/* Generated by CIL v. 1.5.1 */ /* print_CIL_Input is false */ typedef signed char __s8; typedef unsigned char __u8; typedef short __s16; typedef unsigned short __u16; typedef int __s32; typedef unsigned int __u32; typedef unsigned long long __u64; typedef signed char s8; typedef unsigned char u8; typedef short s16; typedef unsigned short u16; typedef int s32; typedef unsigned int u32; typedef long long s64; typedef unsigned long long u64; typedef long __kernel_long_t; typedef unsigned long __kernel_ulong_t; typedef int __kernel_pid_t; typedef unsigned int __kernel_uid32_t; typedef unsigned int __kernel_gid32_t; typedef __kernel_ulong_t __kernel_size_t; typedef __kernel_long_t __kernel_ssize_t; typedef long long __kernel_loff_t; typedef __kernel_long_t __kernel_time_t; typedef __kernel_long_t __kernel_clock_t; typedef int __kernel_timer_t; typedef int __kernel_clockid_t; typedef __u16 __be16; typedef __u32 __be32; typedef __u16 __sum16; typedef __u32 __wsum; typedef __u32 __kernel_dev_t; typedef __kernel_dev_t dev_t; typedef unsigned short umode_t; typedef __kernel_pid_t pid_t; typedef __kernel_clockid_t clockid_t; typedef _Bool bool; typedef __kernel_uid32_t uid_t; typedef __kernel_gid32_t gid_t; typedef __kernel_loff_t loff_t; typedef __kernel_size_t size_t; typedef __kernel_ssize_t ssize_t; typedef __kernel_time_t time_t; typedef __s32 int32_t; typedef __u8 uint8_t; typedef __u32 uint32_t; typedef __u64 uint64_t; typedef unsigned long sector_t; typedef unsigned long blkcnt_t; typedef u64 dma_addr_t; typedef unsigned int gfp_t; typedef unsigned int fmode_t; typedef unsigned int oom_flags_t; typedef u64 phys_addr_t; typedef phys_addr_t resource_size_t; struct __anonstruct_atomic_t_6 { int counter ; }; typedef struct __anonstruct_atomic_t_6 atomic_t; struct __anonstruct_atomic64_t_7 { long counter ; }; typedef struct __anonstruct_atomic64_t_7 atomic64_t; struct list_head { struct list_head *next ; struct list_head *prev ; }; struct hlist_node; struct hlist_head { struct hlist_node *first ; }; struct hlist_node { struct hlist_node *next ; struct hlist_node **pprev ; }; struct callback_head { struct callback_head *next ; void (*func)(struct callback_head * ) ; }; struct device; typedef u16 __ticket_t; typedef u32 __ticketpair_t; struct __raw_tickets { __ticket_t head ; __ticket_t tail ; }; union __anonunion____missing_field_name_8 { __ticketpair_t head_tail ; struct __raw_tickets tickets ; }; struct arch_spinlock { union __anonunion____missing_field_name_8 __annonCompField4 ; }; typedef struct arch_spinlock arch_spinlock_t; struct __anonstruct____missing_field_name_10 { u32 read ; s32 write ; }; union __anonunion_arch_rwlock_t_9 { s64 lock ; struct __anonstruct____missing_field_name_10 __annonCompField5 ; }; typedef union __anonunion_arch_rwlock_t_9 arch_rwlock_t; struct task_struct; struct lockdep_map; struct kernel_symbol { unsigned long value ; char const *name ; }; struct module; struct pt_regs { unsigned long r15 ; unsigned long r14 ; unsigned long r13 ; unsigned long r12 ; unsigned long bp ; unsigned long bx ; unsigned long r11 ; unsigned long r10 ; unsigned long r9 ; unsigned long r8 ; unsigned long ax ; unsigned long cx ; unsigned long dx ; unsigned long si ; unsigned long di ; unsigned long orig_ax ; unsigned long ip ; unsigned long cs ; unsigned long flags ; unsigned long sp ; unsigned long ss ; }; struct __anonstruct____missing_field_name_12 { unsigned int a ; unsigned int b ; }; struct __anonstruct____missing_field_name_13 { u16 limit0 ; u16 base0 ; unsigned int base1 : 8 ; unsigned int type : 4 ; unsigned int s : 1 ; unsigned int dpl : 2 ; unsigned int p : 1 ; unsigned int limit : 4 ; unsigned int avl : 1 ; unsigned int l : 1 ; unsigned int d : 1 ; unsigned int g : 1 ; unsigned int base2 : 8 ; }; union __anonunion____missing_field_name_11 { struct __anonstruct____missing_field_name_12 __annonCompField6 ; struct __anonstruct____missing_field_name_13 __annonCompField7 ; }; struct desc_struct { union __anonunion____missing_field_name_11 __annonCompField8 ; }; typedef unsigned long pgdval_t; typedef unsigned long pgprotval_t; struct pgprot { pgprotval_t pgprot ; }; typedef struct pgprot pgprot_t; struct __anonstruct_pgd_t_15 { pgdval_t pgd ; }; typedef struct __anonstruct_pgd_t_15 pgd_t; struct page; typedef struct page *pgtable_t; struct file; struct seq_file; struct thread_struct; struct mm_struct; struct cpumask; struct paravirt_callee_save { void *func ; }; struct pv_irq_ops { struct paravirt_callee_save save_fl ; struct paravirt_callee_save restore_fl ; struct paravirt_callee_save irq_disable ; struct paravirt_callee_save irq_enable ; void (*safe_halt)(void) ; void (*halt)(void) ; void (*adjust_exception_frame)(void) ; }; typedef void (*ctor_fn_t)(void); struct net_device; struct file_operations; struct completion; struct pid; enum system_states { SYSTEM_BOOTING = 0, SYSTEM_RUNNING = 1, SYSTEM_HALT = 2, SYSTEM_POWER_OFF = 3, SYSTEM_RESTART = 4 } ; struct kernel_vm86_regs { struct pt_regs pt ; unsigned short es ; unsigned short __esh ; unsigned short ds ; unsigned short __dsh ; unsigned short fs ; unsigned short __fsh ; unsigned short gs ; unsigned short __gsh ; }; union __anonunion____missing_field_name_18 { struct pt_regs *regs ; struct kernel_vm86_regs *vm86 ; }; struct math_emu_info { long ___orig_eip ; union __anonunion____missing_field_name_18 __annonCompField9 ; }; struct bug_entry { int bug_addr_disp ; int file_disp ; unsigned short line ; unsigned short flags ; }; struct cpumask { unsigned long bits[128U] ; }; typedef struct cpumask cpumask_t; typedef struct cpumask *cpumask_var_t; struct static_key; struct seq_operations; struct i387_fsave_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u32 status ; }; struct __anonstruct____missing_field_name_23 { u64 rip ; u64 rdp ; }; struct __anonstruct____missing_field_name_24 { u32 fip ; u32 fcs ; u32 foo ; u32 fos ; }; union __anonunion____missing_field_name_22 { struct __anonstruct____missing_field_name_23 __annonCompField13 ; struct __anonstruct____missing_field_name_24 __annonCompField14 ; }; union __anonunion____missing_field_name_25 { u32 padding1[12U] ; u32 sw_reserved[12U] ; }; struct i387_fxsave_struct { u16 cwd ; u16 swd ; u16 twd ; u16 fop ; union __anonunion____missing_field_name_22 __annonCompField15 ; u32 mxcsr ; u32 mxcsr_mask ; u32 st_space[32U] ; u32 xmm_space[64U] ; u32 padding[12U] ; union __anonunion____missing_field_name_25 __annonCompField16 ; }; struct i387_soft_struct { u32 cwd ; u32 swd ; u32 twd ; u32 fip ; u32 fcs ; u32 foo ; u32 fos ; u32 st_space[20U] ; u8 ftop ; u8 changed ; u8 lookahead ; u8 no_update ; u8 rm ; u8 alimit ; struct math_emu_info *info ; u32 entry_eip ; }; struct ymmh_struct { u32 ymmh_space[64U] ; }; struct lwp_struct { u8 reserved[128U] ; }; struct bndregs_struct { u64 bndregs[8U] ; }; struct bndcsr_struct { u64 cfg_reg_u ; u64 status_reg ; }; struct xsave_hdr_struct { u64 xstate_bv ; u64 reserved1[2U] ; u64 reserved2[5U] ; }; struct xsave_struct { struct i387_fxsave_struct i387 ; struct xsave_hdr_struct xsave_hdr ; struct ymmh_struct ymmh ; struct lwp_struct lwp ; struct bndregs_struct bndregs ; struct bndcsr_struct bndcsr ; }; union thread_xstate { struct i387_fsave_struct fsave ; struct i387_fxsave_struct fxsave ; struct i387_soft_struct soft ; struct xsave_struct xsave ; }; struct fpu { unsigned int last_cpu ; unsigned int has_fpu ; union thread_xstate *state ; }; struct kmem_cache; struct perf_event; struct thread_struct { struct desc_struct tls_array[3U] ; unsigned long sp0 ; unsigned long sp ; unsigned long usersp ; unsigned short es ; unsigned short ds ; unsigned short fsindex ; unsigned short gsindex ; unsigned long fs ; unsigned long gs ; struct perf_event *ptrace_bps[4U] ; unsigned long debugreg6 ; unsigned long ptrace_dr7 ; unsigned long cr2 ; unsigned long trap_nr ; unsigned long error_code ; struct fpu fpu ; unsigned long *io_bitmap_ptr ; unsigned long iopl ; unsigned int io_bitmap_max ; unsigned char fpu_counter ; }; typedef atomic64_t atomic_long_t; struct stack_trace { unsigned int nr_entries ; unsigned int max_entries ; unsigned long *entries ; int skip ; }; struct lockdep_subclass_key { char __one_byte ; }; struct lock_class_key { struct lockdep_subclass_key subkeys[8U] ; }; struct lock_class { struct list_head hash_entry ; struct list_head lock_entry ; struct lockdep_subclass_key *key ; unsigned int subclass ; unsigned int dep_gen_id ; unsigned long usage_mask ; struct stack_trace usage_traces[13U] ; struct list_head locks_after ; struct list_head locks_before ; unsigned int version ; unsigned long ops ; char const *name ; int name_version ; unsigned long contention_point[4U] ; unsigned long contending_point[4U] ; }; struct lockdep_map { struct lock_class_key *key ; struct lock_class *class_cache[2U] ; char const *name ; int cpu ; unsigned long ip ; }; struct held_lock { u64 prev_chain_key ; unsigned long acquire_ip ; struct lockdep_map *instance ; struct lockdep_map *nest_lock ; u64 waittime_stamp ; u64 holdtime_stamp ; unsigned int class_idx : 13 ; unsigned int irq_context : 2 ; unsigned int trylock : 1 ; unsigned int read : 2 ; unsigned int check : 2 ; unsigned int hardirqs_off : 1 ; unsigned int references : 11 ; }; struct raw_spinlock { arch_spinlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct raw_spinlock raw_spinlock_t; struct __anonstruct____missing_field_name_29 { u8 __padding[24U] ; struct lockdep_map dep_map ; }; union __anonunion____missing_field_name_28 { struct raw_spinlock rlock ; struct __anonstruct____missing_field_name_29 __annonCompField18 ; }; struct spinlock { union __anonunion____missing_field_name_28 __annonCompField19 ; }; typedef struct spinlock spinlock_t; struct __anonstruct_rwlock_t_30 { arch_rwlock_t raw_lock ; unsigned int magic ; unsigned int owner_cpu ; void *owner ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_rwlock_t_30 rwlock_t; struct ldv_thread; struct plist_head { struct list_head node_list ; }; struct plist_node { int prio ; struct list_head prio_list ; struct list_head node_list ; }; struct mutex { atomic_t count ; spinlock_t wait_lock ; struct list_head wait_list ; struct task_struct *owner ; char const *name ; void *magic ; struct lockdep_map dep_map ; }; struct mutex_waiter { struct list_head list ; struct task_struct *task ; void *magic ; }; struct timespec; typedef int pao_T__; typedef int pao_T_____0; struct jump_entry; struct static_key_mod; struct static_key { atomic_t enabled ; struct jump_entry *entries ; struct static_key_mod *next ; }; typedef u64 jump_label_t; struct jump_entry { jump_label_t code ; jump_label_t target ; jump_label_t key ; }; struct rw_semaphore; struct rw_semaphore { long count ; raw_spinlock_t wait_lock ; struct list_head wait_list ; struct lockdep_map dep_map ; }; struct seqcount { unsigned int sequence ; struct lockdep_map dep_map ; }; typedef struct seqcount seqcount_t; struct __anonstruct_seqlock_t_35 { struct seqcount seqcount ; spinlock_t lock ; }; typedef struct __anonstruct_seqlock_t_35 seqlock_t; struct __wait_queue_head { spinlock_t lock ; struct list_head task_list ; }; typedef struct __wait_queue_head wait_queue_head_t; struct completion { unsigned int done ; wait_queue_head_t wait ; }; struct notifier_block; struct timespec { __kernel_time_t tv_sec ; long tv_nsec ; }; union ktime { s64 tv64 ; }; typedef union ktime ktime_t; struct tvec_base; struct timer_list { struct list_head entry ; unsigned long expires ; struct tvec_base *base ; void (*function)(unsigned long ) ; unsigned long data ; int slack ; int start_pid ; void *start_site ; char start_comm[16U] ; struct lockdep_map lockdep_map ; }; struct hrtimer; enum hrtimer_restart; struct workqueue_struct; struct work_struct; struct work_struct { atomic_long_t data ; struct list_head entry ; void (*func)(struct work_struct * ) ; struct lockdep_map lockdep_map ; }; struct delayed_work { struct work_struct work ; struct timer_list timer ; struct workqueue_struct *wq ; int cpu ; }; struct notifier_block { int (*notifier_call)(struct notifier_block * , unsigned long , void * ) ; struct notifier_block *next ; int priority ; }; struct blocking_notifier_head { struct rw_semaphore rwsem ; struct notifier_block *head ; }; struct resource { resource_size_t start ; resource_size_t end ; char const *name ; unsigned long flags ; struct resource *parent ; struct resource *sibling ; struct resource *child ; }; struct idr_layer { int prefix ; unsigned long bitmap[4U] ; struct idr_layer *ary[256U] ; int count ; int layer ; struct callback_head callback_head ; }; struct idr { struct idr_layer *hint ; struct idr_layer *top ; struct idr_layer *id_free ; int layers ; int id_free_cnt ; int cur ; spinlock_t lock ; }; struct ida_bitmap { long nr_busy ; unsigned long bitmap[15U] ; }; struct ida { struct idr idr ; struct ida_bitmap *free_bitmap ; }; struct rb_node { unsigned long __rb_parent_color ; struct rb_node *rb_right ; struct rb_node *rb_left ; }; struct rb_root { struct rb_node *rb_node ; }; struct dentry; struct iattr; struct vm_area_struct; struct super_block; struct file_system_type; struct kernfs_open_node; struct kernfs_iattrs; struct kernfs_root; struct kernfs_elem_dir { unsigned long subdirs ; struct rb_root children ; struct kernfs_root *root ; }; struct kernfs_node; struct kernfs_elem_symlink { struct kernfs_node *target_kn ; }; struct kernfs_ops; struct kernfs_elem_attr { struct kernfs_ops const *ops ; struct kernfs_open_node *open ; loff_t size ; }; union __anonunion_u_36 { struct completion *completion ; struct kernfs_node *removed_list ; }; union __anonunion____missing_field_name_37 { struct kernfs_elem_dir dir ; struct kernfs_elem_symlink symlink ; struct kernfs_elem_attr attr ; }; struct kernfs_node { atomic_t count ; atomic_t active ; struct lockdep_map dep_map ; struct kernfs_node *parent ; char const *name ; struct rb_node rb ; union __anonunion_u_36 u ; void const *ns ; unsigned int hash ; union __anonunion____missing_field_name_37 __annonCompField21 ; void *priv ; unsigned short flags ; umode_t mode ; unsigned int ino ; struct kernfs_iattrs *iattr ; }; struct kernfs_dir_ops { int (*mkdir)(struct kernfs_node * , char const * , umode_t ) ; int (*rmdir)(struct kernfs_node * ) ; int (*rename)(struct kernfs_node * , struct kernfs_node * , char const * ) ; }; struct kernfs_root { struct kernfs_node *kn ; struct ida ino_ida ; struct kernfs_dir_ops *dir_ops ; }; struct vm_operations_struct; struct kernfs_open_file { struct kernfs_node *kn ; struct file *file ; struct mutex mutex ; int event ; struct list_head list ; bool mmapped ; struct vm_operations_struct const *vm_ops ; }; struct kernfs_ops { int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; ssize_t (*read)(struct kernfs_open_file * , char * , size_t , loff_t ) ; ssize_t (*write)(struct kernfs_open_file * , char * , size_t , loff_t ) ; int (*mmap)(struct kernfs_open_file * , struct vm_area_struct * ) ; struct lock_class_key lockdep_key ; }; struct sock; struct kobject; enum kobj_ns_type { KOBJ_NS_TYPE_NONE = 0, KOBJ_NS_TYPE_NET = 1, KOBJ_NS_TYPES = 2 } ; struct kobj_ns_type_operations { enum kobj_ns_type type ; bool (*current_may_mount)(void) ; void *(*grab_current_ns)(void) ; void const *(*netlink_ns)(struct sock * ) ; void const *(*initial_ns)(void) ; void (*drop_ns)(void * ) ; }; struct user_namespace; struct __anonstruct_kuid_t_38 { uid_t val ; }; typedef struct __anonstruct_kuid_t_38 kuid_t; struct __anonstruct_kgid_t_39 { gid_t val ; }; typedef struct __anonstruct_kgid_t_39 kgid_t; struct kstat { u64 ino ; dev_t dev ; umode_t mode ; unsigned int nlink ; kuid_t uid ; kgid_t gid ; dev_t rdev ; loff_t size ; struct timespec atime ; struct timespec mtime ; struct timespec ctime ; unsigned long blksize ; unsigned long long blocks ; }; struct bin_attribute; struct attribute { char const *name ; umode_t mode ; bool ignore_lockdep : 1 ; struct lock_class_key *key ; struct lock_class_key skey ; }; struct attribute_group { char const *name ; umode_t (*is_visible)(struct kobject * , struct attribute * , int ) ; struct attribute **attrs ; struct bin_attribute **bin_attrs ; }; struct bin_attribute { struct attribute attr ; size_t size ; void *private ; ssize_t (*read)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; ssize_t (*write)(struct file * , struct kobject * , struct bin_attribute * , char * , loff_t , size_t ) ; int (*mmap)(struct file * , struct kobject * , struct bin_attribute * , struct vm_area_struct * ) ; }; struct sysfs_ops { ssize_t (*show)(struct kobject * , struct attribute * , char * ) ; ssize_t (*store)(struct kobject * , struct attribute * , char const * , size_t ) ; }; struct kref { atomic_t refcount ; }; struct kset; struct kobj_type; struct kobject { char const *name ; struct list_head entry ; struct kobject *parent ; struct kset *kset ; struct kobj_type *ktype ; struct kernfs_node *sd ; struct kref kref ; struct delayed_work release ; unsigned int state_initialized : 1 ; unsigned int state_in_sysfs : 1 ; unsigned int state_add_uevent_sent : 1 ; unsigned int state_remove_uevent_sent : 1 ; unsigned int uevent_suppress : 1 ; }; struct kobj_type { void (*release)(struct kobject * ) ; struct sysfs_ops const *sysfs_ops ; struct attribute **default_attrs ; struct kobj_ns_type_operations const *(*child_ns_type)(struct kobject * ) ; void const *(*namespace)(struct kobject * ) ; }; struct kobj_uevent_env { char *envp[32U] ; int envp_idx ; char buf[2048U] ; int buflen ; }; struct kset_uevent_ops { int (* const filter)(struct kset * , struct kobject * ) ; char const *(* const name)(struct kset * , struct kobject * ) ; int (* const uevent)(struct kset * , struct kobject * , struct kobj_uevent_env * ) ; }; struct kset { struct list_head list ; spinlock_t list_lock ; struct kobject kobj ; struct kset_uevent_ops const *uevent_ops ; }; struct klist_node; struct klist_node { void *n_klist ; struct list_head n_node ; struct kref n_ref ; }; struct __anonstruct_nodemask_t_40 { unsigned long bits[16U] ; }; typedef struct __anonstruct_nodemask_t_40 nodemask_t; struct path; struct inode; struct seq_file { char *buf ; size_t size ; size_t from ; size_t count ; size_t pad_until ; loff_t index ; loff_t read_pos ; u64 version ; struct mutex lock ; struct seq_operations const *op ; int poll_event ; struct user_namespace *user_ns ; void *private ; }; struct seq_operations { void *(*start)(struct seq_file * , loff_t * ) ; void (*stop)(struct seq_file * , void * ) ; void *(*next)(struct seq_file * , void * , loff_t * ) ; int (*show)(struct seq_file * , void * ) ; }; struct pinctrl; struct pinctrl_state; struct dev_pin_info { struct pinctrl *p ; struct pinctrl_state *default_state ; struct pinctrl_state *sleep_state ; struct pinctrl_state *idle_state ; }; struct pm_message { int event ; }; typedef struct pm_message pm_message_t; struct dev_pm_ops { int (*prepare)(struct device * ) ; void (*complete)(struct device * ) ; int (*suspend)(struct device * ) ; int (*resume)(struct device * ) ; int (*freeze)(struct device * ) ; int (*thaw)(struct device * ) ; int (*poweroff)(struct device * ) ; int (*restore)(struct device * ) ; int (*suspend_late)(struct device * ) ; int (*resume_early)(struct device * ) ; int (*freeze_late)(struct device * ) ; int (*thaw_early)(struct device * ) ; int (*poweroff_late)(struct device * ) ; int (*restore_early)(struct device * ) ; int (*suspend_noirq)(struct device * ) ; int (*resume_noirq)(struct device * ) ; int (*freeze_noirq)(struct device * ) ; int (*thaw_noirq)(struct device * ) ; int (*poweroff_noirq)(struct device * ) ; int (*restore_noirq)(struct device * ) ; int (*runtime_suspend)(struct device * ) ; int (*runtime_resume)(struct device * ) ; int (*runtime_idle)(struct device * ) ; }; enum rpm_status { RPM_ACTIVE = 0, RPM_RESUMING = 1, RPM_SUSPENDED = 2, RPM_SUSPENDING = 3 } ; enum rpm_request { RPM_REQ_NONE = 0, RPM_REQ_IDLE = 1, RPM_REQ_SUSPEND = 2, RPM_REQ_AUTOSUSPEND = 3, RPM_REQ_RESUME = 4 } ; struct wakeup_source; struct pm_subsys_data { spinlock_t lock ; unsigned int refcount ; struct list_head clock_list ; }; struct dev_pm_qos; struct dev_pm_info { pm_message_t power_state ; unsigned int can_wakeup : 1 ; unsigned int async_suspend : 1 ; bool is_prepared : 1 ; bool is_suspended : 1 ; bool ignore_children : 1 ; bool early_init : 1 ; spinlock_t lock ; struct list_head entry ; struct completion completion ; struct wakeup_source *wakeup ; bool wakeup_path : 1 ; bool syscore : 1 ; struct timer_list suspend_timer ; unsigned long timer_expires ; struct work_struct work ; wait_queue_head_t wait_queue ; atomic_t usage_count ; atomic_t child_count ; unsigned int disable_depth : 3 ; unsigned int idle_notification : 1 ; unsigned int request_pending : 1 ; unsigned int deferred_resume : 1 ; unsigned int run_wake : 1 ; unsigned int runtime_auto : 1 ; unsigned int no_callbacks : 1 ; unsigned int irq_safe : 1 ; unsigned int use_autosuspend : 1 ; unsigned int timer_autosuspends : 1 ; unsigned int memalloc_noio : 1 ; enum rpm_request request ; enum rpm_status runtime_status ; int runtime_error ; int autosuspend_delay ; unsigned long last_busy ; unsigned long active_jiffies ; unsigned long suspended_jiffies ; unsigned long accounting_timestamp ; struct pm_subsys_data *subsys_data ; struct dev_pm_qos *qos ; }; struct dev_pm_domain { struct dev_pm_ops ops ; }; struct ctl_table; struct pci_dev; struct pci_bus; struct __anonstruct_mm_context_t_105 { void *ldt ; int size ; unsigned short ia32_compat ; struct mutex lock ; void *vdso ; }; typedef struct __anonstruct_mm_context_t_105 mm_context_t; struct device_node; struct llist_node; struct llist_node { struct llist_node *next ; }; struct dma_map_ops; struct dev_archdata { struct dma_map_ops *dma_ops ; void *iommu ; }; struct pdev_archdata { }; struct device_private; struct device_driver; struct driver_private; struct class; struct subsys_private; struct bus_type; struct iommu_ops; struct iommu_group; struct device_attribute; struct bus_type { char const *name ; char const *dev_name ; struct device *dev_root ; struct device_attribute *dev_attrs ; struct attribute_group const **bus_groups ; struct attribute_group const **dev_groups ; struct attribute_group const **drv_groups ; int (*match)(struct device * , struct device_driver * ) ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*online)(struct device * ) ; int (*offline)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct dev_pm_ops const *pm ; struct iommu_ops *iommu_ops ; struct subsys_private *p ; struct lock_class_key lock_key ; }; struct device_type; struct of_device_id; struct acpi_device_id; struct device_driver { char const *name ; struct bus_type *bus ; struct module *owner ; char const *mod_name ; bool suppress_bind_attrs ; struct of_device_id const *of_match_table ; struct acpi_device_id const *acpi_match_table ; int (*probe)(struct device * ) ; int (*remove)(struct device * ) ; void (*shutdown)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct attribute_group const **groups ; struct dev_pm_ops const *pm ; struct driver_private *p ; }; struct class_attribute; struct class { char const *name ; struct module *owner ; struct class_attribute *class_attrs ; struct attribute_group const **dev_groups ; struct kobject *dev_kobj ; int (*dev_uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * ) ; void (*class_release)(struct class * ) ; void (*dev_release)(struct device * ) ; int (*suspend)(struct device * , pm_message_t ) ; int (*resume)(struct device * ) ; struct kobj_ns_type_operations const *ns_type ; void const *(*namespace)(struct device * ) ; struct dev_pm_ops const *pm ; struct subsys_private *p ; }; struct class_attribute { struct attribute attr ; ssize_t (*show)(struct class * , struct class_attribute * , char * ) ; ssize_t (*store)(struct class * , struct class_attribute * , char const * , size_t ) ; }; struct device_type { char const *name ; struct attribute_group const **groups ; int (*uevent)(struct device * , struct kobj_uevent_env * ) ; char *(*devnode)(struct device * , umode_t * , kuid_t * , kgid_t * ) ; void (*release)(struct device * ) ; struct dev_pm_ops const *pm ; }; struct device_attribute { struct attribute attr ; ssize_t (*show)(struct device * , struct device_attribute * , char * ) ; ssize_t (*store)(struct device * , struct device_attribute * , char const * , size_t ) ; }; struct device_dma_parameters { unsigned int max_segment_size ; unsigned long segment_boundary_mask ; }; struct acpi_device; struct acpi_dev_node { struct acpi_device *companion ; }; struct dma_coherent_mem; struct device { struct device *parent ; struct device_private *p ; struct kobject kobj ; char const *init_name ; struct device_type const *type ; struct mutex mutex ; struct bus_type *bus ; struct device_driver *driver ; void *platform_data ; struct dev_pm_info power ; struct dev_pm_domain *pm_domain ; struct dev_pin_info *pins ; int numa_node ; u64 *dma_mask ; u64 coherent_dma_mask ; struct device_dma_parameters *dma_parms ; struct list_head dma_pools ; struct dma_coherent_mem *dma_mem ; struct dev_archdata archdata ; struct device_node *of_node ; struct acpi_dev_node acpi_node ; dev_t devt ; u32 id ; spinlock_t devres_lock ; struct list_head devres_head ; struct klist_node knode_class ; struct class *class ; struct attribute_group const **groups ; void (*release)(struct device * ) ; struct iommu_group *iommu_group ; bool offline_disabled : 1 ; bool offline : 1 ; }; struct wakeup_source { char const *name ; struct list_head entry ; spinlock_t lock ; struct timer_list timer ; unsigned long timer_expires ; ktime_t total_time ; ktime_t max_time ; ktime_t last_time ; ktime_t start_prevent_time ; ktime_t prevent_sleep_time ; unsigned long event_count ; unsigned long active_count ; unsigned long relax_count ; unsigned long expire_count ; unsigned long wakeup_count ; bool active : 1 ; bool autosleep_enabled : 1 ; }; struct pm_qos_request { struct plist_node node ; int pm_qos_class ; struct delayed_work work ; }; struct pm_qos_flags_request { struct list_head node ; s32 flags ; }; enum dev_pm_qos_req_type { DEV_PM_QOS_LATENCY = 1, DEV_PM_QOS_FLAGS = 2 } ; union __anonunion_data_133 { struct plist_node pnode ; struct pm_qos_flags_request flr ; }; struct dev_pm_qos_request { enum dev_pm_qos_req_type type ; union __anonunion_data_133 data ; struct device *dev ; }; enum pm_qos_type { PM_QOS_UNITIALIZED = 0, PM_QOS_MAX = 1, PM_QOS_MIN = 2 } ; struct pm_qos_constraints { struct plist_head list ; s32 target_value ; s32 default_value ; enum pm_qos_type type ; struct blocking_notifier_head *notifiers ; }; struct pm_qos_flags { struct list_head list ; s32 effective_flags ; }; struct dev_pm_qos { struct pm_qos_constraints latency ; struct pm_qos_flags flags ; struct dev_pm_qos_request *latency_req ; struct dev_pm_qos_request *flags_req ; }; struct iovec { void *iov_base ; __kernel_size_t iov_len ; }; struct arch_uprobe_task { unsigned long saved_scratch_register ; unsigned int saved_trap_nr ; unsigned int saved_tf ; }; enum uprobe_task_state { UTASK_RUNNING = 0, UTASK_SSTEP = 1, UTASK_SSTEP_ACK = 2, UTASK_SSTEP_TRAPPED = 3 } ; struct __anonstruct____missing_field_name_136 { struct arch_uprobe_task autask ; unsigned long vaddr ; }; struct __anonstruct____missing_field_name_137 { struct callback_head dup_xol_work ; unsigned long dup_xol_addr ; }; union __anonunion____missing_field_name_135 { struct __anonstruct____missing_field_name_136 __annonCompField34 ; struct __anonstruct____missing_field_name_137 __annonCompField35 ; }; struct uprobe; struct return_instance; struct uprobe_task { enum uprobe_task_state state ; union __anonunion____missing_field_name_135 __annonCompField36 ; struct uprobe *active_uprobe ; unsigned long xol_vaddr ; struct return_instance *return_instances ; unsigned int depth ; }; struct xol_area; struct uprobes_state { struct xol_area *xol_area ; }; struct address_space; union __anonunion____missing_field_name_138 { struct address_space *mapping ; void *s_mem ; }; union __anonunion____missing_field_name_140 { unsigned long index ; void *freelist ; bool pfmemalloc ; }; struct __anonstruct____missing_field_name_144 { unsigned int inuse : 16 ; unsigned int objects : 15 ; unsigned int frozen : 1 ; }; union __anonunion____missing_field_name_143 { atomic_t _mapcount ; struct __anonstruct____missing_field_name_144 __annonCompField39 ; int units ; }; struct __anonstruct____missing_field_name_142 { union __anonunion____missing_field_name_143 __annonCompField40 ; atomic_t _count ; }; union __anonunion____missing_field_name_141 { unsigned long counters ; struct __anonstruct____missing_field_name_142 __annonCompField41 ; unsigned int active ; }; struct __anonstruct____missing_field_name_139 { union __anonunion____missing_field_name_140 __annonCompField38 ; union __anonunion____missing_field_name_141 __annonCompField42 ; }; struct __anonstruct____missing_field_name_146 { struct page *next ; int pages ; int pobjects ; }; struct slab; union __anonunion____missing_field_name_145 { struct list_head lru ; struct __anonstruct____missing_field_name_146 __annonCompField44 ; struct list_head list ; struct slab *slab_page ; struct callback_head callback_head ; pgtable_t pmd_huge_pte ; }; union __anonunion____missing_field_name_147 { unsigned long private ; spinlock_t *ptl ; struct kmem_cache *slab_cache ; struct page *first_page ; }; struct page { unsigned long flags ; union __anonunion____missing_field_name_138 __annonCompField37 ; struct __anonstruct____missing_field_name_139 __annonCompField43 ; union __anonunion____missing_field_name_145 __annonCompField45 ; union __anonunion____missing_field_name_147 __annonCompField46 ; unsigned long debug_flags ; }; struct page_frag { struct page *page ; __u32 offset ; __u32 size ; }; struct __anonstruct_linear_149 { struct rb_node rb ; unsigned long rb_subtree_last ; }; union __anonunion_shared_148 { struct __anonstruct_linear_149 linear ; struct list_head nonlinear ; }; struct anon_vma; struct mempolicy; struct vm_area_struct { unsigned long vm_start ; unsigned long vm_end ; struct vm_area_struct *vm_next ; struct vm_area_struct *vm_prev ; struct rb_node vm_rb ; unsigned long rb_subtree_gap ; struct mm_struct *vm_mm ; pgprot_t vm_page_prot ; unsigned long vm_flags ; union __anonunion_shared_148 shared ; struct list_head anon_vma_chain ; struct anon_vma *anon_vma ; struct vm_operations_struct const *vm_ops ; unsigned long vm_pgoff ; struct file *vm_file ; void *vm_private_data ; struct mempolicy *vm_policy ; }; struct core_thread { struct task_struct *task ; struct core_thread *next ; }; struct core_state { atomic_t nr_threads ; struct core_thread dumper ; struct completion startup ; }; struct task_rss_stat { int events ; int count[3U] ; }; struct mm_rss_stat { atomic_long_t count[3U] ; }; struct kioctx_table; struct linux_binfmt; struct mmu_notifier_mm; struct mm_struct { struct vm_area_struct *mmap ; struct rb_root mm_rb ; struct vm_area_struct *mmap_cache ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; unsigned long mmap_base ; unsigned long mmap_legacy_base ; unsigned long task_size ; unsigned long highest_vm_end ; pgd_t *pgd ; atomic_t mm_users ; atomic_t mm_count ; atomic_long_t nr_ptes ; int map_count ; spinlock_t page_table_lock ; struct rw_semaphore mmap_sem ; struct list_head mmlist ; unsigned long hiwater_rss ; unsigned long hiwater_vm ; unsigned long total_vm ; unsigned long locked_vm ; unsigned long pinned_vm ; unsigned long shared_vm ; unsigned long exec_vm ; unsigned long stack_vm ; unsigned long def_flags ; unsigned long start_code ; unsigned long end_code ; unsigned long start_data ; unsigned long end_data ; unsigned long start_brk ; unsigned long brk ; unsigned long start_stack ; unsigned long arg_start ; unsigned long arg_end ; unsigned long env_start ; unsigned long env_end ; unsigned long saved_auxv[46U] ; struct mm_rss_stat rss_stat ; struct linux_binfmt *binfmt ; cpumask_var_t cpu_vm_mask_var ; mm_context_t context ; unsigned long flags ; struct core_state *core_state ; spinlock_t ioctx_lock ; struct kioctx_table *ioctx_table ; struct task_struct *owner ; struct file *exe_file ; struct mmu_notifier_mm *mmu_notifier_mm ; struct cpumask cpumask_allocation ; unsigned long numa_next_scan ; unsigned long numa_scan_offset ; int numa_scan_seq ; bool tlb_flush_pending ; struct uprobes_state uprobes_state ; }; struct shrink_control { gfp_t gfp_mask ; unsigned long nr_to_scan ; nodemask_t nodes_to_scan ; int nid ; }; struct shrinker { unsigned long (*count_objects)(struct shrinker * , struct shrink_control * ) ; unsigned long (*scan_objects)(struct shrinker * , struct shrink_control * ) ; int seeks ; long batch ; unsigned long flags ; struct list_head list ; atomic_long_t *nr_deferred ; }; struct file_ra_state; struct user_struct; struct writeback_control; struct vm_fault { unsigned int flags ; unsigned long pgoff ; void *virtual_address ; struct page *page ; }; struct vm_operations_struct { void (*open)(struct vm_area_struct * ) ; void (*close)(struct vm_area_struct * ) ; int (*fault)(struct vm_area_struct * , struct vm_fault * ) ; int (*page_mkwrite)(struct vm_area_struct * , struct vm_fault * ) ; int (*access)(struct vm_area_struct * , unsigned long , void * , int , int ) ; int (*set_policy)(struct vm_area_struct * , struct mempolicy * ) ; struct mempolicy *(*get_policy)(struct vm_area_struct * , unsigned long ) ; int (*migrate)(struct vm_area_struct * , nodemask_t const * , nodemask_t const * , unsigned long ) ; int (*remap_pages)(struct vm_area_struct * , unsigned long , unsigned long , unsigned long ) ; }; struct scatterlist { unsigned long sg_magic ; unsigned long page_link ; unsigned int offset ; unsigned int length ; dma_addr_t dma_address ; unsigned int dma_length ; }; struct sg_table { struct scatterlist *sgl ; unsigned int nents ; unsigned int orig_nents ; }; typedef s32 dma_cookie_t; struct dql { unsigned int num_queued ; unsigned int adj_limit ; unsigned int last_obj_cnt ; unsigned int limit ; unsigned int num_completed ; unsigned int prev_ovlimit ; unsigned int prev_num_queued ; unsigned int prev_last_obj_cnt ; unsigned int lowest_slack ; unsigned long slack_start_time ; unsigned int max_limit ; unsigned int min_limit ; unsigned int slack_hold_time ; }; struct sem_undo_list; struct sysv_sem { struct sem_undo_list *undo_list ; }; typedef unsigned short __kernel_sa_family_t; struct cred; typedef __kernel_sa_family_t sa_family_t; struct sockaddr { sa_family_t sa_family ; char sa_data[14U] ; }; struct msghdr { void *msg_name ; int msg_namelen ; struct iovec *msg_iov ; __kernel_size_t msg_iovlen ; void *msg_control ; __kernel_size_t msg_controllen ; unsigned int msg_flags ; }; struct __anonstruct_sync_serial_settings_151 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; }; typedef struct __anonstruct_sync_serial_settings_151 sync_serial_settings; struct __anonstruct_te1_settings_152 { unsigned int clock_rate ; unsigned int clock_type ; unsigned short loopback ; unsigned int slot_map ; }; typedef struct __anonstruct_te1_settings_152 te1_settings; struct __anonstruct_raw_hdlc_proto_153 { unsigned short encoding ; unsigned short parity ; }; typedef struct __anonstruct_raw_hdlc_proto_153 raw_hdlc_proto; struct __anonstruct_fr_proto_154 { unsigned int t391 ; unsigned int t392 ; unsigned int n391 ; unsigned int n392 ; unsigned int n393 ; unsigned short lmi ; unsigned short dce ; }; typedef struct __anonstruct_fr_proto_154 fr_proto; struct __anonstruct_fr_proto_pvc_155 { unsigned int dlci ; }; typedef struct __anonstruct_fr_proto_pvc_155 fr_proto_pvc; struct __anonstruct_fr_proto_pvc_info_156 { unsigned int dlci ; char master[16U] ; }; typedef struct __anonstruct_fr_proto_pvc_info_156 fr_proto_pvc_info; struct __anonstruct_cisco_proto_157 { unsigned int interval ; unsigned int timeout ; }; typedef struct __anonstruct_cisco_proto_157 cisco_proto; struct ifmap { unsigned long mem_start ; unsigned long mem_end ; unsigned short base_addr ; unsigned char irq ; unsigned char dma ; unsigned char port ; }; union __anonunion_ifs_ifsu_158 { raw_hdlc_proto *raw_hdlc ; cisco_proto *cisco ; fr_proto *fr ; fr_proto_pvc *fr_pvc ; fr_proto_pvc_info *fr_pvc_info ; sync_serial_settings *sync ; te1_settings *te1 ; }; struct if_settings { unsigned int type ; unsigned int size ; union __anonunion_ifs_ifsu_158 ifs_ifsu ; }; union __anonunion_ifr_ifrn_159 { char ifrn_name[16U] ; }; union __anonunion_ifr_ifru_160 { struct sockaddr ifru_addr ; struct sockaddr ifru_dstaddr ; struct sockaddr ifru_broadaddr ; struct sockaddr ifru_netmask ; struct sockaddr ifru_hwaddr ; short ifru_flags ; int ifru_ivalue ; int ifru_mtu ; struct ifmap ifru_map ; char ifru_slave[16U] ; char ifru_newname[16U] ; void *ifru_data ; struct if_settings ifru_settings ; }; struct ifreq { union __anonunion_ifr_ifrn_159 ifr_ifrn ; union __anonunion_ifr_ifru_160 ifr_ifru ; }; struct hlist_bl_node; struct hlist_bl_head { struct hlist_bl_node *first ; }; struct hlist_bl_node { struct hlist_bl_node *next ; struct hlist_bl_node **pprev ; }; struct __anonstruct____missing_field_name_163 { spinlock_t lock ; unsigned int count ; }; union __anonunion____missing_field_name_162 { struct __anonstruct____missing_field_name_163 __annonCompField47 ; }; struct lockref { union __anonunion____missing_field_name_162 __annonCompField48 ; }; struct nameidata; struct vfsmount; struct __anonstruct____missing_field_name_165 { u32 hash ; u32 len ; }; union __anonunion____missing_field_name_164 { struct __anonstruct____missing_field_name_165 __annonCompField49 ; u64 hash_len ; }; struct qstr { union __anonunion____missing_field_name_164 __annonCompField50 ; unsigned char const *name ; }; struct dentry_operations; union __anonunion_d_u_166 { struct list_head d_child ; struct callback_head d_rcu ; }; struct dentry { unsigned int d_flags ; seqcount_t d_seq ; struct hlist_bl_node d_hash ; struct dentry *d_parent ; struct qstr d_name ; struct inode *d_inode ; unsigned char d_iname[32U] ; struct lockref d_lockref ; struct dentry_operations const *d_op ; struct super_block *d_sb ; unsigned long d_time ; void *d_fsdata ; struct list_head d_lru ; union __anonunion_d_u_166 d_u ; struct list_head d_subdirs ; struct hlist_node d_alias ; }; struct dentry_operations { int (*d_revalidate)(struct dentry * , unsigned int ) ; int (*d_weak_revalidate)(struct dentry * , unsigned int ) ; int (*d_hash)(struct dentry const * , struct qstr * ) ; int (*d_compare)(struct dentry const * , struct dentry const * , unsigned int , char const * , struct qstr const * ) ; int (*d_delete)(struct dentry const * ) ; void (*d_release)(struct dentry * ) ; void (*d_prune)(struct dentry * ) ; void (*d_iput)(struct dentry * , struct inode * ) ; char *(*d_dname)(struct dentry * , char * , int ) ; struct vfsmount *(*d_automount)(struct path * ) ; int (*d_manage)(struct dentry * , bool ) ; }; struct path { struct vfsmount *mnt ; struct dentry *dentry ; }; struct list_lru_node { spinlock_t lock ; struct list_head list ; long nr_items ; }; struct list_lru { struct list_lru_node *node ; nodemask_t active_nodes ; }; struct radix_tree_node; struct radix_tree_root { unsigned int height ; gfp_t gfp_mask ; struct radix_tree_node *rnode ; }; enum pid_type { PIDTYPE_PID = 0, PIDTYPE_PGID = 1, PIDTYPE_SID = 2, PIDTYPE_MAX = 3 } ; struct pid_namespace; struct upid { int nr ; struct pid_namespace *ns ; struct hlist_node pid_chain ; }; struct pid { atomic_t count ; unsigned int level ; struct hlist_head tasks[3U] ; struct callback_head rcu ; struct upid numbers[1U] ; }; struct pid_link { struct hlist_node node ; struct pid *pid ; }; struct kernel_cap_struct { __u32 cap[2U] ; }; typedef struct kernel_cap_struct kernel_cap_t; struct fiemap_extent { __u64 fe_logical ; __u64 fe_physical ; __u64 fe_length ; __u64 fe_reserved64[2U] ; __u32 fe_flags ; __u32 fe_reserved[3U] ; }; enum migrate_mode { MIGRATE_ASYNC = 0, MIGRATE_SYNC_LIGHT = 1, MIGRATE_SYNC = 2 } ; struct block_device; struct io_context; struct cgroup_subsys_state; struct export_operations; struct kiocb; struct pipe_inode_info; struct poll_table_struct; struct kstatfs; struct swap_info_struct; struct iattr { unsigned int ia_valid ; umode_t ia_mode ; kuid_t ia_uid ; kgid_t ia_gid ; loff_t ia_size ; struct timespec ia_atime ; struct timespec ia_mtime ; struct timespec ia_ctime ; struct file *ia_file ; }; struct percpu_counter { raw_spinlock_t lock ; s64 count ; struct list_head list ; s32 *counters ; }; struct fs_disk_quota { __s8 d_version ; __s8 d_flags ; __u16 d_fieldmask ; __u32 d_id ; __u64 d_blk_hardlimit ; __u64 d_blk_softlimit ; __u64 d_ino_hardlimit ; __u64 d_ino_softlimit ; __u64 d_bcount ; __u64 d_icount ; __s32 d_itimer ; __s32 d_btimer ; __u16 d_iwarns ; __u16 d_bwarns ; __s32 d_padding2 ; __u64 d_rtb_hardlimit ; __u64 d_rtb_softlimit ; __u64 d_rtbcount ; __s32 d_rtbtimer ; __u16 d_rtbwarns ; __s16 d_padding3 ; char d_padding4[8U] ; }; struct fs_qfilestat { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; }; typedef struct fs_qfilestat fs_qfilestat_t; struct fs_quota_stat { __s8 qs_version ; __u16 qs_flags ; __s8 qs_pad ; fs_qfilestat_t qs_uquota ; fs_qfilestat_t qs_gquota ; __u32 qs_incoredqs ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; }; struct fs_qfilestatv { __u64 qfs_ino ; __u64 qfs_nblks ; __u32 qfs_nextents ; __u32 qfs_pad ; }; struct fs_quota_statv { __s8 qs_version ; __u8 qs_pad1 ; __u16 qs_flags ; __u32 qs_incoredqs ; struct fs_qfilestatv qs_uquota ; struct fs_qfilestatv qs_gquota ; struct fs_qfilestatv qs_pquota ; __s32 qs_btimelimit ; __s32 qs_itimelimit ; __s32 qs_rtbtimelimit ; __u16 qs_bwarnlimit ; __u16 qs_iwarnlimit ; __u64 qs_pad2[8U] ; }; struct dquot; typedef __kernel_uid32_t projid_t; struct __anonstruct_kprojid_t_168 { projid_t val ; }; typedef struct __anonstruct_kprojid_t_168 kprojid_t; struct if_dqinfo { __u64 dqi_bgrace ; __u64 dqi_igrace ; __u32 dqi_flags ; __u32 dqi_valid ; }; enum quota_type { USRQUOTA = 0, GRPQUOTA = 1, PRJQUOTA = 2 } ; typedef long long qsize_t; union __anonunion____missing_field_name_169 { kuid_t uid ; kgid_t gid ; kprojid_t projid ; }; struct kqid { union __anonunion____missing_field_name_169 __annonCompField51 ; enum quota_type type ; }; struct mem_dqblk { qsize_t dqb_bhardlimit ; qsize_t dqb_bsoftlimit ; qsize_t dqb_curspace ; qsize_t dqb_rsvspace ; qsize_t dqb_ihardlimit ; qsize_t dqb_isoftlimit ; qsize_t dqb_curinodes ; time_t dqb_btime ; time_t dqb_itime ; }; struct quota_format_type; struct mem_dqinfo { struct quota_format_type *dqi_format ; int dqi_fmt_id ; struct list_head dqi_dirty_list ; unsigned long dqi_flags ; unsigned int dqi_bgrace ; unsigned int dqi_igrace ; qsize_t dqi_maxblimit ; qsize_t dqi_maxilimit ; void *dqi_priv ; }; struct dquot { struct hlist_node dq_hash ; struct list_head dq_inuse ; struct list_head dq_free ; struct list_head dq_dirty ; struct mutex dq_lock ; atomic_t dq_count ; wait_queue_head_t dq_wait_unused ; struct super_block *dq_sb ; struct kqid dq_id ; loff_t dq_off ; unsigned long dq_flags ; struct mem_dqblk dq_dqb ; }; struct quota_format_ops { int (*check_quota_file)(struct super_block * , int ) ; int (*read_file_info)(struct super_block * , int ) ; int (*write_file_info)(struct super_block * , int ) ; int (*free_file_info)(struct super_block * , int ) ; int (*read_dqblk)(struct dquot * ) ; int (*commit_dqblk)(struct dquot * ) ; int (*release_dqblk)(struct dquot * ) ; }; struct dquot_operations { int (*write_dquot)(struct dquot * ) ; struct dquot *(*alloc_dquot)(struct super_block * , int ) ; void (*destroy_dquot)(struct dquot * ) ; int (*acquire_dquot)(struct dquot * ) ; int (*release_dquot)(struct dquot * ) ; int (*mark_dirty)(struct dquot * ) ; int (*write_info)(struct super_block * , int ) ; qsize_t *(*get_reserved_space)(struct inode * ) ; }; struct quotactl_ops { int (*quota_on)(struct super_block * , int , int , struct path * ) ; int (*quota_on_meta)(struct super_block * , int , int ) ; int (*quota_off)(struct super_block * , int ) ; int (*quota_sync)(struct super_block * , int ) ; int (*get_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*set_info)(struct super_block * , int , struct if_dqinfo * ) ; int (*get_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*set_dqblk)(struct super_block * , struct kqid , struct fs_disk_quota * ) ; int (*get_xstate)(struct super_block * , struct fs_quota_stat * ) ; int (*set_xstate)(struct super_block * , unsigned int , int ) ; int (*get_xstatev)(struct super_block * , struct fs_quota_statv * ) ; }; struct quota_format_type { int qf_fmt_id ; struct quota_format_ops const *qf_ops ; struct module *qf_owner ; struct quota_format_type *qf_next ; }; struct quota_info { unsigned int flags ; struct mutex dqio_mutex ; struct mutex dqonoff_mutex ; struct rw_semaphore dqptr_sem ; struct inode *files[2U] ; struct mem_dqinfo info[2U] ; struct quota_format_ops const *ops[2U] ; }; union __anonunion_arg_171 { char *buf ; void *data ; }; struct __anonstruct_read_descriptor_t_170 { size_t written ; size_t count ; union __anonunion_arg_171 arg ; int error ; }; typedef struct __anonstruct_read_descriptor_t_170 read_descriptor_t; struct address_space_operations { int (*writepage)(struct page * , struct writeback_control * ) ; int (*readpage)(struct file * , struct page * ) ; int (*writepages)(struct address_space * , struct writeback_control * ) ; int (*set_page_dirty)(struct page * ) ; int (*readpages)(struct file * , struct address_space * , struct list_head * , unsigned int ) ; int (*write_begin)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page ** , void ** ) ; int (*write_end)(struct file * , struct address_space * , loff_t , unsigned int , unsigned int , struct page * , void * ) ; sector_t (*bmap)(struct address_space * , sector_t ) ; void (*invalidatepage)(struct page * , unsigned int , unsigned int ) ; int (*releasepage)(struct page * , gfp_t ) ; void (*freepage)(struct page * ) ; ssize_t (*direct_IO)(int , struct kiocb * , struct iovec const * , loff_t , unsigned long ) ; int (*get_xip_mem)(struct address_space * , unsigned long , int , void ** , unsigned long * ) ; int (*migratepage)(struct address_space * , struct page * , struct page * , enum migrate_mode ) ; int (*launder_page)(struct page * ) ; int (*is_partially_uptodate)(struct page * , read_descriptor_t * , unsigned long ) ; void (*is_dirty_writeback)(struct page * , bool * , bool * ) ; int (*error_remove_page)(struct address_space * , struct page * ) ; int (*swap_activate)(struct swap_info_struct * , struct file * , sector_t * ) ; void (*swap_deactivate)(struct file * ) ; }; struct backing_dev_info; struct address_space { struct inode *host ; struct radix_tree_root page_tree ; spinlock_t tree_lock ; unsigned int i_mmap_writable ; struct rb_root i_mmap ; struct list_head i_mmap_nonlinear ; struct mutex i_mmap_mutex ; unsigned long nrpages ; unsigned long writeback_index ; struct address_space_operations const *a_ops ; unsigned long flags ; struct backing_dev_info *backing_dev_info ; spinlock_t private_lock ; struct list_head private_list ; void *private_data ; }; struct request_queue; struct hd_struct; struct gendisk; struct block_device { dev_t bd_dev ; int bd_openers ; struct inode *bd_inode ; struct super_block *bd_super ; struct mutex bd_mutex ; struct list_head bd_inodes ; void *bd_claiming ; void *bd_holder ; int bd_holders ; bool bd_write_holder ; struct list_head bd_holder_disks ; struct block_device *bd_contains ; unsigned int bd_block_size ; struct hd_struct *bd_part ; unsigned int bd_part_count ; int bd_invalidated ; struct gendisk *bd_disk ; struct request_queue *bd_queue ; struct list_head bd_list ; unsigned long bd_private ; int bd_fsfreeze_count ; struct mutex bd_fsfreeze_mutex ; }; struct posix_acl; struct inode_operations; union __anonunion____missing_field_name_172 { unsigned int const i_nlink ; unsigned int __i_nlink ; }; union __anonunion____missing_field_name_173 { struct hlist_head i_dentry ; struct callback_head i_rcu ; }; struct file_lock; struct cdev; union __anonunion____missing_field_name_174 { struct pipe_inode_info *i_pipe ; struct block_device *i_bdev ; struct cdev *i_cdev ; }; struct inode { umode_t i_mode ; unsigned short i_opflags ; kuid_t i_uid ; kgid_t i_gid ; unsigned int i_flags ; struct posix_acl *i_acl ; struct posix_acl *i_default_acl ; struct inode_operations const *i_op ; struct super_block *i_sb ; struct address_space *i_mapping ; void *i_security ; unsigned long i_ino ; union __anonunion____missing_field_name_172 __annonCompField52 ; dev_t i_rdev ; loff_t i_size ; struct timespec i_atime ; struct timespec i_mtime ; struct timespec i_ctime ; spinlock_t i_lock ; unsigned short i_bytes ; unsigned int i_blkbits ; blkcnt_t i_blocks ; unsigned long i_state ; struct mutex i_mutex ; unsigned long dirtied_when ; struct hlist_node i_hash ; struct list_head i_wb_list ; struct list_head i_lru ; struct list_head i_sb_list ; union __anonunion____missing_field_name_173 __annonCompField53 ; u64 i_version ; atomic_t i_count ; atomic_t i_dio_count ; atomic_t i_writecount ; struct file_operations const *i_fop ; struct file_lock *i_flock ; struct address_space i_data ; struct dquot *i_dquot[2U] ; struct list_head i_devices ; union __anonunion____missing_field_name_174 __annonCompField54 ; __u32 i_generation ; __u32 i_fsnotify_mask ; struct hlist_head i_fsnotify_marks ; atomic_t i_readcount ; void *i_private ; }; struct fown_struct { rwlock_t lock ; struct pid *pid ; enum pid_type pid_type ; kuid_t uid ; kuid_t euid ; int signum ; }; struct file_ra_state { unsigned long start ; unsigned int size ; unsigned int async_size ; unsigned int ra_pages ; unsigned int mmap_miss ; loff_t prev_pos ; }; union __anonunion_f_u_175 { struct llist_node fu_llist ; struct callback_head fu_rcuhead ; }; struct file { union __anonunion_f_u_175 f_u ; struct path f_path ; struct inode *f_inode ; struct file_operations const *f_op ; spinlock_t f_lock ; atomic_long_t f_count ; unsigned int f_flags ; fmode_t f_mode ; struct mutex f_pos_lock ; loff_t f_pos ; struct fown_struct f_owner ; struct cred const *f_cred ; struct file_ra_state f_ra ; u64 f_version ; void *f_security ; void *private_data ; struct list_head f_ep_links ; struct list_head f_tfile_llink ; struct address_space *f_mapping ; unsigned long f_mnt_write_state ; }; struct files_struct; typedef struct files_struct *fl_owner_t; struct file_lock_operations { void (*fl_copy_lock)(struct file_lock * , struct file_lock * ) ; void (*fl_release_private)(struct file_lock * ) ; }; struct lock_manager_operations { int (*lm_compare_owner)(struct file_lock * , struct file_lock * ) ; unsigned long (*lm_owner_key)(struct file_lock * ) ; void (*lm_notify)(struct file_lock * ) ; int (*lm_grant)(struct file_lock * , struct file_lock * , int ) ; void (*lm_break)(struct file_lock * ) ; int (*lm_change)(struct file_lock ** , int ) ; }; struct net; struct nlm_lockowner; struct nfs_lock_info { u32 state ; struct nlm_lockowner *owner ; struct list_head list ; }; struct nfs4_lock_state; struct nfs4_lock_info { struct nfs4_lock_state *owner ; }; struct fasync_struct; struct __anonstruct_afs_177 { struct list_head link ; int state ; }; union __anonunion_fl_u_176 { struct nfs_lock_info nfs_fl ; struct nfs4_lock_info nfs4_fl ; struct __anonstruct_afs_177 afs ; }; struct file_lock { struct file_lock *fl_next ; struct hlist_node fl_link ; struct list_head fl_block ; fl_owner_t fl_owner ; unsigned int fl_flags ; unsigned char fl_type ; unsigned int fl_pid ; int fl_link_cpu ; struct pid *fl_nspid ; wait_queue_head_t fl_wait ; struct file *fl_file ; loff_t fl_start ; loff_t fl_end ; struct fasync_struct *fl_fasync ; unsigned long fl_break_time ; unsigned long fl_downgrade_time ; struct file_lock_operations const *fl_ops ; struct lock_manager_operations const *fl_lmops ; union __anonunion_fl_u_176 fl_u ; }; struct fasync_struct { spinlock_t fa_lock ; int magic ; int fa_fd ; struct fasync_struct *fa_next ; struct file *fa_file ; struct callback_head fa_rcu ; }; struct sb_writers { struct percpu_counter counter[3U] ; wait_queue_head_t wait ; int frozen ; wait_queue_head_t wait_unfrozen ; struct lockdep_map lock_map[3U] ; }; struct super_operations; struct xattr_handler; struct mtd_info; struct super_block { struct list_head s_list ; dev_t s_dev ; unsigned char s_blocksize_bits ; unsigned long s_blocksize ; loff_t s_maxbytes ; struct file_system_type *s_type ; struct super_operations const *s_op ; struct dquot_operations const *dq_op ; struct quotactl_ops const *s_qcop ; struct export_operations const *s_export_op ; unsigned long s_flags ; unsigned long s_magic ; struct dentry *s_root ; struct rw_semaphore s_umount ; int s_count ; atomic_t s_active ; void *s_security ; struct xattr_handler const **s_xattr ; struct list_head s_inodes ; struct hlist_bl_head s_anon ; struct list_head s_mounts ; struct block_device *s_bdev ; struct backing_dev_info *s_bdi ; struct mtd_info *s_mtd ; struct hlist_node s_instances ; struct quota_info s_dquot ; struct sb_writers s_writers ; char s_id[32U] ; u8 s_uuid[16U] ; void *s_fs_info ; unsigned int s_max_links ; fmode_t s_mode ; u32 s_time_gran ; struct mutex s_vfs_rename_mutex ; char *s_subtype ; char *s_options ; struct dentry_operations const *s_d_op ; int cleancache_poolid ; struct shrinker s_shrink ; atomic_long_t s_remove_count ; int s_readonly_remount ; struct workqueue_struct *s_dio_done_wq ; struct list_lru s_dentry_lru ; struct list_lru s_inode_lru ; struct callback_head rcu ; }; struct fiemap_extent_info { unsigned int fi_flags ; unsigned int fi_extents_mapped ; unsigned int fi_extents_max ; struct fiemap_extent *fi_extents_start ; }; struct dir_context { int (*actor)(void * , char const * , int , loff_t , u64 , unsigned int ) ; loff_t pos ; }; struct file_operations { struct module *owner ; loff_t (*llseek)(struct file * , loff_t , int ) ; ssize_t (*read)(struct file * , char * , size_t , loff_t * ) ; ssize_t (*write)(struct file * , char const * , size_t , loff_t * ) ; ssize_t (*aio_read)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; ssize_t (*aio_write)(struct kiocb * , struct iovec const * , unsigned long , loff_t ) ; int (*iterate)(struct file * , struct dir_context * ) ; unsigned int (*poll)(struct file * , struct poll_table_struct * ) ; long (*unlocked_ioctl)(struct file * , unsigned int , unsigned long ) ; long (*compat_ioctl)(struct file * , unsigned int , unsigned long ) ; int (*mmap)(struct file * , struct vm_area_struct * ) ; int (*open)(struct inode * , struct file * ) ; int (*flush)(struct file * , fl_owner_t ) ; int (*release)(struct inode * , struct file * ) ; int (*fsync)(struct file * , loff_t , loff_t , int ) ; int (*aio_fsync)(struct kiocb * , int ) ; int (*fasync)(int , struct file * , int ) ; int (*lock)(struct file * , int , struct file_lock * ) ; ssize_t (*sendpage)(struct file * , struct page * , int , size_t , loff_t * , int ) ; unsigned long (*get_unmapped_area)(struct file * , unsigned long , unsigned long , unsigned long , unsigned long ) ; int (*check_flags)(int ) ; int (*flock)(struct file * , int , struct file_lock * ) ; ssize_t (*splice_write)(struct pipe_inode_info * , struct file * , loff_t * , size_t , unsigned int ) ; ssize_t (*splice_read)(struct file * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*setlease)(struct file * , long , struct file_lock ** ) ; long (*fallocate)(struct file * , int , loff_t , loff_t ) ; int (*show_fdinfo)(struct seq_file * , struct file * ) ; }; struct inode_operations { struct dentry *(*lookup)(struct inode * , struct dentry * , unsigned int ) ; void *(*follow_link)(struct dentry * , struct nameidata * ) ; int (*permission)(struct inode * , int ) ; struct posix_acl *(*get_acl)(struct inode * , int ) ; int (*readlink)(struct dentry * , char * , int ) ; void (*put_link)(struct dentry * , struct nameidata * , void * ) ; int (*create)(struct inode * , struct dentry * , umode_t , bool ) ; int (*link)(struct dentry * , struct inode * , struct dentry * ) ; int (*unlink)(struct inode * , struct dentry * ) ; int (*symlink)(struct inode * , struct dentry * , char const * ) ; int (*mkdir)(struct inode * , struct dentry * , umode_t ) ; int (*rmdir)(struct inode * , struct dentry * ) ; int (*mknod)(struct inode * , struct dentry * , umode_t , dev_t ) ; int (*rename)(struct inode * , struct dentry * , struct inode * , struct dentry * ) ; int (*setattr)(struct dentry * , struct iattr * ) ; int (*getattr)(struct vfsmount * , struct dentry * , struct kstat * ) ; int (*setxattr)(struct dentry * , char const * , void const * , size_t , int ) ; ssize_t (*getxattr)(struct dentry * , char const * , void * , size_t ) ; ssize_t (*listxattr)(struct dentry * , char * , size_t ) ; int (*removexattr)(struct dentry * , char const * ) ; int (*fiemap)(struct inode * , struct fiemap_extent_info * , u64 , u64 ) ; int (*update_time)(struct inode * , struct timespec * , int ) ; int (*atomic_open)(struct inode * , struct dentry * , struct file * , unsigned int , umode_t , int * ) ; int (*tmpfile)(struct inode * , struct dentry * , umode_t ) ; int (*set_acl)(struct inode * , struct posix_acl * , int ) ; }; struct super_operations { struct inode *(*alloc_inode)(struct super_block * ) ; void (*destroy_inode)(struct inode * ) ; void (*dirty_inode)(struct inode * , int ) ; int (*write_inode)(struct inode * , struct writeback_control * ) ; int (*drop_inode)(struct inode * ) ; void (*evict_inode)(struct inode * ) ; void (*put_super)(struct super_block * ) ; int (*sync_fs)(struct super_block * , int ) ; int (*freeze_fs)(struct super_block * ) ; int (*unfreeze_fs)(struct super_block * ) ; int (*statfs)(struct dentry * , struct kstatfs * ) ; int (*remount_fs)(struct super_block * , int * , char * ) ; void (*umount_begin)(struct super_block * ) ; int (*show_options)(struct seq_file * , struct dentry * ) ; int (*show_devname)(struct seq_file * , struct dentry * ) ; int (*show_path)(struct seq_file * , struct dentry * ) ; int (*show_stats)(struct seq_file * , struct dentry * ) ; ssize_t (*quota_read)(struct super_block * , int , char * , size_t , loff_t ) ; ssize_t (*quota_write)(struct super_block * , int , char const * , size_t , loff_t ) ; int (*bdev_try_to_free_page)(struct super_block * , struct page * , gfp_t ) ; long (*nr_cached_objects)(struct super_block * , int ) ; long (*free_cached_objects)(struct super_block * , long , int ) ; }; struct file_system_type { char const *name ; int fs_flags ; struct dentry *(*mount)(struct file_system_type * , int , char const * , void * ) ; void (*kill_sb)(struct super_block * ) ; struct module *owner ; struct file_system_type *next ; struct hlist_head fs_supers ; struct lock_class_key s_lock_key ; struct lock_class_key s_umount_key ; struct lock_class_key s_vfs_rename_key ; struct lock_class_key s_writers_key[3U] ; struct lock_class_key i_lock_key ; struct lock_class_key i_mutex_key ; struct lock_class_key i_mutex_dir_key ; }; typedef unsigned long cputime_t; struct __anonstruct_sigset_t_178 { unsigned long sig[1U] ; }; typedef struct __anonstruct_sigset_t_178 sigset_t; struct siginfo; typedef void __signalfn_t(int ); typedef __signalfn_t *__sighandler_t; typedef void __restorefn_t(void); typedef __restorefn_t *__sigrestore_t; union sigval { int sival_int ; void *sival_ptr ; }; typedef union sigval sigval_t; struct __anonstruct__kill_180 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; }; struct __anonstruct__timer_181 { __kernel_timer_t _tid ; int _overrun ; char _pad[0U] ; sigval_t _sigval ; int _sys_private ; }; struct __anonstruct__rt_182 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; sigval_t _sigval ; }; struct __anonstruct__sigchld_183 { __kernel_pid_t _pid ; __kernel_uid32_t _uid ; int _status ; __kernel_clock_t _utime ; __kernel_clock_t _stime ; }; struct __anonstruct__sigfault_184 { void *_addr ; short _addr_lsb ; }; struct __anonstruct__sigpoll_185 { long _band ; int _fd ; }; struct __anonstruct__sigsys_186 { void *_call_addr ; int _syscall ; unsigned int _arch ; }; union __anonunion__sifields_179 { int _pad[28U] ; struct __anonstruct__kill_180 _kill ; struct __anonstruct__timer_181 _timer ; struct __anonstruct__rt_182 _rt ; struct __anonstruct__sigchld_183 _sigchld ; struct __anonstruct__sigfault_184 _sigfault ; struct __anonstruct__sigpoll_185 _sigpoll ; struct __anonstruct__sigsys_186 _sigsys ; }; struct siginfo { int si_signo ; int si_errno ; int si_code ; union __anonunion__sifields_179 _sifields ; }; typedef struct siginfo siginfo_t; struct sigpending { struct list_head list ; sigset_t signal ; }; struct sigaction { __sighandler_t sa_handler ; unsigned long sa_flags ; __sigrestore_t sa_restorer ; sigset_t sa_mask ; }; struct k_sigaction { struct sigaction sa ; }; struct seccomp_filter; struct seccomp { int mode ; struct seccomp_filter *filter ; }; struct rt_mutex_waiter; struct rlimit { __kernel_ulong_t rlim_cur ; __kernel_ulong_t rlim_max ; }; struct timerqueue_node { struct rb_node node ; ktime_t expires ; }; struct timerqueue_head { struct rb_root head ; struct timerqueue_node *next ; }; struct hrtimer_clock_base; struct hrtimer_cpu_base; enum hrtimer_restart { HRTIMER_NORESTART = 0, HRTIMER_RESTART = 1 } ; struct hrtimer { struct timerqueue_node node ; ktime_t _softexpires ; enum hrtimer_restart (*function)(struct hrtimer * ) ; struct hrtimer_clock_base *base ; unsigned long state ; int start_pid ; void *start_site ; char start_comm[16U] ; }; struct hrtimer_clock_base { struct hrtimer_cpu_base *cpu_base ; int index ; clockid_t clockid ; struct timerqueue_head active ; ktime_t resolution ; ktime_t (*get_time)(void) ; ktime_t softirq_time ; ktime_t offset ; }; struct hrtimer_cpu_base { raw_spinlock_t lock ; unsigned int active_bases ; unsigned int clock_was_set ; ktime_t expires_next ; int hres_active ; int hang_detected ; unsigned long nr_events ; unsigned long nr_retries ; unsigned long nr_hangs ; ktime_t max_hang_time ; struct hrtimer_clock_base clock_base[4U] ; }; struct task_io_accounting { u64 rchar ; u64 wchar ; u64 syscr ; u64 syscw ; u64 read_bytes ; u64 write_bytes ; u64 cancelled_write_bytes ; }; struct latency_record { unsigned long backtrace[12U] ; unsigned int count ; unsigned long time ; unsigned long max ; }; struct nsproxy; struct ctl_table_root; struct ctl_table_header; struct ctl_dir; typedef int proc_handler(struct ctl_table * , int , void * , size_t * , loff_t * ); struct ctl_table_poll { atomic_t event ; wait_queue_head_t wait ; }; struct ctl_table { char const *procname ; void *data ; int maxlen ; umode_t mode ; struct ctl_table *child ; proc_handler *proc_handler ; struct ctl_table_poll *poll ; void *extra1 ; void *extra2 ; }; struct ctl_node { struct rb_node node ; struct ctl_table_header *header ; }; struct __anonstruct____missing_field_name_190 { struct ctl_table *ctl_table ; int used ; int count ; int nreg ; }; union __anonunion____missing_field_name_189 { struct __anonstruct____missing_field_name_190 __annonCompField55 ; struct callback_head rcu ; }; struct ctl_table_set; struct ctl_table_header { union __anonunion____missing_field_name_189 __annonCompField56 ; struct completion *unregistering ; struct ctl_table *ctl_table_arg ; struct ctl_table_root *root ; struct ctl_table_set *set ; struct ctl_dir *parent ; struct ctl_node *node ; }; struct ctl_dir { struct ctl_table_header header ; struct rb_root root ; }; struct ctl_table_set { int (*is_seen)(struct ctl_table_set * ) ; struct ctl_dir dir ; }; struct ctl_table_root { struct ctl_table_set default_set ; struct ctl_table_set *(*lookup)(struct ctl_table_root * , struct nsproxy * ) ; int (*permissions)(struct ctl_table_header * , struct ctl_table * ) ; }; struct assoc_array_ptr; struct assoc_array { struct assoc_array_ptr *root ; unsigned long nr_leaves_on_tree ; }; typedef int32_t key_serial_t; typedef uint32_t key_perm_t; struct key; struct signal_struct; struct key_type; struct keyring_index_key { struct key_type *type ; char const *description ; size_t desc_len ; }; union __anonunion____missing_field_name_191 { struct list_head graveyard_link ; struct rb_node serial_node ; }; struct key_user; union __anonunion____missing_field_name_192 { time_t expiry ; time_t revoked_at ; }; struct __anonstruct____missing_field_name_194 { struct key_type *type ; char *description ; }; union __anonunion____missing_field_name_193 { struct keyring_index_key index_key ; struct __anonstruct____missing_field_name_194 __annonCompField59 ; }; union __anonunion_type_data_195 { struct list_head link ; unsigned long x[2U] ; void *p[2U] ; int reject_error ; }; union __anonunion_payload_197 { unsigned long value ; void *rcudata ; void *data ; void *data2[2U] ; }; union __anonunion____missing_field_name_196 { union __anonunion_payload_197 payload ; struct assoc_array keys ; }; struct key { atomic_t usage ; key_serial_t serial ; union __anonunion____missing_field_name_191 __annonCompField57 ; struct rw_semaphore sem ; struct key_user *user ; void *security ; union __anonunion____missing_field_name_192 __annonCompField58 ; time_t last_used_at ; kuid_t uid ; kgid_t gid ; key_perm_t perm ; unsigned short quotalen ; unsigned short datalen ; unsigned long flags ; union __anonunion____missing_field_name_193 __annonCompField60 ; union __anonunion_type_data_195 type_data ; union __anonunion____missing_field_name_196 __annonCompField61 ; }; struct audit_context; struct group_info { atomic_t usage ; int ngroups ; int nblocks ; kgid_t small_block[32U] ; kgid_t *blocks[0U] ; }; struct cred { atomic_t usage ; atomic_t subscribers ; void *put_addr ; unsigned int magic ; kuid_t uid ; kgid_t gid ; kuid_t suid ; kgid_t sgid ; kuid_t euid ; kgid_t egid ; kuid_t fsuid ; kgid_t fsgid ; unsigned int securebits ; kernel_cap_t cap_inheritable ; kernel_cap_t cap_permitted ; kernel_cap_t cap_effective ; kernel_cap_t cap_bset ; unsigned char jit_keyring ; struct key *session_keyring ; struct key *process_keyring ; struct key *thread_keyring ; struct key *request_key_auth ; void *security ; struct user_struct *user ; struct user_namespace *user_ns ; struct group_info *group_info ; struct callback_head rcu ; }; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct cfs_rq; struct task_group; struct sighand_struct { atomic_t count ; struct k_sigaction action[64U] ; spinlock_t siglock ; wait_queue_head_t signalfd_wqh ; }; struct pacct_struct { int ac_flag ; long ac_exitcode ; unsigned long ac_mem ; cputime_t ac_utime ; cputime_t ac_stime ; unsigned long ac_minflt ; unsigned long ac_majflt ; }; struct cpu_itimer { cputime_t expires ; cputime_t incr ; u32 error ; u32 incr_error ; }; struct cputime { cputime_t utime ; cputime_t stime ; }; struct task_cputime { cputime_t utime ; cputime_t stime ; unsigned long long sum_exec_runtime ; }; struct thread_group_cputimer { struct task_cputime cputime ; int running ; raw_spinlock_t lock ; }; struct autogroup; struct tty_struct; struct taskstats; struct tty_audit_buf; struct signal_struct { atomic_t sigcnt ; atomic_t live ; int nr_threads ; struct list_head thread_head ; wait_queue_head_t wait_chldexit ; struct task_struct *curr_target ; struct sigpending shared_pending ; int group_exit_code ; int notify_count ; struct task_struct *group_exit_task ; int group_stop_count ; unsigned int flags ; unsigned int is_child_subreaper : 1 ; unsigned int has_child_subreaper : 1 ; int posix_timer_id ; struct list_head posix_timers ; struct hrtimer real_timer ; struct pid *leader_pid ; ktime_t it_real_incr ; struct cpu_itimer it[2U] ; struct thread_group_cputimer cputimer ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct pid *tty_old_pgrp ; int leader ; struct tty_struct *tty ; struct autogroup *autogroup ; cputime_t utime ; cputime_t stime ; cputime_t cutime ; cputime_t cstime ; cputime_t gtime ; cputime_t cgtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; unsigned long cnvcsw ; unsigned long cnivcsw ; unsigned long min_flt ; unsigned long maj_flt ; unsigned long cmin_flt ; unsigned long cmaj_flt ; unsigned long inblock ; unsigned long oublock ; unsigned long cinblock ; unsigned long coublock ; unsigned long maxrss ; unsigned long cmaxrss ; struct task_io_accounting ioac ; unsigned long long sum_sched_runtime ; struct rlimit rlim[16U] ; struct pacct_struct pacct ; struct taskstats *stats ; unsigned int audit_tty ; unsigned int audit_tty_log_passwd ; struct tty_audit_buf *tty_audit_buf ; struct rw_semaphore group_rwsem ; oom_flags_t oom_flags ; short oom_score_adj ; short oom_score_adj_min ; struct mutex cred_guard_mutex ; }; struct user_struct { atomic_t __count ; atomic_t processes ; atomic_t files ; atomic_t sigpending ; atomic_t inotify_watches ; atomic_t inotify_devs ; atomic_t fanotify_listeners ; atomic_long_t epoll_watches ; unsigned long mq_bytes ; unsigned long locked_shm ; struct key *uid_keyring ; struct key *session_keyring ; struct hlist_node uidhash_node ; kuid_t uid ; atomic_long_t locked_vm ; }; struct reclaim_state; struct sched_info { unsigned long pcount ; unsigned long long run_delay ; unsigned long long last_arrival ; unsigned long long last_queued ; }; struct task_delay_info { spinlock_t lock ; unsigned int flags ; struct timespec blkio_start ; struct timespec blkio_end ; u64 blkio_delay ; u64 swapin_delay ; u32 blkio_count ; u32 swapin_count ; struct timespec freepages_start ; struct timespec freepages_end ; u64 freepages_delay ; u32 freepages_count ; }; struct uts_namespace; struct load_weight { unsigned long weight ; u32 inv_weight ; }; struct sched_avg { u32 runnable_avg_sum ; u32 runnable_avg_period ; u64 last_runnable_update ; s64 decay_count ; unsigned long load_avg_contrib ; }; struct sched_statistics { u64 wait_start ; u64 wait_max ; u64 wait_count ; u64 wait_sum ; u64 iowait_count ; u64 iowait_sum ; u64 sleep_start ; u64 sleep_max ; s64 sum_sleep_runtime ; u64 block_start ; u64 block_max ; u64 exec_max ; u64 slice_max ; u64 nr_migrations_cold ; u64 nr_failed_migrations_affine ; u64 nr_failed_migrations_running ; u64 nr_failed_migrations_hot ; u64 nr_forced_migrations ; u64 nr_wakeups ; u64 nr_wakeups_sync ; u64 nr_wakeups_migrate ; u64 nr_wakeups_local ; u64 nr_wakeups_remote ; u64 nr_wakeups_affine ; u64 nr_wakeups_affine_attempts ; u64 nr_wakeups_passive ; u64 nr_wakeups_idle ; }; struct sched_entity { struct load_weight load ; struct rb_node run_node ; struct list_head group_node ; unsigned int on_rq ; u64 exec_start ; u64 sum_exec_runtime ; u64 vruntime ; u64 prev_sum_exec_runtime ; u64 nr_migrations ; struct sched_statistics statistics ; struct sched_entity *parent ; struct cfs_rq *cfs_rq ; struct cfs_rq *my_q ; struct sched_avg avg ; }; struct rt_rq; struct sched_rt_entity { struct list_head run_list ; unsigned long timeout ; unsigned long watchdog_stamp ; unsigned int time_slice ; struct sched_rt_entity *back ; struct sched_rt_entity *parent ; struct rt_rq *rt_rq ; struct rt_rq *my_q ; }; struct sched_dl_entity { struct rb_node rb_node ; u64 dl_runtime ; u64 dl_deadline ; u64 dl_period ; u64 dl_bw ; s64 runtime ; u64 deadline ; unsigned int flags ; int dl_throttled ; int dl_new ; int dl_boosted ; struct hrtimer dl_timer ; }; struct mem_cgroup; struct memcg_batch_info { int do_batch ; struct mem_cgroup *memcg ; unsigned long nr_pages ; unsigned long memsw_nr_pages ; }; struct memcg_oom_info { struct mem_cgroup *memcg ; gfp_t gfp_mask ; int order ; unsigned int may_oom : 1 ; }; struct sched_class; struct css_set; struct compat_robust_list_head; struct numa_group; struct ftrace_ret_stack; struct task_struct { long volatile state ; void *stack ; atomic_t usage ; unsigned int flags ; unsigned int ptrace ; struct llist_node wake_entry ; int on_cpu ; struct task_struct *last_wakee ; unsigned long wakee_flips ; unsigned long wakee_flip_decay_ts ; int wake_cpu ; int on_rq ; int prio ; int static_prio ; int normal_prio ; unsigned int rt_priority ; struct sched_class const *sched_class ; struct sched_entity se ; struct sched_rt_entity rt ; struct task_group *sched_task_group ; struct sched_dl_entity dl ; struct hlist_head preempt_notifiers ; unsigned int btrace_seq ; unsigned int policy ; int nr_cpus_allowed ; cpumask_t cpus_allowed ; struct sched_info sched_info ; struct list_head tasks ; struct plist_node pushable_tasks ; struct rb_node pushable_dl_tasks ; struct mm_struct *mm ; struct mm_struct *active_mm ; unsigned int brk_randomized : 1 ; struct task_rss_stat rss_stat ; int exit_state ; int exit_code ; int exit_signal ; int pdeath_signal ; unsigned int jobctl ; unsigned int personality ; unsigned int in_execve : 1 ; unsigned int in_iowait : 1 ; unsigned int no_new_privs : 1 ; unsigned int sched_reset_on_fork : 1 ; unsigned int sched_contributes_to_load : 1 ; pid_t pid ; pid_t tgid ; struct task_struct *real_parent ; struct task_struct *parent ; struct list_head children ; struct list_head sibling ; struct task_struct *group_leader ; struct list_head ptraced ; struct list_head ptrace_entry ; struct pid_link pids[3U] ; struct list_head thread_group ; struct list_head thread_node ; struct completion *vfork_done ; int *set_child_tid ; int *clear_child_tid ; cputime_t utime ; cputime_t stime ; cputime_t utimescaled ; cputime_t stimescaled ; cputime_t gtime ; struct cputime prev_cputime ; unsigned long nvcsw ; unsigned long nivcsw ; struct timespec start_time ; struct timespec real_start_time ; unsigned long min_flt ; unsigned long maj_flt ; struct task_cputime cputime_expires ; struct list_head cpu_timers[3U] ; struct cred const *real_cred ; struct cred const *cred ; char comm[16U] ; int link_count ; int total_link_count ; struct sysv_sem sysvsem ; unsigned long last_switch_count ; struct thread_struct thread ; struct fs_struct *fs ; struct files_struct *files ; struct nsproxy *nsproxy ; struct signal_struct *signal ; struct sighand_struct *sighand ; sigset_t blocked ; sigset_t real_blocked ; sigset_t saved_sigmask ; struct sigpending pending ; unsigned long sas_ss_sp ; size_t sas_ss_size ; int (*notifier)(void * ) ; void *notifier_data ; sigset_t *notifier_mask ; struct callback_head *task_works ; struct audit_context *audit_context ; kuid_t loginuid ; unsigned int sessionid ; struct seccomp seccomp ; u32 parent_exec_id ; u32 self_exec_id ; spinlock_t alloc_lock ; raw_spinlock_t pi_lock ; struct rb_root pi_waiters ; struct rb_node *pi_waiters_leftmost ; struct rt_mutex_waiter *pi_blocked_on ; struct task_struct *pi_top_task ; struct mutex_waiter *blocked_on ; unsigned int irq_events ; unsigned long hardirq_enable_ip ; unsigned long hardirq_disable_ip ; unsigned int hardirq_enable_event ; unsigned int hardirq_disable_event ; int hardirqs_enabled ; int hardirq_context ; unsigned long softirq_disable_ip ; unsigned long softirq_enable_ip ; unsigned int softirq_disable_event ; unsigned int softirq_enable_event ; int softirqs_enabled ; int softirq_context ; u64 curr_chain_key ; int lockdep_depth ; unsigned int lockdep_recursion ; struct held_lock held_locks[48U] ; gfp_t lockdep_reclaim_gfp ; void *journal_info ; struct bio_list *bio_list ; struct blk_plug *plug ; struct reclaim_state *reclaim_state ; struct backing_dev_info *backing_dev_info ; struct io_context *io_context ; unsigned long ptrace_message ; siginfo_t *last_siginfo ; struct task_io_accounting ioac ; u64 acct_rss_mem1 ; u64 acct_vm_mem1 ; cputime_t acct_timexpd ; nodemask_t mems_allowed ; seqcount_t mems_allowed_seq ; int cpuset_mem_spread_rotor ; int cpuset_slab_spread_rotor ; struct css_set *cgroups ; struct list_head cg_list ; struct robust_list_head *robust_list ; struct compat_robust_list_head *compat_robust_list ; struct list_head pi_state_list ; struct futex_pi_state *pi_state_cache ; struct perf_event_context *perf_event_ctxp[2U] ; struct mutex perf_event_mutex ; struct list_head perf_event_list ; struct mempolicy *mempolicy ; short il_next ; short pref_node_fork ; int numa_scan_seq ; unsigned int numa_scan_period ; unsigned int numa_scan_period_max ; int numa_preferred_nid ; int numa_migrate_deferred ; unsigned long numa_migrate_retry ; u64 node_stamp ; struct callback_head numa_work ; struct list_head numa_entry ; struct numa_group *numa_group ; unsigned long *numa_faults ; unsigned long total_numa_faults ; unsigned long *numa_faults_buffer ; unsigned long numa_faults_locality[2U] ; unsigned long numa_pages_migrated ; struct callback_head rcu ; struct pipe_inode_info *splice_pipe ; struct page_frag task_frag ; struct task_delay_info *delays ; int make_it_fail ; int nr_dirtied ; int nr_dirtied_pause ; unsigned long dirty_paused_when ; int latency_record_count ; struct latency_record latency_record[32U] ; unsigned long timer_slack_ns ; unsigned long default_timer_slack_ns ; int curr_ret_stack ; struct ftrace_ret_stack *ret_stack ; unsigned long long ftrace_timestamp ; atomic_t trace_overrun ; atomic_t tracing_graph_pause ; unsigned long trace ; unsigned long trace_recursion ; struct memcg_batch_info memcg_batch ; unsigned int memcg_kmem_skip_account ; struct memcg_oom_info memcg_oom ; struct uprobe_task *utask ; unsigned int sequential_io ; unsigned int sequential_io_avg ; }; typedef s32 compat_long_t; typedef u32 compat_uptr_t; struct compat_robust_list { compat_uptr_t next ; }; struct compat_robust_list_head { struct compat_robust_list list ; compat_long_t futex_offset ; compat_uptr_t list_op_pending ; }; enum ldv_22225 { SS_FREE = 0, SS_UNCONNECTED = 1, SS_CONNECTING = 2, SS_CONNECTED = 3, SS_DISCONNECTING = 4 } ; typedef enum ldv_22225 socket_state; struct socket_wq { wait_queue_head_t wait ; struct fasync_struct *fasync_list ; struct callback_head rcu ; }; struct proto_ops; struct socket { socket_state state ; short type ; unsigned long flags ; struct socket_wq *wq ; struct file *file ; struct sock *sk ; struct proto_ops const *ops ; }; struct proto_ops { int family ; struct module *owner ; int (*release)(struct socket * ) ; int (*bind)(struct socket * , struct sockaddr * , int ) ; int (*connect)(struct socket * , struct sockaddr * , int , int ) ; int (*socketpair)(struct socket * , struct socket * ) ; int (*accept)(struct socket * , struct socket * , int ) ; int (*getname)(struct socket * , struct sockaddr * , int * , int ) ; unsigned int (*poll)(struct file * , struct socket * , struct poll_table_struct * ) ; int (*ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*compat_ioctl)(struct socket * , unsigned int , unsigned long ) ; int (*listen)(struct socket * , int ) ; int (*shutdown)(struct socket * , int ) ; int (*setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct socket * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct socket * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct socket * , int , int , char * , int * ) ; int (*sendmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct socket * , struct msghdr * , size_t , int ) ; int (*mmap)(struct file * , struct socket * , struct vm_area_struct * ) ; ssize_t (*sendpage)(struct socket * , struct page * , int , size_t , int ) ; ssize_t (*splice_read)(struct socket * , loff_t * , struct pipe_inode_info * , size_t , unsigned int ) ; int (*set_peek_off)(struct sock * , int ) ; }; struct kmem_cache_cpu { void **freelist ; unsigned long tid ; struct page *page ; struct page *partial ; unsigned int stat[26U] ; }; struct kmem_cache_order_objects { unsigned long x ; }; struct memcg_cache_params; struct kmem_cache_node; struct kmem_cache { struct kmem_cache_cpu *cpu_slab ; unsigned long flags ; unsigned long min_partial ; int size ; int object_size ; int offset ; int cpu_partial ; struct kmem_cache_order_objects oo ; struct kmem_cache_order_objects max ; struct kmem_cache_order_objects min ; gfp_t allocflags ; int refcount ; void (*ctor)(void * ) ; int inuse ; int align ; int reserved ; char const *name ; struct list_head list ; struct kobject kobj ; struct memcg_cache_params *memcg_params ; int max_attr_size ; int remote_node_defrag_ratio ; struct kmem_cache_node *node[1024U] ; }; struct __anonstruct____missing_field_name_214 { struct callback_head callback_head ; struct kmem_cache *memcg_caches[0U] ; }; struct __anonstruct____missing_field_name_215 { struct mem_cgroup *memcg ; struct list_head list ; struct kmem_cache *root_cache ; bool dead ; atomic_t nr_pages ; struct work_struct destroy ; }; union __anonunion____missing_field_name_213 { struct __anonstruct____missing_field_name_214 __annonCompField63 ; struct __anonstruct____missing_field_name_215 __annonCompField64 ; }; struct memcg_cache_params { bool is_root_cache ; union __anonunion____missing_field_name_213 __annonCompField65 ; }; struct exception_table_entry { int insn ; int fixup ; }; struct in6_addr; struct sk_buff; struct dma_attrs { unsigned long flags[1U] ; }; enum dma_data_direction { DMA_BIDIRECTIONAL = 0, DMA_TO_DEVICE = 1, DMA_FROM_DEVICE = 2, DMA_NONE = 3 } ; struct dma_map_ops { void *(*alloc)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ) ; void (*free)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ) ; int (*mmap)(struct device * , struct vm_area_struct * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; int (*get_sgtable)(struct device * , struct sg_table * , void * , dma_addr_t , size_t , struct dma_attrs * ) ; dma_addr_t (*map_page)(struct device * , struct page * , unsigned long , size_t , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_page)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ) ; int (*map_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*unmap_sg)(struct device * , struct scatterlist * , int , enum dma_data_direction , struct dma_attrs * ) ; void (*sync_single_for_cpu)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_single_for_device)(struct device * , dma_addr_t , size_t , enum dma_data_direction ) ; void (*sync_sg_for_cpu)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; void (*sync_sg_for_device)(struct device * , struct scatterlist * , int , enum dma_data_direction ) ; int (*mapping_error)(struct device * , dma_addr_t ) ; int (*dma_supported)(struct device * , u64 ) ; int (*set_dma_mask)(struct device * , u64 ) ; int is_phys ; }; typedef u64 netdev_features_t; struct nf_conntrack { atomic_t use ; }; struct nf_bridge_info { atomic_t use ; unsigned int mask ; struct net_device *physindev ; struct net_device *physoutdev ; unsigned long data[4U] ; }; struct sk_buff_head { struct sk_buff *next ; struct sk_buff *prev ; __u32 qlen ; spinlock_t lock ; }; struct skb_frag_struct; typedef struct skb_frag_struct skb_frag_t; struct __anonstruct_page_217 { struct page *p ; }; struct skb_frag_struct { struct __anonstruct_page_217 page ; __u32 page_offset ; __u32 size ; }; struct skb_shared_hwtstamps { ktime_t hwtstamp ; ktime_t syststamp ; }; struct skb_shared_info { unsigned char nr_frags ; __u8 tx_flags ; unsigned short gso_size ; unsigned short gso_segs ; unsigned short gso_type ; struct sk_buff *frag_list ; struct skb_shared_hwtstamps hwtstamps ; __be32 ip6_frag_id ; atomic_t dataref ; void *destructor_arg ; skb_frag_t frags[17U] ; }; typedef unsigned int sk_buff_data_t; struct sec_path; struct __anonstruct____missing_field_name_219 { __u16 csum_start ; __u16 csum_offset ; }; union __anonunion____missing_field_name_218 { __wsum csum ; struct __anonstruct____missing_field_name_219 __annonCompField67 ; }; union __anonunion____missing_field_name_220 { unsigned int napi_id ; dma_cookie_t dma_cookie ; }; union __anonunion____missing_field_name_221 { __u32 mark ; __u32 dropcount ; __u32 reserved_tailroom ; }; struct sk_buff { struct sk_buff *next ; struct sk_buff *prev ; ktime_t tstamp ; struct sock *sk ; struct net_device *dev ; char cb[48U] ; unsigned long _skb_refdst ; struct sec_path *sp ; unsigned int len ; unsigned int data_len ; __u16 mac_len ; __u16 hdr_len ; union __anonunion____missing_field_name_218 __annonCompField68 ; __u32 priority ; __u8 local_df : 1 ; __u8 cloned : 1 ; __u8 ip_summed : 2 ; __u8 nohdr : 1 ; __u8 nfctinfo : 3 ; __u8 pkt_type : 3 ; __u8 fclone : 2 ; __u8 ipvs_property : 1 ; __u8 peeked : 1 ; __u8 nf_trace : 1 ; __be16 protocol ; void (*destructor)(struct sk_buff * ) ; struct nf_conntrack *nfct ; struct nf_bridge_info *nf_bridge ; int skb_iif ; __u32 rxhash ; __be16 vlan_proto ; __u16 vlan_tci ; __u16 tc_index ; __u16 tc_verd ; __u16 queue_mapping ; __u8 ndisc_nodetype : 2 ; __u8 pfmemalloc : 1 ; __u8 ooo_okay : 1 ; __u8 l4_rxhash : 1 ; __u8 wifi_acked_valid : 1 ; __u8 wifi_acked : 1 ; __u8 no_fcs : 1 ; __u8 head_frag : 1 ; __u8 encapsulation : 1 ; union __anonunion____missing_field_name_220 __annonCompField69 ; __u32 secmark ; union __anonunion____missing_field_name_221 __annonCompField70 ; __be16 inner_protocol ; __u16 inner_transport_header ; __u16 inner_network_header ; __u16 inner_mac_header ; __u16 transport_header ; __u16 network_header ; __u16 mac_header ; sk_buff_data_t tail ; sk_buff_data_t end ; unsigned char *head ; unsigned char *data ; unsigned int truesize ; atomic_t users ; }; struct dst_entry; struct rtable; enum pkt_hash_types { PKT_HASH_TYPE_NONE = 0, PKT_HASH_TYPE_L2 = 1, PKT_HASH_TYPE_L3 = 2, PKT_HASH_TYPE_L4 = 3 } ; struct ethhdr { unsigned char h_dest[6U] ; unsigned char h_source[6U] ; __be16 h_proto ; }; struct ethtool_cmd { __u32 cmd ; __u32 supported ; __u32 advertising ; __u16 speed ; __u8 duplex ; __u8 port ; __u8 phy_address ; __u8 transceiver ; __u8 autoneg ; __u8 mdio_support ; __u32 maxtxpkt ; __u32 maxrxpkt ; __u16 speed_hi ; __u8 eth_tp_mdix ; __u8 eth_tp_mdix_ctrl ; __u32 lp_advertising ; __u32 reserved[2U] ; }; struct ethtool_drvinfo { __u32 cmd ; char driver[32U] ; char version[32U] ; char fw_version[32U] ; char bus_info[32U] ; char reserved1[32U] ; char reserved2[12U] ; __u32 n_priv_flags ; __u32 n_stats ; __u32 testinfo_len ; __u32 eedump_len ; __u32 regdump_len ; }; struct ethtool_wolinfo { __u32 cmd ; __u32 supported ; __u32 wolopts ; __u8 sopass[6U] ; }; struct ethtool_regs { __u32 cmd ; __u32 version ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eeprom { __u32 cmd ; __u32 magic ; __u32 offset ; __u32 len ; __u8 data[0U] ; }; struct ethtool_eee { __u32 cmd ; __u32 supported ; __u32 advertised ; __u32 lp_advertised ; __u32 eee_active ; __u32 eee_enabled ; __u32 tx_lpi_enabled ; __u32 tx_lpi_timer ; __u32 reserved[2U] ; }; struct ethtool_modinfo { __u32 cmd ; __u32 type ; __u32 eeprom_len ; __u32 reserved[8U] ; }; struct ethtool_coalesce { __u32 cmd ; __u32 rx_coalesce_usecs ; __u32 rx_max_coalesced_frames ; __u32 rx_coalesce_usecs_irq ; __u32 rx_max_coalesced_frames_irq ; __u32 tx_coalesce_usecs ; __u32 tx_max_coalesced_frames ; __u32 tx_coalesce_usecs_irq ; __u32 tx_max_coalesced_frames_irq ; __u32 stats_block_coalesce_usecs ; __u32 use_adaptive_rx_coalesce ; __u32 use_adaptive_tx_coalesce ; __u32 pkt_rate_low ; __u32 rx_coalesce_usecs_low ; __u32 rx_max_coalesced_frames_low ; __u32 tx_coalesce_usecs_low ; __u32 tx_max_coalesced_frames_low ; __u32 pkt_rate_high ; __u32 rx_coalesce_usecs_high ; __u32 rx_max_coalesced_frames_high ; __u32 tx_coalesce_usecs_high ; __u32 tx_max_coalesced_frames_high ; __u32 rate_sample_interval ; }; struct ethtool_ringparam { __u32 cmd ; __u32 rx_max_pending ; __u32 rx_mini_max_pending ; __u32 rx_jumbo_max_pending ; __u32 tx_max_pending ; __u32 rx_pending ; __u32 rx_mini_pending ; __u32 rx_jumbo_pending ; __u32 tx_pending ; }; struct ethtool_channels { __u32 cmd ; __u32 max_rx ; __u32 max_tx ; __u32 max_other ; __u32 max_combined ; __u32 rx_count ; __u32 tx_count ; __u32 other_count ; __u32 combined_count ; }; struct ethtool_pauseparam { __u32 cmd ; __u32 autoneg ; __u32 rx_pause ; __u32 tx_pause ; }; struct ethtool_test { __u32 cmd ; __u32 flags ; __u32 reserved ; __u32 len ; __u64 data[0U] ; }; struct ethtool_stats { __u32 cmd ; __u32 n_stats ; __u64 data[0U] ; }; struct ethtool_tcpip4_spec { __be32 ip4src ; __be32 ip4dst ; __be16 psrc ; __be16 pdst ; __u8 tos ; }; struct ethtool_ah_espip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 spi ; __u8 tos ; }; struct ethtool_usrip4_spec { __be32 ip4src ; __be32 ip4dst ; __be32 l4_4_bytes ; __u8 tos ; __u8 ip_ver ; __u8 proto ; }; union ethtool_flow_union { struct ethtool_tcpip4_spec tcp_ip4_spec ; struct ethtool_tcpip4_spec udp_ip4_spec ; struct ethtool_tcpip4_spec sctp_ip4_spec ; struct ethtool_ah_espip4_spec ah_ip4_spec ; struct ethtool_ah_espip4_spec esp_ip4_spec ; struct ethtool_usrip4_spec usr_ip4_spec ; struct ethhdr ether_spec ; __u8 hdata[52U] ; }; struct ethtool_flow_ext { __u8 padding[2U] ; unsigned char h_dest[6U] ; __be16 vlan_etype ; __be16 vlan_tci ; __be32 data[2U] ; }; struct ethtool_rx_flow_spec { __u32 flow_type ; union ethtool_flow_union h_u ; struct ethtool_flow_ext h_ext ; union ethtool_flow_union m_u ; struct ethtool_flow_ext m_ext ; __u64 ring_cookie ; __u32 location ; }; struct ethtool_rxnfc { __u32 cmd ; __u32 flow_type ; __u64 data ; struct ethtool_rx_flow_spec fs ; __u32 rule_cnt ; __u32 rule_locs[0U] ; }; struct ethtool_flash { __u32 cmd ; __u32 region ; char data[128U] ; }; struct ethtool_dump { __u32 cmd ; __u32 version ; __u32 flag ; __u32 len ; __u8 data[0U] ; }; struct ethtool_ts_info { __u32 cmd ; __u32 so_timestamping ; __s32 phc_index ; __u32 tx_types ; __u32 tx_reserved[3U] ; __u32 rx_filters ; __u32 rx_reserved[3U] ; }; enum ethtool_phys_id_state { ETHTOOL_ID_INACTIVE = 0, ETHTOOL_ID_ACTIVE = 1, ETHTOOL_ID_ON = 2, ETHTOOL_ID_OFF = 3 } ; struct ethtool_ops { int (*get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*set_settings)(struct net_device * , struct ethtool_cmd * ) ; void (*get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*get_regs_len)(struct net_device * ) ; void (*get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; void (*get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; u32 (*get_msglevel)(struct net_device * ) ; void (*set_msglevel)(struct net_device * , u32 ) ; int (*nway_reset)(struct net_device * ) ; u32 (*get_link)(struct net_device * ) ; int (*get_eeprom_len)(struct net_device * ) ; int (*get_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*set_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; void (*get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*self_test)(struct net_device * , struct ethtool_test * , u64 * ) ; void (*get_strings)(struct net_device * , u32 , u8 * ) ; int (*set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; void (*get_ethtool_stats)(struct net_device * , struct ethtool_stats * , u64 * ) ; int (*begin)(struct net_device * ) ; void (*complete)(struct net_device * ) ; u32 (*get_priv_flags)(struct net_device * ) ; int (*set_priv_flags)(struct net_device * , u32 ) ; int (*get_sset_count)(struct net_device * , int ) ; int (*get_rxnfc)(struct net_device * , struct ethtool_rxnfc * , u32 * ) ; int (*set_rxnfc)(struct net_device * , struct ethtool_rxnfc * ) ; int (*flash_device)(struct net_device * , struct ethtool_flash * ) ; int (*reset)(struct net_device * , u32 * ) ; u32 (*get_rxfh_indir_size)(struct net_device * ) ; int (*get_rxfh_indir)(struct net_device * , u32 * ) ; int (*set_rxfh_indir)(struct net_device * , u32 const * ) ; void (*get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*get_dump_flag)(struct net_device * , struct ethtool_dump * ) ; int (*get_dump_data)(struct net_device * , struct ethtool_dump * , void * ) ; int (*set_dump)(struct net_device * , struct ethtool_dump * ) ; int (*get_ts_info)(struct net_device * , struct ethtool_ts_info * ) ; int (*get_module_info)(struct net_device * , struct ethtool_modinfo * ) ; int (*get_module_eeprom)(struct net_device * , struct ethtool_eeprom * , u8 * ) ; int (*get_eee)(struct net_device * , struct ethtool_eee * ) ; int (*set_eee)(struct net_device * , struct ethtool_eee * ) ; }; struct prot_inuse; struct netns_core { struct ctl_table_header *sysctl_hdr ; int sysctl_somaxconn ; struct prot_inuse *inuse ; }; struct u64_stats_sync { }; struct ipstats_mib { u64 mibs[36U] ; struct u64_stats_sync syncp ; }; struct icmp_mib { unsigned long mibs[28U] ; }; struct icmpmsg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6_mib { unsigned long mibs[6U] ; }; struct icmpv6_mib_device { atomic_long_t mibs[6U] ; }; struct icmpv6msg_mib { atomic_long_t mibs[512U] ; }; struct icmpv6msg_mib_device { atomic_long_t mibs[512U] ; }; struct tcp_mib { unsigned long mibs[16U] ; }; struct udp_mib { unsigned long mibs[8U] ; }; struct linux_mib { unsigned long mibs[97U] ; }; struct linux_xfrm_mib { unsigned long mibs[29U] ; }; struct proc_dir_entry; struct netns_mib { struct tcp_mib *tcp_statistics[1U] ; struct ipstats_mib *ip_statistics[1U] ; struct linux_mib *net_statistics[1U] ; struct udp_mib *udp_statistics[1U] ; struct udp_mib *udplite_statistics[1U] ; struct icmp_mib *icmp_statistics[1U] ; struct icmpmsg_mib *icmpmsg_statistics ; struct proc_dir_entry *proc_net_devsnmp6 ; struct udp_mib *udp_stats_in6[1U] ; struct udp_mib *udplite_stats_in6[1U] ; struct ipstats_mib *ipv6_statistics[1U] ; struct icmpv6_mib *icmpv6_statistics[1U] ; struct icmpv6msg_mib *icmpv6msg_statistics ; struct linux_xfrm_mib *xfrm_statistics[1U] ; }; struct netns_unix { int sysctl_max_dgram_qlen ; struct ctl_table_header *ctl ; }; struct netns_packet { struct mutex sklist_lock ; struct hlist_head sklist ; }; struct netns_frags { int nqueues ; struct list_head lru_list ; spinlock_t lru_lock ; struct percpu_counter mem ; int timeout ; int high_thresh ; int low_thresh ; }; struct tcpm_hash_bucket; struct ipv4_devconf; struct fib_rules_ops; struct fib_table; struct local_ports { seqlock_t lock ; int range[2U] ; }; struct inet_peer_base; struct xt_table; struct netns_ipv4 { struct ctl_table_header *forw_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *ipv4_hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *xfrm4_hdr ; struct ipv4_devconf *devconf_all ; struct ipv4_devconf *devconf_dflt ; struct fib_rules_ops *rules_ops ; bool fib_has_custom_rules ; struct fib_table *fib_local ; struct fib_table *fib_main ; struct fib_table *fib_default ; int fib_num_tclassid_users ; struct hlist_head *fib_table_hash ; struct sock *fibnl ; struct sock **icmp_sk ; struct inet_peer_base *peers ; struct tcpm_hash_bucket *tcp_metrics_hash ; unsigned int tcp_metrics_hash_log ; struct netns_frags frags ; struct xt_table *iptable_filter ; struct xt_table *iptable_mangle ; struct xt_table *iptable_raw ; struct xt_table *arptable_filter ; struct xt_table *iptable_security ; struct xt_table *nat_table ; int sysctl_icmp_echo_ignore_all ; int sysctl_icmp_echo_ignore_broadcasts ; int sysctl_icmp_ignore_bogus_error_responses ; int sysctl_icmp_ratelimit ; int sysctl_icmp_ratemask ; int sysctl_icmp_errors_use_inbound_ifaddr ; struct local_ports sysctl_local_ports ; int sysctl_tcp_ecn ; int sysctl_ip_no_pmtu_disc ; int sysctl_ip_fwd_use_pmtu ; kgid_t sysctl_ping_group_range[2U] ; atomic_t dev_addr_genid ; struct list_head mr_tables ; struct fib_rules_ops *mr_rules_ops ; atomic_t rt_genid ; }; struct neighbour; struct dst_ops { unsigned short family ; __be16 protocol ; unsigned int gc_thresh ; int (*gc)(struct dst_ops * ) ; struct dst_entry *(*check)(struct dst_entry * , __u32 ) ; unsigned int (*default_advmss)(struct dst_entry const * ) ; unsigned int (*mtu)(struct dst_entry const * ) ; u32 *(*cow_metrics)(struct dst_entry * , unsigned long ) ; void (*destroy)(struct dst_entry * ) ; void (*ifdown)(struct dst_entry * , struct net_device * , int ) ; struct dst_entry *(*negative_advice)(struct dst_entry * ) ; void (*link_failure)(struct sk_buff * ) ; void (*update_pmtu)(struct dst_entry * , struct sock * , struct sk_buff * , u32 ) ; void (*redirect)(struct dst_entry * , struct sock * , struct sk_buff * ) ; int (*local_out)(struct sk_buff * ) ; struct neighbour *(*neigh_lookup)(struct dst_entry const * , struct sk_buff * , void const * ) ; struct kmem_cache *kmem_cachep ; struct percpu_counter pcpuc_entries ; }; struct netns_sysctl_ipv6 { struct ctl_table_header *hdr ; struct ctl_table_header *route_hdr ; struct ctl_table_header *icmp_hdr ; struct ctl_table_header *frags_hdr ; struct ctl_table_header *xfrm6_hdr ; int bindv6only ; int flush_delay ; int ip6_rt_max_size ; int ip6_rt_gc_min_interval ; int ip6_rt_gc_timeout ; int ip6_rt_gc_interval ; int ip6_rt_gc_elasticity ; int ip6_rt_mtu_expires ; int ip6_rt_min_advmss ; int flowlabel_consistency ; int icmpv6_time ; int anycast_src_echo_reply ; }; struct ipv6_devconf; struct rt6_info; struct rt6_statistics; struct fib6_table; struct netns_ipv6 { struct netns_sysctl_ipv6 sysctl ; struct ipv6_devconf *devconf_all ; struct ipv6_devconf *devconf_dflt ; struct inet_peer_base *peers ; struct netns_frags frags ; struct xt_table *ip6table_filter ; struct xt_table *ip6table_mangle ; struct xt_table *ip6table_raw ; struct xt_table *ip6table_security ; struct xt_table *ip6table_nat ; struct rt6_info *ip6_null_entry ; struct rt6_statistics *rt6_stats ; struct timer_list ip6_fib_timer ; struct hlist_head *fib_table_hash ; struct fib6_table *fib6_main_tbl ; struct dst_ops ip6_dst_ops ; unsigned int ip6_rt_gc_expire ; unsigned long ip6_rt_last_gc ; struct rt6_info *ip6_prohibit_entry ; struct rt6_info *ip6_blk_hole_entry ; struct fib6_table *fib6_local_tbl ; struct fib_rules_ops *fib6_rules_ops ; struct sock **icmp_sk ; struct sock *ndisc_sk ; struct sock *tcp_sk ; struct sock *igmp_sk ; struct list_head mr6_tables ; struct fib_rules_ops *mr6_rules_ops ; atomic_t dev_addr_genid ; atomic_t rt_genid ; }; struct netns_nf_frag { struct netns_sysctl_ipv6 sysctl ; struct netns_frags frags ; }; struct sctp_mib; struct netns_sctp { struct sctp_mib *sctp_statistics[1U] ; struct proc_dir_entry *proc_net_sctp ; struct ctl_table_header *sysctl_header ; struct sock *ctl_sock ; struct list_head local_addr_list ; struct list_head addr_waitq ; struct timer_list addr_wq_timer ; struct list_head auto_asconf_splist ; spinlock_t addr_wq_lock ; spinlock_t local_addr_lock ; unsigned int rto_initial ; unsigned int rto_min ; unsigned int rto_max ; int rto_alpha ; int rto_beta ; int max_burst ; int cookie_preserve_enable ; char *sctp_hmac_alg ; unsigned int valid_cookie_life ; unsigned int sack_timeout ; unsigned int hb_interval ; int max_retrans_association ; int max_retrans_path ; int max_retrans_init ; int pf_retrans ; int sndbuf_policy ; int rcvbuf_policy ; int default_auto_asconf ; int addip_enable ; int addip_noauth ; int prsctp_enable ; int auth_enable ; int scope_policy ; int rwnd_upd_shift ; unsigned long max_autoclose ; }; struct netns_dccp { struct sock *v4_ctl_sk ; struct sock *v6_ctl_sk ; }; union __anonunion_in6_u_224 { __u8 u6_addr8[16U] ; __be16 u6_addr16[8U] ; __be32 u6_addr32[4U] ; }; struct in6_addr { union __anonunion_in6_u_224 in6_u ; }; struct nlattr; struct nf_logger; struct netns_nf { struct proc_dir_entry *proc_netfilter ; struct nf_logger const *nf_loggers[13U] ; struct ctl_table_header *nf_log_dir_header ; }; struct ebt_table; struct netns_xt { struct list_head tables[13U] ; bool notrack_deprecated_warning ; struct ebt_table *broute_table ; struct ebt_table *frame_filter ; struct ebt_table *frame_nat ; bool ulog_warn_deprecated ; bool ebt_ulog_warn_deprecated ; }; struct hlist_nulls_node; struct hlist_nulls_head { struct hlist_nulls_node *first ; }; struct hlist_nulls_node { struct hlist_nulls_node *next ; struct hlist_nulls_node **pprev ; }; struct nf_proto_net { struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; struct ctl_table_header *ctl_compat_header ; struct ctl_table *ctl_compat_table ; unsigned int users ; }; struct nf_generic_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_tcp_net { struct nf_proto_net pn ; unsigned int timeouts[14U] ; unsigned int tcp_loose ; unsigned int tcp_be_liberal ; unsigned int tcp_max_retrans ; }; struct nf_udp_net { struct nf_proto_net pn ; unsigned int timeouts[2U] ; }; struct nf_icmp_net { struct nf_proto_net pn ; unsigned int timeout ; }; struct nf_ip_net { struct nf_generic_net generic ; struct nf_tcp_net tcp ; struct nf_udp_net udp ; struct nf_icmp_net icmp ; struct nf_icmp_net icmpv6 ; struct ctl_table_header *ctl_table_header ; struct ctl_table *ctl_table ; }; struct ip_conntrack_stat; struct nf_ct_event_notifier; struct nf_exp_event_notifier; struct netns_ct { atomic_t count ; unsigned int expect_count ; struct ctl_table_header *sysctl_header ; struct ctl_table_header *acct_sysctl_header ; struct ctl_table_header *tstamp_sysctl_header ; struct ctl_table_header *event_sysctl_header ; struct ctl_table_header *helper_sysctl_header ; char *slabname ; unsigned int sysctl_log_invalid ; unsigned int sysctl_events_retry_timeout ; int sysctl_events ; int sysctl_acct ; int sysctl_auto_assign_helper ; bool auto_assign_helper_warned ; int sysctl_tstamp ; int sysctl_checksum ; unsigned int htable_size ; struct kmem_cache *nf_conntrack_cachep ; struct hlist_nulls_head *hash ; struct hlist_head *expect_hash ; struct hlist_nulls_head unconfirmed ; struct hlist_nulls_head dying ; struct hlist_nulls_head tmpl ; struct ip_conntrack_stat *stat ; struct nf_ct_event_notifier *nf_conntrack_event_cb ; struct nf_exp_event_notifier *nf_expect_event_cb ; struct nf_ip_net nf_ct_proto ; unsigned int labels_used ; u8 label_words ; struct hlist_head *nat_bysource ; unsigned int nat_htable_size ; }; struct nft_af_info; struct netns_nftables { struct list_head af_info ; struct list_head commit_list ; struct nft_af_info *ipv4 ; struct nft_af_info *ipv6 ; struct nft_af_info *inet ; struct nft_af_info *arp ; struct nft_af_info *bridge ; u8 gencursor ; u8 genctr ; }; struct xfrm_policy_hash { struct hlist_head *table ; unsigned int hmask ; }; struct netns_xfrm { struct list_head state_all ; struct hlist_head *state_bydst ; struct hlist_head *state_bysrc ; struct hlist_head *state_byspi ; unsigned int state_hmask ; unsigned int state_num ; struct work_struct state_hash_work ; struct hlist_head state_gc_list ; struct work_struct state_gc_work ; struct list_head policy_all ; struct hlist_head *policy_byidx ; unsigned int policy_idx_hmask ; struct hlist_head policy_inexact[6U] ; struct xfrm_policy_hash policy_bydst[6U] ; unsigned int policy_count[6U] ; struct work_struct policy_hash_work ; struct sock *nlsk ; struct sock *nlsk_stash ; u32 sysctl_aevent_etime ; u32 sysctl_aevent_rseqth ; int sysctl_larval_drop ; u32 sysctl_acq_expires ; struct ctl_table_header *sysctl_hdr ; struct dst_ops xfrm4_dst_ops ; struct dst_ops xfrm6_dst_ops ; spinlock_t xfrm_state_lock ; spinlock_t xfrm_policy_sk_bundle_lock ; rwlock_t xfrm_policy_lock ; struct mutex xfrm_cfg_mutex ; }; struct net_generic; struct netns_ipvs; struct net { atomic_t passive ; atomic_t count ; spinlock_t rules_mod_lock ; struct list_head list ; struct list_head cleanup_list ; struct list_head exit_list ; struct user_namespace *user_ns ; unsigned int proc_inum ; struct proc_dir_entry *proc_net ; struct proc_dir_entry *proc_net_stat ; struct ctl_table_set sysctls ; struct sock *rtnl ; struct sock *genl_sock ; struct list_head dev_base_head ; struct hlist_head *dev_name_head ; struct hlist_head *dev_index_head ; unsigned int dev_base_seq ; int ifindex ; unsigned int dev_unreg_count ; struct list_head rules_ops ; struct net_device *loopback_dev ; struct netns_core core ; struct netns_mib mib ; struct netns_packet packet ; struct netns_unix unx ; struct netns_ipv4 ipv4 ; struct netns_ipv6 ipv6 ; struct netns_sctp sctp ; struct netns_dccp dccp ; struct netns_nf nf ; struct netns_xt xt ; struct netns_ct ct ; struct netns_nftables nft ; struct netns_nf_frag nf_frag ; struct sock *nfnl ; struct sock *nfnl_stash ; struct sk_buff_head wext_nlevents ; struct net_generic *gen ; struct netns_xfrm xfrm ; struct netns_ipvs *ipvs ; struct sock *diag_nlsk ; atomic_t fnhe_genid ; }; struct dsa_chip_data { struct device *mii_bus ; int sw_addr ; char *port_names[12U] ; s8 *rtable ; }; struct dsa_platform_data { struct device *netdev ; int nr_chips ; struct dsa_chip_data *chip ; }; struct dsa_switch; struct dsa_switch_tree { struct dsa_platform_data *pd ; struct net_device *master_netdev ; __be16 tag_protocol ; s8 cpu_switch ; s8 cpu_port ; int link_poll_needed ; struct work_struct link_poll_work ; struct timer_list link_poll_timer ; struct dsa_switch *ds[4U] ; }; struct dsa_switch_driver; struct mii_bus; struct dsa_switch { struct dsa_switch_tree *dst ; int index ; struct dsa_chip_data *pd ; struct dsa_switch_driver *drv ; struct mii_bus *master_mii_bus ; u32 dsa_port_mask ; u32 phys_port_mask ; struct mii_bus *slave_mii_bus ; struct net_device *ports[12U] ; }; struct dsa_switch_driver { struct list_head list ; __be16 tag_protocol ; int priv_size ; char *(*probe)(struct mii_bus * , int ) ; int (*setup)(struct dsa_switch * ) ; int (*set_addr)(struct dsa_switch * , u8 * ) ; int (*phy_read)(struct dsa_switch * , int , int ) ; int (*phy_write)(struct dsa_switch * , int , int , u16 ) ; void (*poll_link)(struct dsa_switch * ) ; void (*get_strings)(struct dsa_switch * , int , uint8_t * ) ; void (*get_ethtool_stats)(struct dsa_switch * , int , uint64_t * ) ; int (*get_sset_count)(struct dsa_switch * ) ; }; struct ieee_ets { __u8 willing ; __u8 ets_cap ; __u8 cbs ; __u8 tc_tx_bw[8U] ; __u8 tc_rx_bw[8U] ; __u8 tc_tsa[8U] ; __u8 prio_tc[8U] ; __u8 tc_reco_bw[8U] ; __u8 tc_reco_tsa[8U] ; __u8 reco_prio_tc[8U] ; }; struct ieee_maxrate { __u64 tc_maxrate[8U] ; }; struct ieee_pfc { __u8 pfc_cap ; __u8 pfc_en ; __u8 mbc ; __u16 delay ; __u64 requests[8U] ; __u64 indications[8U] ; }; struct cee_pg { __u8 willing ; __u8 error ; __u8 pg_en ; __u8 tcs_supported ; __u8 pg_bw[8U] ; __u8 prio_pg[8U] ; }; struct cee_pfc { __u8 willing ; __u8 error ; __u8 pfc_en ; __u8 tcs_supported ; }; struct dcb_app { __u8 selector ; __u8 priority ; __u16 protocol ; }; struct dcb_peer_app_info { __u8 willing ; __u8 error ; }; struct dcbnl_rtnl_ops { int (*ieee_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_setets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_getmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_setmaxrate)(struct net_device * , struct ieee_maxrate * ) ; int (*ieee_getpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_setpfc)(struct net_device * , struct ieee_pfc * ) ; int (*ieee_getapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_setapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_delapp)(struct net_device * , struct dcb_app * ) ; int (*ieee_peer_getets)(struct net_device * , struct ieee_ets * ) ; int (*ieee_peer_getpfc)(struct net_device * , struct ieee_pfc * ) ; u8 (*getstate)(struct net_device * ) ; u8 (*setstate)(struct net_device * , u8 ) ; void (*getpermhwaddr)(struct net_device * , u8 * ) ; void (*setpgtccfgtx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgtx)(struct net_device * , int , u8 ) ; void (*setpgtccfgrx)(struct net_device * , int , u8 , u8 , u8 , u8 ) ; void (*setpgbwgcfgrx)(struct net_device * , int , u8 ) ; void (*getpgtccfgtx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgtx)(struct net_device * , int , u8 * ) ; void (*getpgtccfgrx)(struct net_device * , int , u8 * , u8 * , u8 * , u8 * ) ; void (*getpgbwgcfgrx)(struct net_device * , int , u8 * ) ; void (*setpfccfg)(struct net_device * , int , u8 ) ; void (*getpfccfg)(struct net_device * , int , u8 * ) ; u8 (*setall)(struct net_device * ) ; u8 (*getcap)(struct net_device * , int , u8 * ) ; int (*getnumtcs)(struct net_device * , int , u8 * ) ; int (*setnumtcs)(struct net_device * , int , u8 ) ; u8 (*getpfcstate)(struct net_device * ) ; void (*setpfcstate)(struct net_device * , u8 ) ; void (*getbcncfg)(struct net_device * , int , u32 * ) ; void (*setbcncfg)(struct net_device * , int , u32 ) ; void (*getbcnrp)(struct net_device * , int , u8 * ) ; void (*setbcnrp)(struct net_device * , int , u8 ) ; u8 (*setapp)(struct net_device * , u8 , u16 , u8 ) ; u8 (*getapp)(struct net_device * , u8 , u16 ) ; u8 (*getfeatcfg)(struct net_device * , int , u8 * ) ; u8 (*setfeatcfg)(struct net_device * , int , u8 ) ; u8 (*getdcbx)(struct net_device * ) ; u8 (*setdcbx)(struct net_device * , u8 ) ; int (*peer_getappinfo)(struct net_device * , struct dcb_peer_app_info * , u16 * ) ; int (*peer_getapptable)(struct net_device * , struct dcb_app * ) ; int (*cee_peer_getpg)(struct net_device * , struct cee_pg * ) ; int (*cee_peer_getpfc)(struct net_device * , struct cee_pfc * ) ; }; struct taskstats { __u16 version ; __u32 ac_exitcode ; __u8 ac_flag ; __u8 ac_nice ; __u64 cpu_count ; __u64 cpu_delay_total ; __u64 blkio_count ; __u64 blkio_delay_total ; __u64 swapin_count ; __u64 swapin_delay_total ; __u64 cpu_run_real_total ; __u64 cpu_run_virtual_total ; char ac_comm[32U] ; __u8 ac_sched ; __u8 ac_pad[3U] ; __u32 ac_uid ; __u32 ac_gid ; __u32 ac_pid ; __u32 ac_ppid ; __u32 ac_btime ; __u64 ac_etime ; __u64 ac_utime ; __u64 ac_stime ; __u64 ac_minflt ; __u64 ac_majflt ; __u64 coremem ; __u64 virtmem ; __u64 hiwater_rss ; __u64 hiwater_vm ; __u64 read_char ; __u64 write_char ; __u64 read_syscalls ; __u64 write_syscalls ; __u64 read_bytes ; __u64 write_bytes ; __u64 cancelled_write_bytes ; __u64 nvcsw ; __u64 nivcsw ; __u64 ac_utimescaled ; __u64 ac_stimescaled ; __u64 cpu_scaled_run_real_total ; __u64 freepages_count ; __u64 freepages_delay_total ; }; struct xattr_handler { char const *prefix ; int flags ; size_t (*list)(struct dentry * , char * , size_t , char const * , size_t , int ) ; int (*get)(struct dentry * , char const * , void * , size_t , int ) ; int (*set)(struct dentry * , char const * , void const * , size_t , int , int ) ; }; struct simple_xattrs { struct list_head head ; spinlock_t lock ; }; struct percpu_ref; typedef void percpu_ref_func_t(struct percpu_ref * ); struct percpu_ref { atomic_t count ; unsigned int *pcpu_count ; percpu_ref_func_t *release ; percpu_ref_func_t *confirm_kill ; struct callback_head rcu ; }; struct cgroupfs_root; struct cgroup_subsys; struct cgroup; struct cgroup_subsys_state { struct cgroup *cgroup ; struct cgroup_subsys *ss ; struct percpu_ref refcnt ; struct cgroup_subsys_state *parent ; unsigned long flags ; struct callback_head callback_head ; struct work_struct destroy_work ; }; struct cgroup_name { struct callback_head callback_head ; char name[] ; }; struct cgroup { unsigned long flags ; int id ; int nr_css ; struct list_head sibling ; struct list_head children ; struct list_head files ; struct cgroup *parent ; struct dentry *dentry ; u64 serial_nr ; struct cgroup_name *name ; struct cgroup_subsys_state *subsys[12U] ; struct cgroupfs_root *root ; struct list_head cset_links ; struct list_head release_list ; struct list_head pidlists ; struct mutex pidlist_mutex ; struct cgroup_subsys_state dummy_css ; struct callback_head callback_head ; struct work_struct destroy_work ; struct simple_xattrs xattrs ; }; struct cgroupfs_root { struct super_block *sb ; unsigned long subsys_mask ; int hierarchy_id ; struct cgroup top_cgroup ; int number_of_cgroups ; struct list_head root_list ; unsigned long flags ; struct idr cgroup_idr ; char release_agent_path[4096U] ; char name[64U] ; }; struct css_set { atomic_t refcount ; struct hlist_node hlist ; struct list_head tasks ; struct list_head cgrp_links ; struct cgroup_subsys_state *subsys[12U] ; struct callback_head callback_head ; }; struct cftype { char name[64U] ; int private ; umode_t mode ; size_t max_write_len ; unsigned int flags ; struct cgroup_subsys *ss ; u64 (*read_u64)(struct cgroup_subsys_state * , struct cftype * ) ; s64 (*read_s64)(struct cgroup_subsys_state * , struct cftype * ) ; int (*seq_show)(struct seq_file * , void * ) ; void *(*seq_start)(struct seq_file * , loff_t * ) ; void *(*seq_next)(struct seq_file * , void * , loff_t * ) ; void (*seq_stop)(struct seq_file * , void * ) ; int (*write_u64)(struct cgroup_subsys_state * , struct cftype * , u64 ) ; int (*write_s64)(struct cgroup_subsys_state * , struct cftype * , s64 ) ; int (*write_string)(struct cgroup_subsys_state * , struct cftype * , char const * ) ; int (*trigger)(struct cgroup_subsys_state * , unsigned int ) ; }; struct cftype_set { struct list_head node ; struct cftype *cfts ; }; struct cgroup_taskset; struct cgroup_subsys { struct cgroup_subsys_state *(*css_alloc)(struct cgroup_subsys_state * ) ; int (*css_online)(struct cgroup_subsys_state * ) ; void (*css_offline)(struct cgroup_subsys_state * ) ; void (*css_free)(struct cgroup_subsys_state * ) ; int (*can_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*cancel_attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*attach)(struct cgroup_subsys_state * , struct cgroup_taskset * ) ; void (*fork)(struct task_struct * ) ; void (*exit)(struct cgroup_subsys_state * , struct cgroup_subsys_state * , struct task_struct * ) ; void (*bind)(struct cgroup_subsys_state * ) ; int subsys_id ; int disabled ; int early_init ; bool broken_hierarchy ; bool warned_broken_hierarchy ; char const *name ; struct cgroupfs_root *root ; struct list_head cftsets ; struct cftype *base_cftypes ; struct cftype_set base_cftset ; struct module *module ; }; enum irqreturn { IRQ_NONE = 0, IRQ_HANDLED = 1, IRQ_WAKE_THREAD = 2 } ; typedef enum irqreturn irqreturn_t; struct netprio_map { struct callback_head rcu ; u32 priomap_len ; u32 priomap[] ; }; struct xfrm_policy; struct xfrm_state; struct request_sock; struct mnt_namespace; struct ipc_namespace; struct nsproxy { atomic_t count ; struct uts_namespace *uts_ns ; struct ipc_namespace *ipc_ns ; struct mnt_namespace *mnt_ns ; struct pid_namespace *pid_ns_for_children ; struct net *net_ns ; }; struct nlmsghdr { __u32 nlmsg_len ; __u16 nlmsg_type ; __u16 nlmsg_flags ; __u32 nlmsg_seq ; __u32 nlmsg_pid ; }; struct nlattr { __u16 nla_len ; __u16 nla_type ; }; struct netlink_callback { struct sk_buff *skb ; struct nlmsghdr const *nlh ; int (*dump)(struct sk_buff * , struct netlink_callback * ) ; int (*done)(struct netlink_callback * ) ; void *data ; struct module *module ; u16 family ; u16 min_dump_alloc ; unsigned int prev_seq ; unsigned int seq ; long args[6U] ; }; struct ndmsg { __u8 ndm_family ; __u8 ndm_pad1 ; __u16 ndm_pad2 ; __s32 ndm_ifindex ; __u16 ndm_state ; __u8 ndm_flags ; __u8 ndm_type ; }; struct rtnl_link_stats64 { __u64 rx_packets ; __u64 tx_packets ; __u64 rx_bytes ; __u64 tx_bytes ; __u64 rx_errors ; __u64 tx_errors ; __u64 rx_dropped ; __u64 tx_dropped ; __u64 multicast ; __u64 collisions ; __u64 rx_length_errors ; __u64 rx_over_errors ; __u64 rx_crc_errors ; __u64 rx_frame_errors ; __u64 rx_fifo_errors ; __u64 rx_missed_errors ; __u64 tx_aborted_errors ; __u64 tx_carrier_errors ; __u64 tx_fifo_errors ; __u64 tx_heartbeat_errors ; __u64 tx_window_errors ; __u64 rx_compressed ; __u64 tx_compressed ; }; struct ifla_vf_info { __u32 vf ; __u8 mac[32U] ; __u32 vlan ; __u32 qos ; __u32 tx_rate ; __u32 spoofchk ; __u32 linkstate ; }; struct netpoll_info; struct phy_device; struct wireless_dev; enum netdev_tx { __NETDEV_TX_MIN = (-0x7FFFFFFF-1), NETDEV_TX_OK = 0, NETDEV_TX_BUSY = 16, NETDEV_TX_LOCKED = 32 } ; typedef enum netdev_tx netdev_tx_t; struct net_device_stats { unsigned long rx_packets ; unsigned long tx_packets ; unsigned long rx_bytes ; unsigned long tx_bytes ; unsigned long rx_errors ; unsigned long tx_errors ; unsigned long rx_dropped ; unsigned long tx_dropped ; unsigned long multicast ; unsigned long collisions ; unsigned long rx_length_errors ; unsigned long rx_over_errors ; unsigned long rx_crc_errors ; unsigned long rx_frame_errors ; unsigned long rx_fifo_errors ; unsigned long rx_missed_errors ; unsigned long tx_aborted_errors ; unsigned long tx_carrier_errors ; unsigned long tx_fifo_errors ; unsigned long tx_heartbeat_errors ; unsigned long tx_window_errors ; unsigned long rx_compressed ; unsigned long tx_compressed ; }; struct neigh_parms; struct netdev_hw_addr { struct list_head list ; unsigned char addr[32U] ; unsigned char type ; bool global_use ; int sync_cnt ; int refcount ; int synced ; struct callback_head callback_head ; }; struct netdev_hw_addr_list { struct list_head list ; int count ; }; struct hh_cache { u16 hh_len ; u16 __pad ; seqlock_t hh_lock ; unsigned long hh_data[16U] ; }; struct header_ops { int (*create)(struct sk_buff * , struct net_device * , unsigned short , void const * , void const * , unsigned int ) ; int (*parse)(struct sk_buff const * , unsigned char * ) ; int (*rebuild)(struct sk_buff * ) ; int (*cache)(struct neighbour const * , struct hh_cache * , __be16 ) ; void (*cache_update)(struct hh_cache * , struct net_device const * , unsigned char const * ) ; }; struct napi_struct { struct list_head poll_list ; unsigned long state ; int weight ; unsigned int gro_count ; int (*poll)(struct napi_struct * , int ) ; spinlock_t poll_lock ; int poll_owner ; struct net_device *dev ; struct sk_buff *gro_list ; struct sk_buff *skb ; struct list_head dev_list ; struct hlist_node napi_hash_node ; unsigned int napi_id ; }; enum gro_result { GRO_MERGED = 0, GRO_MERGED_FREE = 1, GRO_HELD = 2, GRO_NORMAL = 3, GRO_DROP = 4 } ; typedef enum gro_result gro_result_t; enum rx_handler_result { RX_HANDLER_CONSUMED = 0, RX_HANDLER_ANOTHER = 1, RX_HANDLER_EXACT = 2, RX_HANDLER_PASS = 3 } ; typedef enum rx_handler_result rx_handler_result_t; typedef rx_handler_result_t rx_handler_func_t(struct sk_buff ** ); struct Qdisc; struct netdev_queue { struct net_device *dev ; struct Qdisc *qdisc ; struct Qdisc *qdisc_sleeping ; struct kobject kobj ; int numa_node ; spinlock_t _xmit_lock ; int xmit_lock_owner ; unsigned long trans_start ; unsigned long trans_timeout ; unsigned long state ; struct dql dql ; }; struct rps_map { unsigned int len ; struct callback_head rcu ; u16 cpus[0U] ; }; struct rps_dev_flow { u16 cpu ; u16 filter ; unsigned int last_qtail ; }; struct rps_dev_flow_table { unsigned int mask ; struct callback_head rcu ; struct rps_dev_flow flows[0U] ; }; struct netdev_rx_queue { struct rps_map *rps_map ; struct rps_dev_flow_table *rps_flow_table ; struct kobject kobj ; struct net_device *dev ; }; struct xps_map { unsigned int len ; unsigned int alloc_len ; struct callback_head rcu ; u16 queues[0U] ; }; struct xps_dev_maps { struct callback_head rcu ; struct xps_map *cpu_map[0U] ; }; struct netdev_tc_txq { u16 count ; u16 offset ; }; struct netdev_fcoe_hbainfo { char manufacturer[64U] ; char serial_number[64U] ; char hardware_version[64U] ; char driver_version[64U] ; char optionrom_version[64U] ; char firmware_version[64U] ; char model[256U] ; char model_description[256U] ; }; struct netdev_phys_port_id { unsigned char id[32U] ; unsigned char id_len ; }; struct net_device_ops { int (*ndo_init)(struct net_device * ) ; void (*ndo_uninit)(struct net_device * ) ; int (*ndo_open)(struct net_device * ) ; int (*ndo_stop)(struct net_device * ) ; netdev_tx_t (*ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; u16 (*ndo_select_queue)(struct net_device * , struct sk_buff * , void * , u16 (*)(struct net_device * , struct sk_buff * ) ) ; void (*ndo_change_rx_flags)(struct net_device * , int ) ; void (*ndo_set_rx_mode)(struct net_device * ) ; int (*ndo_set_mac_address)(struct net_device * , void * ) ; int (*ndo_validate_addr)(struct net_device * ) ; int (*ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; int (*ndo_set_config)(struct net_device * , struct ifmap * ) ; int (*ndo_change_mtu)(struct net_device * , int ) ; int (*ndo_neigh_setup)(struct net_device * , struct neigh_parms * ) ; void (*ndo_tx_timeout)(struct net_device * ) ; struct rtnl_link_stats64 *(*ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; struct net_device_stats *(*ndo_get_stats)(struct net_device * ) ; int (*ndo_vlan_rx_add_vid)(struct net_device * , __be16 , u16 ) ; int (*ndo_vlan_rx_kill_vid)(struct net_device * , __be16 , u16 ) ; void (*ndo_poll_controller)(struct net_device * ) ; int (*ndo_netpoll_setup)(struct net_device * , struct netpoll_info * , gfp_t ) ; void (*ndo_netpoll_cleanup)(struct net_device * ) ; int (*ndo_busy_poll)(struct napi_struct * ) ; int (*ndo_set_vf_mac)(struct net_device * , int , u8 * ) ; int (*ndo_set_vf_vlan)(struct net_device * , int , u16 , u8 ) ; int (*ndo_set_vf_tx_rate)(struct net_device * , int , int ) ; int (*ndo_set_vf_spoofchk)(struct net_device * , int , bool ) ; int (*ndo_get_vf_config)(struct net_device * , int , struct ifla_vf_info * ) ; int (*ndo_set_vf_link_state)(struct net_device * , int , int ) ; int (*ndo_set_vf_port)(struct net_device * , int , struct nlattr ** ) ; int (*ndo_get_vf_port)(struct net_device * , int , struct sk_buff * ) ; int (*ndo_setup_tc)(struct net_device * , u8 ) ; int (*ndo_fcoe_enable)(struct net_device * ) ; int (*ndo_fcoe_disable)(struct net_device * ) ; int (*ndo_fcoe_ddp_setup)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_ddp_done)(struct net_device * , u16 ) ; int (*ndo_fcoe_ddp_target)(struct net_device * , u16 , struct scatterlist * , unsigned int ) ; int (*ndo_fcoe_get_hbainfo)(struct net_device * , struct netdev_fcoe_hbainfo * ) ; int (*ndo_fcoe_get_wwn)(struct net_device * , u64 * , int ) ; int (*ndo_rx_flow_steer)(struct net_device * , struct sk_buff const * , u16 , u32 ) ; int (*ndo_add_slave)(struct net_device * , struct net_device * ) ; int (*ndo_del_slave)(struct net_device * , struct net_device * ) ; netdev_features_t (*ndo_fix_features)(struct net_device * , netdev_features_t ) ; int (*ndo_set_features)(struct net_device * , netdev_features_t ) ; int (*ndo_neigh_construct)(struct neighbour * ) ; void (*ndo_neigh_destroy)(struct neighbour * ) ; int (*ndo_fdb_add)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * , u16 ) ; int (*ndo_fdb_del)(struct ndmsg * , struct nlattr ** , struct net_device * , unsigned char const * ) ; int (*ndo_fdb_dump)(struct sk_buff * , struct netlink_callback * , struct net_device * , int ) ; int (*ndo_bridge_setlink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_bridge_getlink)(struct sk_buff * , u32 , u32 , struct net_device * , u32 ) ; int (*ndo_bridge_dellink)(struct net_device * , struct nlmsghdr * ) ; int (*ndo_change_carrier)(struct net_device * , bool ) ; int (*ndo_get_phys_port_id)(struct net_device * , struct netdev_phys_port_id * ) ; void (*ndo_add_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void (*ndo_del_vxlan_port)(struct net_device * , sa_family_t , __be16 ) ; void *(*ndo_dfwd_add_station)(struct net_device * , struct net_device * ) ; void (*ndo_dfwd_del_station)(struct net_device * , void * ) ; netdev_tx_t (*ndo_dfwd_start_xmit)(struct sk_buff * , struct net_device * , void * ) ; }; enum ldv_28671 { NETREG_UNINITIALIZED = 0, NETREG_REGISTERED = 1, NETREG_UNREGISTERING = 2, NETREG_UNREGISTERED = 3, NETREG_RELEASED = 4, NETREG_DUMMY = 5 } ; enum ldv_28672 { RTNL_LINK_INITIALIZED = 0, RTNL_LINK_INITIALIZING = 1 } ; struct __anonstruct_adj_list_235 { struct list_head upper ; struct list_head lower ; }; struct __anonstruct_all_adj_list_236 { struct list_head upper ; struct list_head lower ; }; struct iw_handler_def; struct iw_public_data; struct forwarding_accel_ops; struct vlan_info; struct tipc_bearer; struct in_device; struct dn_dev; struct inet6_dev; struct cpu_rmap; struct pcpu_lstats; struct pcpu_sw_netstats; struct pcpu_dstats; struct pcpu_vstats; union __anonunion____missing_field_name_237 { void *ml_priv ; struct pcpu_lstats *lstats ; struct pcpu_sw_netstats *tstats ; struct pcpu_dstats *dstats ; struct pcpu_vstats *vstats ; }; struct garp_port; struct mrp_port; struct rtnl_link_ops; struct net_device { char name[16U] ; struct hlist_node name_hlist ; char *ifalias ; unsigned long mem_end ; unsigned long mem_start ; unsigned long base_addr ; int irq ; unsigned long state ; struct list_head dev_list ; struct list_head napi_list ; struct list_head unreg_list ; struct list_head close_list ; struct __anonstruct_adj_list_235 adj_list ; struct __anonstruct_all_adj_list_236 all_adj_list ; netdev_features_t features ; netdev_features_t hw_features ; netdev_features_t wanted_features ; netdev_features_t vlan_features ; netdev_features_t hw_enc_features ; netdev_features_t mpls_features ; int ifindex ; int iflink ; struct net_device_stats stats ; atomic_long_t rx_dropped ; struct iw_handler_def const *wireless_handlers ; struct iw_public_data *wireless_data ; struct net_device_ops const *netdev_ops ; struct ethtool_ops const *ethtool_ops ; struct forwarding_accel_ops const *fwd_ops ; struct header_ops const *header_ops ; unsigned int flags ; unsigned int priv_flags ; unsigned short gflags ; unsigned short padded ; unsigned char operstate ; unsigned char link_mode ; unsigned char if_port ; unsigned char dma ; unsigned int mtu ; unsigned short type ; unsigned short hard_header_len ; unsigned short needed_headroom ; unsigned short needed_tailroom ; unsigned char perm_addr[32U] ; unsigned char addr_assign_type ; unsigned char addr_len ; unsigned short neigh_priv_len ; unsigned short dev_id ; spinlock_t addr_list_lock ; struct netdev_hw_addr_list uc ; struct netdev_hw_addr_list mc ; struct netdev_hw_addr_list dev_addrs ; struct kset *queues_kset ; bool uc_promisc ; unsigned int promiscuity ; unsigned int allmulti ; struct vlan_info *vlan_info ; struct dsa_switch_tree *dsa_ptr ; struct tipc_bearer *tipc_ptr ; void *atalk_ptr ; struct in_device *ip_ptr ; struct dn_dev *dn_ptr ; struct inet6_dev *ip6_ptr ; void *ax25_ptr ; struct wireless_dev *ieee80211_ptr ; unsigned long last_rx ; unsigned char *dev_addr ; struct netdev_rx_queue *_rx ; unsigned int num_rx_queues ; unsigned int real_num_rx_queues ; rx_handler_func_t *rx_handler ; void *rx_handler_data ; struct netdev_queue *ingress_queue ; unsigned char broadcast[32U] ; struct netdev_queue *_tx ; unsigned int num_tx_queues ; unsigned int real_num_tx_queues ; struct Qdisc *qdisc ; unsigned long tx_queue_len ; spinlock_t tx_global_lock ; struct xps_dev_maps *xps_maps ; struct cpu_rmap *rx_cpu_rmap ; unsigned long trans_start ; int watchdog_timeo ; struct timer_list watchdog_timer ; int *pcpu_refcnt ; struct list_head todo_list ; struct hlist_node index_hlist ; struct list_head link_watch_list ; enum ldv_28671 reg_state : 8 ; bool dismantle ; enum ldv_28672 rtnl_link_state : 16 ; void (*destructor)(struct net_device * ) ; struct netpoll_info *npinfo ; struct net *nd_net ; union __anonunion____missing_field_name_237 __annonCompField74 ; struct garp_port *garp_port ; struct mrp_port *mrp_port ; struct device dev ; struct attribute_group const *sysfs_groups[4U] ; struct attribute_group const *sysfs_rx_queue_group ; struct rtnl_link_ops const *rtnl_link_ops ; unsigned int gso_max_size ; u16 gso_max_segs ; struct dcbnl_rtnl_ops const *dcbnl_ops ; u8 num_tc ; struct netdev_tc_txq tc_to_txq[16U] ; u8 prio_tc_map[16U] ; unsigned int fcoe_ddp_xid ; struct netprio_map *priomap ; struct phy_device *phydev ; struct lock_class_key *qdisc_tx_busylock ; int group ; struct pm_qos_request pm_qos_req ; }; struct pcpu_sw_netstats { u64 rx_packets ; u64 rx_bytes ; u64 tx_packets ; u64 tx_bytes ; struct u64_stats_sync syncp ; }; typedef unsigned long kernel_ulong_t; struct pci_device_id { __u32 vendor ; __u32 device ; __u32 subvendor ; __u32 subdevice ; __u32 class ; __u32 class_mask ; kernel_ulong_t driver_data ; }; struct acpi_device_id { __u8 id[9U] ; kernel_ulong_t driver_data ; }; struct of_device_id { char name[32U] ; char type[32U] ; char compatible[128U] ; void const *data ; }; struct platform_device_id { char name[20U] ; kernel_ulong_t driver_data ; }; struct hotplug_slot; struct pci_slot { struct pci_bus *bus ; struct list_head list ; struct hotplug_slot *hotplug ; unsigned char number ; struct kobject kobj ; }; typedef int pci_power_t; typedef unsigned int pci_channel_state_t; enum pci_channel_state { pci_channel_io_normal = 1, pci_channel_io_frozen = 2, pci_channel_io_perm_failure = 3 } ; typedef unsigned short pci_dev_flags_t; typedef unsigned short pci_bus_flags_t; struct pcie_link_state; struct pci_vpd; struct pci_sriov; struct pci_ats; struct pci_driver; union __anonunion____missing_field_name_241 { struct pci_sriov *sriov ; struct pci_dev *physfn ; }; struct pci_dev { struct list_head bus_list ; struct pci_bus *bus ; struct pci_bus *subordinate ; void *sysdata ; struct proc_dir_entry *procent ; struct pci_slot *slot ; unsigned int devfn ; unsigned short vendor ; unsigned short device ; unsigned short subsystem_vendor ; unsigned short subsystem_device ; unsigned int class ; u8 revision ; u8 hdr_type ; u8 pcie_cap ; u8 msi_cap ; u8 msix_cap ; u8 pcie_mpss : 3 ; u8 rom_base_reg ; u8 pin ; u16 pcie_flags_reg ; struct pci_driver *driver ; u64 dma_mask ; struct device_dma_parameters dma_parms ; pci_power_t current_state ; u8 pm_cap ; unsigned int pme_support : 5 ; unsigned int pme_interrupt : 1 ; unsigned int pme_poll : 1 ; unsigned int d1_support : 1 ; unsigned int d2_support : 1 ; unsigned int no_d1d2 : 1 ; unsigned int no_d3cold : 1 ; unsigned int d3cold_allowed : 1 ; unsigned int mmio_always_on : 1 ; unsigned int wakeup_prepared : 1 ; unsigned int runtime_d3cold : 1 ; unsigned int d3_delay ; unsigned int d3cold_delay ; struct pcie_link_state *link_state ; pci_channel_state_t error_state ; struct device dev ; int cfg_size ; unsigned int irq ; struct resource resource[17U] ; bool match_driver ; unsigned int transparent : 1 ; unsigned int multifunction : 1 ; unsigned int is_added : 1 ; unsigned int is_busmaster : 1 ; unsigned int no_msi : 1 ; unsigned int block_cfg_access : 1 ; unsigned int broken_parity_status : 1 ; unsigned int irq_reroute_variant : 2 ; unsigned int msi_enabled : 1 ; unsigned int msix_enabled : 1 ; unsigned int ari_enabled : 1 ; unsigned int is_managed : 1 ; unsigned int needs_freset : 1 ; unsigned int state_saved : 1 ; unsigned int is_physfn : 1 ; unsigned int is_virtfn : 1 ; unsigned int reset_fn : 1 ; unsigned int is_hotplug_bridge : 1 ; unsigned int __aer_firmware_first_valid : 1 ; unsigned int __aer_firmware_first : 1 ; unsigned int broken_intx_masking : 1 ; unsigned int io_window_1k : 1 ; pci_dev_flags_t dev_flags ; atomic_t enable_cnt ; u32 saved_config_space[16U] ; struct hlist_head saved_cap_space ; struct bin_attribute *rom_attr ; int rom_attr_enabled ; struct bin_attribute *res_attr[17U] ; struct bin_attribute *res_attr_wc[17U] ; struct list_head msi_list ; struct attribute_group const **msi_irq_groups ; struct pci_vpd *vpd ; union __anonunion____missing_field_name_241 __annonCompField75 ; struct pci_ats *ats ; phys_addr_t rom ; size_t romlen ; }; struct pci_ops; struct msi_chip; struct pci_bus { struct list_head node ; struct pci_bus *parent ; struct list_head children ; struct list_head devices ; struct pci_dev *self ; struct list_head slots ; struct resource *resource[4U] ; struct list_head resources ; struct resource busn_res ; struct pci_ops *ops ; struct msi_chip *msi ; void *sysdata ; struct proc_dir_entry *procdir ; unsigned char number ; unsigned char primary ; unsigned char max_bus_speed ; unsigned char cur_bus_speed ; char name[48U] ; unsigned short bridge_ctl ; pci_bus_flags_t bus_flags ; struct device *bridge ; struct device dev ; struct bin_attribute *legacy_io ; struct bin_attribute *legacy_mem ; unsigned int is_added : 1 ; }; struct pci_ops { int (*read)(struct pci_bus * , unsigned int , int , int , u32 * ) ; int (*write)(struct pci_bus * , unsigned int , int , int , u32 ) ; }; struct pci_dynids { spinlock_t lock ; struct list_head list ; }; typedef unsigned int pci_ers_result_t; struct pci_error_handlers { pci_ers_result_t (*error_detected)(struct pci_dev * , enum pci_channel_state ) ; pci_ers_result_t (*mmio_enabled)(struct pci_dev * ) ; pci_ers_result_t (*link_reset)(struct pci_dev * ) ; pci_ers_result_t (*slot_reset)(struct pci_dev * ) ; void (*resume)(struct pci_dev * ) ; }; struct pci_driver { struct list_head node ; char const *name ; struct pci_device_id const *id_table ; int (*probe)(struct pci_dev * , struct pci_device_id const * ) ; void (*remove)(struct pci_dev * ) ; int (*suspend)(struct pci_dev * , pm_message_t ) ; int (*suspend_late)(struct pci_dev * , pm_message_t ) ; int (*resume_early)(struct pci_dev * ) ; int (*resume)(struct pci_dev * ) ; void (*shutdown)(struct pci_dev * ) ; int (*sriov_configure)(struct pci_dev * , int ) ; struct pci_error_handlers const *err_handler ; struct device_driver driver ; struct pci_dynids dynids ; }; struct msix_entry { u32 vector ; u16 entry ; }; struct mfd_cell; struct platform_device { char const *name ; int id ; bool id_auto ; struct device dev ; u32 num_resources ; struct resource *resource ; struct platform_device_id const *id_entry ; struct mfd_cell *mfd_cell ; struct pdev_archdata archdata ; }; struct platform_driver { int (*probe)(struct platform_device * ) ; int (*remove)(struct platform_device * ) ; void (*shutdown)(struct platform_device * ) ; int (*suspend)(struct platform_device * , pm_message_t ) ; int (*resume)(struct platform_device * ) ; struct device_driver driver ; struct platform_device_id const *id_table ; bool prevent_deferred_probe ; }; typedef __u64 Elf64_Addr; typedef __u16 Elf64_Half; typedef __u32 Elf64_Word; typedef __u64 Elf64_Xword; struct elf64_sym { Elf64_Word st_name ; unsigned char st_info ; unsigned char st_other ; Elf64_Half st_shndx ; Elf64_Addr st_value ; Elf64_Xword st_size ; }; typedef struct elf64_sym Elf64_Sym; struct kernel_param; struct kernel_param_ops { unsigned int flags ; int (*set)(char const * , struct kernel_param const * ) ; int (*get)(char * , struct kernel_param const * ) ; void (*free)(void * ) ; }; struct kparam_string; struct kparam_array; union __anonunion____missing_field_name_246 { void *arg ; struct kparam_string const *str ; struct kparam_array const *arr ; }; struct kernel_param { char const *name ; struct kernel_param_ops const *ops ; u16 perm ; s16 level ; union __anonunion____missing_field_name_246 __annonCompField76 ; }; struct kparam_string { unsigned int maxlen ; char *string ; }; struct kparam_array { unsigned int max ; unsigned int elemsize ; unsigned int *num ; struct kernel_param_ops const *ops ; void *elem ; }; struct tracepoint; struct tracepoint_func { void *func ; void *data ; }; struct tracepoint { char const *name ; struct static_key key ; void (*regfunc)(void) ; void (*unregfunc)(void) ; struct tracepoint_func *funcs ; }; struct mod_arch_specific { }; struct module_param_attrs; struct module_kobject { struct kobject kobj ; struct module *mod ; struct kobject *drivers_dir ; struct module_param_attrs *mp ; struct completion *kobj_completion ; }; struct module_attribute { struct attribute attr ; ssize_t (*show)(struct module_attribute * , struct module_kobject * , char * ) ; ssize_t (*store)(struct module_attribute * , struct module_kobject * , char const * , size_t ) ; void (*setup)(struct module * , char const * ) ; int (*test)(struct module * ) ; void (*free)(struct module * ) ; }; enum module_state { MODULE_STATE_LIVE = 0, MODULE_STATE_COMING = 1, MODULE_STATE_GOING = 2, MODULE_STATE_UNFORMED = 3 } ; struct module_ref { unsigned long incs ; unsigned long decs ; }; struct module_sect_attrs; struct module_notes_attrs; struct ftrace_event_call; struct module { enum module_state state ; struct list_head list ; char name[56U] ; struct module_kobject mkobj ; struct module_attribute *modinfo_attrs ; char const *version ; char const *srcversion ; struct kobject *holders_dir ; struct kernel_symbol const *syms ; unsigned long const *crcs ; unsigned int num_syms ; struct kernel_param *kp ; unsigned int num_kp ; unsigned int num_gpl_syms ; struct kernel_symbol const *gpl_syms ; unsigned long const *gpl_crcs ; struct kernel_symbol const *unused_syms ; unsigned long const *unused_crcs ; unsigned int num_unused_syms ; unsigned int num_unused_gpl_syms ; struct kernel_symbol const *unused_gpl_syms ; unsigned long const *unused_gpl_crcs ; bool sig_ok ; struct kernel_symbol const *gpl_future_syms ; unsigned long const *gpl_future_crcs ; unsigned int num_gpl_future_syms ; unsigned int num_exentries ; struct exception_table_entry *extable ; int (*init)(void) ; void *module_init ; void *module_core ; unsigned int init_size ; unsigned int core_size ; unsigned int init_text_size ; unsigned int core_text_size ; unsigned int init_ro_size ; unsigned int core_ro_size ; struct mod_arch_specific arch ; unsigned int taints ; unsigned int num_bugs ; struct list_head bug_list ; struct bug_entry *bug_table ; Elf64_Sym *symtab ; Elf64_Sym *core_symtab ; unsigned int num_symtab ; unsigned int core_num_syms ; char *strtab ; char *core_strtab ; struct module_sect_attrs *sect_attrs ; struct module_notes_attrs *notes_attrs ; char *args ; void *percpu ; unsigned int percpu_size ; unsigned int num_tracepoints ; struct tracepoint * const *tracepoints_ptrs ; struct jump_entry *jump_entries ; unsigned int num_jump_entries ; unsigned int num_trace_bprintk_fmt ; char const **trace_bprintk_fmt_start ; struct ftrace_event_call **trace_events ; unsigned int num_trace_events ; unsigned int num_ftrace_callsites ; unsigned long *ftrace_callsites ; struct list_head source_list ; struct list_head target_list ; void (*exit)(void) ; struct module_ref *refptr ; ctor_fn_t (**ctors)(void) ; unsigned int num_ctors ; }; struct mii_ioctl_data { __u16 phy_id ; __u16 reg_num ; __u16 val_in ; __u16 val_out ; }; struct iphdr { __u8 ihl : 4 ; __u8 version : 4 ; __u8 tos ; __be16 tot_len ; __be16 id ; __be16 frag_off ; __u8 ttl ; __u8 protocol ; __sum16 check ; __be32 saddr ; __be32 daddr ; }; struct res_counter { unsigned long long usage ; unsigned long long max_usage ; unsigned long long limit ; unsigned long long soft_limit ; unsigned long long failcnt ; spinlock_t lock ; struct res_counter *parent ; }; struct kioctx; typedef int kiocb_cancel_fn(struct kiocb * ); union __anonunion_ki_obj_251 { void *user ; struct task_struct *tsk ; }; struct eventfd_ctx; struct kiocb { struct file *ki_filp ; struct kioctx *ki_ctx ; kiocb_cancel_fn *ki_cancel ; void *private ; union __anonunion_ki_obj_251 ki_obj ; __u64 ki_user_data ; loff_t ki_pos ; size_t ki_nbytes ; struct list_head ki_list ; struct eventfd_ctx *ki_eventfd ; }; struct sock_filter { __u16 code ; __u8 jt ; __u8 jf ; __u32 k ; }; union __anonunion____missing_field_name_252 { struct sock_filter insns[0U] ; struct work_struct work ; }; struct sk_filter { atomic_t refcnt ; unsigned int len ; struct callback_head rcu ; unsigned int (*bpf_func)(struct sk_buff const * , struct sock_filter const * ) ; union __anonunion____missing_field_name_252 __annonCompField77 ; }; struct poll_table_struct { void (*_qproc)(struct file * , wait_queue_head_t * , struct poll_table_struct * ) ; unsigned long _key ; }; struct nla_policy { u16 type ; u16 len ; }; struct rtnl_link_ops { struct list_head list ; char const *kind ; size_t priv_size ; void (*setup)(struct net_device * ) ; int maxtype ; struct nla_policy const *policy ; int (*validate)(struct nlattr ** , struct nlattr ** ) ; int (*newlink)(struct net * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; int (*changelink)(struct net_device * , struct nlattr ** , struct nlattr ** ) ; void (*dellink)(struct net_device * , struct list_head * ) ; size_t (*get_size)(struct net_device const * ) ; int (*fill_info)(struct sk_buff * , struct net_device const * ) ; size_t (*get_xstats_size)(struct net_device const * ) ; int (*fill_xstats)(struct sk_buff * , struct net_device const * ) ; unsigned int (*get_num_tx_queues)(void) ; unsigned int (*get_num_rx_queues)(void) ; int slave_maxtype ; struct nla_policy const *slave_policy ; int (*slave_validate)(struct nlattr ** , struct nlattr ** ) ; int (*slave_changelink)(struct net_device * , struct net_device * , struct nlattr ** , struct nlattr ** ) ; size_t (*get_slave_size)(struct net_device const * , struct net_device const * ) ; int (*fill_slave_info)(struct sk_buff * , struct net_device const * , struct net_device const * ) ; }; struct neigh_table; struct neigh_parms { struct net *net ; struct net_device *dev ; struct neigh_parms *next ; int (*neigh_setup)(struct neighbour * ) ; void (*neigh_cleanup)(struct neighbour * ) ; struct neigh_table *tbl ; void *sysctl_table ; int dead ; atomic_t refcnt ; struct callback_head callback_head ; int reachable_time ; int data[12U] ; unsigned long data_state[1U] ; }; struct neigh_statistics { unsigned long allocs ; unsigned long destroys ; unsigned long hash_grows ; unsigned long res_failed ; unsigned long lookups ; unsigned long hits ; unsigned long rcv_probes_mcast ; unsigned long rcv_probes_ucast ; unsigned long periodic_gc_runs ; unsigned long forced_gc_runs ; unsigned long unres_discards ; }; struct neigh_ops; struct neighbour { struct neighbour *next ; struct neigh_table *tbl ; struct neigh_parms *parms ; unsigned long confirmed ; unsigned long updated ; rwlock_t lock ; atomic_t refcnt ; struct sk_buff_head arp_queue ; unsigned int arp_queue_len_bytes ; struct timer_list timer ; unsigned long used ; atomic_t probes ; __u8 flags ; __u8 nud_state ; __u8 type ; __u8 dead ; seqlock_t ha_lock ; unsigned char ha[32U] ; struct hh_cache hh ; int (*output)(struct neighbour * , struct sk_buff * ) ; struct neigh_ops const *ops ; struct callback_head rcu ; struct net_device *dev ; u8 primary_key[0U] ; }; struct neigh_ops { int family ; void (*solicit)(struct neighbour * , struct sk_buff * ) ; void (*error_report)(struct neighbour * , struct sk_buff * ) ; int (*output)(struct neighbour * , struct sk_buff * ) ; int (*connected_output)(struct neighbour * , struct sk_buff * ) ; }; struct pneigh_entry { struct pneigh_entry *next ; struct net *net ; struct net_device *dev ; u8 flags ; u8 key[0U] ; }; struct neigh_hash_table { struct neighbour **hash_buckets ; unsigned int hash_shift ; __u32 hash_rnd[4U] ; struct callback_head rcu ; }; struct neigh_table { struct neigh_table *next ; int family ; int entry_size ; int key_len ; __u32 (*hash)(void const * , struct net_device const * , __u32 * ) ; int (*constructor)(struct neighbour * ) ; int (*pconstructor)(struct pneigh_entry * ) ; void (*pdestructor)(struct pneigh_entry * ) ; void (*proxy_redo)(struct sk_buff * ) ; char *id ; struct neigh_parms parms ; int gc_interval ; int gc_thresh1 ; int gc_thresh2 ; int gc_thresh3 ; unsigned long last_flush ; struct delayed_work gc_work ; struct timer_list proxy_timer ; struct sk_buff_head proxy_queue ; atomic_t entries ; rwlock_t lock ; unsigned long last_rand ; struct neigh_statistics *stats ; struct neigh_hash_table *nht ; struct pneigh_entry **phash_buckets ; }; struct dn_route; union __anonunion____missing_field_name_254 { struct dst_entry *next ; struct rtable *rt_next ; struct rt6_info *rt6_next ; struct dn_route *dn_next ; }; struct dst_entry { struct callback_head callback_head ; struct dst_entry *child ; struct net_device *dev ; struct dst_ops *ops ; unsigned long _metrics ; unsigned long expires ; struct dst_entry *path ; struct dst_entry *from ; struct xfrm_state *xfrm ; int (*input)(struct sk_buff * ) ; int (*output)(struct sk_buff * ) ; unsigned short flags ; unsigned short pending_confirm ; short error ; short obsolete ; unsigned short header_len ; unsigned short trailer_len ; __u32 tclassid ; long __pad_to_align_refcnt[2U] ; atomic_t __refcnt ; int __use ; unsigned long lastuse ; union __anonunion____missing_field_name_254 __annonCompField78 ; }; struct __anonstruct_socket_lock_t_255 { spinlock_t slock ; int owned ; wait_queue_head_t wq ; struct lockdep_map dep_map ; }; typedef struct __anonstruct_socket_lock_t_255 socket_lock_t; struct proto; typedef __u32 __portpair; typedef __u64 __addrpair; struct __anonstruct____missing_field_name_257 { __be32 skc_daddr ; __be32 skc_rcv_saddr ; }; union __anonunion____missing_field_name_256 { __addrpair skc_addrpair ; struct __anonstruct____missing_field_name_257 __annonCompField79 ; }; union __anonunion____missing_field_name_258 { unsigned int skc_hash ; __u16 skc_u16hashes[2U] ; }; struct __anonstruct____missing_field_name_260 { __be16 skc_dport ; __u16 skc_num ; }; union __anonunion____missing_field_name_259 { __portpair skc_portpair ; struct __anonstruct____missing_field_name_260 __annonCompField82 ; }; union __anonunion____missing_field_name_261 { struct hlist_node skc_bind_node ; struct hlist_nulls_node skc_portaddr_node ; }; union __anonunion____missing_field_name_262 { struct hlist_node skc_node ; struct hlist_nulls_node skc_nulls_node ; }; struct sock_common { union __anonunion____missing_field_name_256 __annonCompField80 ; union __anonunion____missing_field_name_258 __annonCompField81 ; union __anonunion____missing_field_name_259 __annonCompField83 ; unsigned short skc_family ; unsigned char volatile skc_state ; unsigned char skc_reuse : 4 ; unsigned char skc_reuseport : 4 ; int skc_bound_dev_if ; union __anonunion____missing_field_name_261 __annonCompField84 ; struct proto *skc_prot ; struct net *skc_net ; struct in6_addr skc_v6_daddr ; struct in6_addr skc_v6_rcv_saddr ; int skc_dontcopy_begin[0U] ; union __anonunion____missing_field_name_262 __annonCompField85 ; int skc_tx_queue_mapping ; atomic_t skc_refcnt ; int skc_dontcopy_end[0U] ; }; struct cg_proto; struct __anonstruct_sk_backlog_263 { atomic_t rmem_alloc ; int len ; struct sk_buff *head ; struct sk_buff *tail ; }; struct sock { struct sock_common __sk_common ; socket_lock_t sk_lock ; struct sk_buff_head sk_receive_queue ; struct __anonstruct_sk_backlog_263 sk_backlog ; int sk_forward_alloc ; __u32 sk_rxhash ; unsigned int sk_napi_id ; unsigned int sk_ll_usec ; atomic_t sk_drops ; int sk_rcvbuf ; struct sk_filter *sk_filter ; struct socket_wq *sk_wq ; struct xfrm_policy *sk_policy[2U] ; unsigned long sk_flags ; struct dst_entry *sk_rx_dst ; struct dst_entry *sk_dst_cache ; spinlock_t sk_dst_lock ; atomic_t sk_wmem_alloc ; atomic_t sk_omem_alloc ; int sk_sndbuf ; struct sk_buff_head sk_write_queue ; unsigned int sk_shutdown : 2 ; unsigned int sk_no_check : 2 ; unsigned int sk_userlocks : 4 ; unsigned int sk_protocol : 8 ; unsigned int sk_type : 16 ; int sk_wmem_queued ; gfp_t sk_allocation ; u32 sk_pacing_rate ; u32 sk_max_pacing_rate ; netdev_features_t sk_route_caps ; netdev_features_t sk_route_nocaps ; int sk_gso_type ; unsigned int sk_gso_max_size ; u16 sk_gso_max_segs ; int sk_rcvlowat ; unsigned long sk_lingertime ; struct sk_buff_head sk_error_queue ; struct proto *sk_prot_creator ; rwlock_t sk_callback_lock ; int sk_err ; int sk_err_soft ; unsigned short sk_ack_backlog ; unsigned short sk_max_ack_backlog ; __u32 sk_priority ; __u32 sk_cgrp_prioidx ; struct pid *sk_peer_pid ; struct cred const *sk_peer_cred ; long sk_rcvtimeo ; long sk_sndtimeo ; void *sk_protinfo ; struct timer_list sk_timer ; ktime_t sk_stamp ; struct socket *sk_socket ; void *sk_user_data ; struct page_frag sk_frag ; struct sk_buff *sk_send_head ; __s32 sk_peek_off ; int sk_write_pending ; void *sk_security ; __u32 sk_mark ; u32 sk_classid ; struct cg_proto *sk_cgrp ; void (*sk_state_change)(struct sock * ) ; void (*sk_data_ready)(struct sock * , int ) ; void (*sk_write_space)(struct sock * ) ; void (*sk_error_report)(struct sock * ) ; int (*sk_backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*sk_destruct)(struct sock * ) ; }; struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct udp_table; union __anonunion_h_264 { struct inet_hashinfo *hashinfo ; struct udp_table *udp_table ; struct raw_hashinfo *raw_hash ; }; struct proto { void (*close)(struct sock * , long ) ; int (*connect)(struct sock * , struct sockaddr * , int ) ; int (*disconnect)(struct sock * , int ) ; struct sock *(*accept)(struct sock * , int , int * ) ; int (*ioctl)(struct sock * , int , unsigned long ) ; int (*init)(struct sock * ) ; void (*destroy)(struct sock * ) ; void (*shutdown)(struct sock * , int ) ; int (*setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_setsockopt)(struct sock * , int , int , char * , unsigned int ) ; int (*compat_getsockopt)(struct sock * , int , int , char * , int * ) ; int (*compat_ioctl)(struct sock * , unsigned int , unsigned long ) ; int (*sendmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t ) ; int (*recvmsg)(struct kiocb * , struct sock * , struct msghdr * , size_t , int , int , int * ) ; int (*sendpage)(struct sock * , struct page * , int , size_t , int ) ; int (*bind)(struct sock * , struct sockaddr * , int ) ; int (*backlog_rcv)(struct sock * , struct sk_buff * ) ; void (*release_cb)(struct sock * ) ; void (*mtu_reduced)(struct sock * ) ; void (*hash)(struct sock * ) ; void (*unhash)(struct sock * ) ; void (*rehash)(struct sock * ) ; int (*get_port)(struct sock * , unsigned short ) ; void (*clear_sk)(struct sock * , int ) ; unsigned int inuse_idx ; bool (*stream_memory_free)(struct sock const * ) ; void (*enter_memory_pressure)(struct sock * ) ; atomic_long_t *memory_allocated ; struct percpu_counter *sockets_allocated ; int *memory_pressure ; long *sysctl_mem ; int *sysctl_wmem ; int *sysctl_rmem ; int max_header ; bool no_autobind ; struct kmem_cache *slab ; unsigned int obj_size ; int slab_flags ; struct percpu_counter *orphan_count ; struct request_sock_ops *rsk_prot ; struct timewait_sock_ops *twsk_prot ; union __anonunion_h_264 h ; struct module *owner ; char name[32U] ; struct list_head node ; int (*init_cgroup)(struct mem_cgroup * , struct cgroup_subsys * ) ; void (*destroy_cgroup)(struct mem_cgroup * ) ; struct cg_proto *(*proto_cgroup)(struct mem_cgroup * ) ; }; struct cg_proto { struct res_counter memory_allocated ; struct percpu_counter sockets_allocated ; int memory_pressure ; long sysctl_mem[3U] ; unsigned long flags ; struct mem_cgroup *memcg ; }; struct request_sock_ops { int family ; int obj_size ; struct kmem_cache *slab ; char *slab_name ; int (*rtx_syn_ack)(struct sock * , struct request_sock * ) ; void (*send_ack)(struct sock * , struct sk_buff * , struct request_sock * ) ; void (*send_reset)(struct sock * , struct sk_buff * ) ; void (*destructor)(struct request_sock * ) ; void (*syn_ack_timeout)(struct sock * , struct request_sock * ) ; }; struct request_sock { struct sock_common __req_common ; struct request_sock *dl_next ; u16 mss ; u8 num_retrans ; u8 cookie_ts : 1 ; u8 num_timeout : 7 ; u32 window_clamp ; u32 rcv_wnd ; u32 ts_recent ; unsigned long expires ; struct request_sock_ops const *rsk_ops ; struct sock *sk ; u32 secid ; u32 peer_secid ; }; struct ipv6_devconf { __s32 forwarding ; __s32 hop_limit ; __s32 mtu6 ; __s32 accept_ra ; __s32 accept_redirects ; __s32 autoconf ; __s32 dad_transmits ; __s32 rtr_solicits ; __s32 rtr_solicit_interval ; __s32 rtr_solicit_delay ; __s32 force_mld_version ; __s32 mldv1_unsolicited_report_interval ; __s32 mldv2_unsolicited_report_interval ; __s32 use_tempaddr ; __s32 temp_valid_lft ; __s32 temp_prefered_lft ; __s32 regen_max_retry ; __s32 max_desync_factor ; __s32 max_addresses ; __s32 accept_ra_defrtr ; __s32 accept_ra_pinfo ; __s32 accept_ra_rtr_pref ; __s32 rtr_probe_interval ; __s32 accept_ra_rt_info_max_plen ; __s32 proxy_ndp ; __s32 accept_source_route ; __s32 optimistic_dad ; __s32 mc_forwarding ; __s32 disable_ipv6 ; __s32 accept_dad ; __s32 force_tllao ; __s32 ndisc_notify ; __s32 suppress_frag_ndisc ; void *sysctl ; }; struct timewait_sock_ops { struct kmem_cache *twsk_slab ; char *twsk_slab_name ; unsigned int twsk_obj_size ; int (*twsk_unique)(struct sock * , struct sock * , void * ) ; void (*twsk_destructor)(struct sock * ) ; }; struct tcphdr { __be16 source ; __be16 dest ; __be32 seq ; __be32 ack_seq ; __u16 res1 : 4 ; __u16 doff : 4 ; __u16 fin : 1 ; __u16 syn : 1 ; __u16 rst : 1 ; __u16 psh : 1 ; __u16 ack : 1 ; __u16 urg : 1 ; __u16 ece : 1 ; __u16 cwr : 1 ; __be16 window ; __sum16 check ; __be16 urg_ptr ; }; struct ip6_sf_list { struct ip6_sf_list *sf_next ; struct in6_addr sf_addr ; unsigned long sf_count[2U] ; unsigned char sf_gsresp ; unsigned char sf_oldin ; unsigned char sf_crcount ; }; struct ifmcaddr6 { struct in6_addr mca_addr ; struct inet6_dev *idev ; struct ifmcaddr6 *next ; struct ip6_sf_list *mca_sources ; struct ip6_sf_list *mca_tomb ; unsigned int mca_sfmode ; unsigned char mca_crcount ; unsigned long mca_sfcount[2U] ; struct timer_list mca_timer ; unsigned int mca_flags ; int mca_users ; atomic_t mca_refcnt ; spinlock_t mca_lock ; unsigned long mca_cstamp ; unsigned long mca_tstamp ; }; struct ifacaddr6 { struct in6_addr aca_addr ; struct inet6_dev *aca_idev ; struct rt6_info *aca_rt ; struct ifacaddr6 *aca_next ; int aca_users ; atomic_t aca_refcnt ; spinlock_t aca_lock ; unsigned long aca_cstamp ; unsigned long aca_tstamp ; }; struct ipv6_devstat { struct proc_dir_entry *proc_dir_entry ; struct ipstats_mib *ipv6[1U] ; struct icmpv6_mib_device *icmpv6dev ; struct icmpv6msg_mib_device *icmpv6msgdev ; }; struct inet6_dev { struct net_device *dev ; struct list_head addr_list ; struct ifmcaddr6 *mc_list ; struct ifmcaddr6 *mc_tomb ; spinlock_t mc_lock ; unsigned char mc_qrv ; unsigned char mc_gq_running ; unsigned char mc_ifc_count ; unsigned char mc_dad_count ; unsigned long mc_v1_seen ; unsigned long mc_qi ; unsigned long mc_qri ; unsigned long mc_maxdelay ; struct timer_list mc_gq_timer ; struct timer_list mc_ifc_timer ; struct timer_list mc_dad_timer ; struct ifacaddr6 *ac_list ; rwlock_t lock ; atomic_t refcnt ; __u32 if_flags ; int dead ; u8 rndid[8U] ; struct timer_list regen_timer ; struct list_head tempaddr_list ; struct in6_addr token ; struct neigh_parms *nd_parms ; struct ipv6_devconf cnf ; struct ipv6_devstat stats ; struct timer_list rs_timer ; __u8 rs_probes ; unsigned long tstamp ; struct callback_head rcu ; }; union __anonunion____missing_field_name_276 { __be32 a4 ; __be32 a6[4U] ; }; struct inetpeer_addr_base { union __anonunion____missing_field_name_276 __annonCompField86 ; }; struct inetpeer_addr { struct inetpeer_addr_base addr ; __u16 family ; }; union __anonunion____missing_field_name_277 { struct list_head gc_list ; struct callback_head gc_rcu ; }; struct __anonstruct____missing_field_name_279 { atomic_t rid ; atomic_t ip_id_count ; }; union __anonunion____missing_field_name_278 { struct __anonstruct____missing_field_name_279 __annonCompField88 ; struct callback_head rcu ; struct inet_peer *gc_next ; }; struct inet_peer { struct inet_peer *avl_left ; struct inet_peer *avl_right ; struct inetpeer_addr daddr ; __u32 avl_height ; u32 metrics[15U] ; u32 rate_tokens ; unsigned long rate_last ; union __anonunion____missing_field_name_277 __annonCompField87 ; union __anonunion____missing_field_name_278 __annonCompField89 ; __u32 dtime ; atomic_t refcnt ; }; struct inet_peer_base { struct inet_peer *root ; seqlock_t lock ; u32 flush_seq ; int total ; }; struct rtable { struct dst_entry dst ; int rt_genid ; unsigned int rt_flags ; __u16 rt_type ; __u8 rt_is_input ; __u8 rt_uses_gateway ; int rt_iif ; __be32 rt_gateway ; u32 rt_pmtu ; struct list_head rt_uncached ; }; struct inet_ehash_bucket { struct hlist_nulls_head chain ; }; struct inet_bind_hashbucket { spinlock_t lock ; struct hlist_head chain ; }; struct inet_listen_hashbucket { spinlock_t lock ; struct hlist_nulls_head head ; }; struct inet_hashinfo { struct inet_ehash_bucket *ehash ; spinlock_t *ehash_locks ; unsigned int ehash_mask ; unsigned int ehash_locks_mask ; struct inet_bind_hashbucket *bhash ; unsigned int bhash_size ; struct kmem_cache *bind_bucket_cachep ; struct inet_listen_hashbucket listening_hash[32U] ; atomic_t bsockets ; }; struct firmware { size_t size ; u8 const *data ; struct page **pages ; void *priv ; }; struct fcoe_capabilities { u32 capability1 ; u32 capability2 ; u32 capability3 ; u32 capability4 ; }; struct eth_stats_info { u8 version[12U] ; u8 mac_local[8U] ; u8 mac_add1[8U] ; u8 mac_add2[8U] ; u32 mtu_size ; u32 feature_flags ; u32 lso_max_size ; u32 lso_min_seg_cnt ; u32 ipv4_ofld_cnt ; u32 ipv6_ofld_cnt ; u32 promiscuous_mode ; u32 txq_size ; u32 rxq_size ; u32 txq_avg_depth ; u32 rxq_avg_depth ; u32 iov_offload ; u32 netq_cnt ; u32 vf_cnt ; }; struct fcoe_stats_info { u8 version[12U] ; u8 mac_local[8U] ; u8 mac_add1[8U] ; u8 mac_add2[8U] ; u32 qos_priority ; u32 txq_size ; u32 rxq_size ; u32 txq_avg_depth ; u32 rxq_avg_depth ; u32 rx_frames_lo ; u32 rx_frames_hi ; u32 rx_bytes_lo ; u32 rx_bytes_hi ; u32 tx_frames_lo ; u32 tx_frames_hi ; u32 tx_bytes_lo ; u32 tx_bytes_hi ; }; struct iscsi_stats_info { u8 version[12U] ; u8 mac_local[8U] ; u8 mac_add1[8U] ; u32 qos_priority ; u8 initiator_name[64U] ; u8 ww_port_name[64U] ; u8 boot_target_name[64U] ; u8 boot_target_ip[16U] ; u32 boot_target_portal ; u8 boot_init_ip[16U] ; u32 max_frame_size ; u32 txq_size ; u32 rxq_size ; u32 txq_avg_depth ; u32 rxq_avg_depth ; u32 rx_pdus_lo ; u32 rx_pdus_hi ; u32 rx_bytes_lo ; u32 rx_bytes_hi ; u32 tx_pdus_lo ; u32 tx_pdus_hi ; u32 tx_bytes_lo ; u32 tx_bytes_hi ; u32 pcp_prior_map_tbl ; }; union drv_info_to_mcp { struct eth_stats_info ether_stat ; struct fcoe_stats_info fcoe_stat ; struct iscsi_stats_info iscsi_stat ; }; struct kwqe { u32 kwqe_op_flag ; u32 kwqe_info0 ; u32 kwqe_info1 ; u32 kwqe_info2 ; u32 kwqe_info3 ; u32 kwqe_info4 ; u32 kwqe_info5 ; u32 kwqe_info6 ; }; struct kwqe_16 { u32 kwqe_info0 ; u32 kwqe_info1 ; u32 kwqe_info2 ; u32 kwqe_info3 ; }; struct cnic_ctl_completion { u32 cid ; u8 opcode ; u8 error ; }; union __anonunion_data_284 { struct cnic_ctl_completion comp ; char bytes[64U] ; }; struct cnic_ctl_info { int cmd ; union __anonunion_data_284 data ; }; struct drv_ctl_spq_credit { u32 credit_count ; }; struct drv_ctl_io { u32 cid_addr ; u32 offset ; u32 data ; dma_addr_t dma_addr ; }; struct drv_ctl_l2_ring { u32 client_id ; u32 cid ; }; struct drv_ctl_register_data { int ulp_type ; struct fcoe_capabilities fcoe_features ; }; union __anonunion_data_285 { struct drv_ctl_spq_credit credit ; struct drv_ctl_io io ; struct drv_ctl_l2_ring ring ; int ulp_type ; struct drv_ctl_register_data register_data ; char bytes[64U] ; }; struct drv_ctl_info { int cmd ; union __anonunion_data_285 data ; }; struct cnic_ops { struct module *cnic_owner ; int (*cnic_handler)(void * , void * ) ; int (*cnic_ctl)(void * , struct cnic_ctl_info * ) ; }; struct cnic_irq { unsigned int vector ; void *status_blk ; u32 status_blk_num ; u32 status_blk_num2 ; u32 irq_flags ; }; struct cnic_eth_dev { struct module *drv_owner ; u32 drv_state ; u32 chip_id ; u32 max_kwqe_pending ; struct pci_dev *pdev ; void *io_base ; void *io_base2 ; void const *iro_arr ; u32 ctx_tbl_offset ; u32 ctx_tbl_len ; int ctx_blk_size ; u32 starting_cid ; u32 max_iscsi_conn ; u32 max_fcoe_conn ; u32 max_rdma_conn ; u32 fcoe_init_cid ; u32 max_fcoe_exchanges ; u32 fcoe_wwn_port_name_hi ; u32 fcoe_wwn_port_name_lo ; u32 fcoe_wwn_node_name_hi ; u32 fcoe_wwn_node_name_lo ; u16 iscsi_l2_client_id ; u16 iscsi_l2_cid ; u8 iscsi_mac[6U] ; int num_irq ; struct cnic_irq irq_arr[8U] ; int (*drv_register_cnic)(struct net_device * , struct cnic_ops * , void * ) ; int (*drv_unregister_cnic)(struct net_device * ) ; int (*drv_submit_kwqes_32)(struct net_device * , struct kwqe ** , u32 ) ; int (*drv_submit_kwqes_16)(struct net_device * , struct kwqe_16 ** , u32 ) ; int (*drv_ctl)(struct net_device * , struct drv_ctl_info * ) ; unsigned long reserved1[2U] ; union drv_info_to_mcp *addr_drv_info_to_mcp ; }; struct bnx2_tx_bd { u32 tx_bd_haddr_hi ; u32 tx_bd_haddr_lo ; u32 tx_bd_mss_nbytes ; u32 tx_bd_vlan_tag_flags ; }; struct bnx2_rx_bd { u32 rx_bd_haddr_hi ; u32 rx_bd_haddr_lo ; u32 rx_bd_len ; u32 rx_bd_flags ; }; struct status_block { u32 status_attn_bits ; u32 status_attn_bits_ack ; u16 status_tx_quick_consumer_index1 ; u16 status_tx_quick_consumer_index0 ; u16 status_tx_quick_consumer_index3 ; u16 status_tx_quick_consumer_index2 ; u16 status_rx_quick_consumer_index1 ; u16 status_rx_quick_consumer_index0 ; u16 status_rx_quick_consumer_index3 ; u16 status_rx_quick_consumer_index2 ; u16 status_rx_quick_consumer_index5 ; u16 status_rx_quick_consumer_index4 ; u16 status_rx_quick_consumer_index7 ; u16 status_rx_quick_consumer_index6 ; u16 status_rx_quick_consumer_index9 ; u16 status_rx_quick_consumer_index8 ; u16 status_rx_quick_consumer_index11 ; u16 status_rx_quick_consumer_index10 ; u16 status_rx_quick_consumer_index13 ; u16 status_rx_quick_consumer_index12 ; u16 status_rx_quick_consumer_index15 ; u16 status_rx_quick_consumer_index14 ; u16 status_cmd_consumer_index ; u16 status_completion_producer_index ; u8 status_blk_num ; u8 status_unused ; u16 status_idx ; }; struct status_block_msix { u16 status_rx_quick_consumer_index ; u16 status_tx_quick_consumer_index ; u16 status_cmd_consumer_index ; u16 status_completion_producer_index ; u32 status_unused ; u8 status_blk_num ; u8 status_unused2 ; u16 status_idx ; }; struct statistics_block { u32 stat_IfHCInOctets_hi ; u32 stat_IfHCInOctets_lo ; u32 stat_IfHCInBadOctets_hi ; u32 stat_IfHCInBadOctets_lo ; u32 stat_IfHCOutOctets_hi ; u32 stat_IfHCOutOctets_lo ; u32 stat_IfHCOutBadOctets_hi ; u32 stat_IfHCOutBadOctets_lo ; u32 stat_IfHCInUcastPkts_hi ; u32 stat_IfHCInUcastPkts_lo ; u32 stat_IfHCInMulticastPkts_hi ; u32 stat_IfHCInMulticastPkts_lo ; u32 stat_IfHCInBroadcastPkts_hi ; u32 stat_IfHCInBroadcastPkts_lo ; u32 stat_IfHCOutUcastPkts_hi ; u32 stat_IfHCOutUcastPkts_lo ; u32 stat_IfHCOutMulticastPkts_hi ; u32 stat_IfHCOutMulticastPkts_lo ; u32 stat_IfHCOutBroadcastPkts_hi ; u32 stat_IfHCOutBroadcastPkts_lo ; u32 stat_emac_tx_stat_dot3statsinternalmactransmiterrors ; u32 stat_Dot3StatsCarrierSenseErrors ; u32 stat_Dot3StatsFCSErrors ; u32 stat_Dot3StatsAlignmentErrors ; u32 stat_Dot3StatsSingleCollisionFrames ; u32 stat_Dot3StatsMultipleCollisionFrames ; u32 stat_Dot3StatsDeferredTransmissions ; u32 stat_Dot3StatsExcessiveCollisions ; u32 stat_Dot3StatsLateCollisions ; u32 stat_EtherStatsCollisions ; u32 stat_EtherStatsFragments ; u32 stat_EtherStatsJabbers ; u32 stat_EtherStatsUndersizePkts ; u32 stat_EtherStatsOverrsizePkts ; u32 stat_EtherStatsPktsRx64Octets ; u32 stat_EtherStatsPktsRx65Octetsto127Octets ; u32 stat_EtherStatsPktsRx128Octetsto255Octets ; u32 stat_EtherStatsPktsRx256Octetsto511Octets ; u32 stat_EtherStatsPktsRx512Octetsto1023Octets ; u32 stat_EtherStatsPktsRx1024Octetsto1522Octets ; u32 stat_EtherStatsPktsRx1523Octetsto9022Octets ; u32 stat_EtherStatsPktsTx64Octets ; u32 stat_EtherStatsPktsTx65Octetsto127Octets ; u32 stat_EtherStatsPktsTx128Octetsto255Octets ; u32 stat_EtherStatsPktsTx256Octetsto511Octets ; u32 stat_EtherStatsPktsTx512Octetsto1023Octets ; u32 stat_EtherStatsPktsTx1024Octetsto1522Octets ; u32 stat_EtherStatsPktsTx1523Octetsto9022Octets ; u32 stat_XonPauseFramesReceived ; u32 stat_XoffPauseFramesReceived ; u32 stat_OutXonSent ; u32 stat_OutXoffSent ; u32 stat_FlowControlDone ; u32 stat_MacControlFramesReceived ; u32 stat_XoffStateEntered ; u32 stat_IfInFramesL2FilterDiscards ; u32 stat_IfInRuleCheckerDiscards ; u32 stat_IfInFTQDiscards ; u32 stat_IfInMBUFDiscards ; u32 stat_IfInRuleCheckerP4Hit ; u32 stat_CatchupInRuleCheckerDiscards ; u32 stat_CatchupInFTQDiscards ; u32 stat_CatchupInMBUFDiscards ; u32 stat_CatchupInRuleCheckerP4Hit ; u32 stat_GenStat00 ; u32 stat_GenStat01 ; u32 stat_GenStat02 ; u32 stat_GenStat03 ; u32 stat_GenStat04 ; u32 stat_GenStat05 ; u32 stat_GenStat06 ; u32 stat_GenStat07 ; u32 stat_GenStat08 ; u32 stat_GenStat09 ; u32 stat_GenStat10 ; u32 stat_GenStat11 ; u32 stat_GenStat12 ; u32 stat_GenStat13 ; u32 stat_GenStat14 ; u32 stat_GenStat15 ; u32 stat_FwRxDrop ; }; struct l2_fhdr { u32 l2_fhdr_status ; u32 l2_fhdr_hash ; u16 l2_fhdr_vlan_tag ; u16 l2_fhdr_pkt_len ; u16 l2_fhdr_tcp_udp_xsum ; u16 l2_fhdr_ip_xsum ; }; struct bnx2_sw_bd { u8 *data ; dma_addr_t mapping ; }; struct bnx2_sw_pg { struct page *page ; dma_addr_t mapping ; }; struct bnx2_sw_tx_bd { struct sk_buff *skb ; dma_addr_t mapping ; unsigned short is_gso ; unsigned short nr_frags ; }; struct flash_spec { u32 strapping ; u32 config1 ; u32 config2 ; u32 config3 ; u32 write1 ; u32 flags ; u32 page_bits ; u32 page_size ; u32 addr_mask ; u32 total_size ; u8 *name ; }; struct bnx2_irq { irqreturn_t (*handler)(int , void * ) ; unsigned int vector ; u8 requested ; char name[18U] ; }; struct bnx2_tx_ring_info { u32 tx_prod_bseq ; u16 tx_prod ; u32 tx_bidx_addr ; u32 tx_bseq_addr ; struct bnx2_tx_bd *tx_desc_ring ; struct bnx2_sw_tx_bd *tx_buf_ring ; u16 tx_cons ; u16 hw_tx_cons ; dma_addr_t tx_desc_mapping ; }; struct bnx2_rx_ring_info { u32 rx_prod_bseq ; u16 rx_prod ; u16 rx_cons ; u32 rx_bidx_addr ; u32 rx_bseq_addr ; u32 rx_pg_bidx_addr ; u16 rx_pg_prod ; u16 rx_pg_cons ; struct bnx2_sw_bd *rx_buf_ring ; struct bnx2_rx_bd *rx_desc_ring[8U] ; struct bnx2_sw_pg *rx_pg_ring ; struct bnx2_rx_bd *rx_pg_desc_ring[32U] ; dma_addr_t rx_desc_mapping[8U] ; dma_addr_t rx_pg_desc_mapping[32U] ; }; struct bnx2; union __anonunion_status_blk_288 { struct status_block *msi ; struct status_block_msix *msix ; }; struct bnx2_napi { struct napi_struct napi ; struct bnx2 *bp ; union __anonunion_status_blk_288 status_blk ; u16 *hw_tx_cons_ptr ; u16 *hw_rx_cons_ptr ; u32 last_status_idx ; u32 int_num ; u32 cnic_tag ; int cnic_present ; struct bnx2_rx_ring_info rx_ring ; struct bnx2_tx_ring_info tx_ring ; }; struct bnx2 { void *regview ; struct net_device *dev ; struct pci_dev *pdev ; atomic_t intr_sem ; u32 flags ; struct bnx2_napi bnx2_napi[9U] ; u32 rx_buf_use_size ; u32 rx_buf_size ; u32 rx_copy_thresh ; u32 rx_jumbo_thresh ; u32 rx_max_ring_idx ; u32 rx_max_pg_ring_idx ; int tx_ring_size ; u32 tx_wake_thresh ; struct cnic_ops *cnic_ops ; void *cnic_data ; unsigned int current_interval ; struct timer_list timer ; struct work_struct reset_task ; spinlock_t phy_lock ; spinlock_t indirect_lock ; u32 phy_flags ; u32 mii_bmcr ; u32 mii_bmsr ; u32 mii_bmsr1 ; u32 mii_adv ; u32 mii_lpa ; u32 mii_up1 ; u32 chip_id ; u32 phy_addr ; u32 phy_id ; u16 bus_speed_mhz ; u8 wol ; u8 pad ; u16 fw_wr_seq ; u16 fw_drv_pulse_wr_seq ; u32 fw_last_msg ; int rx_max_ring ; int rx_ring_size ; int rx_max_pg_ring ; int rx_pg_ring_size ; u16 tx_quick_cons_trip ; u16 tx_quick_cons_trip_int ; u16 rx_quick_cons_trip ; u16 rx_quick_cons_trip_int ; u16 comp_prod_trip ; u16 comp_prod_trip_int ; u16 tx_ticks ; u16 tx_ticks_int ; u16 com_ticks ; u16 com_ticks_int ; u16 cmd_ticks ; u16 cmd_ticks_int ; u16 rx_ticks ; u16 rx_ticks_int ; u32 stats_ticks ; dma_addr_t status_blk_mapping ; struct statistics_block *stats_blk ; struct statistics_block *temp_stats_blk ; dma_addr_t stats_blk_mapping ; int ctx_pages ; void *ctx_blk[4U] ; dma_addr_t ctx_blk_mapping[4U] ; u32 hc_cmd ; u32 rx_mode ; u16 req_line_speed ; u8 req_duplex ; u8 phy_port ; u8 link_up ; u16 line_speed ; u8 duplex ; u8 flow_ctrl ; u32 advertising ; u8 req_flow_ctrl ; u8 autoneg ; u8 loopback ; u8 serdes_an_pending ; u8 mac_addr[8U] ; u32 shmem_base ; char fw_version[32U] ; int pm_cap ; int pcix_cap ; struct flash_spec const *flash_info ; u32 flash_size ; int status_stats_size ; struct bnx2_irq irq_tbl[9U] ; int irq_nvecs ; u8 func ; u8 num_tx_rings ; u8 num_rx_rings ; int num_req_tx_rings ; int num_req_rx_rings ; u32 leds_save ; u32 idle_chk_status_idx ; struct mutex cnic_lock ; struct cnic_eth_dev cnic_eth_dev ; struct cnic_eth_dev *(*cnic_probe)(struct net_device * ) ; struct firmware const *mips_firmware ; struct firmware const *rv2p_firmware ; }; struct cpu_reg { u32 mode ; u32 mode_value_halt ; u32 mode_value_sstep ; u32 state ; u32 state_value_clear ; u32 gpr0 ; u32 evmask ; u32 pc ; u32 inst ; u32 bp ; u32 spad_base ; u32 mips_view_base ; }; struct bnx2_fw_file_section { __be32 addr ; __be32 len ; __be32 offset ; }; struct bnx2_mips_fw_file_entry { __be32 start_addr ; struct bnx2_fw_file_section text ; struct bnx2_fw_file_section data ; struct bnx2_fw_file_section rodata ; }; struct bnx2_rv2p_fw_file_entry { struct bnx2_fw_file_section rv2p ; __be32 fixup[8U] ; }; struct bnx2_mips_fw_file { struct bnx2_mips_fw_file_entry com ; struct bnx2_mips_fw_file_entry cp ; struct bnx2_mips_fw_file_entry rxp ; struct bnx2_mips_fw_file_entry tpat ; struct bnx2_mips_fw_file_entry txp ; }; struct bnx2_rv2p_fw_file { struct bnx2_rv2p_fw_file_entry proc1 ; struct bnx2_rv2p_fw_file_entry proc2 ; }; struct __anonstruct_board_info_289 { char *name ; }; struct __anonstruct_reg_tbl_292 { u16 offset ; u16 flags ; u32 rw_mask ; u32 ro_mask ; }; struct mem_entry { u32 offset ; u32 len ; }; struct ftq_reg { char *name ; u32 off ; }; struct __anonstruct_bnx2_stats_str_arr_294 { char string[32U] ; }; struct __anonstruct_bnx2_tests_str_arr_295 { char string[32U] ; }; struct ldv_struct_dummy_resourceless_instance_1 { struct net_device *arg0 ; int signal_pending ; }; struct ldv_struct_free_irq_8 { int arg0 ; int signal_pending ; }; struct ldv_struct_interrupt_instance_0 { int arg0 ; enum irqreturn (*arg1)(int , void * ) ; enum irqreturn (*arg2)(int , void * ) ; void *arg3 ; int signal_pending ; }; struct ldv_struct_pci_instance_2 { struct pci_driver *arg0 ; int signal_pending ; }; struct ldv_struct_platform_instance_4 { int signal_pending ; }; struct ldv_struct_timer_instance_5 { struct timer_list *arg0 ; int signal_pending ; }; typedef int ldv_func_ret_type___0; typedef int ldv_func_ret_type___1; typedef int ldv_func_ret_type___2; typedef int ldv_func_ret_type___3; typedef int ldv_func_ret_type___4; typedef int ldv_func_ret_type___5; typedef int ldv_func_ret_type___6; typedef struct net_device *ldv_func_ret_type___7; typedef int ldv_func_ret_type___8; typedef int ldv_func_ret_type___9; typedef int ldv_func_ret_type___10; typedef int ldv_func_ret_type___11; typedef int ldv_func_ret_type___12; struct device_private { void *driver_data ; }; enum hrtimer_restart; struct kthread_work; struct kthread_worker { spinlock_t lock ; struct list_head work_list ; struct task_struct *task ; struct kthread_work *current_work ; }; struct kthread_work { struct list_head node ; void (*func)(struct kthread_work * ) ; wait_queue_head_t done ; struct kthread_worker *worker ; }; struct spi_master; struct spi_device { struct device dev ; struct spi_master *master ; u32 max_speed_hz ; u8 chip_select ; u8 bits_per_word ; u16 mode ; int irq ; void *controller_state ; void *controller_data ; char modalias[32U] ; int cs_gpio ; }; struct spi_message; struct spi_transfer; struct spi_master { struct device dev ; struct list_head list ; s16 bus_num ; u16 num_chipselect ; u16 dma_alignment ; u16 mode_bits ; u32 bits_per_word_mask ; u32 min_speed_hz ; u32 max_speed_hz ; u16 flags ; spinlock_t bus_lock_spinlock ; struct mutex bus_lock_mutex ; bool bus_lock_flag ; int (*setup)(struct spi_device * ) ; int (*transfer)(struct spi_device * , struct spi_message * ) ; void (*cleanup)(struct spi_device * ) ; bool queued ; struct kthread_worker kworker ; struct task_struct *kworker_task ; struct kthread_work pump_messages ; spinlock_t queue_lock ; struct list_head queue ; struct spi_message *cur_msg ; bool busy ; bool running ; bool rt ; bool auto_runtime_pm ; bool cur_msg_prepared ; struct completion xfer_completion ; int (*prepare_transfer_hardware)(struct spi_master * ) ; int (*transfer_one_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_transfer_hardware)(struct spi_master * ) ; int (*prepare_message)(struct spi_master * , struct spi_message * ) ; int (*unprepare_message)(struct spi_master * , struct spi_message * ) ; void (*set_cs)(struct spi_device * , bool ) ; int (*transfer_one)(struct spi_master * , struct spi_device * , struct spi_transfer * ) ; int *cs_gpios ; }; struct spi_transfer { void const *tx_buf ; void *rx_buf ; unsigned int len ; dma_addr_t tx_dma ; dma_addr_t rx_dma ; unsigned int cs_change : 1 ; unsigned int tx_nbits : 3 ; unsigned int rx_nbits : 3 ; u8 bits_per_word ; u16 delay_usecs ; u32 speed_hz ; struct list_head transfer_list ; }; struct spi_message { struct list_head transfers ; struct spi_device *spi ; unsigned int is_dma_mapped : 1 ; void (*complete)(void * ) ; void *context ; unsigned int frame_length ; unsigned int actual_length ; int status ; struct list_head queue ; void *state ; }; struct ldv_thread_set { int number ; struct ldv_thread **threads ; }; struct ldv_thread { int identifier ; void (*function)(void * ) ; }; void __builtin_prefetch(void const * , ...) ; long ldv__builtin_expect(long exp , long c ) ; extern void ldv_initialize(void) ; int ldv_post_init(int init_ret_val ) ; extern void ldv_pre_probe(void) ; int ldv_post_probe(int probe_ret_val ) ; int ldv_filter_err_code(int ret_val ) ; extern int ldv_pre_register_netdev(void) ; void ldv_check_final_state(void) ; void ldv_assume(int expression ) ; void ldv_stop(void) ; void ldv_free(void *s ) ; void *ldv_xmalloc(size_t size ) ; void *ldv_malloc_unknown_size(void) ; int ldv_undef_int(void) ; void ldv_check_alloc_flags(gfp_t flags ) ; void ldv_check_alloc_nonatomic(void) ; extern void ldv_after_alloc(void * ) ; void *ldv_alloc_macro(gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } void *ldv_dev_get_drvdata(struct device const *dev ) ; int ldv_dev_set_drvdata(struct device *dev , void *data ) ; void *ldv_kzalloc(size_t size , gfp_t flags ) ; extern struct module __this_module ; __inline static void INIT_LIST_HEAD(struct list_head *list ) { { list->next = list; list->prev = list; return; } } extern struct pv_irq_ops pv_irq_ops ; __inline static void set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; bts %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr): "memory"); return; } } __inline static void clear_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; btr %1,%0": "+m" (*((long volatile *)addr)): "Ir" (nr)); return; } } __inline static int test_and_set_bit(long nr , unsigned long volatile *addr ) { { __asm__ volatile ("":); return (0); return (1); } } __inline static int constant_test_bit(long nr , unsigned long const volatile *addr ) { { return ((int )((unsigned long )*(addr + (unsigned long )(nr >> 6)) >> ((int )nr & 63)) & 1); } } __inline static int fls64(__u64 x ) { int bitpos ; { bitpos = -1; __asm__ ("bsrq %1,%q0": "+r" (bitpos): "rm" (x)); return (bitpos + 1); } } __inline static __u16 __fswab16(__u16 val ) { { return ((__u16 )((int )((short )((int )val << 8)) | (int )((short )((int )val >> 8)))); } } __inline static __u32 __fswab32(__u32 val ) { int tmp ; { { tmp = __builtin_bswap32(val); } return ((__u32 )tmp); } } __inline static unsigned int fls_long(unsigned long l ) { int tmp___0 ; { { tmp___0 = fls64((__u64 )l); } return ((unsigned int )tmp___0); } } __inline static unsigned long __rounddown_pow_of_two(unsigned long n ) { unsigned int tmp ; { { tmp = fls_long(n); } return (1UL << (int )(tmp - 1U)); } } extern int printk(char const * , ...) ; extern void __might_sleep(char const * , int , int ) ; extern int sprintf(char * , char const * , ...) ; extern int snprintf(char * , size_t , char const * , ...) ; extern enum system_states system_state ; extern void __bad_percpu_size(void) ; extern unsigned long __phys_addr(unsigned long ) ; extern void *memcpy(void * , void const * , size_t ) ; extern void *memset(void * , int , size_t ) ; extern int memcmp(void const * , void const * , size_t ) ; extern size_t strlen(char const * ) ; extern char *strcpy(char * , char const * ) ; extern size_t strlcpy(char * , char const * , size_t ) ; extern void warn_slowpath_null(char const * , int const ) ; __inline static unsigned long arch_local_save_flags(void) { unsigned long __ret ; unsigned long __edi ; unsigned long __esi ; unsigned long __edx ; unsigned long __ecx ; unsigned long __eax ; long tmp ; { { __edi = __edi; __esi = __esi; __edx = __edx; __ecx = __ecx; __eax = __eax; tmp = ldv__builtin_expect((unsigned long )pv_irq_ops.save_fl.func == (unsigned long )((void *)0), 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/dfaa16b/linux-alloc-spinlock/lkbce/arch/x86/include/asm/paravirt.h"), "i" (804), "i" (12UL)); __builtin_unreachable(); } } else { } __asm__ volatile ("771:\n\tcall *%c2;\n772:\n.pushsection .parainstructions,\"a\"\n .balign 8 \n .quad 771b\n .byte %c1\n .byte 772b-771b\n .short %c3\n.popsection\n": "=a" (__eax): [paravirt_typenum] "i" (44UL), [paravirt_opptr] "i" (& pv_irq_ops.save_fl.func), [paravirt_clobber] "i" (1): "memory", "cc"); __ret = __eax; return (__ret); } } __inline static int arch_irqs_disabled_flags(unsigned long flags ) { { return ((flags & 512UL) == 0UL); } } __inline static int atomic_read(atomic_t const *v ) { { return ((int )*((int volatile *)(& v->counter))); } } __inline static void atomic_set(atomic_t *v , int i ) { { v->counter = i; return; } } __inline static void atomic_inc(atomic_t *v ) { { __asm__ volatile (".pushsection .smp_locks,\"a\"\n.balign 4\n.long 671f - .\n.popsection\n671:\n\tlock; incl %0": "+m" (v->counter)); return; } } __inline static int atomic_dec_and_test(atomic_t *v ) { { __asm__ volatile ("":); return (0); return (1); } } extern void lockdep_init_map(struct lockdep_map * , char const * , struct lock_class_key * , int ) ; extern void lock_acquire(struct lockdep_map * , unsigned int , int , int , int , struct lockdep_map * , unsigned long ) ; extern void lock_release(struct lockdep_map * , int , unsigned long ) ; extern int lock_is_held(struct lockdep_map * ) ; extern void lockdep_rcu_suspicious(char const * , int const , char const * ) ; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) ; void ldv_spin_lock_indirect_lock_of_bnx2(void) ; void ldv_spin_unlock_indirect_lock_of_bnx2(void) ; void ldv_spin_lock_phy_lock_of_bnx2(void) ; void ldv_spin_unlock_phy_lock_of_bnx2(void) ; extern void ldv_switch_to_interrupt_context(void) ; extern void ldv_switch_to_process_context(void) ; extern void __mutex_init(struct mutex * , char const * , struct lock_class_key * ) ; extern void mutex_lock_nested(struct mutex * , unsigned int ) ; extern void mutex_unlock(struct mutex * ) ; extern int __preempt_count ; __inline static void __preempt_count_add(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (val)); } goto ldv_6622; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6622; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (val)); } goto ldv_6622; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (val)); } goto ldv_6622; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6622: ; return; } } __inline static void __preempt_count_sub(int val ) { int pao_ID__ ; { pao_ID__ = 0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incb %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decb %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addb %1, %%gs:%P0": "+m" (__preempt_count): "qi" (- val)); } goto ldv_6634; case_2: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incw %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decw %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addw %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6634; case_4: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incl %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decl %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addl %1, %%gs:%P0": "+m" (__preempt_count): "ri" (- val)); } goto ldv_6634; case_8: /* CIL Label */ ; if (pao_ID__ == 1) { __asm__ ("incq %%gs:%P0": "+m" (__preempt_count)); } else if (pao_ID__ == -1) { __asm__ ("decq %%gs:%P0": "+m" (__preempt_count)); } else { __asm__ ("addq %1, %%gs:%P0": "+m" (__preempt_count): "re" (- val)); } goto ldv_6634; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break: /* CIL Label */ ; } ldv_6634: ; return; } } extern void __local_bh_disable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_disable(void) { { { __local_bh_disable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __local_bh_enable_ip(unsigned long , unsigned int ) ; __inline static void local_bh_enable(void) { { { __local_bh_enable_ip((unsigned long )((void *)0), 512U); } return; } } extern void __raw_spin_lock_init(raw_spinlock_t * , char const * , struct lock_class_key * ) ; extern void _raw_spin_lock(raw_spinlock_t * ) ; extern void _raw_spin_lock_bh(raw_spinlock_t * ) ; extern void _raw_spin_unlock(raw_spinlock_t * ) ; extern void _raw_spin_unlock_bh(raw_spinlock_t * ) ; __inline static raw_spinlock_t *spinlock_check(spinlock_t *lock ) { { return (& lock->__annonCompField19.rlock); } } __inline static void spin_lock(spinlock_t *lock ) { { { _raw_spin_lock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_69(spinlock_t *lock ) ; __inline static void ldv_spin_lock_119(spinlock_t *lock ) ; __inline static void ldv_spin_lock_125(spinlock_t *lock ) ; __inline static void ldv_spin_lock_125(spinlock_t *lock ) ; __inline static void ldv_spin_lock_125(spinlock_t *lock ) ; __inline static void spin_lock_bh(spinlock_t *lock ) { { { _raw_spin_lock_bh(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_lock_bh_104(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_104(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_104(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_110(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_110(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_110(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_110(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_110(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_110(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_110(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_110(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_110(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_110(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_110(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_110(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_110(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_110(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_110(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_110(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_110(spinlock_t *lock ) ; __inline static void ldv_spin_lock_bh_110(spinlock_t *lock ) ; __inline static void spin_unlock(spinlock_t *lock ) { { { _raw_spin_unlock(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_72(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_120(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_126(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_126(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_126(spinlock_t *lock ) ; __inline static void spin_unlock_bh(spinlock_t *lock ) { { { _raw_spin_unlock_bh(& lock->__annonCompField19.rlock); } return; } } __inline static void ldv_spin_unlock_bh_105(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_105(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_105(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_111(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_111(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_111(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_111(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_111(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_111(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_111(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_111(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_111(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_111(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_111(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_111(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_111(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_111(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_111(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_111(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_111(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_111(spinlock_t *lock ) ; __inline static void ldv_spin_unlock_bh_111(spinlock_t *lock ) ; extern void synchronize_sched(void) ; __inline static void __rcu_read_lock(void) { { { __preempt_count_add(1); __asm__ volatile ("": : : "memory"); } return; } } __inline static void __rcu_read_unlock(void) { { { __asm__ volatile ("": : : "memory"); __preempt_count_sub(1); } return; } } __inline static void synchronize_rcu(void) { { { synchronize_sched(); } return; } } extern bool rcu_is_watching(void) ; extern bool rcu_lockdep_current_cpu_online(void) ; __inline static void rcu_lock_acquire(struct lockdep_map *map ) { { { lock_acquire(map, 0U, 0, 2, 1, (struct lockdep_map *)0, (unsigned long )((void *)0)); } return; } } __inline static void rcu_lock_release(struct lockdep_map *map ) { { { lock_release(map, 1, (unsigned long )((void *)0)); } return; } } extern struct lockdep_map rcu_lock_map ; extern int debug_lockdep_rcu_enabled(void) ; __inline static int rcu_read_lock_held(void) { int tmp ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; int tmp___3 ; int tmp___4 ; { { tmp = debug_lockdep_rcu_enabled(); } if (tmp == 0) { return (1); } else { } { tmp___0 = rcu_is_watching(); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (0); } else { } { tmp___2 = rcu_lockdep_current_cpu_online(); } if (tmp___2) { tmp___3 = 0; } else { tmp___3 = 1; } if (tmp___3) { return (0); } else { } { tmp___4 = lock_is_held(& rcu_lock_map); } return (tmp___4); } } __inline static void rcu_read_lock(void) { bool __warned ; int tmp ; bool tmp___0 ; int tmp___1 ; { { __rcu_read_lock(); rcu_lock_acquire(& rcu_lock_map); tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_is_watching(); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { __warned = 1; lockdep_rcu_suspicious("include/linux/rcupdate.h", 812, "rcu_read_lock() used illegally while idle"); } } else { } } else { } return; } } __inline static void rcu_read_unlock(void) { bool __warned ; int tmp ; bool tmp___0 ; int tmp___1 ; { { tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_is_watching(); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { { __warned = 1; lockdep_rcu_suspicious("include/linux/rcupdate.h", 833, "rcu_read_unlock() used illegally while idle"); } } else { } } else { } { rcu_lock_release(& rcu_lock_map); __rcu_read_unlock(); } return; } } extern unsigned long volatile jiffies ; extern void init_timer_key(struct timer_list * , unsigned int , char const * , struct lock_class_key * ) ; extern int mod_timer(struct timer_list * , unsigned long ) ; static int ldv_mod_timer_118(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_143(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_146(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; static int ldv_mod_timer_157(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) ; extern int del_timer_sync(struct timer_list * ) ; static int ldv_del_timer_sync_147(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_148(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_169(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_171(struct timer_list *ldv_func_arg1 ) ; static int ldv_del_timer_sync_172(struct timer_list *ldv_func_arg1 ) ; extern void __init_work(struct work_struct * , int ) ; extern struct workqueue_struct *system_wq ; extern bool queue_work_on(int , struct workqueue_struct * , struct work_struct * ) ; extern bool cancel_work_sync(struct work_struct * ) ; __inline static bool queue_work(struct workqueue_struct *wq , struct work_struct *work ) { bool tmp ; { { tmp = queue_work_on(8192, wq, work); } return (tmp); } } __inline static bool schedule_work(struct work_struct *work ) { bool tmp ; { { tmp = queue_work(system_wq, work); } return (tmp); } } __inline static char const *kobject_name(struct kobject const *kobj ) { { return ((char const *)kobj->name); } } __inline static unsigned int readl(void const volatile *addr ) { unsigned int ret ; { __asm__ volatile ("movl %1,%0": "=r" (ret): "m" (*((unsigned int volatile *)addr)): "memory"); return (ret); } } __inline static void writew(unsigned short val , void volatile *addr ) { { __asm__ volatile ("movw %0,%1": : "r" (val), "m" (*((unsigned short volatile *)addr)): "memory"); return; } } __inline static void writel(unsigned int val , void volatile *addr ) { { __asm__ volatile ("movl %0,%1": : "r" (val), "m" (*((unsigned int volatile *)addr)): "memory"); return; } } extern void pci_iounmap(struct pci_dev * , void * ) ; extern void *pci_iomap(struct pci_dev * , int , unsigned long ) ; static void *ldv_vzalloc_112(unsigned long ldv_func_arg1 ) ; static void *ldv_vzalloc_113(unsigned long ldv_func_arg1 ) ; extern void vfree(void const * ) ; extern int cpu_number ; extern void __bad_size_call_parameter(void) ; __inline static struct page *alloc_pages(gfp_t flags , unsigned int order ) ; extern void __free_pages(struct page * , unsigned int ) ; extern void device_set_wakeup_capable(struct device * , bool ) ; extern int device_set_wakeup_enable(struct device * , bool ) ; __inline static char const *dev_name(struct device const *dev ) { char const *tmp ; { if ((unsigned long )dev->init_name != (unsigned long )((char const */* const */)0)) { return ((char const *)dev->init_name); } else { } { tmp = kobject_name(& dev->kobj); } return (tmp); } } static void *ldv_dev_get_drvdata_81(struct device const *dev ) ; static int ldv_dev_set_drvdata_82(struct device *dev , void *data ) ; extern int dev_err(struct device const * , char const * , ...) ; extern void __const_udelay(unsigned long ) ; extern void msleep(unsigned int ) ; extern unsigned long msleep_interruptible(unsigned int ) ; __inline static int PageTail(struct page const *page ) { int tmp ; { { tmp = constant_test_bit(15L, (unsigned long const volatile *)(& page->flags)); } return (tmp); } } __inline static struct page *compound_head(struct page *page ) { struct page *head ; int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp___1 = PageTail((struct page const *)page); tmp___2 = ldv__builtin_expect(tmp___1 != 0, 0L); } if (tmp___2 != 0L) { { head = page->__annonCompField46.first_page; __asm__ volatile ("": : : "memory"); tmp = PageTail((struct page const *)page); tmp___0 = ldv__builtin_expect(tmp != 0, 1L); } if (tmp___0 != 0L) { return (head); } else { } } else { } return (page); } } __inline static void *lowmem_page_address(struct page const *page ) { { return ((void *)((unsigned long )((unsigned long long )(((long )page + 24189255811072L) / 64L) << 12) + 0xffff880000000000UL)); } } __inline static void dql_queued(struct dql *dql , unsigned int count ) { long tmp ; { { tmp = ldv__builtin_expect(count > 268435455U, 0L); } if (tmp != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/dynamic_queue_limits.h"), "i" (74), "i" (12UL)); __builtin_unreachable(); } } else { } dql->num_queued = dql->num_queued + count; dql->last_obj_cnt = count; return; } } __inline static int dql_avail(struct dql const *dql ) { { return ((int )((unsigned int )dql->adj_limit - (unsigned int )dql->num_queued)); } } extern void dql_completed(struct dql * , unsigned int ) ; extern void dql_reset(struct dql * ) ; __inline static void kmemcheck_mark_initialized(void *address , unsigned int n ) { { return; } } extern void kfree(void const * ) ; __inline static void *kmalloc(size_t size , gfp_t flags ) ; __inline static void *kzalloc(size_t size , gfp_t flags ) ; __inline static int valid_dma_direction(int dma_direction ) { { return ((unsigned int )dma_direction <= 2U); } } __inline static int is_device_dma_capable(struct device *dev ) { { return ((unsigned long )dev->dma_mask != (unsigned long )((u64 *)0ULL) && *(dev->dma_mask) != 0ULL); } } extern void debug_dma_map_page(struct device * , struct page * , size_t , size_t , int , dma_addr_t , bool ) ; extern void debug_dma_mapping_error(struct device * , dma_addr_t ) ; extern void debug_dma_unmap_page(struct device * , dma_addr_t , size_t , int , bool ) ; extern void debug_dma_alloc_coherent(struct device * , size_t , dma_addr_t , void * ) ; extern void debug_dma_free_coherent(struct device * , size_t , void * , dma_addr_t ) ; extern void debug_dma_sync_single_for_cpu(struct device * , dma_addr_t , size_t , int ) ; extern void debug_dma_sync_single_for_device(struct device * , dma_addr_t , size_t , int ) ; extern struct device x86_dma_fallback_dev ; extern struct dma_map_ops *dma_ops ; __inline static struct dma_map_ops *get_dma_ops(struct device *dev ) { long tmp ; { { tmp = ldv__builtin_expect((unsigned long )dev == (unsigned long )((struct device *)0), 0L); } if (tmp != 0L || (unsigned long )dev->archdata.dma_ops == (unsigned long )((struct dma_map_ops *)0)) { return (dma_ops); } else { return (dev->archdata.dma_ops); } } } __inline static dma_addr_t dma_map_single_attrs(struct device *dev , void *ptr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; int tmp___0 ; long tmp___1 ; unsigned long tmp___2 ; unsigned long tmp___3 ; { { tmp = get_dma_ops(dev); ops = tmp; kmemcheck_mark_initialized(ptr, (unsigned int )size); tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (19), "i" (12UL)); __builtin_unreachable(); } } else { } { tmp___2 = __phys_addr((unsigned long )ptr); addr = (*(ops->map_page))(dev, (struct page *)-24189255811072L + (tmp___2 >> 12), (unsigned long )ptr & 4095UL, size, dir, attrs); tmp___3 = __phys_addr((unsigned long )ptr); debug_dma_map_page(dev, (struct page *)-24189255811072L + (tmp___3 >> 12), (unsigned long )ptr & 4095UL, size, (int )dir, addr, 1); } return (addr); } } __inline static void dma_unmap_single_attrs(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (36), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, attrs); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 1); } return; } } __inline static dma_addr_t dma_map_page(struct device *dev , struct page *page , size_t offset , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; dma_addr_t addr ; void *tmp___0 ; int tmp___1 ; long tmp___2 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = lowmem_page_address((struct page const *)page); kmemcheck_mark_initialized(tmp___0 + offset, (unsigned int )size); tmp___1 = valid_dma_direction((int )dir); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 0L); } if (tmp___2 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (79), "i" (12UL)); __builtin_unreachable(); } } else { } { addr = (*(ops->map_page))(dev, page, offset, size, dir, (struct dma_attrs *)0); debug_dma_map_page(dev, page, offset, size, (int )dir, addr, 0); } return (addr); } } __inline static void dma_unmap_page(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (91), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->unmap_page != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction , struct dma_attrs * ))0)) { { (*(ops->unmap_page))(dev, addr, size, dir, (struct dma_attrs *)0); } } else { } { debug_dma_unmap_page(dev, addr, size, (int )dir, 0); } return; } } __inline static void dma_sync_single_for_cpu(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (103), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_cpu != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_cpu))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_cpu(dev, addr, size, (int )dir); } return; } } __inline static void dma_sync_single_for_device(struct device *dev , dma_addr_t addr , size_t size , enum dma_data_direction dir ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; tmp___0 = valid_dma_direction((int )dir); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 0L); } if (tmp___1 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/asm-generic/dma-mapping-common.h"), "i" (115), "i" (12UL)); __builtin_unreachable(); } } else { } if ((unsigned long )ops->sync_single_for_device != (unsigned long )((void (*)(struct device * , dma_addr_t , size_t , enum dma_data_direction ))0)) { { (*(ops->sync_single_for_device))(dev, addr, size, dir); } } else { } { debug_dma_sync_single_for_device(dev, addr, size, (int )dir); } return; } } __inline static int dma_mapping_error(struct device *dev , dma_addr_t dma_addr ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int tmp___0 ; { { tmp = get_dma_ops(dev); ops = tmp; debug_dma_mapping_error(dev, dma_addr); } if ((unsigned long )ops->mapping_error != (unsigned long )((int (*)(struct device * , dma_addr_t ))0)) { { tmp___0 = (*(ops->mapping_error))(dev, dma_addr); } return (tmp___0); } else { } return (dma_addr == 0ULL); } } extern int dma_supported(struct device * , u64 ) ; extern int dma_set_mask(struct device * , u64 ) ; __inline static unsigned long dma_alloc_coherent_mask(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; { dma_mask = 0UL; dma_mask = (unsigned long )dev->coherent_dma_mask; if (dma_mask == 0UL) { dma_mask = (int )gfp & 1 ? 16777215UL : 4294967295UL; } else { } return (dma_mask); } } __inline static gfp_t dma_alloc_coherent_gfp_flags(struct device *dev , gfp_t gfp ) { unsigned long dma_mask ; unsigned long tmp ; { { tmp = dma_alloc_coherent_mask(dev, gfp); dma_mask = tmp; } if ((unsigned long long )dma_mask <= 16777215ULL) { gfp = gfp | 1U; } else { } if ((unsigned long long )dma_mask <= 4294967295ULL && (gfp & 1U) == 0U) { gfp = gfp | 4U; } else { } return (gfp); } } __inline static void *dma_alloc_attrs(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t gfp , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; void *memory ; int tmp___0 ; gfp_t tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; gfp = gfp & 4294967288U; } if ((unsigned long )dev == (unsigned long )((struct device *)0)) { dev = & x86_dma_fallback_dev; } else { } { tmp___0 = is_device_dma_capable(dev); } if (tmp___0 == 0) { return ((void *)0); } else { } if ((unsigned long )ops->alloc == (unsigned long )((void *(*)(struct device * , size_t , dma_addr_t * , gfp_t , struct dma_attrs * ))0)) { return ((void *)0); } else { } { tmp___1 = dma_alloc_coherent_gfp_flags(dev, gfp); memory = (*(ops->alloc))(dev, size, dma_handle, tmp___1, attrs); debug_dma_alloc_coherent(dev, size, *dma_handle, memory); } return (memory); } } __inline static void dma_free_attrs(struct device *dev , size_t size , void *vaddr , dma_addr_t bus , struct dma_attrs *attrs ) { struct dma_map_ops *ops ; struct dma_map_ops *tmp ; int __ret_warn_on ; unsigned long _flags ; int tmp___0 ; long tmp___1 ; { { tmp = get_dma_ops(dev); ops = tmp; _flags = arch_local_save_flags(); tmp___0 = arch_irqs_disabled_flags(_flags); __ret_warn_on = tmp___0 != 0; tmp___1 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___1 != 0L) { { warn_slowpath_null("/home/debian/klever-work/native-scheduler-work-dir/scheduler/jobs/7cdfae59d3ac602223400f61d8829e28/klever-core-work-dir/dfaa16b/linux-alloc-spinlock/lkbce/arch/x86/include/asm/dma-mapping.h", 166); } } else { } { ldv__builtin_expect(__ret_warn_on != 0, 0L); debug_dma_free_coherent(dev, size, vaddr, bus); } if ((unsigned long )ops->free != (unsigned long )((void (*)(struct device * , size_t , void * , dma_addr_t , struct dma_attrs * ))0)) { { (*(ops->free))(dev, size, vaddr, bus, attrs); } } else { } return; } } __inline static int dma_set_coherent_mask(struct device *dev , u64 mask ) { int tmp ; { { tmp = dma_supported(dev, mask); } if (tmp == 0) { return (-5); } else { } dev->coherent_dma_mask = mask; return (0); } } __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flags ) ; __inline static unsigned int skb_frag_size(skb_frag_t const *frag ) { { return ((unsigned int )frag->size); } } __inline static void skb_frag_size_set(skb_frag_t *frag , unsigned int size ) { { frag->size = size; return; } } __inline static void skb_frag_size_sub(skb_frag_t *frag , int delta ) { { frag->size = frag->size - (__u32 )delta; return; } } extern void consume_skb(struct sk_buff * ) ; extern struct sk_buff *build_skb(void * , unsigned int ) ; __inline static void skb_set_hash(struct sk_buff *skb , __u32 hash , enum pkt_hash_types type ) { { skb->l4_rxhash = (unsigned int )type == 3U; skb->rxhash = hash; return; } } __inline static unsigned char *skb_end_pointer(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->end); } } __inline static unsigned int skb_headlen(struct sk_buff const *skb ) { { return ((unsigned int )skb->len - (unsigned int )skb->data_len); } } __inline static void __skb_fill_page_desc(struct sk_buff *skb , int i , struct page *page , int off , int size ) { skb_frag_t *frag ; unsigned char *tmp ; { { tmp = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp)->frags) + (unsigned long )i; frag->page.p = page; frag->page_offset = (__u32 )off; skb_frag_size_set(frag, (unsigned int )size); page = compound_head(page); } if ((int )page->__annonCompField43.__annonCompField38.pfmemalloc && (unsigned long )page->__annonCompField37.mapping == (unsigned long )((struct address_space *)0)) { skb->pfmemalloc = 1U; } else { } return; } } __inline static void skb_fill_page_desc(struct sk_buff *skb , int i , struct page *page , int off , int size ) { unsigned char *tmp ; { { __skb_fill_page_desc(skb, i, page, off, size); tmp = skb_end_pointer((struct sk_buff const *)skb); ((struct skb_shared_info *)tmp)->nr_frags = (unsigned int )((unsigned char )i) + 1U; } return; } } extern unsigned char *skb_put(struct sk_buff * , unsigned int ) ; __inline static void skb_reserve(struct sk_buff *skb , int len ) { { skb->data = skb->data + (unsigned long )len; skb->tail = skb->tail + (sk_buff_data_t )len; return; } } __inline static unsigned char *skb_transport_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->transport_header); } } __inline static unsigned char *skb_network_header(struct sk_buff const *skb ) { { return ((unsigned char *)skb->head + (unsigned long )skb->network_header); } } __inline static int skb_transport_offset(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((int )((unsigned int )((long )tmp) - (unsigned int )((long )skb->data))); } } static struct sk_buff *ldv___netdev_alloc_skb_57(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) ; __inline static struct sk_buff *netdev_alloc_skb(struct net_device *dev , unsigned int length ) { struct sk_buff *tmp ; { { tmp = ldv___netdev_alloc_skb_57(dev, length, 32U); } return (tmp); } } __inline static struct page *skb_frag_page(skb_frag_t const *frag ) { { return ((struct page *)frag->page.p); } } __inline static void __skb_frag_set_page(skb_frag_t *frag , struct page *page ) { { frag->page.p = page; return; } } __inline static dma_addr_t skb_frag_dma_map(struct device *dev , skb_frag_t const *frag , size_t offset , size_t size , enum dma_data_direction dir ) { struct page *tmp ; dma_addr_t tmp___0 ; { { tmp = skb_frag_page(frag); tmp___0 = dma_map_page(dev, tmp, (size_t )frag->page_offset + offset, size, dir); } return (tmp___0); } } __inline static u16 skb_get_queue_mapping(struct sk_buff const *skb ) { { return ((u16 )skb->queue_mapping); } } __inline static void skb_record_rx_queue(struct sk_buff *skb , u16 rx_queue ) { { skb->queue_mapping = (unsigned int )rx_queue + 1U; return; } } __inline static bool skb_is_gso(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_end_pointer(skb); } return ((unsigned int )((struct skb_shared_info *)tmp)->gso_size != 0U); } } __inline static void skb_checksum_none_assert(struct sk_buff const *skb ) { { return; } } __inline static void ethtool_cmd_speed_set(struct ethtool_cmd *ep , __u32 speed ) { { ep->speed = (unsigned short )speed; ep->speed_hi = (unsigned short )(speed >> 16); return; } } __inline static __u32 ethtool_cmd_speed(struct ethtool_cmd const *ep ) { { return ((__u32 )(((int )ep->speed_hi << 16) | (int )ep->speed)); } } extern void synchronize_irq(unsigned int ) ; extern void __napi_schedule(struct napi_struct * ) ; __inline static bool napi_disable_pending(struct napi_struct *n ) { int tmp ; { { tmp = constant_test_bit(1L, (unsigned long const volatile *)(& n->state)); } return (tmp != 0); } } __inline static bool napi_schedule_prep(struct napi_struct *n ) { bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { tmp = napi_disable_pending(n); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp___1 == 0) { tmp___2 = 1; } else { tmp___2 = 0; } } else { tmp___2 = 0; } return ((bool )tmp___2); } } __inline static void napi_schedule(struct napi_struct *n ) { bool tmp ; { { tmp = napi_schedule_prep(n); } if ((int )tmp) { { __napi_schedule(n); } } else { } return; } } extern void napi_complete(struct napi_struct * ) ; __inline static void napi_disable(struct napi_struct *n ) { int tmp ; { { __might_sleep("include/linux/netdevice.h", 486, 0); set_bit(1L, (unsigned long volatile *)(& n->state)); } goto ldv_38763; ldv_38762: { msleep(1U); } ldv_38763: { tmp = test_and_set_bit(0L, (unsigned long volatile *)(& n->state)); } if (tmp != 0) { goto ldv_38762; } else { } { clear_bit(1L, (unsigned long volatile *)(& n->state)); } return; } } __inline static void napi_enable(struct napi_struct *n ) { int tmp ; long tmp___0 ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& n->state)); tmp___0 = ldv__builtin_expect(tmp == 0, 0L); } if (tmp___0 != 0L) { { __asm__ volatile ("1:\tud2\n.pushsection __bug_table,\"a\"\n2:\t.long 1b - 2b, %c0 - 2b\n\t.word %c1, 0\n\t.org 2b+%c2\n.popsection": : "i" ((char *)"include/linux/netdevice.h"), "i" (502), "i" (12UL)); __builtin_unreachable(); } } else { } { __asm__ volatile ("": : : "memory"); clear_bit(0L, (unsigned long volatile *)(& n->state)); } return; } } __inline static struct netdev_queue *netdev_get_tx_queue(struct net_device const *dev , unsigned int index ) { { return ((struct netdev_queue *)dev->_tx + (unsigned long )index); } } __inline static void *netdev_priv(struct net_device const *dev ) { { return ((void *)dev + 3200U); } } extern void netif_napi_add(struct net_device * , struct napi_struct * , int (*)(struct napi_struct * , int ) , int ) ; extern void netif_napi_del(struct napi_struct * ) ; extern int dev_close(struct net_device * ) ; extern void free_netdev(struct net_device * ) ; static void ldv_free_netdev_167(struct net_device *ldv_func_arg1 ) ; static void ldv_free_netdev_170(struct net_device *ldv_func_arg1 ) ; extern int netpoll_trap(void) ; extern void __netif_schedule(struct Qdisc * ) ; __inline static void netif_schedule_queue(struct netdev_queue *txq ) { { if ((txq->state & 3UL) == 0UL) { { __netif_schedule(txq->qdisc); } } else { } return; } } __inline static void netif_tx_start_queue(struct netdev_queue *dev_queue ) { { { clear_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static void netif_tx_start_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_39658; ldv_39657: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_start_queue(txq); i = i + 1U; } ldv_39658: ; if (i < dev->num_tx_queues) { goto ldv_39657; } else { } return; } } __inline static void netif_tx_wake_queue(struct netdev_queue *dev_queue ) { int tmp ; int tmp___0 ; { { tmp = netpoll_trap(); } if (tmp != 0) { { netif_tx_start_queue(dev_queue); } return; } else { } { tmp___0 = test_and_set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___0 != 0) { { __netif_schedule(dev_queue->qdisc); } } else { } return; } } __inline static void netif_tx_wake_all_queues(struct net_device *dev ) { unsigned int i ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { i = 0U; goto ldv_39672; ldv_39671: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; netif_tx_wake_queue(txq); i = i + 1U; } ldv_39672: ; if (i < dev->num_tx_queues) { goto ldv_39671; } else { } return; } } __inline static void netif_tx_stop_queue(struct netdev_queue *dev_queue ) { int __ret_warn_on ; long tmp ; long tmp___0 ; { { __ret_warn_on = (unsigned long )dev_queue == (unsigned long )((struct netdev_queue *)0); tmp = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp != 0L) { { warn_slowpath_null("include/linux/netdevice.h", 2128); } } else { } { tmp___0 = ldv__builtin_expect(__ret_warn_on != 0, 0L); } if (tmp___0 != 0L) { { printk("\016netif_stop_queue() cannot be called before register_netdev()\n"); } return; } else { } { set_bit(0L, (unsigned long volatile *)(& dev_queue->state)); } return; } } __inline static bool netif_tx_queue_stopped(struct netdev_queue const *dev_queue ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev_queue->state)); } return (tmp != 0); } } __inline static void netdev_tx_sent_queue(struct netdev_queue *dev_queue , unsigned int bytes ) { int tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { { dql_queued(& dev_queue->dql, bytes); tmp = dql_avail((struct dql const *)(& dev_queue->dql)); tmp___0 = ldv__builtin_expect(tmp >= 0, 1L); } if (tmp___0 != 0L) { return; } else { } { set_bit(1L, (unsigned long volatile *)(& dev_queue->state)); __asm__ volatile ("mfence": : : "memory"); tmp___1 = dql_avail((struct dql const *)(& dev_queue->dql)); tmp___2 = ldv__builtin_expect(tmp___1 >= 0, 0L); } if (tmp___2 != 0L) { { clear_bit(1L, (unsigned long volatile *)(& dev_queue->state)); } } else { } return; } } __inline static void netdev_tx_completed_queue(struct netdev_queue *dev_queue , unsigned int pkts , unsigned int bytes ) { long tmp ; int tmp___0 ; int tmp___1 ; { { tmp = ldv__builtin_expect(bytes == 0U, 0L); } if (tmp != 0L) { return; } else { } { dql_completed(& dev_queue->dql, bytes); __asm__ volatile ("mfence": : : "memory"); tmp___0 = dql_avail((struct dql const *)(& dev_queue->dql)); } if (tmp___0 < 0) { return; } else { } { tmp___1 = test_and_set_bit(1L, (unsigned long volatile *)(& dev_queue->state)); } if (tmp___1 != 0) { { netif_schedule_queue(dev_queue); } } else { } return; } } __inline static void netdev_tx_reset_queue(struct netdev_queue *q ) { { { clear_bit(1L, (unsigned long volatile *)(& q->state)); dql_reset(& q->dql); } return; } } __inline static bool netif_running(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(0L, (unsigned long const volatile *)(& dev->state)); } return (tmp != 0); } } extern int netif_set_real_num_tx_queues(struct net_device * , unsigned int ) ; extern int netif_set_real_num_rx_queues(struct net_device * , unsigned int ) ; extern int netif_get_num_default_rss_queues(void) ; extern gro_result_t napi_gro_receive(struct napi_struct * , struct sk_buff * ) ; __inline static bool netif_carrier_ok(struct net_device const *dev ) { int tmp ; { { tmp = constant_test_bit(2L, (unsigned long const volatile *)(& dev->state)); } return (tmp == 0); } } extern void netif_carrier_on(struct net_device * ) ; extern void netif_carrier_off(struct net_device * ) ; extern void netif_device_detach(struct net_device * ) ; extern void netif_device_attach(struct net_device * ) ; __inline static void __netif_tx_lock(struct netdev_queue *txq , int cpu ) { { { ldv_spin_lock_69(& txq->_xmit_lock); txq->xmit_lock_owner = cpu; } return; } } __inline static void __netif_tx_unlock(struct netdev_queue *txq ) { { { txq->xmit_lock_owner = -1; ldv_spin_unlock_72(& txq->_xmit_lock); } return; } } __inline static void netif_tx_disable(struct net_device *dev ) { unsigned int i ; int cpu ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; struct netdev_queue *txq ; struct netdev_queue *tmp ; { { local_bh_disable(); __vpp_verify = (void const *)0; } { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_40217; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40217; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40217; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_40217; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_40217: pscr_ret__ = pfo_ret__; goto ldv_40223; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40227; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40227; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40227; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_40227; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_40227: pscr_ret__ = pfo_ret_____0; goto ldv_40223; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40236; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40236; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40236; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_40236; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_40236: pscr_ret__ = pfo_ret_____1; goto ldv_40223; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40245; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40245; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40245; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_40245; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_40245: pscr_ret__ = pfo_ret_____2; goto ldv_40223; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_40223; switch_break: /* CIL Label */ ; } ldv_40223: cpu = pscr_ret__; i = 0U; goto ldv_40255; ldv_40254: { tmp = netdev_get_tx_queue((struct net_device const *)dev, i); txq = tmp; __netif_tx_lock(txq, cpu); netif_tx_stop_queue(txq); __netif_tx_unlock(txq); i = i + 1U; } ldv_40255: ; if (i < dev->num_tx_queues) { goto ldv_40254; } else { } { local_bh_enable(); } return; } } extern int register_netdev(struct net_device * ) ; static int ldv_register_netdev_166(struct net_device *ldv_func_arg1 ) ; extern void unregister_netdev(struct net_device * ) ; static void ldv_unregister_netdev_168(struct net_device *ldv_func_arg1 ) ; extern int netdev_err(struct net_device const * , char const * , ...) ; extern int netdev_warn(struct net_device const * , char const * , ...) ; extern int netdev_info(struct net_device const * , char const * , ...) ; extern void pci_dev_put(struct pci_dev * ) ; extern int pci_find_capability(struct pci_dev * , int ) ; extern struct pci_dev *pci_get_device(unsigned int , unsigned int , struct pci_dev * ) ; extern int pci_bus_read_config_word(struct pci_bus * , unsigned int , int , u16 * ) ; extern int pci_bus_read_config_dword(struct pci_bus * , unsigned int , int , u32 * ) ; extern int pci_bus_write_config_word(struct pci_bus * , unsigned int , int , u16 ) ; __inline static int pci_read_config_word(struct pci_dev const *dev , int where , u16 *val ) { int tmp ; { { tmp = pci_bus_read_config_word(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_read_config_dword(struct pci_dev const *dev , int where , u32 *val ) { int tmp ; { { tmp = pci_bus_read_config_dword(dev->bus, dev->devfn, where, val); } return (tmp); } } __inline static int pci_write_config_word(struct pci_dev const *dev , int where , u16 val ) { int tmp ; { { tmp = pci_bus_write_config_word(dev->bus, dev->devfn, where, (int )val); } return (tmp); } } extern int pci_enable_device(struct pci_dev * ) ; extern void pci_disable_device(struct pci_dev * ) ; extern void pci_set_master(struct pci_dev * ) ; extern int pci_save_state(struct pci_dev * ) ; extern void pci_restore_state(struct pci_dev * ) ; extern int pci_set_power_state(struct pci_dev * , pci_power_t ) ; extern int __pci_enable_wake(struct pci_dev * , pci_power_t , bool , bool ) ; extern int pci_wake_from_d3(struct pci_dev * , bool ) ; __inline static int pci_enable_wake(struct pci_dev *dev , pci_power_t state , bool enable ) { int tmp ; { { tmp = __pci_enable_wake(dev, state, 0, (int )enable); } return (tmp); } } extern int pci_request_regions(struct pci_dev * , char const * ) ; extern void pci_release_regions(struct pci_dev * ) ; extern int __pci_register_driver(struct pci_driver * , struct module * , char const * ) ; static int ldv___pci_register_driver_173(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) ; extern void pci_unregister_driver(struct pci_driver * ) ; static void ldv_pci_unregister_driver_174(struct pci_driver *ldv_func_arg1 ) ; extern int pci_enable_msi_block(struct pci_dev * , int ) ; extern void pci_disable_msi(struct pci_dev * ) ; extern int pci_enable_msix(struct pci_dev * , struct msix_entry * , int ) ; extern void pci_disable_msix(struct pci_dev * ) ; __inline static int pci_set_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_mask(& dev->dev, mask); } return (tmp); } } __inline static int pci_set_consistent_dma_mask(struct pci_dev *dev , u64 mask ) { int tmp ; { { tmp = dma_set_coherent_mask(& dev->dev, mask); } return (tmp); } } __inline static void *pci_get_drvdata(struct pci_dev *pdev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata_81((struct device const *)(& pdev->dev)); } return (tmp); } } __inline static void pci_set_drvdata(struct pci_dev *pdev , void *data ) { { { ldv_dev_set_drvdata_82(& pdev->dev, data); } return; } } __inline static char const *pci_name(struct pci_dev const *pdev ) { char const *tmp ; { { tmp = dev_name(& pdev->dev); } return (tmp); } } __inline static int pci_pcie_cap(struct pci_dev *dev ) { { return ((int )dev->pcie_cap); } } __inline static bool pci_is_pcie(struct pci_dev *dev ) { int tmp ; { { tmp = pci_pcie_cap(dev); } return (tmp != 0); } } __inline static u16 pci_vpd_lrdt_size(u8 const *lrdt ) { { return ((int )((u16 )*(lrdt + 1UL)) + ((int )((u16 )*(lrdt + 2UL)) << 8U)); } } __inline static u8 pci_vpd_info_field_size(u8 const *info_field ) { { return ((u8 )*(info_field + 2UL)); } } extern int pci_vpd_find_tag(u8 const * , unsigned int , unsigned int , u8 ) ; extern int pci_vpd_find_info_keyword(u8 const * , unsigned int , unsigned int , char const * ) ; extern int request_threaded_irq(unsigned int , irqreturn_t (*)(int , void * ) , irqreturn_t (*)(int , void * ) , unsigned long , char const * , void * ) ; __inline static int request_irq(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { int tmp ; { { tmp = request_threaded_irq(irq, handler, (irqreturn_t (*)(int , void * ))0, flags, name, dev); } return (tmp); } } __inline static int ldv_request_irq_144(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) ; extern void free_irq(unsigned int , void * ) ; static void ldv_free_irq_145(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) ; extern void disable_irq(unsigned int ) ; extern void enable_irq(unsigned int ) ; extern __be16 eth_type_trans(struct sk_buff * , struct net_device * ) ; extern int eth_validate_addr(struct net_device * ) ; extern struct net_device *alloc_etherdev_mqs(int , unsigned int , unsigned int ) ; static struct net_device *ldv_alloc_etherdev_mqs_165(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) ; __inline static bool is_zero_ether_addr(u8 const *addr ) { { return (((unsigned int )*((u32 const *)addr) | (unsigned int )*((u16 const *)addr + 4U)) == 0U); } } __inline static bool is_multicast_ether_addr(u8 const *addr ) { { return (((int )*addr & 1) != 0); } } __inline static bool is_valid_ether_addr(u8 const *addr ) { bool tmp ; int tmp___0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; { { tmp = is_multicast_ether_addr(addr); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { tmp___1 = is_zero_ether_addr(addr); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { tmp___3 = 1; } else { tmp___3 = 0; } } else { tmp___3 = 0; } return ((bool )tmp___3); } } __inline static struct mii_ioctl_data *if_mii(struct ifreq *rq ) { { return ((struct mii_ioctl_data *)(& rq->ifr_ifru)); } } __inline static u32 ethtool_adv_to_mii_adv_t(u32 ethadv ) { u32 result ; { result = 0U; if ((int )ethadv & 1) { result = result | 32U; } else { } if ((ethadv & 2U) != 0U) { result = result | 64U; } else { } if ((ethadv & 4U) != 0U) { result = result | 128U; } else { } if ((ethadv & 8U) != 0U) { result = result | 256U; } else { } if ((ethadv & 8192U) != 0U) { result = result | 1024U; } else { } if ((ethadv & 16384U) != 0U) { result = result | 2048U; } else { } return (result); } } __inline static u32 ethtool_adv_to_mii_ctrl1000_t(u32 ethadv ) { u32 result ; { result = 0U; if ((ethadv & 16U) != 0U) { result = result | 256U; } else { } if ((ethadv & 32U) != 0U) { result = result | 512U; } else { } return (result); } } extern void rtnl_lock(void) ; extern void rtnl_unlock(void) ; __inline static struct sk_buff *__vlan_hwaccel_put_tag(struct sk_buff *skb , __be16 vlan_proto , u16 vlan_tci ) { { skb->vlan_proto = vlan_proto; skb->vlan_tci = (__u16 )((unsigned int )vlan_tci | 4096U); return (skb); } } __inline static struct iphdr *ip_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_network_header(skb); } return ((struct iphdr *)tmp); } } __inline static struct tcphdr *tcp_hdr(struct sk_buff const *skb ) { unsigned char *tmp ; { { tmp = skb_transport_header(skb); } return ((struct tcphdr *)tmp); } } __inline static unsigned int tcp_optlen(struct sk_buff const *skb ) { struct tcphdr *tmp ; { { tmp = tcp_hdr(skb); } return ((unsigned int )(((int )tmp->doff + -5) * 4)); } } extern u32 crc32_le(u32 , unsigned char const * , size_t ) ; extern int request_firmware(struct firmware const ** , char const * , struct device * ) ; extern void release_firmware(struct firmware const * ) ; extern int pci_enable_pcie_error_reporting(struct pci_dev * ) ; extern int pci_disable_pcie_error_reporting(struct pci_dev * ) ; extern int pci_cleanup_aer_uncorrect_error_status(struct pci_dev * ) ; __inline static struct l2_fhdr *get_l2_fhdr(u8 *data ) { int _max1 ; int _max2 ; { _max1 = 32; _max2 = 64; return ((struct l2_fhdr *)((unsigned long )(_max1 > _max2 ? _max1 : _max2) + (((unsigned long )data + 15UL) & 0xfffffffffffffff0UL))); } } static struct cpu_reg const cpu_reg_com = {1069056U, 1024U, 2U, 1069060U, 16777215U, 1069568U, 1069064U, 1069084U, 1069088U, 1069108U, 1179648U, 134217728U}; static struct cpu_reg const cpu_reg_cp = {1593344U, 1024U, 2U, 1593348U, 16777215U, 1593856U, 1593352U, 1593372U, 1593376U, 1593396U, 1703936U, 134217728U}; static struct cpu_reg const cpu_reg_rxp = {806912U, 1024U, 2U, 806916U, 16777215U, 807424U, 806920U, 806940U, 806944U, 806964U, 917504U, 134217728U}; static struct cpu_reg const cpu_reg_tpat = {544768U, 1024U, 2U, 544772U, 16777215U, 545280U, 544776U, 544796U, 544800U, 544820U, 655360U, 134217728U}; static struct cpu_reg const cpu_reg_txp = {282624U, 1024U, 2U, 282628U, 16777215U, 283136U, 282632U, 282652U, 282656U, 282676U, 393216U, 134217728U}; static char version[79U] = { 'B', 'r', 'o', 'a', 'd', 'c', 'o', 'm', ' ', 'N', 'e', 't', 'X', 't', 'r', 'e', 'm', 'e', ' ', 'I', 'I', ' ', 'G', 'i', 'g', 'a', 'b', 'i', 't', ' ', 'E', 't', 'h', 'e', 'r', 'n', 'e', 't', ' ', 'D', 'r', 'i', 'v', 'e', 'r', ' ', 'b', 'n', 'x', '2', ' ', 'v', '2', '.', '2', '.', '5', ' ', '(', 'D', 'e', 'c', 'e', 'm', 'b', 'e', 'r', ' ', '2', '0', ',', ' ', '2', '0', '1', '3', ')', '\n', '\000'}; static int disable_msi = 0; static struct __anonstruct_board_info_289 board_info[11U] = { {(char *)"Broadcom NetXtreme II BCM5706 1000Base-T"}, {(char *)"HP NC370T Multifunction Gigabit Server Adapter"}, {(char *)"HP NC370i Multifunction Gigabit Server Adapter"}, {(char *)"Broadcom NetXtreme II BCM5706 1000Base-SX"}, {(char *)"HP NC370F Multifunction Gigabit Server Adapter"}, {(char *)"Broadcom NetXtreme II BCM5708 1000Base-T"}, {(char *)"Broadcom NetXtreme II BCM5708 1000Base-SX"}, {(char *)"Broadcom NetXtreme II BCM5709 1000Base-T"}, {(char *)"Broadcom NetXtreme II BCM5709 1000Base-SX"}, {(char *)"Broadcom NetXtreme II BCM5716 1000Base-T"}, {(char *)"Broadcom NetXtreme II BCM5716 1000Base-SX"}}; static struct pci_device_id const bnx2_pci_tbl[12U] = { {5348U, 5706U, 4156U, 12545U, 0U, 0U, 1UL}, {5348U, 5706U, 4156U, 12550U, 0U, 0U, 2UL}, {5348U, 5706U, 4294967295U, 4294967295U, 0U, 0U, 0UL}, {5348U, 5708U, 4294967295U, 4294967295U, 0U, 0U, 5UL}, {5348U, 5802U, 4156U, 12546U, 0U, 0U, 4UL}, {5348U, 5802U, 4294967295U, 4294967295U, 0U, 0U, 3UL}, {5348U, 5804U, 4294967295U, 4294967295U, 0U, 0U, 6UL}, {5348U, 5689U, 4294967295U, 4294967295U, 0U, 0U, 7UL}, {5348U, 5690U, 4294967295U, 4294967295U, 0U, 0U, 8UL}, {5348U, 5691U, 4294967295U, 4294967295U, 0U, 0U, 9UL}, {5348U, 5692U, 4294967295U, 4294967295U, 0U, 0U, 10UL}, {0U, 0U, 0U, 0U, 0U, 0U, 0UL}}; static struct flash_spec const flash_table[16U] = { {0U, 1082327936U, 10420353U, 2709823571U, 2936013824U, 3U, 2U, 4U, 3U, 65536U, (u8 *)"EEPROM - slow"}, {134217730U, 1266713089U, 327809U, 58982995U, 2936144902U, 4U, 8U, 256U, 255U, 0U, (u8 *)"Entry 0001"}, {67108865U, 1199604225U, 327809U, 58982995U, 2936144902U, 4U, 8U, 256U, 255U, 131072U, (u8 *)"Non-buffered flash (128kB)"}, {201326595U, 1333821953U, 327809U, 58982995U, 2936144902U, 4U, 8U, 256U, 255U, 262144U, (u8 *)"Non-buffered flash (256kB)"}, {285212672U, 1400930817U, 327809U, 58982995U, 2936144902U, 4U, 8U, 256U, 255U, 0U, (u8 *)"Entry 0100"}, {419430402U, 1535148545U, 327899U, 58982995U, 2936144902U, 4U, 8U, 256U, 255U, 131072U, (u8 *)"Entry 0101: ST M45PE10 (128kB non-bufferred)"}, {352321537U, 1468039681U, 327899U, 58982995U, 2936144902U, 4U, 8U, 256U, 255U, 262144U, (u8 *)"Entry 0110: ST M45PE20 (256kB non-bufferred)"}, {486539267U, 1602257409U, 327809U, 58982995U, 2936144902U, 4U, 8U, 256U, 255U, 65536U, (u8 *)"Non-buffered flash (64kB)"}, {570425344U, 1652589440U, 10420353U, 2709823571U, 2936013824U, 3U, 2U, 4U, 3U, 65536U, (u8 *)"EEPROM - fast"}, {704643074U, 1803584001U, 327809U, 58982995U, 2936144902U, 4U, 8U, 256U, 255U, 0U, (u8 *)"Entry 1001"}, {637534209U, 1736475137U, 327809U, 58982995U, 2936144902U, 4U, 8U, 256U, 255U, 0U, (u8 *)"Entry 1010"}, {771751939U, 1853915763U, 5701761U, 1753514835U, 2936013824U, 3U, 9U, 264U, 511U, 135168U, (u8 *)"Buffered flash (128kB)"}, {855638016U, 1937801729U, 327809U, 58982995U, 2936144902U, 4U, 8U, 256U, 255U, 0U, (u8 *)"Entry 1100"}, {989855746U, 2072019457U, 327809U, 58982995U, 2936144902U, 4U, 8U, 256U, 255U, 0U, (u8 *)"Entry 1101"}, {922746881U, 1988133491U, 5701761U, 1753514835U, 2936013824U, 3U, 9U, 264U, 511U, 0U, (u8 *)"Entry 1110 (Atmel)"}, {1056964611U, 2122351219U, 5701761U, 1753514835U, 2936013824U, 3U, 9U, 264U, 511U, 270336U, (u8 *)"Buffered flash (256kB)"}}; static struct flash_spec const flash_5709 = {0U, 0U, 0U, 0U, 0U, 1U, 8U, 256U, 255U, 270336U, (u8 *)"5709 Buffered flash (256kB)"}; struct pci_device_id const __mod_pci_device_table ; static void bnx2_init_napi(struct bnx2 *bp ) ; static void bnx2_del_napi(struct bnx2 *bp ) ; __inline static u32 bnx2_tx_avail(struct bnx2 *bp , struct bnx2_tx_ring_info *txr ) { u32 diff ; long tmp ; { { __asm__ volatile ("": : : "memory"); diff = (u32 )((int )txr->tx_prod - (int )txr->tx_cons); tmp = ldv__builtin_expect(diff > 255U, 0L); } if (tmp != 0L) { diff = diff & 65535U; if (diff == 256U) { diff = 255U; } else { } } else { } return ((u32 )bp->tx_ring_size - diff); } } static u32 bnx2_reg_rd_ind(struct bnx2 *bp , u32 offset ) { u32 val ; { { ldv_spin_lock_bh_104(& bp->indirect_lock); writel(offset, (void volatile *)bp->regview + 120U); val = readl((void const volatile *)bp->regview + 128U); ldv_spin_unlock_bh_105(& bp->indirect_lock); } return (val); } } static void bnx2_reg_wr_ind(struct bnx2 *bp , u32 offset , u32 val ) { { { ldv_spin_lock_bh_104(& bp->indirect_lock); writel(offset, (void volatile *)bp->regview + 120U); writel(val, (void volatile *)bp->regview + 128U); ldv_spin_unlock_bh_105(& bp->indirect_lock); } return; } } static void bnx2_shmem_wr(struct bnx2 *bp , u32 offset , u32 val ) { { { bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val); } return; } } static u32 bnx2_shmem_rd(struct bnx2 *bp , u32 offset ) { u32 tmp ; { { tmp = bnx2_reg_rd_ind(bp, bp->shmem_base + offset); } return (tmp); } } static void bnx2_ctx_wr(struct bnx2 *bp , u32 cid_addr , u32 offset , u32 val ) { int i ; { { offset = offset + cid_addr; ldv_spin_lock_bh_104(& bp->indirect_lock); } if ((bp->chip_id & 4294901760U) == 1460207616U) { { writel(val, (void volatile *)bp->regview + 4128U); writel(offset | 1073741824U, (void volatile *)bp->regview + 4124U); i = 0; } goto ldv_53651; ldv_53650: { val = readl((void const volatile *)bp->regview + 4124U); } if (((long )val & 1073741824L) == 0L) { goto ldv_53649; } else { } { __const_udelay(21475UL); i = i + 1; } ldv_53651: ; if (i <= 4) { goto ldv_53650; } else { } ldv_53649: ; } else { { writel(offset, (void volatile *)bp->regview + 4112U); writel(val, (void volatile *)bp->regview + 4116U); } } { ldv_spin_unlock_bh_105(& bp->indirect_lock); } return; } } static int bnx2_drv_ctl(struct net_device *dev , struct drv_ctl_info *info ) { struct bnx2 *bp ; void *tmp ; struct drv_ctl_io *io ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; io = & info->data.io; } { if (info->cmd == 257) { goto case_257; } else { } if (info->cmd == 258) { goto case_258; } else { } if (info->cmd == 259) { goto case_259; } else { } goto switch_default; case_257: /* CIL Label */ { bnx2_reg_wr_ind(bp, io->offset, io->data); } goto ldv_53659; case_258: /* CIL Label */ { io->data = bnx2_reg_rd_ind(bp, io->offset); } goto ldv_53659; case_259: /* CIL Label */ { bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data); } goto ldv_53659; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_53659: ; return (0); } } static void bnx2_setup_cnic_irq_info(struct bnx2 *bp ) { struct cnic_eth_dev *cp ; struct bnx2_napi *bnapi ; int sb_id ; { cp = & bp->cnic_eth_dev; bnapi = (struct bnx2_napi *)(& bp->bnx2_napi); if ((bp->flags & 1024U) != 0U) { cp->drv_state = cp->drv_state | 2U; bnapi->cnic_present = 0; sb_id = bp->irq_nvecs; cp->irq_arr[0].irq_flags = cp->irq_arr[0].irq_flags | 1U; } else { cp->drv_state = cp->drv_state & 4294967293U; bnapi->cnic_tag = bnapi->last_status_idx; bnapi->cnic_present = 1; sb_id = 0; cp->irq_arr[0].irq_flags = cp->irq_arr[0].irq_flags & 4294967294U; } cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector; cp->irq_arr[0].status_blk = (void *)((unsigned long )bnapi->status_blk.msi + (unsigned long )(sb_id * 128)); cp->irq_arr[0].status_blk_num = (u32 )sb_id; cp->num_irq = 1; return; } } static int bnx2_register_cnic(struct net_device *dev , struct cnic_ops *ops , void *data ) { struct bnx2 *bp ; void *tmp ; struct cnic_eth_dev *cp ; u32 tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; cp = & bp->cnic_eth_dev; } if ((unsigned long )ops == (unsigned long )((struct cnic_ops *)0)) { return (-22); } else { } if ((int )cp->drv_state & 1) { return (-16); } else { } { tmp___0 = bnx2_reg_rd_ind(bp, 1704064U); } if (tmp___0 == 0U) { return (-19); } else { } { bp->cnic_data = data; __asm__ volatile ("": : : "memory"); *((struct cnic_ops * volatile *)(& bp->cnic_ops)) = ops; cp->num_irq = 0; cp->drv_state = 1U; bnx2_setup_cnic_irq_info(bp); } return (0); } } static int bnx2_unregister_cnic(struct net_device *dev ) { struct bnx2 *bp ; void *tmp ; struct bnx2_napi *bnapi ; struct cnic_eth_dev *cp ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; bnapi = (struct bnx2_napi *)(& bp->bnx2_napi); cp = & bp->cnic_eth_dev; mutex_lock_nested(& bp->cnic_lock, 0U); cp->drv_state = 0U; bnapi->cnic_present = 0; bp->cnic_ops = (struct cnic_ops *)0; mutex_unlock(& bp->cnic_lock); synchronize_rcu(); } return (0); } } static struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev ) { struct bnx2 *bp ; void *tmp ; struct cnic_eth_dev *cp ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; cp = & bp->cnic_eth_dev; } if (cp->max_iscsi_conn == 0U) { return ((struct cnic_eth_dev *)0); } else { } cp->drv_owner = & __this_module; cp->chip_id = bp->chip_id; cp->pdev = bp->pdev; cp->io_base = bp->regview; cp->drv_ctl = & bnx2_drv_ctl; cp->drv_register_cnic = & bnx2_register_cnic; cp->drv_unregister_cnic = & bnx2_unregister_cnic; return (cp); } } static void bnx2_cnic_stop(struct bnx2 *bp ) { struct cnic_ops *c_ops ; struct cnic_ctl_info info ; bool __warned ; int tmp ; int tmp___0 ; { { mutex_lock_nested(& bp->cnic_lock, 0U); tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = lock_is_held(& bp->cnic_lock.dep_map); } if (tmp___0 == 0) { { __warned = 1; lockdep_rcu_suspicious("drivers/net/ethernet/broadcom/bnx2.c", 445, "suspicious rcu_dereference_protected() usage"); } } else { } } else { } c_ops = bp->cnic_ops; if ((unsigned long )c_ops != (unsigned long )((struct cnic_ops *)0)) { { info.cmd = 1; (*(c_ops->cnic_ctl))(bp->cnic_data, & info); } } else { } { mutex_unlock(& bp->cnic_lock); } return; } } static void bnx2_cnic_start(struct bnx2 *bp ) { struct cnic_ops *c_ops ; struct cnic_ctl_info info ; bool __warned ; int tmp ; int tmp___0 ; struct bnx2_napi *bnapi ; { { mutex_lock_nested(& bp->cnic_lock, 0U); tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = lock_is_held(& bp->cnic_lock.dep_map); } if (tmp___0 == 0) { { __warned = 1; lockdep_rcu_suspicious("drivers/net/ethernet/broadcom/bnx2.c", 461, "suspicious rcu_dereference_protected() usage"); } } else { } } else { } c_ops = bp->cnic_ops; if ((unsigned long )c_ops != (unsigned long )((struct cnic_ops *)0)) { if ((bp->flags & 1024U) == 0U) { bnapi = (struct bnx2_napi *)(& bp->bnx2_napi); bnapi->cnic_tag = bnapi->last_status_idx; } else { } { info.cmd = 2; (*(c_ops->cnic_ctl))(bp->cnic_data, & info); } } else { } { mutex_unlock(& bp->cnic_lock); } return; } } static int bnx2_read_phy(struct bnx2 *bp , u32 reg , u32 *val ) { u32 val1 ; int i ; int ret ; { if ((bp->phy_flags & 256U) != 0U) { { val1 = readl((void const volatile *)bp->regview + 5300U); val1 = val1 & 4294967279U; writel(val1, (void volatile *)bp->regview + 5300U); readl((void const volatile *)bp->regview + 5300U); __const_udelay(171800UL); } } else { } { val1 = ((bp->phy_addr << 21) | (reg << 16)) | 1744830464U; writel(val1, (void volatile *)bp->regview + 5292U); i = 0; } goto ldv_53712; ldv_53711: { __const_udelay(42950UL); val1 = readl((void const volatile *)bp->regview + 5292U); } if (((long )val1 & 536870912L) == 0L) { { __const_udelay(21475UL); val1 = readl((void const volatile *)bp->regview + 5292U); val1 = val1 & 65535U; } goto ldv_53710; } else { } i = i + 1; ldv_53712: ; if (i <= 49) { goto ldv_53711; } else { } ldv_53710: ; if (((long )val1 & 536870912L) != 0L) { *val = 0U; ret = -16; } else { *val = val1; ret = 0; } if ((bp->phy_flags & 256U) != 0U) { { val1 = readl((void const volatile *)bp->regview + 5300U); val1 = val1 | 16U; writel(val1, (void volatile *)bp->regview + 5300U); readl((void const volatile *)bp->regview + 5300U); __const_udelay(171800UL); } } else { } return (ret); } } static int bnx2_write_phy(struct bnx2 *bp , u32 reg , u32 val ) { u32 val1 ; int i ; int ret ; { if ((bp->phy_flags & 256U) != 0U) { { val1 = readl((void const volatile *)bp->regview + 5300U); val1 = val1 & 4294967279U; writel(val1, (void volatile *)bp->regview + 5300U); readl((void const volatile *)bp->regview + 5300U); __const_udelay(171800UL); } } else { } { val1 = (((bp->phy_addr << 21) | (reg << 16)) | val) | 1677721600U; writel(val1, (void volatile *)bp->regview + 5292U); i = 0; } goto ldv_53723; ldv_53722: { __const_udelay(42950UL); val1 = readl((void const volatile *)bp->regview + 5292U); } if (((long )val1 & 536870912L) == 0L) { { __const_udelay(21475UL); } goto ldv_53721; } else { } i = i + 1; ldv_53723: ; if (i <= 49) { goto ldv_53722; } else { } ldv_53721: ; if (((long )val1 & 536870912L) != 0L) { ret = -16; } else { ret = 0; } if ((bp->phy_flags & 256U) != 0U) { { val1 = readl((void const volatile *)bp->regview + 5300U); val1 = val1 | 16U; writel(val1, (void volatile *)bp->regview + 5300U); readl((void const volatile *)bp->regview + 5300U); __const_udelay(171800UL); } } else { } return (ret); } } static void bnx2_disable_int(struct bnx2 *bp ) { int i ; struct bnx2_napi *bnapi ; { i = 0; goto ldv_53730; ldv_53729: { bnapi = (struct bnx2_napi *)(& bp->bnx2_napi) + (unsigned long )i; writel(bnapi->int_num | 262144U, (void volatile *)bp->regview + 132U); i = i + 1; } ldv_53730: ; if (i < bp->irq_nvecs) { goto ldv_53729; } else { } { readl((void const volatile *)bp->regview + 132U); } return; } } static void bnx2_enable_int(struct bnx2 *bp ) { int i ; struct bnx2_napi *bnapi ; { i = 0; goto ldv_53738; ldv_53737: { bnapi = (struct bnx2_napi *)(& bp->bnx2_napi) + (unsigned long )i; writel((bnapi->int_num | bnapi->last_status_idx) | 327680U, (void volatile *)bp->regview + 132U); writel((bnapi->int_num | bnapi->last_status_idx) | 65536U, (void volatile *)bp->regview + 132U); i = i + 1; } ldv_53738: ; if (i < bp->irq_nvecs) { goto ldv_53737; } else { } { writel(bp->hc_cmd | 65536U, (void volatile *)bp->regview + 26624U); } return; } } static void bnx2_disable_int_sync(struct bnx2 *bp ) { int i ; bool tmp ; int tmp___0 ; { { atomic_inc(& bp->intr_sem); tmp = netif_running((struct net_device const *)bp->dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } { bnx2_disable_int(bp); i = 0; } goto ldv_53745; ldv_53744: { synchronize_irq(bp->irq_tbl[i].vector); i = i + 1; } ldv_53745: ; if (i < bp->irq_nvecs) { goto ldv_53744; } else { } return; } } static void bnx2_napi_disable(struct bnx2 *bp ) { int i ; { i = 0; goto ldv_53752; ldv_53751: { napi_disable(& bp->bnx2_napi[i].napi); i = i + 1; } ldv_53752: ; if (i < bp->irq_nvecs) { goto ldv_53751; } else { } return; } } static void bnx2_napi_enable(struct bnx2 *bp ) { int i ; { i = 0; goto ldv_53759; ldv_53758: { napi_enable(& bp->bnx2_napi[i].napi); i = i + 1; } ldv_53759: ; if (i < bp->irq_nvecs) { goto ldv_53758; } else { } return; } } static void bnx2_netif_stop(struct bnx2 *bp , bool stop_cnic ) { bool tmp ; { if ((int )stop_cnic) { { bnx2_cnic_stop(bp); } } else { } { tmp = netif_running((struct net_device const *)bp->dev); } if ((int )tmp) { { bnx2_napi_disable(bp); netif_tx_disable(bp->dev); } } else { } { bnx2_disable_int_sync(bp); netif_carrier_off(bp->dev); } return; } } static void bnx2_netif_start(struct bnx2 *bp , bool start_cnic ) { bool tmp ; int tmp___0 ; { { tmp___0 = atomic_dec_and_test(& bp->intr_sem); } if (tmp___0 != 0) { { tmp = netif_running((struct net_device const *)bp->dev); } if ((int )tmp) { { netif_tx_wake_all_queues(bp->dev); ldv_spin_lock_bh_110(& bp->phy_lock); } if ((unsigned int )bp->link_up != 0U) { { netif_carrier_on(bp->dev); } } else { } { ldv_spin_unlock_bh_111(& bp->phy_lock); bnx2_napi_enable(bp); bnx2_enable_int(bp); } if ((int )start_cnic) { { bnx2_cnic_start(bp); } } else { } } else { } } else { } return; } } static void bnx2_free_tx_mem(struct bnx2 *bp ) { int i ; struct bnx2_napi *bnapi ; struct bnx2_tx_ring_info *txr ; { i = 0; goto ldv_53776; ldv_53775: bnapi = (struct bnx2_napi *)(& bp->bnx2_napi) + (unsigned long )i; txr = & bnapi->tx_ring; if ((unsigned long )txr->tx_desc_ring != (unsigned long )((struct bnx2_tx_bd *)0)) { { dma_free_attrs(& (bp->pdev)->dev, 4096UL, (void *)txr->tx_desc_ring, txr->tx_desc_mapping, (struct dma_attrs *)0); txr->tx_desc_ring = (struct bnx2_tx_bd *)0; } } else { } { kfree((void const *)txr->tx_buf_ring); txr->tx_buf_ring = (struct bnx2_sw_tx_bd *)0; i = i + 1; } ldv_53776: ; if (i < (int )bp->num_tx_rings) { goto ldv_53775; } else { } return; } } static void bnx2_free_rx_mem(struct bnx2 *bp ) { int i ; struct bnx2_napi *bnapi ; struct bnx2_rx_ring_info *rxr ; int j ; { i = 0; goto ldv_53792; ldv_53791: bnapi = (struct bnx2_napi *)(& bp->bnx2_napi) + (unsigned long )i; rxr = & bnapi->rx_ring; j = 0; goto ldv_53786; ldv_53785: ; if ((unsigned long )rxr->rx_desc_ring[j] != (unsigned long )((struct bnx2_rx_bd *)0)) { { dma_free_attrs(& (bp->pdev)->dev, 4096UL, (void *)rxr->rx_desc_ring[j], rxr->rx_desc_mapping[j], (struct dma_attrs *)0); } } else { } rxr->rx_desc_ring[j] = (struct bnx2_rx_bd *)0; j = j + 1; ldv_53786: ; if (j < bp->rx_max_ring) { goto ldv_53785; } else { } { vfree((void const *)rxr->rx_buf_ring); rxr->rx_buf_ring = (struct bnx2_sw_bd *)0; j = 0; } goto ldv_53789; ldv_53788: ; if ((unsigned long )rxr->rx_pg_desc_ring[j] != (unsigned long )((struct bnx2_rx_bd *)0)) { { dma_free_attrs(& (bp->pdev)->dev, 4096UL, (void *)rxr->rx_pg_desc_ring[j], rxr->rx_pg_desc_mapping[j], (struct dma_attrs *)0); } } else { } rxr->rx_pg_desc_ring[j] = (struct bnx2_rx_bd *)0; j = j + 1; ldv_53789: ; if (j < bp->rx_max_pg_ring) { goto ldv_53788; } else { } { vfree((void const *)rxr->rx_pg_ring); rxr->rx_pg_ring = (struct bnx2_sw_pg *)0; i = i + 1; } ldv_53792: ; if (i < (int )bp->num_rx_rings) { goto ldv_53791; } else { } return; } } static int bnx2_alloc_tx_mem(struct bnx2 *bp ) { int i ; struct bnx2_napi *bnapi ; struct bnx2_tx_ring_info *txr ; void *tmp ; void *tmp___0 ; { i = 0; goto ldv_53801; ldv_53800: { bnapi = (struct bnx2_napi *)(& bp->bnx2_napi) + (unsigned long )i; txr = & bnapi->tx_ring; tmp = kzalloc(6144UL, 208U); txr->tx_buf_ring = (struct bnx2_sw_tx_bd *)tmp; } if ((unsigned long )txr->tx_buf_ring == (unsigned long )((struct bnx2_sw_tx_bd *)0)) { return (-12); } else { } { tmp___0 = dma_alloc_attrs(& (bp->pdev)->dev, 4096UL, & txr->tx_desc_mapping, 208U, (struct dma_attrs *)0); txr->tx_desc_ring = (struct bnx2_tx_bd *)tmp___0; } if ((unsigned long )txr->tx_desc_ring == (unsigned long )((struct bnx2_tx_bd *)0)) { return (-12); } else { } i = i + 1; ldv_53801: ; if (i < (int )bp->num_tx_rings) { goto ldv_53800; } else { } return (0); } } static int bnx2_alloc_rx_mem(struct bnx2 *bp ) { int i ; struct bnx2_napi *bnapi ; struct bnx2_rx_ring_info *rxr ; int j ; void *tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; { i = 0; goto ldv_53817; ldv_53816: { bnapi = (struct bnx2_napi *)(& bp->bnx2_napi) + (unsigned long )i; rxr = & bnapi->rx_ring; tmp = ldv_vzalloc_112((unsigned long )bp->rx_max_ring * 4096UL); rxr->rx_buf_ring = (struct bnx2_sw_bd *)tmp; } if ((unsigned long )rxr->rx_buf_ring == (unsigned long )((struct bnx2_sw_bd *)0)) { return (-12); } else { } j = 0; goto ldv_53811; ldv_53810: { tmp___0 = dma_alloc_attrs(& (bp->pdev)->dev, 4096UL, (dma_addr_t *)(& rxr->rx_desc_mapping) + (unsigned long )j, 208U, (struct dma_attrs *)0); rxr->rx_desc_ring[j] = (struct bnx2_rx_bd *)tmp___0; } if ((unsigned long )rxr->rx_desc_ring[j] == (unsigned long )((struct bnx2_rx_bd *)0)) { return (-12); } else { } j = j + 1; ldv_53811: ; if (j < bp->rx_max_ring) { goto ldv_53810; } else { } if (bp->rx_pg_ring_size != 0) { { tmp___1 = ldv_vzalloc_113((unsigned long )bp->rx_max_pg_ring * 4096UL); rxr->rx_pg_ring = (struct bnx2_sw_pg *)tmp___1; } if ((unsigned long )rxr->rx_pg_ring == (unsigned long )((struct bnx2_sw_pg *)0)) { return (-12); } else { } } else { } j = 0; goto ldv_53814; ldv_53813: { tmp___2 = dma_alloc_attrs(& (bp->pdev)->dev, 4096UL, (dma_addr_t *)(& rxr->rx_pg_desc_mapping) + (unsigned long )j, 208U, (struct dma_attrs *)0); rxr->rx_pg_desc_ring[j] = (struct bnx2_rx_bd *)tmp___2; } if ((unsigned long )rxr->rx_pg_desc_ring[j] == (unsigned long )((struct bnx2_rx_bd *)0)) { return (-12); } else { } j = j + 1; ldv_53814: ; if (j < bp->rx_max_pg_ring) { goto ldv_53813; } else { } i = i + 1; ldv_53817: ; if (i < (int )bp->num_rx_rings) { goto ldv_53816; } else { } return (0); } } static void bnx2_free_mem(struct bnx2 *bp ) { int i ; struct bnx2_napi *bnapi ; { { bnapi = (struct bnx2_napi *)(& bp->bnx2_napi); bnx2_free_tx_mem(bp); bnx2_free_rx_mem(bp); i = 0; } goto ldv_53825; ldv_53824: ; if ((unsigned long )bp->ctx_blk[i] != (unsigned long )((void *)0)) { { dma_free_attrs(& (bp->pdev)->dev, 4096UL, bp->ctx_blk[i], bp->ctx_blk_mapping[i], (struct dma_attrs *)0); bp->ctx_blk[i] = (void *)0; } } else { } i = i + 1; ldv_53825: ; if (i < bp->ctx_pages) { goto ldv_53824; } else { } if ((unsigned long )bnapi->status_blk.msi != (unsigned long )((struct status_block *)0)) { { dma_free_attrs(& (bp->pdev)->dev, (size_t )bp->status_stats_size, (void *)bnapi->status_blk.msi, bp->status_blk_mapping, (struct dma_attrs *)0); bnapi->status_blk.msi = (struct status_block *)0; bp->stats_blk = (struct statistics_block *)0; } } else { } return; } } static int bnx2_alloc_mem(struct bnx2 *bp ) { int i ; int status_blk_size ; int err ; struct bnx2_napi *bnapi ; void *status_blk ; struct status_block_msix *sblk ; { status_blk_size = 64; if ((bp->flags & 4U) != 0U) { status_blk_size = 1152; } else { } { bp->status_stats_size = (int )((unsigned int )status_blk_size + 324U); status_blk = dma_zalloc_coherent(& (bp->pdev)->dev, (size_t )bp->status_stats_size, & bp->status_blk_mapping, 208U); } if ((unsigned long )status_blk == (unsigned long )((void *)0)) { goto alloc_mem_err; } else { } bnapi = (struct bnx2_napi *)(& bp->bnx2_napi); bnapi->status_blk.msi = (struct status_block *)status_blk; bnapi->hw_tx_cons_ptr = & (bnapi->status_blk.msi)->status_tx_quick_consumer_index0; bnapi->hw_rx_cons_ptr = & (bnapi->status_blk.msi)->status_rx_quick_consumer_index0; if ((bp->flags & 4U) != 0U) { i = 1; goto ldv_53838; ldv_53837: bnapi = (struct bnx2_napi *)(& bp->bnx2_napi) + (unsigned long )i; sblk = (struct status_block_msix *)status_blk + (unsigned long )(i * 128); bnapi->status_blk.msix = sblk; bnapi->hw_tx_cons_ptr = & sblk->status_tx_quick_consumer_index; bnapi->hw_rx_cons_ptr = & sblk->status_rx_quick_consumer_index; bnapi->int_num = (u32 )(i << 24); i = i + 1; ldv_53838: ; if (i < bp->irq_nvecs) { goto ldv_53837; } else { } } else { } bp->stats_blk = (struct statistics_block *)status_blk + (unsigned long )status_blk_size; bp->stats_blk_mapping = bp->status_blk_mapping + (dma_addr_t )status_blk_size; if ((bp->chip_id & 4294901760U) == 1460207616U) { bp->ctx_pages = 2; if (bp->ctx_pages == 0) { bp->ctx_pages = 1; } else { } i = 0; goto ldv_53841; ldv_53840: { bp->ctx_blk[i] = dma_alloc_attrs(& (bp->pdev)->dev, 4096UL, (dma_addr_t *)(& bp->ctx_blk_mapping) + (unsigned long )i, 208U, (struct dma_attrs *)0); } if ((unsigned long )bp->ctx_blk[i] == (unsigned long )((void *)0)) { goto alloc_mem_err; } else { } i = i + 1; ldv_53841: ; if (i < bp->ctx_pages) { goto ldv_53840; } else { } } else { } { err = bnx2_alloc_rx_mem(bp); } if (err != 0) { goto alloc_mem_err; } else { } { err = bnx2_alloc_tx_mem(bp); } if (err != 0) { goto alloc_mem_err; } else { } return (0); alloc_mem_err: { bnx2_free_mem(bp); } return (-12); } } static void bnx2_report_fw_link(struct bnx2 *bp ) { u32 fw_link_status ; u32 bmsr ; { fw_link_status = 0U; if ((bp->phy_flags & 2048U) != 0U) { return; } else { } if ((unsigned int )bp->link_up != 0U) { { if ((int )bp->line_speed == 10) { goto case_10; } else { } if ((int )bp->line_speed == 100) { goto case_100; } else { } if ((int )bp->line_speed == 1000) { goto case_1000; } else { } if ((int )bp->line_speed == 2500) { goto case_2500; } else { } goto switch_break; case_10: /* CIL Label */ ; if ((unsigned int )bp->duplex == 0U) { fw_link_status = 2U; } else { fw_link_status = 4U; } goto ldv_53849; case_100: /* CIL Label */ ; if ((unsigned int )bp->duplex == 0U) { fw_link_status = 6U; } else { fw_link_status = 10U; } goto ldv_53849; case_1000: /* CIL Label */ ; if ((unsigned int )bp->duplex == 0U) { fw_link_status = 12U; } else { fw_link_status = 14U; } goto ldv_53849; case_2500: /* CIL Label */ ; if ((unsigned int )bp->duplex == 0U) { fw_link_status = 16U; } else { fw_link_status = 18U; } goto ldv_53849; switch_break: /* CIL Label */ ; } ldv_53849: fw_link_status = fw_link_status | 1U; if ((unsigned int )bp->autoneg != 0U) { { fw_link_status = fw_link_status | 32U; bnx2_read_phy(bp, bp->mii_bmsr, & bmsr); bnx2_read_phy(bp, bp->mii_bmsr, & bmsr); } if ((bmsr & 32U) == 0U || (bp->phy_flags & 4U) != 0U) { fw_link_status = fw_link_status | 128U; } else { fw_link_status = fw_link_status | 64U; } } else { } } else { fw_link_status = 0U; } { bnx2_shmem_wr(bp, 12U, fw_link_status); } return; } } static char *bnx2_xceiver_str(struct bnx2 *bp ) { { return ((unsigned int )bp->phy_port != 3U ? ((int )bp->phy_flags & 1 ? (char *)"Remote Copper" : (char *)"Copper") : (char *)"SerDes"); } } static void bnx2_report_link(struct bnx2 *bp ) { char *tmp ; char *tmp___0 ; { if ((unsigned int )bp->link_up != 0U) { { netif_carrier_on(bp->dev); tmp = bnx2_xceiver_str(bp); netdev_info((struct net_device const *)bp->dev, "NIC %s Link is Up, %d Mbps %s duplex", tmp, (int )bp->line_speed, (unsigned int )bp->duplex == 1U ? (char *)"full" : (char *)"half"); } if ((unsigned int )bp->flow_ctrl != 0U) { if (((int )bp->flow_ctrl & 2) != 0) { { printk(", receive "); } if ((int )bp->flow_ctrl & 1) { { printk("& transmit "); } } else { } } else { { printk(", transmit "); } } { printk("flow control ON"); } } else { } { printk("\n"); } } else { { netif_carrier_off(bp->dev); tmp___0 = bnx2_xceiver_str(bp); netdev_err((struct net_device const *)bp->dev, "NIC %s Link is Down\n", tmp___0); } } { bnx2_report_fw_link(bp); } return; } } static void bnx2_resolve_flow_ctrl(struct bnx2 *bp ) { u32 local_adv ; u32 remote_adv ; u32 val ; u32 new_local_adv ; u32 new_remote_adv ; { bp->flow_ctrl = 0U; if (((int )bp->autoneg & 3) != 3) { if ((unsigned int )bp->duplex == 1U) { bp->flow_ctrl = bp->req_flow_ctrl; } else { } return; } else { } if ((unsigned int )bp->duplex != 1U) { return; } else { } if ((int )bp->phy_flags & 1 && (bp->chip_id & 4294901760U) == 1460142080U) { { bnx2_read_phy(bp, 20U, & val); } if ((val & 32U) != 0U) { bp->flow_ctrl = (u8 )((unsigned int )bp->flow_ctrl | 1U); } else { } if ((val & 64U) != 0U) { bp->flow_ctrl = (u8 )((unsigned int )bp->flow_ctrl | 2U); } else { } return; } else { } { bnx2_read_phy(bp, bp->mii_adv, & local_adv); bnx2_read_phy(bp, bp->mii_lpa, & remote_adv); } if ((int )bp->phy_flags & 1) { new_local_adv = 0U; new_remote_adv = 0U; if ((local_adv & 128U) != 0U) { new_local_adv = new_local_adv | 1024U; } else { } if ((local_adv & 256U) != 0U) { new_local_adv = new_local_adv | 2048U; } else { } if ((remote_adv & 128U) != 0U) { new_remote_adv = new_remote_adv | 1024U; } else { } if ((remote_adv & 256U) != 0U) { new_remote_adv = new_remote_adv | 2048U; } else { } local_adv = new_local_adv; remote_adv = new_remote_adv; } else { } if ((local_adv & 1024U) != 0U) { if ((local_adv & 2048U) != 0U) { if ((remote_adv & 1024U) != 0U) { bp->flow_ctrl = 3U; } else if ((remote_adv & 2048U) != 0U) { bp->flow_ctrl = 2U; } else { } } else if ((remote_adv & 1024U) != 0U) { bp->flow_ctrl = 3U; } else { } } else if ((local_adv & 2048U) != 0U) { if ((remote_adv & 3072U) == 3072U) { bp->flow_ctrl = 1U; } else { } } else { } return; } } static int bnx2_5709s_linkup(struct bnx2 *bp ) { u32 val ; u32 speed ; { { bp->link_up = 1U; bnx2_write_phy(bp, 31U, 33056U); bnx2_read_phy(bp, 27U, & val); bnx2_write_phy(bp, 31U, 65504U); } if (((int )bp->autoneg & 1) == 0) { bp->line_speed = bp->req_line_speed; bp->duplex = bp->req_duplex; return (0); } else { } speed = val & 16128U; { if (speed == 0U) { goto case_0; } else { } if (speed == 256U) { goto case_256; } else { } if (speed == 512U) { goto case_512; } else { } if (speed == 3328U) { goto case_3328; } else { } if (speed == 768U) { goto case_768; } else { } goto switch_break; case_0: /* CIL Label */ bp->line_speed = 10U; goto ldv_53873; case_256: /* CIL Label */ bp->line_speed = 100U; goto ldv_53873; case_512: /* CIL Label */ ; case_3328: /* CIL Label */ bp->line_speed = 1000U; goto ldv_53873; case_768: /* CIL Label */ bp->line_speed = 2500U; goto ldv_53873; switch_break: /* CIL Label */ ; } ldv_53873: ; if ((val & 8U) != 0U) { bp->duplex = 1U; } else { bp->duplex = 0U; } return (0); } } static int bnx2_5708s_linkup(struct bnx2 *bp ) { u32 val ; { { bp->link_up = 1U; bnx2_read_phy(bp, 20U, & val); } { if ((val & 24U) == 0U) { goto case_0; } else { } if ((val & 24U) == 8U) { goto case_8; } else { } if ((val & 24U) == 16U) { goto case_16; } else { } if ((val & 24U) == 24U) { goto case_24; } else { } goto switch_break; case_0: /* CIL Label */ bp->line_speed = 10U; goto ldv_53883; case_8: /* CIL Label */ bp->line_speed = 100U; goto ldv_53883; case_16: /* CIL Label */ bp->line_speed = 1000U; goto ldv_53883; case_24: /* CIL Label */ bp->line_speed = 2500U; goto ldv_53883; switch_break: /* CIL Label */ ; } ldv_53883: ; if ((val & 4U) != 0U) { bp->duplex = 1U; } else { bp->duplex = 0U; } return (0); } } static int bnx2_5706s_linkup(struct bnx2 *bp ) { u32 bmcr ; u32 local_adv ; u32 remote_adv ; u32 common ; { { bp->link_up = 1U; bp->line_speed = 1000U; bnx2_read_phy(bp, bp->mii_bmcr, & bmcr); } if ((bmcr & 256U) != 0U) { bp->duplex = 1U; } else { bp->duplex = 0U; } if ((bmcr & 4096U) == 0U) { return (0); } else { } { bnx2_read_phy(bp, bp->mii_adv, & local_adv); bnx2_read_phy(bp, bp->mii_lpa, & remote_adv); common = local_adv & remote_adv; } if ((common & 96U) != 0U) { if ((common & 32U) != 0U) { bp->duplex = 1U; } else { bp->duplex = 0U; } } else { } return (0); } } static int bnx2_copper_linkup(struct bnx2 *bp ) { u32 bmcr ; u32 local_adv ; u32 remote_adv ; u32 common ; u32 ext_status ; { { bp->phy_flags = bp->phy_flags & 4294950911U; bnx2_read_phy(bp, bp->mii_bmcr, & bmcr); } if ((bmcr & 4096U) != 0U) { { bnx2_read_phy(bp, 9U, & local_adv); bnx2_read_phy(bp, 10U, & remote_adv); common = local_adv & (remote_adv >> 2); } if ((common & 512U) != 0U) { bp->line_speed = 1000U; bp->duplex = 1U; } else if ((common & 256U) != 0U) { bp->line_speed = 1000U; bp->duplex = 0U; } else { { bnx2_read_phy(bp, bp->mii_adv, & local_adv); bnx2_read_phy(bp, bp->mii_lpa, & remote_adv); common = local_adv & remote_adv; } if ((common & 256U) != 0U) { bp->line_speed = 100U; bp->duplex = 1U; } else if ((common & 128U) != 0U) { bp->line_speed = 100U; bp->duplex = 0U; } else if ((common & 64U) != 0U) { bp->line_speed = 10U; bp->duplex = 1U; } else if ((common & 32U) != 0U) { bp->line_speed = 10U; bp->duplex = 0U; } else { bp->line_speed = 0U; bp->link_up = 0U; } } } else { if ((bmcr & 8192U) != 0U) { bp->line_speed = 100U; } else { bp->line_speed = 10U; } if ((bmcr & 256U) != 0U) { bp->duplex = 1U; } else { bp->duplex = 0U; } } if ((unsigned int )bp->link_up != 0U) { { bnx2_read_phy(bp, 17U, & ext_status); } if ((ext_status & 8192U) != 0U) { bp->phy_flags = bp->phy_flags | 16384U; } else { } } else { } return (0); } } static void bnx2_init_rx_context(struct bnx2 *bp , u32 cid ) { u32 val ; u32 rx_cid_addr ; { rx_cid_addr = cid << 7; val = 268435456U; val = val | 65536U; val = val | 512U; if ((int )bp->flow_ctrl & 1) { val = val | 255U; } else { } { bnx2_ctx_wr(bp, rx_cid_addr, 0U, val); } return; } } static void bnx2_init_all_rx_contexts(struct bnx2 *bp ) { int i ; u32 cid ; { i = 0; cid = 0U; goto ldv_53914; ldv_53913: ; if (i == 1) { cid = 4U; } else { } { bnx2_init_rx_context(bp, cid); i = i + 1; cid = cid + 1U; } ldv_53914: ; if (i < (int )bp->num_rx_rings) { goto ldv_53913; } else { } return; } } static void bnx2_set_mac_link(struct bnx2 *bp ) { u32 val ; { { writel(9760U, (void volatile *)bp->regview + 5316U); } if (((unsigned int )bp->link_up != 0U && (unsigned int )bp->line_speed == 1000U) && (unsigned int )bp->duplex == 0U) { { writel(9983U, (void volatile *)bp->regview + 5316U); } } else { } { val = readl((void const volatile *)bp->regview + 5120U); val = val & 4294965185U; } if ((unsigned int )bp->link_up != 0U) { { if ((int )bp->line_speed == 10) { goto case_10; } else { } if ((int )bp->line_speed == 100) { goto case_100; } else { } if ((int )bp->line_speed == 2500) { goto case_2500; } else { } if ((int )bp->line_speed == 1000) { goto case_1000; } else { } goto switch_break; case_10: /* CIL Label */ ; if ((bp->chip_id & 4294901760U) != 1460011008U) { val = val | 12U; goto ldv_53921; } else { } case_100: /* CIL Label */ val = val | 4U; goto ldv_53921; case_2500: /* CIL Label */ val = val | 32U; case_1000: /* CIL Label */ val = val | 8U; goto ldv_53921; switch_break: /* CIL Label */ ; } ldv_53921: ; } else { val = val | 8U; } if ((unsigned int )bp->duplex == 0U) { val = val | 2U; } else { } { writel(val, (void volatile *)bp->regview + 5120U); bp->rx_mode = bp->rx_mode & 4294967291U; } if (((int )bp->flow_ctrl & 2) != 0) { bp->rx_mode = bp->rx_mode | 4U; } else { } { writel(bp->rx_mode, (void volatile *)bp->regview + 5320U); val = readl((void const volatile *)bp->regview + 5308U); val = val & 4294967279U; } if ((int )bp->flow_ctrl & 1) { val = val | 16U; } else { } { writel(val, (void volatile *)bp->regview + 5308U); writel(4096U, (void volatile *)bp->regview + 5124U); bnx2_init_all_rx_contexts(bp); } return; } } static void bnx2_enable_bmsr1(struct bnx2 *bp ) { { if ((int )bp->phy_flags & 1 && (bp->chip_id & 4294901760U) == 1460207616U) { { bnx2_write_phy(bp, 31U, 33056U); } } else { } return; } } static void bnx2_disable_bmsr1(struct bnx2 *bp ) { { if ((int )bp->phy_flags & 1 && (bp->chip_id & 4294901760U) == 1460207616U) { { bnx2_write_phy(bp, 31U, 65504U); } } else { } return; } } static int bnx2_test_and_enable_2g5(struct bnx2 *bp ) { u32 up1 ; int ret ; { ret = 1; if ((bp->phy_flags & 8U) == 0U) { return (0); } else { } if ((int )bp->autoneg & 1) { bp->advertising = bp->advertising | 32768U; } else { } if ((bp->chip_id & 4294901760U) == 1460207616U) { { bnx2_write_phy(bp, 31U, 33568U); } } else { } { bnx2_read_phy(bp, bp->mii_up1, & up1); } if ((up1 & 1U) == 0U) { { up1 = up1 | 1U; bnx2_write_phy(bp, bp->mii_up1, up1); ret = 0; } } else { } if ((bp->chip_id & 4294901760U) == 1460207616U) { { bnx2_write_phy(bp, 31U, 65504U); } } else { } return (ret); } } static int bnx2_test_and_disable_2g5(struct bnx2 *bp ) { u32 up1 ; int ret ; { ret = 0; if ((bp->phy_flags & 8U) == 0U) { return (0); } else { } if ((bp->chip_id & 4294901760U) == 1460207616U) { { bnx2_write_phy(bp, 31U, 33568U); } } else { } { bnx2_read_phy(bp, bp->mii_up1, & up1); } if ((int )up1 & 1) { { up1 = up1 & 4294967294U; bnx2_write_phy(bp, bp->mii_up1, up1); ret = 1; } } else { } if ((bp->chip_id & 4294901760U) == 1460207616U) { { bnx2_write_phy(bp, 31U, 65504U); } } else { } return (ret); } } static void bnx2_enable_forced_2g5(struct bnx2 *bp ) { u32 bmcr ; int err ; u32 val ; int tmp ; { bmcr = bmcr; if ((bp->phy_flags & 8U) == 0U) { return; } else { } if ((bp->chip_id & 4294901760U) == 1460207616U) { { bnx2_write_phy(bp, 31U, 33536U); tmp = bnx2_read_phy(bp, 24U, & val); } if (tmp == 0) { { val = val & 4294967280U; val = val | 16U; bnx2_write_phy(bp, 24U, val); } } else { } { bnx2_write_phy(bp, 31U, 65504U); err = bnx2_read_phy(bp, bp->mii_bmcr, & bmcr); } } else if ((bp->chip_id & 4294901760U) == 1460142080U) { { err = bnx2_read_phy(bp, bp->mii_bmcr, & bmcr); } if (err == 0) { bmcr = bmcr | 32U; } else { } } else { return; } if (err != 0) { return; } else { } if ((int )bp->autoneg & 1) { bmcr = bmcr & 4294963199U; if ((unsigned int )bp->req_duplex == 1U) { bmcr = bmcr | 256U; } else { } } else { } { bnx2_write_phy(bp, bp->mii_bmcr, bmcr); } return; } } static void bnx2_disable_forced_2g5(struct bnx2 *bp ) { u32 bmcr ; int err ; u32 val ; int tmp ; { bmcr = bmcr; if ((bp->phy_flags & 8U) == 0U) { return; } else { } if ((bp->chip_id & 4294901760U) == 1460207616U) { { bnx2_write_phy(bp, 31U, 33536U); tmp = bnx2_read_phy(bp, 24U, & val); } if (tmp == 0) { { val = val & 4294967279U; bnx2_write_phy(bp, 24U, val); } } else { } { bnx2_write_phy(bp, 31U, 65504U); err = bnx2_read_phy(bp, bp->mii_bmcr, & bmcr); } } else if ((bp->chip_id & 4294901760U) == 1460142080U) { { err = bnx2_read_phy(bp, bp->mii_bmcr, & bmcr); } if (err == 0) { bmcr = bmcr & 4294967263U; } else { } } else { return; } if (err != 0) { return; } else { } if ((int )bp->autoneg & 1) { bmcr = bmcr | 4672U; } else { } { bnx2_write_phy(bp, bp->mii_bmcr, bmcr); } return; } } static void bnx2_5706s_force_link_dn(struct bnx2 *bp , int start ) { u32 val ; { { bnx2_write_phy(bp, 23U, 3843U); bnx2_read_phy(bp, 21U, & val); } if (start != 0) { { bnx2_write_phy(bp, 21U, val & 65295U); } } else { { bnx2_write_phy(bp, 21U, val | 192U); } } return; } } static int bnx2_set_link(struct bnx2 *bp ) { u32 bmsr ; u8 link_up ; u32 val ; u32 an_dbg ; u32 bmcr ; { if ((unsigned int )bp->loopback - 1U <= 1U) { bp->link_up = 1U; return (0); } else { } if ((bp->phy_flags & 2048U) != 0U) { return (0); } else { } { link_up = bp->link_up; bnx2_enable_bmsr1(bp); bnx2_read_phy(bp, bp->mii_bmsr1, & bmsr); bnx2_read_phy(bp, bp->mii_bmsr1, & bmsr); bnx2_disable_bmsr1(bp); } if ((int )bp->phy_flags & 1 && (bp->chip_id & 4294901760U) == 1460011008U) { if ((bp->phy_flags & 4096U) != 0U) { { bnx2_5706s_force_link_dn(bp, 0); bp->phy_flags = bp->phy_flags & 4294963199U; } } else { } { val = readl((void const volatile *)bp->regview + 5124U); bnx2_write_phy(bp, 28U, 26624U); bnx2_read_phy(bp, 28U, & an_dbg); bnx2_read_phy(bp, 28U, & an_dbg); } if (((long )val & 2048L) != 0L && (an_dbg & 2U) == 0U) { bmsr = bmsr | 4U; } else { bmsr = bmsr & 4294967291U; } } else { } if ((bmsr & 4U) != 0U) { bp->link_up = 1U; if ((int )bp->phy_flags & 1) { if ((bp->chip_id & 4294901760U) == 1460011008U) { { bnx2_5706s_linkup(bp); } } else if ((bp->chip_id & 4294901760U) == 1460142080U) { { bnx2_5708s_linkup(bp); } } else if ((bp->chip_id & 4294901760U) == 1460207616U) { { bnx2_5709s_linkup(bp); } } else { } } else { { bnx2_copper_linkup(bp); } } { bnx2_resolve_flow_ctrl(bp); } } else { if ((int )bp->phy_flags & 1 && (int )bp->autoneg & 1) { { bnx2_disable_forced_2g5(bp); } } else { } if ((bp->phy_flags & 4U) != 0U) { { bnx2_read_phy(bp, bp->mii_bmcr, & bmcr); bmcr = bmcr | 4096U; bnx2_write_phy(bp, bp->mii_bmcr, bmcr); bp->phy_flags = bp->phy_flags & 4294967291U; } } else { } bp->link_up = 0U; } if ((int )bp->link_up != (int )link_up) { { bnx2_report_link(bp); } } else { } { bnx2_set_mac_link(bp); } return (0); } } static int bnx2_reset_phy(struct bnx2 *bp ) { int i ; u32 reg ; { { bnx2_write_phy(bp, bp->mii_bmcr, 32768U); i = 0; } goto ldv_53973; ldv_53972: { __const_udelay(42950UL); bnx2_read_phy(bp, bp->mii_bmcr, & reg); } if ((reg & 32768U) == 0U) { { __const_udelay(85900UL); } goto ldv_53971; } else { } i = i + 1; ldv_53973: ; if (i <= 99) { goto ldv_53972; } else { } ldv_53971: ; if (i == 100) { return (-16); } else { } return (0); } } static u32 bnx2_phy_get_pause_adv(struct bnx2 *bp ) { u32 adv ; { adv = 0U; if (((int )bp->req_flow_ctrl & 3) == 3) { if ((int )bp->phy_flags & 1) { adv = 128U; } else { adv = 1024U; } } else if ((int )bp->req_flow_ctrl & 1) { if ((int )bp->phy_flags & 1) { adv = 256U; } else { adv = 2048U; } } else if (((int )bp->req_flow_ctrl & 2) != 0) { if ((int )bp->phy_flags & 1) { adv = 384U; } else { adv = 3072U; } } else { } return (adv); } } static int bnx2_fw_sync(struct bnx2 *bp , u32 msg_data , int ack , int silent ) ; static int bnx2_setup_remote_phy(struct bnx2 *bp , u8 port ) { u32 speed_arg ; u32 pause_adv ; { { speed_arg = 0U; pause_adv = bnx2_phy_get_pause_adv(bp); } if ((int )bp->autoneg & 1) { speed_arg = speed_arg | 1024U; if ((int )bp->advertising & 1) { speed_arg = speed_arg | 1U; } else { } if ((bp->advertising & 2U) != 0U) { speed_arg = speed_arg | 2U; } else { } if ((bp->advertising & 4U) != 0U) { speed_arg = speed_arg | 4U; } else { } if ((bp->advertising & 8U) != 0U) { speed_arg = speed_arg | 8U; } else { } if ((bp->advertising & 32U) != 0U) { speed_arg = speed_arg | 32U; } else { } if ((bp->advertising & 32768U) != 0U) { speed_arg = speed_arg | 128U; } else { } } else if ((unsigned int )bp->req_line_speed == 2500U) { speed_arg = 128U; } else if ((unsigned int )bp->req_line_speed == 1000U) { speed_arg = 32U; } else if ((unsigned int )bp->req_line_speed == 100U) { if ((unsigned int )bp->req_duplex == 1U) { speed_arg = 8U; } else { speed_arg = 4U; } } else if ((unsigned int )bp->req_line_speed == 10U) { if ((unsigned int )bp->req_duplex == 1U) { speed_arg = 2U; } else { speed_arg = 1U; } } else { } if ((pause_adv & 1152U) != 0U) { speed_arg = speed_arg | 4096U; } else { } if ((pause_adv & 2304U) != 0U) { speed_arg = speed_arg | 8192U; } else { } if ((unsigned int )port == 0U) { speed_arg = speed_arg | 18432U; } else { } { bnx2_shmem_wr(bp, 20U, speed_arg); ldv_spin_unlock_bh_111(& bp->phy_lock); bnx2_fw_sync(bp, 268435456U, 1, 0); ldv_spin_lock_bh_110(& bp->phy_lock); } return (0); } } static int bnx2_setup_serdes_phy(struct bnx2 *bp , u8 port ) { u32 adv ; u32 bmcr ; u32 new_adv ; int tmp ; u32 new_bmcr ; int force_link_down ; int tmp___0 ; int tmp___1 ; u32 tmp___2 ; { new_adv = 0U; if ((bp->phy_flags & 2048U) != 0U) { { tmp = bnx2_setup_remote_phy(bp, (int )port); } return (tmp); } else { } if (((int )bp->autoneg & 1) == 0) { force_link_down = 0; if ((unsigned int )bp->req_line_speed == 2500U) { { tmp___0 = bnx2_test_and_enable_2g5(bp); } if (tmp___0 == 0) { force_link_down = 1; } else { } } else if ((unsigned int )bp->req_line_speed == 1000U) { { tmp___1 = bnx2_test_and_disable_2g5(bp); } if (tmp___1 != 0) { force_link_down = 1; } else { } } else { } { bnx2_read_phy(bp, bp->mii_adv, & adv); adv = adv & 4294967199U; bnx2_read_phy(bp, bp->mii_bmcr, & bmcr); new_bmcr = bmcr & 4294963199U; new_bmcr = new_bmcr | 64U; } if ((bp->chip_id & 4294901760U) == 1460207616U) { if ((unsigned int )bp->req_line_speed == 2500U) { { bnx2_enable_forced_2g5(bp); } } else if ((unsigned int )bp->req_line_speed == 1000U) { { bnx2_disable_forced_2g5(bp); new_bmcr = new_bmcr & 4294959103U; } } else { } } else if ((bp->chip_id & 4294901760U) == 1460142080U) { if ((unsigned int )bp->req_line_speed == 2500U) { new_bmcr = new_bmcr | 32U; } else { new_bmcr = bmcr & 4294967263U; } } else { } if ((unsigned int )bp->req_duplex == 1U) { adv = adv | 32U; new_bmcr = new_bmcr | 256U; } else { adv = adv | 64U; new_bmcr = new_bmcr & 4294967039U; } if (new_bmcr != bmcr || force_link_down != 0) { if ((unsigned int )bp->link_up != 0U) { { bnx2_write_phy(bp, bp->mii_adv, adv & 4294967199U); bnx2_write_phy(bp, bp->mii_bmcr, bmcr | 4608U); bp->link_up = 0U; netif_carrier_off(bp->dev); bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr); bnx2_report_link(bp); } } else { } { bnx2_write_phy(bp, bp->mii_adv, adv); bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr); } } else { { bnx2_resolve_flow_ctrl(bp); bnx2_set_mac_link(bp); } } return (0); } else { } { bnx2_test_and_enable_2g5(bp); } if ((bp->advertising & 32U) != 0U) { new_adv = new_adv | 32U; } else { } { tmp___2 = bnx2_phy_get_pause_adv(bp); new_adv = new_adv | tmp___2; bnx2_read_phy(bp, bp->mii_adv, & adv); bnx2_read_phy(bp, bp->mii_bmcr, & bmcr); bp->serdes_an_pending = 0U; } if (adv != new_adv || (bmcr & 4096U) == 0U) { if ((unsigned int )bp->link_up != 0U) { { bnx2_write_phy(bp, bp->mii_bmcr, 16384U); ldv_spin_unlock_bh_111(& bp->phy_lock); msleep(20U); ldv_spin_lock_bh_110(& bp->phy_lock); } } else { } { bnx2_write_phy(bp, bp->mii_adv, new_adv); bnx2_write_phy(bp, bp->mii_bmcr, bmcr | 4608U); bp->current_interval = 83U; bp->serdes_an_pending = 1U; ldv_mod_timer_118(& bp->timer, (unsigned long )jiffies + (unsigned long )bp->current_interval); } } else { { bnx2_resolve_flow_ctrl(bp); bnx2_set_mac_link(bp); } } return (0); } } static void bnx2_set_default_remote_link(struct bnx2 *bp ) { u32 link ; { if ((unsigned int )bp->phy_port == 0U) { { link = bnx2_shmem_rd(bp, 888U); } } else { { link = bnx2_shmem_rd(bp, 884U); } } if ((link & 1024U) != 0U) { bp->req_line_speed = 0U; bp->autoneg = (u8 )((unsigned int )bp->autoneg | 1U); bp->advertising = 64U; if ((int )link & 1) { bp->advertising = bp->advertising | 1U; } else { } if ((link & 2U) != 0U) { bp->advertising = bp->advertising | 2U; } else { } if ((link & 4U) != 0U) { bp->advertising = bp->advertising | 4U; } else { } if ((link & 8U) != 0U) { bp->advertising = bp->advertising | 8U; } else { } if ((link & 32U) != 0U) { bp->advertising = bp->advertising | 32U; } else { } if ((link & 128U) != 0U) { bp->advertising = bp->advertising | 32768U; } else { } } else { bp->autoneg = 0U; bp->advertising = 0U; bp->req_duplex = 1U; if ((link & 3U) != 0U) { bp->req_line_speed = 10U; if ((int )link & 1) { bp->req_duplex = 0U; } else { } } else { } if ((link & 12U) != 0U) { bp->req_line_speed = 100U; if ((link & 4U) != 0U) { bp->req_duplex = 0U; } else { } } else { } if ((link & 32U) != 0U) { bp->req_line_speed = 1000U; } else { } if ((link & 128U) != 0U) { bp->req_line_speed = 2500U; } else { } } return; } } static void bnx2_set_default_link(struct bnx2 *bp ) { u32 reg ; u16 tmp ; { if ((bp->phy_flags & 2048U) != 0U) { { bnx2_set_default_remote_link(bp); } return; } else { } bp->autoneg = 3U; bp->req_line_speed = 0U; if ((int )bp->phy_flags & 1) { { bp->advertising = (bp->phy_flags & 8U) != 0U ? 32800U : 96U; reg = bnx2_shmem_rd(bp, 88U); reg = reg & 2031616U; } if (reg == 196608U) { bp->autoneg = 0U; tmp = 1000U; bp->line_speed = tmp; bp->req_line_speed = tmp; bp->req_duplex = 1U; } else { } } else { bp->advertising = 111U; } return; } } static void bnx2_send_heart_beat(struct bnx2 *bp ) { u32 msg ; u32 addr ; { { ldv_spin_lock_119(& bp->indirect_lock); bp->fw_drv_pulse_wr_seq = (u16 )((int )bp->fw_drv_pulse_wr_seq + 1); msg = (unsigned int )bp->fw_drv_pulse_wr_seq & 32767U; addr = bp->shmem_base + 16U; writel(addr, (void volatile *)bp->regview + 120U); writel(msg, (void volatile *)bp->regview + 128U); ldv_spin_unlock_120(& bp->indirect_lock); } return; } } static void bnx2_remote_phy_event(struct bnx2 *bp ) { u32 msg ; u8 link_up ; u8 old_port ; u32 speed ; { { link_up = bp->link_up; msg = bnx2_shmem_rd(bp, 12U); } if ((int )msg < 0) { { bnx2_send_heart_beat(bp); } } else { } msg = msg & 2147483647U; if ((msg & 1U) == 0U) { bp->link_up = 0U; } else { bp->link_up = 1U; speed = msg & 30U; bp->duplex = 1U; { if (speed == 2U) { goto case_2; } else { } if (speed == 4U) { goto case_4; } else { } if (speed == 6U) { goto case_6; } else { } if (speed == 8U) { goto case_8; } else { } if (speed == 10U) { goto case_10; } else { } if (speed == 12U) { goto case_12; } else { } if (speed == 14U) { goto case_14; } else { } if (speed == 16U) { goto case_16; } else { } if (speed == 18U) { goto case_18; } else { } goto switch_default; case_2: /* CIL Label */ bp->duplex = 0U; case_4: /* CIL Label */ bp->line_speed = 10U; goto ldv_54020; case_6: /* CIL Label */ bp->duplex = 0U; case_8: /* CIL Label */ ; case_10: /* CIL Label */ bp->line_speed = 100U; goto ldv_54020; case_12: /* CIL Label */ bp->duplex = 0U; case_14: /* CIL Label */ bp->line_speed = 1000U; goto ldv_54020; case_16: /* CIL Label */ bp->duplex = 0U; case_18: /* CIL Label */ bp->line_speed = 2500U; goto ldv_54020; switch_default: /* CIL Label */ bp->line_speed = 0U; goto ldv_54020; switch_break: /* CIL Label */ ; } ldv_54020: bp->flow_ctrl = 0U; if (((int )bp->autoneg & 3) != 3) { if ((unsigned int )bp->duplex == 1U) { bp->flow_ctrl = bp->req_flow_ctrl; } else { } } else { if ((msg & 65536U) != 0U) { bp->flow_ctrl = (u8 )((unsigned int )bp->flow_ctrl | 1U); } else { } if ((msg & 131072U) != 0U) { bp->flow_ctrl = (u8 )((unsigned int )bp->flow_ctrl | 2U); } else { } } old_port = bp->phy_port; if ((msg & 1048576U) != 0U) { bp->phy_port = 3U; } else { bp->phy_port = 0U; } if ((int )old_port != (int )bp->phy_port) { { bnx2_set_default_link(bp); } } else { } } if ((int )bp->link_up != (int )link_up) { { bnx2_report_link(bp); } } else { } { bnx2_set_mac_link(bp); } return; } } static int bnx2_set_remote_link(struct bnx2 *bp ) { u32 evt_code ; { { evt_code = bnx2_shmem_rd(bp, 852U); } { if (evt_code == 1U) { goto case_1; } else { } if (evt_code == 0U) { goto case_0; } else { } goto switch_default; case_1: /* CIL Label */ { bnx2_remote_phy_event(bp); } goto ldv_54034; case_0: /* CIL Label */ ; switch_default: /* CIL Label */ { bnx2_send_heart_beat(bp); } goto ldv_54034; switch_break: /* CIL Label */ ; } ldv_54034: ; return (0); } } static int bnx2_setup_copper_phy(struct bnx2 *bp ) { u32 bmcr ; u32 adv_reg ; u32 new_adv ; u32 new_bmcr ; u32 tmp ; u32 adv1000_reg ; u32 new_adv1000 ; u32 tmp___0 ; u32 tmp___1 ; u32 bmsr ; { { new_adv = 0U; bnx2_read_phy(bp, bp->mii_bmcr, & bmcr); bnx2_read_phy(bp, bp->mii_adv, & adv_reg); adv_reg = adv_reg & 3553U; tmp = ethtool_adv_to_mii_adv_t(bp->advertising); new_adv = tmp | 1U; } if ((int )bp->autoneg & 1) { { new_adv1000 = 0U; tmp___0 = bnx2_phy_get_pause_adv(bp); new_adv = new_adv | tmp___0; bnx2_read_phy(bp, 9U, & adv1000_reg); adv1000_reg = adv1000_reg & 768U; tmp___1 = ethtool_adv_to_mii_ctrl1000_t(bp->advertising); new_adv1000 = new_adv1000 | tmp___1; } if ((adv1000_reg != new_adv1000 || adv_reg != new_adv) || (bmcr & 4096U) == 0U) { { bnx2_write_phy(bp, bp->mii_adv, new_adv); bnx2_write_phy(bp, 9U, new_adv1000); bnx2_write_phy(bp, bp->mii_bmcr, 4608U); } } else if ((unsigned int )bp->link_up != 0U) { { bnx2_resolve_flow_ctrl(bp); bnx2_set_mac_link(bp); } } else { } return (0); } else { } if (adv_reg != new_adv) { { bnx2_write_phy(bp, bp->mii_adv, new_adv); } } else { } new_bmcr = 0U; if ((unsigned int )bp->req_line_speed == 100U) { new_bmcr = new_bmcr | 8192U; } else { } if ((unsigned int )bp->req_duplex == 1U) { new_bmcr = new_bmcr | 256U; } else { } if (new_bmcr != bmcr) { { bnx2_read_phy(bp, bp->mii_bmsr, & bmsr); bnx2_read_phy(bp, bp->mii_bmsr, & bmsr); } if ((bmsr & 4U) != 0U) { { bnx2_write_phy(bp, bp->mii_bmcr, 16384U); ldv_spin_unlock_bh_111(& bp->phy_lock); msleep(50U); ldv_spin_lock_bh_110(& bp->phy_lock); bnx2_read_phy(bp, bp->mii_bmsr, & bmsr); bnx2_read_phy(bp, bp->mii_bmsr, & bmsr); } } else { } { bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr); } if ((bmsr & 4U) != 0U) { { bp->line_speed = bp->req_line_speed; bp->duplex = bp->req_duplex; bnx2_resolve_flow_ctrl(bp); bnx2_set_mac_link(bp); } } else { } } else { { bnx2_resolve_flow_ctrl(bp); bnx2_set_mac_link(bp); } } return (0); } } static int bnx2_setup_phy(struct bnx2 *bp , u8 port ) { int tmp ; int tmp___0 ; { if ((unsigned int )bp->loopback == 1U) { return (0); } else { } if ((int )bp->phy_flags & 1) { { tmp = bnx2_setup_serdes_phy(bp, (int )port); } return (tmp); } else { { tmp___0 = bnx2_setup_copper_phy(bp); } return (tmp___0); } } } static int bnx2_init_5709s_phy(struct bnx2 *bp , int reset_phy ) { u32 val ; { { bp->mii_bmcr = 16U; bp->mii_bmsr = 17U; bp->mii_bmsr1 = 27U; bp->mii_adv = 20U; bp->mii_lpa = 21U; bp->mii_up1 = 25U; bnx2_write_phy(bp, 31U, 65488U); bnx2_write_phy(bp, 30U, 14336U); bnx2_write_phy(bp, 31U, 65504U); } if (reset_phy != 0) { { bnx2_reset_phy(bp); } } else { } { bnx2_write_phy(bp, 31U, 33536U); bnx2_read_phy(bp, 16U, & val); val = val & 4294967279U; val = val | 1U; bnx2_write_phy(bp, 16U, val); bnx2_write_phy(bp, 31U, 33568U); bnx2_read_phy(bp, 25U, & val); } if ((bp->phy_flags & 8U) != 0U) { val = val | 1U; } else { val = val & 4294967294U; } { bnx2_write_phy(bp, 25U, val); bnx2_write_phy(bp, 31U, 33616U); bnx2_read_phy(bp, 16U, & val); val = val | 3U; bnx2_write_phy(bp, 16U, val); bnx2_write_phy(bp, 31U, 33648U); val = 57344U; bnx2_write_phy(bp, 18U, val); bnx2_write_phy(bp, 31U, 65504U); } return (0); } } static int bnx2_init_5708s_phy(struct bnx2 *bp , int reset_phy ) { u32 val ; u32 tmp ; u32 is_backplane ; { if (reset_phy != 0) { { bnx2_reset_phy(bp); } } else { } { bp->mii_up1 = 11U; bnx2_write_phy(bp, 31U, 2U); bnx2_write_phy(bp, 16U, 1U); bnx2_write_phy(bp, 31U, 0U); bnx2_read_phy(bp, 16U, & val); val = val | 17U; bnx2_write_phy(bp, 16U, val); bnx2_read_phy(bp, 17U, & val); val = val | 1U; bnx2_write_phy(bp, 17U, val); } if ((bp->phy_flags & 8U) != 0U) { { bnx2_read_phy(bp, 11U, & val); val = val | 1U; bnx2_write_phy(bp, 11U, val); } } else { } if (((bp->chip_id & 4294967280U) == 1460142080U || (bp->chip_id & 4294967280U) == 1460146176U) || (bp->chip_id & 4294967280U) == 1460146192U) { { bnx2_write_phy(bp, 31U, 5U); bnx2_read_phy(bp, 21U, & val); val = val & 4294967247U; bnx2_write_phy(bp, 21U, val); bnx2_write_phy(bp, 31U, 0U); } } else { } { tmp = bnx2_shmem_rd(bp, 88U); val = tmp & 65535U; } if (val != 0U) { { is_backplane = bnx2_shmem_rd(bp, 60U); } if ((is_backplane & 64U) != 0U) { { bnx2_write_phy(bp, 31U, 5U); bnx2_write_phy(bp, 23U, val); bnx2_write_phy(bp, 31U, 0U); } } else { } } else { } return (0); } } static int bnx2_init_5706s_phy(struct bnx2 *bp , int reset_phy ) { u32 val ; u32 val___0 ; { if (reset_phy != 0) { { bnx2_reset_phy(bp); } } else { } bp->phy_flags = bp->phy_flags & 4294967291U; if ((bp->chip_id & 4294901760U) == 1460011008U) { { writel(768U, (void volatile *)bp->regview + 2236U); } } else { } if ((bp->dev)->mtu > 1500U) { { bnx2_write_phy(bp, 24U, 7U); bnx2_read_phy(bp, 24U, & val); bnx2_write_phy(bp, 24U, (val & 49144U) | 16384U); bnx2_write_phy(bp, 28U, 27648U); bnx2_read_phy(bp, 28U, & val); bnx2_write_phy(bp, 28U, (val & 1021U) | 60418U); } } else { { bnx2_write_phy(bp, 24U, 7U); bnx2_read_phy(bp, 24U, & val___0); bnx2_write_phy(bp, 24U, val___0 & 4294950904U); bnx2_write_phy(bp, 28U, 27648U); bnx2_read_phy(bp, 28U, & val___0); bnx2_write_phy(bp, 28U, (val___0 & 1021U) | 60416U); } } return (0); } } static int bnx2_init_copper_phy(struct bnx2 *bp , int reset_phy ) { u32 val ; { if (reset_phy != 0) { { bnx2_reset_phy(bp); } } else { } if ((bp->phy_flags & 2U) != 0U) { { bnx2_write_phy(bp, 24U, 3072U); bnx2_write_phy(bp, 23U, 10U); bnx2_write_phy(bp, 21U, 12555U); bnx2_write_phy(bp, 23U, 8223U); bnx2_write_phy(bp, 21U, 38150U); bnx2_write_phy(bp, 23U, 16415U); bnx2_write_phy(bp, 21U, 5346U); bnx2_write_phy(bp, 24U, 1024U); } } else { } if ((bp->phy_flags & 1024U) != 0U) { { bnx2_write_phy(bp, 23U, 3848U); bnx2_read_phy(bp, 21U, & val); val = val & 4294967039U; bnx2_write_phy(bp, 21U, val); } } else { } if ((bp->dev)->mtu > 1500U) { { bnx2_write_phy(bp, 24U, 7U); bnx2_read_phy(bp, 24U, & val); bnx2_write_phy(bp, 24U, val | 16384U); bnx2_read_phy(bp, 16U, & val); bnx2_write_phy(bp, 16U, val | 1U); } } else { { bnx2_write_phy(bp, 24U, 7U); bnx2_read_phy(bp, 24U, & val); bnx2_write_phy(bp, 24U, val & 4294950904U); bnx2_read_phy(bp, 16U, & val); bnx2_write_phy(bp, 16U, val & 4294967294U); } } { bnx2_write_phy(bp, 24U, 28679U); bnx2_read_phy(bp, 24U, & val); val = val | 32784U; } if ((bp->chip_id & 4294901760U) == 1460207616U) { val = val | 512U; } else { } { bnx2_write_phy(bp, 24U, val); } return (0); } } static int bnx2_init_phy(struct bnx2 *bp , int reset_phy ) { u32 val ; int rc ; { { rc = 0; bp->phy_flags = bp->phy_flags & 4294966527U; bp->phy_flags = bp->phy_flags | 512U; bp->mii_bmcr = 0U; bp->mii_bmsr = 1U; bp->mii_bmsr1 = 1U; bp->mii_adv = 4U; bp->mii_lpa = 5U; writel(2048U, (void volatile *)bp->regview + 5128U); } if ((bp->phy_flags & 2048U) != 0U) { goto setup_phy; } else { } { bnx2_read_phy(bp, 2U, & val); bp->phy_id = val << 16; bnx2_read_phy(bp, 3U, & val); bp->phy_id = bp->phy_id | (val & 65535U); } if ((int )bp->phy_flags & 1) { if ((bp->chip_id & 4294901760U) == 1460011008U) { { rc = bnx2_init_5706s_phy(bp, reset_phy); } } else if ((bp->chip_id & 4294901760U) == 1460142080U) { { rc = bnx2_init_5708s_phy(bp, reset_phy); } } else if ((bp->chip_id & 4294901760U) == 1460207616U) { { rc = bnx2_init_5709s_phy(bp, reset_phy); } } else { } } else { { rc = bnx2_init_copper_phy(bp, reset_phy); } } setup_phy: ; if (rc == 0) { { rc = bnx2_setup_phy(bp, (int )bp->phy_port); } } else { } return (rc); } } static int bnx2_set_mac_loopback(struct bnx2 *bp ) { u32 mac_mode ; { { mac_mode = readl((void const volatile *)bp->regview + 5120U); mac_mode = mac_mode & 4294967283U; mac_mode = mac_mode | 2064U; writel(mac_mode, (void volatile *)bp->regview + 5120U); bp->link_up = 1U; } return (0); } } static int bnx2_test_link(struct bnx2 *bp ) ; static int bnx2_set_phy_loopback(struct bnx2 *bp ) { u32 mac_mode ; int rc ; int i ; int tmp ; { { ldv_spin_lock_bh_110(& bp->phy_lock); rc = bnx2_write_phy(bp, bp->mii_bmcr, 16704U); ldv_spin_unlock_bh_111(& bp->phy_lock); } if (rc != 0) { return (rc); } else { } i = 0; goto ldv_54094; ldv_54093: { tmp = bnx2_test_link(bp); } if (tmp == 0) { goto ldv_54092; } else { } { msleep(100U); i = i + 1; } ldv_54094: ; if (i <= 9) { goto ldv_54093; } else { } ldv_54092: { mac_mode = readl((void const volatile *)bp->regview + 5120U); mac_mode = mac_mode & 4294965185U; mac_mode = mac_mode | 8U; writel(mac_mode, (void volatile *)bp->regview + 5120U); bp->link_up = 1U; } return (0); } } static void bnx2_dump_mcp_state(struct bnx2 *bp ) { struct net_device *dev ; u32 mcp_p0 ; u32 mcp_p1 ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; u32 tmp___4 ; u32 tmp___5 ; u32 tmp___6 ; u32 tmp___7 ; u32 tmp___8 ; u32 tmp___9 ; u32 tmp___10 ; u32 tmp___11 ; u32 tmp___12 ; u32 tmp___13 ; u32 tmp___14 ; u32 tmp___15 ; u32 tmp___16 ; u32 tmp___17 ; u32 tmp___18 ; u32 tmp___19 ; u32 tmp___20 ; u32 tmp___21 ; u32 tmp___22 ; u32 tmp___23 ; u32 tmp___24 ; u32 tmp___25 ; u32 tmp___26 ; u32 tmp___27 ; u32 tmp___28 ; u32 tmp___29 ; u32 tmp___30 ; { { dev = bp->dev; netdev_err((struct net_device const *)dev, "<--- start MCP states dump --->\n"); } if ((bp->chip_id & 4294901760U) == 1460207616U) { mcp_p0 = 1506760U; mcp_p1 = 1505736U; } else { mcp_p0 = 1482184U; mcp_p1 = 1481160U; } { tmp = bnx2_reg_rd_ind(bp, mcp_p1); tmp___0 = bnx2_reg_rd_ind(bp, mcp_p0); netdev_err((struct net_device const *)dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n", tmp___0, tmp); tmp___1 = bnx2_reg_rd_ind(bp, 1331208U); tmp___2 = bnx2_reg_rd_ind(bp, 1331204U); tmp___3 = bnx2_reg_rd_ind(bp, 1331200U); netdev_err((struct net_device const *)dev, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n", tmp___3, tmp___2, tmp___1); tmp___4 = bnx2_reg_rd_ind(bp, 1331232U); tmp___5 = bnx2_reg_rd_ind(bp, 1331228U); tmp___6 = bnx2_reg_rd_ind(bp, 1331228U); netdev_err((struct net_device const *)dev, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n", tmp___6, tmp___5, tmp___4); netdev_err((struct net_device const *)dev, "DEBUG: shmem states:\n"); tmp___7 = bnx2_shmem_rd(bp, 12U); tmp___8 = bnx2_shmem_rd(bp, 8U); tmp___9 = bnx2_shmem_rd(bp, 4U); netdev_err((struct net_device const *)dev, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]", tmp___9, tmp___8, tmp___7); tmp___10 = bnx2_shmem_rd(bp, 16U); printk(" drv_pulse_mb[%08x]\n", tmp___10); tmp___11 = bnx2_shmem_rd(bp, 448U); tmp___12 = bnx2_shmem_rd(bp, 32U); netdev_err((struct net_device const *)dev, "DEBUG: dev_info_signature[%08x] reset_type[%08x]", tmp___12, tmp___11); tmp___13 = bnx2_shmem_rd(bp, 456U); printk(" condition[%08x]\n", tmp___13); tmp___14 = bnx2_shmem_rd(bp, 460U); tmp___15 = bnx2_shmem_rd(bp, 456U); tmp___16 = bnx2_shmem_rd(bp, 452U); tmp___17 = bnx2_shmem_rd(bp, 448U); netdev_err((struct net_device const *)bp->dev, "DEBUG: %08x: %08x %08x %08x %08x\n", 448, tmp___17, tmp___16, tmp___15, tmp___14); tmp___18 = bnx2_shmem_rd(bp, 984U); tmp___19 = bnx2_shmem_rd(bp, 980U); tmp___20 = bnx2_shmem_rd(bp, 976U); tmp___21 = bnx2_shmem_rd(bp, 972U); netdev_err((struct net_device const *)bp->dev, "DEBUG: %08x: %08x %08x %08x %08x\n", 972, tmp___21, tmp___20, tmp___19, tmp___18); tmp___22 = bnx2_shmem_rd(bp, 1000U); tmp___23 = bnx2_shmem_rd(bp, 996U); tmp___24 = bnx2_shmem_rd(bp, 992U); tmp___25 = bnx2_shmem_rd(bp, 988U); netdev_err((struct net_device const *)bp->dev, "DEBUG: %08x: %08x %08x %08x %08x\n", 988, tmp___25, tmp___24, tmp___23, tmp___22); tmp___26 = bnx2_shmem_rd(bp, 1016U); tmp___27 = bnx2_shmem_rd(bp, 1012U); tmp___28 = bnx2_shmem_rd(bp, 1008U); tmp___29 = bnx2_shmem_rd(bp, 1004U); netdev_err((struct net_device const *)bp->dev, "DEBUG: %08x: %08x %08x %08x %08x\n", 1004, tmp___29, tmp___28, tmp___27, tmp___26); tmp___30 = bnx2_shmem_rd(bp, 1020U); netdev_err((struct net_device const *)dev, "DEBUG: 0x3fc[%08x]\n", tmp___30); netdev_err((struct net_device const *)dev, "<--- end MCP states dump --->\n"); } return; } } static int bnx2_fw_sync(struct bnx2 *bp , u32 msg_data , int ack , int silent ) { int i ; u32 val ; { { bp->fw_wr_seq = (u16 )((int )bp->fw_wr_seq + 1); msg_data = msg_data | (u32 )bp->fw_wr_seq; bp->fw_last_msg = msg_data; bnx2_shmem_wr(bp, 4U, msg_data); } if (ack == 0) { return (0); } else { } i = 0; goto ldv_54111; ldv_54110: { msleep(10U); val = bnx2_shmem_rd(bp, 8U); } if (((val ^ msg_data) & 65535U) == 0U) { goto ldv_54109; } else { } i = i + 1; ldv_54111: ; if (i <= 99) { goto ldv_54110; } else { } ldv_54109: ; if ((msg_data & 16711680U) == 65536U) { return (0); } else { } if (((val ^ msg_data) & 65535U) != 0U) { { msg_data = msg_data & 16777215U; msg_data = msg_data | 83886080U; bnx2_shmem_wr(bp, 4U, msg_data); } if (silent == 0) { { printk("\vbnx2: fw sync timeout, reset code = %x\n", msg_data); bnx2_dump_mcp_state(bp); } } else { } return (-16); } else { } if ((val & 16711680U) != 0U) { return (-5); } else { } return (0); } } static int bnx2_init_5709_context(struct bnx2 *bp ) { int i ; int ret ; u32 val ; int j ; { { ret = 0; val = 12289U; val = val | 262144U; writel(val, (void volatile *)bp->regview + 4096U); i = 0; } goto ldv_54120; ldv_54119: { val = readl((void const volatile *)bp->regview + 4096U); } if (((long )val & 8192L) == 0L) { goto ldv_54118; } else { } { __const_udelay(8590UL); i = i + 1; } ldv_54120: ; if (i <= 9) { goto ldv_54119; } else { } ldv_54118: ; if (((long )val & 8192L) != 0L) { return (-16); } else { } i = 0; goto ldv_54127; ldv_54126: ; if ((unsigned long )bp->ctx_blk[i] != (unsigned long )((void *)0)) { { memset(bp->ctx_blk[i], 0, 4096UL); } } else { return (-12); } { writel((unsigned int )bp->ctx_blk_mapping[i] | 1U, (void volatile *)bp->regview + 4300U); writel((unsigned int )(bp->ctx_blk_mapping[i] >> 32), (void volatile *)bp->regview + 4304U); writel((unsigned int )(i | 1073741824), (void volatile *)bp->regview + 4296U); j = 0; } goto ldv_54124; ldv_54123: { val = readl((void const volatile *)bp->regview + 4296U); } if (((long )val & 1073741824L) == 0L) { goto ldv_54122; } else { } { __const_udelay(21475UL); j = j + 1; } ldv_54124: ; if (j <= 9) { goto ldv_54123; } else { } ldv_54122: ; if (((long )val & 1073741824L) != 0L) { ret = -16; goto ldv_54125; } else { } i = i + 1; ldv_54127: ; if (i < bp->ctx_pages) { goto ldv_54126; } else { } ldv_54125: ; return (ret); } } static void bnx2_init_context(struct bnx2 *bp ) { u32 vcid ; u32 vcid_addr ; u32 pcid_addr ; u32 offset ; int i ; u32 new_vcid ; { vcid = 96U; goto ldv_54144; ldv_54143: vcid = vcid - 1U; if ((bp->chip_id & 4294967280U) == 1460011008U) { vcid_addr = vcid << 6; if ((vcid & 8U) != 0U) { new_vcid = (vcid & 247U) + 96U; } else { new_vcid = vcid; } pcid_addr = new_vcid << 6; } else { vcid_addr = vcid << 7; pcid_addr = vcid_addr; } i = 0; goto ldv_54141; ldv_54140: { vcid_addr = vcid_addr + (u32 )(i << 6); pcid_addr = pcid_addr + (u32 )(i << 6); writel(vcid_addr, (void volatile *)bp->regview + 4104U); writel(pcid_addr, (void volatile *)bp->regview + 4108U); offset = 0U; } goto ldv_54138; ldv_54137: { bnx2_ctx_wr(bp, vcid_addr, offset, 0U); offset = offset + 4U; } ldv_54138: ; if (offset <= 63U) { goto ldv_54137; } else { } i = i + 1; ldv_54141: ; if (i <= 1) { goto ldv_54140; } else { } ldv_54144: ; if (vcid != 0U) { goto ldv_54143; } else { } return; } } static int bnx2_alloc_bad_rbuf(struct bnx2 *bp ) { u16 *good_mbuf ; u32 good_mbuf_cnt ; u32 val ; void *tmp ; { { tmp = kmalloc(1024UL, 208U); good_mbuf = (u16 *)tmp; } if ((unsigned long )good_mbuf == (unsigned long )((u16 *)0U)) { return (-12); } else { } { writel(4096U, (void volatile *)bp->regview + 2064U); good_mbuf_cnt = 0U; val = bnx2_reg_rd_ind(bp, 2097156U); } goto ldv_54153; ldv_54152: { bnx2_reg_wr_ind(bp, 2097152U, 32U); val = bnx2_reg_rd_ind(bp, 2097168U); val = val & 65408U; } if ((val & 512U) == 0U) { *(good_mbuf + (unsigned long )good_mbuf_cnt) = (unsigned short )val; good_mbuf_cnt = good_mbuf_cnt + 1U; } else { } { val = bnx2_reg_rd_ind(bp, 2097156U); } ldv_54153: ; if (((long )val & 1023L) != 0L) { goto ldv_54152; } else { } goto ldv_54156; ldv_54155: { good_mbuf_cnt = good_mbuf_cnt - 1U; val = (u32 )*(good_mbuf + (unsigned long )good_mbuf_cnt); val = ((val << 9) | val) | 1U; bnx2_reg_wr_ind(bp, 2097172U, val); } ldv_54156: ; if (good_mbuf_cnt != 0U) { goto ldv_54155; } else { } { kfree((void const *)good_mbuf); } return (0); } } static void bnx2_set_mac_addr(struct bnx2 *bp , u8 *mac_addr , u32 pos ) { u32 val ; { { val = (u32 )(((int )*mac_addr << 8) | (int )*(mac_addr + 1UL)); writel(val, (void volatile *)(bp->regview + ((unsigned long )(pos * 8U) + 5136UL))); val = (u32 )(((((int )*(mac_addr + 2UL) << 24) | ((int )*(mac_addr + 3UL) << 16)) | ((int )*(mac_addr + 4UL) << 8)) | (int )*(mac_addr + 5UL)); writel(val, (void volatile *)(bp->regview + ((unsigned long )(pos * 8U) + 5140UL))); } return; } } __inline static int bnx2_alloc_rx_page(struct bnx2 *bp , struct bnx2_rx_ring_info *rxr , u16 index , gfp_t gfp ) { dma_addr_t mapping ; struct bnx2_sw_pg *rx_pg ; struct bnx2_rx_bd *rxbd ; struct page *page ; struct page *tmp ; int tmp___0 ; { { rx_pg = rxr->rx_pg_ring + (unsigned long )index; rxbd = rxr->rx_pg_desc_ring[((unsigned long )index & 0xffffffffffffff00UL) >> 8] + ((unsigned long )index & 255UL); tmp = alloc_pages(gfp, 0U); page = tmp; } if ((unsigned long )page == (unsigned long )((struct page *)0)) { return (-12); } else { } { mapping = dma_map_page(& (bp->pdev)->dev, page, 0UL, 4096UL, 2); tmp___0 = dma_mapping_error(& (bp->pdev)->dev, mapping); } if (tmp___0 != 0) { { __free_pages(page, 0U); } return (-5); } else { } rx_pg->page = page; rx_pg->mapping = mapping; rxbd->rx_bd_haddr_hi = (u32 )(mapping >> 32); rxbd->rx_bd_haddr_lo = (u32 )mapping; return (0); } } static void bnx2_free_rx_page(struct bnx2 *bp , struct bnx2_rx_ring_info *rxr , u16 index ) { struct bnx2_sw_pg *rx_pg ; struct page *page ; { rx_pg = rxr->rx_pg_ring + (unsigned long )index; page = rx_pg->page; if ((unsigned long )page == (unsigned long )((struct page *)0)) { return; } else { } { dma_unmap_page(& (bp->pdev)->dev, rx_pg->mapping, 4096UL, 2); __free_pages(page, 0U); rx_pg->page = (struct page *)0; } return; } } __inline static int bnx2_alloc_rx_data(struct bnx2 *bp , struct bnx2_rx_ring_info *rxr , u16 index , gfp_t gfp ) { u8 *data ; struct bnx2_sw_bd *rx_buf ; dma_addr_t mapping ; struct bnx2_rx_bd *rxbd ; void *tmp ; struct l2_fhdr *tmp___0 ; int tmp___1 ; { { rx_buf = rxr->rx_buf_ring + (unsigned long )index; rxbd = rxr->rx_desc_ring[((unsigned long )index & 0xffffffffffffff00UL) >> 8] + ((unsigned long )index & 255UL); tmp = kmalloc((size_t )bp->rx_buf_size, gfp); data = (u8 *)tmp; } if ((unsigned long )data == (unsigned long )((u8 *)0U)) { return (-12); } else { } { tmp___0 = get_l2_fhdr(data); mapping = dma_map_single_attrs(& (bp->pdev)->dev, (void *)tmp___0, (size_t )bp->rx_buf_use_size, 2, (struct dma_attrs *)0); tmp___1 = dma_mapping_error(& (bp->pdev)->dev, mapping); } if (tmp___1 != 0) { { kfree((void const *)data); } return (-5); } else { } rx_buf->data = data; rx_buf->mapping = mapping; rxbd->rx_bd_haddr_hi = (u32 )(mapping >> 32); rxbd->rx_bd_haddr_lo = (u32 )mapping; rxr->rx_prod_bseq = rxr->rx_prod_bseq + bp->rx_buf_use_size; return (0); } } static int bnx2_phy_event_is_set(struct bnx2 *bp , struct bnx2_napi *bnapi , u32 event ) { struct status_block *sblk ; u32 new_link_state ; u32 old_link_state ; int is_set ; { sblk = bnapi->status_blk.msi; is_set = 1; new_link_state = sblk->status_attn_bits & event; old_link_state = sblk->status_attn_bits_ack & event; if (new_link_state != old_link_state) { if (new_link_state != 0U) { { writel(event, (void volatile *)bp->regview + 136U); } } else { { writel(event, (void volatile *)bp->regview + 140U); } } } else { is_set = 0; } return (is_set); } } static void bnx2_phy_int(struct bnx2 *bp , struct bnx2_napi *bnapi ) { int tmp ; int tmp___0 ; { { ldv_spin_lock_125(& bp->phy_lock); tmp = bnx2_phy_event_is_set(bp, bnapi, 1U); } if (tmp != 0) { { bnx2_set_link(bp); } } else { } { tmp___0 = bnx2_phy_event_is_set(bp, bnapi, 16777216U); } if (tmp___0 != 0) { { bnx2_set_remote_link(bp); } } else { } { ldv_spin_unlock_126(& bp->phy_lock); } return; } } __inline static u16 bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi ) { u16 cons ; long tmp ; { { __asm__ volatile ("": : : "memory"); cons = *(bnapi->hw_tx_cons_ptr); __asm__ volatile ("": : : "memory"); tmp = ldv__builtin_expect(((unsigned long )cons & 255UL) == 255UL, 0L); } if (tmp != 0L) { cons = (u16 )((int )cons + 1); } else { } return (cons); } } static int bnx2_tx_int(struct bnx2 *bp , struct bnx2_napi *bnapi , int budget ) { struct bnx2_tx_ring_info *txr ; u16 hw_cons ; u16 sw_cons ; u16 sw_ring_cons ; int tx_pkt ; int index ; unsigned int tx_bytes ; struct netdev_queue *txq ; struct bnx2_sw_tx_bd *tx_buf ; struct sk_buff *skb ; int i ; int last ; u16 last_idx ; u16 last_ring_idx ; long tmp ; unsigned int tmp___0 ; struct bnx2_sw_tx_bd *tx_buf___0 ; unsigned char *tmp___1 ; unsigned int tmp___2 ; int pscr_ret__ ; void const *__vpp_verify ; int pfo_ret__ ; int pfo_ret_____0 ; int pfo_ret_____1 ; int pfo_ret_____2 ; bool tmp___3 ; u32 tmp___4 ; bool tmp___5 ; long tmp___6 ; u32 tmp___7 ; { { txr = & bnapi->tx_ring; tx_pkt = 0; tx_bytes = 0U; index = (int )(((long )bnapi - (long )(& bp->bnx2_napi)) / 960L); txq = netdev_get_tx_queue((struct net_device const *)bp->dev, (unsigned int )index); hw_cons = bnx2_get_hw_tx_cons(bnapi); sw_cons = txr->tx_cons; } goto ldv_54233; ldv_54232: { sw_ring_cons = (unsigned int )sw_cons & 255U; tx_buf = txr->tx_buf_ring + (unsigned long )sw_ring_cons; skb = tx_buf->skb; __builtin_prefetch((void const *)(& skb->end)); } if ((unsigned int )tx_buf->is_gso != 0U) { { last_idx = (unsigned int )((int )sw_cons + (int )tx_buf->nr_frags) + 1U; last_ring_idx = (unsigned int )((int )sw_ring_cons + (int )tx_buf->nr_frags) + 1U; tmp = ldv__builtin_expect((unsigned int )last_ring_idx > 254U, 0L); } if (tmp != 0L) { last_idx = (u16 )((int )last_idx + 1); } else { } if ((int )((short )((int )last_idx - (int )hw_cons)) > 0) { goto ldv_54227; } else { } } else { } { tmp___0 = skb_headlen((struct sk_buff const *)skb); dma_unmap_single_attrs(& (bp->pdev)->dev, tx_buf->mapping, (size_t )tmp___0, 1, (struct dma_attrs *)0); tx_buf->skb = (struct sk_buff *)0; last = (int )tx_buf->nr_frags; i = 0; } goto ldv_54230; ldv_54229: { sw_cons = ((unsigned long )sw_cons & 254UL) == 254UL ? (unsigned int )sw_cons + 2U : (unsigned int )sw_cons + 1U; tx_buf___0 = txr->tx_buf_ring + ((unsigned long )sw_cons & 255UL); tmp___1 = skb_end_pointer((struct sk_buff const *)skb); tmp___2 = skb_frag_size((skb_frag_t const *)(& ((struct skb_shared_info *)tmp___1)->frags) + (unsigned long )i); dma_unmap_page(& (bp->pdev)->dev, tx_buf___0->mapping, (size_t )tmp___2, 1); i = i + 1; } ldv_54230: ; if (i < last) { goto ldv_54229; } else { } { sw_cons = ((unsigned long )sw_cons & 254UL) == 254UL ? (unsigned int )sw_cons + 2U : (unsigned int )sw_cons + 1U; tx_bytes = tx_bytes + skb->len; consume_skb(skb); tx_pkt = tx_pkt + 1; } if (tx_pkt == budget) { goto ldv_54227; } else { } if ((int )hw_cons == (int )sw_cons) { { hw_cons = bnx2_get_hw_tx_cons(bnapi); } } else { } ldv_54233: ; if ((int )sw_cons != (int )hw_cons) { goto ldv_54232; } else { } ldv_54227: { netdev_tx_completed_queue(txq, (unsigned int )tx_pkt, tx_bytes); txr->hw_tx_cons = hw_cons; txr->tx_cons = sw_cons; __asm__ volatile ("mfence": : : "memory"); tmp___5 = netif_tx_queue_stopped((struct netdev_queue const *)txq); tmp___6 = ldv__builtin_expect((long )tmp___5, 0L); } if (tmp___6 != 0L) { { tmp___7 = bnx2_tx_avail(bp, txr); } if (tmp___7 > bp->tx_wake_thresh) { __vpp_verify = (void const *)0; { if (4UL == 1UL) { goto case_1; } else { } if (4UL == 2UL) { goto case_2___0; } else { } if (4UL == 4UL) { goto case_4___1; } else { } if (4UL == 8UL) { goto case_8___2; } else { } goto switch_default___3; case_1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___0; } else { } if (4UL == 2UL) { goto case_2; } else { } if (4UL == 4UL) { goto case_4; } else { } if (4UL == 8UL) { goto case_8; } else { } goto switch_default; case_1___0: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret__): "m" (cpu_number)); goto ldv_54239; case_2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_54239; case_4: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_54239; case_8: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret__): "m" (cpu_number)); goto ldv_54239; switch_default: /* CIL Label */ { __bad_percpu_size(); } switch_break___0: /* CIL Label */ ; } ldv_54239: pscr_ret__ = pfo_ret__; goto ldv_54245; case_2___0: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___1; } else { } if (4UL == 2UL) { goto case_2___1; } else { } if (4UL == 4UL) { goto case_4___0; } else { } if (4UL == 8UL) { goto case_8___0; } else { } goto switch_default___0; case_1___1: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____0): "m" (cpu_number)); goto ldv_54249; case_2___1: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_54249; case_4___0: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_54249; case_8___0: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____0): "m" (cpu_number)); goto ldv_54249; switch_default___0: /* CIL Label */ { __bad_percpu_size(); } switch_break___1: /* CIL Label */ ; } ldv_54249: pscr_ret__ = pfo_ret_____0; goto ldv_54245; case_4___1: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___2; } else { } if (4UL == 2UL) { goto case_2___2; } else { } if (4UL == 4UL) { goto case_4___2; } else { } if (4UL == 8UL) { goto case_8___1; } else { } goto switch_default___1; case_1___2: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____1): "m" (cpu_number)); goto ldv_54258; case_2___2: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_54258; case_4___2: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_54258; case_8___1: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____1): "m" (cpu_number)); goto ldv_54258; switch_default___1: /* CIL Label */ { __bad_percpu_size(); } switch_break___2: /* CIL Label */ ; } ldv_54258: pscr_ret__ = pfo_ret_____1; goto ldv_54245; case_8___2: /* CIL Label */ ; { if (4UL == 1UL) { goto case_1___3; } else { } if (4UL == 2UL) { goto case_2___3; } else { } if (4UL == 4UL) { goto case_4___3; } else { } if (4UL == 8UL) { goto case_8___3; } else { } goto switch_default___2; case_1___3: /* CIL Label */ __asm__ ("movb %%gs:%P1,%0": "=q" (pfo_ret_____2): "m" (cpu_number)); goto ldv_54267; case_2___3: /* CIL Label */ __asm__ ("movw %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_54267; case_4___3: /* CIL Label */ __asm__ ("movl %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_54267; case_8___3: /* CIL Label */ __asm__ ("movq %%gs:%P1,%0": "=r" (pfo_ret_____2): "m" (cpu_number)); goto ldv_54267; switch_default___2: /* CIL Label */ { __bad_percpu_size(); } switch_break___3: /* CIL Label */ ; } ldv_54267: pscr_ret__ = pfo_ret_____2; goto ldv_54245; switch_default___3: /* CIL Label */ { __bad_size_call_parameter(); } goto ldv_54245; switch_break: /* CIL Label */ ; } ldv_54245: { __netif_tx_lock(txq, pscr_ret__); tmp___3 = netif_tx_queue_stopped((struct netdev_queue const *)txq); } if ((int )tmp___3) { { tmp___4 = bnx2_tx_avail(bp, txr); } if (tmp___4 > bp->tx_wake_thresh) { { netif_tx_wake_queue(txq); } } else { } } else { } { __netif_tx_unlock(txq); } } else { } } else { } return (tx_pkt); } } static void bnx2_reuse_rx_skb_pages(struct bnx2 *bp , struct bnx2_rx_ring_info *rxr , struct sk_buff *skb , int count ) { struct bnx2_sw_pg *cons_rx_pg ; struct bnx2_sw_pg *prod_rx_pg ; struct bnx2_rx_bd *cons_bd ; struct bnx2_rx_bd *prod_bd ; int i ; u16 hw_prod ; u16 prod ; u16 cons ; struct page *page ; struct skb_shared_info *shinfo ; unsigned char *tmp ; { cons = rxr->rx_pg_cons; cons_rx_pg = rxr->rx_pg_ring + (unsigned long )cons; if ((unsigned long )skb != (unsigned long )((struct sk_buff *)0)) { { tmp = skb_end_pointer((struct sk_buff const *)skb); shinfo = (struct skb_shared_info *)tmp; shinfo->nr_frags = (unsigned char )((int )shinfo->nr_frags - 1); page = skb_frag_page((skb_frag_t const *)(& shinfo->frags) + (unsigned long )shinfo->nr_frags); __skb_frag_set_page((skb_frag_t *)(& shinfo->frags) + (unsigned long )shinfo->nr_frags, (struct page *)0); cons_rx_pg->page = page; consume_skb(skb); } } else { } hw_prod = rxr->rx_pg_prod; i = 0; goto ldv_54292; ldv_54291: prod = (int )hw_prod & (int )((u16 )bp->rx_max_pg_ring_idx); prod_rx_pg = rxr->rx_pg_ring + (unsigned long )prod; cons_rx_pg = rxr->rx_pg_ring + (unsigned long )cons; cons_bd = rxr->rx_pg_desc_ring[((unsigned long )cons & 0xffffffffffffff00UL) >> 8] + ((unsigned long )cons & 255UL); prod_bd = rxr->rx_pg_desc_ring[((unsigned long )prod & 0xffffffffffffff00UL) >> 8] + ((unsigned long )prod & 255UL); if ((int )prod != (int )cons) { prod_rx_pg->page = cons_rx_pg->page; cons_rx_pg->page = (struct page *)0; prod_rx_pg->mapping = cons_rx_pg->mapping; prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi; prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo; } else { } cons = (((unsigned long )cons & 254UL) == 254UL ? (unsigned int )cons + 2U : (unsigned int )cons + 1U) & (unsigned int )((u16 )bp->rx_max_pg_ring_idx); hw_prod = ((unsigned long )hw_prod & 254UL) == 254UL ? (unsigned int )hw_prod + 2U : (unsigned int )hw_prod + 1U; i = i + 1; ldv_54292: ; if (i < count) { goto ldv_54291; } else { } rxr->rx_pg_prod = hw_prod; rxr->rx_pg_cons = cons; return; } } __inline static void bnx2_reuse_rx_data(struct bnx2 *bp , struct bnx2_rx_ring_info *rxr , u8 *data , u16 cons , u16 prod ) { struct bnx2_sw_bd *cons_rx_buf ; struct bnx2_sw_bd *prod_rx_buf ; struct bnx2_rx_bd *cons_bd ; struct bnx2_rx_bd *prod_bd ; { { cons_rx_buf = rxr->rx_buf_ring + (unsigned long )cons; prod_rx_buf = rxr->rx_buf_ring + (unsigned long )prod; dma_sync_single_for_device(& (bp->pdev)->dev, cons_rx_buf->mapping, 146UL, 2); rxr->rx_prod_bseq = rxr->rx_prod_bseq + bp->rx_buf_use_size; prod_rx_buf->data = data; } if ((int )cons == (int )prod) { return; } else { } prod_rx_buf->mapping = cons_rx_buf->mapping; cons_bd = rxr->rx_desc_ring[((unsigned long )cons & 0xffffffffffffff00UL) >> 8] + ((unsigned long )cons & 255UL); prod_bd = rxr->rx_desc_ring[((unsigned long )prod & 0xffffffffffffff00UL) >> 8] + ((unsigned long )prod & 255UL); prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi; prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo; return; } } static struct sk_buff *bnx2_rx_skb(struct bnx2 *bp , struct bnx2_rx_ring_info *rxr , u8 *data , unsigned int len , unsigned int hdr_len , dma_addr_t dma_addr , u32 ring_idx ) { int err ; u16 prod ; struct sk_buff *skb ; unsigned int raw_len ; int pages ; long tmp ; struct l2_fhdr *tmp___0 ; unsigned int i ; unsigned int frag_len ; unsigned int frag_size ; unsigned int pages___0 ; struct bnx2_sw_pg *rx_pg ; u16 pg_cons ; u16 pg_prod ; dma_addr_t mapping_old ; unsigned int _min1 ; unsigned int _min2 ; unsigned int tail ; skb_frag_t *frag ; unsigned char *tmp___1 ; long tmp___2 ; long tmp___3 ; { { prod = (u16 )ring_idx; err = bnx2_alloc_rx_data(bp, rxr, (int )prod, 32U); tmp = ldv__builtin_expect(err != 0, 0L); } if (tmp != 0L) { { bnx2_reuse_rx_data(bp, rxr, data, (int )((unsigned short )(ring_idx >> 16)), (int )prod); } error: ; if (hdr_len != 0U) { { raw_len = len + 4U; pages = (int )(((raw_len - hdr_len) + 4095U) >> 12); bnx2_reuse_rx_skb_pages(bp, rxr, (struct sk_buff *)0, pages); } } else { } return ((struct sk_buff *)0); } else { } { dma_unmap_single_attrs(& (bp->pdev)->dev, dma_addr, (size_t )bp->rx_buf_use_size, 2, (struct dma_attrs *)0); skb = build_skb((void *)data, 0U); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { kfree((void const *)data); } goto error; } else { } { tmp___0 = get_l2_fhdr(data); skb_reserve(skb, (int )(((unsigned int )((long )tmp___0) - (unsigned int )((long )data)) + 18U)); } if (hdr_len == 0U) { { skb_put(skb, len); } return (skb); } else { { pg_cons = rxr->rx_pg_cons; pg_prod = rxr->rx_pg_prod; frag_size = (len - hdr_len) + 4U; pages___0 = (frag_size + 4095U) >> 12; skb_put(skb, hdr_len); i = 0U; } goto ldv_54334; ldv_54333: { _min1 = frag_size; _min2 = 4096U; frag_len = _min1 < _min2 ? _min1 : _min2; tmp___2 = ldv__builtin_expect(frag_len <= 4U, 0L); } if (tmp___2 != 0L) { { tail = 4U - frag_len; rxr->rx_pg_cons = pg_cons; rxr->rx_pg_prod = pg_prod; bnx2_reuse_rx_skb_pages(bp, rxr, (struct sk_buff *)0, (int )(pages___0 - i)); skb->len = skb->len - tail; } if (i == 0U) { skb->tail = skb->tail - tail; } else { { tmp___1 = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t *)(& ((struct skb_shared_info *)tmp___1)->frags) + (unsigned long )(i - 1U); skb_frag_size_sub(frag, (int )tail); skb->data_len = skb->data_len - tail; } } return (skb); } else { } rx_pg = rxr->rx_pg_ring + (unsigned long )pg_cons; mapping_old = rx_pg->mapping; if (i == pages___0 - 1U) { frag_len = frag_len - 4U; } else { } { skb_fill_page_desc(skb, (int )i, rx_pg->page, 0, (int )frag_len); rx_pg->page = (struct page *)0; err = bnx2_alloc_rx_page(bp, rxr, (int )pg_prod & (int )((u16 )bp->rx_max_pg_ring_idx), 32U); tmp___3 = ldv__builtin_expect(err != 0, 0L); } if (tmp___3 != 0L) { { rxr->rx_pg_cons = pg_cons; rxr->rx_pg_prod = pg_prod; bnx2_reuse_rx_skb_pages(bp, rxr, skb, (int )(pages___0 - i)); } return ((struct sk_buff *)0); } else { } { dma_unmap_page(& (bp->pdev)->dev, mapping_old, 4096UL, 2); frag_size = frag_size - frag_len; skb->data_len = skb->data_len + frag_len; skb->truesize = skb->truesize + 4096U; skb->len = skb->len + frag_len; pg_prod = ((unsigned long )pg_prod & 254UL) == 254UL ? (unsigned int )pg_prod + 2U : (unsigned int )pg_prod + 1U; pg_cons = (((unsigned long )pg_cons & 254UL) == 254UL ? (unsigned int )pg_cons + 2U : (unsigned int )pg_cons + 1U) & (unsigned int )((u16 )bp->rx_max_pg_ring_idx); i = i + 1U; } ldv_54334: ; if (i < pages___0) { goto ldv_54333; } else { } rxr->rx_pg_prod = pg_prod; rxr->rx_pg_cons = pg_cons; } return (skb); } } __inline static u16 bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi ) { u16 cons ; long tmp ; { { __asm__ volatile ("": : : "memory"); cons = *(bnapi->hw_rx_cons_ptr); __asm__ volatile ("": : : "memory"); tmp = ldv__builtin_expect(((unsigned long )cons & 255UL) == 255UL, 0L); } if (tmp != 0L) { cons = (u16 )((int )cons + 1); } else { } return (cons); } } static int bnx2_rx_int(struct bnx2 *bp , struct bnx2_napi *bnapi , int budget ) { struct bnx2_rx_ring_info *rxr ; u16 hw_cons ; u16 sw_cons ; u16 sw_ring_cons ; u16 sw_prod ; u16 sw_ring_prod ; struct l2_fhdr *rx_hdr ; int rx_pkt ; int pg_ring_used ; unsigned int len ; unsigned int hdr_len ; u32 status ; struct bnx2_sw_bd *rx_buf ; struct bnx2_sw_bd *next_rx_buf ; struct sk_buff *skb ; dma_addr_t dma_addr ; u8 *data ; u16 next_ring_idx ; struct l2_fhdr *tmp ; int pages ; long tmp___0 ; __u16 tmp___1 ; long tmp___2 ; { { rxr = & bnapi->rx_ring; rx_pkt = 0; pg_ring_used = 0; hw_cons = bnx2_get_hw_rx_cons(bnapi); sw_cons = rxr->rx_cons; sw_prod = rxr->rx_prod; __asm__ volatile ("lfence": : : "memory"); } goto ldv_54367; ldv_54366: { sw_ring_cons = (int )sw_cons & (int )((u16 )bp->rx_max_ring_idx); sw_ring_prod = (int )sw_prod & (int )((u16 )bp->rx_max_ring_idx); rx_buf = rxr->rx_buf_ring + (unsigned long )sw_ring_cons; data = rx_buf->data; rx_buf->data = (u8 *)0U; rx_hdr = get_l2_fhdr(data); __builtin_prefetch((void const *)rx_hdr); dma_addr = rx_buf->mapping; dma_sync_single_for_cpu(& (bp->pdev)->dev, dma_addr, 146UL, 2); next_ring_idx = (((unsigned long )sw_cons & 254UL) == 254UL ? (unsigned int )sw_cons + 2U : (unsigned int )sw_cons + 1U) & (unsigned int )((u16 )bp->rx_max_ring_idx); next_rx_buf = rxr->rx_buf_ring + (unsigned long )next_ring_idx; tmp = get_l2_fhdr(next_rx_buf->data); __builtin_prefetch((void const *)tmp); len = (unsigned int )rx_hdr->l2_fhdr_pkt_len; status = rx_hdr->l2_fhdr_status; hdr_len = 0U; } if ((status & 65536U) != 0U) { hdr_len = (unsigned int )rx_hdr->l2_fhdr_ip_xsum; pg_ring_used = 1; } else if (len > bp->rx_jumbo_thresh) { hdr_len = bp->rx_jumbo_thresh; pg_ring_used = 1; } else { } { tmp___0 = ldv__builtin_expect((status & 4063232U) != 0U, 0L); } if (tmp___0 != 0L) { { bnx2_reuse_rx_data(bp, rxr, data, (int )sw_ring_cons, (int )sw_ring_prod); } if (pg_ring_used != 0) { { pages = (int )(((len - hdr_len) + 4095U) >> 12); bnx2_reuse_rx_skb_pages(bp, rxr, (struct sk_buff *)0, pages); } } else { } goto next_rx; } else { } len = len - 4U; if (len <= bp->rx_copy_thresh) { { skb = netdev_alloc_skb(bp->dev, len + 6U); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { { bnx2_reuse_rx_data(bp, rxr, data, (int )sw_ring_cons, (int )sw_ring_prod); } goto next_rx; } else { } { memcpy((void *)skb->data, (void const *)rx_hdr + 12U, (size_t )(len + 6U)); skb_reserve(skb, 6); skb_put(skb, len); bnx2_reuse_rx_data(bp, rxr, data, (int )sw_ring_cons, (int )sw_ring_prod); } } else { { skb = bnx2_rx_skb(bp, rxr, data, len, hdr_len, dma_addr, (u32 )(((int )sw_ring_cons << 16) | (int )sw_ring_prod)); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { goto next_rx; } else { } } if ((status & 64U) != 0U && ((long )bp->rx_mode & 1024L) == 0L) { { __vlan_hwaccel_put_tag(skb, 129, (int )rx_hdr->l2_fhdr_vlan_tag); } } else { } { skb->protocol = eth_type_trans(skb, bp->dev); } if (len > (bp->dev)->mtu + 14U) { { tmp___1 = __fswab16((int )skb->protocol); } if ((unsigned int )tmp___1 != 33024U) { { consume_skb(skb); } goto next_rx; } else { } } else { } { skb_checksum_none_assert((struct sk_buff const *)skb); } if (((bp->dev)->features & 4294967296ULL) != 0ULL && (status & 49152U) != 0U) { { tmp___2 = ldv__builtin_expect((status & 2415919104U) == 0U, 1L); } if (tmp___2 != 0L) { skb->ip_summed = 1U; } else { } } else { } if (((bp->dev)->features & 2147483648ULL) != 0ULL && (status & 16640U) == 16640U) { { skb_set_hash(skb, rx_hdr->l2_fhdr_hash, 2); } } else { } { skb_record_rx_queue(skb, (int )((u16 )(((long )bnapi - (long )(& bp->bnx2_napi)) / 960L))); napi_gro_receive(& bnapi->napi, skb); rx_pkt = rx_pkt + 1; } next_rx: sw_cons = ((unsigned long )sw_cons & 254UL) == 254UL ? (unsigned int )sw_cons + 2U : (unsigned int )sw_cons + 1U; sw_prod = ((unsigned long )sw_prod & 254UL) == 254UL ? (unsigned int )sw_prod + 2U : (unsigned int )sw_prod + 1U; if (rx_pkt == budget) { goto ldv_54365; } else { } if ((int )sw_cons == (int )hw_cons) { { hw_cons = bnx2_get_hw_rx_cons(bnapi); __asm__ volatile ("lfence": : : "memory"); } } else { } ldv_54367: ; if ((int )sw_cons != (int )hw_cons) { goto ldv_54366; } else { } ldv_54365: rxr->rx_cons = sw_cons; rxr->rx_prod = sw_prod; if (pg_ring_used != 0) { { writew((int )rxr->rx_pg_prod, (void volatile *)bp->regview + (unsigned long )rxr->rx_pg_bidx_addr); } } else { } { writew((int )sw_prod, (void volatile *)bp->regview + (unsigned long )rxr->rx_bidx_addr); writel(rxr->rx_prod_bseq, (void volatile *)bp->regview + (unsigned long )rxr->rx_bseq_addr); __asm__ volatile ("": : : "memory"); } return (rx_pkt); } } static irqreturn_t bnx2_msi(int irq , void *dev_instance ) { struct bnx2_napi *bnapi ; struct bnx2 *bp ; int tmp ; long tmp___0 ; { { bnapi = (struct bnx2_napi *)dev_instance; bp = bnapi->bp; __builtin_prefetch((void const *)bnapi->status_blk.msi); writel(393216U, (void volatile *)bp->regview + 132U); tmp = atomic_read((atomic_t const *)(& bp->intr_sem)); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } if (tmp___0 != 0L) { return (1); } else { } { napi_schedule(& bnapi->napi); } return (1); } } static irqreturn_t bnx2_msi_1shot(int irq , void *dev_instance ) { struct bnx2_napi *bnapi ; struct bnx2 *bp ; int tmp ; long tmp___0 ; { { bnapi = (struct bnx2_napi *)dev_instance; bp = bnapi->bp; __builtin_prefetch((void const *)bnapi->status_blk.msi); tmp = atomic_read((atomic_t const *)(& bp->intr_sem)); tmp___0 = ldv__builtin_expect(tmp != 0, 0L); } if (tmp___0 != 0L) { return (1); } else { } { napi_schedule(& bnapi->napi); } return (1); } } static irqreturn_t bnx2_interrupt(int irq , void *dev_instance ) { struct bnx2_napi *bnapi ; struct bnx2 *bp ; struct status_block *sblk ; unsigned int tmp ; int tmp___0 ; long tmp___1 ; bool tmp___2 ; { bnapi = (struct bnx2_napi *)dev_instance; bp = bnapi->bp; sblk = bnapi->status_blk.msi; if ((u32 )sblk->status_idx == bnapi->last_status_idx) { { tmp = readl((void const volatile *)bp->regview + 108U); } if ((int )tmp & 1) { return (0); } else { } } else { } { writel(393216U, (void volatile *)bp->regview + 132U); readl((void const volatile *)bp->regview + 132U); tmp___0 = atomic_read((atomic_t const *)(& bp->intr_sem)); tmp___1 = ldv__builtin_expect(tmp___0 != 0, 0L); } if (tmp___1 != 0L) { return (1); } else { } { tmp___2 = napi_schedule_prep(& bnapi->napi); } if ((int )tmp___2) { { bnapi->last_status_idx = (u32 )sblk->status_idx; __napi_schedule(& bnapi->napi); } } else { } return (1); } } __inline static int bnx2_has_fast_work(struct bnx2_napi *bnapi ) { struct bnx2_tx_ring_info *txr ; struct bnx2_rx_ring_info *rxr ; u16 tmp ; u16 tmp___0 ; { { txr = & bnapi->tx_ring; rxr = & bnapi->rx_ring; tmp = bnx2_get_hw_rx_cons(bnapi); } if ((int )tmp != (int )rxr->rx_cons) { return (1); } else { { tmp___0 = bnx2_get_hw_tx_cons(bnapi); } if ((int )tmp___0 != (int )txr->hw_tx_cons) { return (1); } else { } } return (0); } } __inline static int bnx2_has_work(struct bnx2_napi *bnapi ) { struct status_block *sblk ; int tmp ; { { sblk = bnapi->status_blk.msi; tmp = bnx2_has_fast_work(bnapi); } if (tmp != 0) { return (1); } else { } if (bnapi->cnic_present != 0 && bnapi->cnic_tag != (u32 )sblk->status_idx) { return (1); } else { } if ((((long )sblk->status_attn_bits ^ (long )sblk->status_attn_bits_ack) & 16777217L) != 0L) { return (1); } else { } return (0); } } static void bnx2_chk_missed_msi(struct bnx2 *bp ) { struct bnx2_napi *bnapi ; u32 msi_ctrl ; int tmp ; { { bnapi = (struct bnx2_napi *)(& bp->bnx2_napi); tmp = bnx2_has_work(bnapi); } if (tmp != 0) { { msi_ctrl = readl((void const volatile *)bp->regview + 88U); } if (((long )msi_ctrl & 65536L) == 0L) { return; } else { } if (bnapi->last_status_idx == bp->idle_chk_status_idx) { { writel(msi_ctrl & 4294901759U, (void volatile *)bp->regview + 88U); writel(msi_ctrl, (void volatile *)bp->regview + 88U); bnx2_msi((int )bp->irq_tbl[0].vector, (void *)bnapi); } } else { } } else { } bp->idle_chk_status_idx = bnapi->last_status_idx; return; } } static void bnx2_poll_cnic(struct bnx2 *bp , struct bnx2_napi *bnapi ) { struct cnic_ops *c_ops ; struct cnic_ops *_________p1 ; bool __warned ; int tmp ; int tmp___0 ; int tmp___1 ; { if (bnapi->cnic_present == 0) { return; } else { } { rcu_read_lock(); _________p1 = *((struct cnic_ops * volatile *)(& bp->cnic_ops)); tmp = debug_lockdep_rcu_enabled(); } if (tmp != 0 && ! __warned) { { tmp___0 = rcu_read_lock_held(); } if (tmp___0 == 0) { { __warned = 1; lockdep_rcu_suspicious("drivers/net/ethernet/broadcom/bnx2.c", 3436, "suspicious rcu_dereference_check() usage"); } } else { } } else { } c_ops = _________p1; if ((unsigned long )c_ops != (unsigned long )((struct cnic_ops *)0)) { { tmp___1 = (*(c_ops->cnic_handler))(bp->cnic_data, (void *)bnapi->status_blk.msi); bnapi->cnic_tag = (u32 )tmp___1; } } else { } { rcu_read_unlock(); } return; } } static void bnx2_poll_link(struct bnx2 *bp , struct bnx2_napi *bnapi ) { struct status_block *sblk ; u32 status_attn_bits ; u32 status_attn_bits_ack ; { sblk = bnapi->status_blk.msi; status_attn_bits = sblk->status_attn_bits; status_attn_bits_ack = sblk->status_attn_bits_ack; if ((((long )status_attn_bits ^ (long )status_attn_bits_ack) & 16777217L) != 0L) { { bnx2_phy_int(bp, bnapi); writel(bp->hc_cmd | 131072U, (void volatile *)bp->regview + 26624U); readl((void const volatile *)bp->regview + 26624U); } } else { } return; } } static int bnx2_poll_work(struct bnx2 *bp , struct bnx2_napi *bnapi , int work_done , int budget ) { struct bnx2_tx_ring_info *txr ; struct bnx2_rx_ring_info *rxr ; u16 tmp ; int tmp___0 ; u16 tmp___1 ; { { txr = & bnapi->tx_ring; rxr = & bnapi->rx_ring; tmp = bnx2_get_hw_tx_cons(bnapi); } if ((int )tmp != (int )txr->hw_tx_cons) { { bnx2_tx_int(bp, bnapi, 0); } } else { } { tmp___1 = bnx2_get_hw_rx_cons(bnapi); } if ((int )tmp___1 != (int )rxr->rx_cons) { { tmp___0 = bnx2_rx_int(bp, bnapi, budget - work_done); work_done = work_done + tmp___0; } } else { } return (work_done); } } static int bnx2_poll_msix(struct napi_struct *napi , int budget ) { struct bnx2_napi *bnapi ; struct napi_struct const *__mptr ; struct bnx2 *bp ; int work_done ; struct status_block_msix *sblk ; long tmp ; int tmp___0 ; long tmp___1 ; { __mptr = (struct napi_struct const *)napi; bnapi = (struct bnx2_napi *)__mptr; bp = bnapi->bp; work_done = 0; sblk = bnapi->status_blk.msix; ldv_54435: { work_done = bnx2_poll_work(bp, bnapi, work_done, budget); tmp = ldv__builtin_expect(work_done >= budget, 0L); } if (tmp != 0L) { goto ldv_54434; } else { } { bnapi->last_status_idx = (u32 )sblk->status_idx; __asm__ volatile ("lfence": : : "memory"); tmp___0 = bnx2_has_fast_work(bnapi); tmp___1 = ldv__builtin_expect(tmp___0 == 0, 1L); } if (tmp___1 != 0L) { { napi_complete(napi); writel((bnapi->int_num | bnapi->last_status_idx) | 65536U, (void volatile *)bp->regview + 132U); } goto ldv_54434; } else { } goto ldv_54435; ldv_54434: ; return (work_done); } } static int bnx2_poll(struct napi_struct *napi , int budget ) { struct bnx2_napi *bnapi ; struct napi_struct const *__mptr ; struct bnx2 *bp ; int work_done ; struct status_block *sblk ; long tmp ; long tmp___0 ; int tmp___1 ; long tmp___2 ; { __mptr = (struct napi_struct const *)napi; bnapi = (struct bnx2_napi *)__mptr; bp = bnapi->bp; work_done = 0; sblk = bnapi->status_blk.msi; ldv_54447: { bnx2_poll_link(bp, bnapi); work_done = bnx2_poll_work(bp, bnapi, work_done, budget); bnx2_poll_cnic(bp, bnapi); bnapi->last_status_idx = (u32 )sblk->status_idx; tmp = ldv__builtin_expect(work_done >= budget, 0L); } if (tmp != 0L) { goto ldv_54446; } else { } { __asm__ volatile ("lfence": : : "memory"); tmp___1 = bnx2_has_work(bnapi); tmp___2 = ldv__builtin_expect(tmp___1 == 0, 1L); } if (tmp___2 != 0L) { { napi_complete(napi); tmp___0 = ldv__builtin_expect((bp->flags & 1056U) != 0U, 1L); } if (tmp___0 != 0L) { { writel(bnapi->last_status_idx | 65536U, (void volatile *)bp->regview + 132U); } goto ldv_54446; } else { } { writel(bnapi->last_status_idx | 327680U, (void volatile *)bp->regview + 132U); writel(bnapi->last_status_idx | 65536U, (void volatile *)bp->regview + 132U); } goto ldv_54446; } else { } goto ldv_54447; ldv_54446: ; return (work_done); } } static void bnx2_set_rx_mode(struct net_device *dev ) { struct bnx2 *bp ; void *tmp ; u32 rx_mode ; u32 sort_mode ; struct netdev_hw_addr *ha ; int i ; bool tmp___0 ; int tmp___1 ; u32 mc_filter[8U] ; u32 regidx ; u32 bit ; u32 crc ; struct list_head const *__mptr ; struct list_head const *__mptr___0 ; struct list_head const *__mptr___1 ; struct list_head const *__mptr___2 ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; tmp___0 = netif_running((struct net_device const *)dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return; } else { } { ldv_spin_lock_bh_110(& bp->phy_lock); rx_mode = bp->rx_mode & 4294966015U; sort_mode = 65537U; } if ((dev->features & 256ULL) == 0ULL && (bp->flags & 4096U) != 0U) { rx_mode = rx_mode | 1024U; } else { } if ((dev->flags & 256U) != 0U) { rx_mode = rx_mode | 256U; sort_mode = sort_mode | 17301504U; } else if ((dev->flags & 512U) != 0U) { i = 0; goto ldv_54457; ldv_54456: { writel(4294967295U, (void volatile *)(bp->regview + ((unsigned long )(i * 4) + 5328UL))); i = i + 1; } ldv_54457: ; if (i <= 7) { goto ldv_54456; } else { } sort_mode = sort_mode | 131072U; } else { { memset((void *)(& mc_filter), 0, 32UL); __mptr = (struct list_head const *)dev->mc.list.next; ha = (struct netdev_hw_addr *)__mptr; } goto ldv_54468; ldv_54467: { crc = crc32_le(4294967295U, (unsigned char const *)(& ha->addr), 6UL); bit = crc & 255U; regidx = (bit & 224U) >> 5; bit = bit & 31U; mc_filter[regidx] = mc_filter[regidx] | (u32 )(1 << (int )bit); __mptr___0 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___0; } ldv_54468: ; if ((unsigned long )(& ha->list) != (unsigned long )(& dev->mc.list)) { goto ldv_54467; } else { } i = 0; goto ldv_54471; ldv_54470: { writel(mc_filter[i], (void volatile *)(bp->regview + ((unsigned long )(i * 4) + 5328UL))); i = i + 1; } ldv_54471: ; if (i <= 7) { goto ldv_54470; } else { } sort_mode = sort_mode | 262144U; } if (dev->uc.count > 4) { rx_mode = rx_mode | 256U; sort_mode = sort_mode | 17301504U; } else if ((dev->flags & 256U) == 0U) { i = 0; __mptr___1 = (struct list_head const *)dev->uc.list.next; ha = (struct netdev_hw_addr *)__mptr___1; goto ldv_54478; ldv_54477: { bnx2_set_mac_addr(bp, (u8 *)(& ha->addr), (u32 )(i + 4)); sort_mode = sort_mode | (u32 )(1 << (i + 4)); i = i + 1; __mptr___2 = (struct list_head const *)ha->list.next; ha = (struct netdev_hw_addr *)__mptr___2; } ldv_54478: ; if ((unsigned long )(& ha->list) != (unsigned long )(& dev->uc.list)) { goto ldv_54477; } else { } } else { } if (rx_mode != bp->rx_mode) { { bp->rx_mode = rx_mode; writel(rx_mode, (void volatile *)bp->regview + 5320U); } } else { } { writel(0U, (void volatile *)bp->regview + 6176U); writel(sort_mode, (void volatile *)bp->regview + 6176U); writel(sort_mode | 2147483648U, (void volatile *)bp->regview + 6176U); ldv_spin_unlock_bh_111(& bp->phy_lock); } return; } } static int check_fw_section(struct firmware const *fw , struct bnx2_fw_file_section const *section , u32 alignment , bool non_empty ) { u32 offset ; __u32 tmp ; u32 len ; __u32 tmp___0 ; { { tmp = __fswab32(section->offset); offset = tmp; tmp___0 = __fswab32(section->len); len = tmp___0; } if (((offset == 0U && len != 0U) || (unsigned long )offset >= (unsigned long )fw->size) || (offset & 3U) != 0U) { return (-22); } else { } if ((((int )non_empty && len == 0U) || (unsigned long )len > (unsigned long )fw->size - (unsigned long )offset) || (len & (alignment - 1U)) != 0U) { return (-22); } else { } return (0); } } static int check_mips_fw_entry(struct firmware const *fw , struct bnx2_mips_fw_file_entry const *entry ) { int tmp ; int tmp___0 ; int tmp___1 ; { { tmp = check_fw_section(fw, & entry->text, 4U, 1); } if (tmp != 0) { return (-22); } else { { tmp___0 = check_fw_section(fw, & entry->data, 4U, 0); } if (tmp___0 != 0) { return (-22); } else { { tmp___1 = check_fw_section(fw, & entry->rodata, 4U, 0); } if (tmp___1 != 0) { return (-22); } else { } } } return (0); } } static void bnx2_release_firmware(struct bnx2 *bp ) { { if ((unsigned long )bp->rv2p_firmware != (unsigned long )((struct firmware const *)0)) { { release_firmware(bp->mips_firmware); release_firmware(bp->rv2p_firmware); bp->rv2p_firmware = (struct firmware const *)0; } } else { } return; } } static int bnx2_request_uncached_firmware(struct bnx2 *bp ) { char const *mips_fw_file ; char const *rv2p_fw_file ; struct bnx2_mips_fw_file const *mips_fw ; struct bnx2_rv2p_fw_file const *rv2p_fw ; int rc ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; int tmp___5 ; { if ((bp->chip_id & 4294901760U) == 1460207616U) { mips_fw_file = "bnx2/bnx2-mips-09-6.2.1b.fw"; if ((bp->chip_id & 4294967280U) == 1460207616U || (bp->chip_id & 4294967280U) == 1460207632U) { rv2p_fw_file = "bnx2/bnx2-rv2p-09ax-6.0.17.fw"; } else { rv2p_fw_file = "bnx2/bnx2-rv2p-09-6.0.17.fw"; } } else { mips_fw_file = "bnx2/bnx2-mips-06-6.2.3.fw"; rv2p_fw_file = "bnx2/bnx2-rv2p-06-6.0.15.fw"; } { rc = request_firmware(& bp->mips_firmware, mips_fw_file, & (bp->pdev)->dev); } if (rc != 0) { { printk("\vbnx2: Can\'t load firmware file \"%s\"\n", mips_fw_file); } goto out; } else { } { rc = request_firmware(& bp->rv2p_firmware, rv2p_fw_file, & (bp->pdev)->dev); } if (rc != 0) { { printk("\vbnx2: Can\'t load firmware file \"%s\"\n", rv2p_fw_file); } goto err_release_mips_firmware; } else { } mips_fw = (struct bnx2_mips_fw_file const *)(bp->mips_firmware)->data; rv2p_fw = (struct bnx2_rv2p_fw_file const *)(bp->rv2p_firmware)->data; if ((unsigned long )(bp->mips_firmware)->size <= 199UL) { { printk("\vbnx2: Firmware file \"%s\" is invalid\n", mips_fw_file); rc = -22; } goto err_release_firmware; } else { { tmp = check_mips_fw_entry(bp->mips_firmware, & mips_fw->com); } if (tmp != 0) { { printk("\vbnx2: Firmware file \"%s\" is invalid\n", mips_fw_file); rc = -22; } goto err_release_firmware; } else { { tmp___0 = check_mips_fw_entry(bp->mips_firmware, & mips_fw->cp); } if (tmp___0 != 0) { { printk("\vbnx2: Firmware file \"%s\" is invalid\n", mips_fw_file); rc = -22; } goto err_release_firmware; } else { { tmp___1 = check_mips_fw_entry(bp->mips_firmware, & mips_fw->rxp); } if (tmp___1 != 0) { { printk("\vbnx2: Firmware file \"%s\" is invalid\n", mips_fw_file); rc = -22; } goto err_release_firmware; } else { { tmp___2 = check_mips_fw_entry(bp->mips_firmware, & mips_fw->tpat); } if (tmp___2 != 0) { { printk("\vbnx2: Firmware file \"%s\" is invalid\n", mips_fw_file); rc = -22; } goto err_release_firmware; } else { { tmp___3 = check_mips_fw_entry(bp->mips_firmware, & mips_fw->txp); } if (tmp___3 != 0) { { printk("\vbnx2: Firmware file \"%s\" is invalid\n", mips_fw_file); rc = -22; } goto err_release_firmware; } else { } } } } } } if ((unsigned long )(bp->rv2p_firmware)->size <= 87UL) { { printk("\vbnx2: Firmware file \"%s\" is invalid\n", rv2p_fw_file); rc = -22; } goto err_release_firmware; } else { { tmp___4 = check_fw_section(bp->rv2p_firmware, & rv2p_fw->proc1.rv2p, 8U, 1); } if (tmp___4 != 0) { { printk("\vbnx2: Firmware file \"%s\" is invalid\n", rv2p_fw_file); rc = -22; } goto err_release_firmware; } else { { tmp___5 = check_fw_section(bp->rv2p_firmware, & rv2p_fw->proc2.rv2p, 8U, 1); } if (tmp___5 != 0) { { printk("\vbnx2: Firmware file \"%s\" is invalid\n", rv2p_fw_file); rc = -22; } goto err_release_firmware; } else { } } } out: ; return (rc); err_release_firmware: { release_firmware(bp->rv2p_firmware); bp->rv2p_firmware = (struct firmware const *)0; } err_release_mips_firmware: { release_firmware(bp->mips_firmware); } goto out; } } static int bnx2_request_firmware(struct bnx2 *bp ) { int tmp ; int tmp___0 ; { if ((unsigned long )bp->rv2p_firmware == (unsigned long )((struct firmware const *)0)) { { tmp = bnx2_request_uncached_firmware(bp); tmp___0 = tmp; } } else { tmp___0 = 0; } return (tmp___0); } } static u32 rv2p_fw_fixup(u32 rv2p_proc , int idx , u32 loc , u32 rv2p_code ) { { { if (idx == 0) { goto case_0; } else { } goto switch_break; case_0: /* CIL Label */ rv2p_code = rv2p_code & 4294901760U; rv2p_code = rv2p_code | 255U; goto ldv_54516; switch_break: /* CIL Label */ ; } ldv_54516: ; return (rv2p_code); } } static int load_rv2p_fw(struct bnx2 *bp , u32 rv2p_proc , struct bnx2_rv2p_fw_file_entry const *fw_entry ) { u32 rv2p_code_len ; u32 file_offset ; __be32 *rv2p_code ; int i ; u32 val ; u32 cmd ; u32 addr ; __u32 tmp ; __u32 tmp___0 ; __u32 tmp___1 ; __u32 tmp___2 ; u32 loc ; u32 code ; __u32 tmp___3 ; __u32 tmp___4 ; __u32 tmp___5 ; { { tmp = __fswab32(fw_entry->rv2p.len); rv2p_code_len = tmp; tmp___0 = __fswab32(fw_entry->rv2p.offset); file_offset = tmp___0; rv2p_code = (__be32 *)(bp->rv2p_firmware)->data + (unsigned long )file_offset; } if (rv2p_proc == 0U) { cmd = 2147483648U; addr = 10296U; } else { cmd = 2147483648U; addr = 10300U; } i = 0; goto ldv_54530; ldv_54529: { tmp___1 = __fswab32(*rv2p_code); writel(tmp___1, (void volatile *)bp->regview + 10288U); rv2p_code = rv2p_code + 1; tmp___2 = __fswab32(*rv2p_code); writel(tmp___2, (void volatile *)bp->regview + 10292U); rv2p_code = rv2p_code + 1; val = (u32 )(i / 8) | cmd; writel(val, (void volatile *)bp->regview + (unsigned long )addr); i = i + 8; } ldv_54530: ; if ((u32 )i < rv2p_code_len) { goto ldv_54529; } else { } rv2p_code = (__be32 *)(bp->rv2p_firmware)->data + (unsigned long )file_offset; i = 0; goto ldv_54535; ldv_54534: { tmp___3 = __fswab32(fw_entry->fixup[i]); loc = tmp___3; } if (loc != 0U && loc * 4U < rv2p_code_len) { { tmp___4 = __fswab32(*(rv2p_code + ((unsigned long )loc + 0xffffffffffffffffUL))); code = tmp___4; writel(code, (void volatile *)bp->regview + 10288U); tmp___5 = __fswab32(*(rv2p_code + (unsigned long )loc)); code = tmp___5; code = rv2p_fw_fixup(rv2p_proc, i, loc, code); writel(code, (void volatile *)bp->regview + 10292U); val = loc / 2U | cmd; writel(val, (void volatile *)bp->regview + (unsigned long )addr); } } else { } i = i + 1; ldv_54535: ; if (i <= 7) { goto ldv_54534; } else { } if (rv2p_proc == 0U) { { writel(65536U, (void volatile *)bp->regview + 10240U); } } else { { writel(131072U, (void volatile *)bp->regview + 10240U); } } return (0); } } static int load_cpu_fw(struct bnx2 *bp , struct cpu_reg const *cpu_reg , struct bnx2_mips_fw_file_entry const *fw_entry ) { u32 addr ; u32 len ; u32 file_offset ; __be32 *data ; u32 offset ; u32 val ; __u32 tmp ; __u32 tmp___0 ; __u32 tmp___1 ; int j ; __u32 tmp___2 ; __u32 tmp___3 ; __u32 tmp___4 ; __u32 tmp___5 ; int j___0 ; __u32 tmp___6 ; __u32 tmp___7 ; __u32 tmp___8 ; __u32 tmp___9 ; int j___1 ; __u32 tmp___10 ; __u32 tmp___11 ; { { val = bnx2_reg_rd_ind(bp, cpu_reg->mode); val = val | (u32 )cpu_reg->mode_value_halt; bnx2_reg_wr_ind(bp, cpu_reg->mode, val); bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear); tmp = __fswab32(fw_entry->text.addr); addr = tmp; tmp___0 = __fswab32(fw_entry->text.len); len = tmp___0; tmp___1 = __fswab32(fw_entry->text.offset); file_offset = tmp___1; data = (__be32 *)(bp->mips_firmware)->data + (unsigned long )file_offset; offset = (unsigned int )cpu_reg->spad_base + (addr - (u32 )cpu_reg->mips_view_base); } if (len != 0U) { j = 0; goto ldv_54550; ldv_54549: { tmp___2 = __fswab32(*(data + (unsigned long )j)); bnx2_reg_wr_ind(bp, offset, tmp___2); j = j + 1; offset = offset + 4U; } ldv_54550: ; if ((u32 )j < len / 4U) { goto ldv_54549; } else { } } else { } { tmp___3 = __fswab32(fw_entry->data.addr); addr = tmp___3; tmp___4 = __fswab32(fw_entry->data.len); len = tmp___4; tmp___5 = __fswab32(fw_entry->data.offset); file_offset = tmp___5; data = (__be32 *)(bp->mips_firmware)->data + (unsigned long )file_offset; offset = (unsigned int )cpu_reg->spad_base + (addr - (u32 )cpu_reg->mips_view_base); } if (len != 0U) { j___0 = 0; goto ldv_54554; ldv_54553: { tmp___6 = __fswab32(*(data + (unsigned long )j___0)); bnx2_reg_wr_ind(bp, offset, tmp___6); j___0 = j___0 + 1; offset = offset + 4U; } ldv_54554: ; if ((u32 )j___0 < len / 4U) { goto ldv_54553; } else { } } else { } { tmp___7 = __fswab32(fw_entry->rodata.addr); addr = tmp___7; tmp___8 = __fswab32(fw_entry->rodata.len); len = tmp___8; tmp___9 = __fswab32(fw_entry->rodata.offset); file_offset = tmp___9; data = (__be32 *)(bp->mips_firmware)->data + (unsigned long )file_offset; offset = (unsigned int )cpu_reg->spad_base + (addr - (u32 )cpu_reg->mips_view_base); } if (len != 0U) { j___1 = 0; goto ldv_54558; ldv_54557: { tmp___10 = __fswab32(*(data + (unsigned long )j___1)); bnx2_reg_wr_ind(bp, offset, tmp___10); j___1 = j___1 + 1; offset = offset + 4U; } ldv_54558: ; if ((u32 )j___1 < len / 4U) { goto ldv_54557; } else { } } else { } { bnx2_reg_wr_ind(bp, cpu_reg->inst, 0U); tmp___11 = __fswab32(fw_entry->start_addr); val = tmp___11; bnx2_reg_wr_ind(bp, cpu_reg->pc, val); val = bnx2_reg_rd_ind(bp, cpu_reg->mode); val = val & (u32 )(~ cpu_reg->mode_value_halt); bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear); bnx2_reg_wr_ind(bp, cpu_reg->mode, val); } return (0); } } static int bnx2_init_cpus(struct bnx2 *bp ) { struct bnx2_mips_fw_file const *mips_fw ; struct bnx2_rv2p_fw_file const *rv2p_fw ; int rc ; { { mips_fw = (struct bnx2_mips_fw_file const *)(bp->mips_firmware)->data; rv2p_fw = (struct bnx2_rv2p_fw_file const *)(bp->rv2p_firmware)->data; load_rv2p_fw(bp, 0U, & rv2p_fw->proc1); load_rv2p_fw(bp, 1U, & rv2p_fw->proc2); rc = load_cpu_fw(bp, & cpu_reg_rxp, & mips_fw->rxp); } if (rc != 0) { goto init_cpu_err; } else { } { rc = load_cpu_fw(bp, & cpu_reg_txp, & mips_fw->txp); } if (rc != 0) { goto init_cpu_err; } else { } { rc = load_cpu_fw(bp, & cpu_reg_tpat, & mips_fw->tpat); } if (rc != 0) { goto init_cpu_err; } else { } { rc = load_cpu_fw(bp, & cpu_reg_com, & mips_fw->com); } if (rc != 0) { goto init_cpu_err; } else { } { rc = load_cpu_fw(bp, & cpu_reg_cp, & mips_fw->cp); } init_cpu_err: ; return (rc); } } static void bnx2_setup_wol(struct bnx2 *bp ) { int i ; u32 val ; u32 wol_msg ; u32 advertising ; u8 autoneg ; u32 val___0 ; { if ((unsigned int )bp->wol != 0U) { autoneg = bp->autoneg; advertising = bp->advertising; if ((unsigned int )bp->phy_port == 0U) { bp->autoneg = 1U; bp->advertising = 79U; } else { } { ldv_spin_lock_bh_110(& bp->phy_lock); bnx2_setup_phy(bp, (int )bp->phy_port); ldv_spin_unlock_bh_111(& bp->phy_lock); bp->autoneg = autoneg; bp->advertising = advertising; bnx2_set_mac_addr(bp, (bp->dev)->dev_addr, 0U); val = readl((void const volatile *)bp->regview + 5120U); val = val & 4294967283U; val = val | 1835008U; } if ((unsigned int )bp->phy_port == 0U) { val = val | 4U; } else { val = val | 8U; if ((unsigned int )bp->line_speed == 2500U) { val = val | 32U; } else { } } { writel(val, (void volatile *)bp->regview + 5120U); i = 0; } goto ldv_54576; ldv_54575: { writel(4294967295U, (void volatile *)(bp->regview + ((unsigned long )(i * 4) + 5328UL))); i = i + 1; } ldv_54576: ; if (i <= 7) { goto ldv_54575; } else { } { writel(4096U, (void volatile *)bp->regview + 5320U); val = 196609U; writel(0U, (void volatile *)bp->regview + 6176U); writel(val, (void volatile *)bp->regview + 6176U); writel(val | 2147483648U, (void volatile *)bp->regview + 6176U); writel(1664U, (void volatile *)bp->regview + 2064U); val = readl((void const volatile *)bp->regview + 6152U); val = val & 4294967293U; writel(val, (void volatile *)bp->regview + 6152U); wol_msg = 67108864U; } } else { wol_msg = 150994944U; } if ((bp->flags & 8U) == 0U) { wol_msg = wol_msg | 262144U; if (bp->fw_last_msg != 0U || (bp->chip_id & 4294901760U) != 1460207616U) { { bnx2_fw_sync(bp, wol_msg, 1, 0); } return; } else { } { val___0 = bnx2_shmem_rd(bp, 216U); bnx2_shmem_wr(bp, 216U, val___0 | 67108864U); bnx2_fw_sync(bp, wol_msg, 1, 0); bnx2_shmem_wr(bp, 216U, val___0); } } else { } return; } } static int bnx2_set_power_state(struct bnx2 *bp , pci_power_t state ) { u32 val ; u32 val___0 ; { { if (state == 0) { goto case_0; } else { } if (state == 3) { goto case_3; } else { } goto switch_default; case_0: /* CIL Label */ { pci_enable_wake(bp->pdev, 0, 0); pci_set_power_state(bp->pdev, 0); val = readl((void const volatile *)bp->regview + 5120U); val = val | 1572864U; val = val & 4294705151U; writel(val, (void volatile *)bp->regview + 5120U); val = readl((void const volatile *)bp->regview + 6152U); val = val & 4294967293U; writel(val, (void volatile *)bp->regview + 6152U); } goto ldv_54585; case_3: /* CIL Label */ { bnx2_setup_wol(bp); pci_wake_from_d3(bp->pdev, (unsigned int )bp->wol != 0U); } if ((bp->chip_id & 4294967280U) == 1460011008U || (bp->chip_id & 4294967280U) == 1460011024U) { if ((unsigned int )bp->wol != 0U) { { pci_set_power_state(bp->pdev, 3); } } else { } goto ldv_54585; } else { } if (bp->fw_last_msg == 0U && (bp->chip_id & 4294901760U) == 1460207616U) { { val___0 = bnx2_shmem_rd(bp, 456U); val___0 = val___0 & 4294770687U; val___0 = val___0 | 65536U; bnx2_shmem_wr(bp, 456U, val___0); } } else { } { pci_set_power_state(bp->pdev, 3); } goto ldv_54585; switch_default: /* CIL Label */ ; return (-22); switch_break: /* CIL Label */ ; } ldv_54585: ; return (0); } } static int bnx2_acquire_nvram_lock(struct bnx2 *bp ) { u32 val ; int j ; { { writel(4U, (void volatile *)bp->regview + 25632U); j = 0; } goto ldv_54596; ldv_54595: { val = readl((void const volatile *)bp->regview + 25632U); } if (((long )val & 1024L) != 0L) { goto ldv_54594; } else { } { __const_udelay(21475UL); j = j + 1; } ldv_54596: ; if (j <= 29999) { goto ldv_54595; } else { } ldv_54594: ; if (j > 29999) { return (-16); } else { } return (0); } } static int bnx2_release_nvram_lock(struct bnx2 *bp ) { int j ; u32 val ; { { writel(64U, (void volatile *)bp->regview + 25632U); j = 0; } goto ldv_54604; ldv_54603: { val = readl((void const volatile *)bp->regview + 25632U); } if (((long )val & 1024L) == 0L) { goto ldv_54602; } else { } { __const_udelay(21475UL); j = j + 1; } ldv_54604: ; if (j <= 29999) { goto ldv_54603; } else { } ldv_54602: ; if (j > 29999) { return (-16); } else { } return (0); } } static int bnx2_enable_nvram_write(struct bnx2 *bp ) { u32 val ; int j ; { { val = readl((void const volatile *)bp->regview + 2052U); writel(val | 2U, (void volatile *)bp->regview + 2052U); } if (((unsigned int )(bp->flash_info)->flags & 4U) != 0U) { { writel(8U, (void volatile *)bp->regview + 25600U); writel(65552U, (void volatile *)bp->regview + 25600U); j = 0; } goto ldv_54612; ldv_54611: { __const_udelay(21475UL); val = readl((void const volatile *)bp->regview + 25600U); } if (((long )val & 8L) != 0L) { goto ldv_54610; } else { } j = j + 1; ldv_54612: ; if (j <= 29999) { goto ldv_54611; } else { } ldv_54610: ; if (j > 29999) { return (-16); } else { } } else { } return (0); } } static void bnx2_disable_nvram_write(struct bnx2 *bp ) { u32 val ; { { val = readl((void const volatile *)bp->regview + 2052U); writel(val & 4294967289U, (void volatile *)bp->regview + 2052U); } return; } } static void bnx2_enable_nvram_access(struct bnx2 *bp ) { u32 val ; { { val = readl((void const volatile *)bp->regview + 25636U); writel(val | 3U, (void volatile *)bp->regview + 25636U); } return; } } static void bnx2_disable_nvram_access(struct bnx2 *bp ) { u32 val ; { { val = readl((void const volatile *)bp->regview + 25636U); writel(val & 4294967292U, (void volatile *)bp->regview + 25636U); } return; } } static int bnx2_nvram_erase_page(struct bnx2 *bp , u32 offset ) { u32 cmd ; int j ; u32 val ; { if ((int )(bp->flash_info)->flags & 1) { return (0); } else { } { cmd = 112U; writel(8U, (void volatile *)bp->regview + 25600U); writel(offset & 16777215U, (void volatile *)bp->regview + 25612U); writel(cmd, (void volatile *)bp->regview + 25600U); j = 0; } goto ldv_54634; ldv_54633: { __const_udelay(21475UL); val = readl((void const volatile *)bp->regview + 25600U); } if (((long )val & 8L) != 0L) { goto ldv_54632; } else { } j = j + 1; ldv_54634: ; if (j <= 29999) { goto ldv_54633; } else { } ldv_54632: ; if (j > 29999) { return (-16); } else { } return (0); } } static int bnx2_nvram_read_dword(struct bnx2 *bp , u32 offset , u8 *ret_val , u32 cmd_flags ) { u32 cmd ; int j ; u32 val ; __be32 v ; unsigned int tmp ; __u32 tmp___0 ; { cmd = cmd_flags | 16U; if (((unsigned int )(bp->flash_info)->flags & 2U) != 0U) { offset = (offset / (u32 )(bp->flash_info)->page_size << (int )(bp->flash_info)->page_bits) + offset % (u32 )(bp->flash_info)->page_size; } else { } { writel(8U, (void volatile *)bp->regview + 25600U); writel(offset & 16777215U, (void volatile *)bp->regview + 25612U); writel(cmd, (void volatile *)bp->regview + 25600U); j = 0; } goto ldv_54647; ldv_54646: { __const_udelay(21475UL); val = readl((void const volatile *)bp->regview + 25600U); } if (((long )val & 8L) != 0L) { { tmp = readl((void const volatile *)bp->regview + 25616U); tmp___0 = __fswab32(tmp); v = tmp___0; memcpy((void *)ret_val, (void const *)(& v), 4UL); } goto ldv_54645; } else { } j = j + 1; ldv_54647: ; if (j <= 29999) { goto ldv_54646; } else { } ldv_54645: ; if (j > 29999) { return (-16); } else { } return (0); } } static int bnx2_nvram_write_dword(struct bnx2 *bp , u32 offset , u8 *val , u32 cmd_flags ) { u32 cmd ; __be32 val32 ; int j ; __u32 tmp ; unsigned int tmp___0 ; { cmd = cmd_flags | 48U; if (((unsigned int )(bp->flash_info)->flags & 2U) != 0U) { offset = (offset / (u32 )(bp->flash_info)->page_size << (int )(bp->flash_info)->page_bits) + offset % (u32 )(bp->flash_info)->page_size; } else { } { writel(8U, (void volatile *)bp->regview + 25600U); memcpy((void *)(& val32), (void const *)val, 4UL); tmp = __fswab32(val32); writel(tmp, (void volatile *)bp->regview + 25608U); writel(offset & 16777215U, (void volatile *)bp->regview + 25612U); writel(cmd, (void volatile *)bp->regview + 25600U); j = 0; } goto ldv_54659; ldv_54658: { __const_udelay(21475UL); tmp___0 = readl((void const volatile *)bp->regview + 25600U); } if (((long )tmp___0 & 8L) != 0L) { goto ldv_54657; } else { } j = j + 1; ldv_54659: ; if (j <= 29999) { goto ldv_54658; } else { } ldv_54657: ; if (j > 29999) { return (-16); } else { } return (0); } } static int bnx2_init_nvram(struct bnx2 *bp ) { u32 val ; int j ; int entry_count ; int rc ; struct flash_spec const *flash ; u32 mask ; { rc = 0; if ((bp->chip_id & 4294901760U) == 1460207616U) { bp->flash_info = & flash_5709; goto get_flash_size; } else { } { val = readl((void const volatile *)bp->regview + 25620U); entry_count = 16; } if ((val & 1073741824U) != 0U) { j = 0; flash = (struct flash_spec const *)(& flash_table); goto ldv_54673; ldv_54672: ; if (((val ^ (u32 )flash->config1) & 1006632960U) == 0U) { bp->flash_info = flash; goto ldv_54671; } else { } j = j + 1; flash = flash + 1; ldv_54673: ; if (j < entry_count) { goto ldv_54672; } else { } ldv_54671: ; } else { if ((val & 8388608U) != 0U) { mask = 1006632960U; } else { mask = 50331651U; } j = 0; flash = (struct flash_spec const *)(& flash_table); goto ldv_54677; ldv_54676: ; if (((val ^ (unsigned int )flash->strapping) & mask) == 0U) { { bp->flash_info = flash; rc = bnx2_acquire_nvram_lock(bp); } if (rc != 0) { return (rc); } else { } { bnx2_enable_nvram_access(bp); writel(flash->config1, (void volatile *)bp->regview + 25620U); writel(flash->config2, (void volatile *)bp->regview + 25624U); writel(flash->config3, (void volatile *)bp->regview + 25628U); writel(flash->write1, (void volatile *)bp->regview + 25640U); bnx2_disable_nvram_access(bp); bnx2_release_nvram_lock(bp); } goto ldv_54675; } else { } j = j + 1; flash = flash + 1; ldv_54677: ; if (j < entry_count) { goto ldv_54676; } else { } ldv_54675: ; } if (j == entry_count) { { bp->flash_info = (struct flash_spec const *)0; printk("\tbnx2: Unknown flash/EEPROM type\n"); } return (-19); } else { } get_flash_size: { val = bnx2_shmem_rd(bp, 64U); val = val & 16773120U; } if (val != 0U) { bp->flash_size = val; } else { bp->flash_size = (bp->flash_info)->total_size; } return (rc); } } static int bnx2_nvram_read(struct bnx2 *bp , u32 offset , u8 *ret_buf , int buf_size ) { int rc ; u32 cmd_flags ; u32 offset32 ; u32 len32 ; u32 extra ; u8 buf[4U] ; u32 pre_len ; u8 buf___0[4U] ; u8 buf___1[4U] ; { rc = 0; if (buf_size == 0) { return (0); } else { } { rc = bnx2_acquire_nvram_lock(bp); } if (rc != 0) { return (rc); } else { } { bnx2_enable_nvram_access(bp); len32 = (u32 )buf_size; offset32 = offset; extra = 0U; cmd_flags = 0U; } if ((offset32 & 3U) != 0U) { offset32 = offset32 & 4294967292U; pre_len = 4U - (offset & 3U); if (pre_len >= len32) { pre_len = len32; cmd_flags = 384U; } else { cmd_flags = 128U; } { rc = bnx2_nvram_read_dword(bp, offset32, (u8 *)(& buf), cmd_flags); } if (rc != 0) { return (rc); } else { } { memcpy((void *)ret_buf, (void const *)(& buf) + ((unsigned long )offset & 3UL), (size_t )pre_len); offset32 = offset32 + 4U; ret_buf = ret_buf + (unsigned long )pre_len; len32 = len32 - pre_len; } } else { } if ((len32 & 3U) != 0U) { extra = 4U - (len32 & 3U); len32 = (len32 + 4U) & 4294967292U; } else { } if (len32 == 4U) { if (cmd_flags != 0U) { cmd_flags = 256U; } else { cmd_flags = 384U; } { rc = bnx2_nvram_read_dword(bp, offset32, (u8 *)(& buf___0), cmd_flags); memcpy((void *)ret_buf, (void const *)(& buf___0), (size_t )(4U - extra)); } } else if (len32 != 0U) { if (cmd_flags != 0U) { cmd_flags = 0U; } else { cmd_flags = 128U; } { rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags); offset32 = offset32 + 4U; ret_buf = ret_buf + 4UL; len32 = len32 - 4U; } goto ldv_54694; ldv_54693: { rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0U); offset32 = offset32 + 4U; ret_buf = ret_buf + 4UL; len32 = len32 - 4U; } ldv_54694: ; if (len32 > 4U && rc == 0) { goto ldv_54693; } else { } if (rc != 0) { return (rc); } else { } { cmd_flags = 256U; rc = bnx2_nvram_read_dword(bp, offset32, (u8 *)(& buf___1), cmd_flags); memcpy((void *)ret_buf, (void const *)(& buf___1), (size_t )(4U - extra)); } } else { } { bnx2_disable_nvram_access(bp); bnx2_release_nvram_lock(bp); } return (rc); } } static int bnx2_nvram_write(struct bnx2 *bp , u32 offset , u8 *data_buf , int buf_size ) { u32 written ; u32 offset32 ; u32 len32 ; u8 *buf ; u8 start[4U] ; u8 end[4U] ; u8 *align_buf ; u8 *flash_buffer ; int rc ; int align_start ; int align_end ; void *tmp ; void *tmp___0 ; u32 page_start ; u32 page_end ; u32 data_start ; u32 data_end ; u32 addr ; u32 cmd_flags ; int i ; int j ; { align_buf = (u8 *)0U; flash_buffer = (u8 *)0U; rc = 0; buf = data_buf; offset32 = offset; len32 = (u32 )buf_size; align_end = 0; align_start = align_end; align_start = (int )offset32 & 3; if (align_start != 0) { offset32 = offset32 & 4294967292U; len32 = len32 + (u32 )align_start; if (len32 <= 3U) { len32 = 4U; } else { } { rc = bnx2_nvram_read(bp, offset32, (u8 *)(& start), 4); } if (rc != 0) { return (rc); } else { } } else { } if ((len32 & 3U) != 0U) { { align_end = (int )(4U - (len32 & 3U)); len32 = len32 + (u32 )align_end; rc = bnx2_nvram_read(bp, (offset32 + len32) - 4U, (u8 *)(& end), 4); } if (rc != 0) { return (rc); } else { } } else { } if ((align_start | align_end) != 0) { { tmp = kmalloc((size_t )len32, 208U); align_buf = (u8 *)tmp; } if ((unsigned long )align_buf == (unsigned long )((u8 *)0U)) { return (-12); } else { } if (align_start != 0) { { memcpy((void *)align_buf, (void const *)(& start), 4UL); } } else { } if (align_end != 0) { { memcpy((void *)(align_buf + ((unsigned long )len32 + 0xfffffffffffffffcUL)), (void const *)(& end), 4UL); } } else { } { memcpy((void *)align_buf + (unsigned long )align_start, (void const *)data_buf, (size_t )buf_size); buf = align_buf; } } else { } if (((unsigned int )(bp->flash_info)->flags & 1U) == 0U) { { tmp___0 = kmalloc(264UL, 208U); flash_buffer = (u8 *)tmp___0; } if ((unsigned long )flash_buffer == (unsigned long )((u8 *)0U)) { rc = -12; goto nvram_write_end; } else { } } else { } written = 0U; goto ldv_54735; ldv_54734: { page_start = offset32 + written; page_start = page_start - page_start % (u32 )(bp->flash_info)->page_size; page_end = page_start + (u32 )(bp->flash_info)->page_size; data_start = written == 0U ? offset32 : page_start; data_end = offset32 + len32 < page_end ? offset32 + len32 : page_end; rc = bnx2_acquire_nvram_lock(bp); } if (rc != 0) { goto nvram_write_end; } else { } { bnx2_enable_nvram_access(bp); cmd_flags = 128U; } if (((unsigned int )(bp->flash_info)->flags & 1U) == 0U) { j = 0; goto ldv_54723; ldv_54722: ; if ((unsigned int )j == (unsigned int )(bp->flash_info)->page_size - 4U) { cmd_flags = cmd_flags | 256U; } else { } { rc = bnx2_nvram_read_dword(bp, page_start + (u32 )j, flash_buffer + (unsigned long )j, cmd_flags); } if (rc != 0) { goto nvram_write_end; } else { } cmd_flags = 0U; j = j + 4; ldv_54723: ; if ((unsigned int )j < (unsigned int )(bp->flash_info)->page_size) { goto ldv_54722; } else { } } else { } { rc = bnx2_enable_nvram_write(bp); } if (rc != 0) { goto nvram_write_end; } else { } i = 0; if (((unsigned int )(bp->flash_info)->flags & 1U) == 0U) { { rc = bnx2_nvram_erase_page(bp, page_start); } if (rc != 0) { goto nvram_write_end; } else { } { bnx2_enable_nvram_write(bp); addr = page_start; } goto ldv_54726; ldv_54725: { rc = bnx2_nvram_write_dword(bp, addr, flash_buffer + (unsigned long )i, cmd_flags); } if (rc != 0) { goto nvram_write_end; } else { } cmd_flags = 0U; addr = addr + 4U; i = i + 4; ldv_54726: ; if (addr < data_start) { goto ldv_54725; } else { } } else { } addr = data_start; goto ldv_54729; ldv_54728: ; if (addr == page_end - 4U || ((int )(bp->flash_info)->flags & 1 && addr == data_end - 4U)) { cmd_flags = cmd_flags | 256U; } else { } { rc = bnx2_nvram_write_dword(bp, addr, buf, cmd_flags); } if (rc != 0) { goto nvram_write_end; } else { } cmd_flags = 0U; buf = buf + 4UL; addr = addr + 4U; i = i + 4; ldv_54729: ; if (addr < data_end) { goto ldv_54728; } else { } if (((unsigned int )(bp->flash_info)->flags & 1U) == 0U) { addr = data_end; goto ldv_54732; ldv_54731: ; if (addr == page_end - 4U) { cmd_flags = 256U; } else { } { rc = bnx2_nvram_write_dword(bp, addr, flash_buffer + (unsigned long )i, cmd_flags); } if (rc != 0) { goto nvram_write_end; } else { } cmd_flags = 0U; addr = addr + 4U; i = i + 4; ldv_54732: ; if (addr < page_end) { goto ldv_54731; } else { } } else { } { bnx2_disable_nvram_write(bp); bnx2_disable_nvram_access(bp); bnx2_release_nvram_lock(bp); written = written + (data_end - data_start); } ldv_54735: ; if (written < len32 && rc == 0) { goto ldv_54734; } else { } nvram_write_end: { kfree((void const *)flash_buffer); kfree((void const *)align_buf); } return (rc); } } static void bnx2_init_fw_cap(struct bnx2 *bp ) { u32 val ; u32 sig ; u32 link ; bool tmp ; { sig = 0U; bp->phy_flags = bp->phy_flags & 4294965247U; bp->flags = bp->flags & 4294963199U; if ((bp->flags & 64U) == 0U) { bp->flags = bp->flags | 4096U; } else { } { val = bnx2_shmem_rd(bp, 872U); } if ((val & 4294901760U) != 2857697280U) { return; } else { } if ((val & 24U) == 24U) { bp->flags = bp->flags | 4096U; sig = sig | 893714456U; } else { } if ((int )bp->phy_flags & 1 && (int )val & 1) { { bp->phy_flags = bp->phy_flags | 2048U; link = bnx2_shmem_rd(bp, 12U); } if ((link & 1048576U) != 0U) { bp->phy_port = 3U; } else { bp->phy_port = 0U; } sig = sig | 893714433U; } else { } { tmp = netif_running((struct net_device const *)bp->dev); } if ((int )tmp && sig != 0U) { { bnx2_shmem_wr(bp, 868U, sig); } } else { } return; } } static void bnx2_setup_msix_tbl(struct bnx2 *bp ) { { { writel(2147483648U, (void volatile *)bp->regview + 1024U); writel(3244032U, (void volatile *)bp->regview + 1556U); writel(3260416U, (void volatile *)bp->regview + 1560U); } return; } } static int bnx2_reset_chip(struct bnx2 *bp , u32 reset_code ) { u32 val ; int i ; int rc ; u8 old_port ; { rc = 0; if ((bp->chip_id & 4294901760U) == 1460011008U || (bp->chip_id & 4294901760U) == 1460142080U) { { writel(67764240U, (void volatile *)bp->regview + 2068U); val = readl((void const volatile *)bp->regview + 2068U); __const_udelay(21475UL); } } else { { val = readl((void const volatile *)bp->regview + 2248U); val = val & 4294901759U; writel(val, (void volatile *)bp->regview + 2248U); val = readl((void const volatile *)bp->regview + 2248U); i = 0; } goto ldv_54756; ldv_54755: { msleep(1U); val = readl((void const volatile *)bp->regview + 180U); } if (((long )val & 2097152L) == 0L) { goto ldv_54754; } else { } i = i + 1; ldv_54756: ; if (i <= 99) { goto ldv_54755; } else { } ldv_54754: ; } { bnx2_fw_sync(bp, reset_code | 65536U, 1, 1); bnx2_shmem_wr(bp, 0U, 1212241483U); val = readl((void const volatile *)bp->regview + 2056U); } if ((bp->chip_id & 4294901760U) == 1460207616U) { { writel(16U, (void volatile *)bp->regview + 2048U); readl((void const volatile *)bp->regview + 2048U); __const_udelay(21475UL); val = 136U; writel(val, (void volatile *)bp->regview + 104U); } } else { { val = 392U; writel(val, (void volatile *)bp->regview + 104U); } if ((bp->chip_id & 4294967280U) == 1460011008U || (bp->chip_id & 4294967280U) == 1460011024U) { { msleep(20U); } } else { } i = 0; goto ldv_54759; ldv_54758: { val = readl((void const volatile *)bp->regview + 104U); } if (((long )val & 768L) == 0L) { goto ldv_54757; } else { } { __const_udelay(42950UL); i = i + 1; } ldv_54759: ; if (i <= 9) { goto ldv_54758; } else { } ldv_54757: ; if (((long )val & 768L) != 0L) { { printk("\vbnx2: Chip reset did not complete\n"); } return (-16); } else { } } { val = readl((void const volatile *)bp->regview + 1048U); } if (val != 16909060U) { { printk("\vbnx2: Chip not in correct endian mode\n"); } return (-19); } else { } { rc = bnx2_fw_sync(bp, reset_code | 131072U, 1, 0); } if (rc != 0) { return (rc); } else { } { ldv_spin_lock_bh_110(& bp->phy_lock); old_port = bp->phy_port; bnx2_init_fw_cap(bp); } if ((bp->phy_flags & 2048U) != 0U && (int )old_port != (int )bp->phy_port) { { bnx2_set_default_remote_link(bp); } } else { } { ldv_spin_unlock_bh_111(& bp->phy_lock); } if ((bp->chip_id & 4294967280U) == 1460011008U) { { writel(250U, (void volatile *)bp->regview + 2228U); rc = bnx2_alloc_bad_rbuf(bp); } } else { } if ((bp->flags & 1024U) != 0U) { { bnx2_setup_msix_tbl(bp); writel(1U, (void volatile *)bp->regview + 2252U); } } else { } return (rc); } } static int bnx2_init_chip(struct bnx2 *bp ) { u32 val ; u32 mtu ; int rc ; int i ; u16 val16 ; u32 base ; { { writel(262144U, (void volatile *)bp->regview + 132U); val = 217123U; val = val | 2099200U; } if ((int )bp->flags & 1 && (unsigned int )bp->bus_speed_mhz == 133U) { val = val | 8388608U; } else { } if (((bp->chip_id & 4294901760U) == 1460011008U && (bp->chip_id & 4294967280U) != 1460011008U) && (bp->flags & 1U) == 0U) { val = val | 1024U; } else { } { writel(val, (void volatile *)bp->regview + 3080U); } if ((bp->chip_id & 4294967280U) == 1460011008U) { { val = readl((void const volatile *)bp->regview + 23560U); val = val | 1U; writel(val, (void volatile *)bp->regview + 23560U); } } else { } if ((int )bp->flags & 1) { { pci_read_config_word((struct pci_dev const *)bp->pdev, bp->pcix_cap + 2, & val16); pci_write_config_word((struct pci_dev const *)bp->pdev, bp->pcix_cap + 2, (int )val16 & 65533); } } else { } { writel(2654208U, (void volatile *)bp->regview + 2064U); } if ((bp->chip_id & 4294901760U) == 1460207616U) { { rc = bnx2_init_5709_context(bp); } if (rc != 0) { return (rc); } else { } } else { { bnx2_init_context(bp); } } { rc = bnx2_init_cpus(bp); } if (rc != 0) { return (rc); } else { } { bnx2_init_nvram(bp); bnx2_set_mac_addr(bp, (bp->dev)->dev_addr, 0U); val = readl((void const volatile *)bp->regview + 15368U); val = val & 4294967183U; val = val; } if ((bp->chip_id & 4294901760U) == 1460207616U) { val = val | 4U; if ((bp->chip_id & 61440U) == 0U) { val = val | 2U; } else { } } else { } { writel(val, (void volatile *)bp->regview + 15368U); val = 4259840U; writel(val, (void volatile *)bp->regview + 15388U); writel(val, (void volatile *)bp->regview + 15392U); val = 67108864U; writel(val, (void volatile *)bp->regview + 10248U); val = readl((void const volatile *)bp->regview + 20488U); val = val & 4043309055U; val = val | 67108928U; writel(val, (void volatile *)bp->regview + 20488U); val = (u32 )((((((int )bp->mac_addr[0] + ((int )bp->mac_addr[1] << 8)) + ((int )bp->mac_addr[2] << 16)) + (int )bp->mac_addr[3]) + ((int )bp->mac_addr[4] << 8)) + ((int )bp->mac_addr[5] << 16)); writel(val, (void volatile *)bp->regview + 5272U); mtu = (bp->dev)->mtu; val = mtu + 18U; } if (val > 1518U) { val = val | 2147483648U; } else { } { writel(val, (void volatile *)bp->regview + 5276U); } if (mtu <= 1499U) { mtu = 1500U; } else { } { bnx2_reg_wr_ind(bp, 2097164U, ((mtu * 31U + 4294920796U) / 1000U + 54U) | (((mtu * 39U + 4294908796U) / 1000U + 66U) << 16)); bnx2_reg_wr_ind(bp, 2097180U, (((mtu + 1073740324U) * 4U) / 1000U + 5U) | ((((mtu + 2147482148U) * 2U) / 100U + 30U) << 16)); bnx2_reg_wr_ind(bp, 2097184U, ((mtu * 12U + 4294949296U) / 1000U + 18U) | ((((mtu + 2147482148U) * 2U) / 100U + 30U) << 16)); memset((void *)bp->bnx2_napi[0].status_blk.msi, 0, (size_t )bp->status_stats_size); i = 0; } goto ldv_54769; ldv_54768: bp->bnx2_napi[i].last_status_idx = 0U; i = i + 1; ldv_54769: ; if (i <= 8) { goto ldv_54768; } else { } { bp->idle_chk_status_idx = 65535U; bp->rx_mode = 4096U; writel(2048U, (void volatile *)bp->regview + 5128U); writel((unsigned int )bp->status_blk_mapping, (void volatile *)bp->regview + 26640U); writel((unsigned int )(bp->status_blk_mapping >> 32), (void volatile *)bp->regview + 26644U); writel((unsigned int )bp->stats_blk_mapping, (void volatile *)bp->regview + 26648U); writel((unsigned int )(bp->stats_blk_mapping >> 32), (void volatile *)bp->regview + 26652U); writel((unsigned int )(((int )bp->tx_quick_cons_trip_int << 16) | (int )bp->tx_quick_cons_trip), (void volatile *)bp->regview + 26656U); writel((unsigned int )(((int )bp->rx_quick_cons_trip_int << 16) | (int )bp->rx_quick_cons_trip), (void volatile *)bp->regview + 26664U); writel((unsigned int )(((int )bp->comp_prod_trip_int << 16) | (int )bp->comp_prod_trip), (void volatile *)bp->regview + 26660U); writel((unsigned int )(((int )bp->tx_ticks_int << 16) | (int )bp->tx_ticks), (void volatile *)bp->regview + 26672U); writel((unsigned int )(((int )bp->rx_ticks_int << 16) | (int )bp->rx_ticks), (void volatile *)bp->regview + 26668U); writel((unsigned int )(((int )bp->com_ticks_int << 16) | (int )bp->com_ticks), (void volatile *)bp->regview + 26676U); writel((unsigned int )(((int )bp->cmd_ticks_int << 16) | (int )bp->cmd_ticks), (void volatile *)bp->regview + 26680U); } if ((bp->flags & 8192U) != 0U) { { writel(0U, (void volatile *)bp->regview + 26692U); } } else { { writel(bp->stats_ticks, (void volatile *)bp->regview + 26692U); } } { writel(3000U, (void volatile *)bp->regview + 26688U); } if ((bp->chip_id & 4294967280U) == 1460011024U) { val = 1U; } else { val = 7U; } if ((bp->flags & 1024U) != 0U) { { writel(511U, (void volatile *)bp->regview + 26904U); val = val | 16777216U; } } else { } if ((bp->flags & 256U) != 0U) { val = val | 393216U; } else { } { writel(val, (void volatile *)bp->regview + 26632U); } if ((unsigned int )bp->rx_ticks <= 24U) { { bnx2_reg_wr_ind(bp, 1179736U, 1U); } } else { { bnx2_reg_wr_ind(bp, 1179736U, 0U); } } i = 1; goto ldv_54773; ldv_54772: { base = (u32 )((i + -1) * 36 + 27136); writel(131078U, (void volatile *)bp->regview + (unsigned long )base); writel((unsigned int )(((int )bp->tx_quick_cons_trip_int << 16) | (int )bp->tx_quick_cons_trip), (void volatile *)(bp->regview + ((unsigned long )base + 4UL))); writel((unsigned int )(((int )bp->tx_ticks_int << 16) | (int )bp->tx_ticks), (void volatile *)(bp->regview + ((unsigned long )base + 20UL))); writel((unsigned int )(((int )bp->rx_quick_cons_trip_int << 16) | (int )bp->rx_quick_cons_trip), (void volatile *)(bp->regview + ((unsigned long )base + 12UL))); writel((unsigned int )(((int )bp->rx_ticks_int << 16) | (int )bp->rx_ticks), (void volatile *)(bp->regview + ((unsigned long )base + 16UL))); i = i + 1; } ldv_54773: ; if (i < bp->irq_nvecs) { goto ldv_54772; } else { } { writel(2097152U, (void volatile *)bp->regview + 26624U); writel(16777217U, (void volatile *)bp->regview + 26636U); bnx2_set_rx_mode(bp->dev); } if ((bp->chip_id & 4294901760U) == 1460207616U) { { val = readl((void const volatile *)bp->regview + 2248U); val = val | 65536U; writel(val, (void volatile *)bp->regview + 2248U); } } else { } { rc = bnx2_fw_sync(bp, 16973824U, 1, 0); writel(402653183U, (void volatile *)bp->regview + 2064U); readl((void const volatile *)bp->regview + 2064U); __const_udelay(85900UL); bp->hc_cmd = readl((void const volatile *)bp->regview + 26624U); } return (rc); } } static void bnx2_clear_ring_states(struct bnx2 *bp ) { struct bnx2_napi *bnapi ; struct bnx2_tx_ring_info *txr ; struct bnx2_rx_ring_info *rxr ; int i ; { i = 0; goto ldv_54783; ldv_54782: bnapi = (struct bnx2_napi *)(& bp->bnx2_napi) + (unsigned long )i; txr = & bnapi->tx_ring; rxr = & bnapi->rx_ring; txr->tx_cons = 0U; txr->hw_tx_cons = 0U; rxr->rx_prod_bseq = 0U; rxr->rx_prod = 0U; rxr->rx_cons = 0U; rxr->rx_pg_prod = 0U; rxr->rx_pg_cons = 0U; i = i + 1; ldv_54783: ; if (i <= 8) { goto ldv_54782; } else { } return; } } static void bnx2_init_tx_context(struct bnx2 *bp , u32 cid , struct bnx2_tx_ring_info *txr ) { u32 val ; u32 offset0 ; u32 offset1 ; u32 offset2 ; u32 offset3 ; u32 cid_addr ; { cid_addr = cid << 7; if ((bp->chip_id & 4294901760U) == 1460207616U) { offset0 = 128U; offset1 = 576U; offset2 = 600U; offset3 = 604U; } else { offset0 = 0U; offset1 = 136U; offset2 = 160U; offset3 = 164U; } { val = 268828672U; bnx2_ctx_wr(bp, cid_addr, offset0, val); val = 524288U; bnx2_ctx_wr(bp, cid_addr, offset1, val); val = (u32 )(txr->tx_desc_mapping >> 32); bnx2_ctx_wr(bp, cid_addr, offset2, val); val = (u32 )txr->tx_desc_mapping; bnx2_ctx_wr(bp, cid_addr, offset3, val); } return; } } static void bnx2_init_tx_ring(struct bnx2 *bp , int ring_num ) { struct bnx2_tx_bd *txbd ; u32 cid ; struct bnx2_napi *bnapi ; struct bnx2_tx_ring_info *txr ; { cid = 16U; bnapi = (struct bnx2_napi *)(& bp->bnx2_napi) + (unsigned long )ring_num; txr = & bnapi->tx_ring; if (ring_num == 0) { cid = 16U; } else { cid = (u32 )(ring_num + 31); } { bp->tx_wake_thresh = (u32 )(bp->tx_ring_size / 2); txbd = txr->tx_desc_ring + 255UL; txbd->tx_bd_haddr_hi = (u32 )(txr->tx_desc_mapping >> 32); txbd->tx_bd_haddr_lo = (u32 )txr->tx_desc_mapping; txr->tx_prod = 0U; txr->tx_prod_bseq = 0U; txr->tx_bidx_addr = (cid << 8) + 65672U; txr->tx_bseq_addr = (cid << 8) + 65680U; bnx2_init_tx_context(bp, cid, txr); } return; } } static void bnx2_init_rxbd_rings(struct bnx2_rx_bd **rx_ring , dma_addr_t *dma , u32 buf_size , int num_rings ) { int i ; struct bnx2_rx_bd *rxbd ; int j ; { i = 0; goto ldv_54817; ldv_54816: rxbd = *(rx_ring + (unsigned long )i); j = 0; goto ldv_54814; ldv_54813: rxbd->rx_bd_len = buf_size; rxbd->rx_bd_flags = 12U; j = j + 1; rxbd = rxbd + 1; ldv_54814: ; if ((unsigned int )j <= 254U) { goto ldv_54813; } else { } if (i == num_rings + -1) { j = 0; } else { j = i + 1; } rxbd->rx_bd_haddr_hi = (u32 )(*(dma + (unsigned long )j) >> 32); rxbd->rx_bd_haddr_lo = (u32 )*(dma + (unsigned long )j); i = i + 1; ldv_54817: ; if (i < num_rings) { goto ldv_54816; } else { } return; } } static void bnx2_init_rx_ring(struct bnx2 *bp , int ring_num ) { int i ; u16 prod ; u16 ring_prod ; u32 cid ; u32 rx_cid_addr ; u32 val ; struct bnx2_napi *bnapi ; struct bnx2_rx_ring_info *rxr ; int tmp ; int tmp___0 ; { bnapi = (struct bnx2_napi *)(& bp->bnx2_napi) + (unsigned long )ring_num; rxr = & bnapi->rx_ring; if (ring_num == 0) { cid = 0U; } else { cid = (u32 )(ring_num + 3); } { rx_cid_addr = cid << 7; bnx2_init_rxbd_rings((struct bnx2_rx_bd **)(& rxr->rx_desc_ring), (dma_addr_t *)(& rxr->rx_desc_mapping), bp->rx_buf_use_size, bp->rx_max_ring); bnx2_init_rx_context(bp, cid); } if ((bp->chip_id & 4294901760U) == 1460207616U) { { val = readl((void const volatile *)bp->regview + 15668U); writel(val | 201326592U, (void volatile *)bp->regview + 15668U); } } else { } { bnx2_ctx_wr(bp, rx_cid_addr, 72U, 0U); } if (bp->rx_pg_ring_size != 0) { { bnx2_init_rxbd_rings((struct bnx2_rx_bd **)(& rxr->rx_pg_desc_ring), (dma_addr_t *)(& rxr->rx_pg_desc_mapping), 4096U, bp->rx_max_pg_ring); val = (bp->rx_buf_use_size << 16) | 4096U; bnx2_ctx_wr(bp, rx_cid_addr, 72U, val); bnx2_ctx_wr(bp, rx_cid_addr, 76U, (u32 )(16382 - ring_num)); val = (u32 )(rxr->rx_pg_desc_mapping[0] >> 32); bnx2_ctx_wr(bp, rx_cid_addr, 80U, val); val = (u32 )rxr->rx_pg_desc_mapping[0]; bnx2_ctx_wr(bp, rx_cid_addr, 84U, val); } if ((bp->chip_id & 4294901760U) == 1460207616U) { { writel(2181056070U, (void volatile *)bp->regview + 15660U); } } else { } } else { } { val = (u32 )(rxr->rx_desc_mapping[0] >> 32); bnx2_ctx_wr(bp, rx_cid_addr, 16U, val); val = (u32 )rxr->rx_desc_mapping[0]; bnx2_ctx_wr(bp, rx_cid_addr, 20U, val); prod = rxr->rx_pg_prod; ring_prod = prod; i = 0; } goto ldv_54833; ldv_54832: { tmp = bnx2_alloc_rx_page(bp, rxr, (int )ring_prod, 208U); } if (tmp < 0) { { netdev_warn((struct net_device const *)bp->dev, "init\'ed rx page ring %d with %d/%d pages only\n", ring_num, i, bp->rx_pg_ring_size); } goto ldv_54831; } else { } prod = ((unsigned long )prod & 254UL) == 254UL ? (unsigned int )prod + 2U : (unsigned int )prod + 1U; ring_prod = (int )prod & (int )((u16 )bp->rx_max_pg_ring_idx); i = i + 1; ldv_54833: ; if (i < bp->rx_pg_ring_size) { goto ldv_54832; } else { } ldv_54831: rxr->rx_pg_prod = prod; prod = rxr->rx_prod; ring_prod = prod; i = 0; goto ldv_54836; ldv_54835: { tmp___0 = bnx2_alloc_rx_data(bp, rxr, (int )ring_prod, 208U); } if (tmp___0 < 0) { { netdev_warn((struct net_device const *)bp->dev, "init\'ed rx ring %d with %d/%d skbs only\n", ring_num, i, bp->rx_ring_size); } goto ldv_54834; } else { } prod = ((unsigned long )prod & 254UL) == 254UL ? (unsigned int )prod + 2U : (unsigned int )prod + 1U; ring_prod = (int )prod & (int )((u16 )bp->rx_max_ring_idx); i = i + 1; ldv_54836: ; if (i < bp->rx_ring_size) { goto ldv_54835; } else { } ldv_54834: { rxr->rx_prod = prod; rxr->rx_bidx_addr = (cid << 8) + 65540U; rxr->rx_bseq_addr = (cid << 8) + 65544U; rxr->rx_pg_bidx_addr = (cid << 8) + 65604U; writew((int )rxr->rx_pg_prod, (void volatile *)bp->regview + (unsigned long )rxr->rx_pg_bidx_addr); writew((int )prod, (void volatile *)bp->regview + (unsigned long )rxr->rx_bidx_addr); writel(rxr->rx_prod_bseq, (void volatile *)bp->regview + (unsigned long )rxr->rx_bseq_addr); } return; } } static void bnx2_init_all_rings(struct bnx2 *bp ) { int i ; u32 val ; u32 tbl_32 ; int shift ; { { bnx2_clear_ring_states(bp); writel(0U, (void volatile *)bp->regview + 19484U); i = 0; } goto ldv_54843; ldv_54842: { bnx2_init_tx_ring(bp, i); i = i + 1; } ldv_54843: ; if (i < (int )bp->num_tx_rings) { goto ldv_54842; } else { } if ((unsigned int )bp->num_tx_rings > 1U) { { writel((unsigned int )((((int )bp->num_tx_rings + -1) << 24) | 4096), (void volatile *)bp->regview + 19484U); } } else { } { writel(0U, (void volatile *)bp->regview + 8220U); bnx2_reg_wr_ind(bp, 917560U, 0U); i = 0; } goto ldv_54846; ldv_54845: { bnx2_init_rx_ring(bp, i); i = i + 1; } ldv_54846: ; if (i < (int )bp->num_rx_rings) { goto ldv_54845; } else { } if ((unsigned int )bp->num_rx_rings > 1U) { tbl_32 = 0U; i = 0; goto ldv_54851; ldv_54850: shift = i % 8 << 2; tbl_32 = tbl_32 | (u32 )(i % ((int )bp->num_rx_rings + -1) << shift); if (i % 8 == 7) { { writel(tbl_32, (void volatile *)bp->regview + 8268U); writel((unsigned int )((i >> 3) | 122864), (void volatile *)bp->regview + 8264U); tbl_32 = 0U; } } else { } i = i + 1; ldv_54851: ; if (i <= 127) { goto ldv_54850; } else { } { val = 5U; writel(val, (void volatile *)bp->regview + 8220U); } } else { } return; } } static u32 bnx2_find_max_ring(u32 ring_size , u32 max_size ) { u32 max ; u32 num_rings ; { num_rings = 1U; goto ldv_54860; ldv_54859: ring_size = ring_size - 255U; num_rings = num_rings + 1U; ldv_54860: ; if (ring_size > 255U) { goto ldv_54859; } else { } max = max_size; goto ldv_54863; ldv_54862: max = max >> 1; ldv_54863: ; if ((max & num_rings) == 0U) { goto ldv_54862; } else { } if (num_rings != max) { max = max << 1; } else { } return (max); } } static void bnx2_set_rx_ring_size(struct bnx2 *bp , u32 size ) { u32 rx_size ; u32 rx_space ; u32 jumbo_size ; int _max1 ; int _max2 ; int pages ; u32 tmp ; int _max1___0 ; int _max2___0 ; u32 tmp___0 ; { rx_size = (bp->dev)->mtu + 40U; _max1 = 32; _max2 = 64; rx_space = (((rx_size + 79U) & 4294967232U) + (u32 )(_max1 > _max2 ? _max1 : _max2)) + 320U; bp->rx_copy_thresh = 128U; bp->rx_pg_ring_size = 0; bp->rx_max_pg_ring = 0; bp->rx_max_pg_ring_idx = 0U; if (rx_space > 4096U && (bp->flags & 2048U) == 0U) { pages = (int )(((bp->dev)->mtu + 4055U) >> 12); jumbo_size = size * (u32 )pages; if (jumbo_size > 8160U) { jumbo_size = 8160U; } else { } { bp->rx_pg_ring_size = (int )jumbo_size; tmp = bnx2_find_max_ring(jumbo_size, 32U); bp->rx_max_pg_ring = (int )tmp; bp->rx_max_pg_ring_idx = (u32 )((unsigned long )bp->rx_max_pg_ring) * 256U - 1U; rx_size = 146U; bp->rx_copy_thresh = 0U; } } else { } { bp->rx_buf_use_size = rx_size; _max1___0 = 32; _max2___0 = 64; bp->rx_buf_size = (((bp->rx_buf_use_size + 79U) & 4294967232U) + (u32 )(_max1___0 > _max2___0 ? _max1___0 : _max2___0)) + 320U; bp->rx_jumbo_thresh = rx_size - 18U; bp->rx_ring_size = (int )size; tmp___0 = bnx2_find_max_ring(size, 8U); bp->rx_max_ring = (int )tmp___0; bp->rx_max_ring_idx = (u32 )((unsigned long )bp->rx_max_ring) * 256U - 1U; } return; } } static void bnx2_free_tx_skbs(struct bnx2 *bp ) { int i ; struct bnx2_napi *bnapi ; struct bnx2_tx_ring_info *txr ; int j ; struct bnx2_sw_tx_bd *tx_buf ; struct sk_buff *skb ; int k ; int last ; unsigned int tmp ; unsigned char *tmp___0 ; unsigned int tmp___1 ; struct netdev_queue *tmp___2 ; { i = 0; goto ldv_54898; ldv_54897: bnapi = (struct bnx2_napi *)(& bp->bnx2_napi) + (unsigned long )i; txr = & bnapi->tx_ring; if ((unsigned long )txr->tx_buf_ring == (unsigned long )((struct bnx2_sw_tx_bd *)0)) { goto ldv_54886; } else { } j = 0; goto ldv_54891; ldv_54895: tx_buf = txr->tx_buf_ring + (unsigned long )j; skb = tx_buf->skb; if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { j = ((unsigned long )j & 254UL) == 254UL ? j + 2 : j + 1; goto ldv_54891; } else { } { tmp = skb_headlen((struct sk_buff const *)skb); dma_unmap_single_attrs(& (bp->pdev)->dev, tx_buf->mapping, (size_t )tmp, 1, (struct dma_attrs *)0); tx_buf->skb = (struct sk_buff *)0; last = (int )tx_buf->nr_frags; j = ((unsigned long )j & 254UL) == 254UL ? j + 2 : j + 1; k = 0; } goto ldv_54893; ldv_54892: { tx_buf = txr->tx_buf_ring + ((unsigned long )j & 255UL); tmp___0 = skb_end_pointer((struct sk_buff const *)skb); tmp___1 = skb_frag_size((skb_frag_t const *)(& ((struct skb_shared_info *)tmp___0)->frags) + (unsigned long )k); dma_unmap_page(& (bp->pdev)->dev, tx_buf->mapping, (size_t )tmp___1, 1); k = k + 1; j = ((unsigned long )j & 254UL) == 254UL ? j + 2 : j + 1; } ldv_54893: ; if (k < last) { goto ldv_54892; } else { } { consume_skb(skb); } ldv_54891: ; if ((unsigned int )j <= 255U) { goto ldv_54895; } else { } { tmp___2 = netdev_get_tx_queue((struct net_device const *)bp->dev, (unsigned int )i); netdev_tx_reset_queue(tmp___2); } ldv_54886: i = i + 1; ldv_54898: ; if (i < (int )bp->num_tx_rings) { goto ldv_54897; } else { } return; } } static void bnx2_free_rx_skbs(struct bnx2 *bp ) { int i ; struct bnx2_napi *bnapi ; struct bnx2_rx_ring_info *rxr ; int j ; struct bnx2_sw_bd *rx_buf ; u8 *data ; { i = 0; goto ldv_54917; ldv_54916: bnapi = (struct bnx2_napi *)(& bp->bnx2_napi) + (unsigned long )i; rxr = & bnapi->rx_ring; if ((unsigned long )rxr->rx_buf_ring == (unsigned long )((struct bnx2_sw_bd *)0)) { return; } else { } j = 0; goto ldv_54911; ldv_54910: rx_buf = rxr->rx_buf_ring + (unsigned long )j; data = rx_buf->data; if ((unsigned long )data == (unsigned long )((u8 *)0U)) { goto ldv_54909; } else { } { dma_unmap_single_attrs(& (bp->pdev)->dev, rx_buf->mapping, (size_t )bp->rx_buf_use_size, 2, (struct dma_attrs *)0); rx_buf->data = (u8 *)0U; kfree((void const *)data); } ldv_54909: j = j + 1; ldv_54911: ; if ((u32 )j < bp->rx_max_ring_idx) { goto ldv_54910; } else { } j = 0; goto ldv_54914; ldv_54913: { bnx2_free_rx_page(bp, rxr, (int )((u16 )j)); j = j + 1; } ldv_54914: ; if ((u32 )j < bp->rx_max_pg_ring_idx) { goto ldv_54913; } else { } i = i + 1; ldv_54917: ; if (i < (int )bp->num_rx_rings) { goto ldv_54916; } else { } return; } } static void bnx2_free_skbs(struct bnx2 *bp ) { { { bnx2_free_tx_skbs(bp); bnx2_free_rx_skbs(bp); } return; } } static int bnx2_reset_nic(struct bnx2 *bp , u32 reset_code ) { int rc ; { { rc = bnx2_reset_chip(bp, reset_code); bnx2_free_skbs(bp); } if (rc != 0) { return (rc); } else { } { rc = bnx2_init_chip(bp); } if (rc != 0) { return (rc); } else { } { bnx2_init_all_rings(bp); } return (0); } } static int bnx2_init_nic(struct bnx2 *bp , int reset_phy ) { int rc ; { { rc = bnx2_reset_nic(bp, 16777216U); } if (rc != 0) { return (rc); } else { } { ldv_spin_lock_bh_110(& bp->phy_lock); bnx2_init_phy(bp, reset_phy); bnx2_set_link(bp); } if ((bp->phy_flags & 2048U) != 0U) { { bnx2_remote_phy_event(bp); } } else { } { ldv_spin_unlock_bh_111(& bp->phy_lock); } return (0); } } static int bnx2_shutdown_chip(struct bnx2 *bp ) { u32 reset_code ; int tmp ; { if ((bp->flags & 8U) != 0U) { reset_code = 184549376U; } else if ((unsigned int )bp->wol != 0U) { reset_code = 67108864U; } else { reset_code = 150994944U; } { tmp = bnx2_reset_chip(bp, reset_code); } return (tmp); } } static int bnx2_test_registers(struct bnx2 *bp ) { int ret ; int i ; int is_5709 ; struct __anonstruct_reg_tbl_292 reg_tbl[93U] ; u32 offset ; u32 rw_mask ; u32 ro_mask ; u32 save_val ; u32 val ; u16 flags ; { reg_tbl[0].offset = 108U; reg_tbl[0].flags = 0U; reg_tbl[0].rw_mask = 0U; reg_tbl[0].ro_mask = 63U; reg_tbl[1].offset = 144U; reg_tbl[1].flags = 0U; reg_tbl[1].rw_mask = 4294967295U; reg_tbl[1].ro_mask = 0U; reg_tbl[2].offset = 148U; reg_tbl[2].flags = 0U; reg_tbl[2].rw_mask = 0U; reg_tbl[2].ro_mask = 0U; reg_tbl[3].offset = 1028U; reg_tbl[3].flags = 1U; reg_tbl[3].rw_mask = 16128U; reg_tbl[3].ro_mask = 0U; reg_tbl[4].offset = 1048U; reg_tbl[4].flags = 1U; reg_tbl[4].rw_mask = 0U; reg_tbl[4].ro_mask = 4294967295U; reg_tbl[5].offset = 1052U; reg_tbl[5].flags = 1U; reg_tbl[5].rw_mask = 0U; reg_tbl[5].ro_mask = 4294967295U; reg_tbl[6].offset = 1056U; reg_tbl[6].flags = 1U; reg_tbl[6].rw_mask = 0U; reg_tbl[6].ro_mask = 2164260863U; reg_tbl[7].offset = 1060U; reg_tbl[7].flags = 1U; reg_tbl[7].rw_mask = 0U; reg_tbl[7].ro_mask = 0U; reg_tbl[8].offset = 1064U; reg_tbl[8].flags = 1U; reg_tbl[8].rw_mask = 0U; reg_tbl[8].ro_mask = 1U; reg_tbl[9].offset = 1104U; reg_tbl[9].flags = 1U; reg_tbl[9].rw_mask = 0U; reg_tbl[9].ro_mask = 65535U; reg_tbl[10].offset = 1108U; reg_tbl[10].flags = 1U; reg_tbl[10].rw_mask = 0U; reg_tbl[10].ro_mask = 4294967295U; reg_tbl[11].offset = 1112U; reg_tbl[11].flags = 1U; reg_tbl[11].rw_mask = 0U; reg_tbl[11].ro_mask = 4294967295U; reg_tbl[12].offset = 2056U; reg_tbl[12].flags = 1U; reg_tbl[12].rw_mask = 0U; reg_tbl[12].ro_mask = 4294967295U; reg_tbl[13].offset = 2132U; reg_tbl[13].flags = 1U; reg_tbl[13].rw_mask = 0U; reg_tbl[13].ro_mask = 4294967295U; reg_tbl[14].offset = 2152U; reg_tbl[14].flags = 1U; reg_tbl[14].rw_mask = 0U; reg_tbl[14].ro_mask = 2004318071U; reg_tbl[15].offset = 2156U; reg_tbl[15].flags = 1U; reg_tbl[15].rw_mask = 0U; reg_tbl[15].ro_mask = 2004318071U; reg_tbl[16].offset = 2160U; reg_tbl[16].flags = 1U; reg_tbl[16].rw_mask = 0U; reg_tbl[16].ro_mask = 2004318071U; reg_tbl[17].offset = 2164U; reg_tbl[17].flags = 1U; reg_tbl[17].rw_mask = 0U; reg_tbl[17].ro_mask = 2004318071U; reg_tbl[18].offset = 3072U; reg_tbl[18].flags = 1U; reg_tbl[18].rw_mask = 0U; reg_tbl[18].ro_mask = 1U; reg_tbl[19].offset = 3076U; reg_tbl[19].flags = 1U; reg_tbl[19].rw_mask = 0U; reg_tbl[19].ro_mask = 67043329U; reg_tbl[20].offset = 3080U; reg_tbl[20].flags = 1U; reg_tbl[20].rw_mask = 252702835U; reg_tbl[20].ro_mask = 0U; reg_tbl[21].offset = 4096U; reg_tbl[21].flags = 0U; reg_tbl[21].rw_mask = 0U; reg_tbl[21].ro_mask = 1U; reg_tbl[22].offset = 4100U; reg_tbl[22].flags = 1U; reg_tbl[22].rw_mask = 0U; reg_tbl[22].ro_mask = 983041U; reg_tbl[23].offset = 5128U; reg_tbl[23].flags = 0U; reg_tbl[23].rw_mask = 29362176U; reg_tbl[23].ro_mask = 0U; reg_tbl[24].offset = 5276U; reg_tbl[24].flags = 0U; reg_tbl[24].rw_mask = 2147549183U; reg_tbl[24].ro_mask = 0U; reg_tbl[25].offset = 5288U; reg_tbl[25].flags = 0U; reg_tbl[25].rw_mask = 0U; reg_tbl[25].ro_mask = 511U; reg_tbl[26].offset = 5292U; reg_tbl[26].flags = 0U; reg_tbl[26].rw_mask = 268435455U; reg_tbl[26].ro_mask = 268435456U; reg_tbl[27].offset = 5296U; reg_tbl[27].flags = 0U; reg_tbl[27].rw_mask = 2U; reg_tbl[27].ro_mask = 1U; reg_tbl[28].offset = 5304U; reg_tbl[28].flags = 0U; reg_tbl[28].rw_mask = 0U; reg_tbl[28].ro_mask = 0U; reg_tbl[29].offset = 5312U; reg_tbl[29].flags = 0U; reg_tbl[29].rw_mask = 0U; reg_tbl[29].ro_mask = 9U; reg_tbl[30].offset = 5316U; reg_tbl[30].flags = 0U; reg_tbl[30].rw_mask = 16383U; reg_tbl[30].ro_mask = 0U; reg_tbl[31].offset = 5324U; reg_tbl[31].flags = 0U; reg_tbl[31].rw_mask = 0U; reg_tbl[31].ro_mask = 1U; reg_tbl[32].offset = 5328U; reg_tbl[32].flags = 0U; reg_tbl[32].rw_mask = 4294967295U; reg_tbl[32].ro_mask = 0U; reg_tbl[33].offset = 6144U; reg_tbl[33].flags = 0U; reg_tbl[33].rw_mask = 0U; reg_tbl[33].ro_mask = 1U; reg_tbl[34].offset = 6148U; reg_tbl[34].flags = 0U; reg_tbl[34].rw_mask = 0U; reg_tbl[34].ro_mask = 3U; reg_tbl[35].offset = 10240U; reg_tbl[35].flags = 0U; reg_tbl[35].rw_mask = 0U; reg_tbl[35].ro_mask = 1U; reg_tbl[36].offset = 10244U; reg_tbl[36].flags = 0U; reg_tbl[36].rw_mask = 0U; reg_tbl[36].ro_mask = 16129U; reg_tbl[37].offset = 10248U; reg_tbl[37].flags = 0U; reg_tbl[37].rw_mask = 255803139U; reg_tbl[37].ro_mask = 0U; reg_tbl[38].offset = 10256U; reg_tbl[38].flags = 0U; reg_tbl[38].rw_mask = 4294901760U; reg_tbl[38].ro_mask = 0U; reg_tbl[39].offset = 10260U; reg_tbl[39].flags = 0U; reg_tbl[39].rw_mask = 4294901760U; reg_tbl[39].ro_mask = 0U; reg_tbl[40].offset = 10264U; reg_tbl[40].flags = 0U; reg_tbl[40].rw_mask = 4294901760U; reg_tbl[40].ro_mask = 0U; reg_tbl[41].offset = 10268U; reg_tbl[41].flags = 0U; reg_tbl[41].rw_mask = 4294901760U; reg_tbl[41].ro_mask = 0U; reg_tbl[42].offset = 10292U; reg_tbl[42].flags = 0U; reg_tbl[42].rw_mask = 4294967295U; reg_tbl[42].ro_mask = 0U; reg_tbl[43].offset = 10304U; reg_tbl[43].flags = 0U; reg_tbl[43].rw_mask = 0U; reg_tbl[43].ro_mask = 4294967295U; reg_tbl[44].offset = 10308U; reg_tbl[44].flags = 0U; reg_tbl[44].rw_mask = 0U; reg_tbl[44].ro_mask = 4294967295U; reg_tbl[45].offset = 10312U; reg_tbl[45].flags = 0U; reg_tbl[45].rw_mask = 4294967295U; reg_tbl[45].ro_mask = 0U; reg_tbl[46].offset = 10316U; reg_tbl[46].flags = 0U; reg_tbl[46].rw_mask = 4160813056U; reg_tbl[46].ro_mask = 134154239U; reg_tbl[47].offset = 11264U; reg_tbl[47].flags = 0U; reg_tbl[47].rw_mask = 0U; reg_tbl[47].ro_mask = 17U; reg_tbl[48].offset = 11268U; reg_tbl[48].flags = 0U; reg_tbl[48].rw_mask = 0U; reg_tbl[48].ro_mask = 196615U; reg_tbl[49].offset = 15360U; reg_tbl[49].flags = 0U; reg_tbl[49].rw_mask = 0U; reg_tbl[49].ro_mask = 1U; reg_tbl[50].offset = 15364U; reg_tbl[50].flags = 0U; reg_tbl[50].rw_mask = 0U; reg_tbl[50].ro_mask = 458752U; reg_tbl[51].offset = 15368U; reg_tbl[51].flags = 0U; reg_tbl[51].rw_mask = 32625U; reg_tbl[51].ro_mask = 133169152U; reg_tbl[52].offset = 15372U; reg_tbl[52].flags = 0U; reg_tbl[52].rw_mask = 524287996U; reg_tbl[52].ro_mask = 0U; reg_tbl[53].offset = 15376U; reg_tbl[53].flags = 0U; reg_tbl[53].rw_mask = 4294967295U; reg_tbl[53].ro_mask = 0U; reg_tbl[54].offset = 15380U; reg_tbl[54].flags = 0U; reg_tbl[54].rw_mask = 0U; reg_tbl[54].ro_mask = 4294967295U; reg_tbl[55].offset = 15384U; reg_tbl[55].flags = 0U; reg_tbl[55].rw_mask = 0U; reg_tbl[55].ro_mask = 4294967295U; reg_tbl[56].offset = 15388U; reg_tbl[56].flags = 0U; reg_tbl[56].rw_mask = 4294963200U; reg_tbl[56].ro_mask = 0U; reg_tbl[57].offset = 15392U; reg_tbl[57].flags = 0U; reg_tbl[57].rw_mask = 4294967040U; reg_tbl[57].ro_mask = 0U; reg_tbl[58].offset = 20484U; reg_tbl[58].flags = 0U; reg_tbl[58].rw_mask = 0U; reg_tbl[58].ro_mask = 127U; reg_tbl[59].offset = 20488U; reg_tbl[59].flags = 0U; reg_tbl[59].rw_mask = 251660287U; reg_tbl[59].ro_mask = 0U; reg_tbl[60].offset = 23552U; reg_tbl[60].flags = 0U; reg_tbl[60].rw_mask = 0U; reg_tbl[60].ro_mask = 1U; reg_tbl[61].offset = 23556U; reg_tbl[61].flags = 0U; reg_tbl[61].rw_mask = 0U; reg_tbl[61].ro_mask = 196623U; reg_tbl[62].offset = 23560U; reg_tbl[62].flags = 0U; reg_tbl[62].rw_mask = 3U; reg_tbl[62].ro_mask = 0U; reg_tbl[63].offset = 23564U; reg_tbl[63].flags = 0U; reg_tbl[63].rw_mask = 65528U; reg_tbl[63].ro_mask = 0U; reg_tbl[64].offset = 23568U; reg_tbl[64].flags = 0U; reg_tbl[64].rw_mask = 0U; reg_tbl[64].ro_mask = 4294967295U; reg_tbl[65].offset = 23680U; reg_tbl[65].flags = 0U; reg_tbl[65].rw_mask = 0U; reg_tbl[65].ro_mask = 259068913U; reg_tbl[66].offset = 23684U; reg_tbl[66].flags = 0U; reg_tbl[66].rw_mask = 0U; reg_tbl[66].ro_mask = 62259U; reg_tbl[67].offset = 23688U; reg_tbl[67].flags = 0U; reg_tbl[67].rw_mask = 0U; reg_tbl[67].ro_mask = 488307U; reg_tbl[68].offset = 23692U; reg_tbl[68].flags = 0U; reg_tbl[68].rw_mask = 0U; reg_tbl[68].ro_mask = 522039U; reg_tbl[69].offset = 26632U; reg_tbl[69].flags = 0U; reg_tbl[69].rw_mask = 65407U; reg_tbl[69].ro_mask = 0U; reg_tbl[70].offset = 26636U; reg_tbl[70].flags = 0U; reg_tbl[70].rw_mask = 4294967295U; reg_tbl[70].ro_mask = 0U; reg_tbl[71].offset = 26640U; reg_tbl[71].flags = 0U; reg_tbl[71].rw_mask = 4294967295U; reg_tbl[71].ro_mask = 0U; reg_tbl[72].offset = 26644U; reg_tbl[72].flags = 0U; reg_tbl[72].rw_mask = 4294967295U; reg_tbl[72].ro_mask = 0U; reg_tbl[73].offset = 26648U; reg_tbl[73].flags = 0U; reg_tbl[73].rw_mask = 4294967295U; reg_tbl[73].ro_mask = 0U; reg_tbl[74].offset = 26652U; reg_tbl[74].flags = 0U; reg_tbl[74].rw_mask = 4294967295U; reg_tbl[74].ro_mask = 0U; reg_tbl[75].offset = 26656U; reg_tbl[75].flags = 0U; reg_tbl[75].rw_mask = 16711935U; reg_tbl[75].ro_mask = 0U; reg_tbl[76].offset = 26660U; reg_tbl[76].flags = 0U; reg_tbl[76].rw_mask = 16711935U; reg_tbl[76].ro_mask = 0U; reg_tbl[77].offset = 26664U; reg_tbl[77].flags = 0U; reg_tbl[77].rw_mask = 16711935U; reg_tbl[77].ro_mask = 0U; reg_tbl[78].offset = 26668U; reg_tbl[78].flags = 0U; reg_tbl[78].rw_mask = 67044351U; reg_tbl[78].ro_mask = 0U; reg_tbl[79].offset = 26672U; reg_tbl[79].flags = 0U; reg_tbl[79].rw_mask = 67044351U; reg_tbl[79].ro_mask = 0U; reg_tbl[80].offset = 26676U; reg_tbl[80].flags = 0U; reg_tbl[80].rw_mask = 67044351U; reg_tbl[80].ro_mask = 0U; reg_tbl[81].offset = 26680U; reg_tbl[81].flags = 0U; reg_tbl[81].rw_mask = 67044351U; reg_tbl[81].ro_mask = 0U; reg_tbl[82].offset = 26684U; reg_tbl[82].flags = 0U; reg_tbl[82].rw_mask = 65535U; reg_tbl[82].ro_mask = 0U; reg_tbl[83].offset = 26688U; reg_tbl[83].flags = 0U; reg_tbl[83].rw_mask = 4080U; reg_tbl[83].ro_mask = 0U; reg_tbl[84].offset = 26692U; reg_tbl[84].flags = 0U; reg_tbl[84].rw_mask = 16776960U; reg_tbl[84].ro_mask = 0U; reg_tbl[85].offset = 26700U; reg_tbl[85].flags = 0U; reg_tbl[85].rw_mask = 4294967295U; reg_tbl[85].ro_mask = 0U; reg_tbl[86].offset = 26704U; reg_tbl[86].flags = 0U; reg_tbl[86].rw_mask = 2139062143U; reg_tbl[86].ro_mask = 0U; reg_tbl[87].offset = 26708U; reg_tbl[87].flags = 0U; reg_tbl[87].rw_mask = 2139062143U; reg_tbl[87].ro_mask = 0U; reg_tbl[88].offset = 26712U; reg_tbl[88].flags = 0U; reg_tbl[88].rw_mask = 2139062143U; reg_tbl[88].ro_mask = 0U; reg_tbl[89].offset = 26716U; reg_tbl[89].flags = 0U; reg_tbl[89].rw_mask = 2139062143U; reg_tbl[89].ro_mask = 0U; reg_tbl[90].offset = 26888U; reg_tbl[90].flags = 0U; reg_tbl[90].rw_mask = 0U; reg_tbl[90].ro_mask = 130831U; reg_tbl[91].offset = 26892U; reg_tbl[91].flags = 0U; reg_tbl[91].rw_mask = 0U; reg_tbl[91].ro_mask = 268304624U; reg_tbl[92].offset = 65535U; reg_tbl[92].flags = 0U; reg_tbl[92].rw_mask = 0U; reg_tbl[92].ro_mask = 0U; ret = 0; is_5709 = 0; if ((bp->chip_id & 4294901760U) == 1460207616U) { is_5709 = 1; } else { } i = 0; goto ldv_54958; ldv_54957: flags = reg_tbl[i].flags; if (is_5709 != 0 && (int )flags & 1) { goto ldv_54954; } else { } { offset = (unsigned int )reg_tbl[i].offset; rw_mask = reg_tbl[i].rw_mask; ro_mask = reg_tbl[i].ro_mask; save_val = readl((void const volatile *)bp->regview + (unsigned long )offset); writel(0U, (void volatile *)bp->regview + (unsigned long )offset); val = readl((void const volatile *)bp->regview + (unsigned long )offset); } if ((val & rw_mask) != 0U) { goto reg_test_err; } else { } if (((val ^ save_val) & ro_mask) != 0U) { goto reg_test_err; } else { } { writel(4294967295U, (void volatile *)bp->regview + (unsigned long )offset); val = readl((void const volatile *)bp->regview + (unsigned long )offset); } if ((val & rw_mask) != rw_mask) { goto reg_test_err; } else { } if (((val ^ save_val) & ro_mask) != 0U) { goto reg_test_err; } else { } { writel(save_val, (void volatile *)bp->regview + (unsigned long )offset); } goto ldv_54954; reg_test_err: { writel(save_val, (void volatile *)bp->regview + (unsigned long )offset); ret = -19; } goto ldv_54956; ldv_54954: i = i + 1; ldv_54958: ; if ((unsigned int )reg_tbl[i].offset != 65535U) { goto ldv_54957; } else { } ldv_54956: ; return (ret); } } static int bnx2_do_mem_test(struct bnx2 *bp , u32 start , u32 size ) { u32 test_pattern[6U] ; int i ; u32 offset ; u32 tmp ; { test_pattern[0] = 0U; test_pattern[1] = 4294967295U; test_pattern[2] = 1431655765U; test_pattern[3] = 2863311530U; test_pattern[4] = 2857740885U; test_pattern[5] = 1437226410U; i = 0; goto ldv_54971; ldv_54970: offset = 0U; goto ldv_54968; ldv_54967: { bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]); tmp = bnx2_reg_rd_ind(bp, start + offset); } if (tmp != test_pattern[i]) { return (-19); } else { } offset = offset + 4U; ldv_54968: ; if (offset < size) { goto ldv_54967; } else { } i = i + 1; ldv_54971: ; if ((unsigned int )i <= 5U) { goto ldv_54970; } else { } return (0); } } static int bnx2_test_memory(struct bnx2 *bp ) { int ret ; int i ; struct mem_entry mem_tbl_5706[7U] ; struct mem_entry mem_tbl_5709[6U] ; struct mem_entry *mem_tbl ; { ret = 0; mem_tbl_5706[0].offset = 393216U; mem_tbl_5706[0].len = 16384U; mem_tbl_5706[1].offset = 655360U; mem_tbl_5706[1].len = 12288U; mem_tbl_5706[2].offset = 917504U; mem_tbl_5706[2].len = 16384U; mem_tbl_5706[3].offset = 1179648U; mem_tbl_5706[3].len = 16384U; mem_tbl_5706[4].offset = 1703936U; mem_tbl_5706[4].len = 16384U; mem_tbl_5706[5].offset = 1441792U; mem_tbl_5706[5].len = 16384U; mem_tbl_5706[6].offset = 4294967295U; mem_tbl_5706[6].len = 0U; mem_tbl_5709[0].offset = 393216U; mem_tbl_5709[0].len = 16384U; mem_tbl_5709[1].offset = 655360U; mem_tbl_5709[1].len = 12288U; mem_tbl_5709[2].offset = 917504U; mem_tbl_5709[2].len = 16384U; mem_tbl_5709[3].offset = 1179648U; mem_tbl_5709[3].len = 16384U; mem_tbl_5709[4].offset = 1703936U; mem_tbl_5709[4].len = 16384U; mem_tbl_5709[5].offset = 4294967295U; mem_tbl_5709[5].len = 0U; if ((bp->chip_id & 4294901760U) == 1460207616U) { mem_tbl = (struct mem_entry *)(& mem_tbl_5709); } else { mem_tbl = (struct mem_entry *)(& mem_tbl_5706); } i = 0; goto ldv_54985; ldv_54984: { ret = bnx2_do_mem_test(bp, (mem_tbl + (unsigned long )i)->offset, (mem_tbl + (unsigned long )i)->len); } if (ret != 0) { return (ret); } else { } i = i + 1; ldv_54985: ; if ((mem_tbl + (unsigned long )i)->offset != 4294967295U) { goto ldv_54984; } else { } return (ret); } } static int bnx2_run_loopback(struct bnx2 *bp , int loopback_mode ) { unsigned int pkt_size ; unsigned int num_pkts ; unsigned int i ; struct sk_buff *skb ; u8 *data ; unsigned char *packet ; u16 rx_start_idx ; u16 rx_idx ; dma_addr_t map ; struct bnx2_tx_bd *txbd ; struct bnx2_sw_bd *rx_buf ; struct l2_fhdr *rx_hdr ; int ret ; struct bnx2_napi *bnapi ; struct bnx2_napi *tx_napi ; struct bnx2_tx_ring_info *txr ; struct bnx2_rx_ring_info *rxr ; unsigned int _min1 ; u32 _min2 ; int tmp ; u16 tmp___0 ; { ret = -19; bnapi = (struct bnx2_napi *)(& bp->bnx2_napi); txr = & bnapi->tx_ring; rxr = & bnapi->rx_ring; tx_napi = bnapi; txr = & tx_napi->tx_ring; rxr = & bnapi->rx_ring; if (loopback_mode == 0) { { bp->loopback = 1U; bnx2_set_mac_loopback(bp); } } else if (loopback_mode == 1) { if ((bp->phy_flags & 2048U) != 0U) { return (0); } else { } { bp->loopback = 2U; bnx2_set_phy_loopback(bp); } } else { return (-22); } { _min1 = (bp->dev)->mtu + 14U; _min2 = bp->rx_jumbo_thresh - 4U; pkt_size = _min1 < _min2 ? _min1 : _min2; skb = netdev_alloc_skb(bp->dev, pkt_size); } if ((unsigned long )skb == (unsigned long )((struct sk_buff *)0)) { return (-12); } else { } { packet = skb_put(skb, pkt_size); memcpy((void *)packet, (void const *)(bp->dev)->dev_addr, 6UL); memset((void *)packet + 6U, 0, 8UL); i = 14U; } goto ldv_55012; ldv_55011: *(packet + (unsigned long )i) = (unsigned char )i; i = i + 1U; ldv_55012: ; if (i < pkt_size) { goto ldv_55011; } else { } { map = dma_map_single_attrs(& (bp->pdev)->dev, (void *)skb->data, (size_t )pkt_size, 1, (struct dma_attrs *)0); tmp = dma_mapping_error(& (bp->pdev)->dev, map); } if (tmp != 0) { { consume_skb(skb); } return (-5); } else { } { writel(bp->hc_cmd | 131072U, (void volatile *)bp->regview + 26624U); readl((void const volatile *)bp->regview + 26624U); __const_udelay(21475UL); rx_start_idx = bnx2_get_hw_rx_cons(bnapi); num_pkts = 0U; txbd = txr->tx_desc_ring + ((unsigned long )txr->tx_prod & 255UL); txbd->tx_bd_haddr_hi = (u32 )(map >> 32); txbd->tx_bd_haddr_lo = (u32 )map; txbd->tx_bd_mss_nbytes = pkt_size; txbd->tx_bd_vlan_tag_flags = 192U; num_pkts = num_pkts + 1U; txr->tx_prod = ((unsigned long )txr->tx_prod & 254UL) == 254UL ? (unsigned int )txr->tx_prod + 2U : (unsigned int )txr->tx_prod + 1U; txr->tx_prod_bseq = txr->tx_prod_bseq + pkt_size; writew((int )txr->tx_prod, (void volatile *)bp->regview + (unsigned long )txr->tx_bidx_addr); writel(txr->tx_prod_bseq, (void volatile *)bp->regview + (unsigned long )txr->tx_bseq_addr); __const_udelay(429500UL); writel(bp->hc_cmd | 131072U, (void volatile *)bp->regview + 26624U); readl((void const volatile *)bp->regview + 26624U); __const_udelay(21475UL); dma_unmap_single_attrs(& (bp->pdev)->dev, map, (size_t )pkt_size, 1, (struct dma_attrs *)0); consume_skb(skb); tmp___0 = bnx2_get_hw_tx_cons(tx_napi); } if ((int )tmp___0 != (int )txr->tx_prod) { goto loopback_test_done; } else { } { rx_idx = bnx2_get_hw_rx_cons(bnapi); } if ((unsigned int )rx_idx != (unsigned int )rx_start_idx + num_pkts) { goto loopback_test_done; } else { } { rx_buf = rxr->rx_buf_ring + (unsigned long )rx_start_idx; data = rx_buf->data; rx_hdr = get_l2_fhdr(data); data = (u8 *)rx_hdr + 18UL; dma_sync_single_for_cpu(& (bp->pdev)->dev, rx_buf->mapping, (size_t )bp->rx_buf_use_size, 2); } if ((rx_hdr->l2_fhdr_status & 4063232U) != 0U) { goto loopback_test_done; } else { } if ((unsigned int )((int )rx_hdr->l2_fhdr_pkt_len + -4) != pkt_size) { goto loopback_test_done; } else { } i = 14U; goto ldv_55016; ldv_55015: ; if ((int )*(data + (unsigned long )i) != (int )((unsigned char )i)) { goto loopback_test_done; } else { } i = i + 1U; ldv_55016: ; if (i < pkt_size) { goto ldv_55015; } else { } ret = 0; loopback_test_done: bp->loopback = 0U; return (ret); } } static int bnx2_test_loopback(struct bnx2 *bp ) { int rc ; bool tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; { { rc = 0; tmp = netif_running((struct net_device const *)bp->dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (3); } else { } { bnx2_reset_nic(bp, 16777216U); ldv_spin_lock_bh_110(& bp->phy_lock); bnx2_init_phy(bp, 1); ldv_spin_unlock_bh_111(& bp->phy_lock); tmp___1 = bnx2_run_loopback(bp, 0); } if (tmp___1 != 0) { rc = rc | 1; } else { } { tmp___2 = bnx2_run_loopback(bp, 1); } if (tmp___2 != 0) { rc = rc | 2; } else { } return (rc); } } static int bnx2_test_nvram(struct bnx2 *bp ) { __be32 buf[128U] ; u8 *data ; int rc ; u32 magic ; u32 csum ; __u32 tmp ; { { data = (u8 *)(& buf); rc = 0; rc = bnx2_nvram_read(bp, 0U, data, 4); } if (rc != 0) { goto test_nvram_done; } else { } { tmp = __fswab32(buf[0]); magic = tmp; } if (magic != 1721324970U) { rc = -19; goto test_nvram_done; } else { } { rc = bnx2_nvram_read(bp, 256U, data, 512); } if (rc != 0) { goto test_nvram_done; } else { } { csum = crc32_le(4294967295U, (unsigned char const *)data, 256UL); } if (csum != 3736805603U) { rc = -19; goto test_nvram_done; } else { } { csum = crc32_le(4294967295U, (unsigned char const *)data + 256U, 256UL); } if (csum != 3736805603U) { rc = -19; } else { } test_nvram_done: ; return (rc); } } static int bnx2_test_link(struct bnx2 *bp ) { u32 bmsr ; bool tmp ; int tmp___0 ; { { tmp = netif_running((struct net_device const *)bp->dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-19); } else { } if ((bp->phy_flags & 2048U) != 0U) { if ((unsigned int )bp->link_up != 0U) { return (0); } else { } return (-19); } else { } { ldv_spin_lock_bh_110(& bp->phy_lock); bnx2_enable_bmsr1(bp); bnx2_read_phy(bp, bp->mii_bmsr1, & bmsr); bnx2_read_phy(bp, bp->mii_bmsr1, & bmsr); bnx2_disable_bmsr1(bp); ldv_spin_unlock_bh_111(& bp->phy_lock); } if ((bmsr & 4U) != 0U) { return (0); } else { } return (-19); } } static int bnx2_test_intr(struct bnx2 *bp ) { int i ; u16 status_idx ; bool tmp ; int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; { { tmp = netif_running((struct net_device const *)bp->dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return (-19); } else { } { tmp___1 = readl((void const volatile *)bp->regview + 132U); status_idx = (u16 )tmp___1; writel(bp->hc_cmd | 65536U, (void volatile *)bp->regview + 26624U); readl((void const volatile *)bp->regview + 26624U); i = 0; } goto ldv_55042; ldv_55041: { tmp___2 = readl((void const volatile *)bp->regview + 132U); } if ((tmp___2 & 65535U) != (unsigned int )status_idx) { goto ldv_55040; } else { } { msleep_interruptible(10U); i = i + 1; } ldv_55042: ; if (i <= 9) { goto ldv_55041; } else { } ldv_55040: ; if (i <= 9) { return (0); } else { } return (-19); } } static int bnx2_5706_serdes_has_link(struct bnx2 *bp ) { u32 mode_ctl ; u32 an_dbg ; u32 exp ; { if ((bp->phy_flags & 8192U) != 0U) { return (0); } else { } { bnx2_write_phy(bp, 28U, 31744U); bnx2_read_phy(bp, 28U, & mode_ctl); } if ((mode_ctl & 16U) == 0U) { return (0); } else { } { bnx2_write_phy(bp, 28U, 26624U); bnx2_read_phy(bp, 28U, & an_dbg); bnx2_read_phy(bp, 28U, & an_dbg); } if ((an_dbg & 258U) != 0U) { return (0); } else { } { bnx2_write_phy(bp, 23U, 3841U); bnx2_read_phy(bp, 21U, & exp); bnx2_read_phy(bp, 21U, & exp); } if ((exp & 32U) != 0U) { return (0); } else { } return (1); } } static void bnx2_5706_serdes_timer(struct bnx2 *bp ) { int check_link ; u32 bmcr ; int tmp ; u32 phy2 ; u32 bmcr___0 ; u32 val ; { { check_link = 1; ldv_spin_lock_125(& bp->phy_lock); } if ((unsigned int )bp->serdes_an_pending != 0U) { bp->serdes_an_pending = (u8 )((int )bp->serdes_an_pending - 1); check_link = 0; } else if ((unsigned int )bp->link_up == 0U && (int )bp->autoneg & 1) { { bp->current_interval = 250U; bnx2_read_phy(bp, bp->mii_bmcr, & bmcr); } if ((bmcr & 4096U) != 0U) { { tmp = bnx2_5706_serdes_has_link(bp); } if (tmp != 0) { { bmcr = bmcr & 4294963199U; bmcr = bmcr | 320U; bnx2_write_phy(bp, bp->mii_bmcr, bmcr); bp->phy_flags = bp->phy_flags | 4U; } } else { } } else { } } else if (((unsigned int )bp->link_up != 0U && (int )bp->autoneg & 1) && (bp->phy_flags & 4U) != 0U) { { bnx2_write_phy(bp, 23U, 3841U); bnx2_read_phy(bp, 21U, & phy2); } if ((phy2 & 32U) != 0U) { { bnx2_read_phy(bp, bp->mii_bmcr, & bmcr___0); bmcr___0 = bmcr___0 | 4096U; bnx2_write_phy(bp, bp->mii_bmcr, bmcr___0); bp->phy_flags = bp->phy_flags & 4294967291U; } } else { } } else { bp->current_interval = 250U; } if (check_link != 0) { { bnx2_write_phy(bp, 28U, 26624U); bnx2_read_phy(bp, 28U, & val); bnx2_read_phy(bp, 28U, & val); } if ((unsigned int )bp->link_up != 0U && (val & 2U) != 0U) { if ((bp->phy_flags & 4096U) == 0U) { { bnx2_5706s_force_link_dn(bp, 1); bp->phy_flags = bp->phy_flags | 4096U; } } else { { bnx2_set_link(bp); } } } else if ((unsigned int )bp->link_up == 0U && (val & 2U) == 0U) { { bnx2_set_link(bp); } } else { } } else { } { ldv_spin_unlock_126(& bp->phy_lock); } return; } } static void bnx2_5708_serdes_timer(struct bnx2 *bp ) { u32 bmcr ; { if ((bp->phy_flags & 2048U) != 0U) { return; } else { } if ((bp->phy_flags & 8U) == 0U) { bp->serdes_an_pending = 0U; return; } else { } { ldv_spin_lock_125(& bp->phy_lock); } if ((unsigned int )bp->serdes_an_pending != 0U) { bp->serdes_an_pending = (u8 )((int )bp->serdes_an_pending - 1); } else if ((unsigned int )bp->link_up == 0U && (int )bp->autoneg & 1) { { bnx2_read_phy(bp, bp->mii_bmcr, & bmcr); } if ((bmcr & 4096U) != 0U) { { bnx2_enable_forced_2g5(bp); bp->current_interval = 25U; } } else { { bnx2_disable_forced_2g5(bp); bp->serdes_an_pending = 2U; bp->current_interval = 250U; } } } else { bp->current_interval = 250U; } { ldv_spin_unlock_126(& bp->phy_lock); } return; } } static void bnx2_timer(unsigned long data ) { struct bnx2 *bp ; bool tmp ; int tmp___0 ; int tmp___1 ; { { bp = (struct bnx2 *)data; tmp = netif_running((struct net_device const *)bp->dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { return; } else { } { tmp___1 = atomic_read((atomic_t const *)(& bp->intr_sem)); } if (tmp___1 != 0) { goto bnx2_restart_timer; } else { } if ((bp->flags & 288U) == 32U) { { bnx2_chk_missed_msi(bp); } } else { } { bnx2_send_heart_beat(bp); (bp->stats_blk)->stat_FwRxDrop = bnx2_reg_rd_ind(bp, 1179780U); } if ((bp->flags & 8192U) != 0U && bp->stats_ticks != 0U) { { writel(bp->hc_cmd | 262144U, (void volatile *)bp->regview + 26624U); } } else { } if ((int )bp->phy_flags & 1) { if ((bp->chip_id & 4294901760U) == 1460011008U) { { bnx2_5706_serdes_timer(bp); } } else { { bnx2_5708_serdes_timer(bp); } } } else { } bnx2_restart_timer: { ldv_mod_timer_143(& bp->timer, (unsigned long )jiffies + (unsigned long )bp->current_interval); } return; } } static int bnx2_request_irq(struct bnx2 *bp ) { unsigned long flags ; struct bnx2_irq *irq ; int rc ; int i ; { rc = 0; if ((bp->flags & 1056U) != 0U) { flags = 0UL; } else { flags = 128UL; } i = 0; goto ldv_55075; ldv_55074: { irq = (struct bnx2_irq *)(& bp->irq_tbl) + (unsigned long )i; rc = ldv_request_irq_144(irq->vector, irq->handler, flags, (char const *)(& irq->name), (void *)(& bp->bnx2_napi) + (unsigned long )i); } if (rc != 0) { goto ldv_55073; } else { } irq->requested = 1U; i = i + 1; ldv_55075: ; if (i < bp->irq_nvecs) { goto ldv_55074; } else { } ldv_55073: ; return (rc); } } static void __bnx2_free_irq(struct bnx2 *bp ) { struct bnx2_irq *irq ; int i ; { i = 0; goto ldv_55082; ldv_55081: irq = (struct bnx2_irq *)(& bp->irq_tbl) + (unsigned long )i; if ((unsigned int )irq->requested != 0U) { { ldv_free_irq_145(irq->vector, (void *)(& bp->bnx2_napi) + (unsigned long )i); } } else { } irq->requested = 0U; i = i + 1; ldv_55082: ; if (i < bp->irq_nvecs) { goto ldv_55081; } else { } return; } } static void bnx2_free_irq(struct bnx2 *bp ) { { { __bnx2_free_irq(bp); } if ((bp->flags & 32U) != 0U) { { pci_disable_msi(bp->pdev); } } else if ((bp->flags & 1024U) != 0U) { { pci_disable_msix(bp->pdev); } } else { } bp->flags = bp->flags & 4294965983U; return; } } static void bnx2_enable_msix(struct bnx2 *bp , int msix_vecs ) { int i ; int total_vecs ; int rc ; struct msix_entry msix_ent[9U] ; struct net_device *dev ; int len ; { { dev = bp->dev; len = 18; bnx2_setup_msix_tbl(bp); writel(8U, (void volatile *)bp->regview + 1216U); writel(49152U, (void volatile *)bp->regview + 1220U); writel(57344U, (void volatile *)bp->regview + 1224U); readl((void const volatile *)bp->regview + 1216U); i = 0; } goto ldv_55098; ldv_55097: msix_ent[i].entry = (u16 )i; msix_ent[i].vector = 0U; i = i + 1; ldv_55098: ; if (i <= 8) { goto ldv_55097; } else { } total_vecs = msix_vecs; total_vecs = total_vecs + 1; rc = -28; goto ldv_55102; ldv_55101: { rc = pci_enable_msix(bp->pdev, (struct msix_entry *)(& msix_ent), total_vecs); } if (rc <= 0) { goto ldv_55100; } else { } if (rc > 0) { total_vecs = rc; } else { } ldv_55102: ; if (total_vecs > 1) { goto ldv_55101; } else { } ldv_55100: ; if (rc != 0) { return; } else { } msix_vecs = total_vecs; msix_vecs = msix_vecs - 1; bp->irq_nvecs = msix_vecs; bp->flags = bp->flags | 1280U; i = 0; goto ldv_55104; ldv_55103: { bp->irq_tbl[i].vector = msix_ent[i].vector; snprintf((char *)(& bp->irq_tbl[i].name), (size_t )len, "%s-%d", (char *)(& dev->name), i); bp->irq_tbl[i].handler = & bnx2_msi_1shot; i = i + 1; } ldv_55104: ; if (i < total_vecs) { goto ldv_55103; } else { } return; } } static int bnx2_setup_int_mode(struct bnx2 *bp , int dis_msi ) { int cpus ; int tmp ; int msix_vecs ; int _max1 ; int _max2 ; int _max1___0 ; int _max2___0 ; int _max1___1 ; int _max2___1 ; int _min1 ; int _min2 ; int tmp___0 ; unsigned long tmp___69 ; int _min1___0 ; int _min2___0 ; int _min1___1 ; int _min2___1 ; int tmp___70 ; { { tmp = netif_get_num_default_rss_queues(); cpus = tmp; } if (bp->num_req_rx_rings == 0) { _max1 = cpus + 1; _max2 = bp->num_req_tx_rings; msix_vecs = _max1 > _max2 ? _max1 : _max2; } else if (bp->num_req_tx_rings == 0) { _max1___0 = cpus; _max2___0 = bp->num_req_rx_rings; msix_vecs = _max1___0 > _max2___0 ? _max1___0 : _max2___0; } else { _max1___1 = bp->num_req_rx_rings; _max2___1 = bp->num_req_tx_rings; msix_vecs = _max1___1 > _max2___1 ? _max1___1 : _max2___1; } { _min1 = msix_vecs; _min2 = 8; msix_vecs = _min1 < _min2 ? _min1 : _min2; bp->irq_tbl[0].handler = & bnx2_interrupt; strcpy((char *)(& bp->irq_tbl[0].name), (char const *)(& (bp->dev)->name)); bp->irq_nvecs = 1; bp->irq_tbl[0].vector = (bp->pdev)->irq; } if ((bp->flags & 4U) != 0U && dis_msi == 0) { { bnx2_enable_msix(bp, msix_vecs); } } else { } if (((bp->flags & 128U) != 0U && dis_msi == 0) && (bp->flags & 1024U) == 0U) { { tmp___0 = pci_enable_msi_block(bp->pdev, 1); } if (tmp___0 == 0) { bp->flags = bp->flags | 32U; if ((bp->chip_id & 4294901760U) == 1460207616U) { bp->flags = bp->flags | 256U; bp->irq_tbl[0].handler = & bnx2_msi_1shot; } else { bp->irq_tbl[0].handler = & bnx2_msi; } bp->irq_tbl[0].vector = (bp->pdev)->irq; } else { } } else { } if (bp->num_req_tx_rings == 0) { { tmp___69 = __rounddown_pow_of_two((unsigned long )bp->irq_nvecs); bp->num_tx_rings = (u8 )tmp___69; } } else { _min1___0 = bp->irq_nvecs; _min2___0 = bp->num_req_tx_rings; bp->num_tx_rings = (u8 )(_min1___0 < _min2___0 ? _min1___0 : _min2___0); } if (bp->num_req_rx_rings == 0) { bp->num_rx_rings = (u8 )bp->irq_nvecs; } else { _min1___1 = bp->irq_nvecs; _min2___1 = bp->num_req_rx_rings; bp->num_rx_rings = (u8 )(_min1___1 < _min2___1 ? _min1___1 : _min2___1); } { netif_set_real_num_tx_queues(bp->dev, (unsigned int )bp->num_tx_rings); tmp___70 = netif_set_real_num_rx_queues(bp->dev, (unsigned int )bp->num_rx_rings); } return (tmp___70); } } static int bnx2_open(struct net_device *dev ) { struct bnx2 *bp ; void *tmp ; int rc ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; rc = bnx2_request_firmware(bp); } if (rc < 0) { goto out; } else { } { netif_carrier_off(dev); bnx2_disable_int(bp); rc = bnx2_setup_int_mode(bp, disable_msi); } if (rc != 0) { goto open_err; } else { } { bnx2_init_napi(bp); bnx2_napi_enable(bp); rc = bnx2_alloc_mem(bp); } if (rc != 0) { goto open_err; } else { } { rc = bnx2_request_irq(bp); } if (rc != 0) { goto open_err; } else { } { rc = bnx2_init_nic(bp, 1); } if (rc != 0) { goto open_err; } else { } { ldv_mod_timer_146(& bp->timer, (unsigned long )jiffies + (unsigned long )bp->current_interval); atomic_set(& bp->intr_sem, 0); memset((void *)bp->temp_stats_blk, 0, 324UL); bnx2_enable_int(bp); } if ((bp->flags & 32U) != 0U) { { tmp___0 = bnx2_test_intr(bp); } if (tmp___0 != 0) { { netdev_warn((struct net_device const *)bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n"); bnx2_disable_int(bp); bnx2_free_irq(bp); bnx2_setup_int_mode(bp, 1); rc = bnx2_init_nic(bp, 0); } if (rc == 0) { { rc = bnx2_request_irq(bp); } } else { } if (rc != 0) { { ldv_del_timer_sync_147(& bp->timer); } goto open_err; } else { } { bnx2_enable_int(bp); } } else { } } else { } if ((bp->flags & 32U) != 0U) { { netdev_info((struct net_device const *)dev, "using MSI\n"); } } else if ((bp->flags & 1024U) != 0U) { { netdev_info((struct net_device const *)dev, "using MSIX\n"); } } else { } { netif_tx_start_all_queues(dev); } out: ; return (rc); open_err: { bnx2_napi_disable(bp); bnx2_free_skbs(bp); bnx2_free_irq(bp); bnx2_free_mem(bp); bnx2_del_napi(bp); bnx2_release_firmware(bp); } goto out; } } static void bnx2_reset_task(struct work_struct *work ) { struct bnx2 *bp ; struct work_struct const *__mptr ; int rc ; u16 pcicmd ; bool tmp ; int tmp___0 ; { { __mptr = (struct work_struct const *)work; bp = (struct bnx2 *)__mptr + 0xffffffffffffdd48UL; rtnl_lock(); tmp = netif_running((struct net_device const *)bp->dev); } if (tmp) { tmp___0 = 0; } else { tmp___0 = 1; } if (tmp___0) { { rtnl_unlock(); } return; } else { } { bnx2_netif_stop(bp, 1); pci_read_config_word((struct pci_dev const *)bp->pdev, 4, & pcicmd); } if (((int )pcicmd & 2) == 0) { { pci_restore_state(bp->pdev); pci_save_state(bp->pdev); } } else { } { rc = bnx2_init_nic(bp, 1); } if (rc != 0) { { netdev_err((struct net_device const *)bp->dev, "failed to reset NIC, closing\n"); bnx2_napi_enable(bp); dev_close(bp->dev); rtnl_unlock(); } return; } else { } { atomic_set(& bp->intr_sem, 1); bnx2_netif_start(bp, 1); rtnl_unlock(); } return; } } static void bnx2_dump_ftq(struct bnx2 *bp ) { int i ; u32 reg ; u32 bdidx ; u32 cid ; u32 valid ; struct net_device *dev ; struct ftq_reg ftq_arr[14U] ; u32 tmp ; u32 tmp___0 ; u32 tmp___1 ; u32 tmp___2 ; u32 tmp___3 ; u32 tmp___4 ; u32 tmp___5 ; unsigned int tmp___6 ; int j ; unsigned int tmp___7 ; { { dev = bp->dev; ftq_arr[0].name = (char *)"RV2P_PFTQ_CTL"; ftq_arr[0].off = 11132U; ftq_arr[1].name = (char *)"RV2P_TFTQ_CTL"; ftq_arr[1].off = 11196U; ftq_arr[2].name = (char *)"RV2P_MFTQ_CTL"; ftq_arr[2].off = 11260U; ftq_arr[3].name = (char *)"TBDR_FTQ_CTL"; ftq_arr[3].off = 21500U; ftq_arr[4].name = (char *)"TDMA_FTQ_CTL"; ftq_arr[4].off = 24572U; ftq_arr[5].name = (char *)"TXP_FTQ_CTL"; ftq_arr[5].off = 283644U; ftq_arr[6].name = (char *)"TXP_FTQ_CTL"; ftq_arr[6].off = 283644U; ftq_arr[7].name = (char *)"TPAT_FTQ_CTL"; ftq_arr[7].off = 545788U; ftq_arr[8].name = (char *)"RXP_CFTQ_CTL"; ftq_arr[8].off = 807868U; ftq_arr[9].name = (char *)"RXP_FTQ_CTL"; ftq_arr[9].off = 807932U; ftq_arr[10].name = (char *)"COM_COMXQ_FTQ_CTL"; ftq_arr[10].off = 1069948U; ftq_arr[11].name = (char *)"COM_COMTQ_FTQ_CTL"; ftq_arr[11].off = 1070012U; ftq_arr[12].name = (char *)"COM_COMQ_FTQ_CTL"; ftq_arr[12].off = 1070076U; ftq_arr[13].name = (char *)"CP_CPQ_FTQ_CTL"; ftq_arr[13].off = 1594364U; netdev_err((struct net_device const *)dev, "<--- start FTQ dump --->\n"); i = 0; } goto ldv_55161; ldv_55160: { tmp = bnx2_reg_rd_ind(bp, ftq_arr[i].off); netdev_err((struct net_device const *)dev, "%s %08x\n", ftq_arr[i].name, tmp); i = i + 1; } ldv_55161: ; if ((unsigned int )i <= 13U) { goto ldv_55160; } else { } { netdev_err((struct net_device const *)dev, "CPU states:\n"); reg = 282624U; } goto ldv_55164; ldv_55163: { tmp___0 = bnx2_reg_rd_ind(bp, reg + 32U); tmp___1 = bnx2_reg_rd_ind(bp, reg + 28U); tmp___2 = bnx2_reg_rd_ind(bp, reg + 28U); tmp___3 = bnx2_reg_rd_ind(bp, reg + 8U); tmp___4 = bnx2_reg_rd_ind(bp, reg + 4U); tmp___5 = bnx2_reg_rd_ind(bp, reg); netdev_err((struct net_device const *)dev, "%06x mode %x state %x evt_mask %x pc %x pc %x instr %x\n", reg, tmp___5, tmp___4, tmp___3, tmp___2, tmp___1, tmp___0); reg = reg + 262144U; } ldv_55164: ; if (reg <= 1593344U) { goto ldv_55163; } else { } { netdev_err((struct net_device const *)dev, "<--- end FTQ dump --->\n"); netdev_err((struct net_device const *)dev, "<--- start TBDC dump --->\n"); tmp___6 = readl((void const volatile *)bp->regview + 21508U); netdev_err((struct net_device const *)dev, "TBDC free cnt: %ld\n", (unsigned long )tmp___6 & 63UL); netdev_err((struct net_device const *)dev, "LINE CID BIDX CMD VALIDS\n"); i = 0; } goto ldv_55171; ldv_55170: { j = 0; writel((unsigned int )i, (void volatile *)bp->regview + 21540U); writel(5U, (void volatile *)bp->regview + 21556U); writel(8U, (void volatile *)bp->regview + 21504U); } goto ldv_55168; ldv_55167: j = j + 1; ldv_55168: { tmp___7 = readl((void const volatile *)bp->regview + 21504U); } if (((unsigned long )tmp___7 & 8UL) != 0UL && j <= 99) { goto ldv_55167; } else { } { cid = readl((void const volatile *)bp->regview + 21552U); bdidx = readl((void const volatile *)bp->regview + 21548U); valid = readl((void const volatile *)bp->regview + 21556U); netdev_err((struct net_device const *)dev, "%02x %06x %04lx %02x [%x]\n", i, cid, (unsigned long )bdidx & 65535UL, bdidx >> 24, (valid >> 8) & 255U); i = i + 1; } ldv_55171: ; if (i <= 31) { goto ldv_55170; } else { } { netdev_err((struct net_device const *)dev, "<--- end TBDC dump --->\n"); } return; } } static void bnx2_dump_state(struct bnx2 *bp ) { struct net_device *dev ; u32 val1 ; u32 val2 ; int tmp ; unsigned int tmp___0 ; unsigned int tmp___1 ; unsigned int tmp___2 ; unsigned int tmp___3 ; unsigned int tmp___4 ; { { dev = bp->dev; pci_read_config_dword((struct pci_dev const *)bp->pdev, 4, & val1); tmp = atomic_read((atomic_t const *)(& bp->intr_sem)); netdev_err((struct net_device const *)dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n", tmp, val1); pci_read_config_dword((struct pci_dev const *)bp->pdev, bp->pm_cap + 4, & val1); pci_read_config_dword((struct pci_dev const *)bp->pdev, 104, & val2); netdev_err((struct net_device const *)dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2); tmp___0 = readl((void const volatile *)bp->regview + 5324U); tmp___1 = readl((void const volatile *)bp->regview + 5312U); netdev_err((struct net_device const *)dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n", tmp___1, tmp___0); tmp___2 = readl((void const volatile *)bp->regview + 6156U); netdev_err((struct net_device const *)dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n", tmp___2); tmp___3 = readl((void const volatile *)bp->regview + 26696U); netdev_err((struct net_device const *)dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n", tmp___3); } if ((bp->flags & 1024U) != 0U) { { tmp___4 = readl((void const volatile *)bp->regview + 57344U); netdev_err((struct net_device const *)dev, "DEBUG: PBA[%08x]\n", tmp___4); } } else { } return; } } static void bnx2_tx_timeout(struct net_device *dev ) { struct bnx2 *bp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; bnx2_dump_ftq(bp); bnx2_dump_state(bp); bnx2_dump_mcp_state(bp); schedule_work(& bp->reset_task); } return; } } static netdev_tx_t bnx2_start_xmit(struct sk_buff *skb , struct net_device *dev ) { struct bnx2 *bp ; void *tmp ; dma_addr_t mapping ; struct bnx2_tx_bd *txbd ; struct bnx2_sw_tx_bd *tx_buf ; u32 len ; u32 vlan_tag_flags ; u32 last_frag ; u32 mss ; u16 prod ; u16 ring_prod ; int i ; struct bnx2_napi *bnapi ; struct bnx2_tx_ring_info *txr ; struct netdev_queue *txq ; u16 tmp___0 ; u32 tmp___1 ; unsigned char *tmp___2 ; long tmp___3 ; u32 tcp_opt_len ; struct iphdr *iph ; u32 tcp_off ; int tmp___4 ; long tmp___5 ; unsigned char *tmp___6 ; unsigned char *tmp___7 ; int tmp___8 ; unsigned char *tmp___9 ; bool tmp___10 ; skb_frag_t const *frag ; unsigned char *tmp___11 ; int tmp___12 ; u32 tmp___13 ; u32 tmp___14 ; long tmp___15 ; unsigned int tmp___16 ; unsigned char *tmp___17 ; unsigned int tmp___18 ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; tmp___0 = skb_get_queue_mapping((struct sk_buff const *)skb); i = (int )tmp___0; bnapi = (struct bnx2_napi *)(& bp->bnx2_napi) + (unsigned long )i; txr = & bnapi->tx_ring; txq = netdev_get_tx_queue((struct net_device const *)dev, (unsigned int )i); tmp___1 = bnx2_tx_avail(bp, txr); tmp___2 = skb_end_pointer((struct sk_buff const *)skb); tmp___3 = ldv__builtin_expect(tmp___1 < (u32 )((int )((struct skb_shared_info *)tmp___2)->nr_frags + 1), 0L); } if (tmp___3 != 0L) { { netif_tx_stop_queue(txq); netdev_err((struct net_device const *)dev, "BUG! Tx ring full when queue awake!\n"); } return (16); } else { } { len = skb_headlen((struct sk_buff const *)skb); prod = txr->tx_prod; ring_prod = (unsigned int )prod & 255U; vlan_tag_flags = 0U; } if ((unsigned int )*((unsigned char *)skb + 124UL) == 12U) { vlan_tag_flags = vlan_tag_flags | 2U; } else { } if (((int )skb->vlan_tci & 4096) != 0) { vlan_tag_flags = (vlan_tag_flags | (u32 )(((int )skb->vlan_tci & -4097) << 16)) | 8U; } else { } { tmp___7 = skb_end_pointer((struct sk_buff const *)skb); mss = (u32 )((struct skb_shared_info *)tmp___7)->gso_size; } if (mss != 0U) { { vlan_tag_flags = vlan_tag_flags | 32768U; tcp_opt_len = tcp_optlen((struct sk_buff const *)skb); tmp___6 = skb_end_pointer((struct sk_buff const *)skb); } if (((int )((struct skb_shared_info *)tmp___6)->gso_type & 16) != 0) { { tmp___4 = skb_transport_offset((struct sk_buff const *)skb); tcp_off = (u32 )tmp___4 - 54U; vlan_tag_flags = (vlan_tag_flags | ((tcp_opt_len >> 2) << 8)) | 8192U; tmp___5 = ldv__builtin_expect(tcp_off == 0U, 1L); } if (tmp___5 != 0L) { vlan_tag_flags = vlan_tag_flags & 4294967289U; } else { tcp_off = tcp_off >> 3; vlan_tag_flags = vlan_tag_flags | (((tcp_off & 3U) << 1) | ((tcp_off & 16U) << 12)); mss = mss | ((tcp_off & 12U) << 14); } } else { { iph = ip_hdr((struct sk_buff const *)skb); } if (tcp_opt_len != 0U || (int )iph->ihl > 5) { vlan_tag_flags = vlan_tag_flags | ((((u32 )iph->ihl + (tcp_opt_len >> 2)) + 4294967291U) << 8); } else { } } } else { mss = 0U; } { mapping = dma_map_single_attrs(& (bp->pdev)->dev, (void *)skb->data, (size_t )len, 1, (struct dma_attrs *)0); tmp___8 = dma_mapping_error(& (bp->pdev)->dev, mapping); } if (tmp___8 != 0) { { consume_skb(skb); } return (0); } else { } { tx_buf = txr->tx_buf_ring + (unsigned long )ring_prod; tx_buf->skb = skb; tx_buf->mapping = mapping; txbd = txr->tx_desc_ring + (unsigned long )ring_prod; txbd->tx_bd_haddr_hi = (u32 )(mapping >> 32); txbd->tx_bd_haddr_lo = (u32 )mapping; txbd->tx_bd_mss_nbytes = len | (mss << 16); txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | 128U; tmp___9 = skb_end_pointer((struct sk_buff const *)skb); last_frag = (u32 )((struct skb_shared_info *)tmp___9)->nr_frags; tx_buf->nr_frags = (unsigned short )last_frag; tmp___10 = skb_is_gso((struct sk_buff const *)skb); tx_buf->is_gso = (unsigned short )tmp___10; i = 0; } goto ldv_55207; ldv_55206: { tmp___11 = skb_end_pointer((struct sk_buff const *)skb); frag = (skb_frag_t const *)(& ((struct skb_shared_info *)tmp___11)->frags) + (unsigned long )i; prod = ((unsigned long )prod & 254UL) == 254UL ? (unsigned int )prod + 2U : (unsigned int )prod + 1U; ring_prod = (unsigned int )prod & 255U; txbd = txr->tx_desc_ring + (unsigned long )ring_prod; len = skb_frag_size(frag); mapping = skb_frag_dma_map(& (bp->pdev)->dev, frag, 0UL, (size_t )len, 1); tmp___12 = dma_mapping_error(& (bp->pdev)->dev, mapping); } if (tmp___12 != 0) { goto dma_error; } else { } (txr->tx_buf_ring + (unsigned long )ring_prod)->mapping = mapping; txbd->tx_bd_haddr_hi = (u32 )(mapping >> 32); txbd->tx_bd_haddr_lo = (u32 )mapping; txbd->tx_bd_mss_nbytes = len | (mss << 16); txbd->tx_bd_vlan_tag_flags = vlan_tag_flags; i = i + 1; ldv_55207: ; if ((u32 )i < last_frag) { goto ldv_55206; } else { } { txbd->tx_bd_vlan_tag_flags = txbd->tx_bd_vlan_tag_flags | 64U; __asm__ volatile ("sfence": : : "memory"); netdev_tx_sent_queue(txq, skb->len); prod = ((unsigned long )prod & 254UL) == 254UL ? (unsigned int )prod + 2U : (unsigned int )prod + 1U; txr->tx_prod_bseq = txr->tx_prod_bseq + skb->len; writew((int )prod, (void volatile *)bp->regview + (unsigned long )txr->tx_bidx_addr); writel(txr->tx_prod_bseq, (void volatile *)bp->regview + (unsigned long )txr->tx_bseq_addr); __asm__ volatile ("": : : "memory"); txr->tx_prod = prod; tmp___14 = bnx2_tx_avail(bp, txr); tmp___15 = ldv__builtin_expect(tmp___14 <= 17U, 0L); } if (tmp___15 != 0L) { { netif_tx_stop_queue(txq); __asm__ volatile ("mfence": : : "memory"); tmp___13 = bnx2_tx_avail(bp, txr); } if (tmp___13 > bp->tx_wake_thresh) { { netif_tx_wake_queue(txq); } } else { } } else { } return (0); dma_error: { last_frag = (u32 )i; prod = txr->tx_prod; ring_prod = (unsigned int )prod & 255U; tx_buf = txr->tx_buf_ring + (unsigned long )ring_prod; tx_buf->skb = (struct sk_buff *)0; tmp___16 = skb_headlen((struct sk_buff const *)skb); dma_unmap_single_attrs(& (bp->pdev)->dev, tx_buf->mapping, (size_t )tmp___16, 1, (struct dma_attrs *)0); i = 0; } goto ldv_55210; ldv_55209: { prod = ((unsigned long )prod & 254UL) == 254UL ? (unsigned int )prod + 2U : (unsigned int )prod + 1U; ring_prod = (unsigned int )prod & 255U; tx_buf = txr->tx_buf_ring + (unsigned long )ring_prod; tmp___17 = skb_end_pointer((struct sk_buff const *)skb); tmp___18 = skb_frag_size((skb_frag_t const *)(& ((struct skb_shared_info *)tmp___17)->frags) + (unsigned long )i); dma_unmap_page(& (bp->pdev)->dev, tx_buf->mapping, (size_t )tmp___18, 1); i = i + 1; } ldv_55210: ; if ((u32 )i < last_frag) { goto ldv_55209; } else { } { consume_skb(skb); } return (0); } } static int bnx2_close(struct net_device *dev ) { struct bnx2 *bp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; bnx2_disable_int_sync(bp); bnx2_napi_disable(bp); netif_tx_disable(dev); ldv_del_timer_sync_148(& bp->timer); bnx2_shutdown_chip(bp); bnx2_free_irq(bp); bnx2_free_skbs(bp); bnx2_free_mem(bp); bnx2_del_napi(bp); bp->link_up = 0U; netif_carrier_off(bp->dev); } return (0); } } static void bnx2_save_stats(struct bnx2 *bp ) { u32 *hw_stats ; u32 *temp_stats ; int i ; u32 hi ; u64 lo ; { hw_stats = (u32 *)bp->stats_blk; temp_stats = (u32 *)bp->temp_stats_blk; i = 0; goto ldv_55225; ldv_55224: hi = *(temp_stats + (unsigned long )i) + *(hw_stats + (unsigned long )i); lo = (unsigned long long )*(temp_stats + ((unsigned long )i + 1UL)) + (unsigned long long )*(hw_stats + ((unsigned long )i + 1UL)); if (lo > 4294967295ULL) { hi = hi + 1U; } else { } *(temp_stats + (unsigned long )i) = hi; *(temp_stats + ((unsigned long )i + 1UL)) = (u32 )lo; i = i + 2; ldv_55225: ; if (i <= 19) { goto ldv_55224; } else { } goto ldv_55228; ldv_55227: *(temp_stats + (unsigned long )i) = *(temp_stats + (unsigned long )i) + *(hw_stats + (unsigned long )i); i = i + 1; ldv_55228: ; if ((unsigned int )i <= 80U) { goto ldv_55227; } else { } return; } } static struct rtnl_link_stats64 *bnx2_get_stats64(struct net_device *dev , struct rtnl_link_stats64 *net_stats ) { struct bnx2 *bp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; } if ((unsigned long )bp->stats_blk == (unsigned long )((struct statistics_block *)0)) { return (net_stats); } else { } net_stats->rx_packets = (((((((unsigned long long )(bp->stats_blk)->stat_IfHCInUcastPkts_hi << 32) + (unsigned long long )(bp->stats_blk)->stat_IfHCInUcastPkts_lo) + (((unsigned long long )(bp->temp_stats_blk)->stat_IfHCInUcastPkts_hi << 32) + (unsigned long long )(bp->temp_stats_blk)->stat_IfHCInUcastPkts_lo)) + (((unsigned long long )(bp->stats_blk)->stat_IfHCInMulticastPkts_hi << 32) + (unsigned long long )(bp->stats_blk)->stat_IfHCInMulticastPkts_lo)) + (((unsigned long long )(bp->temp_stats_blk)->stat_IfHCInMulticastPkts_hi << 32) + (unsigned long long )(bp->temp_stats_blk)->stat_IfHCInMulticastPkts_lo)) + (((unsigned long long )(bp->stats_blk)->stat_IfHCInBroadcastPkts_hi << 32) + (unsigned long long )(bp->stats_blk)->stat_IfHCInBroadcastPkts_lo)) + (((unsigned long long )(bp->temp_stats_blk)->stat_IfHCInBroadcastPkts_hi << 32) + (unsigned long long )(bp->temp_stats_blk)->stat_IfHCInBroadcastPkts_lo); net_stats->tx_packets = (((((((unsigned long long )(bp->stats_blk)->stat_IfHCOutUcastPkts_hi << 32) + (unsigned long long )(bp->stats_blk)->stat_IfHCOutUcastPkts_lo) + (((unsigned long long )(bp->temp_stats_blk)->stat_IfHCOutUcastPkts_hi << 32) + (unsigned long long )(bp->temp_stats_blk)->stat_IfHCOutUcastPkts_lo)) + (((unsigned long long )(bp->stats_blk)->stat_IfHCOutMulticastPkts_hi << 32) + (unsigned long long )(bp->stats_blk)->stat_IfHCOutMulticastPkts_lo)) + (((unsigned long long )(bp->temp_stats_blk)->stat_IfHCOutMulticastPkts_hi << 32) + (unsigned long long )(bp->temp_stats_blk)->stat_IfHCOutMulticastPkts_lo)) + (((unsigned long long )(bp->stats_blk)->stat_IfHCOutBroadcastPkts_hi << 32) + (unsigned long long )(bp->stats_blk)->stat_IfHCOutBroadcastPkts_lo)) + (((unsigned long long )(bp->temp_stats_blk)->stat_IfHCOutBroadcastPkts_hi << 32) + (unsigned long long )(bp->temp_stats_blk)->stat_IfHCOutBroadcastPkts_lo); net_stats->rx_bytes = (((unsigned long long )(bp->stats_blk)->stat_IfHCInOctets_hi << 32) + (unsigned long long )(bp->stats_blk)->stat_IfHCInOctets_lo) + (((unsigned long long )(bp->temp_stats_blk)->stat_IfHCInOctets_hi << 32) + (unsigned long long )(bp->temp_stats_blk)->stat_IfHCInOctets_lo); net_stats->tx_bytes = (((unsigned long long )(bp->stats_blk)->stat_IfHCOutOctets_hi << 32) + (unsigned long long )(bp->stats_blk)->stat_IfHCOutOctets_lo) + (((unsigned long long )(bp->temp_stats_blk)->stat_IfHCOutOctets_hi << 32) + (unsigned long long )(bp->temp_stats_blk)->stat_IfHCOutOctets_lo); net_stats->multicast = (((unsigned long long )(bp->stats_blk)->stat_IfHCInMulticastPkts_hi << 32) + (unsigned long long )(bp->stats_blk)->stat_IfHCInMulticastPkts_lo) + (((unsigned long long )(bp->temp_stats_blk)->stat_IfHCInMulticastPkts_hi << 32) + (unsigned long long )(bp->temp_stats_blk)->stat_IfHCInMulticastPkts_lo); net_stats->collisions = (__u64 )((bp->stats_blk)->stat_EtherStatsCollisions + (bp->temp_stats_blk)->stat_EtherStatsCollisions); net_stats->rx_length_errors = (__u64 )((unsigned long )((bp->stats_blk)->stat_EtherStatsUndersizePkts + (bp->temp_stats_blk)->stat_EtherStatsUndersizePkts) + (unsigned long )((bp->stats_blk)->stat_EtherStatsOverrsizePkts + (bp->temp_stats_blk)->stat_EtherStatsOverrsizePkts)); net_stats->rx_over_errors = (__u64 )((unsigned long )((bp->stats_blk)->stat_IfInFTQDiscards + (bp->temp_stats_blk)->stat_IfInFTQDiscards) + (unsigned long )((bp->stats_blk)->stat_IfInMBUFDiscards + (bp->temp_stats_blk)->stat_IfInMBUFDiscards)); net_stats->rx_frame_errors = (__u64 )((bp->stats_blk)->stat_Dot3StatsAlignmentErrors + (bp->temp_stats_blk)->stat_Dot3StatsAlignmentErrors); net_stats->rx_crc_errors = (__u64 )((bp->stats_blk)->stat_Dot3StatsFCSErrors + (bp->temp_stats_blk)->stat_Dot3StatsFCSErrors); net_stats->rx_errors = ((net_stats->rx_length_errors + net_stats->rx_over_errors) + net_stats->rx_frame_errors) + net_stats->rx_crc_errors; net_stats->tx_aborted_errors = (__u64 )((unsigned long )((bp->stats_blk)->stat_Dot3StatsExcessiveCollisions + (bp->temp_stats_blk)->stat_Dot3StatsExcessiveCollisions) + (unsigned long )((bp->stats_blk)->stat_Dot3StatsLateCollisions + (bp->temp_stats_blk)->stat_Dot3StatsLateCollisions)); if ((bp->chip_id & 4294901760U) == 1460011008U || (bp->chip_id & 4294967280U) == 1460142080U) { net_stats->tx_carrier_errors = 0ULL; } else { net_stats->tx_carrier_errors = (__u64 )((bp->stats_blk)->stat_Dot3StatsCarrierSenseErrors + (bp->temp_stats_blk)->stat_Dot3StatsCarrierSenseErrors); } net_stats->tx_errors = ((unsigned long long )((bp->stats_blk)->stat_emac_tx_stat_dot3statsinternalmactransmiterrors + (bp->temp_stats_blk)->stat_emac_tx_stat_dot3statsinternalmactransmiterrors) + net_stats->tx_aborted_errors) + net_stats->tx_carrier_errors; net_stats->rx_missed_errors = (__u64 )(((unsigned long )((bp->stats_blk)->stat_IfInFTQDiscards + (bp->temp_stats_blk)->stat_IfInFTQDiscards) + (unsigned long )((bp->stats_blk)->stat_IfInMBUFDiscards + (bp->temp_stats_blk)->stat_IfInMBUFDiscards)) + (unsigned long )((bp->stats_blk)->stat_FwRxDrop + (bp->temp_stats_blk)->stat_FwRxDrop)); return (net_stats); } } static int bnx2_get_settings(struct net_device *dev , struct ethtool_cmd *cmd ) { struct bnx2 *bp ; void *tmp ; int support_serdes ; int support_copper ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; support_serdes = 0; support_copper = 0; cmd->supported = 64U; } if ((bp->phy_flags & 2048U) != 0U) { support_serdes = 1; support_copper = 1; } else if ((unsigned int )bp->phy_port == 3U) { support_serdes = 1; } else { support_copper = 1; } if (support_serdes != 0) { cmd->supported = cmd->supported | 1056U; if ((bp->phy_flags & 8U) != 0U) { cmd->supported = cmd->supported | 32768U; } else { } } else { } if (support_copper != 0) { cmd->supported = cmd->supported | 175U; } else { } { ldv_spin_lock_bh_110(& bp->phy_lock); cmd->port = bp->phy_port; cmd->advertising = bp->advertising; } if ((int )bp->autoneg & 1) { cmd->autoneg = 1U; } else { cmd->autoneg = 0U; } { tmp___0 = netif_carrier_ok((struct net_device const *)dev); } if ((int )tmp___0) { { ethtool_cmd_speed_set(cmd, (__u32 )bp->line_speed); cmd->duplex = bp->duplex; } if ((bp->phy_flags & 1U) == 0U) { if ((bp->phy_flags & 16384U) != 0U) { cmd->eth_tp_mdix = 2U; } else { cmd->eth_tp_mdix = 1U; } } else { } } else { { ethtool_cmd_speed_set(cmd, 4294967295U); cmd->duplex = 255U; } } { ldv_spin_unlock_bh_111(& bp->phy_lock); cmd->transceiver = 0U; cmd->phy_address = (__u8 )bp->phy_addr; } return (0); } } static int bnx2_set_settings(struct net_device *dev , struct ethtool_cmd *cmd ) { struct bnx2 *bp ; void *tmp ; u8 autoneg ; u8 req_duplex ; u16 req_line_speed ; u32 advertising ; int err ; bool tmp___0 ; int tmp___1 ; u32 speed ; __u32 tmp___2 ; bool tmp___3 ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; autoneg = bp->autoneg; req_duplex = bp->req_duplex; req_line_speed = bp->req_line_speed; advertising = bp->advertising; err = -22; ldv_spin_lock_bh_110(& bp->phy_lock); } if ((unsigned int )cmd->port != 0U && (unsigned int )cmd->port != 3U) { goto err_out_unlock; } else { } if ((int )cmd->port != (int )bp->phy_port && (bp->phy_flags & 2048U) == 0U) { goto err_out_unlock; } else { } { tmp___0 = netif_running((struct net_device const *)dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1 && (int )cmd->port != (int )bp->phy_port) { goto err_out_unlock; } else { } if ((unsigned int )cmd->autoneg == 1U) { autoneg = (u8 )((unsigned int )autoneg | 1U); advertising = cmd->advertising; if ((unsigned int )cmd->port == 0U) { advertising = advertising & 47U; if (advertising == 0U) { advertising = 47U; } else { } } else { advertising = advertising & ((bp->phy_flags & 8U) != 0U ? 32800U : 32U); if (advertising == 0U) { advertising = (bp->phy_flags & 8U) != 0U ? 32800U : 32U; } else { } } advertising = advertising | 64U; } else { { tmp___2 = ethtool_cmd_speed((struct ethtool_cmd const *)cmd); speed = tmp___2; } if ((unsigned int )cmd->port == 3U) { if ((speed != 1000U && speed != 2500U) || (unsigned int )cmd->duplex != 1U) { goto err_out_unlock; } else { } if (speed == 2500U && (bp->phy_flags & 8U) == 0U) { goto err_out_unlock; } else { } } else if (speed == 1000U || speed == 2500U) { goto err_out_unlock; } else { } autoneg = (unsigned int )autoneg & 254U; req_line_speed = (u16 )speed; req_duplex = cmd->duplex; advertising = 0U; } { bp->autoneg = autoneg; bp->advertising = advertising; bp->req_line_speed = req_line_speed; bp->req_duplex = req_duplex; err = 0; tmp___3 = netif_running((struct net_device const *)dev); } if ((int )tmp___3) { { err = bnx2_setup_phy(bp, (int )cmd->port); } } else { } err_out_unlock: { ldv_spin_unlock_bh_111(& bp->phy_lock); } return (err); } } static void bnx2_get_drvinfo(struct net_device *dev , struct ethtool_drvinfo *info ) { struct bnx2 *bp ; void *tmp ; char const *tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; strlcpy((char *)(& info->driver), "bnx2", 32UL); strlcpy((char *)(& info->version), "2.2.5", 32UL); tmp___0 = pci_name((struct pci_dev const *)bp->pdev); strlcpy((char *)(& info->bus_info), tmp___0, 32UL); strlcpy((char *)(& info->fw_version), (char const *)(& bp->fw_version), 32UL); } return; } } static int bnx2_get_regs_len(struct net_device *dev ) { { return (32768); } } static void bnx2_get_regs(struct net_device *dev , struct ethtool_regs *regs , void *_p ) { u32 *p ; u32 i ; u32 offset ; u8 *orig_p ; struct bnx2 *bp ; void *tmp ; u32 reg_boundaries[87U] ; bool tmp___0 ; int tmp___1 ; u32 *tmp___2 ; { { p = (u32 *)_p; orig_p = (u8 *)_p; tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; reg_boundaries[0] = 0U; reg_boundaries[1] = 152U; reg_boundaries[2] = 1024U; reg_boundaries[3] = 1116U; reg_boundaries[4] = 2048U; reg_boundaries[5] = 2176U; reg_boundaries[6] = 3072U; reg_boundaries[7] = 3088U; reg_boundaries[8] = 3120U; reg_boundaries[9] = 3336U; reg_boundaries[10] = 4096U; reg_boundaries[11] = 4124U; reg_boundaries[12] = 4160U; reg_boundaries[13] = 4168U; reg_boundaries[14] = 4224U; reg_boundaries[15] = 4260U; reg_boundaries[16] = 5120U; reg_boundaries[17] = 5264U; reg_boundaries[18] = 5272U; reg_boundaries[19] = 5360U; reg_boundaries[20] = 5376U; reg_boundaries[21] = 5468U; reg_boundaries[22] = 5504U; reg_boundaries[23] = 5596U; reg_boundaries[24] = 5632U; reg_boundaries[25] = 5720U; reg_boundaries[26] = 5760U; reg_boundaries[27] = 5848U; reg_boundaries[28] = 6144U; reg_boundaries[29] = 6176U; reg_boundaries[30] = 6208U; reg_boundaries[31] = 6228U; reg_boundaries[32] = 6272U; reg_boundaries[33] = 6292U; reg_boundaries[34] = 6400U; reg_boundaries[35] = 6532U; reg_boundaries[36] = 7168U; reg_boundaries[37] = 7180U; reg_boundaries[38] = 7232U; reg_boundaries[39] = 7252U; reg_boundaries[40] = 7296U; reg_boundaries[41] = 7316U; reg_boundaries[42] = 7424U; reg_boundaries[43] = 7556U; reg_boundaries[44] = 8192U; reg_boundaries[45] = 8240U; reg_boundaries[46] = 9152U; reg_boundaries[47] = 9216U; reg_boundaries[48] = 10240U; reg_boundaries[49] = 10272U; reg_boundaries[50] = 10288U; reg_boundaries[51] = 10320U; reg_boundaries[52] = 11072U; reg_boundaries[53] = 11280U; reg_boundaries[54] = 12224U; reg_boundaries[55] = 12376U; reg_boundaries[56] = 15360U; reg_boundaries[57] = 15508U; reg_boundaries[58] = 16384U; reg_boundaries[59] = 16400U; reg_boundaries[60] = 16512U; reg_boundaries[61] = 16528U; reg_boundaries[62] = 17344U; reg_boundaries[63] = 17496U; reg_boundaries[64] = 19456U; reg_boundaries[65] = 19480U; reg_boundaries[66] = 19520U; reg_boundaries[67] = 19540U; reg_boundaries[68] = 20416U; reg_boundaries[69] = 20496U; reg_boundaries[70] = 21440U; reg_boundaries[71] = 21572U; reg_boundaries[72] = 23552U; reg_boundaries[73] = 23576U; reg_boundaries[74] = 23680U; reg_boundaries[75] = 23696U; reg_boundaries[76] = 24512U; reg_boundaries[77] = 24576U; reg_boundaries[78] = 25600U; reg_boundaries[79] = 25640U; reg_boundaries[80] = 26624U; reg_boundaries[81] = 26696U; reg_boundaries[82] = 26700U; reg_boundaries[83] = 26720U; reg_boundaries[84] = 26760U; reg_boundaries[85] = 26896U; reg_boundaries[86] = 32768U; regs->version = 0U; memset((void *)p, 0, 32768UL); tmp___0 = netif_running((struct net_device const *)bp->dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return; } else { } i = 0U; offset = reg_boundaries[0]; p = p + (unsigned long )offset; goto ldv_55274; ldv_55273: { tmp___2 = p; p = p + 1; *tmp___2 = readl((void const volatile *)bp->regview + (unsigned long )offset); offset = offset + 4U; } if (offset == reg_boundaries[i + 1U]) { offset = reg_boundaries[i + 2U]; p = (u32 *)orig_p + (unsigned long )offset; i = i + 2U; } else { } ldv_55274: ; if (offset <= 32767U) { goto ldv_55273; } else { } return; } } static void bnx2_get_wol(struct net_device *dev , struct ethtool_wolinfo *wol ) { struct bnx2 *bp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; } if ((bp->flags & 8U) != 0U) { wol->supported = 0U; wol->wolopts = 0U; } else { wol->supported = 32U; if ((unsigned int )bp->wol != 0U) { wol->wolopts = 32U; } else { wol->wolopts = 0U; } } { memset((void *)(& wol->sopass), 0, 6UL); } return; } } static int bnx2_set_wol(struct net_device *dev , struct ethtool_wolinfo *wol ) { struct bnx2 *bp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; } if ((wol->wolopts & 4294967263U) != 0U) { return (-22); } else { } if ((wol->wolopts & 32U) != 0U) { if ((bp->flags & 8U) != 0U) { return (-22); } else { } bp->wol = 1U; } else { bp->wol = 0U; } { device_set_wakeup_enable(& (bp->pdev)->dev, (unsigned int )bp->wol != 0U); } return (0); } } static int bnx2_nway_reset(struct net_device *dev ) { struct bnx2 *bp ; void *tmp ; u32 bmcr ; bool tmp___0 ; int tmp___1 ; int rc ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; tmp___0 = netif_running((struct net_device const *)dev); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-11); } else { } if (((int )bp->autoneg & 1) == 0) { return (-22); } else { } { ldv_spin_lock_bh_110(& bp->phy_lock); } if ((bp->phy_flags & 2048U) != 0U) { { rc = bnx2_setup_remote_phy(bp, (int )bp->phy_port); ldv_spin_unlock_bh_111(& bp->phy_lock); } return (rc); } else { } if ((int )bp->phy_flags & 1) { { bnx2_write_phy(bp, bp->mii_bmcr, 16384U); ldv_spin_unlock_bh_111(& bp->phy_lock); msleep(20U); ldv_spin_lock_bh_110(& bp->phy_lock); bp->current_interval = 83U; bp->serdes_an_pending = 1U; ldv_mod_timer_157(& bp->timer, (unsigned long )jiffies + (unsigned long )bp->current_interval); } } else { } { bnx2_read_phy(bp, bp->mii_bmcr, & bmcr); bmcr = bmcr & 4294950911U; bnx2_write_phy(bp, bp->mii_bmcr, bmcr | 4608U); ldv_spin_unlock_bh_111(& bp->phy_lock); } return (0); } } static u32 bnx2_get_link(struct net_device *dev ) { struct bnx2 *bp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; } return ((u32 )bp->link_up); } } static int bnx2_get_eeprom_len(struct net_device *dev ) { struct bnx2 *bp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; } if ((unsigned long )bp->flash_info == (unsigned long )((struct flash_spec const *)0)) { return (0); } else { } return ((int )bp->flash_size); } } static int bnx2_get_eeprom(struct net_device *dev , struct ethtool_eeprom *eeprom , u8 *eebuf ) { struct bnx2 *bp ; void *tmp ; int rc ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, (int )eeprom->len); } return (rc); } } static int bnx2_set_eeprom(struct net_device *dev , struct ethtool_eeprom *eeprom , u8 *eebuf ) { struct bnx2 *bp ; void *tmp ; int rc ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, (int )eeprom->len); } return (rc); } } static int bnx2_get_coalesce(struct net_device *dev , struct ethtool_coalesce *coal ) { struct bnx2 *bp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; memset((void *)coal, 0, 92UL); coal->rx_coalesce_usecs = (__u32 )bp->rx_ticks; coal->rx_max_coalesced_frames = (__u32 )bp->rx_quick_cons_trip; coal->rx_coalesce_usecs_irq = (__u32 )bp->rx_ticks_int; coal->rx_max_coalesced_frames_irq = (__u32 )bp->rx_quick_cons_trip_int; coal->tx_coalesce_usecs = (__u32 )bp->tx_ticks; coal->tx_max_coalesced_frames = (__u32 )bp->tx_quick_cons_trip; coal->tx_coalesce_usecs_irq = (__u32 )bp->tx_ticks_int; coal->tx_max_coalesced_frames_irq = (__u32 )bp->tx_quick_cons_trip_int; coal->stats_block_coalesce_usecs = bp->stats_ticks; } return (0); } } static int bnx2_set_coalesce(struct net_device *dev , struct ethtool_coalesce *coal ) { struct bnx2 *bp ; void *tmp ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; bp->rx_ticks = (unsigned short )coal->rx_coalesce_usecs; } if ((unsigned int )bp->rx_ticks > 1023U) { bp->rx_ticks = 1023U; } else { } bp->rx_quick_cons_trip = (unsigned short )coal->rx_max_coalesced_frames; if ((unsigned int )bp->rx_quick_cons_trip > 255U) { bp->rx_quick_cons_trip = 255U; } else { } bp->rx_ticks_int = (unsigned short )coal->rx_coalesce_usecs_irq; if ((unsigned int )bp->rx_ticks_int > 1023U) { bp->rx_ticks_int = 1023U; } else { } bp->rx_quick_cons_trip_int = (unsigned short )coal->rx_max_coalesced_frames_irq; if ((unsigned int )bp->rx_quick_cons_trip_int > 255U) { bp->rx_quick_cons_trip_int = 255U; } else { } bp->tx_ticks = (unsigned short )coal->tx_coalesce_usecs; if ((unsigned int )bp->tx_ticks > 1023U) { bp->tx_ticks = 1023U; } else { } bp->tx_quick_cons_trip = (unsigned short )coal->tx_max_coalesced_frames; if ((unsigned int )bp->tx_quick_cons_trip > 255U) { bp->tx_quick_cons_trip = 255U; } else { } bp->tx_ticks_int = (unsigned short )coal->tx_coalesce_usecs_irq; if ((unsigned int )bp->tx_ticks_int > 1023U) { bp->tx_ticks_int = 1023U; } else { } bp->tx_quick_cons_trip_int = (unsigned short )coal->tx_max_coalesced_frames_irq; if ((unsigned int )bp->tx_quick_cons_trip_int > 255U) { bp->tx_quick_cons_trip_int = 255U; } else { } bp->stats_ticks = coal->stats_block_coalesce_usecs; if ((bp->flags & 8192U) != 0U) { if (bp->stats_ticks != 0U && bp->stats_ticks != 1000000U) { bp->stats_ticks = 1000000U; } else { } } else { } if (bp->stats_ticks > 16776960U) { bp->stats_ticks = 16776960U; } else { } { bp->stats_ticks = bp->stats_ticks & 16776960U; tmp___0 = netif_running((struct net_device const *)bp->dev); } if ((int )tmp___0) { { bnx2_netif_stop(bp, 1); bnx2_init_nic(bp, 0); bnx2_netif_start(bp, 1); } } else { } return (0); } } static void bnx2_get_ringparam(struct net_device *dev , struct ethtool_ringparam *ering ) { struct bnx2 *bp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; ering->rx_max_pending = 2040U; ering->rx_jumbo_max_pending = 8160U; ering->rx_pending = (__u32 )bp->rx_ring_size; ering->rx_jumbo_pending = (__u32 )bp->rx_pg_ring_size; ering->tx_max_pending = 255U; ering->tx_pending = (__u32 )bp->tx_ring_size; } return; } } static int bnx2_change_ring_size(struct bnx2 *bp , u32 rx , u32 tx , bool reset_irq ) { bool tmp ; int rc ; bool tmp___0 ; { { tmp = netif_running((struct net_device const *)bp->dev); } if ((int )tmp) { { bnx2_save_stats(bp); bnx2_netif_stop(bp, 1); bnx2_reset_chip(bp, 16777216U); } if ((int )reset_irq) { { bnx2_free_irq(bp); bnx2_del_napi(bp); } } else { { __bnx2_free_irq(bp); } } { bnx2_free_skbs(bp); bnx2_free_mem(bp); } } else { } { bnx2_set_rx_ring_size(bp, rx); bp->tx_ring_size = (int )tx; tmp___0 = netif_running((struct net_device const *)bp->dev); } if ((int )tmp___0) { rc = 0; if ((int )reset_irq) { { rc = bnx2_setup_int_mode(bp, disable_msi); bnx2_init_napi(bp); } } else { } if (rc == 0) { { rc = bnx2_alloc_mem(bp); } } else { } if (rc == 0) { { rc = bnx2_request_irq(bp); } } else { } if (rc == 0) { { rc = bnx2_init_nic(bp, 0); } } else { } if (rc != 0) { { bnx2_napi_enable(bp); dev_close(bp->dev); } return (rc); } else { } { mutex_lock_nested(& bp->cnic_lock, 0U); } if ((int )bp->cnic_eth_dev.drv_state & 1) { { bnx2_setup_cnic_irq_info(bp); } } else { } { mutex_unlock(& bp->cnic_lock); bnx2_netif_start(bp, 1); } } else { } return (0); } } static int bnx2_set_ringparam(struct net_device *dev , struct ethtool_ringparam *ering ) { struct bnx2 *bp ; void *tmp ; int rc ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; } if ((ering->rx_pending > 2040U || ering->tx_pending > 255U) || ering->tx_pending <= 17U) { return (-22); } else { } { rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending, 0); } return (rc); } } static void bnx2_get_pauseparam(struct net_device *dev , struct ethtool_pauseparam *epause ) { struct bnx2 *bp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; epause->autoneg = ((int )bp->autoneg & 2) != 0; epause->rx_pause = ((int )bp->flow_ctrl & 2) != 0; epause->tx_pause = (__u32 )bp->flow_ctrl & 1U; } return; } } static int bnx2_set_pauseparam(struct net_device *dev , struct ethtool_pauseparam *epause ) { struct bnx2 *bp ; void *tmp ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; bp->req_flow_ctrl = 0U; } if (epause->rx_pause != 0U) { bp->req_flow_ctrl = (u8 )((unsigned int )bp->req_flow_ctrl | 2U); } else { } if (epause->tx_pause != 0U) { bp->req_flow_ctrl = (u8 )((unsigned int )bp->req_flow_ctrl | 1U); } else { } if (epause->autoneg != 0U) { bp->autoneg = (u8 )((unsigned int )bp->autoneg | 2U); } else { bp->autoneg = (unsigned int )bp->autoneg & 253U; } { tmp___0 = netif_running((struct net_device const *)dev); } if ((int )tmp___0) { { ldv_spin_lock_bh_110(& bp->phy_lock); bnx2_setup_phy(bp, (int )bp->phy_port); ldv_spin_unlock_bh_111(& bp->phy_lock); } } else { } return (0); } } static struct __anonstruct_bnx2_stats_str_arr_294 bnx2_stats_str_arr[47U] = { {{'r', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}}, {{'r', 'x', '_', 'e', 'r', 'r', 'o', 'r', '_', 'b', 'y', 't', 'e', 's', '\000'}}, {{'t', 'x', '_', 'b', 'y', 't', 'e', 's', '\000'}}, {{'t', 'x', '_', 'e', 'r', 'r', 'o', 'r', '_', 'b', 'y', 't', 'e', 's', '\000'}}, {{'r', 'x', '_', 'u', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'm', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'b', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', 'u', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', 'm', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', 'b', 'c', 'a', 's', 't', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', 'm', 'a', 'c', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'t', 'x', '_', 'c', 'a', 'r', 'r', 'i', 'e', 'r', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'c', 'r', 'c', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'r', 'x', '_', 'a', 'l', 'i', 'g', 'n', '_', 'e', 'r', 'r', 'o', 'r', 's', '\000'}}, {{'t', 'x', '_', 's', 'i', 'n', 'g', 'l', 'e', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}}, {{'t', 'x', '_', 'm', 'u', 'l', 't', 'i', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}}, {{'t', 'x', '_', 'd', 'e', 'f', 'e', 'r', 'r', 'e', 'd', '\000'}}, {{'t', 'x', '_', 'e', 'x', 'c', 'e', 's', 's', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}}, {{'t', 'x', '_', 'l', 'a', 't', 'e', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}}, {{'t', 'x', '_', 't', 'o', 't', 'a', 'l', '_', 'c', 'o', 'l', 'l', 'i', 's', 'i', 'o', 'n', 's', '\000'}}, {{'r', 'x', '_', 'f', 'r', 'a', 'g', 'm', 'e', 'n', 't', 's', '\000'}}, {{'r', 'x', '_', 'j', 'a', 'b', 'b', 'e', 'r', 's', '\000'}}, {{'r', 'x', '_', 'u', 'n', 'd', 'e', 'r', 's', 'i', 'z', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'o', 'v', 'e', 'r', 's', 'i', 'z', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '6', '4', '_', 'b', 'y', 't', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '6', '5', '_', 't', 'o', '_', '1', '2', '7', '_', 'b', 'y', 't', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '1', '2', '8', '_', 't', 'o', '_', '2', '5', '5', '_', 'b', 'y', 't', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '2', '5', '6', '_', 't', 'o', '_', '5', '1', '1', '_', 'b', 'y', 't', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '5', '1', '2', '_', 't', 'o', '_', '1', '0', '2', '3', '_', 'b', 'y', 't', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '1', '0', '2', '4', '_', 't', 'o', '_', '1', '5', '2', '2', '_', 'b', 'y', 't', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', '1', '5', '2', '3', '_', 't', 'o', '_', '9', '0', '2', '2', '_', 'b', 'y', 't', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', '6', '4', '_', 'b', 'y', 't', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', '6', '5', '_', 't', 'o', '_', '1', '2', '7', '_', 'b', 'y', 't', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', '1', '2', '8', '_', 't', 'o', '_', '2', '5', '5', '_', 'b', 'y', 't', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', '2', '5', '6', '_', 't', 'o', '_', '5', '1', '1', '_', 'b', 'y', 't', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', '5', '1', '2', '_', 't', 'o', '_', '1', '0', '2', '3', '_', 'b', 'y', 't', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', '1', '0', '2', '4', '_', 't', 'o', '_', '1', '5', '2', '2', '_', 'b', 'y', 't', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'t', 'x', '_', '1', '5', '2', '3', '_', 't', 'o', '_', '9', '0', '2', '2', '_', 'b', 'y', 't', 'e', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'x', 'o', 'n', '_', 'f', 'r', 'a', 'm', 'e', 's', '\000'}}, {{'r', 'x', '_', 'x', 'o', 'f', 'f', '_', 'f', 'r', 'a', 'm', 'e', 's', '\000'}}, {{'t', 'x', '_', 'x', 'o', 'n', '_', 'f', 'r', 'a', 'm', 'e', 's', '\000'}}, {{'t', 'x', '_', 'x', 'o', 'f', 'f', '_', 'f', 'r', 'a', 'm', 'e', 's', '\000'}}, {{'r', 'x', '_', 'm', 'a', 'c', '_', 'c', 't', 'r', 'l', '_', 'f', 'r', 'a', 'm', 'e', 's', '\000'}}, {{'r', 'x', '_', 'f', 'i', 'l', 't', 'e', 'r', 'e', 'd', '_', 'p', 'a', 'c', 'k', 'e', 't', 's', '\000'}}, {{'r', 'x', '_', 'f', 't', 'q', '_', 'd', 'i', 's', 'c', 'a', 'r', 'd', 's', '\000'}}, {{'r', 'x', '_', 'd', 'i', 's', 'c', 'a', 'r', 'd', 's', '\000'}}, {{'r', 'x', '_', 'f', 'w', '_', 'd', 'i', 's', 'c', 'a', 'r', 'd', 's', '\000'}}}; static unsigned long const bnx2_stats_offset_arr[47U] = { 0UL, 2UL, 4UL, 6UL, 8UL, 10UL, 12UL, 14UL, 16UL, 18UL, 20UL, 21UL, 22UL, 23UL, 24UL, 25UL, 26UL, 27UL, 28UL, 29UL, 30UL, 31UL, 32UL, 33UL, 34UL, 35UL, 36UL, 37UL, 38UL, 39UL, 40UL, 41UL, 42UL, 43UL, 44UL, 45UL, 46UL, 47UL, 48UL, 49UL, 50UL, 51UL, 53UL, 55UL, 57UL, 58UL, 80UL}; static u8 bnx2_5706_stats_len_arr[47U] = { 8U, 0U, 8U, 8U, 8U, 8U, 8U, 8U, 8U, 8U, 4U, 0U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U}; static u8 bnx2_5708_stats_len_arr[47U] = { 8U, 0U, 8U, 8U, 8U, 8U, 8U, 8U, 8U, 8U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U, 4U}; static struct __anonstruct_bnx2_tests_str_arr_295 bnx2_tests_str_arr[6U] = { {{'r', 'e', 'g', 'i', 's', 't', 'e', 'r', '_', 't', 'e', 's', 't', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}}, {{'m', 'e', 'm', 'o', 'r', 'y', '_', 't', 'e', 's', 't', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}}, {{'l', 'o', 'o', 'p', 'b', 'a', 'c', 'k', '_', 't', 'e', 's', 't', ' ', '(', 'o', 'f', 'f', 'l', 'i', 'n', 'e', ')', '\000'}}, {{'n', 'v', 'r', 'a', 'm', '_', 't', 'e', 's', 't', ' ', '(', 'o', 'n', 'l', 'i', 'n', 'e', ')', '\000'}}, {{'i', 'n', 't', 'e', 'r', 'r', 'u', 'p', 't', '_', 't', 'e', 's', 't', ' ', '(', 'o', 'n', 'l', 'i', 'n', 'e', ')', '\000'}}, {{'l', 'i', 'n', 'k', '_', 't', 'e', 's', 't', ' ', '(', 'o', 'n', 'l', 'i', 'n', 'e', ')', '\000'}}}; static int bnx2_get_sset_count(struct net_device *dev , int sset ) { { { if (sset == 0) { goto case_0; } else { } if (sset == 1) { goto case_1; } else { } goto switch_default; case_0: /* CIL Label */ ; return (6); case_1: /* CIL Label */ ; return (47); switch_default: /* CIL Label */ ; return (-95); switch_break: /* CIL Label */ ; } } } static void bnx2_self_test(struct net_device *dev , struct ethtool_test *etest , u64 *buf ) { struct bnx2 *bp ; void *tmp ; int i ; int tmp___0 ; int tmp___1 ; u64 tmp___2 ; int tmp___3 ; bool tmp___4 ; int tmp___5 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; memset((void *)buf, 0, 48UL); } if ((int )etest->flags & 1) { { bnx2_netif_stop(bp, 1); bnx2_reset_chip(bp, 117440512U); bnx2_free_skbs(bp); tmp___0 = bnx2_test_registers(bp); } if (tmp___0 != 0) { *buf = 1ULL; etest->flags = etest->flags | 2U; } else { } { tmp___1 = bnx2_test_memory(bp); } if (tmp___1 != 0) { *(buf + 1UL) = 1ULL; etest->flags = etest->flags | 2U; } else { } { tmp___3 = bnx2_test_loopback(bp); tmp___2 = (u64 )tmp___3; *(buf + 2UL) = tmp___2; } if (tmp___2 != 0ULL) { etest->flags = etest->flags | 2U; } else { } { tmp___4 = netif_running((struct net_device const *)bp->dev); } if (tmp___4) { tmp___5 = 0; } else { tmp___5 = 1; } if (tmp___5) { { bnx2_shutdown_chip(bp); } } else { { bnx2_init_nic(bp, 1); bnx2_netif_start(bp, 1); } } i = 0; goto ldv_55385; ldv_55384: ; if ((unsigned int )bp->link_up != 0U) { goto ldv_55383; } else { } { msleep_interruptible(1000U); i = i + 1; } ldv_55385: ; if (i <= 6) { goto ldv_55384; } else { } ldv_55383: ; } else { } { tmp___6 = bnx2_test_nvram(bp); } if (tmp___6 != 0) { *(buf + 3UL) = 1ULL; etest->flags = etest->flags | 2U; } else { } { tmp___7 = bnx2_test_intr(bp); } if (tmp___7 != 0) { *(buf + 4UL) = 1ULL; etest->flags = etest->flags | 2U; } else { } { tmp___8 = bnx2_test_link(bp); } if (tmp___8 != 0) { *(buf + 5UL) = 1ULL; etest->flags = etest->flags | 2U; } else { } return; } } static void bnx2_get_strings(struct net_device *dev , u32 stringset , u8 *buf ) { { { if (stringset == 1U) { goto case_1; } else { } if (stringset == 0U) { goto case_0; } else { } goto switch_break; case_1: /* CIL Label */ { memcpy((void *)buf, (void const *)(& bnx2_stats_str_arr), 1504UL); } goto ldv_55392; case_0: /* CIL Label */ { memcpy((void *)buf, (void const *)(& bnx2_tests_str_arr), 192UL); } goto ldv_55392; switch_break: /* CIL Label */ ; } ldv_55392: ; return; } } static void bnx2_get_ethtool_stats(struct net_device *dev , struct ethtool_stats *stats , u64 *buf ) { struct bnx2 *bp ; void *tmp ; int i ; u32 *hw_stats ; u32 *temp_stats ; u8 *stats_len_arr ; unsigned long offset ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; hw_stats = (u32 *)bp->stats_blk; temp_stats = (u32 *)bp->temp_stats_blk; stats_len_arr = (u8 *)0U; } if ((unsigned long )hw_stats == (unsigned long )((u32 *)0U)) { { memset((void *)buf, 0, 376UL); } return; } else { } if ((((bp->chip_id & 4294967280U) == 1460011008U || (bp->chip_id & 4294967280U) == 1460011024U) || (bp->chip_id & 4294967280U) == 1460011040U) || (bp->chip_id & 4294967280U) == 1460142080U) { stats_len_arr = (u8 *)(& bnx2_5706_stats_len_arr); } else { stats_len_arr = (u8 *)(& bnx2_5708_stats_len_arr); } i = 0; goto ldv_55411; ldv_55410: ; if ((unsigned int )*(stats_len_arr + (unsigned long )i) == 0U) { *(buf + (unsigned long )i) = 0ULL; goto ldv_55409; } else { } offset = bnx2_stats_offset_arr[i]; if ((unsigned int )*(stats_len_arr + (unsigned long )i) == 4U) { *(buf + (unsigned long )i) = (unsigned long long )*(hw_stats + offset) + (unsigned long long )*(temp_stats + offset); goto ldv_55409; } else { } *(buf + (unsigned long )i) = ((((unsigned long long )*(hw_stats + offset) << 32) + (unsigned long long )*(hw_stats + (offset + 1UL))) + ((unsigned long long )*(temp_stats + offset) << 32)) + (unsigned long long )*(temp_stats + (offset + 1UL)); ldv_55409: i = i + 1; ldv_55411: ; if ((unsigned int )i <= 46U) { goto ldv_55410; } else { } return; } } static int bnx2_set_phys_id(struct net_device *dev , enum ethtool_phys_id_state state ) { struct bnx2 *bp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; } { if ((unsigned int )state == 1U) { goto case_1; } else { } if ((unsigned int )state == 2U) { goto case_2; } else { } if ((unsigned int )state == 3U) { goto case_3; } else { } if ((unsigned int )state == 0U) { goto case_0; } else { } goto switch_break; case_1: /* CIL Label */ { bp->leds_save = readl((void const volatile *)bp->regview + 2052U); writel(0U, (void volatile *)bp->regview + 2052U); } return (1); case_2: /* CIL Label */ { writel(95U, (void volatile *)bp->regview + 5132U); } goto ldv_55420; case_3: /* CIL Label */ { writel(1U, (void volatile *)bp->regview + 5132U); } goto ldv_55420; case_0: /* CIL Label */ { writel(0U, (void volatile *)bp->regview + 5132U); writel(bp->leds_save, (void volatile *)bp->regview + 2052U); } goto ldv_55420; switch_break: /* CIL Label */ ; } ldv_55420: ; return (0); } } static netdev_features_t bnx2_fix_features(struct net_device *dev , netdev_features_t features ) { struct bnx2 *bp ; void *tmp ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; } if ((bp->flags & 4096U) == 0U) { features = features | 256ULL; } else { } return (features); } } static int bnx2_set_features(struct net_device *dev , netdev_features_t features ) { struct bnx2 *bp ; void *tmp ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; } if ((features & 128ULL) != 0ULL) { dev->vlan_features = dev->vlan_features | (dev->hw_features & 1638400ULL); } else { dev->vlan_features = dev->vlan_features & 0xffffffffffe6ffffULL; } if (((features & 256ULL) != 0ULL) ^ (((long )bp->rx_mode & 1024L) != 0L)) { { tmp___0 = netif_running((struct net_device const *)dev); } if ((int )tmp___0) { { bnx2_netif_stop(bp, 0); dev->features = features; bnx2_set_rx_mode(dev); bnx2_fw_sync(bp, 218103808U, 0, 1); bnx2_netif_start(bp, 0); } return (1); } else { } } else { } return (0); } } static void bnx2_get_channels(struct net_device *dev , struct ethtool_channels *channels ) { struct bnx2 *bp ; void *tmp ; u32 max_rx_rings ; u32 max_tx_rings ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; max_rx_rings = 1U; max_tx_rings = 1U; } if ((bp->flags & 4U) != 0U && disable_msi == 0) { max_rx_rings = 8U; max_tx_rings = 8U; } else { } channels->max_rx = max_rx_rings; channels->max_tx = max_tx_rings; channels->max_other = 0U; channels->max_combined = 0U; channels->rx_count = (__u32 )bp->num_rx_rings; channels->tx_count = (__u32 )bp->num_tx_rings; channels->other_count = 0U; channels->combined_count = 0U; return; } } static int bnx2_set_channels(struct net_device *dev , struct ethtool_channels *channels ) { struct bnx2 *bp ; void *tmp ; u32 max_rx_rings ; u32 max_tx_rings ; int rc ; bool tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; max_rx_rings = 1U; max_tx_rings = 1U; rc = 0; } if ((bp->flags & 4U) != 0U && disable_msi == 0) { max_rx_rings = 8U; max_tx_rings = 8U; } else { } if (channels->rx_count > max_rx_rings || channels->tx_count > max_tx_rings) { return (-22); } else { } { bp->num_req_rx_rings = (int )channels->rx_count; bp->num_req_tx_rings = (int )channels->tx_count; tmp___0 = netif_running((struct net_device const *)dev); } if ((int )tmp___0) { { rc = bnx2_change_ring_size(bp, (u32 )bp->rx_ring_size, (u32 )bp->tx_ring_size, 1); } } else { } return (rc); } } static struct ethtool_ops const bnx2_ethtool_ops = {& bnx2_get_settings, & bnx2_set_settings, & bnx2_get_drvinfo, & bnx2_get_regs_len, & bnx2_get_regs, & bnx2_get_wol, & bnx2_set_wol, 0, 0, & bnx2_nway_reset, & bnx2_get_link, & bnx2_get_eeprom_len, & bnx2_get_eeprom, & bnx2_set_eeprom, & bnx2_get_coalesce, & bnx2_set_coalesce, & bnx2_get_ringparam, & bnx2_set_ringparam, & bnx2_get_pauseparam, & bnx2_set_pauseparam, & bnx2_self_test, & bnx2_get_strings, & bnx2_set_phys_id, & bnx2_get_ethtool_stats, 0, 0, 0, 0, & bnx2_get_sset_count, 0, 0, 0, 0, 0, 0, 0, & bnx2_get_channels, & bnx2_set_channels, 0, 0, 0, 0, 0, 0, 0, 0}; static int bnx2_ioctl(struct net_device *dev , struct ifreq *ifr , int cmd ) { struct mii_ioctl_data *data ; struct mii_ioctl_data *tmp ; struct bnx2 *bp ; void *tmp___0 ; int err ; u32 mii_regval ; bool tmp___1 ; int tmp___2 ; bool tmp___3 ; int tmp___4 ; { { tmp = if_mii(ifr); data = tmp; tmp___0 = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp___0; } { if (cmd == 35143) { goto case_35143; } else { } if (cmd == 35144) { goto case_35144; } else { } if (cmd == 35145) { goto case_35145; } else { } goto switch_default; case_35143: /* CIL Label */ data->phy_id = (__u16 )bp->phy_addr; case_35144: /* CIL Label */ ; if ((bp->phy_flags & 2048U) != 0U) { return (-95); } else { } { tmp___1 = netif_running((struct net_device const *)dev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (-11); } else { } { ldv_spin_lock_bh_110(& bp->phy_lock); err = bnx2_read_phy(bp, (u32 )data->reg_num & 31U, & mii_regval); ldv_spin_unlock_bh_111(& bp->phy_lock); data->val_out = (__u16 )mii_regval; } return (err); case_35145: /* CIL Label */ ; if ((bp->phy_flags & 2048U) != 0U) { return (-95); } else { } { tmp___3 = netif_running((struct net_device const *)dev); } if (tmp___3) { tmp___4 = 0; } else { tmp___4 = 1; } if (tmp___4) { return (-11); } else { } { ldv_spin_lock_bh_110(& bp->phy_lock); err = bnx2_write_phy(bp, (u32 )data->reg_num & 31U, (u32 )data->val_in); ldv_spin_unlock_bh_111(& bp->phy_lock); } return (err); switch_default: /* CIL Label */ ; goto ldv_55462; switch_break: /* CIL Label */ ; } ldv_55462: ; return (-95); } } static int bnx2_change_mac_addr(struct net_device *dev , void *p ) { struct sockaddr *addr ; struct bnx2 *bp ; void *tmp ; bool tmp___0 ; int tmp___1 ; bool tmp___2 ; { { addr = (struct sockaddr *)p; tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; tmp___0 = is_valid_ether_addr((u8 const *)(& addr->sa_data)); } if (tmp___0) { tmp___1 = 0; } else { tmp___1 = 1; } if (tmp___1) { return (-99); } else { } { memcpy((void *)dev->dev_addr, (void const *)(& addr->sa_data), (size_t )dev->addr_len); tmp___2 = netif_running((struct net_device const *)dev); } if ((int )tmp___2) { { bnx2_set_mac_addr(bp, (bp->dev)->dev_addr, 0U); } } else { } return (0); } } static int bnx2_change_mtu(struct net_device *dev , int new_mtu ) { struct bnx2 *bp ; void *tmp ; int tmp___0 ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; } if ((unsigned int )new_mtu - 46U > 8954U) { return (-22); } else { } { dev->mtu = (unsigned int )new_mtu; tmp___0 = bnx2_change_ring_size(bp, (u32 )bp->rx_ring_size, (u32 )bp->tx_ring_size, 0); } return (tmp___0); } } static void poll_bnx2(struct net_device *dev ) { struct bnx2 *bp ; void *tmp ; int i ; struct bnx2_irq *irq ; { { tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; i = 0; } goto ldv_55481; ldv_55480: { irq = (struct bnx2_irq *)(& bp->irq_tbl) + (unsigned long )i; disable_irq(irq->vector); (*(irq->handler))((int )irq->vector, (void *)(& bp->bnx2_napi) + (unsigned long )i); enable_irq(irq->vector); i = i + 1; } ldv_55481: ; if (i < bp->irq_nvecs) { goto ldv_55480; } else { } return; } } static void bnx2_get_5709_media(struct bnx2 *bp ) { u32 val ; unsigned int tmp ; u32 bond_id ; u32 strap ; { { tmp = readl((void const volatile *)bp->regview + 2284U); val = tmp; bond_id = val & 255U; } if (bond_id == 3U) { return; } else if (bond_id == 12U) { bp->phy_flags = bp->phy_flags | 1U; return; } else { } if (((long )val & 33554432L) != 0L) { strap = (u32 )(((long )val & 14680064L) >> 21); } else { strap = (u32 )(((long )val & 1792L) >> 8); } if ((unsigned int )bp->func == 0U) { { if (strap == 4U) { goto case_4; } else { } if (strap == 5U) { goto case_5; } else { } if (strap == 6U) { goto case_6; } else { } goto switch_break; case_4: /* CIL Label */ ; case_5: /* CIL Label */ ; case_6: /* CIL Label */ bp->phy_flags = bp->phy_flags | 1U; return; switch_break: /* CIL Label */ ; } } else { { if (strap == 1U) { goto case_1; } else { } if (strap == 2U) { goto case_2; } else { } if (strap == 4U) { goto case_4___0; } else { } goto switch_break___0; case_1: /* CIL Label */ ; case_2: /* CIL Label */ ; case_4___0: /* CIL Label */ bp->phy_flags = bp->phy_flags | 1U; return; switch_break___0: /* CIL Label */ ; } } return; } } static void bnx2_get_pci_speed(struct bnx2 *bp ) { u32 reg ; u32 clkreg ; { { reg = readl((void const volatile *)bp->regview + 108U); } if (((long )reg & 8L) != 0L) { { bp->flags = bp->flags | 1U; clkreg = readl((void const volatile *)bp->regview + 112U); clkreg = clkreg & 15U; } { if (clkreg == 7U) { goto case_7; } else { } if (clkreg == 6U) { goto case_6; } else { } if (clkreg == 4U) { goto case_4; } else { } if (clkreg == 5U) { goto case_5; } else { } if (clkreg == 2U) { goto case_2; } else { } if (clkreg == 3U) { goto case_3; } else { } if (clkreg == 15U) { goto case_15; } else { } if (clkreg == 0U) { goto case_0; } else { } if (clkreg == 1U) { goto case_1; } else { } goto switch_break; case_7: /* CIL Label */ bp->bus_speed_mhz = 133U; goto ldv_55501; case_6: /* CIL Label */ bp->bus_speed_mhz = 100U; goto ldv_55501; case_4: /* CIL Label */ ; case_5: /* CIL Label */ bp->bus_speed_mhz = 66U; goto ldv_55501; case_2: /* CIL Label */ ; case_3: /* CIL Label */ bp->bus_speed_mhz = 50U; goto ldv_55501; case_15: /* CIL Label */ ; case_0: /* CIL Label */ ; case_1: /* CIL Label */ bp->bus_speed_mhz = 33U; goto ldv_55501; switch_break: /* CIL Label */ ; } ldv_55501: ; } else if (((long )reg & 4L) != 0L) { bp->bus_speed_mhz = 66U; } else { bp->bus_speed_mhz = 33U; } if (((long )reg & 2L) != 0L) { bp->flags = bp->flags | 2U; } else { } return; } } static void bnx2_read_vpd_fw_ver(struct bnx2 *bp ) { int rc ; int i ; int j ; u8 *data ; unsigned int block_end ; unsigned int rosize ; unsigned int len ; void *tmp ; u16 tmp___0 ; u8 tmp___1 ; int tmp___2 ; u8 tmp___3 ; { { tmp = kmalloc(256UL, 208U); data = (u8 *)tmp; } if ((unsigned long )data == (unsigned long )((u8 *)0U)) { return; } else { } { rc = bnx2_nvram_read(bp, 768U, data + 128UL, 128); } if (rc != 0) { goto vpd_done; } else { } i = 0; goto ldv_55522; ldv_55521: *(data + (unsigned long )i) = *(data + ((unsigned long )(i + 128) + 3UL)); *(data + ((unsigned long )i + 1UL)) = *(data + ((unsigned long )(i + 128) + 2UL)); *(data + ((unsigned long )i + 2UL)) = *(data + ((unsigned long )(i + 128) + 1UL)); *(data + ((unsigned long )i + 3UL)) = *(data + ((unsigned long )i + 128UL)); i = i + 4; ldv_55522: ; if (i <= 127) { goto ldv_55521; } else { } { i = pci_vpd_find_tag((u8 const *)data, 0U, 128U, 144); } if (i < 0) { goto vpd_done; } else { } { tmp___0 = pci_vpd_lrdt_size((u8 const *)data + (unsigned long )i); rosize = (unsigned int )tmp___0; i = i + 3; block_end = (unsigned int )i + rosize; } if (block_end > 128U) { goto vpd_done; } else { } { j = pci_vpd_find_info_keyword((u8 const *)data, (unsigned int )i, rosize, "MN"); } if (j < 0) { goto vpd_done; } else { } { tmp___1 = pci_vpd_info_field_size((u8 const *)data + (unsigned long )j); len = (unsigned int )tmp___1; j = j + 3; } if ((unsigned int )j + len > block_end || len != 4U) { goto vpd_done; } else { { tmp___2 = memcmp((void const *)data + (unsigned long )j, (void const *)"1028", 4UL); } if (tmp___2 != 0) { goto vpd_done; } else { } } { j = pci_vpd_find_info_keyword((u8 const *)data, (unsigned int )i, rosize, "V0"); } if (j < 0) { goto vpd_done; } else { } { tmp___3 = pci_vpd_info_field_size((u8 const *)data + (unsigned long )j); len = (unsigned int )tmp___3; j = j + 3; } if ((unsigned int )j + len > block_end || len > 30U) { goto vpd_done; } else { } { memcpy((void *)(& bp->fw_version), (void const *)data + (unsigned long )j, (size_t )len); bp->fw_version[len] = 32; } vpd_done: { kfree((void const *)data); } return; } } static int bnx2_init_board(struct pci_dev *pdev , struct net_device *dev ) { struct bnx2 *bp ; int rc ; int i ; int j ; u32 reg ; u64 dma_mask ; u64 persist_dma_mask ; int err ; void *tmp ; void *tmp___0 ; struct lock_class_key __key ; struct lock_class_key __key___0 ; struct lock_class_key __key___1 ; struct lock_class_key __key___2 ; atomic_long_t __constr_expr_0 ; bool tmp___1 ; int tmp___2 ; int tmp___3 ; u32 tmp___4 ; u32 off ; size_t tmp___5 ; u8 num ; u8 k ; u8 skip0 ; int tmp___6 ; int tmp___7 ; int tmp___8 ; int tmp___9 ; int tmp___10 ; u32 addr ; u32 tmp___11 ; int tmp___12 ; __u32 tmp___13 ; unsigned int tmp___14 ; struct pci_dev *amd_8132 ; struct lock_class_key __key___3 ; u32 tmp___15 ; u32 tmp___16 ; { { dev->dev.parent = & pdev->dev; tmp = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp; bp->flags = 0U; bp->phy_flags = 0U; tmp___0 = kzalloc(324UL, 208U); bp->temp_stats_blk = (struct statistics_block *)tmp___0; } if ((unsigned long )bp->temp_stats_blk == (unsigned long )((struct statistics_block *)0)) { rc = -12; goto err_out; } else { } { rc = pci_enable_device(pdev); } if (rc != 0) { { dev_err((struct device const *)(& pdev->dev), "Cannot enable PCI device, aborting\n"); } goto err_out; } else { } if ((pdev->resource[0].flags & 512UL) == 0UL) { { dev_err((struct device const *)(& pdev->dev), "Cannot find PCI device base address, aborting\n"); rc = -19; } goto err_out_disable; } else { } { rc = pci_request_regions(pdev, "bnx2"); } if (rc != 0) { { dev_err((struct device const *)(& pdev->dev), "Cannot obtain PCI resources, aborting\n"); } goto err_out_disable; } else { } { pci_set_master(pdev); bp->pm_cap = (int )pdev->pm_cap; } if (bp->pm_cap == 0) { { dev_err((struct device const *)(& pdev->dev), "Cannot find power management capability, aborting\n"); rc = -5; } goto err_out_release; } else { } { bp->dev = dev; bp->pdev = pdev; spinlock_check(& bp->phy_lock); __raw_spin_lock_init(& bp->phy_lock.__annonCompField19.rlock, "&(&bp->phy_lock)->rlock", & __key); spinlock_check(& bp->indirect_lock); __raw_spin_lock_init(& bp->indirect_lock.__annonCompField19.rlock, "&(&bp->indirect_lock)->rlock", & __key___0); __mutex_init(& bp->cnic_lock, "&bp->cnic_lock", & __key___1); __init_work(& bp->reset_task, 0); __constr_expr_0.counter = 137438953408L; bp->reset_task.data = __constr_expr_0; lockdep_init_map(& bp->reset_task.lockdep_map, "(&bp->reset_task)", & __key___2, 0); INIT_LIST_HEAD(& bp->reset_task.entry); bp->reset_task.func = & bnx2_reset_task; bp->regview = pci_iomap(pdev, 0, 75776UL); } if ((unsigned long )bp->regview == (unsigned long )((void *)0)) { { dev_err((struct device const *)(& pdev->dev), "Cannot map register space, aborting\n"); rc = -12; } goto err_out_release; } else { } { writel(136U, (void volatile *)bp->regview + 104U); bp->chip_id = readl((void const volatile *)bp->regview + 2056U); } if ((bp->chip_id & 4294901760U) == 1460207616U) { { tmp___1 = pci_is_pcie(pdev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { { dev_err((struct device const *)(& pdev->dev), "Not PCIE, aborting\n"); rc = -5; } goto err_out_unmap; } else { } bp->flags = bp->flags | 512U; if ((bp->chip_id & 61440U) == 0U) { bp->flags = bp->flags | 2048U; } else { } { err = pci_enable_pcie_error_reporting(pdev); } if (err == 0) { bp->flags = bp->flags | 16384U; } else { } } else { { bp->pcix_cap = pci_find_capability(pdev, 7); } if (bp->pcix_cap == 0) { { dev_err((struct device const *)(& pdev->dev), "Cannot find PCIX capability, aborting\n"); rc = -5; } goto err_out_unmap; } else { } bp->flags = bp->flags | 8192U; } if ((bp->chip_id & 4294901760U) == 1460207616U && (bp->chip_id & 61440U) != 0U) { if ((unsigned int )pdev->msix_cap != 0U) { bp->flags = bp->flags | 4U; } else { } } else { } if ((bp->chip_id & 4294967280U) != 1460011008U && (bp->chip_id & 4294967280U) != 1460011024U) { if ((unsigned int )pdev->msi_cap != 0U) { bp->flags = bp->flags | 128U; } else { } } else { } if ((bp->chip_id & 4294901760U) == 1460142080U) { dma_mask = 1099511627775ULL; persist_dma_mask = dma_mask; } else { dma_mask = 0xffffffffffffffffULL; persist_dma_mask = dma_mask; } { tmp___3 = pci_set_dma_mask(pdev, dma_mask); } if (tmp___3 == 0) { { dev->features = dev->features | 32ULL; rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask); } if (rc != 0) { { dev_err((struct device const *)(& pdev->dev), "pci_set_consistent_dma_mask failed, aborting\n"); } goto err_out_unmap; } else { } } else { { rc = pci_set_dma_mask(pdev, 4294967295ULL); } if (rc != 0) { { dev_err((struct device const *)(& pdev->dev), "System does not support DMA, aborting\n"); } goto err_out_unmap; } else { } } if ((bp->flags & 512U) == 0U) { { bnx2_get_pci_speed(bp); } } else { } if ((bp->chip_id & 4294967280U) == 1460011008U) { { reg = readl((void const volatile *)bp->regview + 4U); reg = reg & 4294966975U; writel(reg, (void volatile *)bp->regview + 4U); } } else if ((bp->chip_id & 4294967280U) == 1460011024U && (bp->flags & 1U) == 0U) { { dev_err((struct device const *)(& pdev->dev), "5706 A1 can only be used in a PCIX bus, aborting\n"); } goto err_out_unmap; } else { } { bnx2_init_nvram(bp); reg = bnx2_reg_rd_ind(bp, 1441792U); tmp___4 = bnx2_reg_rd_ind(bp, 1310880U); } if ((int )tmp___4 < 0) { bp->func = 1U; } else { } if ((reg & 4294901760U) == 1397948416U) { { off = (u32 )((int )bp->func << 2); bp->shmem_base = bnx2_reg_rd_ind(bp, off + 1441796U); } } else { bp->shmem_base = 1473536U; } { reg = bnx2_shmem_rd(bp, 32U); } if ((reg & 4294967040U) != 1146505472U) { { dev_err((struct device const *)(& pdev->dev), "Firmware not running, aborting\n"); rc = -19; } goto err_out_unmap; } else { } { bnx2_read_vpd_fw_ver(bp); tmp___5 = strlen((char const *)(& bp->fw_version)); j = (int )tmp___5; reg = bnx2_shmem_rd(bp, 76U); i = 0; } goto ldv_55553; ldv_55552: ; if (i == 0) { tmp___6 = j; j = j + 1; bp->fw_version[tmp___6] = 98; tmp___7 = j; j = j + 1; bp->fw_version[tmp___7] = 99; tmp___8 = j; j = j + 1; bp->fw_version[tmp___8] = 32; } else { } num = (unsigned char )(reg >> (3 - i) * 8); k = 100U; skip0 = 1U; goto ldv_55550; ldv_55549: ; if (((int )num >= (int )k || (unsigned int )skip0 == 0U) || (unsigned int )k == 1U) { tmp___9 = j; j = j + 1; bp->fw_version[tmp___9] = (char )((unsigned int )((int )num / (int )k) + 48U); skip0 = 0U; } else { } num = (u8 )((int )num % (int )k); k = (u8 )((unsigned int )k / 10U); ldv_55550: ; if ((unsigned int )k != 0U) { goto ldv_55549; } else { } if (i != 2) { tmp___10 = j; j = j + 1; bp->fw_version[tmp___10] = 46; } else { } i = i + 1; ldv_55553: ; if (i <= 2 && j <= 23) { goto ldv_55552; } else { } { reg = bnx2_shmem_rd(bp, 216U); } if ((reg & 16777216U) != 0U) { bp->wol = 1U; } else { } if ((reg & 67108864U) != 0U) { bp->flags = bp->flags | 64U; i = 0; goto ldv_55557; ldv_55556: { reg = bnx2_shmem_rd(bp, 456U); } if ((reg & 57344U) != 0U) { goto ldv_55555; } else { } { msleep(10U); i = i + 1; } ldv_55557: ; if (i <= 29) { goto ldv_55556; } else { } ldv_55555: ; } else { } { reg = bnx2_shmem_rd(bp, 456U); reg = reg & 57344U; } if (reg != 0U && reg != 57344U) { { tmp___11 = bnx2_shmem_rd(bp, 332U); addr = tmp___11; } if (j <= 31) { tmp___12 = j; j = j + 1; bp->fw_version[tmp___12] = 32; } else { } i = 0; goto ldv_55560; ldv_55559: { reg = bnx2_reg_rd_ind(bp, addr + (u32 )(i * 4)); tmp___13 = __fswab32(reg); reg = tmp___13; memcpy((void *)(& bp->fw_version) + (unsigned long )j, (void const *)(& reg), 4UL); j = j + 4; i = i + 1; } ldv_55560: ; if (i <= 2 && j <= 27) { goto ldv_55559; } else { } } else { } { reg = bnx2_shmem_rd(bp, 80U); bp->mac_addr[0] = (unsigned char )(reg >> 8); bp->mac_addr[1] = (unsigned char )reg; reg = bnx2_shmem_rd(bp, 84U); bp->mac_addr[2] = (unsigned char )(reg >> 24); bp->mac_addr[3] = (unsigned char )(reg >> 16); bp->mac_addr[4] = (unsigned char )(reg >> 8); bp->mac_addr[5] = (unsigned char )reg; bp->tx_ring_size = 255; bnx2_set_rx_ring_size(bp, 255U); bp->tx_quick_cons_trip_int = 2U; bp->tx_quick_cons_trip = 20U; bp->tx_ticks_int = 18U; bp->tx_ticks = 80U; bp->rx_quick_cons_trip_int = 2U; bp->rx_quick_cons_trip = 12U; bp->rx_ticks_int = 18U; bp->rx_ticks = 18U; bp->stats_ticks = 999936U; bp->current_interval = 250U; bp->phy_addr = 1U; } if ((bp->chip_id & 4294901760U) == 1460207616U) { { bnx2_get_5709_media(bp); } } else if ((int )bp->chip_id & 1) { bp->phy_flags = bp->phy_flags | 1U; } else { } bp->phy_port = 0U; if ((int )bp->phy_flags & 1) { { bp->phy_port = 3U; reg = bnx2_shmem_rd(bp, 60U); } if ((reg & 32768U) == 0U) { bp->flags = bp->flags | 8U; bp->wol = 0U; } else { } if ((bp->chip_id & 4294901760U) == 1460011008U) { if (*((unsigned int *)pdev + 16UL) == 822874172U) { bp->phy_flags = bp->phy_flags | 8192U; } else { } } else { bp->phy_addr = 2U; if ((reg & 32U) != 0U) { bp->phy_flags = bp->phy_flags | 8U; } else { } } } else if ((bp->chip_id & 4294901760U) == 1460011008U || (bp->chip_id & 4294901760U) == 1460142080U) { bp->phy_flags = bp->phy_flags | 2U; } else if ((bp->chip_id & 4294901760U) == 1460207616U && ((bp->chip_id & 61440U) == 0U || (bp->chip_id & 61440U) == 4096U)) { bp->phy_flags = bp->phy_flags | 1024U; } else { } { bnx2_init_fw_cap(bp); } if (((bp->chip_id & 4294967280U) == 1460142080U || (bp->chip_id & 4294967280U) == 1460146176U) || (bp->chip_id & 4294967280U) == 1460146192U) { bp->flags = bp->flags | 8U; bp->wol = 0U; } else { { tmp___14 = readl((void const volatile *)bp->regview + 1036U); } if (((long )tmp___14 & 1073741824L) == 0L) { bp->flags = bp->flags | 8U; bp->wol = 0U; } else { } } if ((bp->flags & 8U) != 0U) { { device_set_wakeup_capable(& (bp->pdev)->dev, 0); } } else { { device_set_wakeup_enable(& (bp->pdev)->dev, (unsigned int )bp->wol != 0U); } } if ((bp->chip_id & 4294967280U) == 1460011008U) { bp->tx_quick_cons_trip_int = bp->tx_quick_cons_trip; bp->tx_ticks_int = bp->tx_ticks; bp->rx_quick_cons_trip_int = bp->rx_quick_cons_trip; bp->rx_ticks_int = bp->rx_ticks; bp->comp_prod_trip_int = bp->comp_prod_trip; bp->com_ticks_int = bp->com_ticks; bp->cmd_ticks_int = bp->cmd_ticks; } else { } if ((bp->chip_id & 4294901760U) == 1460011008U && disable_msi == 0) { amd_8132 = (struct pci_dev *)0; goto ldv_55565; ldv_55564: ; if ((unsigned int )amd_8132->revision - 16U <= 3U) { { disable_msi = 1; pci_dev_put(amd_8132); } goto ldv_55563; } else { } ldv_55565: { amd_8132 = pci_get_device(4130U, 29784U, amd_8132); } if ((unsigned long )amd_8132 != (unsigned long )((struct pci_dev *)0)) { goto ldv_55564; } else { } ldv_55563: ; } else { } { bnx2_set_default_link(bp); bp->req_flow_ctrl = 3U; init_timer_key(& bp->timer, 0U, "(&bp->timer)", & __key___3); bp->timer.expires = (unsigned long )jiffies + 250UL; bp->timer.data = (unsigned long )bp; bp->timer.function = & bnx2_timer; tmp___16 = bnx2_shmem_rd(bp, 988U); } if ((tmp___16 & 524288U) != 0U) { { tmp___15 = bnx2_shmem_rd(bp, 996U); bp->cnic_eth_dev.max_iscsi_conn = tmp___15 >> 16; } } else { } { bp->cnic_probe = & bnx2_cnic_probe; pci_save_state(pdev); } return (0); err_out_unmap: ; if ((bp->flags & 16384U) != 0U) { { pci_disable_pcie_error_reporting(pdev); bp->flags = bp->flags & 4294950911U; } } else { } { pci_iounmap(pdev, bp->regview); bp->regview = (void *)0; } err_out_release: { pci_release_regions(pdev); } err_out_disable: { pci_disable_device(pdev); } err_out: ; return (rc); } } static char *bnx2_bus_string(struct bnx2 *bp , char *str ) { char *s ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; int tmp___4 ; { s = str; if ((bp->flags & 512U) != 0U) { { tmp = sprintf(s, "PCI Express"); s = s + (unsigned long )tmp; } } else { { tmp___0 = sprintf(s, "PCI"); s = s + (unsigned long )tmp___0; } if ((int )bp->flags & 1) { { tmp___1 = sprintf(s, "-X"); s = s + (unsigned long )tmp___1; } } else { } if ((bp->flags & 2U) != 0U) { { tmp___2 = sprintf(s, " 32-bit"); s = s + (unsigned long )tmp___2; } } else { { tmp___3 = sprintf(s, " 64-bit"); s = s + (unsigned long )tmp___3; } } { tmp___4 = sprintf(s, " %dMHz", (int )bp->bus_speed_mhz); s = s + (unsigned long )tmp___4; } } return (str); } } static void bnx2_del_napi(struct bnx2 *bp ) { int i ; { i = 0; goto ldv_55577; ldv_55576: { netif_napi_del(& bp->bnx2_napi[i].napi); i = i + 1; } ldv_55577: ; if (i < bp->irq_nvecs) { goto ldv_55576; } else { } return; } } static void bnx2_init_napi(struct bnx2 *bp ) { int i ; struct bnx2_napi *bnapi ; int (*poll)(struct napi_struct * , int ) ; { i = 0; goto ldv_55588; ldv_55587: bnapi = (struct bnx2_napi *)(& bp->bnx2_napi) + (unsigned long )i; if (i == 0) { poll = & bnx2_poll; } else { poll = & bnx2_poll_msix; } { netif_napi_add(bp->dev, & bp->bnx2_napi[i].napi, poll, 64); bnapi->bp = bp; i = i + 1; } ldv_55588: ; if (i < bp->irq_nvecs) { goto ldv_55587; } else { } return; } } static struct net_device_ops const bnx2_netdev_ops = {0, 0, & bnx2_open, & bnx2_close, & bnx2_start_xmit, 0, 0, & bnx2_set_rx_mode, & bnx2_change_mac_addr, & eth_validate_addr, & bnx2_ioctl, 0, & bnx2_change_mtu, 0, & bnx2_tx_timeout, & bnx2_get_stats64, 0, 0, 0, & poll_bnx2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & bnx2_fix_features, & bnx2_set_features, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static int bnx2_init_one(struct pci_dev *pdev , struct pci_device_id const *ent ) { int version_printed ; struct net_device *dev ; struct bnx2 *bp ; int rc ; char str[40U] ; int tmp ; void *tmp___0 ; char *tmp___1 ; { version_printed = 0; tmp = version_printed; version_printed = version_printed + 1; if (tmp == 0) { { printk("\016bnx2: %s", (char *)(& version)); } } else { } { dev = ldv_alloc_etherdev_mqs_165(10368, 8U, 8U); } if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { return (-12); } else { } { rc = bnx2_init_board(pdev, dev); } if (rc < 0) { goto err_free; } else { } { dev->netdev_ops = & bnx2_netdev_ops; dev->watchdog_timeo = 1250; dev->ethtool_ops = & bnx2_ethtool_ops; tmp___0 = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp___0; pci_set_drvdata(pdev, (void *)dev); memcpy((void *)dev->dev_addr, (void const *)(& bp->mac_addr), 6UL); dev->hw_features = 6443040771ULL; } if ((bp->chip_id & 4294901760U) == 1460207616U) { dev->hw_features = dev->hw_features | 1048592ULL; } else { } { dev->vlan_features = dev->hw_features; dev->hw_features = dev->hw_features | 384ULL; dev->features = dev->features | dev->hw_features; dev->priv_flags = dev->priv_flags | 131072U; rc = ldv_register_netdev_166(dev); } if (rc != 0) { { dev_err((struct device const *)(& pdev->dev), "Cannot register net device\n"); } goto error; } else { } { tmp___1 = bnx2_bus_string(bp, (char *)(& str)); netdev_info((struct net_device const *)dev, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n", board_info[ent->driver_data].name, ((bp->chip_id & 61440U) >> 12) + 65U, (bp->chip_id & 4080U) >> 4, tmp___1, (long )pdev->resource[0].start, pdev->irq, dev->dev_addr); } return (0); error: { pci_iounmap(pdev, bp->regview); pci_release_regions(pdev); pci_disable_device(pdev); } err_free: { ldv_free_netdev_167(dev); } return (rc); } } static void bnx2_remove_one(struct pci_dev *pdev ) { struct net_device *dev ; void *tmp ; struct bnx2 *bp ; void *tmp___0 ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp___0; ldv_unregister_netdev_168(dev); ldv_del_timer_sync_169(& bp->timer); cancel_work_sync(& bp->reset_task); pci_iounmap(bp->pdev, bp->regview); kfree((void const *)bp->temp_stats_blk); } if ((bp->flags & 16384U) != 0U) { { pci_disable_pcie_error_reporting(pdev); bp->flags = bp->flags & 4294950911U; } } else { } { bnx2_release_firmware(bp); ldv_free_netdev_170(dev); pci_release_regions(pdev); pci_disable_device(pdev); } return; } } static int bnx2_suspend(struct device *device ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *dev ; void *tmp ; struct bnx2 *bp ; void *tmp___0 ; bool tmp___1 ; { { __mptr = (struct device const *)device; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp___0; tmp___1 = netif_running((struct net_device const *)dev); } if ((int )tmp___1) { { cancel_work_sync(& bp->reset_task); bnx2_netif_stop(bp, 1); netif_device_detach(dev); ldv_del_timer_sync_171(& bp->timer); bnx2_shutdown_chip(bp); __bnx2_free_irq(bp); bnx2_free_skbs(bp); } } else { } { bnx2_setup_wol(bp); } return (0); } } static int bnx2_resume(struct device *device ) { struct pci_dev *pdev ; struct device const *__mptr ; struct net_device *dev ; void *tmp ; struct bnx2 *bp ; void *tmp___0 ; bool tmp___1 ; int tmp___2 ; { { __mptr = (struct device const *)device; pdev = (struct pci_dev *)__mptr + 0xffffffffffffff68UL; tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp___0; tmp___1 = netif_running((struct net_device const *)dev); } if (tmp___1) { tmp___2 = 0; } else { tmp___2 = 1; } if (tmp___2) { return (0); } else { } { bnx2_set_power_state(bp, 0); netif_device_attach(dev); bnx2_request_irq(bp); bnx2_init_nic(bp, 1); bnx2_netif_start(bp, 1); } return (0); } } static struct dev_pm_ops const bnx2_pm_ops = {0, 0, & bnx2_suspend, & bnx2_resume, & bnx2_suspend, & bnx2_resume, & bnx2_suspend, & bnx2_resume, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev , pci_channel_state_t state ) { struct net_device *dev ; void *tmp ; struct bnx2 *bp ; void *tmp___0 ; bool tmp___1 ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp___0; rtnl_lock(); netif_device_detach(dev); } if (state == 3U) { { rtnl_unlock(); } return (4U); } else { } { tmp___1 = netif_running((struct net_device const *)dev); } if ((int )tmp___1) { { bnx2_netif_stop(bp, 1); ldv_del_timer_sync_172(& bp->timer); bnx2_reset_nic(bp, 16777216U); } } else { } { pci_disable_device(pdev); rtnl_unlock(); } return (3U); } } static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev ) { struct net_device *dev ; void *tmp ; struct bnx2 *bp ; void *tmp___0 ; pci_ers_result_t result ; int err ; bool tmp___1 ; int tmp___2 ; bool tmp___3 ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp___0; result = 4U; err = 0; rtnl_lock(); tmp___2 = pci_enable_device(pdev); } if (tmp___2 != 0) { { dev_err((struct device const *)(& pdev->dev), "Cannot re-enable PCI device after reset\n"); } } else { { pci_set_master(pdev); pci_restore_state(pdev); pci_save_state(pdev); tmp___1 = netif_running((struct net_device const *)dev); } if ((int )tmp___1) { { err = bnx2_init_nic(bp, 1); } } else { } if (err == 0) { result = 5U; } else { } } if (result != 5U) { { tmp___3 = netif_running((struct net_device const *)dev); } if ((int )tmp___3) { { bnx2_napi_enable(bp); dev_close(dev); } } else { } } else { } { rtnl_unlock(); } if ((bp->flags & 16384U) == 0U) { return (result); } else { } { err = pci_cleanup_aer_uncorrect_error_status(pdev); } if (err != 0) { { dev_err((struct device const *)(& pdev->dev), "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n", err); } } else { } return (result); } } static void bnx2_io_resume(struct pci_dev *pdev ) { struct net_device *dev ; void *tmp ; struct bnx2 *bp ; void *tmp___0 ; bool tmp___1 ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; tmp___0 = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp___0; rtnl_lock(); tmp___1 = netif_running((struct net_device const *)dev); } if ((int )tmp___1) { { bnx2_netif_start(bp, 1); } } else { } { netif_device_attach(dev); rtnl_unlock(); } return; } } static void bnx2_shutdown(struct pci_dev *pdev ) { struct net_device *dev ; void *tmp ; struct bnx2 *bp ; void *tmp___0 ; bool tmp___1 ; { { tmp = pci_get_drvdata(pdev); dev = (struct net_device *)tmp; } if ((unsigned long )dev == (unsigned long )((struct net_device *)0)) { return; } else { } { tmp___0 = netdev_priv((struct net_device const *)dev); bp = (struct bnx2 *)tmp___0; } if ((unsigned long )bp == (unsigned long )((struct bnx2 *)0)) { return; } else { } { rtnl_lock(); tmp___1 = netif_running((struct net_device const *)dev); } if ((int )tmp___1) { { dev_close(bp->dev); } } else { } if ((unsigned int )system_state == 3U) { { bnx2_set_power_state(bp, 3); } } else { } { rtnl_unlock(); } return; } } static struct pci_error_handlers const bnx2_err_handler = {(pci_ers_result_t (*)(struct pci_dev * , enum pci_channel_state ))(& bnx2_io_error_detected), 0, 0, & bnx2_io_slot_reset, & bnx2_io_resume}; static struct pci_driver bnx2_pci_driver = {{0, 0}, "bnx2", (struct pci_device_id const *)(& bnx2_pci_tbl), & bnx2_init_one, & bnx2_remove_one, 0, 0, 0, 0, & bnx2_shutdown, 0, & bnx2_err_handler, {0, 0, 0, 0, (_Bool)0, 0, 0, 0, 0, 0, 0, 0, 0, & bnx2_pm_ops, 0}, {{{{{{0U}}, 0U, 0U, 0, {0, {0, 0}, 0, 0, 0UL}}}}, {0, 0}}}; static int bnx2_pci_driver_init(void) { int tmp ; { { tmp = ldv___pci_register_driver_173(& bnx2_pci_driver, & __this_module, "bnx2"); } return (tmp); } } static void bnx2_pci_driver_exit(void) { { { ldv_pci_unregister_driver_174(& bnx2_pci_driver); } return; } } void ldv_EMGentry_exit_bnx2_pci_driver_exit_16_2(void (*arg0)(void) ) ; int ldv_EMGentry_init_bnx2_pci_driver_init_16_9(int (*arg0)(void) ) ; int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) ; struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) ; int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) ; void ldv_dispatch_deregister_13_1(struct net_device *arg0 ) ; void ldv_dispatch_deregister_14_1(struct pci_driver *arg0 ) ; void ldv_dispatch_deregister_platform_instance_15_16_4(void) ; void ldv_dispatch_instance_deregister_7_1(struct timer_list *arg0 ) ; void ldv_dispatch_instance_register_10_2(struct timer_list *arg0 ) ; void ldv_dispatch_irq_deregister_8_1(int arg0 ) ; void ldv_dispatch_irq_register_12_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) ; void ldv_dispatch_pm_deregister_4_5(void) ; void ldv_dispatch_pm_register_4_6(void) ; void ldv_dispatch_register_11_4(struct net_device *arg0 ) ; void ldv_dispatch_register_15_2(struct pci_driver *arg0 ) ; void ldv_dispatch_register_platform_instance_15_16_5(void) ; void ldv_dummy_resourceless_instance_callback_1_12(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_13(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_16(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_17(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_18(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_19(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_20(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_21(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_22(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_25(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_28(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_29(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_3(void (*arg0)(struct net_device * , struct ethtool_channels * ) , struct net_device *arg1 , struct ethtool_channels *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_32(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_35(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_38(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_39(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_40(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_43(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_44(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_45(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_46(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_47(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_48(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; void ldv_dummy_resourceless_instance_callback_1_49(void (*arg0)(struct net_device * , struct ethtool_test * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_test *arg2 , unsigned long long *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_52(int (*arg0)(struct net_device * , struct ethtool_channels * ) , struct net_device *arg1 , struct ethtool_channels *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_53(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_54(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) ; void ldv_dummy_resourceless_instance_callback_1_57(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_58(int (*arg0)(struct net_device * , enum ethtool_phys_id_state ) , struct net_device *arg1 , enum ethtool_phys_id_state arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_59(int (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_60(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_61(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_7(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_8(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) ; void ldv_dummy_resourceless_instance_callback_1_9(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) ; void ldv_entry_EMGentry_16(void *arg0 ) ; int main(void) ; void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) ; void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) ; enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) ; void ldv_interrupt_interrupt_instance_0(void *arg0 ) ; int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) ; void ldv_net_dummy_resourceless_instance_1(void *arg0 ) ; void ldv_pci_instance_callback_2_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) ; void ldv_pci_instance_callback_2_23(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_callback_2_24(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) ; void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) ; int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) ; void ldv_pci_pci_instance_2(void *arg0 ) ; void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) ; int ldv_platform_instance_probe_4_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_platform_instance_release_4_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) ; void ldv_pm_ops_instance_complete_3_3(void (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_3_15(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_late_3_14(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_freeze_noirq_3_12(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_3_9(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_late_3_8(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_poweroff_noirq_3_6(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_prepare_3_22(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_3_4(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_early_3_7(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_restore_noirq_3_5(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_3_16(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_early_3_17(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_resume_noirq_3_19(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_idle_3_27(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_resume_3_24(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_runtime_suspend_3_25(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_3_21(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_late_3_18(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_suspend_noirq_3_20(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_3_10(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_early_3_13(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_ops_instance_thaw_noirq_3_11(int (*arg0)(struct device * ) , struct device *arg1 ) ; void ldv_pm_platform_instance_4(void *arg0 ) ; void ldv_pm_pm_ops_instance_3(void *arg0 ) ; int ldv_register_netdev(int arg0 , struct net_device *arg1 ) ; int ldv_register_netdev_open_11_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) ; void ldv_timer_instance_callback_5_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) ; void ldv_timer_timer_instance_5(void *arg0 ) ; void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) ; void ldv_unregister_netdev_stop_13_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) ; struct ldv_thread ldv_thread_0 ; struct ldv_thread ldv_thread_1 ; struct ldv_thread ldv_thread_16 ; struct ldv_thread ldv_thread_2 ; struct ldv_thread ldv_thread_3 ; struct ldv_thread ldv_thread_4 ; struct ldv_thread ldv_thread_5 ; void ldv_EMGentry_exit_bnx2_pci_driver_exit_16_2(void (*arg0)(void) ) { { { bnx2_pci_driver_exit(); } return; } } int ldv_EMGentry_init_bnx2_pci_driver_init_16_9(int (*arg0)(void) ) { int tmp ; { { tmp = bnx2_pci_driver_init(); } return (tmp); } } int ldv___pci_register_driver(int arg0 , struct pci_driver *arg1 , struct module *arg2 , char *arg3 ) { struct pci_driver *ldv_15_pci_driver_pci_driver ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_15_pci_driver_pci_driver = arg1; ldv_dispatch_register_15_2(ldv_15_pci_driver_pci_driver); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } struct net_device *ldv_alloc_etherdev_mqs(struct net_device *arg0 , int arg1 , unsigned int arg2 , unsigned int arg3 ) { struct net_device *ldv_6_netdev_net_device ; void *tmp ; int tmp___0 ; { { tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { tmp = ldv_xmalloc(3200UL); ldv_6_netdev_net_device = (struct net_device *)tmp; } return (ldv_6_netdev_net_device); return (arg0); } else { return ((struct net_device *)0); return (arg0); } return (arg0); } } int ldv_del_timer_sync(int arg0 , struct timer_list *arg1 ) { struct timer_list *ldv_7_timer_list_timer_list ; { { ldv_7_timer_list_timer_list = arg1; ldv_dispatch_instance_deregister_7_1(ldv_7_timer_list_timer_list); } return (arg0); return (arg0); } } void ldv_dispatch_deregister_13_1(struct net_device *arg0 ) { { return; } } void ldv_dispatch_deregister_14_1(struct pci_driver *arg0 ) { { return; } } void ldv_dispatch_deregister_platform_instance_15_16_4(void) { { return; } } void ldv_dispatch_instance_deregister_7_1(struct timer_list *arg0 ) { { return; } } void ldv_dispatch_instance_register_10_2(struct timer_list *arg0 ) { struct ldv_struct_timer_instance_5 *cf_arg_5 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_5 = (struct ldv_struct_timer_instance_5 *)tmp; cf_arg_5->arg0 = arg0; ldv_timer_timer_instance_5((void *)cf_arg_5); } return; } } void ldv_dispatch_irq_deregister_8_1(int arg0 ) { { return; } } void ldv_dispatch_irq_register_12_2(int arg0 , enum irqreturn (*arg1)(int , void * ) , enum irqreturn (*arg2)(int , void * ) , void *arg3 ) { struct ldv_struct_interrupt_instance_0 *cf_arg_0 ; void *tmp ; { { tmp = ldv_xmalloc(40UL); cf_arg_0 = (struct ldv_struct_interrupt_instance_0 *)tmp; cf_arg_0->arg0 = arg0; cf_arg_0->arg1 = arg1; cf_arg_0->arg2 = arg2; cf_arg_0->arg3 = arg3; ldv_interrupt_interrupt_instance_0((void *)cf_arg_0); } return; } } void ldv_dispatch_pm_deregister_4_5(void) { { return; } } void ldv_dispatch_pm_register_4_6(void) { struct ldv_struct_platform_instance_4 *cf_arg_3 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_3 = (struct ldv_struct_platform_instance_4 *)tmp; ldv_pm_pm_ops_instance_3((void *)cf_arg_3); } return; } } void ldv_dispatch_register_11_4(struct net_device *arg0 ) { struct ldv_struct_dummy_resourceless_instance_1 *cf_arg_1 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_1 = (struct ldv_struct_dummy_resourceless_instance_1 *)tmp; cf_arg_1->arg0 = arg0; ldv_net_dummy_resourceless_instance_1((void *)cf_arg_1); } return; } } void ldv_dispatch_register_15_2(struct pci_driver *arg0 ) { struct ldv_struct_pci_instance_2 *cf_arg_2 ; void *tmp ; { { tmp = ldv_xmalloc(16UL); cf_arg_2 = (struct ldv_struct_pci_instance_2 *)tmp; cf_arg_2->arg0 = arg0; ldv_pci_pci_instance_2((void *)cf_arg_2); } return; } } void ldv_dispatch_register_platform_instance_15_16_5(void) { struct ldv_struct_platform_instance_4 *cf_arg_4 ; void *tmp ; { { tmp = ldv_xmalloc(4UL); cf_arg_4 = (struct ldv_struct_platform_instance_4 *)tmp; ldv_pm_platform_instance_4((void *)cf_arg_4); } return; } } void ldv_dummy_resourceless_instance_callback_1_12(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { bnx2_get_eeprom_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_13(void (*arg0)(struct net_device * , struct ethtool_stats * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_stats *arg2 , unsigned long long *arg3 ) { { { bnx2_get_ethtool_stats(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_16(unsigned int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { bnx2_get_link(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_17(void (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { bnx2_get_pauseparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_18(void (*arg0)(struct net_device * , struct ethtool_regs * , void * ) , struct net_device *arg1 , struct ethtool_regs *arg2 , void *arg3 ) { { { bnx2_get_regs(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_19(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { bnx2_get_regs_len(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_20(void (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { bnx2_get_ringparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_21(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { bnx2_get_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_22(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { bnx2_get_sset_count(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_25(void (*arg0)(struct net_device * , unsigned int , unsigned char * ) , struct net_device *arg1 , unsigned int arg2 , unsigned char *arg3 ) { { { bnx2_get_strings(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_28(void (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { bnx2_get_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_29(int (*arg0)(struct net_device * , int ) , struct net_device *arg1 , int arg2 ) { { { bnx2_change_mtu(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_3(void (*arg0)(struct net_device * , struct ethtool_channels * ) , struct net_device *arg1 , struct ethtool_channels *arg2 ) { { { bnx2_get_channels(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_32(int (*arg0)(struct net_device * , struct ifreq * , int ) , struct net_device *arg1 , struct ifreq *arg2 , int arg3 ) { { { bnx2_ioctl(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_35(unsigned long long (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { bnx2_fix_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_38(struct rtnl_link_stats64 *(*arg0)(struct net_device * , struct rtnl_link_stats64 * ) , struct net_device *arg1 , struct rtnl_link_stats64 *arg2 ) { { { bnx2_get_stats64(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_39(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { poll_bnx2(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_40(int (*arg0)(struct net_device * , unsigned long long ) , struct net_device *arg1 , unsigned long long arg2 ) { { { bnx2_set_features(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_43(int (*arg0)(struct net_device * , void * ) , struct net_device *arg1 , void *arg2 ) { { { bnx2_change_mac_addr(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_44(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { bnx2_set_rx_mode(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_45(enum netdev_tx (*arg0)(struct sk_buff * , struct net_device * ) , struct sk_buff *arg1 , struct net_device *arg2 ) { { { bnx2_start_xmit(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_46(void (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { bnx2_tx_timeout(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_47(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { eth_validate_addr(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_48(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { bnx2_nway_reset(arg1); } return; } } void ldv_dummy_resourceless_instance_callback_1_49(void (*arg0)(struct net_device * , struct ethtool_test * , unsigned long long * ) , struct net_device *arg1 , struct ethtool_test *arg2 , unsigned long long *arg3 ) { { { bnx2_self_test(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_52(int (*arg0)(struct net_device * , struct ethtool_channels * ) , struct net_device *arg1 , struct ethtool_channels *arg2 ) { { { bnx2_set_channels(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_53(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { bnx2_set_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_54(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) { { { bnx2_set_eeprom(arg1, arg2, arg3); } return; } } void ldv_dummy_resourceless_instance_callback_1_57(int (*arg0)(struct net_device * , struct ethtool_pauseparam * ) , struct net_device *arg1 , struct ethtool_pauseparam *arg2 ) { { { bnx2_set_pauseparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_58(int (*arg0)(struct net_device * , enum ethtool_phys_id_state ) , struct net_device *arg1 , enum ethtool_phys_id_state arg2 ) { { { bnx2_set_phys_id(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_59(int (*arg0)(struct net_device * , struct ethtool_ringparam * ) , struct net_device *arg1 , struct ethtool_ringparam *arg2 ) { { { bnx2_set_ringparam(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_60(int (*arg0)(struct net_device * , struct ethtool_cmd * ) , struct net_device *arg1 , struct ethtool_cmd *arg2 ) { { { bnx2_set_settings(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_61(int (*arg0)(struct net_device * , struct ethtool_wolinfo * ) , struct net_device *arg1 , struct ethtool_wolinfo *arg2 ) { { { bnx2_set_wol(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_7(int (*arg0)(struct net_device * , struct ethtool_coalesce * ) , struct net_device *arg1 , struct ethtool_coalesce *arg2 ) { { { bnx2_get_coalesce(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_8(void (*arg0)(struct net_device * , struct ethtool_drvinfo * ) , struct net_device *arg1 , struct ethtool_drvinfo *arg2 ) { { { bnx2_get_drvinfo(arg1, arg2); } return; } } void ldv_dummy_resourceless_instance_callback_1_9(int (*arg0)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) , struct net_device *arg1 , struct ethtool_eeprom *arg2 , unsigned char *arg3 ) { { { bnx2_get_eeprom(arg1, arg2, arg3); } return; } } void ldv_entry_EMGentry_16(void *arg0 ) { void (*ldv_16_exit_bnx2_pci_driver_exit_default)(void) ; int (*ldv_16_init_bnx2_pci_driver_init_default)(void) ; int ldv_16_ret_default ; int tmp ; int tmp___0 ; { { ldv_16_ret_default = ldv_EMGentry_init_bnx2_pci_driver_init_16_9(ldv_16_init_bnx2_pci_driver_init_default); ldv_16_ret_default = ldv_post_init(ldv_16_ret_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_16_ret_default != 0); ldv_check_final_state(); ldv_stop(); } return; } else { { ldv_assume(ldv_16_ret_default == 0); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_dispatch_register_platform_instance_15_16_5(); ldv_dispatch_deregister_platform_instance_15_16_4(); } } else { } { ldv_EMGentry_exit_bnx2_pci_driver_exit_16_2(ldv_16_exit_bnx2_pci_driver_exit_default); ldv_check_final_state(); ldv_stop(); } return; } return; } } int main(void) { { { ldv_initialize(); ldv_entry_EMGentry_16((void *)0); } return 0; } } void ldv_free_irq(void *arg0 , int arg1 , void *arg2 ) { int ldv_8_line_line ; { { ldv_8_line_line = arg1; ldv_dispatch_irq_deregister_8_1(ldv_8_line_line); } return; return; } } void ldv_free_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_9_netdev_net_device ; { { ldv_9_netdev_net_device = arg1; ldv_free((void *)ldv_9_netdev_net_device); } return; return; } } enum irqreturn ldv_interrupt_instance_handler_0_5(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { enum irqreturn tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_interrupt_instance_thread_0_3(enum irqreturn (*arg0)(int , void * ) , int arg1 , void *arg2 ) { { { (*arg0)(arg1, arg2); } return; } } void ldv_interrupt_interrupt_instance_0(void *arg0 ) { enum irqreturn (*ldv_0_callback_handler)(int , void * ) ; void *ldv_0_data_data ; int ldv_0_line_line ; enum irqreturn ldv_0_ret_val_default ; enum irqreturn (*ldv_0_thread_thread)(int , void * ) ; struct ldv_struct_interrupt_instance_0 *data ; int tmp ; { data = (struct ldv_struct_interrupt_instance_0 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_interrupt_instance_0 *)0)) { { ldv_0_line_line = data->arg0; ldv_0_callback_handler = data->arg1; ldv_0_thread_thread = data->arg2; ldv_0_data_data = data->arg3; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_0_callback_handler != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_0_ret_val_default = ldv_interrupt_instance_handler_0_5(ldv_0_callback_handler, ldv_0_line_line, ldv_0_data_data); } } else { } { ldv_switch_to_process_context(); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume((unsigned int )ldv_0_ret_val_default == 2U); } if ((unsigned long )ldv_0_thread_thread != (unsigned long )((enum irqreturn (*)(int , void * ))0)) { { ldv_interrupt_instance_thread_0_3(ldv_0_thread_thread, ldv_0_line_line, ldv_0_data_data); } } else { } } else { { ldv_assume((unsigned int )ldv_0_ret_val_default != 2U); } } return; return; } } int ldv_mod_timer(int arg0 , struct timer_list *arg1 , unsigned long arg2 ) { struct timer_list *ldv_10_timer_list_timer_list ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_10_timer_list_timer_list = arg1; ldv_dispatch_instance_register_10_2(ldv_10_timer_list_timer_list); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_net_dummy_resourceless_instance_1(void *arg0 ) { void (*ldv_1_callback_get_channels)(struct net_device * , struct ethtool_channels * ) ; int (*ldv_1_callback_get_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; void (*ldv_1_callback_get_drvinfo)(struct net_device * , struct ethtool_drvinfo * ) ; int (*ldv_1_callback_get_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) ; int (*ldv_1_callback_get_eeprom_len)(struct net_device * ) ; void (*ldv_1_callback_get_ethtool_stats)(struct net_device * , struct ethtool_stats * , unsigned long long * ) ; unsigned int (*ldv_1_callback_get_link)(struct net_device * ) ; void (*ldv_1_callback_get_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; void (*ldv_1_callback_get_regs)(struct net_device * , struct ethtool_regs * , void * ) ; int (*ldv_1_callback_get_regs_len)(struct net_device * ) ; void (*ldv_1_callback_get_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_1_callback_get_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_1_callback_get_sset_count)(struct net_device * , int ) ; void (*ldv_1_callback_get_strings)(struct net_device * , unsigned int , unsigned char * ) ; void (*ldv_1_callback_get_wol)(struct net_device * , struct ethtool_wolinfo * ) ; int (*ldv_1_callback_ndo_change_mtu)(struct net_device * , int ) ; int (*ldv_1_callback_ndo_do_ioctl)(struct net_device * , struct ifreq * , int ) ; unsigned long long (*ldv_1_callback_ndo_fix_features)(struct net_device * , unsigned long long ) ; struct rtnl_link_stats64 *(*ldv_1_callback_ndo_get_stats64)(struct net_device * , struct rtnl_link_stats64 * ) ; void (*ldv_1_callback_ndo_poll_controller)(struct net_device * ) ; int (*ldv_1_callback_ndo_set_features)(struct net_device * , unsigned long long ) ; int (*ldv_1_callback_ndo_set_mac_address)(struct net_device * , void * ) ; void (*ldv_1_callback_ndo_set_rx_mode)(struct net_device * ) ; enum netdev_tx (*ldv_1_callback_ndo_start_xmit)(struct sk_buff * , struct net_device * ) ; void (*ldv_1_callback_ndo_tx_timeout)(struct net_device * ) ; int (*ldv_1_callback_ndo_validate_addr)(struct net_device * ) ; int (*ldv_1_callback_nway_reset)(struct net_device * ) ; void (*ldv_1_callback_self_test)(struct net_device * , struct ethtool_test * , unsigned long long * ) ; int (*ldv_1_callback_set_channels)(struct net_device * , struct ethtool_channels * ) ; int (*ldv_1_callback_set_coalesce)(struct net_device * , struct ethtool_coalesce * ) ; int (*ldv_1_callback_set_eeprom)(struct net_device * , struct ethtool_eeprom * , unsigned char * ) ; int (*ldv_1_callback_set_pauseparam)(struct net_device * , struct ethtool_pauseparam * ) ; int (*ldv_1_callback_set_phys_id)(struct net_device * , enum ethtool_phys_id_state ) ; int (*ldv_1_callback_set_ringparam)(struct net_device * , struct ethtool_ringparam * ) ; int (*ldv_1_callback_set_settings)(struct net_device * , struct ethtool_cmd * ) ; int (*ldv_1_callback_set_wol)(struct net_device * , struct ethtool_wolinfo * ) ; enum ethtool_phys_id_state ldv_1_container_enum_ethtool_phys_id_state ; struct net_device *ldv_1_container_net_device ; struct ethtool_channels *ldv_1_container_struct_ethtool_channels_ptr ; struct ethtool_cmd *ldv_1_container_struct_ethtool_cmd_ptr ; struct ethtool_coalesce *ldv_1_container_struct_ethtool_coalesce_ptr ; struct ethtool_drvinfo *ldv_1_container_struct_ethtool_drvinfo_ptr ; struct ethtool_eeprom *ldv_1_container_struct_ethtool_eeprom_ptr ; struct ethtool_pauseparam *ldv_1_container_struct_ethtool_pauseparam_ptr ; struct ethtool_regs *ldv_1_container_struct_ethtool_regs_ptr ; struct ethtool_ringparam *ldv_1_container_struct_ethtool_ringparam_ptr ; struct ethtool_stats *ldv_1_container_struct_ethtool_stats_ptr ; struct ethtool_test *ldv_1_container_struct_ethtool_test_ptr ; struct ethtool_wolinfo *ldv_1_container_struct_ethtool_wolinfo_ptr ; struct ifreq *ldv_1_container_struct_ifreq_ptr ; struct rtnl_link_stats64 *ldv_1_container_struct_rtnl_link_stats64_ptr ; struct sk_buff *ldv_1_container_struct_sk_buff_ptr ; unsigned long long *ldv_1_ldv_param_13_2_default ; int ldv_1_ldv_param_22_1_default ; unsigned int ldv_1_ldv_param_25_1_default ; unsigned char *ldv_1_ldv_param_25_2_default ; int ldv_1_ldv_param_29_1_default ; int ldv_1_ldv_param_32_2_default ; unsigned long long ldv_1_ldv_param_35_1_default ; unsigned long long ldv_1_ldv_param_40_1_default ; unsigned long long *ldv_1_ldv_param_49_2_default ; unsigned char *ldv_1_ldv_param_54_2_default ; unsigned char *ldv_1_ldv_param_9_2_default ; struct ldv_struct_dummy_resourceless_instance_1 *data ; int tmp ; void *tmp___0 ; void *tmp___1 ; void *tmp___2 ; void *tmp___3 ; void *tmp___4 ; { data = (struct ldv_struct_dummy_resourceless_instance_1 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_dummy_resourceless_instance_1 *)0)) { { ldv_1_container_net_device = data->arg0; ldv_free((void *)data); } } else { } goto ldv_call_1; return; ldv_call_1: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } if (tmp == 5) { goto case_5; } else { } if (tmp == 6) { goto case_6; } else { } if (tmp == 7) { goto case_7; } else { } if (tmp == 8) { goto case_8; } else { } if (tmp == 9) { goto case_9; } else { } if (tmp == 10) { goto case_10; } else { } if (tmp == 11) { goto case_11; } else { } if (tmp == 12) { goto case_12; } else { } if (tmp == 13) { goto case_13; } else { } if (tmp == 14) { goto case_14; } else { } if (tmp == 15) { goto case_15; } else { } if (tmp == 16) { goto case_16; } else { } if (tmp == 17) { goto case_17; } else { } if (tmp == 18) { goto case_18; } else { } if (tmp == 19) { goto case_19; } else { } if (tmp == 20) { goto case_20; } else { } if (tmp == 21) { goto case_21; } else { } if (tmp == 22) { goto case_22; } else { } if (tmp == 23) { goto case_23; } else { } if (tmp == 24) { goto case_24; } else { } if (tmp == 25) { goto case_25; } else { } if (tmp == 26) { goto case_26; } else { } if (tmp == 27) { goto case_27; } else { } if (tmp == 28) { goto case_28; } else { } if (tmp == 29) { goto case_29; } else { } if (tmp == 30) { goto case_30; } else { } if (tmp == 31) { goto case_31; } else { } if (tmp == 32) { goto case_32; } else { } if (tmp == 33) { goto case_33; } else { } if (tmp == 34) { goto case_34; } else { } if (tmp == 35) { goto case_35; } else { } if (tmp == 36) { goto case_36; } else { } if (tmp == 37) { goto case_37; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_61(ldv_1_callback_set_wol, ldv_1_container_net_device, ldv_1_container_struct_ethtool_wolinfo_ptr); } goto ldv_call_1; case_2: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_60(ldv_1_callback_set_settings, ldv_1_container_net_device, ldv_1_container_struct_ethtool_cmd_ptr); } goto ldv_call_1; goto ldv_call_1; case_3: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_59(ldv_1_callback_set_ringparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_ringparam_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_4: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_58(ldv_1_callback_set_phys_id, ldv_1_container_net_device, ldv_1_container_enum_ethtool_phys_id_state); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_5: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_57(ldv_1_callback_set_pauseparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_pauseparam_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_6: /* CIL Label */ { tmp___0 = ldv_xmalloc(1UL); ldv_1_ldv_param_54_2_default = (unsigned char *)tmp___0; ldv_dummy_resourceless_instance_callback_1_54(ldv_1_callback_set_eeprom, ldv_1_container_net_device, ldv_1_container_struct_ethtool_eeprom_ptr, ldv_1_ldv_param_54_2_default); ldv_free((void *)ldv_1_ldv_param_54_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_7: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_53(ldv_1_callback_set_coalesce, ldv_1_container_net_device, ldv_1_container_struct_ethtool_coalesce_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_8: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_52(ldv_1_callback_set_channels, ldv_1_container_net_device, ldv_1_container_struct_ethtool_channels_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_9: /* CIL Label */ { tmp___1 = ldv_xmalloc(8UL); ldv_1_ldv_param_49_2_default = (unsigned long long *)tmp___1; ldv_dummy_resourceless_instance_callback_1_49(ldv_1_callback_self_test, ldv_1_container_net_device, ldv_1_container_struct_ethtool_test_ptr, ldv_1_ldv_param_49_2_default); ldv_free((void *)ldv_1_ldv_param_49_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_10: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_48(ldv_1_callback_nway_reset, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_11: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_47(ldv_1_callback_ndo_validate_addr, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_12: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_46(ldv_1_callback_ndo_tx_timeout, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_13: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_45(ldv_1_callback_ndo_start_xmit, ldv_1_container_struct_sk_buff_ptr, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_14: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_44(ldv_1_callback_ndo_set_rx_mode, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_15: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_43(ldv_1_callback_ndo_set_mac_address, ldv_1_container_net_device, (void *)ldv_1_container_struct_ethtool_channels_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_16: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_40(ldv_1_callback_ndo_set_features, ldv_1_container_net_device, ldv_1_ldv_param_40_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_17: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_39(ldv_1_callback_ndo_poll_controller, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_18: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_38(ldv_1_callback_ndo_get_stats64, ldv_1_container_net_device, ldv_1_container_struct_rtnl_link_stats64_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_19: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_35(ldv_1_callback_ndo_fix_features, ldv_1_container_net_device, ldv_1_ldv_param_35_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_20: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_32(ldv_1_callback_ndo_do_ioctl, ldv_1_container_net_device, ldv_1_container_struct_ifreq_ptr, ldv_1_ldv_param_32_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_21: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_29(ldv_1_callback_ndo_change_mtu, ldv_1_container_net_device, ldv_1_ldv_param_29_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_22: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_28(ldv_1_callback_get_wol, ldv_1_container_net_device, ldv_1_container_struct_ethtool_wolinfo_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_23: /* CIL Label */ { tmp___2 = ldv_xmalloc(1UL); ldv_1_ldv_param_25_2_default = (unsigned char *)tmp___2; ldv_dummy_resourceless_instance_callback_1_25(ldv_1_callback_get_strings, ldv_1_container_net_device, ldv_1_ldv_param_25_1_default, ldv_1_ldv_param_25_2_default); ldv_free((void *)ldv_1_ldv_param_25_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_24: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_22(ldv_1_callback_get_sset_count, ldv_1_container_net_device, ldv_1_ldv_param_22_1_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_25: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_21(ldv_1_callback_get_settings, ldv_1_container_net_device, ldv_1_container_struct_ethtool_cmd_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_26: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_20(ldv_1_callback_get_ringparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_ringparam_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_27: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_19(ldv_1_callback_get_regs_len, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_28: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_18(ldv_1_callback_get_regs, ldv_1_container_net_device, ldv_1_container_struct_ethtool_regs_ptr, (void *)ldv_1_container_struct_ethtool_channels_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_29: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_17(ldv_1_callback_get_pauseparam, ldv_1_container_net_device, ldv_1_container_struct_ethtool_pauseparam_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_30: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_16(ldv_1_callback_get_link, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_31: /* CIL Label */ { tmp___3 = ldv_xmalloc(8UL); ldv_1_ldv_param_13_2_default = (unsigned long long *)tmp___3; ldv_dummy_resourceless_instance_callback_1_13(ldv_1_callback_get_ethtool_stats, ldv_1_container_net_device, ldv_1_container_struct_ethtool_stats_ptr, ldv_1_ldv_param_13_2_default); ldv_free((void *)ldv_1_ldv_param_13_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_32: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_12(ldv_1_callback_get_eeprom_len, ldv_1_container_net_device); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_33: /* CIL Label */ { tmp___4 = ldv_xmalloc(1UL); ldv_1_ldv_param_9_2_default = (unsigned char *)tmp___4; ldv_dummy_resourceless_instance_callback_1_9(ldv_1_callback_get_eeprom, ldv_1_container_net_device, ldv_1_container_struct_ethtool_eeprom_ptr, ldv_1_ldv_param_9_2_default); ldv_free((void *)ldv_1_ldv_param_9_2_default); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_34: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_8(ldv_1_callback_get_drvinfo, ldv_1_container_net_device, ldv_1_container_struct_ethtool_drvinfo_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_35: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_7(ldv_1_callback_get_coalesce, ldv_1_container_net_device, ldv_1_container_struct_ethtool_coalesce_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_36: /* CIL Label */ { ldv_dummy_resourceless_instance_callback_1_3(ldv_1_callback_get_channels, ldv_1_container_net_device, ldv_1_container_struct_ethtool_channels_ptr); } goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; goto ldv_call_1; case_37: /* CIL Label */ ; return; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_instance_callback_2_10(unsigned int (*arg0)(struct pci_dev * , enum pci_channel_state ) , struct pci_dev *arg1 , enum pci_channel_state arg2 ) { { { bnx2_io_error_detected(arg1, (pci_channel_state_t )arg2); } return; } } void ldv_pci_instance_callback_2_23(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { bnx2_io_resume(arg1); } return; } } void ldv_pci_instance_callback_2_24(unsigned int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { bnx2_io_slot_reset(arg1); } return; } } int ldv_pci_instance_probe_2_17(int (*arg0)(struct pci_dev * , struct pci_device_id * ) , struct pci_dev *arg1 , struct pci_device_id *arg2 ) { int tmp ; { { tmp = bnx2_init_one(arg1, (struct pci_device_id const *)arg2); } return (tmp); } } void ldv_pci_instance_release_2_2(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { bnx2_remove_one(arg1); } return; } } void ldv_pci_instance_resume_2_5(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_resume_early_2_6(int (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pci_instance_shutdown_2_3(void (*arg0)(struct pci_dev * ) , struct pci_dev *arg1 ) { { { bnx2_shutdown(arg1); } return; } } int ldv_pci_instance_suspend_2_8(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } int ldv_pci_instance_suspend_late_2_7(int (*arg0)(struct pci_dev * , struct pm_message ) , struct pci_dev *arg1 , struct pm_message arg2 ) { int tmp ; { { tmp = (*arg0)(arg1, arg2); } return (tmp); } } void ldv_pci_pci_instance_2(void *arg0 ) { unsigned int (*ldv_2_callback_error_detected)(struct pci_dev * , enum pci_channel_state ) ; void (*ldv_2_callback_func_1_ptr)(struct pci_dev * ) ; unsigned int (*ldv_2_callback_slot_reset)(struct pci_dev * ) ; struct pci_driver *ldv_2_container_pci_driver ; struct pci_dev *ldv_2_resource_dev ; enum pci_channel_state ldv_2_resource_enum_pci_channel_state ; struct pm_message ldv_2_resource_pm_message ; struct pci_device_id *ldv_2_resource_struct_pci_device_id_ptr ; int ldv_2_ret_default ; struct ldv_struct_pci_instance_2 *data ; void *tmp ; void *tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { data = (struct ldv_struct_pci_instance_2 *)arg0; ldv_2_ret_default = 1; if ((unsigned long )data != (unsigned long )((struct ldv_struct_pci_instance_2 *)0)) { { ldv_2_container_pci_driver = data->arg0; ldv_free((void *)data); } } else { } { tmp = ldv_xmalloc(2936UL); ldv_2_resource_dev = (struct pci_dev *)tmp; tmp___0 = ldv_xmalloc(32UL); ldv_2_resource_struct_pci_device_id_ptr = (struct pci_device_id *)tmp___0; } goto ldv_main_2; return; ldv_main_2: { tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { { ldv_pre_probe(); ldv_2_ret_default = ldv_pci_instance_probe_2_17((int (*)(struct pci_dev * , struct pci_device_id * ))ldv_2_container_pci_driver->probe, ldv_2_resource_dev, ldv_2_resource_struct_pci_device_id_ptr); ldv_2_ret_default = ldv_post_probe(ldv_2_ret_default); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { ldv_assume(ldv_2_ret_default == 0); } goto ldv_call_2; } else { { ldv_assume(ldv_2_ret_default != 0); } goto ldv_main_2; } } else { { ldv_free((void *)ldv_2_resource_dev); ldv_free((void *)ldv_2_resource_struct_pci_device_id_ptr); } return; } return; ldv_call_2: { tmp___3 = ldv_undef_int(); } { if (tmp___3 == 1) { goto case_1; } else { } if (tmp___3 == 2) { goto case_2; } else { } if (tmp___3 == 3) { goto case_3; } else { } if (tmp___3 == 4) { goto case_4; } else { } if (tmp___3 == 5) { goto case_5; } else { } goto switch_default; case_1: /* CIL Label */ { ldv_pci_instance_callback_2_24(ldv_2_callback_slot_reset, ldv_2_resource_dev); } goto ldv_call_2; case_2: /* CIL Label */ { ldv_pci_instance_callback_2_23(ldv_2_callback_func_1_ptr, ldv_2_resource_dev); } goto ldv_call_2; goto ldv_call_2; case_3: /* CIL Label */ { ldv_pci_instance_callback_2_10(ldv_2_callback_error_detected, ldv_2_resource_dev, ldv_2_resource_enum_pci_channel_state); } goto ldv_call_2; goto ldv_call_2; goto ldv_call_2; case_4: /* CIL Label */ ; if ((unsigned long )ldv_2_container_pci_driver->suspend != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_2_8(ldv_2_container_pci_driver->suspend, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); } if ((unsigned long )ldv_2_container_pci_driver->suspend_late != (unsigned long )((int (*)(struct pci_dev * , pm_message_t ))0)) { { ldv_2_ret_default = ldv_pci_instance_suspend_late_2_7(ldv_2_container_pci_driver->suspend_late, ldv_2_resource_dev, ldv_2_resource_pm_message); } } else { } { ldv_2_ret_default = ldv_filter_err_code(ldv_2_ret_default); } if ((unsigned long )ldv_2_container_pci_driver->resume_early != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_early_2_6(ldv_2_container_pci_driver->resume_early, ldv_2_resource_dev); } } else { } if ((unsigned long )ldv_2_container_pci_driver->resume != (unsigned long )((int (*)(struct pci_dev * ))0)) { { ldv_pci_instance_resume_2_5(ldv_2_container_pci_driver->resume, ldv_2_resource_dev); } } else { } goto ldv_call_2; case_5: /* CIL Label */ { ldv_pci_instance_shutdown_2_3(ldv_2_container_pci_driver->shutdown, ldv_2_resource_dev); ldv_pci_instance_release_2_2(ldv_2_container_pci_driver->remove, ldv_2_resource_dev); } goto ldv_main_2; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pci_unregister_driver(void *arg0 , struct pci_driver *arg1 ) { struct pci_driver *ldv_14_pci_driver_pci_driver ; { { ldv_14_pci_driver_pci_driver = arg1; ldv_dispatch_deregister_14_1(ldv_14_pci_driver_pci_driver); } return; return; } } int ldv_platform_instance_probe_4_14(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { int tmp ; { { tmp = (*arg0)(arg1); } return (tmp); } } void ldv_platform_instance_release_4_3(int (*arg0)(struct platform_device * ) , struct platform_device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_complete_3_3(void (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_3_15(int (*arg0)(struct device * ) , struct device *arg1 ) { { { bnx2_suspend(arg1); } return; } } void ldv_pm_ops_instance_freeze_late_3_14(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_freeze_noirq_3_12(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_3_9(int (*arg0)(struct device * ) , struct device *arg1 ) { { { bnx2_suspend(arg1); } return; } } void ldv_pm_ops_instance_poweroff_late_3_8(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_poweroff_noirq_3_6(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_prepare_3_22(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_3_4(int (*arg0)(struct device * ) , struct device *arg1 ) { { { bnx2_resume(arg1); } return; } } void ldv_pm_ops_instance_restore_early_3_7(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_restore_noirq_3_5(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_3_16(int (*arg0)(struct device * ) , struct device *arg1 ) { { { bnx2_resume(arg1); } return; } } void ldv_pm_ops_instance_resume_early_3_17(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_resume_noirq_3_19(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_idle_3_27(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_resume_3_24(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_runtime_suspend_3_25(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_3_21(int (*arg0)(struct device * ) , struct device *arg1 ) { { { bnx2_suspend(arg1); } return; } } void ldv_pm_ops_instance_suspend_late_3_18(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_suspend_noirq_3_20(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_3_10(int (*arg0)(struct device * ) , struct device *arg1 ) { { { bnx2_resume(arg1); } return; } } void ldv_pm_ops_instance_thaw_early_3_13(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_ops_instance_thaw_noirq_3_11(int (*arg0)(struct device * ) , struct device *arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_pm_platform_instance_4(void *arg0 ) { struct platform_driver *ldv_4_container_platform_driver ; struct platform_device *ldv_4_ldv_param_14_0_default ; struct platform_device *ldv_4_ldv_param_3_0_default ; int ldv_4_probed_default ; void *tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; void *tmp___3 ; { ldv_4_probed_default = 1; goto ldv_main_4; return; ldv_main_4: { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = ldv_xmalloc(1432UL); ldv_4_ldv_param_14_0_default = (struct platform_device *)tmp; ldv_pre_probe(); } if ((unsigned long )ldv_4_container_platform_driver->probe != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_4_probed_default = ldv_platform_instance_probe_4_14(ldv_4_container_platform_driver->probe, ldv_4_ldv_param_14_0_default); } } else { } { ldv_4_probed_default = ldv_post_probe(ldv_4_probed_default); ldv_free((void *)ldv_4_ldv_param_14_0_default); tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_4_probed_default == 0); } goto ldv_call_4; } else { { ldv_assume(ldv_4_probed_default != 0); } goto ldv_main_4; } } else { return; } return; ldv_call_4: { tmp___2 = ldv_undef_int(); } { if (tmp___2 == 1) { goto case_1; } else { } if (tmp___2 == 2) { goto case_2; } else { } if (tmp___2 == 3) { goto case_3; } else { } goto switch_default; case_1: /* CIL Label */ { tmp___3 = ldv_xmalloc(1432UL); ldv_4_ldv_param_3_0_default = (struct platform_device *)tmp___3; } if ((unsigned long )ldv_4_container_platform_driver->remove != (unsigned long )((int (*)(struct platform_device * ))0)) { { ldv_platform_instance_release_4_3(ldv_4_container_platform_driver->remove, ldv_4_ldv_param_3_0_default); } } else { } { ldv_free((void *)ldv_4_ldv_param_3_0_default); ldv_4_probed_default = 1; } goto ldv_main_4; case_2: /* CIL Label */ ; goto ldv_call_4; case_3: /* CIL Label */ { ldv_dispatch_pm_register_4_6(); ldv_dispatch_pm_deregister_4_5(); } goto ldv_call_4; goto ldv_call_4; switch_default: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } void ldv_pm_pm_ops_instance_3(void *arg0 ) { struct device *ldv_3_device_device ; struct dev_pm_ops *ldv_3_pm_ops_dev_pm_ops ; int tmp ; int tmp___0 ; int tmp___1 ; int tmp___2 ; int tmp___3 ; { goto ldv_do_3; return; ldv_do_3: { tmp = ldv_undef_int(); } { if (tmp == 1) { goto case_1; } else { } if (tmp == 2) { goto case_2; } else { } if (tmp == 3) { goto case_3; } else { } if (tmp == 4) { goto case_4; } else { } goto switch_default___0; case_1: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->runtime_idle != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_idle_3_27(ldv_3_pm_ops_dev_pm_ops->runtime_idle, ldv_3_device_device); } } else { } goto ldv_do_3; case_2: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->runtime_suspend != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_suspend_3_25(ldv_3_pm_ops_dev_pm_ops->runtime_suspend, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->runtime_resume != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_runtime_resume_3_24(ldv_3_pm_ops_dev_pm_ops->runtime_resume, ldv_3_device_device); } } else { } goto ldv_do_3; case_3: /* CIL Label */ ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->prepare != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_prepare_3_22(ldv_3_pm_ops_dev_pm_ops->prepare, ldv_3_device_device); } } else { } { tmp___0 = ldv_undef_int(); } { if (tmp___0 == 1) { goto case_1___0; } else { } if (tmp___0 == 2) { goto case_2___0; } else { } if (tmp___0 == 3) { goto case_3___0; } else { } goto switch_default; case_1___0: /* CIL Label */ { ldv_pm_ops_instance_suspend_3_21(ldv_3_pm_ops_dev_pm_ops->suspend, ldv_3_device_device); tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->suspend_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_noirq_3_20(ldv_3_pm_ops_dev_pm_ops->suspend_noirq, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->resume_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_noirq_3_19(ldv_3_pm_ops_dev_pm_ops->resume_noirq, ldv_3_device_device); } } else { } } else { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->suspend_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_suspend_late_3_18(ldv_3_pm_ops_dev_pm_ops->suspend_late, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->resume_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_resume_early_3_17(ldv_3_pm_ops_dev_pm_ops->resume_early, ldv_3_device_device); } } else { } } { ldv_pm_ops_instance_resume_3_16(ldv_3_pm_ops_dev_pm_ops->resume, ldv_3_device_device); } goto ldv_56984; case_2___0: /* CIL Label */ { ldv_pm_ops_instance_freeze_3_15(ldv_3_pm_ops_dev_pm_ops->freeze, ldv_3_device_device); tmp___2 = ldv_undef_int(); } if (tmp___2 != 0) { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->freeze_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_late_3_14(ldv_3_pm_ops_dev_pm_ops->freeze_late, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->thaw_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_early_3_13(ldv_3_pm_ops_dev_pm_ops->thaw_early, ldv_3_device_device); } } else { } } else { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->freeze_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_freeze_noirq_3_12(ldv_3_pm_ops_dev_pm_ops->freeze_noirq, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->thaw_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_thaw_noirq_3_11(ldv_3_pm_ops_dev_pm_ops->thaw_noirq, ldv_3_device_device); } } else { } } { ldv_pm_ops_instance_thaw_3_10(ldv_3_pm_ops_dev_pm_ops->thaw, ldv_3_device_device); } goto ldv_56984; case_3___0: /* CIL Label */ { ldv_pm_ops_instance_poweroff_3_9(ldv_3_pm_ops_dev_pm_ops->poweroff, ldv_3_device_device); tmp___3 = ldv_undef_int(); } if (tmp___3 != 0) { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->poweroff_late != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_late_3_8(ldv_3_pm_ops_dev_pm_ops->poweroff_late, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->restore_early != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_early_3_7(ldv_3_pm_ops_dev_pm_ops->restore_early, ldv_3_device_device); } } else { } } else { if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->poweroff_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_poweroff_noirq_3_6(ldv_3_pm_ops_dev_pm_ops->poweroff_noirq, ldv_3_device_device); } } else { } if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->restore_noirq != (unsigned long )((int (*)(struct device * ))0)) { { ldv_pm_ops_instance_restore_noirq_3_5(ldv_3_pm_ops_dev_pm_ops->restore_noirq, ldv_3_device_device); } } else { } } { ldv_pm_ops_instance_restore_3_4(ldv_3_pm_ops_dev_pm_ops->restore, ldv_3_device_device); } goto ldv_56984; switch_default: /* CIL Label */ { ldv_stop(); } switch_break___0: /* CIL Label */ ; } ldv_56984: ; if ((unsigned long )ldv_3_pm_ops_dev_pm_ops->complete != (unsigned long )((void (*)(struct device * ))0)) { { ldv_pm_ops_instance_complete_3_3(ldv_3_pm_ops_dev_pm_ops->complete, ldv_3_device_device); } } else { } goto ldv_do_3; case_4: /* CIL Label */ ; return; switch_default___0: /* CIL Label */ { ldv_stop(); } switch_break: /* CIL Label */ ; } return; } } int ldv_register_netdev(int arg0 , struct net_device *arg1 ) { struct net_device *ldv_11_netdev_net_device ; int ldv_11_ret_default ; int tmp ; int tmp___0 ; { { ldv_11_ret_default = 1; ldv_11_ret_default = ldv_pre_register_netdev(); ldv_11_netdev_net_device = arg1; tmp___0 = ldv_undef_int(); } if (tmp___0 != 0) { { ldv_assume(ldv_11_ret_default == 0); ldv_11_ret_default = ldv_register_netdev_open_11_6((ldv_11_netdev_net_device->netdev_ops)->ndo_open, ldv_11_netdev_net_device); tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(ldv_11_ret_default == 0); ldv_dispatch_register_11_4(ldv_11_netdev_net_device); } } else { { ldv_assume(ldv_11_ret_default != 0); } } } else { { ldv_assume(ldv_11_ret_default != 0); } } return (ldv_11_ret_default); return (arg0); return (arg0); } } int ldv_register_netdev_open_11_6(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { int tmp ; { { tmp = bnx2_open(arg1); } return (tmp); } } int ldv_request_irq(int arg0 , unsigned int arg1 , enum irqreturn (*arg2)(int , void * ) , unsigned long arg3 , char *arg4 , void *arg5 ) { enum irqreturn (*ldv_12_callback_handler)(int , void * ) ; void *ldv_12_data_data ; int ldv_12_line_line ; enum irqreturn (*ldv_12_thread_thread)(int , void * ) ; int tmp ; { { tmp = ldv_undef_int(); } if (tmp != 0) { { ldv_assume(arg0 == 0); ldv_12_line_line = (int )arg1; ldv_12_callback_handler = arg2; ldv_12_thread_thread = (enum irqreturn (*)(int , void * ))0; ldv_12_data_data = arg5; ldv_dispatch_irq_register_12_2(ldv_12_line_line, ldv_12_callback_handler, ldv_12_thread_thread, ldv_12_data_data); } return (arg0); } else { { ldv_assume(arg0 != 0); } return (arg0); } return (arg0); } } void ldv_timer_instance_callback_5_2(void (*arg0)(unsigned long ) , unsigned long arg1 ) { { { (*arg0)(arg1); } return; } } void ldv_timer_timer_instance_5(void *arg0 ) { struct timer_list *ldv_5_container_timer_list ; struct ldv_struct_timer_instance_5 *data ; { data = (struct ldv_struct_timer_instance_5 *)arg0; if ((unsigned long )data != (unsigned long )((struct ldv_struct_timer_instance_5 *)0)) { { ldv_5_container_timer_list = data->arg0; ldv_free((void *)data); } } else { } { ldv_switch_to_interrupt_context(); } if ((unsigned long )ldv_5_container_timer_list->function != (unsigned long )((void (*)(unsigned long ))0)) { { ldv_timer_instance_callback_5_2(ldv_5_container_timer_list->function, ldv_5_container_timer_list->data); } } else { } { ldv_switch_to_process_context(); } return; return; } } void ldv_unregister_netdev(void *arg0 , struct net_device *arg1 ) { struct net_device *ldv_13_netdev_net_device ; { { ldv_13_netdev_net_device = arg1; ldv_unregister_netdev_stop_13_2((ldv_13_netdev_net_device->netdev_ops)->ndo_stop, ldv_13_netdev_net_device); ldv_dispatch_deregister_13_1(ldv_13_netdev_net_device); } return; return; } } void ldv_unregister_netdev_stop_13_2(int (*arg0)(struct net_device * ) , struct net_device *arg1 ) { { { bnx2_close(arg1); } return; } } __inline static struct page *alloc_pages(gfp_t flags , unsigned int order ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct page *)tmp); } } __inline static void *kmalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_malloc_unknown_size(); ldv_after_alloc(res); } return (res); } } __inline static void *kzalloc(size_t size , gfp_t flags ) { void *tmp ; { { tmp = ldv_kzalloc(size, flags); } return (tmp); } } __inline static void *dma_zalloc_coherent(struct device *dev , size_t size , dma_addr_t *dma_handle , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static struct sk_buff *ldv___netdev_alloc_skb_57(struct net_device *ldv_func_arg1 , unsigned int ldv_func_arg2 , gfp_t flags ) { void *tmp ; { { ldv_check_alloc_flags(flags); tmp = ldv_malloc_unknown_size(); } return ((struct sk_buff *)tmp); } } __inline static void ldv_spin_lock_69(spinlock_t *lock ) { { { ldv_spin_lock__xmit_lock_of_netdev_queue(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_72(spinlock_t *lock ) { { { ldv_spin_unlock__xmit_lock_of_netdev_queue(); spin_unlock(lock); } return; } } static void *ldv_dev_get_drvdata_81(struct device const *dev ) { void *tmp ; { { tmp = ldv_dev_get_drvdata(dev); } return (tmp); } } static int ldv_dev_set_drvdata_82(struct device *dev , void *data ) { int tmp ; { { tmp = ldv_dev_set_drvdata(dev, data); } return (tmp); } } __inline static void ldv_spin_lock_bh_104(spinlock_t *lock ) { { { ldv_spin_lock_indirect_lock_of_bnx2(); spin_lock_bh(lock); } return; } } __inline static void ldv_spin_unlock_bh_105(spinlock_t *lock ) { { { ldv_spin_unlock_indirect_lock_of_bnx2(); spin_unlock_bh(lock); } return; } } __inline static void ldv_spin_lock_bh_110(spinlock_t *lock ) { { { ldv_spin_lock_phy_lock_of_bnx2(); spin_lock_bh(lock); } return; } } __inline static void ldv_spin_unlock_bh_111(spinlock_t *lock ) { { { ldv_spin_unlock_phy_lock_of_bnx2(); spin_unlock_bh(lock); } return; } } static void *ldv_vzalloc_112(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static void *ldv_vzalloc_113(unsigned long ldv_func_arg1 ) { void *tmp ; { { ldv_check_alloc_nonatomic(); tmp = ldv_malloc_unknown_size(); } return (tmp); } } static int ldv_mod_timer_118(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___0 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } __inline static void ldv_spin_lock_119(spinlock_t *lock ) { { { ldv_spin_lock_indirect_lock_of_bnx2(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_120(spinlock_t *lock ) { { { ldv_spin_unlock_indirect_lock_of_bnx2(); spin_unlock(lock); } return; } } __inline static void ldv_spin_lock_125(spinlock_t *lock ) { { { ldv_spin_lock_phy_lock_of_bnx2(); spin_lock(lock); } return; } } __inline static void ldv_spin_unlock_126(spinlock_t *lock ) { { { ldv_spin_unlock_phy_lock_of_bnx2(); spin_unlock(lock); } return; } } static int ldv_mod_timer_143(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___1 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } __inline static int ldv_request_irq_144(unsigned int irq , irqreturn_t (*handler)(int , void * ) , unsigned long flags , char const *name , void *dev ) { ldv_func_ret_type___2 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = request_irq(irq, handler, flags, name, dev); ldv_func_res = tmp; tmp___0 = ldv_request_irq(ldv_func_res, irq, handler, flags, (char *)name, dev); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_irq_145(unsigned int ldv_func_arg1 , void *ldv_func_arg2 ) { { { free_irq(ldv_func_arg1, ldv_func_arg2); ldv_free_irq((void *)0, (int )ldv_func_arg1, ldv_func_arg2); } return; } } static int ldv_mod_timer_146(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___3 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_sync_147(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___4 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_sync_148(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___5 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_mod_timer_157(struct timer_list *ldv_func_arg1 , unsigned long ldv_func_arg2 ) { ldv_func_ret_type___6 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = mod_timer(ldv_func_arg1, ldv_func_arg2); ldv_func_res = tmp; tmp___0 = ldv_mod_timer(ldv_func_res, ldv_func_arg1, ldv_func_arg2); } return (tmp___0); return (ldv_func_res); } } static struct net_device *ldv_alloc_etherdev_mqs_165(int ldv_func_arg1 , unsigned int ldv_func_arg2 , unsigned int ldv_func_arg3 ) { ldv_func_ret_type___7 ldv_func_res ; struct net_device *tmp ; struct net_device *tmp___0 ; { { tmp = alloc_etherdev_mqs(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv_alloc_etherdev_mqs(ldv_func_res, ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static int ldv_register_netdev_166(struct net_device *ldv_func_arg1 ) { ldv_func_ret_type___8 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = register_netdev(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_register_netdev(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_167(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static void ldv_unregister_netdev_168(struct net_device *ldv_func_arg1 ) { { { unregister_netdev(ldv_func_arg1); ldv_unregister_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv_del_timer_sync_169(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___9 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static void ldv_free_netdev_170(struct net_device *ldv_func_arg1 ) { { { free_netdev(ldv_func_arg1); ldv_free_netdev((void *)0, ldv_func_arg1); } return; } } static int ldv_del_timer_sync_171(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___10 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv_del_timer_sync_172(struct timer_list *ldv_func_arg1 ) { ldv_func_ret_type___11 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = del_timer_sync(ldv_func_arg1); ldv_func_res = tmp; tmp___0 = ldv_del_timer_sync(ldv_func_res, ldv_func_arg1); } return (tmp___0); return (ldv_func_res); } } static int ldv___pci_register_driver_173(struct pci_driver *ldv_func_arg1 , struct module *ldv_func_arg2 , char const *ldv_func_arg3 ) { ldv_func_ret_type___12 ldv_func_res ; int tmp ; int tmp___0 ; { { tmp = __pci_register_driver(ldv_func_arg1, ldv_func_arg2, ldv_func_arg3); ldv_func_res = tmp; tmp___0 = ldv___pci_register_driver(ldv_func_res, ldv_func_arg1, ldv_func_arg2, (char *)ldv_func_arg3); } return (tmp___0); return (ldv_func_res); } } static void ldv_pci_unregister_driver_174(struct pci_driver *ldv_func_arg1 ) { { { pci_unregister_driver(ldv_func_arg1); ldv_pci_unregister_driver((void *)0, ldv_func_arg1); } return; } } void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) ; void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) ; int ldv_exclusive_spin_is_locked(void) ; void ldv_check_alloc_flags(gfp_t flags ) { int tmp ; { if (flags != 32U && flags != 0U) { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__wrong_flags(tmp == 0); } } else { } return; } } void ldv_check_alloc_nonatomic(void) { int tmp ; { { tmp = ldv_exclusive_spin_is_locked(); ldv_assert_linux_alloc_spinlock__nonatomic(tmp == 0); } return; } } void *ldv_xzalloc(size_t size ) ; void *ldv_dev_get_drvdata(struct device const *dev ) { { if ((unsigned long )dev != (unsigned long )((struct device const *)0) && (unsigned long )dev->p != (unsigned long )((struct device_private */* const */)0)) { return ((dev->p)->driver_data); } else { } return ((void *)0); } } int ldv_dev_set_drvdata(struct device *dev , void *data ) { void *tmp ; { { tmp = ldv_xzalloc(8UL); dev->p = (struct device_private *)tmp; (dev->p)->driver_data = data; } return (0); } } void *ldv_zalloc(size_t size ) ; struct spi_master *ldv_spi_alloc_master(struct device *host , unsigned int size ) { struct spi_master *master ; void *tmp ; { { tmp = ldv_zalloc((unsigned long )size + 2200UL); master = (struct spi_master *)tmp; } if ((unsigned long )master == (unsigned long )((struct spi_master *)0)) { return ((struct spi_master *)0); } else { } { ldv_dev_set_drvdata(& master->dev, (void *)master + 1U); } return (master); } } long ldv_is_err(void const *ptr ) { { return ((unsigned long )ptr > 4294967295UL); } } void *ldv_err_ptr(long error ) { { return ((void *)(4294967295L - error)); } } long ldv_ptr_err(void const *ptr ) { { return ((long )(4294967295UL - (unsigned long )ptr)); } } long ldv_is_err_or_null(void const *ptr ) { long tmp ; int tmp___0 ; { if ((unsigned long )ptr == (unsigned long )((void const *)0)) { tmp___0 = 1; } else { { tmp = ldv_is_err(ptr); } if (tmp != 0L) { tmp___0 = 1; } else { tmp___0 = 0; } } return ((long )tmp___0); } } static int ldv_filter_positive_int(int val ) { { { ldv_assume(val <= 0); } return (val); } } int ldv_post_init(int init_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(init_ret_val); } return (tmp); } } int ldv_post_probe(int probe_ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(probe_ret_val); } return (tmp); } } int ldv_filter_err_code(int ret_val ) { int tmp ; { { tmp = ldv_filter_positive_int(ret_val); } return (tmp); } } void *ldv_kzalloc(size_t size , gfp_t flags ) { void *res ; { { ldv_check_alloc_flags(flags); res = ldv_zalloc(size); ldv_after_alloc(res); } return (res); } } extern void ldv_assert(char const * , int ) ; void ldv__builtin_trap(void) ; void ldv_assume(int expression ) { { if (expression == 0) { ldv_assume_label: ; goto ldv_assume_label; } else { } return; } } void ldv_stop(void) { { ldv_stop_label: ; goto ldv_stop_label; } } long ldv__builtin_expect(long exp , long c ) { { return (exp); } } void ldv__builtin_trap(void) { { { ldv_assert("", 0); } return; } } void *ldv_malloc(size_t size ) ; void *ldv_calloc(size_t nmemb , size_t size ) ; extern void *external_allocated_data(void) ; void *ldv_calloc_unknown_size(void) ; void *ldv_zalloc_unknown_size(void) ; void *ldv_xmalloc_unknown_size(size_t size ) ; extern void *malloc(size_t ) ; extern void *calloc(size_t , size_t ) ; extern void free(void * ) ; void *ldv_malloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc(size_t nmemb , size_t size ) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = calloc(nmemb, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc(size_t size ) { void *tmp ; { { tmp = ldv_calloc(1UL, size); } return (tmp); } } void ldv_free(void *s ) { { { free(s); } return; } } void *ldv_xmalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = malloc(size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_xzalloc(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = calloc(1UL, size); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_malloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_calloc_unknown_size(void) { void *res ; void *tmp ; long tmp___0 ; int tmp___1 ; { { tmp___1 = ldv_undef_int(); } if (tmp___1 != 0) { { tmp = external_allocated_data(); res = tmp; memset(res, 0, 8UL); ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } else { return ((void *)0); } } } void *ldv_zalloc_unknown_size(void) { void *tmp ; { { tmp = ldv_calloc_unknown_size(); } return (tmp); } } void *ldv_xmalloc_unknown_size(size_t size ) { void *res ; void *tmp ; long tmp___0 ; { { tmp = external_allocated_data(); res = tmp; ldv_assume((unsigned long )res != (unsigned long )((void *)0)); tmp___0 = ldv_is_err((void const *)res); ldv_assume(tmp___0 == 0L); } return (res); } } void *ldv_undef_ptr(void) ; unsigned long ldv_undef_ulong(void) ; int ldv_undef_int_negative(void) ; int ldv_undef_int_nonpositive(void) ; extern int __VERIFIER_nondet_int(void) ; extern unsigned long __VERIFIER_nondet_ulong(void) ; extern void *__VERIFIER_nondet_pointer(void) ; int ldv_undef_int(void) { int tmp ; { { tmp = __VERIFIER_nondet_int(); } return (tmp); } } void *ldv_undef_ptr(void) { void *tmp ; { { tmp = __VERIFIER_nondet_pointer(); } return (tmp); } } unsigned long ldv_undef_ulong(void) { unsigned long tmp ; { { tmp = __VERIFIER_nondet_ulong(); } return (tmp); } } int ldv_undef_int_negative(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret < 0); } return (ret); } } int ldv_undef_int_nonpositive(void) { int ret ; int tmp ; { { tmp = ldv_undef_int(); ret = tmp; ldv_assume(ret <= 0); } return (ret); } } int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) ; int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) ; int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) ; int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) ; int ldv_thread_create(struct ldv_thread *ldv_thread , void (*function)(void * ) , void *data ) { { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { { (*function)(data); } } else { } return (0); } } int ldv_thread_create_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) , void *data ) { int i ; { if ((unsigned long )function != (unsigned long )((void (*)(void * ))0)) { i = 0; goto ldv_1179; ldv_1178: { (*function)(data); i = i + 1; } ldv_1179: ; if (i < ldv_thread_set->number) { goto ldv_1178; } else { } } else { } return (0); } } int ldv_thread_join(struct ldv_thread *ldv_thread , void (*function)(void * ) ) { { return (0); } } int ldv_thread_join_N(struct ldv_thread_set *ldv_thread_set , void (*function)(void * ) ) { { return (0); } } static int ldv_spin__xmit_lock_of_netdev_queue = 1; void ldv_spin_lock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_spin__xmit_lock_of_netdev_queue = 2; } return; } } void ldv_spin_unlock__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 2); ldv_spin__xmit_lock_of_netdev_queue = 1; } return; } } int ldv_spin_trylock__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } } } void ldv_spin_unlock_wait__xmit_lock_of_netdev_queue(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); } return; } } int ldv_spin_is_locked__xmit_lock_of_netdev_queue(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin__xmit_lock_of_netdev_queue == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock__xmit_lock_of_netdev_queue(void) { int tmp ; { { tmp = ldv_spin_is_locked__xmit_lock_of_netdev_queue(); } return (tmp == 0); } } int ldv_spin_is_contended__xmit_lock_of_netdev_queue(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock__xmit_lock_of_netdev_queue(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assume(ldv_spin__xmit_lock_of_netdev_queue == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin__xmit_lock_of_netdev_queue = 2; return (1); } else { } return (0); } } static int ldv_spin_addr_list_lock_of_net_device = 1; void ldv_spin_lock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); ldv_spin_addr_list_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_addr_list_lock_of_net_device == 2); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 2); ldv_spin_addr_list_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_addr_list_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_addr_list_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_addr_list_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_addr_list_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_addr_list_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_addr_list_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_addr_list_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assume(ldv_spin_addr_list_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_addr_list_lock_of_net_device = 2; return (1); } else { } return (0); } } static int ldv_spin_alloc_lock_of_task_struct = 1; void ldv_spin_lock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); ldv_spin_alloc_lock_of_task_struct = 2; } return; } } void ldv_spin_unlock_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_alloc_lock_of_task_struct == 2); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 2); ldv_spin_alloc_lock_of_task_struct = 1; } return; } } int ldv_spin_trylock_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } } } void ldv_spin_unlock_wait_alloc_lock_of_task_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); } return; } } int ldv_spin_is_locked_alloc_lock_of_task_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_alloc_lock_of_task_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_alloc_lock_of_task_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_alloc_lock_of_task_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_alloc_lock_of_task_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_alloc_lock_of_task_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assume(ldv_spin_alloc_lock_of_task_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_alloc_lock_of_task_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_i_lock_of_inode = 1; void ldv_spin_lock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); ldv_spin_i_lock_of_inode = 2; } return; } } void ldv_spin_unlock_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_i_lock_of_inode == 2); ldv_assume(ldv_spin_i_lock_of_inode == 2); ldv_spin_i_lock_of_inode = 1; } return; } } int ldv_spin_trylock_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_i_lock_of_inode = 2; return (1); } } } void ldv_spin_unlock_wait_i_lock_of_inode(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); } return; } } int ldv_spin_is_locked_i_lock_of_inode(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_i_lock_of_inode == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_i_lock_of_inode(void) { int tmp ; { { tmp = ldv_spin_is_locked_i_lock_of_inode(); } return (tmp == 0); } } int ldv_spin_is_contended_i_lock_of_inode(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_i_lock_of_inode(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_i_lock_of_inode == 1); ldv_assume(ldv_spin_i_lock_of_inode == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_i_lock_of_inode = 2; return (1); } else { } return (0); } } static int ldv_spin_indirect_lock_of_bnx2 = 1; void ldv_spin_lock_indirect_lock_of_bnx2(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_indirect_lock_of_bnx2 == 1); ldv_assume(ldv_spin_indirect_lock_of_bnx2 == 1); ldv_spin_indirect_lock_of_bnx2 = 2; } return; } } void ldv_spin_unlock_indirect_lock_of_bnx2(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_indirect_lock_of_bnx2 == 2); ldv_assume(ldv_spin_indirect_lock_of_bnx2 == 2); ldv_spin_indirect_lock_of_bnx2 = 1; } return; } } int ldv_spin_trylock_indirect_lock_of_bnx2(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_indirect_lock_of_bnx2 == 1); ldv_assume(ldv_spin_indirect_lock_of_bnx2 == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_indirect_lock_of_bnx2 = 2; return (1); } } } void ldv_spin_unlock_wait_indirect_lock_of_bnx2(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_indirect_lock_of_bnx2 == 1); ldv_assume(ldv_spin_indirect_lock_of_bnx2 == 1); } return; } } int ldv_spin_is_locked_indirect_lock_of_bnx2(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_indirect_lock_of_bnx2 == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_indirect_lock_of_bnx2(void) { int tmp ; { { tmp = ldv_spin_is_locked_indirect_lock_of_bnx2(); } return (tmp == 0); } } int ldv_spin_is_contended_indirect_lock_of_bnx2(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_indirect_lock_of_bnx2(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_indirect_lock_of_bnx2 == 1); ldv_assume(ldv_spin_indirect_lock_of_bnx2 == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_indirect_lock_of_bnx2 = 2; return (1); } else { } return (0); } } static int ldv_spin_lock = 1; void ldv_spin_lock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); ldv_spin_lock = 2; } return; } } void ldv_spin_unlock_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock == 2); ldv_assume(ldv_spin_lock == 2); ldv_spin_lock = 1; } return; } } int ldv_spin_trylock_lock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock = 2; return (1); } } } void ldv_spin_unlock_wait_lock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); } return; } } int ldv_spin_is_locked_lock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock(); } return (tmp == 0); } } int ldv_spin_is_contended_lock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock == 1); ldv_assume(ldv_spin_lock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_spin_lock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 2); ldv_spin_lock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_lock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_lock_of_res_counter = 1; void ldv_spin_lock_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); ldv_spin_lock_of_res_counter = 2; } return; } } void ldv_spin_unlock_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lock_of_res_counter == 2); ldv_assume(ldv_spin_lock_of_res_counter == 2); ldv_spin_lock_of_res_counter = 1; } return; } } int ldv_spin_trylock_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lock_of_res_counter = 2; return (1); } } } void ldv_spin_unlock_wait_lock_of_res_counter(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); } return; } } int ldv_spin_is_locked_lock_of_res_counter(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lock_of_res_counter == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lock_of_res_counter(void) { int tmp ; { { tmp = ldv_spin_is_locked_lock_of_res_counter(); } return (tmp == 0); } } int ldv_spin_is_contended_lock_of_res_counter(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lock_of_res_counter(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lock_of_res_counter == 1); ldv_assume(ldv_spin_lock_of_res_counter == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lock_of_res_counter = 2; return (1); } else { } return (0); } } static int ldv_spin_lru_lock_of_netns_frags = 1; void ldv_spin_lock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); ldv_spin_lru_lock_of_netns_frags = 2; } return; } } void ldv_spin_unlock_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_lru_lock_of_netns_frags == 2); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 2); ldv_spin_lru_lock_of_netns_frags = 1; } return; } } int ldv_spin_trylock_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } } } void ldv_spin_unlock_wait_lru_lock_of_netns_frags(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); } return; } } int ldv_spin_is_locked_lru_lock_of_netns_frags(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_lru_lock_of_netns_frags == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_lru_lock_of_netns_frags(void) { int tmp ; { { tmp = ldv_spin_is_locked_lru_lock_of_netns_frags(); } return (tmp == 0); } } int ldv_spin_is_contended_lru_lock_of_netns_frags(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_lru_lock_of_netns_frags(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assume(ldv_spin_lru_lock_of_netns_frags == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_lru_lock_of_netns_frags = 2; return (1); } else { } return (0); } } static int ldv_spin_node_size_lock_of_pglist_data = 1; void ldv_spin_lock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); ldv_spin_node_size_lock_of_pglist_data = 2; } return; } } void ldv_spin_unlock_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_node_size_lock_of_pglist_data == 2); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 2); ldv_spin_node_size_lock_of_pglist_data = 1; } return; } } int ldv_spin_trylock_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } } } void ldv_spin_unlock_wait_node_size_lock_of_pglist_data(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); } return; } } int ldv_spin_is_locked_node_size_lock_of_pglist_data(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_node_size_lock_of_pglist_data == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_node_size_lock_of_pglist_data(void) { int tmp ; { { tmp = ldv_spin_is_locked_node_size_lock_of_pglist_data(); } return (tmp == 0); } } int ldv_spin_is_contended_node_size_lock_of_pglist_data(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_node_size_lock_of_pglist_data(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assume(ldv_spin_node_size_lock_of_pglist_data == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_node_size_lock_of_pglist_data = 2; return (1); } else { } return (0); } } static int ldv_spin_phy_lock_of_bnx2 = 1; void ldv_spin_lock_phy_lock_of_bnx2(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_phy_lock_of_bnx2 == 1); ldv_assume(ldv_spin_phy_lock_of_bnx2 == 1); ldv_spin_phy_lock_of_bnx2 = 2; } return; } } void ldv_spin_unlock_phy_lock_of_bnx2(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_phy_lock_of_bnx2 == 2); ldv_assume(ldv_spin_phy_lock_of_bnx2 == 2); ldv_spin_phy_lock_of_bnx2 = 1; } return; } } int ldv_spin_trylock_phy_lock_of_bnx2(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_phy_lock_of_bnx2 == 1); ldv_assume(ldv_spin_phy_lock_of_bnx2 == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_phy_lock_of_bnx2 = 2; return (1); } } } void ldv_spin_unlock_wait_phy_lock_of_bnx2(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_phy_lock_of_bnx2 == 1); ldv_assume(ldv_spin_phy_lock_of_bnx2 == 1); } return; } } int ldv_spin_is_locked_phy_lock_of_bnx2(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_phy_lock_of_bnx2 == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_phy_lock_of_bnx2(void) { int tmp ; { { tmp = ldv_spin_is_locked_phy_lock_of_bnx2(); } return (tmp == 0); } } int ldv_spin_is_contended_phy_lock_of_bnx2(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_phy_lock_of_bnx2(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_phy_lock_of_bnx2 == 1); ldv_assume(ldv_spin_phy_lock_of_bnx2 == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_phy_lock_of_bnx2 = 2; return (1); } else { } return (0); } } static int ldv_spin_ptl = 1; void ldv_spin_lock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); ldv_spin_ptl = 2; } return; } } void ldv_spin_unlock_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_ptl == 2); ldv_assume(ldv_spin_ptl == 2); ldv_spin_ptl = 1; } return; } } int ldv_spin_trylock_ptl(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_ptl = 2; return (1); } } } void ldv_spin_unlock_wait_ptl(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); } return; } } int ldv_spin_is_locked_ptl(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_ptl == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_ptl(void) { int tmp ; { { tmp = ldv_spin_is_locked_ptl(); } return (tmp == 0); } } int ldv_spin_is_contended_ptl(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_ptl(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_ptl == 1); ldv_assume(ldv_spin_ptl == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_ptl = 2; return (1); } else { } return (0); } } static int ldv_spin_siglock_of_sighand_struct = 1; void ldv_spin_lock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); ldv_spin_siglock_of_sighand_struct = 2; } return; } } void ldv_spin_unlock_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_siglock_of_sighand_struct == 2); ldv_assume(ldv_spin_siglock_of_sighand_struct == 2); ldv_spin_siglock_of_sighand_struct = 1; } return; } } int ldv_spin_trylock_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_siglock_of_sighand_struct = 2; return (1); } } } void ldv_spin_unlock_wait_siglock_of_sighand_struct(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); } return; } } int ldv_spin_is_locked_siglock_of_sighand_struct(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_siglock_of_sighand_struct == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_siglock_of_sighand_struct(void) { int tmp ; { { tmp = ldv_spin_is_locked_siglock_of_sighand_struct(); } return (tmp == 0); } } int ldv_spin_is_contended_siglock_of_sighand_struct(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_siglock_of_sighand_struct(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_siglock_of_sighand_struct == 1); ldv_assume(ldv_spin_siglock_of_sighand_struct == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_siglock_of_sighand_struct = 2; return (1); } else { } return (0); } } static int ldv_spin_sk_dst_lock_of_sock = 1; void ldv_spin_lock_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); ldv_spin_sk_dst_lock_of_sock = 2; } return; } } void ldv_spin_unlock_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_sk_dst_lock_of_sock == 2); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 2); ldv_spin_sk_dst_lock_of_sock = 1; } return; } } int ldv_spin_trylock_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } } } void ldv_spin_unlock_wait_sk_dst_lock_of_sock(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); } return; } } int ldv_spin_is_locked_sk_dst_lock_of_sock(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_sk_dst_lock_of_sock == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_sk_dst_lock_of_sock(void) { int tmp ; { { tmp = ldv_spin_is_locked_sk_dst_lock_of_sock(); } return (tmp == 0); } } int ldv_spin_is_contended_sk_dst_lock_of_sock(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_sk_dst_lock_of_sock(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assume(ldv_spin_sk_dst_lock_of_sock == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_sk_dst_lock_of_sock = 2; return (1); } else { } return (0); } } static int ldv_spin_slock_of_NOT_ARG_SIGN = 1; void ldv_spin_lock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_spin_slock_of_NOT_ARG_SIGN = 2; } return; } } void ldv_spin_unlock_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 2); ldv_spin_slock_of_NOT_ARG_SIGN = 1; } return; } } int ldv_spin_trylock_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } } } void ldv_spin_unlock_wait_slock_of_NOT_ARG_SIGN(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); } return; } } int ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_slock_of_NOT_ARG_SIGN == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_slock_of_NOT_ARG_SIGN(void) { int tmp ; { { tmp = ldv_spin_is_locked_slock_of_NOT_ARG_SIGN(); } return (tmp == 0); } } int ldv_spin_is_contended_slock_of_NOT_ARG_SIGN(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_slock_of_NOT_ARG_SIGN(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assume(ldv_spin_slock_of_NOT_ARG_SIGN == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_slock_of_NOT_ARG_SIGN = 2; return (1); } else { } return (0); } } static int ldv_spin_tx_global_lock_of_net_device = 1; void ldv_spin_lock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); ldv_spin_tx_global_lock_of_net_device = 2; } return; } } void ldv_spin_unlock_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double unlock", ldv_spin_tx_global_lock_of_net_device == 2); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 2); ldv_spin_tx_global_lock_of_net_device = 1; } return; } } int ldv_spin_trylock_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); is_spin_held_by_another_thread = ldv_undef_int(); } if (is_spin_held_by_another_thread != 0) { return (0); } else { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } } } void ldv_spin_unlock_wait_tx_global_lock_of_net_device(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_spin_is_locked_tx_global_lock_of_net_device(void) { int is_spin_held_by_another_thread ; { { is_spin_held_by_another_thread = ldv_undef_int(); } if (ldv_spin_tx_global_lock_of_net_device == 1 && is_spin_held_by_another_thread == 0) { return (0); } else { return (1); } } } int ldv_spin_can_lock_tx_global_lock_of_net_device(void) { int tmp ; { { tmp = ldv_spin_is_locked_tx_global_lock_of_net_device(); } return (tmp == 0); } } int ldv_spin_is_contended_tx_global_lock_of_net_device(void) { int is_spin_contended ; { { is_spin_contended = ldv_undef_int(); } if (is_spin_contended != 0) { return (0); } else { return (1); } } } int ldv_atomic_dec_and_lock_tx_global_lock_of_net_device(void) { int atomic_value_after_dec ; { { ldv_assert("linux:kernel:locking:spinlock::one thread:double lock try", ldv_spin_tx_global_lock_of_net_device == 1); ldv_assume(ldv_spin_tx_global_lock_of_net_device == 1); atomic_value_after_dec = ldv_undef_int(); } if (atomic_value_after_dec == 0) { ldv_spin_tx_global_lock_of_net_device = 2; return (1); } else { } return (0); } } void ldv_check_final_state(void) { { { ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin__xmit_lock_of_netdev_queue == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_addr_list_lock_of_net_device == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_alloc_lock_of_task_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_i_lock_of_inode == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_indirect_lock_of_bnx2 == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lock_of_res_counter == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_lru_lock_of_netns_frags == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_node_size_lock_of_pglist_data == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_phy_lock_of_bnx2 == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_ptl == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_siglock_of_sighand_struct == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_sk_dst_lock_of_sock == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_slock_of_NOT_ARG_SIGN == 1); ldv_assert("linux:kernel:locking:spinlock::one thread:locked at exit", ldv_spin_tx_global_lock_of_net_device == 1); } return; } } int ldv_exclusive_spin_is_locked(void) { { if (ldv_spin__xmit_lock_of_netdev_queue == 2) { return (1); } else { } if (ldv_spin_addr_list_lock_of_net_device == 2) { return (1); } else { } if (ldv_spin_alloc_lock_of_task_struct == 2) { return (1); } else { } if (ldv_spin_i_lock_of_inode == 2) { return (1); } else { } if (ldv_spin_indirect_lock_of_bnx2 == 2) { return (1); } else { } if (ldv_spin_lock == 2) { return (1); } else { } if (ldv_spin_lock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_lock_of_res_counter == 2) { return (1); } else { } if (ldv_spin_lru_lock_of_netns_frags == 2) { return (1); } else { } if (ldv_spin_node_size_lock_of_pglist_data == 2) { return (1); } else { } if (ldv_spin_phy_lock_of_bnx2 == 2) { return (1); } else { } if (ldv_spin_ptl == 2) { return (1); } else { } if (ldv_spin_siglock_of_sighand_struct == 2) { return (1); } else { } if (ldv_spin_sk_dst_lock_of_sock == 2) { return (1); } else { } if (ldv_spin_slock_of_NOT_ARG_SIGN == 2) { return (1); } else { } if (ldv_spin_tx_global_lock_of_net_device == 2) { return (1); } else { } return (0); } } extern void __VERIFIER_error(void) ; void ldv_assert_linux_alloc_spinlock__nonatomic(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } } void ldv_assert_linux_alloc_spinlock__wrong_flags(int expr ) { { if (! expr) { { __VERIFIER_error(); } } else { } return; } }