaddr = tp->mmio_addr; if ((tp->msg_enable & 512U) != 0U) { { netdev_info((struct net_device const *)dev, "disabling PCI DAC\n"); } } else { } { tp->cp_cmd = (unsigned int )tp->cp_cmd & 65519U; writew((int )tp->cp_cmd, (void volatile *)ioaddr + 224U); dev->features = dev->features & 0xffffffffffffffdfULL; } } else { } { rtl8169_hw_reset(tp); rtl_schedule_task(tp, 2); } return; } } static void rtl_tx(struct net_device *dev , struct rtl8169_private *tp ) { unsigned int dirty_tx ; unsigned int tx_left ; unsigned int entry ; struct ring_info *tx_skb ; u32 status ; bool tmp ; void *ioaddr ; { dirty_tx = tp->dirty_tx; __asm__ volatile ("": : : "memory"); tx_left = tp->cur_tx - dirty_tx; goto ldv_50147; ldv_50146: entry = dirty_tx & 63U; tx_skb = (struct ring_info *)(& tp->tx_skb) + (unsigned long )entry; __asm__ volatile ("lfence": : : "memory"); status = (tp->TxDescArray + (unsigned long )entry)->opts1; if ((int )status < 0) { goto ldv_50145; } else { } { rtl8169_unmap_tx_skb(& (tp->pci_dev)->dev, tx_skb, tp->TxDescArray + (unsigned long )entry); } if ((status & 268435456U) != 0U) { { u64_stats_update_begin(& tp->tx_stats.syncp); tp->tx_stats.packets = tp->tx_stats.packets + 1ULL; tp->tx_stats.bytes = tp->tx_stats.bytes + (u64 )(tx_skb->skb)->len; u64_stats_update_begin(& tp->tx_stats.syncp); consume_skb(tx_skb->skb); tx_skb->skb = (struct sk_buff *)0; } } else { } dirty_tx = dirty_tx + 1U; tx_left = tx_left - 1U; ldv_50147: ; if (tx_left != 0U) { goto ldv_50146; } else { } ldv_50145: ; if (tp->dirty_tx != dirty_tx) { { tp->dirty_tx = dirty_tx; __asm__ volatile ("mfence": : : "memory"); tmp = netif_queue_stopped((struct net_device const *)dev); } if ((int )tmp && (tp->dirty_tx - tp->cur_tx) + 64U > 17U) { { netif_wake_queue(dev); } } else { } if (tp->cur_tx != dirty_tx) { { ioaddr = tp->mmio_addr; writeb(64, (void volatile *)ioaddr + 56U); } } else { } } else { } return; } } __inline static int rtl8169_fragmented_frame(u32 status ) { { return ((status & 805306368U) != 805306368U); } } __inline static void rtl8169_rx_csum(struct sk_buff *skb , u32 opts1 ) { u32 status ; { status = opts1 & 393216U; if ((status == 131072U && (opts1 & 16384U) == 0U) || (status == 262144U && (opts1 & 32768U) == 0U)) { skb->ip_summed = 1U; } else { { skb_checksum_none_assert((struct sk_buff const *)skb); } } return; } } static struct sk_buff *rtl8169_try_rx_copy(void *data , struct rtl8169_private *tp , int pkt_size , dma_addr_t addr ) { struct sk_buff *skb ; struct device *d ; { { d = & (tp->pci_dev)->dev; data = rtl8169_align(data); dma_sync_single_for_cpu(d, addr, (size_t )pkt_size, 2); __builtin_prefetch((void const *)data); skb = netdev_alloc_skb_ip_align(tp->dev, (unsigned int )pkt_size); } if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { { memcpy((void *)skb->data, (void const *)data, (size_t )pkt_size); } } else { } { dma_sync_single_for_device(d, addr, (size_t )pkt_size, 2); } return (skb); } } static int rtl_rx(struct net_device *dev , struct rtl8169_private *tp , u32 budget ) { unsigned int cur_rx ; unsigned int rx_left ; unsigned int count ; u32 _min1 ; unsigned int _min2 ; unsigned int entry ; struct RxDesc *desc ; u32 status ; struct sk_buff *skb ; dma_addr_t addr ; int pkt_size ; long tmp ; int tmp___0 ; long tmp___1 ; long tmp___2 ; { cur_rx = tp->cur_rx; _min1 = budget; _min2 = 256U; rx_left = _min1 < _min2 ? _min1 : _min2; goto ldv_50186; ldv_50185: entry = cur_rx & 255U; desc = tp->RxDescArray + (unsigned long )entry; __asm__ volatile ("lfence": : : "memory"); status = desc->opts1 & tp->opts1_mask; if ((int )status < 0) { goto ldv_50179; } else { } { tmp___2 = ldv__builtin_expect((status & 2097152U) != 0U, 0L); } if (tmp___2 != 0L) { if ((tp->msg_enable & 64U) != 0U) { { netdev_info((struct net_device const *)dev, "Rx ERROR. status = %08x\n", status); } } else { } dev->stats.rx_errors = dev->stats.rx_errors + 1UL; if ((status & 5242880U) != 0U) { dev->stats.rx_length_errors = dev->stats.rx_length_errors + 1UL; } else { } if ((status & 524288U) != 0U) { dev->stats.rx_crc_errors = dev->stats.rx_crc_errors + 1UL; } else { } if ((status & 8388608U) != 0U) { { rtl_schedule_task(tp, 2); dev->stats.rx_fifo_errors = dev->stats.rx_fifo_errors + 1UL; } } else { } if (((status & 1572864U) != 0U && (status & 12582912U) == 0U) && (dev->features & 68719476736ULL) != 0ULL) { goto process_pkt; } else { } } else { process_pkt: { addr = desc->addr; tmp = ldv__builtin_expect((dev->features & 34359738368ULL) == 0ULL, 1L); } if (tmp != 0L) { pkt_size = (int )((status & 16383U) - 4U); } else { pkt_size = (int )status & 16383; } { tmp___0 = rtl8169_fragmented_frame(status); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); } if (tmp___1 != 0L) { dev->stats.rx_dropped = dev->stats.rx_dropped + 1UL; dev->stats.rx_length_errors = dev->stats.rx_length_errors + 1UL; goto release_descriptor; } else { } { skb = rtl8169_try_rx_copy(tp->Rx_databuff[entry], tp, pkt_size, addr); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { dev->stats.rx_dropped = dev->stats.rx_dropped + 1UL; goto release_descriptor; } else { } { rtl8169_rx_csum(skb, status); skb_put(skb, (unsigned int )pkt_size); skb->protocol = eth_type_trans(skb, dev); rtl8169_rx_vlan_tag(desc, skb); napi_gro_receive(& tp->napi, skb); u64_stats_update_begin(& tp->rx_stats.syncp); tp->rx_stats.packets = tp->rx_stats.packets + 1ULL; tp->rx_stats.bytes = tp->rx_stats.bytes + (u64 )pkt_size; u64_stats_update_begin(& tp->rx_stats.syncp); } } release_descriptor: { desc->opts2 = 0U; __asm__ volatile ("sfence": : : "memory"); rtl8169_mark_to_asic(desc, (u32 )rx_buf_sz); rx_left = rx_left - 1U; cur_rx = cur_rx + 1U; } ldv_50186: ; if (rx_left != 0U) { goto ldv_50185; } else { } ldv_50179: count = cur_rx - tp->cur_rx; tp->cur_rx = cur_rx; return ((int )count); } } static irqreturn_t rtl8169_interrupt(int irq , void *dev_instance ) { struct net_device *dev ; struct rtl8169_private *tp ; void *tmp ; int handled ; u16 status ; { { dev = (struct net_device *)dev_instance; tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; handled = 0; status = rtl_get_events(tp); } if ((unsigned int )status - 1U <= 65533U) { status = (u16 )((unsigned int )status & ((unsigned int )tp->event_slow | 15U)); if ((unsigned int )status != 0U) { { handled = 1; rtl_irq_disable(tp); napi_schedule(& tp->napi); } } else { } } else { } return (handled != 0); } } static void rtl_slow_event_work(struct rtl8169_private *tp ) { struct net_device *dev ; u16 status ; u16 tmp ; long tmp___0 ; long tmp___1 ; { { dev = tp->dev; tmp = rtl_get_events(tp); status = (u16 )((int )tmp & (int )tp->event_slow); rtl_ack_events(tp, (int )status); tmp___0 = ldv__builtin_expect(((int )status & 64) != 0, 0L); } if (tmp___0 != 0L) { { if ((int )tp->mac_version == 10) { goto case_10; } else { } goto switch_default; case_10: /* CIL Label */ { netif_stop_queue(dev); set_bit(2L, (unsigned long volatile *)(& tp->wk.flags)); } switch_default: /* CIL Label */ ; goto ldv_50202; switch_break: /* CIL Label */ ; } ldv_50202: ; } else { } { tmp___1 = ldv__builtin_expect((int )((short )status) < 0, 0L); } if (tmp___1 != 0L) { { rtl8169_pcierr_interrupt(dev); } } else { } if (((int )status & 32) != 0) { { __rtl8169_check_link_status(dev, tp, tp->mmio_addr, 1); } } else { } { rtl_irq_enable_all(tp); } return; } } static void rtl_task(struct work_struct *work ) { struct __anonstruct_rtl_work_323 rtl_work[3U] ; struct rtl8169_private *tp ; struct work_struct const *__mptr ; struct net_device *dev ; int i ; bool tmp ; int tmp___0 ; int tmp___1 ; bool pending ; int tmp___2 ; { { rtl_work[0].bitnr = 1; rtl_work[0].action = & rtl_slow_event_work; rtl_work[1].bitnr = 2; rtl_work[1].action = & rtl_reset_work; rtl_work[2].bitnr = 3; rtl_work[2].action = & rtl_phy_work; __mptr = (struct work_struct const *)work; tp = (struct rtl8169_private *)__mptr + 0xfffffffffffff128UL; dev = tp->dev; rtl_lock_work(tp); tmp = netif_running((struct net_device const *)dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { goto out_unlock; } else { { tmp___1 = constant_test_bit(0L, (unsigned long const volatile *)(& tp->wk.flags)); } if (tmp___1 == 0) { goto out_unlock; } else { } } i = 0; goto ldv_50221; ldv_50220: { tmp___2 = test_and_set_bit((long )rtl_work[i].bitnr, (unsigned long volatile *)(& tp->wk.flags)); pending = tmp___2 != 0; } if ((int )pending) { { (*(rtl_work[i].action))(tp); } } else { } i = i + 1; ldv_50221: ; if ((unsigned int )i <= 2U) { goto ldv_50220; } else { } out_unlock: { rtl_unlock_work(tp); } return; } } static int rtl8169_poll(struct napi_struct *napi , int budget ) { struct rtl8169_private *tp ; struct napi_struct const *__mptr ; struct net_device *dev ; u16 enable_mask ; int work_done ; u16 status ; { { __mptr = (struct napi_struct const *)napi; tp = (struct rtl8169_private *)__mptr + 0xffffffffffffffe8UL; dev = tp->dev; enable_mask = (u16 )((unsigned int )tp->event_slow | 15U); work_done = 0; status = rtl_get_events(tp); rtl_ack_events(tp, (int )((u16 )((int )((short )status) & ~ ((int )((short )tp->event_slow))))); } if (((int )status & 3) != 0) { { work_done = rtl_rx(dev, tp, (unsigned int )budget); } } else { } if (((int )status & 12) != 0) { { rtl_tx(dev, tp); } } else { } if ((unsigned int )((int )status & (int )tp->event_slow) != 0U) { { enable_mask = (u16 )((int )((short )enable_mask) & ~ ((int )((short )tp->event_slow))); rtl_schedule_task(tp, 1); } } else { } if (work_done < budget) { { napi_complete(napi); rtl_irq_enable(tp, (int )enable_mask); __asm__ volatile ("": : : "memory"); } } else { } return (work_done); } } static void rtl8169_rx_missed(struct net_device *dev , void *ioaddr ) { struct rtl8169_private *tp ; void *tmp ; unsigned int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; } if ((unsigned int )tp->mac_version > 5U) { return; } else { } { tmp___0 = readl((void const volatile *)ioaddr + 76U); dev->stats.rx_missed_errors = dev->stats.rx_missed_errors + ((unsigned long )tmp___0 & 16777215UL); writel(0U, (void volatile *)ioaddr + 76U); } return; } } static void rtl8169_down(struct net_device *dev ) { struct rtl8169_private *tp ; void *tmp ; void *ioaddr ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; ioaddr = tp->mmio_addr; ldv_del_timer_sync_24(& tp->timer); napi_disable(& tp->napi); netif_stop_queue(dev); rtl8169_hw_reset(tp); rtl8169_rx_missed(dev, ioaddr); synchronize_sched(); rtl8169_tx_clear(tp); rtl8169_rx_clear(tp); rtl_pll_power_down(tp); } return; } } static int rtl8169_close(struct net_device *dev ) { struct rtl8169_private *tp ; void *tmp ; struct pci_dev *pdev ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; pdev = tp->pci_dev; pm_runtime_get_sync(& pdev->dev); rtl8169_update_counters(dev); rtl_lock_work(tp); clear_bit(0L, (unsigned long volatile *)(& tp->wk.flags)); rtl8169_down(dev); rtl_unlock_work(tp); cancel_work_sync(& tp->wk.work); ldv_free_irq_25(pdev->irq, (void *)dev); dma_free_attrs(& pdev->dev, 4096UL, (void *)tp->RxDescArray, tp->RxPhyAddr, (struct dma_attrs *)0); dma_free_attrs(& pdev->dev, 1024UL, (void *)tp->TxDescArray, tp->TxPhyAddr, (struct dma_attrs *)0); tp->TxDescArray = (struct TxDesc *)0; tp->RxDescArray = (struct RxDesc *)0; pm_runtime_put_sync(& pdev->dev); } return (0); } } static void rtl8169_netpoll(struct net_device *dev ) { struct rtl8169_private *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; rtl8169_interrupt((int )(tp->pci_dev)->irq, (void *)dev); } return; } } static int rtl_open(struct net_device *dev ) { struct rtl8169_private *tp ; void *tmp ; void *ioaddr ; struct pci_dev *pdev ; int retval ; void *tmp___0 ; void *tmp___1 ; struct lock_class_key __key ; atomic_long_t __constr_expr_0 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; ioaddr = tp->mmio_addr; pdev = tp->pci_dev; retval = -12; pm_runtime_get_sync(& pdev->dev); tmp___0 = dma_alloc_attrs(& pdev->dev, 1024UL, & tp->TxPhyAddr, 208U, (struct dma_attrs *)0); tp->TxDescArray = (struct TxDesc *)tmp___0; } if ((unsigned long )tp->TxDescArray == (unsigned long )((struct TxDesc *)0)) { goto err_pm_runtime_put; } else { } { tmp___1 = dma_alloc_attrs(& pdev->dev, 4096UL, & tp->RxPhyAddr, 208U, (struct dma_attrs *)0); tp->RxDescArray = (struct RxDesc *)tmp___1; } if ((unsigned long )tp->RxDescArray == (unsigned long )((struct RxDesc *)0)) { goto err_free_tx_0; } else { } { retval = rtl8169_init_ring(dev); } if (retval < 0) { goto err_free_rx_1; } else { } { __init_work(& tp->wk.work, 0); __constr_expr_0.counter = 137438953408L; tp->wk.work.data = __constr_expr_0; lockdep_init_map(& tp->wk.work.lockdep_map, "(&tp->wk.work)", & __key, 0); INIT_LIST_HEAD(& tp->wk.work.entry); tp->wk.work.func = & rtl_task; __asm__ volatile ("mfence": : : "memory"); rtl_request_firmware(tp); retval = ldv_request_irq_26(pdev->irq, & rtl8169_interrupt, (tp->features & 2U) != 0U ? 0UL : 128UL, (char const *)(& dev->name), (void *)dev); } if (retval < 0) { goto err_release_fw_2; } else { } { rtl_lock_work(tp); set_bit(0L, (unsigned long volatile *)(& tp->wk.flags)); napi_enable(& tp->napi); rtl8169_init_phy(dev, tp); __rtl8169_set_features(dev, dev->features); rtl_pll_power_up(tp); rtl_hw_start(dev); netif_start_queue(dev); rtl_unlock_work(tp); tp->saved_wolopts = 0U; pm_runtime_put_noidle(& pdev->dev); rtl8169_check_link_status(dev, tp, ioaddr); } out: ; return (retval); err_release_fw_2: { rtl_release_firmware(tp); rtl8169_rx_clear(tp); } err_free_rx_1: { dma_free_attrs(& pdev->dev, 4096UL, (void *)tp->RxDescArray, tp->RxPhyAddr, (struct dma_attrs *)0); tp->RxDescArray = (struct RxDesc *)0; } err_free_tx_0: { dma_free_attrs(& pdev->dev, 1024UL, (void *)tp->TxDescArray, tp->TxPhyAddr, (struct dma_attrs *)0); tp->TxDescArray = (struct TxDesc *)0; } err_pm_runtime_put: { pm_runtime_put_noidle(& pdev->dev); } goto out; } } static struct rtnl_link_stats64 *rtl8169_get_stats64(struct net_device *dev , struct rtnl_link_stats64 *stats ) { struct rtl8169_private *tp ; void *tmp ; void *ioaddr ; unsigned int start ; bool tmp___0 ; bool tmp___1 ; bool tmp___2 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; ioaddr = tp->mmio_addr; tmp___0 = netif_running((struct net_device const *)dev); } if ((int )tmp___0) { { rtl8169_rx_missed(dev, ioaddr); } } else { } ldv_50274: { start = u64_stats_fetch_begin_bh((struct u64_stats_sync const *)(& tp->rx_stats.syncp)); stats->rx_packets = tp->rx_stats.packets; stats->rx_bytes = tp->rx_stats.bytes; tmp___1 = u64_stats_fetch_retry_bh((struct u64_stats_sync const *)(& tp->rx_stats.syncp), start); } if ((int )tmp___1) { goto ldv_50274; } else { } ldv_50276: { start = u64_stats_fetch_begin_bh((struct u64_stats_sync const *)(& tp->tx_stats.syncp)); stats->tx_packets = tp->tx_stats.packets; stats->tx_bytes = tp->tx_stats.bytes; tmp___2 = u64_stats_fetch_retry_bh((struct u64_stats_sync const *)(& tp->tx_stats.syncp), start); } if ((int )tmp___2) { goto ldv_50276; } else { } stats->rx_dropped = (__u64 )dev->stats.rx_dropped; stats->tx_dropped = (__u64 )dev->stats.tx_dropped; stats->rx_length_errors = (__u64 )dev->stats.rx_length_errors; stats->rx_errors = (__u64 )dev->stats.rx_errors; stats->rx_crc_errors = (__u64 )dev->stats.rx_crc_errors; stats->rx_fifo_errors = (__u64 )dev->stats.rx_fifo_errors; stats->rx_missed_errors = (__u64 )dev->stats.rx_missed_errors; return (stats); } } static void rtl8169_net_suspend(struct net_device *dev ) { struct rtl8169_private *tp ; void *tmp ; bool tmp___0 ; int tmp___1 ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; tmp___0 = netif_running((struct net_device const *)dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return; } else { } { netif_device_detach(dev); netif_stop_queue(dev); rtl_lock_work(tp); napi_disable(& tp->napi); clear_bit(0L, (unsigned long volatile *)(& tp->wk.flags)); rtl_unlock_work(tp); rtl_pll_power_down(tp); } return; } } static int rtl8169_suspend(struct device *device ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *dev ; void *tmp ; { { __mptr = (struct device const *)device; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; rtl8169_net_suspend(dev); } return (0); } } static void __rtl8169_resume(struct net_device *dev ) { struct rtl8169_private *tp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; netif_device_attach(dev); rtl_pll_power_up(tp); rtl_lock_work(tp); napi_enable(& tp->napi); set_bit(0L, (unsigned long volatile *)(& tp->wk.flags)); rtl_unlock_work(tp); rtl_schedule_task(tp, 2); } return; } } static int rtl8169_resume(struct device *device ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *dev ; void *tmp ; struct rtl8169_private *tp ; void *tmp___0 ; bool tmp___1 ; { { __mptr = (struct device const *)device; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp___0; rtl8169_init_phy(dev, tp); tmp___1 = netif_running((struct net_device const *)dev); } if ((int )tmp___1) { { __rtl8169_resume(dev); } } else { } return (0); } } static int rtl8169_runtime_suspend(struct device *device ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *dev ; void *tmp ; struct rtl8169_private *tp ; void *tmp___0 ; { { __mptr = (struct device const *)device; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp___0; } if ((unsigned long )tp->TxDescArray == (unsigned long )((struct TxDesc *)0)) { return (0); } else { } { rtl_lock_work(tp); tp->saved_wolopts = __rtl8169_get_wol(tp); __rtl8169_set_wol(tp, 47U); rtl_unlock_work(tp); rtl8169_net_suspend(dev); } return (0); } } static int rtl8169_runtime_resume(struct device *device ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *dev ; void *tmp ; struct rtl8169_private *tp ; void *tmp___0 ; { { __mptr = (struct device const *)device; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp___0; } if ((unsigned long )tp->TxDescArray == (unsigned long )((struct TxDesc *)0)) { return (0); } else { } { rtl_lock_work(tp); __rtl8169_set_wol(tp, tp->saved_wolopts); tp->saved_wolopts = 0U; rtl_unlock_work(tp); rtl8169_init_phy(dev, tp); __rtl8169_resume(dev); } return (0); } } static int rtl8169_runtime_idle(struct device *device ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *dev ; void *tmp ; struct rtl8169_private *tp ; void *tmp___0 ; { { __mptr = (struct device const *)device; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp___0; } return ((unsigned long )tp->TxDescArray != (unsigned long )((struct TxDesc *)0) ? -16 : 0); } } static struct dev_pm_ops const rtl8169_pm_ops = {0, 0, & rtl8169_suspend, & rtl8169_resume, & rtl8169_suspend, & rtl8169_resume, & rtl8169_suspend, & rtl8169_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & rtl8169_runtime_suspend, & rtl8169_runtime_resume, & rtl8169_runtime_idle}; static void rtl_wol_shutdown_quirk(struct rtl8169_private *tp ) { void *ioaddr ; { ioaddr = tp->mmio_addr; { if ((int )tp->mac_version == 10) { goto case_10; } else { } if ((int )tp->mac_version == 11) { goto case_11; } else { } if ((int )tp->mac_version == 16) { goto case_16; } else { } goto switch_default; case_10: /* CIL Label */ ; case_11: /* CIL Label */ ; case_16: /* CIL Label */ { pci_clear_master(tp->pci_dev); writeb(8, (void volatile *)ioaddr + 55U); readb((void const volatile *)ioaddr + 55U); } goto ldv_50333; switch_default: /* CIL Label */ ; goto ldv_50333; switch_break: /* CIL Label */ ; } ldv_50333: ; return; } } static void rtl_shutdown(struct pci_dev *pdev ) { struct net_device *dev ; void *tmp ; struct rtl8169_private *tp ; void *tmp___0 ; struct device *d ; u32 tmp___1 ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp___0; d = & pdev->dev; pm_runtime_get_sync(d); rtl8169_net_suspend(dev); rtl_rar_set(tp, (u8 *)(& dev->perm_addr)); rtl8169_hw_reset(tp); } if ((unsigned int )system_state == 3U) { { tmp___1 = __rtl8169_get_wol(tp); } if ((tmp___1 & 47U) != 0U) { { rtl_wol_suspend_quirk(tp); rtl_wol_shutdown_quirk(tp); } } else { } { pci_wake_from_d3(pdev, 1); pci_set_power_state(pdev, 3); } } else { } { pm_runtime_put_noidle(d); } return; } } static void rtl_remove_one(struct pci_dev *pdev ) { struct net_device *dev ; void *tmp ; struct rtl8169_private *tp ; void *tmp___0 ; bool tmp___1 ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp___0; } if ((unsigned int )tp->mac_version - 26U <= 1U || (unsigned int )tp->mac_version == 30U) { { rtl8168_driver_stop(tp); } } else { } { netif_napi_del(& tp->napi); ldv_unregister_netdev_27(dev); rtl_release_firmware(tp); tmp___1 = pci_dev_run_wake(pdev); } if ((int )tmp___1) { { pm_runtime_get_noresume(& pdev->dev); } } else { } { rtl_rar_set(tp, (u8 *)(& dev->perm_addr)); rtl_disable_msi(pdev, tp); rtl8169_release_board(pdev, dev, tp->mmio_addr); } return; } } static struct net_device_ops const rtl_netdev_ops = {0, 0, & rtl_open, & rtl8169_close, & rtl8169_start_xmit, 0, 0, & rtl_set_rx_mode, & rtl_set_mac_address, & eth_validate_addr, & rtl8169_ioctl, 0, & rtl8169_change_mtu, 0, & rtl8169_tx_timeout, & rtl8169_get_stats64, 0, 0, 0, & rtl8169_netpoll, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & rtl8169_fix_features, & rtl8169_set_features, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static struct rtl_cfg_info const rtl_cfg_infos[3U] = { {& rtl_hw_start_8169, 1U, 0U, 32880U, 4U, 0U}, {& rtl_hw_start_8168, 2U, 8U, 32816U, 6U, 10U}, {& rtl_hw_start_8101, 2U, 8U, 49264U, 2U, 12U}}; static unsigned int rtl_try_msi(struct rtl8169_private *tp , struct rtl_cfg_info const *cfg ) { void *ioaddr ; unsigned int msi ; u8 cfg2 ; unsigned char tmp ; int tmp___0 ; { { ioaddr = tp->mmio_addr; msi = 0U; tmp = readb((void const volatile *)ioaddr + 83U); cfg2 = (unsigned int )tmp & 223U; } if (((unsigned int )cfg->features & 2U) != 0U) { { tmp___0 = pci_enable_msi_block(tp->pci_dev, 1); } if (tmp___0 != 0) { if ((tp->msg_enable & 8192U) != 0U) { { netdev_info((struct net_device const *)tp->dev, "no MSI. Back to INTx.\n"); } } else { } } else { cfg2 = (u8 )((unsigned int )cfg2 | 32U); msi = 2U; } } else { } if ((unsigned int )tp->mac_version <= 5U) { { writeb((int )cfg2, (void volatile *)ioaddr + 83U); } } else { } return (msi); } } static bool rtl_link_list_ready_cond_check(struct rtl8169_private *tp ) ; static struct rtl_cond const rtl_link_list_ready_cond = {& rtl_link_list_ready_cond_check, "rtl_link_list_ready_cond"}; static bool rtl_link_list_ready_cond_check(struct rtl8169_private *tp ) { void *ioaddr ; unsigned char tmp ; { { ioaddr = tp->mmio_addr; tmp = readb((void const volatile *)ioaddr + 211U); } return (((int )tmp & 2) != 0); } } static bool rtl_rxtx_empty_cond_check(struct rtl8169_private *tp ) ; static struct rtl_cond const rtl_rxtx_empty_cond = {& rtl_rxtx_empty_cond_check, "rtl_rxtx_empty_cond"}; static bool rtl_rxtx_empty_cond_check(struct rtl8169_private *tp ) { void *ioaddr ; unsigned char tmp ; { { ioaddr = tp->mmio_addr; tmp = readb((void const volatile *)ioaddr + 211U); } return (((int )tmp & 48) == 48); } } static void rtl_hw_init_8168g(struct rtl8169_private *tp ) { void *ioaddr ; u32 data ; unsigned int tmp ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; unsigned char tmp___4 ; unsigned char tmp___5 ; u16 tmp___6 ; bool tmp___7 ; int tmp___8 ; u16 tmp___9 ; bool tmp___10 ; int tmp___11 ; { { ioaddr = tp->mmio_addr; tp->ocp_base = 41984U; tmp = readl((void const volatile *)ioaddr + 240U); writel(tmp | 524288U, (void volatile *)ioaddr + 240U); tmp___0 = rtl_udelay_loop_wait_high(tp, & rtl_txcfg_empty_cond, 100U, 42); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return; } else { } { tmp___2 = rtl_udelay_loop_wait_high(tp, & rtl_rxtx_empty_cond, 100U, 42); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { return; } else { } { tmp___4 = readb((void const volatile *)ioaddr + 55U); writeb((int )tmp___4 & 243, (void volatile *)ioaddr + 55U); msleep(1U); tmp___5 = readb((void const volatile *)ioaddr + 211U); writeb((int )tmp___5 & 127, (void volatile *)ioaddr + 211U); tmp___6 = r8168_mac_ocp_read(tp, 59614U); data = (u32 )tmp___6; data = data & 4294950911U; r8168_mac_ocp_write(tp, 59614U, data); tmp___7 = rtl_udelay_loop_wait_high(tp, & rtl_link_list_ready_cond, 100U, 42); } if (tmp___7) { tmp___8 = 0; } else { tmp___8 = 1; } if (tmp___8) { return; } else { } { tmp___9 = r8168_mac_ocp_read(tp, 59614U); data = (u32 )tmp___9; data = data | 32768U; r8168_mac_ocp_write(tp, 59614U, data); tmp___10 = rtl_udelay_loop_wait_high(tp, & rtl_link_list_ready_cond, 100U, 42); } if (tmp___10) { tmp___11 = 0; } else { tmp___11 = 1; } if (tmp___11) { return; } else { } return; } } static void rtl_hw_initialize(struct rtl8169_private *tp ) { { { if ((int )tp->mac_version == 39) { goto case_39; } else { } if ((int )tp->mac_version == 40) { goto case_40; } else { } if ((int )tp->mac_version == 41) { goto case_41; } else { } if ((int )tp->mac_version == 42) { goto case_42; } else { } if ((int )tp->mac_version == 43) { goto case_43; } else { } goto switch_default; case_39: /* CIL Label */ ; case_40: /* CIL Label */ ; case_41: /* CIL Label */ ; case_42: /* CIL Label */ ; case_43: /* CIL Label */ { rtl_hw_init_8168g(tp); } goto ldv_50390; switch_default: /* CIL Label */ ; goto ldv_50390; switch_break: /* CIL Label */ ; } ldv_50390: ; return; } } static int rtl_init_one(struct pci_dev *pdev , struct pci_device_id const *ent ) { struct rtl_cfg_info const *cfg ; unsigned int region ; struct rtl8169_private *tp ; struct mii_if_info *mii ; struct net_device *dev ; void *ioaddr ; int chipset ; int i ; int rc ; void *tmp ; int tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; unsigned char tmp___4 ; unsigned char tmp___5 ; unsigned char tmp___6 ; unsigned char tmp___7 ; unsigned int tmp___8 ; bool tmp___9 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; void *tmp___10 ; unsigned int tmp___11 ; bool tmp___12 ; { cfg = (struct rtl_cfg_info const *)(& rtl_cfg_infos) + ent->driver_data; region = cfg->region; if ((int )debug.msg_enable & 1) { { printk("\016%s Gigabit Ethernet driver %s loaded\n", (char *)"r8169", (char *)"2.3LK-NAPI"); } } else { } { dev = ldv_alloc_etherdev_mqs_28(4024, 1U, 1U); } if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { rc = -12; goto out; } else { } { dev->dev.parent = & pdev->dev; dev->netdev_ops = & rtl_netdev_ops; tmp = netdev_priv((struct net_device const *)dev); tp = (struct rtl8169_private *)tmp; tp->dev = dev; tp->pci_dev = pdev; tp->msg_enable = netif_msg_init((int )debug.msg_enable, 51); mii = & tp->mii; mii->dev = dev; mii->mdio_read = & rtl_mdio_read; mii->mdio_write = & rtl_mdio_write; mii->phy_id_mask = 31; mii->reg_num_mask = 31; mii->supports_gmii = ((unsigned int )cfg->features & 4U) != 0U; pci_disable_link_state(pdev, 7); rc = pci_enable_device(pdev); } if (rc < 0) { if ((tp->msg_enable & 2U) != 0U) { { netdev_err((struct net_device const *)dev, "enable failure\n"); } } else { } goto err_out_free_dev_1; } else { } { tmp___0 = pci_set_mwi(pdev); } if (tmp___0 < 0) { if ((tp->msg_enable & 2U) != 0U) { { netdev_info((struct net_device const *)dev, "Mem-Wr-Inval unavailable\n"); } } else { } } else { } if ((pdev->resource[region].flags & 512UL) == 0UL) { if ((tp->msg_enable & 2U) != 0U) { { netdev_err((struct net_device const *)dev, "region #%d not an MMIO resource, aborting\n", region); } } else { } rc = -19; goto err_out_mwi_2; } else { } if ((pdev->resource[region].start == 0ULL && pdev->resource[region].end == pdev->resource[region].start) || (pdev->resource[region].end - pdev->resource[region].start) + 1ULL <= 255ULL) { if ((tp->msg_enable & 2U) != 0U) { { netdev_err((struct net_device const *)dev, "Invalid PCI region size(s), aborting\n"); } } else { } rc = -19; goto err_out_mwi_2; } else { } { rc = pci_request_regions(pdev, "r8169"); } if (rc < 0) { if ((tp->msg_enable & 2U) != 0U) { { netdev_err((struct net_device const *)dev, "could not request regions\n"); } } else { } goto err_out_mwi_2; } else { } { tp->cp_cmd = 32U; tmp___1 = pci_set_dma_mask(pdev, 0xffffffffffffffffULL); } if (tmp___1 == 0 && use_dac != 0) { tp->cp_cmd = (u16 )((unsigned int )tp->cp_cmd | 16U); dev->features = dev->features | 32ULL; } else { { rc = pci_set_dma_mask(pdev, 4294967295ULL); } if (rc < 0) { if ((tp->msg_enable & 2U) != 0U) { { netdev_err((struct net_device const *)dev, "DMA configuration failed\n"); } } else { } goto err_out_free_res_3; } else { } } { ioaddr = ioremap(pdev->resource[region].start, 256UL); } if ((unsigned long )ioaddr == (unsigned long )((void *)0)) { if ((tp->msg_enable & 2U) != 0U) { { netdev_err((struct net_device const *)dev, "cannot remap MMIO, aborting\n"); } } else { } rc = -5; goto err_out_free_res_3; } else { } { tp->mmio_addr = ioaddr; tmp___2 = pci_is_pcie(pdev); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { if ((tp->msg_enable & 2U) != 0U) { { netdev_info((struct net_device const *)dev, "not PCI Express\n"); } } else { } } else { } { rtl8169_get_mac_version(tp, dev, (int )cfg->default_ver); rtl_init_rxcfg(tp); rtl_irq_disable(tp); rtl_hw_initialize(tp); rtl_hw_reset(tp); rtl_ack_events(tp, 65535); pci_set_master(pdev); } if ((unsigned int )tp->mac_version == 4U) { tp->cp_cmd = (u16 )((unsigned int )tp->cp_cmd | 64U); } else { } { rtl_init_mdio_ops(tp); rtl_init_pll_power_ops(tp); rtl_init_jumbo_ops(tp); rtl_init_csi_ops(tp); rtl8169_print_mac_version(tp); chipset = (int )tp->mac_version; tp->txd_version = (u16 )rtl_chip_infos[chipset].txd_version; writeb(192, (void volatile *)ioaddr + 80U); tmp___4 = readb((void const volatile *)ioaddr + 82U); writeb((int )((unsigned int )tmp___4 | 1U), (void volatile *)ioaddr + 82U); tmp___5 = readb((void const volatile *)ioaddr + 86U); writeb((int )tmp___5 & 115, (void volatile *)ioaddr + 86U); tmp___6 = readb((void const volatile *)ioaddr + 84U); } if (((int )tmp___6 & 48) != 0) { tp->features = tp->features | 1U; } else { } { tmp___7 = readb((void const volatile *)ioaddr + 86U); } if (((int )tmp___7 & 112) != 0) { tp->features = tp->features | 1U; } else { } { tmp___8 = rtl_try_msi(tp, cfg); tp->features = tp->features | tmp___8; writeb(0, (void volatile *)ioaddr + 80U); tmp___9 = rtl_tbi_enabled(tp); } if ((int )tmp___9) { tp->set_speed = & rtl8169_set_speed_tbi; tp->get_settings = & rtl8169_gset_tbi; tp->phy_reset_enable = & rtl8169_tbi_reset_enable; tp->phy_reset_pending = & rtl8169_tbi_reset_pending; tp->link_ok = & rtl8169_tbi_link_ok; tp->do_ioctl = & rtl_tbi_ioctl; } else { tp->set_speed = & rtl8169_set_speed_xmii; tp->get_settings = & rtl8169_gset_xmii; tp->phy_reset_enable = & rtl8169_xmii_reset_enable; tp->phy_reset_pending = & rtl8169_xmii_reset_pending; tp->link_ok = & rtl8169_xmii_link_ok; tp->do_ioctl = & rtl_xmii_ioctl; } { __mutex_init(& tp->wk.mutex, "&tp->wk.mutex", & __key); i = 0; } goto ldv_50411; ldv_50410: { *(dev->dev_addr + (unsigned long )i) = readb((void const volatile *)ioaddr + (unsigned long )i); i = i + 1; } ldv_50411: ; if (i <= 5) { goto ldv_50410; } else { } { dev->ethtool_ops = & rtl8169_ethtool_ops; dev->watchdog_timeo = 1500; netif_napi_add(dev, & tp->napi, & rtl8169_poll, 64); dev->features = dev->features | 4294967680ULL; dev->hw_features = 4295033219ULL; dev->vlan_features = 65571ULL; } if ((unsigned int )tp->mac_version == 4U) { dev->hw_features = dev->hw_features & 0xfffffffffffffeffULL; } else { } { dev->hw_features = dev->hw_features | 68719476736ULL; dev->hw_features = dev->hw_features | 34359738368ULL; tp->hw_start = cfg->hw_start; tp->event_slow = cfg->event_slow; tp->opts1_mask = (unsigned int )tp->mac_version != 0U ? 4269801471U : 4294967295U; init_timer_key(& tp->timer, 0U, "(&tp->timer)", & __key___0); tp->timer.data = (unsigned long )dev; tp->timer.function = & rtl8169_phy_timer; tmp___10 = ERR_PTR(-11L); tp->rtl_fw = (struct rtl_fw *)tmp___10; rc = ldv_register_netdev_29(dev); } if (rc < 0) { goto err_out_msi_4; } else { } { pci_set_drvdata(pdev, (void *)dev); } if ((tp->msg_enable & 2U) != 0U) { { tmp___11 = readl((void const volatile *)ioaddr + 64U); netdev_info((struct net_device const *)dev, "%s at 0x%p, %pM, XID %08x IRQ %d\n", rtl_chip_infos[chipset].name, ioaddr, dev->dev_addr, tmp___11 & 2633038079U, pdev->irq); } } else { } if ((unsigned int )((unsigned short )rtl_chip_infos[chipset].jumbo_max) != 1500U) { if ((tp->msg_enable & 2U) != 0U) { { netdev_info((struct net_device const *)dev, "jumbo features [frames: %d bytes, tx checksumming: %s]\n", (int )rtl_chip_infos[chipset].jumbo_max, (int )rtl_chip_infos[chipset].jumbo_tx_csum ? (char *)"ok" : (char *)"ko"); } } else { } } else { } if ((unsigned int )tp->mac_version - 26U <= 1U || (unsigned int )tp->mac_version == 30U) { { rtl8168_driver_start(tp); } } else { } { device_set_wakeup_enable(& pdev->dev, (int )tp->features & 1); tmp___12 = pci_dev_run_wake(pdev); } if ((int )tmp___12) { { pm_runtime_put_noidle(& pdev->dev); } } else { } { netif_carrier_off(dev); } out: ; return (rc); err_out_msi_4: { netif_napi_del(& tp->napi); rtl_disable_msi(pdev, tp); iounmap((void volatile *)ioaddr); } err_out_free_res_3: { pci_release_regions(pdev); } err_out_mwi_2: { pci_clear_mwi(pdev); pci_disable_device(pdev); } err_out_free_dev_1: { ldv_free_netdev_30(dev); } goto out; } } static struct pci_driver rtl8169_pci_driver = {{0, 0}, "r8169", (struct pci_device_id const *)(& rtl8169_pci_tbl), & rtl_init_one, & rtl_remove_one, 0, 0, 0, 0, & rtl_shutdown, 0, 0, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, & rtl8169_pm_ops, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int rtl8169_pci_driver_init(void) { int tmp ; { { tmp = ldv___pci_register_driver_31(& rtl8169_pci_driver, & __this_module, "r8169"); } return (tmp); } } static void rtl8169_pci_driver_exit(void) { { { ldv_pci_unregister_driver_32(& rtl8169_pci_driver); } return; } } void ldv_EMGentry_exit_rtl8169_pci_driver_exit_33_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_rtl8169_pci_driver_init_33_11(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; void ldv_allocate_external_0(void) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_deregister_30_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_31_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_dummy_resourceless_instance_16_33_4(void) ; void ldv_dispatch_deregister_platform_instance_15_33_5(void) ; void ldv_dispatch_instance_deregister_24_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_27_2(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_25_1(int arg0 ) ; void ldv_dispatch_irq_register_29_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_pm_deregister_6_5(void) ; void ldv_dispatch_pm_register_6_6(void) ; void ldv_dispatch_register_28_4(struct net_device *arg0 ) ; void ldv_dispatch_register_32_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_dummy_resourceless_instance_16_33_6(void) ; void ldv_dispatch_register_platform_instance_15_33_7(void) ; void ldv_dummy_resourceless_instance_callback_10_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) ; void ldv_dummy_resourceless_instance_callback_11_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) ; void ldv_dummy_resourceless_instance_callback_12_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) ; void ldv_dummy_resourceless_instance_callback_13_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) ; void ldv_dummy_resourceless_instance_callback_14_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) ; void ldv_dummy_resourceless_instance_callback_15_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) ; void ldv_dummy_resourceless_instance_callback_16_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) ; void ldv_dummy_resourceless_instance_callback_17_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) ; void ldv_dummy_resourceless_instance_callback_18_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) ; void ldv_dummy_resourceless_instance_callback_19_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_10(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_12(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_13(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_14(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_15(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_18(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_21(int (*arg0)(struct net_device * , struct ethtool_ts_info * ) , struct net_device *arg1 , struct ethtool_ts_info *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_22(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_23(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_24(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_27(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_30(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_33(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_34(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_35(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_38(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_39(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_40(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_41(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_42(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_43(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_46(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_47(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_7(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_20_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) ; void ldv_dummy_resourceless_instance_callback_21_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_10(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_12(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_13(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_14(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_15(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_18(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_21(int (*arg0)(struct net_device * , struct ethtool_ts_info * ) , struct net_device *arg1 , struct ethtool_ts_info *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_22(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_23(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_24(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_27(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_2_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_30(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_33(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_34(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_35(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_38(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_39(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_40(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_41(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_42(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_2_43(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_46(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_47(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_2_7(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_10(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_12(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_13(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_14(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_15(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_18(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_21(int (*arg0)(struct net_device * , struct ethtool_ts_info * ) , struct net_device *arg1 , struct ethtool_ts_info *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_22(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_23(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_24(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_27(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_3_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_30(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_33(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_34(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_35(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_38(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_39(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_40(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_41(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_42(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_3_43(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_46(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_47(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_3_7(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_7_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) ; void ldv_dummy_resourceless_instance_callback_8_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) ; void ldv_dummy_resourceless_instance_callback_9_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) ; void ldv_entry_EMGentry_33(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_initialize_external_data(void) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) ; void ldv_net_dummy_resourceless_instance_1(void *arg0 ) ; void ldv_net_dummy_resourceless_instance_2(void *arg0 ) ; void ldv_net_dummy_resourceless_instance_3(void *arg0 ) ; int ldv_pci_instance_probe_4_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_4_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_4_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_4_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_4_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_4_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_4_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_4(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_platform_instance_probe_6_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_instance_release_6_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_pm_ops_instance_complete_5_3(void (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_5_15(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_late_5_14(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_noirq_5_12(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_5_9(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_late_5_8(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_noirq_5_6(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_prepare_5_22(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_5_4(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_early_5_7(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_noirq_5_5(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_5_16(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_early_5_17(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_noirq_5_19(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_idle_5_27(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_resume_5_24(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_suspend_5_25(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_5_21(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_late_5_18(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_noirq_5_20(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_5_10(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_early_5_13(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_noirq_5_11(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_platform_instance_6(void *arg0 ) ; void ldv_pm_pm_ops_instance_5(void *arg0 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_28_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_struct_rtl_cond_dummy_resourceless_instance_10(void *arg0 ) ; void ldv_struct_rtl_cond_dummy_resourceless_instance_11(void *arg0 ) ; void ldv_struct_rtl_cond_dummy_resourceless_instance_12(void *arg0 ) ; void ldv_struct_rtl_cond_dummy_resourceless_instance_13(void *arg0 ) ; void ldv_struct_rtl_cond_dummy_resourceless_instance_14(void *arg0 ) ; void ldv_struct_rtl_cond_dummy_resourceless_instance_15(void *arg0 ) ; void ldv_struct_rtl_cond_dummy_resourceless_instance_16(void *arg0 ) ; void ldv_struct_rtl_cond_dummy_resourceless_instance_17(void *arg0 ) ; void ldv_struct_rtl_cond_dummy_resourceless_instance_18(void *arg0 ) ; void ldv_struct_rtl_cond_dummy_resourceless_instance_19(void *arg0 ) ; void ldv_struct_rtl_cond_dummy_resourceless_instance_20(void *arg0 ) ; void ldv_struct_rtl_cond_dummy_resourceless_instance_21(void *arg0 ) ; void ldv_struct_rtl_cond_dummy_resourceless_instance_7(void *arg0 ) ; void ldv_struct_rtl_cond_dummy_resourceless_instance_8(void *arg0 ) ; void ldv_struct_rtl_cond_dummy_resourceless_instance_9(void *arg0 ) ; int ldv_switch_0(void) ; int ldv_switch_1(void) ; int ldv_switch_2(void) ; int ldv_switch_3(void) ; int ldv_switch_4(void) ; void ldv_switch_automaton_state_0_1(void) ; void ldv_switch_automaton_state_0_6(void) ; void ldv_switch_automaton_state_10_1(void) ; void ldv_switch_automaton_state_10_5(void) ; void ldv_switch_automaton_state_11_1(void) ; void ldv_switch_automaton_state_11_5(void) ; void ldv_switch_automaton_state_12_1(void) ; void ldv_switch_automaton_state_12_5(void) ; void ldv_switch_automaton_state_13_1(void) ; void ldv_switch_automaton_state_13_5(void) ; void ldv_switch_automaton_state_14_1(void) ; void ldv_switch_automaton_state_14_5(void) ; void ldv_switch_automaton_state_15_1(void) ; void ldv_switch_automaton_state_15_5(void) ; void ldv_switch_automaton_state_16_1(void) ; void ldv_switch_automaton_state_16_5(void) ; void ldv_switch_automaton_state_17_1(void) ; void ldv_switch_automaton_state_17_5(void) ; void ldv_switch_automaton_state_18_1(void) ; void ldv_switch_automaton_state_18_5(void) ; void ldv_switch_automaton_state_19_1(void) ; void ldv_switch_automaton_state_19_5(void) ; void ldv_switch_automaton_state_1_1(void) ; void ldv_switch_automaton_state_1_5(void) ; void ldv_switch_automaton_state_20_1(void) ; void ldv_switch_automaton_state_20_5(void) ; void ldv_switch_automaton_state_21_1(void) ; void ldv_switch_automaton_state_21_5(void) ; void ldv_switch_automaton_state_22_1(void) ; void ldv_switch_automaton_state_22_3(void) ; void ldv_switch_automaton_state_2_1(void) ; void ldv_switch_automaton_state_2_5(void) ; void ldv_switch_automaton_state_3_1(void) ; void ldv_switch_automaton_state_3_5(void) ; void ldv_switch_automaton_state_4_11(void) ; void ldv_switch_automaton_state_4_20(void) ; void ldv_switch_automaton_state_5_1(void) ; void ldv_switch_automaton_state_5_29(void) ; void ldv_switch_automaton_state_6_17(void) ; void ldv_switch_automaton_state_6_8(void) ; void ldv_switch_automaton_state_7_1(void) ; void ldv_switch_automaton_state_7_5(void) ; void ldv_switch_automaton_state_8_1(void) ; void ldv_switch_automaton_state_8_5(void) ; void ldv_switch_automaton_state_9_1(void) ; void ldv_switch_automaton_state_9_5(void) ; void ldv_timer_instance_callback_22_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_22(void *arg0 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_30_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; _Bool (*ldv_10_callback_check)(struct rtl8169_private * ) ; struct rtl8169_private *ldv_10_container_struct_rtl8169_private_ptr ; _Bool (*ldv_11_callback_check)(struct rtl8169_private * ) ; struct rtl8169_private *ldv_11_container_struct_rtl8169_private_ptr ; _Bool (*ldv_12_callback_check)(struct rtl8169_private * ) ; struct rtl8169_private *ldv_12_container_struct_rtl8169_private_ptr ; _Bool (*ldv_13_callback_check)(struct rtl8169_private * ) ; struct rtl8169_private *ldv_13_container_struct_rtl8169_private_ptr ; _Bool (*ldv_14_callback_check)(struct rtl8169_private * ) ; struct rtl8169_private *ldv_14_container_struct_rtl8169_private_ptr ; _Bool (*ldv_15_callback_check)(struct rtl8169_private * ) ; struct rtl8169_private *ldv_15_container_struct_rtl8169_private_ptr ; _Bool (*ldv_16_callback_check)(struct rtl8169_private * ) ; struct rtl8169_private *ldv_16_container_struct_rtl8169_private_ptr ; _Bool (*ldv_17_callback_check)(struct rtl8169_private * ) ; struct rtl8169_private *ldv_17_container_struct_rtl8169_private_ptr ; _Bool (*ldv_18_callback_check)(struct rtl8169_private * ) ; struct rtl8169_private *ldv_18_container_struct_rtl8169_private_ptr ; _Bool (*ldv_19_callback_check)(struct rtl8169_private * ) ; struct rtl8169_private *ldv_19_container_struct_rtl8169_private_ptr ; void (*ldv_1_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; void (*ldv_1_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_1_callback_get_link)(struct net_device * ) ; unsigned int (*ldv_1_callback_get_msglevel)(struct net_device * ) ; void (*ldv_1_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; int (*ldv_1_callback_get_regs_len)(struct net_device * ) ; int (*ldv_1_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_1_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_1_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; int (*ldv_1_callback_get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; void (*ldv_1_callback_get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; void (*ldv_1_callback_hw_start)(struct net_device * ) ; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) ; int (*ldv_1_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; unsigned long long (*ldv_1_callback_ndo_fix_features)(struct net_device * , unsigned long long ) ; struct rtnl_link_stats64 *(*ldv_1_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; void (*ldv_1_callback_ndo_poll_controller)(struct net_device * ) ; int (*ldv_1_callback_ndo_set_features)(struct net_device * , unsigned long long ) ; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_1_callback_ndo_tx_timeout)(struct net_device * ) ; int (*ldv_1_callback_ndo_validate_addr)(struct net_device * ) ; void (*ldv_1_callback_set_msglevel)(struct net_device * , unsigned int ) ; int (*ldv_1_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_1_callback_set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; struct net_device *ldv_1_container_net_device ; struct ethtool_cmd *ldv_1_container_struct_ethtool_cmd_ptr ; struct ethtool_drvinfo *ldv_1_container_struct_ethtool_drvinfo_ptr ; struct ethtool_regs *ldv_1_container_struct_ethtool_regs_ptr ; struct ethtool_stats *ldv_1_container_struct_ethtool_stats_ptr ; struct ethtool_ts_info *ldv_1_container_struct_ethtool_ts_info_ptr ; struct ethtool_wolinfo *ldv_1_container_struct_ethtool_wolinfo_ptr ; struct ifreq *ldv_1_container_struct_ifreq_ptr ; struct rtnl_link_stats64 *ldv_1_container_struct_rtnl_link_stats64_ptr ; struct sk_buff *ldv_1_container_struct_sk_buff_ptr ; int ldv_1_ldv_param_15_1_default ; unsigned int ldv_1_ldv_param_18_1_default ; unsigned char *ldv_1_ldv_param_18_2_default ; int ldv_1_ldv_param_24_1_default ; int ldv_1_ldv_param_27_2_default ; unsigned long long ldv_1_ldv_param_30_1_default ; unsigned long long ldv_1_ldv_param_35_1_default ; unsigned int ldv_1_ldv_param_43_1_default ; unsigned long long *ldv_1_ldv_param_7_2_default ; _Bool (*ldv_20_callback_check)(struct rtl8169_private * ) ; struct rtl8169_private *ldv_20_container_struct_rtl8169_private_ptr ; _Bool (*ldv_21_callback_check)(struct rtl8169_private * ) ; struct rtl8169_private *ldv_21_container_struct_rtl8169_private_ptr ; struct timer_list *ldv_22_container_timer_list ; void (*ldv_2_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; void (*ldv_2_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_2_callback_get_link)(struct net_device * ) ; unsigned int (*ldv_2_callback_get_msglevel)(struct net_device * ) ; void (*ldv_2_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; int (*ldv_2_callback_get_regs_len)(struct net_device * ) ; int (*ldv_2_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_2_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_2_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; int (*ldv_2_callback_get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; void (*ldv_2_callback_get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; void (*ldv_2_callback_hw_start)(struct net_device * ) ; int (*ldv_2_callback_ndo_change_mtu)(struct net_device * , int ) ; int (*ldv_2_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; unsigned long long (*ldv_2_callback_ndo_fix_features)(struct net_device * , unsigned long long ) ; struct rtnl_link_stats64 *(*ldv_2_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; void (*ldv_2_callback_ndo_poll_controller)(struct net_device * ) ; int (*ldv_2_callback_ndo_set_features)(struct net_device * , unsigned long long ) ; int (*ldv_2_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_2_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_2_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_2_callback_ndo_tx_timeout)(struct net_device * ) ; int (*ldv_2_callback_ndo_validate_addr)(struct net_device * ) ; void (*ldv_2_callback_set_msglevel)(struct net_device * , unsigned int ) ; int (*ldv_2_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_2_callback_set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; struct net_device *ldv_2_container_net_device ; struct ethtool_cmd *ldv_2_container_struct_ethtool_cmd_ptr ; struct ethtool_drvinfo *ldv_2_container_struct_ethtool_drvinfo_ptr ; struct ethtool_regs *ldv_2_container_struct_ethtool_regs_ptr ; struct ethtool_stats *ldv_2_container_struct_ethtool_stats_ptr ; struct ethtool_ts_info *ldv_2_container_struct_ethtool_ts_info_ptr ; struct ethtool_wolinfo *ldv_2_container_struct_ethtool_wolinfo_ptr ; struct ifreq *ldv_2_container_struct_ifreq_ptr ; struct rtnl_link_stats64 *ldv_2_container_struct_rtnl_link_stats64_ptr ; struct sk_buff *ldv_2_container_struct_sk_buff_ptr ; int ldv_2_ldv_param_15_1_default ; unsigned int ldv_2_ldv_param_18_1_default ; unsigned char *ldv_2_ldv_param_18_2_default ; int ldv_2_ldv_param_24_1_default ; int ldv_2_ldv_param_27_2_default ; unsigned long long ldv_2_ldv_param_30_1_default ; unsigned long long ldv_2_ldv_param_35_1_default ; unsigned int ldv_2_ldv_param_43_1_default ; unsigned long long *ldv_2_ldv_param_7_2_default ; void (*ldv_33_exit_rtl8169_pci_driver_exit_default)(void) ; int (*ldv_33_init_rtl8169_pci_driver_init_default)(void) ; int ldv_33_ret_default ; void (*ldv_3_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; void (*ldv_3_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_3_callback_get_link)(struct net_device * ) ; unsigned int (*ldv_3_callback_get_msglevel)(struct net_device * ) ; void (*ldv_3_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; int (*ldv_3_callback_get_regs_len)(struct net_device * ) ; int (*ldv_3_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_3_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_3_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; int (*ldv_3_callback_get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; void (*ldv_3_callback_get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; void (*ldv_3_callback_hw_start)(struct net_device * ) ; int (*ldv_3_callback_ndo_change_mtu)(struct net_device * , int ) ; int (*ldv_3_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; unsigned long long (*ldv_3_callback_ndo_fix_features)(struct net_device * , unsigned long long ) ; struct rtnl_link_stats64 *(*ldv_3_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; void (*ldv_3_callback_ndo_poll_controller)(struct net_device * ) ; int (*ldv_3_callback_ndo_set_features)(struct net_device * , unsigned long long ) ; int (*ldv_3_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_3_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_3_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_3_callback_ndo_tx_timeout)(struct net_device * ) ; int (*ldv_3_callback_ndo_validate_addr)(struct net_device * ) ; void (*ldv_3_callback_set_msglevel)(struct net_device * , unsigned int ) ; int (*ldv_3_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_3_callback_set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; struct net_device *ldv_3_container_net_device ; struct ethtool_cmd *ldv_3_container_struct_ethtool_cmd_ptr ; struct ethtool_drvinfo *ldv_3_container_struct_ethtool_drvinfo_ptr ; struct ethtool_regs *ldv_3_container_struct_ethtool_regs_ptr ; struct ethtool_stats *ldv_3_container_struct_ethtool_stats_ptr ; struct ethtool_ts_info *ldv_3_container_struct_ethtool_ts_info_ptr ; struct ethtool_wolinfo *ldv_3_container_struct_ethtool_wolinfo_ptr ; struct ifreq *ldv_3_container_struct_ifreq_ptr ; struct rtnl_link_stats64 *ldv_3_container_struct_rtnl_link_stats64_ptr ; struct sk_buff *ldv_3_container_struct_sk_buff_ptr ; int ldv_3_ldv_param_15_1_default ; unsigned int ldv_3_ldv_param_18_1_default ; unsigned char *ldv_3_ldv_param_18_2_default ; int ldv_3_ldv_param_24_1_default ; int ldv_3_ldv_param_27_2_default ; unsigned long long ldv_3_ldv_param_30_1_default ; unsigned long long ldv_3_ldv_param_35_1_default ; unsigned int ldv_3_ldv_param_43_1_default ; unsigned long long *ldv_3_ldv_param_7_2_default ; struct pci_driver *ldv_4_container_pci_driver ; struct pci_dev *ldv_4_resource_dev ; struct pm_message ldv_4_resource_pm_message ; struct pci_device_id *ldv_4_resource_struct_pci_device_id_ptr ; int ldv_4_ret_default ; struct device *ldv_5_device_device ; struct dev_pm_ops *ldv_5_pm_ops_dev_pm_ops ; struct platform_driver *ldv_6_container_platform_driver ; struct platform_device *ldv_6_ldv_param_14_0_default ; struct platform_device *ldv_6_ldv_param_3_0_default ; int ldv_6_probed_default ; _Bool (*ldv_7_callback_check)(struct rtl8169_private * ) ; struct rtl8169_private *ldv_7_container_struct_rtl8169_private_ptr ; _Bool (*ldv_8_callback_check)(struct rtl8169_private * ) ; struct rtl8169_private *ldv_8_container_struct_rtl8169_private_ptr ; _Bool (*ldv_9_callback_check)(struct rtl8169_private * ) ; struct rtl8169_private *ldv_9_container_struct_rtl8169_private_ptr ; int ldv_statevar_0 ; int ldv_statevar_1 ; int ldv_statevar_10 ; int ldv_statevar_11 ; int ldv_statevar_12 ; int ldv_statevar_13 ; int ldv_statevar_14 ; int ldv_statevar_15 ; int ldv_statevar_16 ; int ldv_statevar_17 ; int ldv_statevar_18 ; int ldv_statevar_19 ; int ldv_statevar_2 ; int ldv_statevar_20 ; int ldv_statevar_21 ; int ldv_statevar_22 ; int ldv_statevar_3 ; int ldv_statevar_33 ; int ldv_statevar_4 ; int ldv_statevar_5 ; int ldv_statevar_6 ; int ldv_statevar_7 ; int ldv_statevar_8 ; int ldv_statevar_9 ; enum irqreturn (*ldv_0_callback_handler)(int , void * ) = & rtl8169_interrupt; _Bool (*ldv_10_callback_check)(struct rtl8169_private * ) = & rtl_efusear_cond_check; _Bool (*ldv_11_callback_check)(struct rtl8169_private * ) = & rtl_ephyar_cond_check; _Bool (*ldv_12_callback_check)(struct rtl8169_private * ) = & rtl_eriar_cond_check; _Bool (*ldv_13_callback_check)(struct rtl8169_private * ) = & rtl_link_list_ready_cond_check; _Bool (*ldv_14_callback_check)(struct rtl8169_private * ) = & rtl_npq_cond_check; _Bool (*ldv_15_callback_check)(struct rtl8169_private * ) = & rtl_ocp_gphy_cond_check; _Bool (*ldv_16_callback_check)(struct rtl8169_private * ) = & rtl_ocp_read_cond_check; _Bool (*ldv_17_callback_check)(struct rtl8169_private * ) = & rtl_ocpar_cond_check; _Bool (*ldv_18_callback_check)(struct rtl8169_private * ) = & rtl_phy_reset_cond_check; _Bool (*ldv_19_callback_check)(struct rtl8169_private * ) = & rtl_phyar_cond_check; void (*ldv_1_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) = & rtl8169_get_drvinfo; void (*ldv_1_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) = & rtl8169_get_ethtool_stats; unsigned int (*ldv_1_callback_get_link)(struct net_device * ) = & ethtool_op_get_link; unsigned int (*ldv_1_callback_get_msglevel)(struct net_device * ) = & rtl8169_get_msglevel; void (*ldv_1_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) = & rtl8169_get_regs; int (*ldv_1_callback_get_regs_len)(struct net_device * ) = & rtl8169_get_regs_len; int (*ldv_1_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) = & rtl8169_get_settings; int (*ldv_1_callback_get_sset_count)(struct net_device * , int ) = & rtl8169_get_sset_count; void (*ldv_1_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) = & rtl8169_get_strings; int (*ldv_1_callback_get_ts_info)(struct net_device * , struct ethtool_ts_info * ) = & ethtool_op_get_ts_info; void (*ldv_1_callback_get_wol)(struct net_device * , struct ethtool_wolinfo * ) = & rtl8169_get_wol; void (*ldv_1_callback_hw_start)(struct net_device * ) = & rtl_hw_start_8101; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) = & rtl8169_change_mtu; int (*ldv_1_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) = & rtl8169_ioctl; unsigned long long (*ldv_1_callback_ndo_fix_features)(struct net_device * , unsigned long long ) = & rtl8169_fix_features; struct rtnl_link_stats64 *(*ldv_1_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) = & rtl8169_get_stats64; void (*ldv_1_callback_ndo_poll_controller)(struct net_device * ) = & rtl8169_netpoll; int (*ldv_1_callback_ndo_set_features)(struct net_device * , unsigned long long ) = & rtl8169_set_features; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) = & rtl_set_mac_address; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) = & rtl_set_rx_mode; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) = & rtl8169_start_xmit; void (*ldv_1_callback_ndo_tx_timeout)(struct net_device * ) = & rtl8169_tx_timeout; int (*ldv_1_callback_ndo_validate_addr)(struct net_device * ) = & eth_validate_addr; void (*ldv_1_callback_set_msglevel)(struct net_device * , unsigned int ) = & rtl8169_set_msglevel; int (*ldv_1_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) = & rtl8169_set_settings; int (*ldv_1_callback_set_wol)(struct net_device * , struct ethtool_wolinfo * ) = & rtl8169_set_wol; _Bool (*ldv_20_callback_check)(struct rtl8169_private * ) = & rtl_rxtx_empty_cond_check; _Bool (*ldv_21_callback_check)(struct rtl8169_private * ) = & rtl_txcfg_empty_cond_check; void (*ldv_2_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) = & rtl8169_get_drvinfo; void (*ldv_2_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) = & rtl8169_get_ethtool_stats; unsigned int (*ldv_2_callback_get_link)(struct net_device * ) = & ethtool_op_get_link; unsigned int (*ldv_2_callback_get_msglevel)(struct net_device * ) = & rtl8169_get_msglevel; void (*ldv_2_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) = & rtl8169_get_regs; int (*ldv_2_callback_get_regs_len)(struct net_device * ) = & rtl8169_get_regs_len; int (*ldv_2_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) = & rtl8169_get_settings; int (*ldv_2_callback_get_sset_count)(struct net_device * , int ) = & rtl8169_get_sset_count; void (*ldv_2_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) = & rtl8169_get_strings; int (*ldv_2_callback_get_ts_info)(struct net_device * , struct ethtool_ts_info * ) = & ethtool_op_get_ts_info; void (*ldv_2_callback_get_wol)(struct net_device * , struct ethtool_wolinfo * ) = & rtl8169_get_wol; void (*ldv_2_callback_hw_start)(struct net_device * ) = & rtl_hw_start_8168; int (*ldv_2_callback_ndo_change_mtu)(struct net_device * , int ) = & rtl8169_change_mtu; int (*ldv_2_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) = & rtl8169_ioctl; unsigned long long (*ldv_2_callback_ndo_fix_features)(struct net_device * , unsigned long long ) = & rtl8169_fix_features; struct rtnl_link_stats64 *(*ldv_2_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) = & rtl8169_get_stats64; void (*ldv_2_callback_ndo_poll_controller)(struct net_device * ) = & rtl8169_netpoll; int (*ldv_2_callback_ndo_set_features)(struct net_device * , unsigned long long ) = & rtl8169_set_features; int (*ldv_2_callback_ndo_set_mac_address)(struct net_device * , void * ) = & rtl_set_mac_address; void (*ldv_2_callback_ndo_set_rx_mode)(struct net_device * ) = & rtl_set_rx_mode; enum netdev_tx (*ldv_2_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) = & rtl8169_start_xmit; void (*ldv_2_callback_ndo_tx_timeout)(struct net_device * ) = & rtl8169_tx_timeout; int (*ldv_2_callback_ndo_validate_addr)(struct net_device * ) = & eth_validate_addr; void (*ldv_2_callback_set_msglevel)(struct net_device * , unsigned int ) = & rtl8169_set_msglevel; int (*ldv_2_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) = & rtl8169_set_settings; int (*ldv_2_callback_set_wol)(struct net_device * , struct ethtool_wolinfo * ) = & rtl8169_set_wol; void (*ldv_33_exit_rtl8169_pci_driver_exit_default)(void) = & rtl8169_pci_driver_exit; int (*ldv_33_init_rtl8169_pci_driver_init_default)(void) = & rtl8169_pci_driver_init; void (*ldv_3_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) = & rtl8169_get_drvinfo; void (*ldv_3_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) = & rtl8169_get_ethtool_stats; unsigned int (*ldv_3_callback_get_link)(struct net_device * ) = & ethtool_op_get_link; unsigned int (*ldv_3_callback_get_msglevel)(struct net_device * ) = & rtl8169_get_msglevel; void (*ldv_3_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) = & rtl8169_get_regs; int (*ldv_3_callback_get_regs_len)(struct net_device * ) = & rtl8169_get_regs_len; int (*ldv_3_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) = & rtl8169_get_settings; int (*ldv_3_callback_get_sset_count)(struct net_device * , int ) = & rtl8169_get_sset_count; void (*ldv_3_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) = & rtl8169_get_strings; int (*ldv_3_callback_get_ts_info)(struct net_device * , struct ethtool_ts_info * ) = & ethtool_op_get_ts_info; void (*ldv_3_callback_get_wol)(struct net_device * , struct ethtool_wolinfo * ) = & rtl8169_get_wol; void (*ldv_3_callback_hw_start)(struct net_device * ) = & rtl_hw_start_8169; int (*ldv_3_callback_ndo_change_mtu)(struct net_device * , int ) = & rtl8169_change_mtu; int (*ldv_3_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) = & rtl8169_ioctl; unsigned long long (*ldv_3_callback_ndo_fix_features)(struct net_device * , unsigned long long ) = & rtl8169_fix_features; struct rtnl_link_stats64 *(*ldv_3_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) = & rtl8169_get_stats64; void (*ldv_3_callback_ndo_poll_controller)(struct net_device * ) = & rtl8169_netpoll; int (*ldv_3_callback_ndo_set_features)(struct net_device * , unsigned long long ) = & rtl8169_set_features; int (*ldv_3_callback_ndo_set_mac_address)(struct net_device * , void * ) = & rtl_set_mac_address; void (*ldv_3_callback_ndo_set_rx_mode)(struct net_device * ) = & rtl_set_rx_mode; enum netdev_tx (*ldv_3_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) = & rtl8169_start_xmit; void (*ldv_3_callback_ndo_tx_timeout)(struct net_device * ) = & rtl8169_tx_timeout; int (*ldv_3_callback_ndo_validate_addr)(struct net_device * ) = & eth_validate_addr; void (*ldv_3_callback_set_msglevel)(struct net_device * , unsigned int ) = & rtl8169_set_msglevel; int (*ldv_3_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) = & rtl8169_set_settings; int (*ldv_3_callback_set_wol)(struct net_device * , struct ethtool_wolinfo * ) = & rtl8169_set_wol; _Bool (*ldv_7_callback_check)(struct rtl8169_private * ) = & rtl_chipcmd_cond_check; _Bool (*ldv_8_callback_check)(struct rtl8169_private * ) = & rtl_counters_cond_check; _Bool (*ldv_9_callback_check)(struct rtl8169_private * ) = & rtl_csiar_cond_check; void ldv_EMGentry_exit_rtl8169_pci_driver_exit_33_2(void (*arg0)(void) ) { { { rtl8169_pci_driver_exit(); } return; } } int ldv_EMGentry_init_rtl8169_pci_driver_init_33_11(int (*arg0)(void) ) { int tmp ; { { tmp = rtl8169_pci_driver_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_32_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_32_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_4 == 20); ldv_dispatch_register_32_2(ldv_32_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_23_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3200UL); ldv_23_netdev_net_device = (struct net_device *)tmp; } return (ldv_23_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } void ldv_allocate_external_0(void) { void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; void *tmp___5 ; void *tmp___6 ; void *tmp___7 ; void *tmp___8 ; void *tmp___9 ; void *tmp___10 ; void *tmp___11 ; void *tmp___12 ; void *tmp___13 ; void *tmp___14 ; void *tmp___15 ; void *tmp___16 ; void *tmp___17 ; void *tmp___18 ; void *tmp___19 ; void *tmp___20 ; void *tmp___21 ; void *tmp___22 ; void *tmp___23 ; void *tmp___24 ; void *tmp___25 ; void *tmp___26 ; void *tmp___27 ; void *tmp___28 ; void *tmp___29 ; void *tmp___30 ; void *tmp___31 ; void *tmp___32 ; void *tmp___33 ; void *tmp___34 ; void *tmp___35 ; void *tmp___36 ; void *tmp___37 ; void *tmp___38 ; void *tmp___39 ; void *tmp___40 ; void *tmp___41 ; void *tmp___42 ; void *tmp___43 ; void *tmp___44 ; void *tmp___45 ; void *tmp___46 ; void *tmp___47 ; void *tmp___48 ; void *tmp___49 ; void *tmp___50 ; void *tmp___51 ; void *tmp___52 ; void *tmp___53 ; void *tmp___54 ; void *tmp___55 ; void *tmp___56 ; { { ldv_0_data_data = external_allocated_data(); tmp = external_allocated_data(); ldv_0_thread_thread = (enum irqreturn (*)(int , void * ))tmp; tmp___0 = external_allocated_data(); ldv_1_container_net_device = (struct net_device *)tmp___0; tmp___1 = external_allocated_data(); ldv_1_container_struct_ethtool_cmd_ptr = (struct ethtool_cmd *)tmp___1; tmp___2 = external_allocated_data(); ldv_1_container_struct_ethtool_drvinfo_ptr = (struct ethtool_drvinfo *)tmp___2; tmp___3 = external_allocated_data(); ldv_1_container_struct_ethtool_regs_ptr = (struct ethtool_regs *)tmp___3; tmp___4 = external_allocated_data(); ldv_1_container_struct_ethtool_stats_ptr = (struct ethtool_stats *)tmp___4; tmp___5 = external_allocated_data(); ldv_1_container_struct_ethtool_ts_info_ptr = (struct ethtool_ts_info *)tmp___5; tmp___6 = external_allocated_data(); ldv_1_container_struct_ethtool_wolinfo_ptr = (struct ethtool_wolinfo *)tmp___6; tmp___7 = external_allocated_data(); ldv_1_container_struct_ifreq_ptr = (struct ifreq *)tmp___7; tmp___8 = external_allocated_data(); ldv_1_container_struct_rtnl_link_stats64_ptr = (struct rtnl_link_stats64 *)tmp___8; tmp___9 = external_allocated_data(); ldv_1_container_struct_sk_buff_ptr = (struct sk_buff *)tmp___9; tmp___10 = external_allocated_data(); ldv_1_ldv_param_18_2_default = (unsigned char *)tmp___10; tmp___11 = external_allocated_data(); ldv_1_ldv_param_7_2_default = (unsigned long long *)tmp___11; tmp___12 = external_allocated_data(); ldv_2_container_net_device = (struct net_device *)tmp___12; tmp___13 = external_allocated_data(); ldv_2_container_struct_ethtool_cmd_ptr = (struct ethtool_cmd *)tmp___13; tmp___14 = external_allocated_data(); ldv_2_container_struct_ethtool_drvinfo_ptr = (struct ethtool_drvinfo *)tmp___14; tmp___15 = external_allocated_data(); ldv_2_container_struct_ethtool_regs_ptr = (struct ethtool_regs *)tmp___15; tmp___16 = external_allocated_data(); ldv_2_container_struct_ethtool_stats_ptr = (struct ethtool_stats *)tmp___16; tmp___17 = external_allocated_data(); ldv_2_container_struct_ethtool_ts_info_ptr = (struct ethtool_ts_info *)tmp___17; tmp___18 = external_allocated_data(); ldv_2_container_struct_ethtool_wolinfo_ptr = (struct ethtool_wolinfo *)tmp___18; tmp___19 = external_allocated_data(); ldv_2_container_struct_ifreq_ptr = (struct ifreq *)tmp___19; tmp___20 = external_allocated_data(); ldv_2_container_struct_rtnl_link_stats64_ptr = (struct rtnl_link_stats64 *)tmp___20; tmp___21 = external_allocated_data(); ldv_2_container_struct_sk_buff_ptr = (struct sk_buff *)tmp___21; tmp___22 = external_allocated_data(); ldv_2_ldv_param_18_2_default = (unsigned char *)tmp___22; tmp___23 = external_allocated_data(); ldv_2_ldv_param_7_2_default = (unsigned long long *)tmp___23; tmp___24 = external_allocated_data(); ldv_3_container_net_device = (struct net_device *)tmp___24; tmp___25 = external_allocated_data(); ldv_3_container_struct_ethtool_cmd_ptr = (struct ethtool_cmd *)tmp___25; tmp___26 = external_allocated_data(); ldv_3_container_struct_ethtool_drvinfo_ptr = (struct ethtool_drvinfo *)tmp___26; tmp___27 = external_allocated_data(); ldv_3_container_struct_ethtool_regs_ptr = (struct ethtool_regs *)tmp___27; tmp___28 = external_allocated_data(); ldv_3_container_struct_ethtool_stats_ptr = (struct ethtool_stats *)tmp___28; tmp___29 = external_allocated_data(); ldv_3_container_struct_ethtool_ts_info_ptr = (struct ethtool_ts_info *)tmp___29; tmp___30 = external_allocated_data(); ldv_3_container_struct_ethtool_wolinfo_ptr = (struct ethtool_wolinfo *)tmp___30; tmp___31 = external_allocated_data(); ldv_3_container_struct_ifreq_ptr = (struct ifreq *)tmp___31; tmp___32 = external_allocated_data(); ldv_3_container_struct_rtnl_link_stats64_ptr = (struct rtnl_link_stats64 *)tmp___32; tmp___33 = external_allocated_data(); ldv_3_container_struct_sk_buff_ptr = (struct sk_buff *)tmp___33; tmp___34 = external_allocated_data(); ldv_3_ldv_param_18_2_default = (unsigned char *)tmp___34; tmp___35 = external_allocated_data(); ldv_3_ldv_param_7_2_default = (unsigned long long *)tmp___35; tmp___36 = external_allocated_data(); ldv_4_resource_dev = (struct pci_dev *)tmp___36; tmp___37 = external_allocated_data(); ldv_5_device_device = (struct device *)tmp___37; tmp___38 = external_allocated_data(); ldv_6_container_platform_driver = (struct platform_driver *)tmp___38; tmp___39 = external_allocated_data(); ldv_6_ldv_param_14_0_default = (struct platform_device *)tmp___39; tmp___40 = external_allocated_data(); ldv_6_ldv_param_3_0_default = (struct platform_device *)tmp___40; tmp___41 = external_allocated_data(); ldv_7_container_struct_rtl8169_private_ptr = (struct rtl8169_private *)tmp___41; tmp___42 = external_allocated_data(); ldv_8_container_struct_rtl8169_private_ptr = (struct rtl8169_private *)tmp___42; tmp___43 = external_allocated_data(); ldv_9_container_struct_rtl8169_private_ptr = (struct rtl8169_private *)tmp___43; tmp___44 = external_allocated_data(); ldv_10_container_struct_rtl8169_private_ptr = (struct rtl8169_private *)tmp___44; tmp___45 = external_allocated_data(); ldv_11_container_struct_rtl8169_private_ptr = (struct rtl8169_private *)tmp___45; tmp___46 = external_allocated_data(); ldv_12_container_struct_rtl8169_private_ptr = (struct rtl8169_private *)tmp___46; tmp___47 = external_allocated_data(); ldv_13_container_struct_rtl8169_private_ptr = (struct rtl8169_private *)tmp___47; tmp___48 = external_allocated_data(); ldv_14_container_struct_rtl8169_private_ptr = (struct rtl8169_private *)tmp___48; tmp___49 = external_allocated_data(); ldv_15_container_struct_rtl8169_private_ptr = (struct rtl8169_private *)tmp___49; tmp___50 = external_allocated_data(); ldv_16_container_struct_rtl8169_private_ptr = (struct rtl8169_private *)tmp___50; tmp___51 = external_allocated_data(); ldv_17_container_struct_rtl8169_private_ptr = (struct rtl8169_private *)tmp___51; tmp___52 = external_allocated_data(); ldv_18_container_struct_rtl8169_private_ptr = (struct rtl8169_private *)tmp___52; tmp___53 = external_allocated_data(); ldv_19_container_struct_rtl8169_private_ptr = (struct rtl8169_private *)tmp___53; tmp___54 = external_allocated_data(); ldv_20_container_struct_rtl8169_private_ptr = (struct rtl8169_private *)tmp___54; tmp___55 = external_allocated_data(); ldv_21_container_struct_rtl8169_private_ptr = (struct rtl8169_private *)tmp___55; tmp___56 = external_allocated_data(); ldv_22_container_timer_list = (struct timer_list *)tmp___56; } return; } } int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_24_timer_list_timer_list ; { { ldv_24_timer_list_timer_list = arg1; ldv_assume(ldv_statevar_22 == 2); ldv_dispatch_instance_deregister_24_1(ldv_24_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_deregister_30_1(struct net_device *arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_1(); } goto ldv_52000; case_1: /* CIL Label */ { ldv_2_container_net_device = arg0; ldv_switch_automaton_state_2_1(); } goto ldv_52000; case_2: /* CIL Label */ { ldv_3_container_net_device = arg0; ldv_switch_automaton_state_3_1(); } goto ldv_52000; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_52000: ; return; } } void ldv_dispatch_deregister_31_1(struct pci_driver *arg0 ) { { { ldv_4_container_pci_driver = arg0; ldv_switch_automaton_state_4_11(); } return; } } void ldv_dispatch_deregister_dummy_resourceless_instance_16_33_4(void) { { { ldv_switch_automaton_state_7_1(); ldv_switch_automaton_state_8_1(); ldv_switch_automaton_state_9_1(); ldv_switch_automaton_state_10_1(); ldv_switch_automaton_state_11_1(); ldv_switch_automaton_state_12_1(); ldv_switch_automaton_state_13_1(); ldv_switch_automaton_state_14_1(); ldv_switch_automaton_state_15_1(); ldv_switch_automaton_state_16_1(); ldv_switch_automaton_state_17_1(); ldv_switch_automaton_state_18_1(); ldv_switch_automaton_state_19_1(); ldv_switch_automaton_state_20_1(); ldv_switch_automaton_state_21_1(); } return; } } void ldv_dispatch_deregister_platform_instance_15_33_5(void) { { { ldv_switch_automaton_state_6_8(); } return; } } void ldv_dispatch_instance_deregister_24_1(struct timer_list *arg0 ) { { { ldv_22_container_timer_list = arg0; ldv_switch_automaton_state_22_1(); } return; } } void ldv_dispatch_instance_register_27_2(struct timer_list *arg0 ) { { { ldv_22_container_timer_list = arg0; ldv_switch_automaton_state_22_3(); } return; } } void ldv_dispatch_irq_deregister_25_1(int arg0 ) { { { ldv_0_line_line = arg0; ldv_switch_automaton_state_0_1(); } return; } } void ldv_dispatch_irq_register_29_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { { { ldv_0_line_line = arg0; ldv_0_callback_handler = arg1; ldv_0_thread_thread = arg2; ldv_0_data_data = arg3; ldv_switch_automaton_state_0_6(); } return; } } void ldv_dispatch_pm_deregister_6_5(void) { { { ldv_switch_automaton_state_5_1(); } return; } } void ldv_dispatch_pm_register_6_6(void) { { { ldv_switch_automaton_state_5_29(); } return; } } void ldv_dispatch_register_28_4(struct net_device *arg0 ) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_1_container_net_device = arg0; ldv_switch_automaton_state_1_5(); } goto ldv_52048; case_1: /* CIL Label */ { ldv_2_container_net_device = arg0; ldv_switch_automaton_state_2_5(); } goto ldv_52048; case_2: /* CIL Label */ { ldv_3_container_net_device = arg0; ldv_switch_automaton_state_3_5(); } goto ldv_52048; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_52048: ; return; } } void ldv_dispatch_register_32_2(struct pci_driver *arg0 ) { { { ldv_4_container_pci_driver = arg0; ldv_switch_automaton_state_4_20(); } return; } } void ldv_dispatch_register_dummy_resourceless_instance_16_33_6(void) { { { ldv_switch_automaton_state_7_5(); ldv_switch_automaton_state_8_5(); ldv_switch_automaton_state_9_5(); ldv_switch_automaton_state_10_5(); ldv_switch_automaton_state_11_5(); ldv_switch_automaton_state_12_5(); ldv_switch_automaton_state_13_5(); ldv_switch_automaton_state_14_5(); ldv_switch_automaton_state_15_5(); ldv_switch_automaton_state_16_5(); ldv_switch_automaton_state_17_5(); ldv_switch_automaton_state_18_5(); ldv_switch_automaton_state_19_5(); ldv_switch_automaton_state_20_5(); ldv_switch_automaton_state_21_5(); } return; } } void ldv_dispatch_register_platform_instance_15_33_7(void) { { { ldv_switch_automaton_state_6_17(); } return; } } void ldv_dummy_resourceless_instance_callback_10_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) { { { rtl_efusear_cond_check(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_11_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) { { { rtl_ephyar_cond_check(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_12_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) { { { rtl_eriar_cond_check(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_13_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) { { { rtl_link_list_ready_cond_check(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_14_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) { { { rtl_npq_cond_check(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_15_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) { { { rtl_ocp_gphy_cond_check(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_16_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) { { { rtl_ocp_read_cond_check(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_17_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) { { { rtl_ocpar_cond_check(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_18_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) { { { rtl_phy_reset_cond_check(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_19_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) { { { rtl_phyar_cond_check(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_10(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ethtool_op_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { rtl8169_get_msglevel(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_12(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) { { { rtl8169_get_regs(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_13(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { rtl8169_get_regs_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_14(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { rtl8169_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_15(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { rtl8169_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_18(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { rtl8169_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_21(int (*arg0)(struct net_device * , struct ethtool_ts_info * ) , struct net_device *arg1 , struct ethtool_ts_info *arg2 ) { { { ethtool_op_get_ts_info(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_22(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { rtl8169_get_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_23(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { rtl_hw_start_8101(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_24(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { rtl8169_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_27(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) { { { rtl8169_ioctl(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { rtl8169_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_30(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { rtl8169_fix_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_33(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) { { { rtl8169_get_stats64(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_34(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { rtl8169_netpoll(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_35(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { rtl8169_set_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_38(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { rtl_set_mac_address(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_39(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { rtl_set_rx_mode(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_40(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { rtl8169_start_xmit(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_41(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { rtl8169_tx_timeout(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_42(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_43(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) { { { rtl8169_set_msglevel(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_46(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { rtl8169_set_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_47(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { rtl8169_set_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_7(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { rtl8169_get_ethtool_stats(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_20_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) { { { rtl_rxtx_empty_cond_check(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_21_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) { { { rtl_txcfg_empty_cond_check(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_10(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ethtool_op_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { rtl8169_get_msglevel(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_12(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) { { { rtl8169_get_regs(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_13(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { rtl8169_get_regs_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_14(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { rtl8169_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_15(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { rtl8169_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_18(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { rtl8169_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_21(int (*arg0)(struct net_device * , struct ethtool_ts_info * ) , struct net_device *arg1 , struct ethtool_ts_info *arg2 ) { { { ethtool_op_get_ts_info(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_22(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { rtl8169_get_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_23(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { rtl_hw_start_8168(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_24(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { rtl8169_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_27(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) { { { rtl8169_ioctl(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_2_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { rtl8169_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_30(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { rtl8169_fix_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_33(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) { { { rtl8169_get_stats64(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_34(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { rtl8169_netpoll(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_35(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { rtl8169_set_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_38(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { rtl_set_mac_address(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_39(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { rtl_set_rx_mode(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_40(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { rtl8169_start_xmit(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_41(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { rtl8169_tx_timeout(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_42(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_2_43(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) { { { rtl8169_set_msglevel(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_46(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { rtl8169_set_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_47(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { rtl8169_set_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_2_7(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { rtl8169_get_ethtool_stats(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_10(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { ethtool_op_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_11(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { rtl8169_get_msglevel(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_12(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) { { { rtl8169_get_regs(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_13(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { rtl8169_get_regs_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_14(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { rtl8169_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_15(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { rtl8169_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_18(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { rtl8169_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_21(int (*arg0)(struct net_device * , struct ethtool_ts_info * ) , struct net_device *arg1 , struct ethtool_ts_info *arg2 ) { { { ethtool_op_get_ts_info(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_22(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { rtl8169_get_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_23(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { rtl_hw_start_8169(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_24(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { rtl8169_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_27(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) { { { rtl8169_ioctl(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_3_3(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { rtl8169_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_30(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { rtl8169_fix_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_33(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) { { { rtl8169_get_stats64(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_34(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { rtl8169_netpoll(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_35(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { rtl8169_set_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_38(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { rtl_set_mac_address(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_39(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { rtl_set_rx_mode(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_40(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { rtl8169_start_xmit(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_41(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { rtl8169_tx_timeout(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_42(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_3_43(void (*arg0)(struct net_device * , unsigned int ) , struct net_device *arg1 , unsigned int arg2 ) { { { rtl8169_set_msglevel(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_46(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { rtl8169_set_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_47(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { rtl8169_set_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_3_7(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { rtl8169_get_ethtool_stats(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_7_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) { { { rtl_chipcmd_cond_check(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_8_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) { { { rtl_counters_cond_check(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_9_3(_Bool (*arg0)(struct rtl8169_private * ) , struct rtl8169_private *arg1 ) { { { rtl_csiar_cond_check(arg1); } return; } } void ldv_entry_EMGentry_33(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_33 == 2) { goto case_2; } else { } if (ldv_statevar_33 == 3) { goto case_3; } else { } if (ldv_statevar_33 == 4) { goto case_4; } else { } if (ldv_statevar_33 == 5) { goto case_5; } else { } if (ldv_statevar_33 == 6) { goto case_6; } else { } if (ldv_statevar_33 == 7) { goto case_7; } else { } if (ldv_statevar_33 == 8) { goto case_8; } else { } if (ldv_statevar_33 == 10) { goto case_10; } else { } if (ldv_statevar_33 == 11) { goto case_11; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 12); ldv_EMGentry_exit_rtl8169_pci_driver_exit_33_2(ldv_33_exit_rtl8169_pci_driver_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_33 = 11; } goto ldv_52663; case_3: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 12); ldv_EMGentry_exit_rtl8169_pci_driver_exit_33_2(ldv_33_exit_rtl8169_pci_driver_exit_default); ldv_check_final_state(); ldv_stop(); ldv_statevar_33 = 11; } goto ldv_52663; case_4: /* CIL Label */ { ldv_assume((((((((((((((ldv_statevar_7 == 1 || ldv_statevar_8 == 1) || ldv_statevar_9 == 1) || ldv_statevar_10 == 1) || ldv_statevar_11 == 1) || ldv_statevar_12 == 1) || ldv_statevar_13 == 1) || ldv_statevar_14 == 1) || ldv_statevar_15 == 1) || ldv_statevar_16 == 1) || ldv_statevar_17 == 1) || ldv_statevar_18 == 1) || ldv_statevar_19 == 1) || ldv_statevar_20 == 1) || ldv_statevar_21 == 1); ldv_dispatch_deregister_dummy_resourceless_instance_16_33_4(); ldv_statevar_33 = 2; } goto ldv_52663; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_6 == 9); ldv_dispatch_deregister_platform_instance_15_33_5(); ldv_statevar_33 = 4; } goto ldv_52663; case_6: /* CIL Label */ { ldv_assume((((((((((((((ldv_statevar_7 == 5 || ldv_statevar_8 == 5) || ldv_statevar_9 == 5) || ldv_statevar_10 == 5) || ldv_statevar_11 == 5) || ldv_statevar_12 == 5) || ldv_statevar_13 == 5) || ldv_statevar_14 == 5) || ldv_statevar_15 == 5) || ldv_statevar_16 == 5) || ldv_statevar_17 == 5) || ldv_statevar_18 == 5) || ldv_statevar_19 == 5) || ldv_statevar_20 == 5) || ldv_statevar_21 == 5); ldv_dispatch_register_dummy_resourceless_instance_16_33_6(); ldv_statevar_33 = 5; } goto ldv_52663; case_7: /* CIL Label */ { ldv_assume(ldv_statevar_6 == 17); ldv_dispatch_register_platform_instance_15_33_7(); ldv_statevar_33 = 6; } goto ldv_52663; case_8: /* CIL Label */ { ldv_assume(ldv_33_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_33 = 3; } else { ldv_statevar_33 = 7; } goto ldv_52663; case_10: /* CIL Label */ { ldv_assume(ldv_33_ret_default != 0); ldv_check_final_state(); ldv_stop(); ldv_statevar_33 = 11; } goto ldv_52663; case_11: /* CIL Label */ { ldv_assume(ldv_statevar_4 == 20); ldv_33_ret_default = ldv_EMGentry_init_rtl8169_pci_driver_init_33_11(ldv_33_init_rtl8169_pci_driver_init_default); ldv_33_ret_default = ldv_post_init(ldv_33_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_33 = 8; } else { ldv_statevar_33 = 10; } goto ldv_52663; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52663: ; return; } } int main(void) { int tmp ; { { ldv_initialize(); ldv_initialize_external_data(); ldv_statevar_33 = 11; ldv_statevar_0 = 6; ldv_statevar_1 = 5; ldv_statevar_2 = 5; ldv_statevar_3 = 5; ldv_4_ret_default = 1; ldv_statevar_4 = 20; ldv_statevar_5 = 29; ldv_6_probed_default = 1; ldv_statevar_6 = 17; ldv_statevar_7 = 5; ldv_statevar_8 = 5; ldv_statevar_9 = 5; ldv_statevar_10 = 5; ldv_statevar_11 = 5; ldv_statevar_12 = 5; ldv_statevar_13 = 5; ldv_statevar_14 = 5; ldv_statevar_15 = 5; ldv_statevar_16 = 5; ldv_statevar_17 = 5; ldv_statevar_18 = 5; ldv_statevar_19 = 5; ldv_statevar_20 = 5; ldv_statevar_21 = 5; ldv_statevar_22 = 3; } ldv_52701: { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } if (tmp == 22) { goto case_22; } else { } if (tmp == 23) { goto case_23; } else { } goto switch_default; case_0: /* CIL Label */ { ldv_entry_EMGentry_33((void *)0); } goto ldv_52676; case_1: /* CIL Label */ { ldv_interrupt_interrupt_instance_0((void *)0); } goto ldv_52676; case_2: /* CIL Label */ { ldv_net_dummy_resourceless_instance_1((void *)0); } goto ldv_52676; case_3: /* CIL Label */ { ldv_net_dummy_resourceless_instance_2((void *)0); } goto ldv_52676; case_4: /* CIL Label */ { ldv_net_dummy_resourceless_instance_3((void *)0); } goto ldv_52676; case_5: /* CIL Label */ { ldv_pci_pci_instance_4((void *)0); } goto ldv_52676; case_6: /* CIL Label */ { ldv_pm_pm_ops_instance_5((void *)0); } goto ldv_52676; case_7: /* CIL Label */ { ldv_pm_platform_instance_6((void *)0); } goto ldv_52676; case_8: /* CIL Label */ { ldv_struct_rtl_cond_dummy_resourceless_instance_7((void *)0); } goto ldv_52676; case_9: /* CIL Label */ { ldv_struct_rtl_cond_dummy_resourceless_instance_8((void *)0); } goto ldv_52676; case_10: /* CIL Label */ { ldv_struct_rtl_cond_dummy_resourceless_instance_9((void *)0); } goto ldv_52676; case_11: /* CIL Label */ { ldv_struct_rtl_cond_dummy_resourceless_instance_10((void *)0); } goto ldv_52676; case_12: /* CIL Label */ { ldv_struct_rtl_cond_dummy_resourceless_instance_11((void *)0); } goto ldv_52676; case_13: /* CIL Label */ { ldv_struct_rtl_cond_dummy_resourceless_instance_12((void *)0); } goto ldv_52676; case_14: /* CIL Label */ { ldv_struct_rtl_cond_dummy_resourceless_instance_13((void *)0); } goto ldv_52676; case_15: /* CIL Label */ { ldv_struct_rtl_cond_dummy_resourceless_instance_14((void *)0); } goto ldv_52676; case_16: /* CIL Label */ { ldv_struct_rtl_cond_dummy_resourceless_instance_15((void *)0); } goto ldv_52676; case_17: /* CIL Label */ { ldv_struct_rtl_cond_dummy_resourceless_instance_16((void *)0); } goto ldv_52676; case_18: /* CIL Label */ { ldv_struct_rtl_cond_dummy_resourceless_instance_17((void *)0); } goto ldv_52676; case_19: /* CIL Label */ { ldv_struct_rtl_cond_dummy_resourceless_instance_18((void *)0); } goto ldv_52676; case_20: /* CIL Label */ { ldv_struct_rtl_cond_dummy_resourceless_instance_19((void *)0); } goto ldv_52676; case_21: /* CIL Label */ { ldv_struct_rtl_cond_dummy_resourceless_instance_20((void *)0); } goto ldv_52676; case_22: /* CIL Label */ { ldv_struct_rtl_cond_dummy_resourceless_instance_21((void *)0); } goto ldv_52676; case_23: /* CIL Label */ { ldv_timer_timer_instance_22((void *)0); } goto ldv_52676; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } ldv_52676: ; goto ldv_52701; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_25_line_line ; { { ldv_25_line_line = arg1; ldv_assume(ldv_statevar_0 == 2); ldv_dispatch_irq_deregister_25_1(ldv_25_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_26_netdev_net_device ; { { ldv_26_netdev_net_device = arg1; ldv_free((void *)ldv_26_netdev_net_device); } return; return; } } void ldv_initialize_external_data(void) { { { ldv_allocate_external_0(); } return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { irqreturn_t tmp ; { { tmp = rtl8169_interrupt(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { int tmp ; { { if (ldv_statevar_0 == 2) { goto case_2; } else { } if (ldv_statevar_0 == 4) { goto case_4; } else { } if (ldv_statevar_0 == 5) { goto case_5; } else { } if (ldv_statevar_0 == 6) { goto case_6; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); ldv_statevar_0 = 6; } goto ldv_52733; case_4: /* CIL Label */ { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } ldv_statevar_0 = 6; goto ldv_52733; case_5: /* CIL Label */ { ldv_switch_to_interrupt_context(); ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_0 = 2; } else { ldv_statevar_0 = 4; } goto ldv_52733; case_6: /* CIL Label */ ; goto ldv_52733; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52733: ; return; } } int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) { struct timer_list *ldv_27_timer_list_timer_list ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_27_timer_list_timer_list = arg1; ldv_assume(ldv_statevar_22 == 3); ldv_dispatch_instance_register_27_2(ldv_27_timer_list_timer_list); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_net_dummy_resourceless_instance_1(void *arg0 ) { void *tmp ; void *tmp___0 ; { { if (ldv_statevar_1 == 1) { goto case_1; } else { } if (ldv_statevar_1 == 2) { goto case_2; } else { } if (ldv_statevar_1 == 3) { goto case_3; } else { } if (ldv_statevar_1 == 4) { goto case_4; } else { } if (ldv_statevar_1 == 5) { goto case_5; } else { } if (ldv_statevar_1 == 8) { goto case_8; } else { } if (ldv_statevar_1 == 10) { goto case_10; } else { } if (ldv_statevar_1 == 11) { goto case_11; } else { } if (ldv_statevar_1 == 12) { goto case_12; } else { } if (ldv_statevar_1 == 13) { goto case_13; } else { } if (ldv_statevar_1 == 14) { goto case_14; } else { } if (ldv_statevar_1 == 16) { goto case_16; } else { } if (ldv_statevar_1 == 19) { goto case_19; } else { } if (ldv_statevar_1 == 21) { goto case_21; } else { } if (ldv_statevar_1 == 22) { goto case_22; } else { } if (ldv_statevar_1 == 23) { goto case_23; } else { } if (ldv_statevar_1 == 25) { goto case_25; } else { } if (ldv_statevar_1 == 28) { goto case_28; } else { } if (ldv_statevar_1 == 31) { goto case_31; } else { } if (ldv_statevar_1 == 33) { goto case_33; } else { } if (ldv_statevar_1 == 34) { goto case_34; } else { } if (ldv_statevar_1 == 36) { goto case_36; } else { } if (ldv_statevar_1 == 38) { goto case_38; } else { } if (ldv_statevar_1 == 39) { goto case_39; } else { } if (ldv_statevar_1 == 40) { goto case_40; } else { } if (ldv_statevar_1 == 41) { goto case_41; } else { } if (ldv_statevar_1 == 42) { goto case_42; } else { } if (ldv_statevar_1 == 44) { goto case_44; } else { } if (ldv_statevar_1 == 46) { goto case_46; } else { } if (ldv_statevar_1 == 47) { goto case_47; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_52748; case_2: /* CIL Label */ { ldv_statevar_1 = ldv_switch_0(); } goto ldv_52748; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_3(ldv_1_callback_get_drvinfo, ldv_1_container_net_device, ldv_1_container_struct_ethtool_drvinfo_ptr); ldv_statevar_1 = 2; } goto ldv_52748; case_4: /* CIL Label */ { ldv_statevar_1 = ldv_switch_0(); } goto ldv_52748; case_5: /* CIL Label */ ; goto ldv_52748; case_8: /* CIL Label */ { tmp = ldv_xmalloc(8UL); ldv_1_ldv_param_7_2_default = (unsigned long long *)tmp; ldv_dummy_resourceless_instance_callback_1_7(ldv_1_callback_get_ethtool_stats, ldv_1_container_net_device, ldv_1_container_struct_ethtool_stats_ptr, ldv_1_ldv_param_7_2_default); ldv_free((void *)ldv_1_ldv_param_7_2_default); ldv_statevar_1 = 2; } goto ldv_52748; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_10(ldv_1_callback_get_link, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_52748; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_11(ldv_1_callback_get_msglevel, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_52748; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_12(ldv_1_callback_get_regs, ldv_1_container_net_device, ldv_1_container_struct_ethtool_regs_ptr, (void *)ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_52748; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_13(ldv_1_callback_get_regs_len, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_52748; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_14(ldv_1_callback_get_settings, ldv_1_container_net_device, ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_52748; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_15(ldv_1_callback_get_sset_count, ldv_1_container_net_device, ldv_1_ldv_param_15_1_default); ldv_statevar_1 = 2; } goto ldv_52748; case_19: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_1_ldv_param_18_2_default = (unsigned char *)tmp___0; ldv_dummy_resourceless_instance_callback_1_18(ldv_1_callback_get_strings, ldv_1_container_net_device, ldv_1_ldv_param_18_1_default, ldv_1_ldv_param_18_2_default); ldv_free((void *)ldv_1_ldv_param_18_2_default); ldv_statevar_1 = 2; } goto ldv_52748; case_21: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_21(ldv_1_callback_get_ts_info, ldv_1_container_net_device, ldv_1_container_struct_ethtool_ts_info_ptr); ldv_statevar_1 = 2; } goto ldv_52748; case_22: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_22(ldv_1_callback_get_wol, ldv_1_container_net_device, ldv_1_container_struct_ethtool_wolinfo_ptr); ldv_statevar_1 = 2; } goto ldv_52748; case_23: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_23(ldv_1_callback_hw_start, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_52748; case_25: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_24(ldv_1_callback_ndo_change_mtu, ldv_1_container_net_device, ldv_1_ldv_param_24_1_default); ldv_statevar_1 = 2; } goto ldv_52748; case_28: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_27(ldv_1_callback_ndo_do_ioctl, ldv_1_container_net_device, ldv_1_container_struct_ifreq_ptr, ldv_1_ldv_param_27_2_default); ldv_statevar_1 = 2; } goto ldv_52748; case_31: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_30(ldv_1_callback_ndo_fix_features, ldv_1_container_net_device, ldv_1_ldv_param_30_1_default); ldv_statevar_1 = 2; } goto ldv_52748; case_33: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_33(ldv_1_callback_ndo_get_stats64, ldv_1_container_net_device, ldv_1_container_struct_rtnl_link_stats64_ptr); ldv_statevar_1 = 2; } goto ldv_52748; case_34: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_34(ldv_1_callback_ndo_poll_controller, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_52748; case_36: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_35(ldv_1_callback_ndo_set_features, ldv_1_container_net_device, ldv_1_ldv_param_35_1_default); ldv_statevar_1 = 2; } goto ldv_52748; case_38: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_38(ldv_1_callback_ndo_set_mac_address, ldv_1_container_net_device, (void *)ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_52748; case_39: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_39(ldv_1_callback_ndo_set_rx_mode, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_52748; case_40: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_40(ldv_1_callback_ndo_start_xmit, ldv_1_container_struct_sk_buff_ptr, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_52748; case_41: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_41(ldv_1_callback_ndo_tx_timeout, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_52748; case_42: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_42(ldv_1_callback_ndo_validate_addr, ldv_1_container_net_device); ldv_statevar_1 = 2; } goto ldv_52748; case_44: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_43(ldv_1_callback_set_msglevel, ldv_1_container_net_device, ldv_1_ldv_param_43_1_default); ldv_statevar_1 = 2; } goto ldv_52748; case_46: /* CIL Label */ { ldv_assume((unsigned int )ldv_statevar_22 - 2U <= 1U); ldv_dummy_resourceless_instance_callback_1_46(ldv_1_callback_set_settings, ldv_1_container_net_device, ldv_1_container_struct_ethtool_cmd_ptr); ldv_statevar_1 = 2; } goto ldv_52748; case_47: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_47(ldv_1_callback_set_wol, ldv_1_container_net_device, ldv_1_container_struct_ethtool_wolinfo_ptr); ldv_statevar_1 = 2; } goto ldv_52748; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52748: ; return; } } void ldv_net_dummy_resourceless_instance_2(void *arg0 ) { void *tmp ; void *tmp___0 ; { { if (ldv_statevar_2 == 1) { goto case_1; } else { } if (ldv_statevar_2 == 2) { goto case_2; } else { } if (ldv_statevar_2 == 3) { goto case_3; } else { } if (ldv_statevar_2 == 4) { goto case_4; } else { } if (ldv_statevar_2 == 5) { goto case_5; } else { } if (ldv_statevar_2 == 8) { goto case_8; } else { } if (ldv_statevar_2 == 10) { goto case_10; } else { } if (ldv_statevar_2 == 11) { goto case_11; } else { } if (ldv_statevar_2 == 12) { goto case_12; } else { } if (ldv_statevar_2 == 13) { goto case_13; } else { } if (ldv_statevar_2 == 14) { goto case_14; } else { } if (ldv_statevar_2 == 16) { goto case_16; } else { } if (ldv_statevar_2 == 19) { goto case_19; } else { } if (ldv_statevar_2 == 21) { goto case_21; } else { } if (ldv_statevar_2 == 22) { goto case_22; } else { } if (ldv_statevar_2 == 23) { goto case_23; } else { } if (ldv_statevar_2 == 25) { goto case_25; } else { } if (ldv_statevar_2 == 28) { goto case_28; } else { } if (ldv_statevar_2 == 31) { goto case_31; } else { } if (ldv_statevar_2 == 33) { goto case_33; } else { } if (ldv_statevar_2 == 34) { goto case_34; } else { } if (ldv_statevar_2 == 36) { goto case_36; } else { } if (ldv_statevar_2 == 38) { goto case_38; } else { } if (ldv_statevar_2 == 39) { goto case_39; } else { } if (ldv_statevar_2 == 40) { goto case_40; } else { } if (ldv_statevar_2 == 41) { goto case_41; } else { } if (ldv_statevar_2 == 42) { goto case_42; } else { } if (ldv_statevar_2 == 44) { goto case_44; } else { } if (ldv_statevar_2 == 46) { goto case_46; } else { } if (ldv_statevar_2 == 47) { goto case_47; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_52783; case_2: /* CIL Label */ { ldv_statevar_2 = ldv_switch_0(); } goto ldv_52783; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_3(ldv_2_callback_get_drvinfo, ldv_2_container_net_device, ldv_2_container_struct_ethtool_drvinfo_ptr); ldv_statevar_2 = 2; } goto ldv_52783; case_4: /* CIL Label */ { ldv_statevar_2 = ldv_switch_0(); } goto ldv_52783; case_5: /* CIL Label */ ; goto ldv_52783; case_8: /* CIL Label */ { tmp = ldv_xmalloc(8UL); ldv_2_ldv_param_7_2_default = (unsigned long long *)tmp; ldv_dummy_resourceless_instance_callback_2_7(ldv_2_callback_get_ethtool_stats, ldv_2_container_net_device, ldv_2_container_struct_ethtool_stats_ptr, ldv_2_ldv_param_7_2_default); ldv_free((void *)ldv_2_ldv_param_7_2_default); ldv_statevar_2 = 2; } goto ldv_52783; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_10(ldv_2_callback_get_link, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52783; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_11(ldv_2_callback_get_msglevel, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52783; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_12(ldv_2_callback_get_regs, ldv_2_container_net_device, ldv_2_container_struct_ethtool_regs_ptr, (void *)ldv_2_container_struct_ethtool_cmd_ptr); ldv_statevar_2 = 2; } goto ldv_52783; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_13(ldv_2_callback_get_regs_len, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52783; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_14(ldv_2_callback_get_settings, ldv_2_container_net_device, ldv_2_container_struct_ethtool_cmd_ptr); ldv_statevar_2 = 2; } goto ldv_52783; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_15(ldv_2_callback_get_sset_count, ldv_2_container_net_device, ldv_2_ldv_param_15_1_default); ldv_statevar_2 = 2; } goto ldv_52783; case_19: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_2_ldv_param_18_2_default = (unsigned char *)tmp___0; ldv_dummy_resourceless_instance_callback_2_18(ldv_2_callback_get_strings, ldv_2_container_net_device, ldv_2_ldv_param_18_1_default, ldv_2_ldv_param_18_2_default); ldv_free((void *)ldv_2_ldv_param_18_2_default); ldv_statevar_2 = 2; } goto ldv_52783; case_21: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_21(ldv_2_callback_get_ts_info, ldv_2_container_net_device, ldv_2_container_struct_ethtool_ts_info_ptr); ldv_statevar_2 = 2; } goto ldv_52783; case_22: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_22(ldv_2_callback_get_wol, ldv_2_container_net_device, ldv_2_container_struct_ethtool_wolinfo_ptr); ldv_statevar_2 = 2; } goto ldv_52783; case_23: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_23(ldv_2_callback_hw_start, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52783; case_25: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_24(ldv_2_callback_ndo_change_mtu, ldv_2_container_net_device, ldv_2_ldv_param_24_1_default); ldv_statevar_2 = 2; } goto ldv_52783; case_28: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_27(ldv_2_callback_ndo_do_ioctl, ldv_2_container_net_device, ldv_2_container_struct_ifreq_ptr, ldv_2_ldv_param_27_2_default); ldv_statevar_2 = 2; } goto ldv_52783; case_31: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_30(ldv_2_callback_ndo_fix_features, ldv_2_container_net_device, ldv_2_ldv_param_30_1_default); ldv_statevar_2 = 2; } goto ldv_52783; case_33: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_33(ldv_2_callback_ndo_get_stats64, ldv_2_container_net_device, ldv_2_container_struct_rtnl_link_stats64_ptr); ldv_statevar_2 = 2; } goto ldv_52783; case_34: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_34(ldv_2_callback_ndo_poll_controller, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52783; case_36: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_35(ldv_2_callback_ndo_set_features, ldv_2_container_net_device, ldv_2_ldv_param_35_1_default); ldv_statevar_2 = 2; } goto ldv_52783; case_38: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_38(ldv_2_callback_ndo_set_mac_address, ldv_2_container_net_device, (void *)ldv_2_container_struct_ethtool_cmd_ptr); ldv_statevar_2 = 2; } goto ldv_52783; case_39: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_39(ldv_2_callback_ndo_set_rx_mode, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52783; case_40: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_40(ldv_2_callback_ndo_start_xmit, ldv_2_container_struct_sk_buff_ptr, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52783; case_41: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_41(ldv_2_callback_ndo_tx_timeout, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52783; case_42: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_42(ldv_2_callback_ndo_validate_addr, ldv_2_container_net_device); ldv_statevar_2 = 2; } goto ldv_52783; case_44: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_43(ldv_2_callback_set_msglevel, ldv_2_container_net_device, ldv_2_ldv_param_43_1_default); ldv_statevar_2 = 2; } goto ldv_52783; case_46: /* CIL Label */ { ldv_assume((unsigned int )ldv_statevar_22 - 2U <= 1U); ldv_dummy_resourceless_instance_callback_2_46(ldv_2_callback_set_settings, ldv_2_container_net_device, ldv_2_container_struct_ethtool_cmd_ptr); ldv_statevar_2 = 2; } goto ldv_52783; case_47: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_2_47(ldv_2_callback_set_wol, ldv_2_container_net_device, ldv_2_container_struct_ethtool_wolinfo_ptr); ldv_statevar_2 = 2; } goto ldv_52783; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52783: ; return; } } void ldv_net_dummy_resourceless_instance_3(void *arg0 ) { void *tmp ; void *tmp___0 ; { { if (ldv_statevar_3 == 1) { goto case_1; } else { } if (ldv_statevar_3 == 2) { goto case_2; } else { } if (ldv_statevar_3 == 3) { goto case_3; } else { } if (ldv_statevar_3 == 4) { goto case_4; } else { } if (ldv_statevar_3 == 5) { goto case_5; } else { } if (ldv_statevar_3 == 8) { goto case_8; } else { } if (ldv_statevar_3 == 10) { goto case_10; } else { } if (ldv_statevar_3 == 11) { goto case_11; } else { } if (ldv_statevar_3 == 12) { goto case_12; } else { } if (ldv_statevar_3 == 13) { goto case_13; } else { } if (ldv_statevar_3 == 14) { goto case_14; } else { } if (ldv_statevar_3 == 16) { goto case_16; } else { } if (ldv_statevar_3 == 19) { goto case_19; } else { } if (ldv_statevar_3 == 21) { goto case_21; } else { } if (ldv_statevar_3 == 22) { goto case_22; } else { } if (ldv_statevar_3 == 23) { goto case_23; } else { } if (ldv_statevar_3 == 25) { goto case_25; } else { } if (ldv_statevar_3 == 28) { goto case_28; } else { } if (ldv_statevar_3 == 31) { goto case_31; } else { } if (ldv_statevar_3 == 33) { goto case_33; } else { } if (ldv_statevar_3 == 34) { goto case_34; } else { } if (ldv_statevar_3 == 36) { goto case_36; } else { } if (ldv_statevar_3 == 38) { goto case_38; } else { } if (ldv_statevar_3 == 39) { goto case_39; } else { } if (ldv_statevar_3 == 40) { goto case_40; } else { } if (ldv_statevar_3 == 41) { goto case_41; } else { } if (ldv_statevar_3 == 42) { goto case_42; } else { } if (ldv_statevar_3 == 44) { goto case_44; } else { } if (ldv_statevar_3 == 46) { goto case_46; } else { } if (ldv_statevar_3 == 47) { goto case_47; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_52818; case_2: /* CIL Label */ { ldv_statevar_3 = ldv_switch_0(); } goto ldv_52818; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_3(ldv_3_callback_get_drvinfo, ldv_3_container_net_device, ldv_3_container_struct_ethtool_drvinfo_ptr); ldv_statevar_3 = 2; } goto ldv_52818; case_4: /* CIL Label */ { ldv_statevar_3 = ldv_switch_0(); } goto ldv_52818; case_5: /* CIL Label */ ; goto ldv_52818; case_8: /* CIL Label */ { tmp = ldv_xmalloc(8UL); ldv_3_ldv_param_7_2_default = (unsigned long long *)tmp; ldv_dummy_resourceless_instance_callback_3_7(ldv_3_callback_get_ethtool_stats, ldv_3_container_net_device, ldv_3_container_struct_ethtool_stats_ptr, ldv_3_ldv_param_7_2_default); ldv_free((void *)ldv_3_ldv_param_7_2_default); ldv_statevar_3 = 2; } goto ldv_52818; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_10(ldv_3_callback_get_link, ldv_3_container_net_device); ldv_statevar_3 = 2; } goto ldv_52818; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_11(ldv_3_callback_get_msglevel, ldv_3_container_net_device); ldv_statevar_3 = 2; } goto ldv_52818; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_12(ldv_3_callback_get_regs, ldv_3_container_net_device, ldv_3_container_struct_ethtool_regs_ptr, (void *)ldv_3_container_struct_ethtool_cmd_ptr); ldv_statevar_3 = 2; } goto ldv_52818; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_13(ldv_3_callback_get_regs_len, ldv_3_container_net_device); ldv_statevar_3 = 2; } goto ldv_52818; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_14(ldv_3_callback_get_settings, ldv_3_container_net_device, ldv_3_container_struct_ethtool_cmd_ptr); ldv_statevar_3 = 2; } goto ldv_52818; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_15(ldv_3_callback_get_sset_count, ldv_3_container_net_device, ldv_3_ldv_param_15_1_default); ldv_statevar_3 = 2; } goto ldv_52818; case_19: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_3_ldv_param_18_2_default = (unsigned char *)tmp___0; ldv_dummy_resourceless_instance_callback_3_18(ldv_3_callback_get_strings, ldv_3_container_net_device, ldv_3_ldv_param_18_1_default, ldv_3_ldv_param_18_2_default); ldv_free((void *)ldv_3_ldv_param_18_2_default); ldv_statevar_3 = 2; } goto ldv_52818; case_21: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_21(ldv_3_callback_get_ts_info, ldv_3_container_net_device, ldv_3_container_struct_ethtool_ts_info_ptr); ldv_statevar_3 = 2; } goto ldv_52818; case_22: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_22(ldv_3_callback_get_wol, ldv_3_container_net_device, ldv_3_container_struct_ethtool_wolinfo_ptr); ldv_statevar_3 = 2; } goto ldv_52818; case_23: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_23(ldv_3_callback_hw_start, ldv_3_container_net_device); ldv_statevar_3 = 2; } goto ldv_52818; case_25: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_24(ldv_3_callback_ndo_change_mtu, ldv_3_container_net_device, ldv_3_ldv_param_24_1_default); ldv_statevar_3 = 2; } goto ldv_52818; case_28: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_27(ldv_3_callback_ndo_do_ioctl, ldv_3_container_net_device, ldv_3_container_struct_ifreq_ptr, ldv_3_ldv_param_27_2_default); ldv_statevar_3 = 2; } goto ldv_52818; case_31: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_30(ldv_3_callback_ndo_fix_features, ldv_3_container_net_device, ldv_3_ldv_param_30_1_default); ldv_statevar_3 = 2; } goto ldv_52818; case_33: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_33(ldv_3_callback_ndo_get_stats64, ldv_3_container_net_device, ldv_3_container_struct_rtnl_link_stats64_ptr); ldv_statevar_3 = 2; } goto ldv_52818; case_34: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_34(ldv_3_callback_ndo_poll_controller, ldv_3_container_net_device); ldv_statevar_3 = 2; } goto ldv_52818; case_36: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_35(ldv_3_callback_ndo_set_features, ldv_3_container_net_device, ldv_3_ldv_param_35_1_default); ldv_statevar_3 = 2; } goto ldv_52818; case_38: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_38(ldv_3_callback_ndo_set_mac_address, ldv_3_container_net_device, (void *)ldv_3_container_struct_ethtool_cmd_ptr); ldv_statevar_3 = 2; } goto ldv_52818; case_39: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_39(ldv_3_callback_ndo_set_rx_mode, ldv_3_container_net_device); ldv_statevar_3 = 2; } goto ldv_52818; case_40: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_40(ldv_3_callback_ndo_start_xmit, ldv_3_container_struct_sk_buff_ptr, ldv_3_container_net_device); ldv_statevar_3 = 2; } goto ldv_52818; case_41: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_41(ldv_3_callback_ndo_tx_timeout, ldv_3_container_net_device); ldv_statevar_3 = 2; } goto ldv_52818; case_42: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_42(ldv_3_callback_ndo_validate_addr, ldv_3_container_net_device); ldv_statevar_3 = 2; } goto ldv_52818; case_44: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_43(ldv_3_callback_set_msglevel, ldv_3_container_net_device, ldv_3_ldv_param_43_1_default); ldv_statevar_3 = 2; } goto ldv_52818; case_46: /* CIL Label */ { ldv_assume((unsigned int )ldv_statevar_22 - 2U <= 1U); ldv_dummy_resourceless_instance_callback_3_46(ldv_3_callback_set_settings, ldv_3_container_net_device, ldv_3_container_struct_ethtool_cmd_ptr); ldv_statevar_3 = 2; } goto ldv_52818; case_47: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_3_47(ldv_3_callback_set_wol, ldv_3_container_net_device, ldv_3_container_struct_ethtool_wolinfo_ptr); ldv_statevar_3 = 2; } goto ldv_52818; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52818: ; return; } } int ldv_pci_instance_probe_4_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = rtl_init_one(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_4_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { rtl_remove_one(arg1); } return; } } void ldv_pci_instance_resume_4_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_4_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_4_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { rtl_shutdown(arg1); } return; } } int ldv_pci_instance_suspend_4_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_4_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_4(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_4 == 1) { goto case_1; } else { } if (ldv_statevar_4 == 2) { goto case_2; } else { } if (ldv_statevar_4 == 3) { goto case_3; } else { } if (ldv_statevar_4 == 4) { goto case_4; } else { } if (ldv_statevar_4 == 5) { goto case_5; } else { } if (ldv_statevar_4 == 6) { goto case_6; } else { } if (ldv_statevar_4 == 7) { goto case_7; } else { } if (ldv_statevar_4 == 8) { goto case_8; } else { } if (ldv_statevar_4 == 9) { goto case_9; } else { } if (ldv_statevar_4 == 10) { goto case_10; } else { } if (ldv_statevar_4 == 12) { goto case_12; } else { } if (ldv_statevar_4 == 14) { goto case_14; } else { } if (ldv_statevar_4 == 16) { goto case_16; } else { } if (ldv_statevar_4 == 17) { goto case_17; } else { } if (ldv_statevar_4 == 19) { goto case_19; } else { } if (ldv_statevar_4 == 20) { goto case_20; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_4 = 12; } else { ldv_statevar_4 = 17; } goto ldv_52894; case_2: /* CIL Label */ { ldv_assume((ldv_statevar_1 == 1 || ldv_statevar_2 == 1) || ldv_statevar_3 == 1); ldv_pci_instance_release_4_2(ldv_4_container_pci_driver->remove, ldv_4_resource_dev); ldv_statevar_4 = 1; } goto ldv_52894; case_3: /* CIL Label */ { ldv_pci_instance_shutdown_4_3(ldv_4_container_pci_driver->shutdown, ldv_4_resource_dev); ldv_statevar_4 = 2; } goto ldv_52894; case_4: /* CIL Label */ { ldv_statevar_4 = ldv_switch_1(); } goto ldv_52894; case_5: /* CIL Label */ ; if ((unsigned long )ldv_4_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_4_5(ldv_4_container_pci_driver->resume, ldv_4_resource_dev); } } else { } ldv_statevar_4 = 4; goto ldv_52894; case_6: /* CIL Label */ ; if ((unsigned long )ldv_4_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_4_6(ldv_4_container_pci_driver->resume_early, ldv_4_resource_dev); } } else { } ldv_statevar_4 = 5; goto ldv_52894; case_7: /* CIL Label */ ; if ((unsigned long )ldv_4_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_4_ret_default = ldv_pci_instance_suspend_late_4_7(ldv_4_container_pci_driver->suspend_late, ldv_4_resource_dev, ldv_4_resource_pm_message); } } else { } { ldv_4_ret_default = ldv_filter_err_code(ldv_4_ret_default); ldv_statevar_4 = 6; } goto ldv_52894; case_8: /* CIL Label */ ; if ((unsigned long )ldv_4_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_4_ret_default = ldv_pci_instance_suspend_4_8(ldv_4_container_pci_driver->suspend, ldv_4_resource_dev, ldv_4_resource_pm_message); } } else { } { ldv_4_ret_default = ldv_filter_err_code(ldv_4_ret_default); ldv_statevar_4 = 7; } goto ldv_52894; case_9: /* CIL Label */ { ldv_statevar_4 = ldv_switch_1(); } goto ldv_52894; case_10: /* CIL Label */ ldv_statevar_4 = 9; goto ldv_52894; case_12: /* CIL Label */ { ldv_free((void *)ldv_4_resource_dev); ldv_free((void *)ldv_4_resource_struct_pci_device_id_ptr); ldv_4_ret_default = 1; ldv_statevar_4 = 20; } goto ldv_52894; case_14: /* CIL Label */ { ldv_assume(ldv_4_ret_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_4 = 12; } else { ldv_statevar_4 = 17; } goto ldv_52894; case_16: /* CIL Label */ { ldv_assume(ldv_4_ret_default == 0); ldv_statevar_4 = ldv_switch_1(); } goto ldv_52894; case_17: /* CIL Label */ { ldv_assume((ldv_statevar_1 == 5 || ldv_statevar_2 == 5) || ldv_statevar_3 == 5); ldv_pre_probe(); ldv_4_ret_default = ldv_pci_instance_probe_4_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_4_container_pci_driver->probe, ldv_4_resource_dev, ldv_4_resource_struct_pci_device_id_ptr); ldv_4_ret_default = ldv_ldv_post_probe_33(ldv_4_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_4 = 14; } else { ldv_statevar_4 = 16; } goto ldv_52894; case_19: /* CIL Label */ { tmp___2 = ldv_xmalloc(2936UL); ldv_4_resource_dev = (struct pci_dev *)tmp___2; tmp___3 = ldv_xmalloc(32UL); ldv_4_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___3; tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_4 = 12; } else { ldv_statevar_4 = 17; } goto ldv_52894; case_20: /* CIL Label */ ; goto ldv_52894; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_52894: ; return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_31_pci_driver_pci_driver ; { { ldv_31_pci_driver_pci_driver = arg1; ldv_assume(ldv_statevar_4 == 12); ldv_dispatch_deregister_31_1(ldv_31_pci_driver_pci_driver); } return; return; } } int ldv_platform_instance_probe_6_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_platform_instance_release_6_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_complete_5_3(void (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_5_15(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl8169_suspend(arg1); } return; } } void ldv_pm_ops_instance_freeze_late_5_14(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_noirq_5_12(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_5_9(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl8169_suspend(arg1); } return; } } void ldv_pm_ops_instance_poweroff_late_5_8(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_noirq_5_6(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_prepare_5_22(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_5_4(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl8169_resume(arg1); } return; } } void ldv_pm_ops_instance_restore_early_5_7(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_noirq_5_5(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_5_16(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl8169_resume(arg1); } return; } } void ldv_pm_ops_instance_resume_early_5_17(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_noirq_5_19(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_idle_5_27(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl8169_runtime_idle(arg1); } return; } } void ldv_pm_ops_instance_runtime_resume_5_24(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl8169_runtime_resume(arg1); } return; } } void ldv_pm_ops_instance_runtime_suspend_5_25(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl8169_runtime_suspend(arg1); } return; } } void ldv_pm_ops_instance_suspend_5_21(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl8169_suspend(arg1); } return; } } void ldv_pm_ops_instance_suspend_late_5_18(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_noirq_5_20(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_5_10(int (*arg0)(struct device * ) , struct device *arg1 ) { { { rtl8169_resume(arg1); } return; } } void ldv_pm_ops_instance_thaw_early_5_13(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_noirq_5_11(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_platform_instance_6(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; void *tmp___2 ; void *tmp___3 ; int tmp___4 ; { { if (ldv_statevar_6 == 1) { goto case_1; } else { } if (ldv_statevar_6 == 4) { goto case_4; } else { } if (ldv_statevar_6 == 5) { goto case_5; } else { } if (ldv_statevar_6 == 6) { goto case_6; } else { } if (ldv_statevar_6 == 7) { goto case_7; } else { } if (ldv_statevar_6 == 9) { goto case_9; } else { } if (ldv_statevar_6 == 11) { goto case_11; } else { } if (ldv_statevar_6 == 13) { goto case_13; } else { } if (ldv_statevar_6 == 16) { goto case_16; } else { } if (ldv_statevar_6 == 17) { goto case_17; } else { } if (ldv_statevar_6 == 20) { goto case_20; } else { } if (ldv_statevar_6 == 22) { goto case_22; } else { } goto switch_default; case_1: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_6 = 9; } else { ldv_statevar_6 = 22; } goto ldv_53045; case_4: /* CIL Label */ { ldv_statevar_6 = ldv_switch_4(); } goto ldv_53045; case_5: /* CIL Label */ { ldv_assume(ldv_statevar_5 == 1); ldv_dispatch_pm_deregister_6_5(); ldv_statevar_6 = 4; } goto ldv_53045; case_6: /* CIL Label */ { ldv_assume(ldv_statevar_5 == 29); ldv_dispatch_pm_register_6_6(); ldv_statevar_6 = 5; } goto ldv_53045; case_7: /* CIL Label */ ldv_statevar_6 = 4; goto ldv_53045; case_9: /* CIL Label */ ldv_6_probed_default = 1; ldv_statevar_6 = 17; goto ldv_53045; case_11: /* CIL Label */ { ldv_assume(ldv_6_probed_default != 0); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_6 = 9; } else { ldv_statevar_6 = 22; } goto ldv_53045; case_13: /* CIL Label */ { ldv_assume(ldv_6_probed_default == 0); ldv_statevar_6 = ldv_switch_4(); } goto ldv_53045; case_16: /* CIL Label */ { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_6 = 9; } else { ldv_statevar_6 = 22; } goto ldv_53045; case_17: /* CIL Label */ ; goto ldv_53045; case_20: /* CIL Label */ { tmp___2 = ldv_xmalloc(1432UL); ldv_6_ldv_param_3_0_default = (struct platform_device *)tmp___2; } if ((unsigned long )ldv_6_container_platform_driver->remove != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_platform_instance_release_6_3(ldv_6_container_platform_driver->remove, ldv_6_ldv_param_3_0_default); } } else { } { ldv_free((void *)ldv_6_ldv_param_3_0_default); ldv_6_probed_default = 1; ldv_statevar_6 = 1; } goto ldv_53045; case_22: /* CIL Label */ { tmp___3 = ldv_xmalloc(1432UL); ldv_6_ldv_param_14_0_default = (struct platform_device *)tmp___3; ldv_pre_probe(); } if ((unsigned long )ldv_6_container_platform_driver->probe != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_6_probed_default = ldv_platform_instance_probe_6_14(ldv_6_container_platform_driver->probe, ldv_6_ldv_param_14_0_default); } } else { } { ldv_6_probed_default = ldv_ldv_post_probe_34(ldv_6_probed_default); ldv_free((void *)ldv_6_ldv_param_14_0_default); tmp___4 = ldv_undef_int(); } if (tmp___4 != 0) { ldv_statevar_6 = 11; } else { ldv_statevar_6 = 13; } goto ldv_53045; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53045: ; return; } } void ldv_pm_pm_ops_instance_5(void *arg0 ) { int tmp ; int tmp___0 ; int tmp___1 ; { { if (ldv_statevar_5 == 1) { goto case_1; } else { } if (ldv_statevar_5 == 2) { goto case_2; } else { } if (ldv_statevar_5 == 3) { goto case_3; } else { } if (ldv_statevar_5 == 4) { goto case_4; } else { } if (ldv_statevar_5 == 5) { goto case_5; } else { } if (ldv_statevar_5 == 6) { goto case_6; } else { } if (ldv_statevar_5 == 7) { goto case_7; } else { } if (ldv_statevar_5 == 8) { goto case_8; } else { } if (ldv_statevar_5 == 9) { goto case_9; } else { } if (ldv_statevar_5 == 10) { goto case_10; } else { } if (ldv_statevar_5 == 11) { goto case_11; } else { } if (ldv_statevar_5 == 12) { goto case_12; } else { } if (ldv_statevar_5 == 13) { goto case_13; } else { } if (ldv_statevar_5 == 14) { goto case_14; } else { } if (ldv_statevar_5 == 15) { goto case_15; } else { } if (ldv_statevar_5 == 16) { goto case_16; } else { } if (ldv_statevar_5 == 17) { goto case_17; } else { } if (ldv_statevar_5 == 18) { goto case_18; } else { } if (ldv_statevar_5 == 19) { goto case_19; } else { } if (ldv_statevar_5 == 20) { goto case_20; } else { } if (ldv_statevar_5 == 21) { goto case_21; } else { } if (ldv_statevar_5 == 22) { goto case_22; } else { } if (ldv_statevar_5 == 23) { goto case_23; } else { } if (ldv_statevar_5 == 24) { goto case_24; } else { } if (ldv_statevar_5 == 25) { goto case_25; } else { } if (ldv_statevar_5 == 26) { goto case_26; } else { } if (ldv_statevar_5 == 27) { goto case_27; } else { } if (ldv_statevar_5 == 28) { goto case_28; } else { } if (ldv_statevar_5 == 29) { goto case_29; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53062; case_2: /* CIL Label */ { ldv_statevar_5 = ldv_switch_2(); } goto ldv_53062; case_3: /* CIL Label */ ; if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->complete != (unsigned long )((void (*)(struct device * ))0)) { { ldv_pm_ops_instance_complete_5_3(ldv_5_pm_ops_dev_pm_ops->complete, ldv_5_device_device); } } else { } ldv_statevar_5 = 2; goto ldv_53062; case_4: /* CIL Label */ { ldv_assume(ldv_statevar_22 == 3); ldv_pm_ops_instance_restore_5_4(ldv_5_pm_ops_dev_pm_ops->restore, ldv_5_device_device); ldv_statevar_5 = 3; } goto ldv_53062; case_5: /* CIL Label */ ; if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->restore_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_noirq_5_5(ldv_5_pm_ops_dev_pm_ops->restore_noirq, ldv_5_device_device); } } else { } ldv_statevar_5 = 4; goto ldv_53062; case_6: /* CIL Label */ ; if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->poweroff_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_noirq_5_6(ldv_5_pm_ops_dev_pm_ops->poweroff_noirq, ldv_5_device_device); } } else { } ldv_statevar_5 = 5; goto ldv_53062; case_7: /* CIL Label */ ; if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->restore_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_early_5_7(ldv_5_pm_ops_dev_pm_ops->restore_early, ldv_5_device_device); } } else { } ldv_statevar_5 = 4; goto ldv_53062; case_8: /* CIL Label */ ; if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->poweroff_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_late_5_8(ldv_5_pm_ops_dev_pm_ops->poweroff_late, ldv_5_device_device); } } else { } ldv_statevar_5 = 7; goto ldv_53062; case_9: /* CIL Label */ { ldv_pm_ops_instance_poweroff_5_9(ldv_5_pm_ops_dev_pm_ops->poweroff, ldv_5_device_device); tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_5 = 6; } else { ldv_statevar_5 = 8; } goto ldv_53062; case_10: /* CIL Label */ { ldv_assume(ldv_statevar_22 == 3); ldv_pm_ops_instance_thaw_5_10(ldv_5_pm_ops_dev_pm_ops->thaw, ldv_5_device_device); ldv_statevar_5 = 3; } goto ldv_53062; case_11: /* CIL Label */ ; if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->thaw_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_noirq_5_11(ldv_5_pm_ops_dev_pm_ops->thaw_noirq, ldv_5_device_device); } } else { } ldv_statevar_5 = 10; goto ldv_53062; case_12: /* CIL Label */ ; if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->freeze_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_noirq_5_12(ldv_5_pm_ops_dev_pm_ops->freeze_noirq, ldv_5_device_device); } } else { } ldv_statevar_5 = 11; goto ldv_53062; case_13: /* CIL Label */ ; if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->thaw_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_early_5_13(ldv_5_pm_ops_dev_pm_ops->thaw_early, ldv_5_device_device); } } else { } ldv_statevar_5 = 10; goto ldv_53062; case_14: /* CIL Label */ ; if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->freeze_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_late_5_14(ldv_5_pm_ops_dev_pm_ops->freeze_late, ldv_5_device_device); } } else { } ldv_statevar_5 = 13; goto ldv_53062; case_15: /* CIL Label */ { ldv_pm_ops_instance_freeze_5_15(ldv_5_pm_ops_dev_pm_ops->freeze, ldv_5_device_device); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_5 = 12; } else { ldv_statevar_5 = 14; } goto ldv_53062; case_16: /* CIL Label */ { ldv_assume(ldv_statevar_22 == 3); ldv_pm_ops_instance_resume_5_16(ldv_5_pm_ops_dev_pm_ops->resume, ldv_5_device_device); ldv_statevar_5 = 3; } goto ldv_53062; case_17: /* CIL Label */ ; if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->resume_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_early_5_17(ldv_5_pm_ops_dev_pm_ops->resume_early, ldv_5_device_device); } } else { } ldv_statevar_5 = 16; goto ldv_53062; case_18: /* CIL Label */ ; if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->suspend_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_late_5_18(ldv_5_pm_ops_dev_pm_ops->suspend_late, ldv_5_device_device); } } else { } ldv_statevar_5 = 17; goto ldv_53062; case_19: /* CIL Label */ ; if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->resume_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_noirq_5_19(ldv_5_pm_ops_dev_pm_ops->resume_noirq, ldv_5_device_device); } } else { } ldv_statevar_5 = 16; goto ldv_53062; case_20: /* CIL Label */ ; if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->suspend_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_noirq_5_20(ldv_5_pm_ops_dev_pm_ops->suspend_noirq, ldv_5_device_device); } } else { } ldv_statevar_5 = 19; goto ldv_53062; case_21: /* CIL Label */ { ldv_pm_ops_instance_suspend_5_21(ldv_5_pm_ops_dev_pm_ops->suspend, ldv_5_device_device); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { ldv_statevar_5 = 18; } else { ldv_statevar_5 = 20; } goto ldv_53062; case_22: /* CIL Label */ ; if ((unsigned long )ldv_5_pm_ops_dev_pm_ops->prepare != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_prepare_5_22(ldv_5_pm_ops_dev_pm_ops->prepare, ldv_5_device_device); } } else { } { ldv_statevar_5 = ldv_switch_3(); } goto ldv_53062; case_23: /* CIL Label */ { ldv_statevar_5 = ldv_switch_2(); } goto ldv_53062; case_24: /* CIL Label */ { ldv_assume(ldv_statevar_22 == 3); ldv_pm_ops_instance_runtime_resume_5_24(ldv_5_pm_ops_dev_pm_ops->runtime_resume, ldv_5_device_device); ldv_statevar_5 = 23; } goto ldv_53062; case_25: /* CIL Label */ { ldv_pm_ops_instance_runtime_suspend_5_25(ldv_5_pm_ops_dev_pm_ops->runtime_suspend, ldv_5_device_device); ldv_statevar_5 = 24; } goto ldv_53062; case_26: /* CIL Label */ { ldv_statevar_5 = ldv_switch_2(); } goto ldv_53062; case_27: /* CIL Label */ { ldv_pm_ops_instance_runtime_idle_5_27(ldv_5_pm_ops_dev_pm_ops->runtime_idle, ldv_5_device_device); ldv_statevar_5 = 26; } goto ldv_53062; case_28: /* CIL Label */ { ldv_statevar_5 = ldv_switch_2(); } goto ldv_53062; case_29: /* CIL Label */ ; goto ldv_53062; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53062: ; return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_28_netdev_net_device ; int ldv_28_ret_default ; int tmp ; int tmp___0 ; { { ldv_28_ret_default = 1; ldv_28_ret_default = ldv_pre_register_netdev(); ldv_28_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_28_ret_default == 0); ldv_assume(ldv_statevar_0 == 6 || ldv_statevar_22 == 3); ldv_28_ret_default = ldv_register_netdev_open_28_6((ldv_28_netdev_net_device->netdev_ops)->ndo_open, ldv_28_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_28_ret_default == 0); ldv_assume((ldv_statevar_1 == 5 || ldv_statevar_2 == 5) || ldv_statevar_3 == 5); ldv_dispatch_register_28_4(ldv_28_netdev_net_device); } } else { { ldv_assume(ldv_28_ret_default != 0); } } } else { { ldv_assume(ldv_28_ret_default != 0); } } return (ldv_28_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_28_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = rtl_open(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_29_callback_handler)(int , void * ) ; void *ldv_29_data_data ; int ldv_29_line_line ; enum irqreturn (*ldv_29_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_29_line_line = (int )arg1; ldv_29_callback_handler = arg2; ldv_29_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_29_data_data = arg5; ldv_assume(ldv_statevar_0 == 6); ldv_dispatch_irq_register_29_2(ldv_29_line_line, ldv_29_callback_handler, ldv_29_thread_thread, ldv_29_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_struct_rtl_cond_dummy_resourceless_instance_10(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_10 == 1) { goto case_1; } else { } if (ldv_statevar_10 == 2) { goto case_2; } else { } if (ldv_statevar_10 == 3) { goto case_3; } else { } if (ldv_statevar_10 == 4) { goto case_4; } else { } if (ldv_statevar_10 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53125; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_10 = 1; } else { ldv_statevar_10 = 3; } goto ldv_53125; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_10_3(ldv_10_callback_check, ldv_10_container_struct_rtl8169_private_ptr); ldv_statevar_10 = 2; } goto ldv_53125; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_10 = 1; } else { ldv_statevar_10 = 3; } goto ldv_53125; case_5: /* CIL Label */ ; goto ldv_53125; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53125: ; return; } } void ldv_struct_rtl_cond_dummy_resourceless_instance_11(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_11 == 1) { goto case_1; } else { } if (ldv_statevar_11 == 2) { goto case_2; } else { } if (ldv_statevar_11 == 3) { goto case_3; } else { } if (ldv_statevar_11 == 4) { goto case_4; } else { } if (ldv_statevar_11 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53135; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_11 = 1; } else { ldv_statevar_11 = 3; } goto ldv_53135; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_11_3(ldv_11_callback_check, ldv_11_container_struct_rtl8169_private_ptr); ldv_statevar_11 = 2; } goto ldv_53135; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_11 = 1; } else { ldv_statevar_11 = 3; } goto ldv_53135; case_5: /* CIL Label */ ; goto ldv_53135; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53135: ; return; } } void ldv_struct_rtl_cond_dummy_resourceless_instance_12(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_12 == 1) { goto case_1; } else { } if (ldv_statevar_12 == 2) { goto case_2; } else { } if (ldv_statevar_12 == 3) { goto case_3; } else { } if (ldv_statevar_12 == 4) { goto case_4; } else { } if (ldv_statevar_12 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53145; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_12 = 1; } else { ldv_statevar_12 = 3; } goto ldv_53145; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_12_3(ldv_12_callback_check, ldv_12_container_struct_rtl8169_private_ptr); ldv_statevar_12 = 2; } goto ldv_53145; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_12 = 1; } else { ldv_statevar_12 = 3; } goto ldv_53145; case_5: /* CIL Label */ ; goto ldv_53145; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53145: ; return; } } void ldv_struct_rtl_cond_dummy_resourceless_instance_13(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_13 == 1) { goto case_1; } else { } if (ldv_statevar_13 == 2) { goto case_2; } else { } if (ldv_statevar_13 == 3) { goto case_3; } else { } if (ldv_statevar_13 == 4) { goto case_4; } else { } if (ldv_statevar_13 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53155; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_13 = 1; } else { ldv_statevar_13 = 3; } goto ldv_53155; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_13_3(ldv_13_callback_check, ldv_13_container_struct_rtl8169_private_ptr); ldv_statevar_13 = 2; } goto ldv_53155; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_13 = 1; } else { ldv_statevar_13 = 3; } goto ldv_53155; case_5: /* CIL Label */ ; goto ldv_53155; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53155: ; return; } } void ldv_struct_rtl_cond_dummy_resourceless_instance_14(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_14 == 1) { goto case_1; } else { } if (ldv_statevar_14 == 2) { goto case_2; } else { } if (ldv_statevar_14 == 3) { goto case_3; } else { } if (ldv_statevar_14 == 4) { goto case_4; } else { } if (ldv_statevar_14 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53165; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_14 = 1; } else { ldv_statevar_14 = 3; } goto ldv_53165; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_14_3(ldv_14_callback_check, ldv_14_container_struct_rtl8169_private_ptr); ldv_statevar_14 = 2; } goto ldv_53165; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_14 = 1; } else { ldv_statevar_14 = 3; } goto ldv_53165; case_5: /* CIL Label */ ; goto ldv_53165; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53165: ; return; } } void ldv_struct_rtl_cond_dummy_resourceless_instance_15(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_15 == 1) { goto case_1; } else { } if (ldv_statevar_15 == 2) { goto case_2; } else { } if (ldv_statevar_15 == 3) { goto case_3; } else { } if (ldv_statevar_15 == 4) { goto case_4; } else { } if (ldv_statevar_15 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53175; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_15 = 1; } else { ldv_statevar_15 = 3; } goto ldv_53175; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_15_3(ldv_15_callback_check, ldv_15_container_struct_rtl8169_private_ptr); ldv_statevar_15 = 2; } goto ldv_53175; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_15 = 1; } else { ldv_statevar_15 = 3; } goto ldv_53175; case_5: /* CIL Label */ ; goto ldv_53175; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53175: ; return; } } void ldv_struct_rtl_cond_dummy_resourceless_instance_16(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_16 == 1) { goto case_1; } else { } if (ldv_statevar_16 == 2) { goto case_2; } else { } if (ldv_statevar_16 == 3) { goto case_3; } else { } if (ldv_statevar_16 == 4) { goto case_4; } else { } if (ldv_statevar_16 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53185; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_16 = 1; } else { ldv_statevar_16 = 3; } goto ldv_53185; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_16_3(ldv_16_callback_check, ldv_16_container_struct_rtl8169_private_ptr); ldv_statevar_16 = 2; } goto ldv_53185; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_16 = 1; } else { ldv_statevar_16 = 3; } goto ldv_53185; case_5: /* CIL Label */ ; goto ldv_53185; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53185: ; return; } } void ldv_struct_rtl_cond_dummy_resourceless_instance_17(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_17 == 1) { goto case_1; } else { } if (ldv_statevar_17 == 2) { goto case_2; } else { } if (ldv_statevar_17 == 3) { goto case_3; } else { } if (ldv_statevar_17 == 4) { goto case_4; } else { } if (ldv_statevar_17 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53195; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_17 = 1; } else { ldv_statevar_17 = 3; } goto ldv_53195; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_17_3(ldv_17_callback_check, ldv_17_container_struct_rtl8169_private_ptr); ldv_statevar_17 = 2; } goto ldv_53195; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_17 = 1; } else { ldv_statevar_17 = 3; } goto ldv_53195; case_5: /* CIL Label */ ; goto ldv_53195; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53195: ; return; } } void ldv_struct_rtl_cond_dummy_resourceless_instance_18(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_18 == 1) { goto case_1; } else { } if (ldv_statevar_18 == 2) { goto case_2; } else { } if (ldv_statevar_18 == 3) { goto case_3; } else { } if (ldv_statevar_18 == 4) { goto case_4; } else { } if (ldv_statevar_18 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53205; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_18 = 1; } else { ldv_statevar_18 = 3; } goto ldv_53205; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_18_3(ldv_18_callback_check, ldv_18_container_struct_rtl8169_private_ptr); ldv_statevar_18 = 2; } goto ldv_53205; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_18 = 1; } else { ldv_statevar_18 = 3; } goto ldv_53205; case_5: /* CIL Label */ ; goto ldv_53205; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53205: ; return; } } void ldv_struct_rtl_cond_dummy_resourceless_instance_19(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_19 == 1) { goto case_1; } else { } if (ldv_statevar_19 == 2) { goto case_2; } else { } if (ldv_statevar_19 == 3) { goto case_3; } else { } if (ldv_statevar_19 == 4) { goto case_4; } else { } if (ldv_statevar_19 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53215; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_19 = 1; } else { ldv_statevar_19 = 3; } goto ldv_53215; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_19_3(ldv_19_callback_check, ldv_19_container_struct_rtl8169_private_ptr); ldv_statevar_19 = 2; } goto ldv_53215; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_19 = 1; } else { ldv_statevar_19 = 3; } goto ldv_53215; case_5: /* CIL Label */ ; goto ldv_53215; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53215: ; return; } } void ldv_struct_rtl_cond_dummy_resourceless_instance_20(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_20 == 1) { goto case_1; } else { } if (ldv_statevar_20 == 2) { goto case_2; } else { } if (ldv_statevar_20 == 3) { goto case_3; } else { } if (ldv_statevar_20 == 4) { goto case_4; } else { } if (ldv_statevar_20 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53225; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_20 = 1; } else { ldv_statevar_20 = 3; } goto ldv_53225; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_20_3(ldv_20_callback_check, ldv_20_container_struct_rtl8169_private_ptr); ldv_statevar_20 = 2; } goto ldv_53225; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_20 = 1; } else { ldv_statevar_20 = 3; } goto ldv_53225; case_5: /* CIL Label */ ; goto ldv_53225; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53225: ; return; } } void ldv_struct_rtl_cond_dummy_resourceless_instance_21(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_21 == 1) { goto case_1; } else { } if (ldv_statevar_21 == 2) { goto case_2; } else { } if (ldv_statevar_21 == 3) { goto case_3; } else { } if (ldv_statevar_21 == 4) { goto case_4; } else { } if (ldv_statevar_21 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53235; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_21 = 1; } else { ldv_statevar_21 = 3; } goto ldv_53235; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_21_3(ldv_21_callback_check, ldv_21_container_struct_rtl8169_private_ptr); ldv_statevar_21 = 2; } goto ldv_53235; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_21 = 1; } else { ldv_statevar_21 = 3; } goto ldv_53235; case_5: /* CIL Label */ ; goto ldv_53235; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53235: ; return; } } void ldv_struct_rtl_cond_dummy_resourceless_instance_7(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_7 == 1) { goto case_1; } else { } if (ldv_statevar_7 == 2) { goto case_2; } else { } if (ldv_statevar_7 == 3) { goto case_3; } else { } if (ldv_statevar_7 == 4) { goto case_4; } else { } if (ldv_statevar_7 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53245; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_7 = 1; } else { ldv_statevar_7 = 3; } goto ldv_53245; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_7_3(ldv_7_callback_check, ldv_7_container_struct_rtl8169_private_ptr); ldv_statevar_7 = 2; } goto ldv_53245; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_7 = 1; } else { ldv_statevar_7 = 3; } goto ldv_53245; case_5: /* CIL Label */ ; goto ldv_53245; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53245: ; return; } } void ldv_struct_rtl_cond_dummy_resourceless_instance_8(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_8 == 1) { goto case_1; } else { } if (ldv_statevar_8 == 2) { goto case_2; } else { } if (ldv_statevar_8 == 3) { goto case_3; } else { } if (ldv_statevar_8 == 4) { goto case_4; } else { } if (ldv_statevar_8 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53255; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_8 = 1; } else { ldv_statevar_8 = 3; } goto ldv_53255; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_8_3(ldv_8_callback_check, ldv_8_container_struct_rtl8169_private_ptr); ldv_statevar_8 = 2; } goto ldv_53255; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_8 = 1; } else { ldv_statevar_8 = 3; } goto ldv_53255; case_5: /* CIL Label */ ; goto ldv_53255; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53255: ; return; } } void ldv_struct_rtl_cond_dummy_resourceless_instance_9(void *arg0 ) { int tmp ; int tmp___0 ; { { if (ldv_statevar_9 == 1) { goto case_1; } else { } if (ldv_statevar_9 == 2) { goto case_2; } else { } if (ldv_statevar_9 == 3) { goto case_3; } else { } if (ldv_statevar_9 == 4) { goto case_4; } else { } if (ldv_statevar_9 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ ; goto ldv_53265; case_2: /* CIL Label */ { tmp = ldv_undef_int(); } if (tmp != 0) { ldv_statevar_9 = 1; } else { ldv_statevar_9 = 3; } goto ldv_53265; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_9_3(ldv_9_callback_check, ldv_9_container_struct_rtl8169_private_ptr); ldv_statevar_9 = 2; } goto ldv_53265; case_4: /* CIL Label */ { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { ldv_statevar_9 = 1; } else { ldv_statevar_9 = 3; } goto ldv_53265; case_5: /* CIL Label */ ; goto ldv_53265; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53265: ; return; } } int ldv_switch_0(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } if (tmp == 22) { goto case_22; } else { } if (tmp == 23) { goto case_23; } else { } if (tmp == 24) { goto case_24; } else { } if (tmp == 25) { goto case_25; } else { } if (tmp == 26) { goto case_26; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (3); case_2: /* CIL Label */ ; return (8); case_3: /* CIL Label */ ; return (10); case_4: /* CIL Label */ ; return (11); case_5: /* CIL Label */ ; return (12); case_6: /* CIL Label */ ; return (13); case_7: /* CIL Label */ ; return (14); case_8: /* CIL Label */ ; return (16); case_9: /* CIL Label */ ; return (19); case_10: /* CIL Label */ ; return (21); case_11: /* CIL Label */ ; return (22); case_12: /* CIL Label */ ; return (23); case_13: /* CIL Label */ ; return (25); case_14: /* CIL Label */ ; return (28); case_15: /* CIL Label */ ; return (31); case_16: /* CIL Label */ ; return (33); case_17: /* CIL Label */ ; return (34); case_18: /* CIL Label */ ; return (36); case_19: /* CIL Label */ ; return (38); case_20: /* CIL Label */ ; return (39); case_21: /* CIL Label */ ; return (40); case_22: /* CIL Label */ ; return (41); case_23: /* CIL Label */ ; return (42); case_24: /* CIL Label */ ; return (44); case_25: /* CIL Label */ ; return (46); case_26: /* CIL Label */ ; return (47); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_1(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (3); case_1: /* CIL Label */ ; return (8); case_2: /* CIL Label */ ; return (10); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_2(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ ; return (1); case_1: /* CIL Label */ ; return (22); case_2: /* CIL Label */ ; return (25); case_3: /* CIL Label */ ; return (27); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_3(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (9); case_1: /* CIL Label */ ; return (15); case_2: /* CIL Label */ ; return (21); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } int ldv_switch_4(void) { int tmp ; { { tmp = ldv_undef_int(); } { if (tmp == 0) { goto case_0; } else { } if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } goto switch_default; case_0: /* CIL Label */ ; return (6); case_1: /* CIL Label */ ; return (7); case_2: /* CIL Label */ ; return (20); switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return (0); } } void ldv_switch_automaton_state_0_1(void) { { ldv_statevar_0 = 6; return; } } void ldv_switch_automaton_state_0_6(void) { { ldv_statevar_0 = 5; return; } } void ldv_switch_automaton_state_10_1(void) { { ldv_statevar_10 = 5; return; } } void ldv_switch_automaton_state_10_5(void) { { ldv_statevar_10 = 4; return; } } void ldv_switch_automaton_state_11_1(void) { { ldv_statevar_11 = 5; return; } } void ldv_switch_automaton_state_11_5(void) { { ldv_statevar_11 = 4; return; } } void ldv_switch_automaton_state_12_1(void) { { ldv_statevar_12 = 5; return; } } void ldv_switch_automaton_state_12_5(void) { { ldv_statevar_12 = 4; return; } } void ldv_switch_automaton_state_13_1(void) { { ldv_statevar_13 = 5; return; } } void ldv_switch_automaton_state_13_5(void) { { ldv_statevar_13 = 4; return; } } void ldv_switch_automaton_state_14_1(void) { { ldv_statevar_14 = 5; return; } } void ldv_switch_automaton_state_14_5(void) { { ldv_statevar_14 = 4; return; } } void ldv_switch_automaton_state_15_1(void) { { ldv_statevar_15 = 5; return; } } void ldv_switch_automaton_state_15_5(void) { { ldv_statevar_15 = 4; return; } } void ldv_switch_automaton_state_16_1(void) { { ldv_statevar_16 = 5; return; } } void ldv_switch_automaton_state_16_5(void) { { ldv_statevar_16 = 4; return; } } void ldv_switch_automaton_state_17_1(void) { { ldv_statevar_17 = 5; return; } } void ldv_switch_automaton_state_17_5(void) { { ldv_statevar_17 = 4; return; } } void ldv_switch_automaton_state_18_1(void) { { ldv_statevar_18 = 5; return; } } void ldv_switch_automaton_state_18_5(void) { { ldv_statevar_18 = 4; return; } } void ldv_switch_automaton_state_19_1(void) { { ldv_statevar_19 = 5; return; } } void ldv_switch_automaton_state_19_5(void) { { ldv_statevar_19 = 4; return; } } void ldv_switch_automaton_state_1_1(void) { { ldv_statevar_1 = 5; return; } } void ldv_switch_automaton_state_1_5(void) { { ldv_statevar_1 = 4; return; } } void ldv_switch_automaton_state_20_1(void) { { ldv_statevar_20 = 5; return; } } void ldv_switch_automaton_state_20_5(void) { { ldv_statevar_20 = 4; return; } } void ldv_switch_automaton_state_21_1(void) { { ldv_statevar_21 = 5; return; } } void ldv_switch_automaton_state_21_5(void) { { ldv_statevar_21 = 4; return; } } void ldv_switch_automaton_state_22_1(void) { { ldv_statevar_22 = 3; return; } } void ldv_switch_automaton_state_22_3(void) { { ldv_statevar_22 = 2; return; } } void ldv_switch_automaton_state_2_1(void) { { ldv_statevar_2 = 5; return; } } void ldv_switch_automaton_state_2_5(void) { { ldv_statevar_2 = 4; return; } } void ldv_switch_automaton_state_3_1(void) { { ldv_statevar_3 = 5; return; } } void ldv_switch_automaton_state_3_5(void) { { ldv_statevar_3 = 4; return; } } void ldv_switch_automaton_state_4_11(void) { { ldv_4_ret_default = 1; ldv_statevar_4 = 20; return; } } void ldv_switch_automaton_state_4_20(void) { { ldv_statevar_4 = 19; return; } } void ldv_switch_automaton_state_5_1(void) { { ldv_statevar_5 = 29; return; } } void ldv_switch_automaton_state_5_29(void) { { ldv_statevar_5 = 28; return; } } void ldv_switch_automaton_state_6_17(void) { { ldv_statevar_6 = 16; return; } } void ldv_switch_automaton_state_6_8(void) { { ldv_6_probed_default = 1; ldv_statevar_6 = 17; return; } } void ldv_switch_automaton_state_7_1(void) { { ldv_statevar_7 = 5; return; } } void ldv_switch_automaton_state_7_5(void) { { ldv_statevar_7 = 4; return; } } void ldv_switch_automaton_state_8_1(void) { { ldv_statevar_8 = 5; return; } } void ldv_switch_automaton_state_8_5(void) { { ldv_statevar_8 = 4; return; } } void ldv_switch_automaton_state_9_1(void) { { ldv_statevar_9 = 5; return; } } void ldv_switch_automaton_state_9_5(void) { { ldv_statevar_9 = 4; return; } } void ldv_timer_instance_callback_22_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_22(void *arg0 ) { { { if (ldv_statevar_22 == 2) { goto case_2; } else { } if (ldv_statevar_22 == 3) { goto case_3; } else { } goto switch_default; case_2: /* CIL Label */ { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_22_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_22_2(ldv_22_container_timer_list->function, ldv_22_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); ldv_statevar_22 = 3; } goto ldv_53427; case_3: /* CIL Label */ ; goto ldv_53427; switch_default: /* CIL Label */ ; switch_break: /* CIL Label */ ; } ldv_53427: ; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_30_netdev_net_device ; { { ldv_30_netdev_net_device = arg1; ldv_assume(ldv_statevar_0 == 2 || ldv_statevar_22 == 2); ldv_unregister_netdev_stop_30_2((ldv_30_netdev_net_device->netdev_ops)->ndo_stop, ldv_30_netdev_net_device); ldv_assume((ldv_statevar_1 == 1 || ldv_statevar_2 == 1) || ldv_statevar_3 == 1); ldv_dispatch_deregister_30_1(ldv_30_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_30_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { rtl8169_close(arg1); } return; } } __inline static void *ERR_PTR(long error ) { void *tmp ; { { tmp = ldv_err_ptr(error); } return (tmp); } } __inline static long IS_ERR(void const *ptr ) { long tmp ; { { tmp = ldv_is_err(ptr); } return (tmp); } } __inline static long IS_ERR_OR_NULL(void const *ptr ) { long tmp ; { { tmp = ldv_is_err_or_null(ptr); } return (tmp); } } __inline static void atomic_inc(atomic_t *v ) { { { ldv_atomic_inc(v); } return; } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } static void *ldv_dev_get_drvdata_16(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_17(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } static int ldv_mod_timer_20(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_sync_21(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_22(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_23(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv_del_timer_sync_24(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_25(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } __inline static int ldv_request_irq_26(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_unregister_netdev_27(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static struct net_device *ldv_alloc_etherdev_mqs_28(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___4 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_29(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_30(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv___pci_register_driver_31(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_32(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } static int ldv_ldv_post_probe_33(int ldv_func_arg1 ) { int tmp ; { { ldv_check_return_value_probe(ldv_func_arg1); tmp = ldv_post_probe(ldv_func_arg1); } return (tmp); } } static int ldv_ldv_post_probe_34(int ldv_func_arg1 ) { int tmp ; { { ldv_check_return_value_probe(ldv_func_arg1); tmp = ldv_post_probe(ldv_func_arg1); } return (tmp); } } void ldv_atomic_add(int i , atomic_t *v ) { { v->counter = v->counter + i; return; } } void ldv_atomic_sub(int i , atomic_t *v ) { { v->counter = v->counter - i; return; } } int ldv_atomic_sub_and_test(int i , atomic_t *v ) { { v->counter = v->counter - i; if (v->counter != 0) { return (0); } else { } return (1); } } void ldv_atomic_inc(atomic_t *v ) { { v->counter = v->counter + 1; return; } } void ldv_atomic_dec(atomic_t *v ) { { v->counter = v->counter - 1; return; } } int ldv_atomic_dec_and_test(atomic_t *v ) { { v->counter = v->counter - 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_atomic_inc_and_test(atomic_t *v ) { { v->counter = v->counter + 1; if (v->counter != 0) { return (0); } else { } return (1); } } int ldv_atomic_add_return(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter); } } int ldv_atomic_add_negative(int i , atomic_t *v ) { { v->counter = v->counter + i; return (v->counter < 0); } } int ldv_atomic_inc_short(short *v ) { { *v = (short )((unsigned int )((unsigned short )*v) + 1U); return ((int )*v); } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } extern void ldv_check_alloc_flags(gfp_t ) ; extern void ldv_after_alloc(void * ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) ; void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) ; void ldv_assert_linux_usb_dev__probe_failed(int expr ) ; void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) ; ldv_map LDV_USB_DEV_REF_COUNTS ; struct usb_device *ldv_usb_get_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { LDV_USB_DEV_REF_COUNTS = LDV_USB_DEV_REF_COUNTS != 0 ? LDV_USB_DEV_REF_COUNTS + 1 : 1; } else { } return (dev); } } void ldv_usb_put_dev(struct usb_device *dev ) { { if ((unsigned long )dev != (unsigned long )((struct usb_device *)0)) { { ldv_assert_linux_usb_dev__unincremented_counter_decrement(LDV_USB_DEV_REF_COUNTS != 0); ldv_assert_linux_usb_dev__less_initial_decrement(LDV_USB_DEV_REF_COUNTS > 0); } if (LDV_USB_DEV_REF_COUNTS > 1) { LDV_USB_DEV_REF_COUNTS = LDV_USB_DEV_REF_COUNTS + -1; } else { LDV_USB_DEV_REF_COUNTS = 0; } } else { } return; } } void ldv_check_return_value_probe(int retval ) { { if (retval != 0) { { ldv_assert_linux_usb_dev__probe_failed(LDV_USB_DEV_REF_COUNTS == 0); } } else { } return; } } void ldv_initialize(void) { { LDV_USB_DEV_REF_COUNTS = 0; return; } } void ldv_check_final_state(void) { { { ldv_assert_linux_usb_dev__more_initial_at_exit(LDV_USB_DEV_REF_COUNTS == 0); } return; } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; void *ldv_malloc_unknown_size(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_usb_dev__less_initial_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__more_initial_at_exit(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__probe_failed(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_usb_dev__unincremented_counter_decrement(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }